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Micro RNAs (miRNAs), which are ~22 nucleotide (nt) long RNA molecules 

along with several RNA binding proteins (RBPs), engage in an RNA dependent post-

transcriptional gene silencing process known as RNA interference (RNAi). In the 

canonical miRNA biogenesis pathway, an enzyme known as DICER cleaves the ~70nt 

pre-miRNA to a ~22nt long miRNA that is loaded into the RNAi effector mechanism, the 

RNA induced silencing complex (RISC).  

Several in vitro studies provide suggestive evidence that mammalian double 

stranded RNA binding proteins (dsRBPs), such as TARBP2, act as DICER cofactors in 

miRNA processing and RISC loading to promote RNAi activity. A screen attempting to 

identify translational regulators of the murine Protamine1 gene identified TARBP2 as a 

potential translation regulator. At the time, I initiated my pre-doctoral studies, it was 



	
	
	
	

unknown if TARBP2 has a role in miRNA biogenesis in vivo, or if the translational 

regulation of Prm1 during murine spermatogenesis is dependent on TARBP2 mediated 

miRNA biogenesis.  

To investigate the role of TARBP2 in miRNA biogenesis and TARBP2 mediated 

post-transcriptional gene regulation during spermatogenesis murine embryos with a 

constitutive null allele of Tarbp2 and adult mice with a germ cell-specific loss of 

TARBP2 were generated. I show here that TARBP2 regulates the biogenesis of a sub-set 

of miRNAs during murine embryonic development and spermatogenesis and that 

TARBP2-dependent miRNAs regulate translation elongation. 
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CHAPTER 1. INTRODUCTION 

" The Central Dogma. This states that once 'information' has passed into protein it 

cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic 

acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or 

from protein to nucleic acid is impossible. Information means here the precise determination 

of sequence, either of bases in the nucleic acid or of amino acid residues in the protein."  

-Francis H. Crick, 1958 

Flow of genetic information from deoxyribonucleic acid (DNA) to messenger RNA 

(mRNA), and from mRNA to a protein is regulated continuously. Several key players, 

including transcription factors, RNA binding proteins, and small non-coding RNAs, are 

involved in this regulation. My research is aimed to understand the role of an RNA binding 

protein during this regulation, especially at the level of where the genetic information is 

translated from mRNA into protein. 

1.1 Steps in post-transcriptional gene expression 

Upon transcription of an encoding gene, its mRNA undergoes a series of steps 

including 5'-capping, excision of introns through splicing, followed by 3'-polyadenylation to 

generate mature mRNA (Singh, Pratt et al. 2015). Several RNA binding proteins (RBPs) bind 

to an mRNA generating an mRNP complex, which is then transported to the cytoplasm 

through the interaction of mRNP components with nuclear pore complexes (Natalizio and 

Wente 2013, Xing and Bassell 2013). Once inside the cytoplasm, mRNA is localized to 

cytoplasmic bodies found within specific regions of the cell and is ready to be translated. 

This is followed by degradation (Buxbaum, Haimovich et al. 2015). Among all these steps, 
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translation and mRNA degradation in the cytoplasm are key ones. The regulation of both of 

these steps allows for changes in protein concentrations during the maintenance of cell 

homeostasis (Garneau, Wilusz et al. 2007, Schoenberg and Maquat 2012).  

1.2 Translation 

Translation of mRNA is carried out in three steps: initiation, elongation, and 

termination. Translation initiation in eukaryotes occurs mainly in a 5'cap- dependent manner.  

Several initiation factors including eIF4E (cap-binding protein), eIF4A (RNA 

helicase) and eIF4G (large scaffolding protein) are recruited onto the 5' end of the mRNA and 

form a translation initiation complex (eIF4F). This complex then binds to PABP on the 3' 

untranslated region (UTR) and facilitates the recruitment of a 43S ribosome to the mRNA 

resulting in the formation of the pre-initiation complex (PIC) (Wells, Hillner et al. 1998). A 

closed loop structure formed by the association between PABP and eIF4E renders stability to 

the translating complex. The pre-initiation complex then starts scanning along the 5'-UTR to 

detect the start codon (AUG) near the 5' end of the mRNA. The presence of  the "Kozak 

consensus" sequence, 5'(A/G)CCAUGG 3' is considered as a favorable sequence for 

translation initiation (Kozak 1986). The presence of secondary structures (Kozak 1990) in the 

5' UTR and the size of 5' UTR (Pestova and Kolupaeva 2002) can alter the efficiency of PIC 

to scan for the AUG start codon. Inefficient scanning by PIC for a favorable start codon 

results in a translation initiation block or protein isoform synthesis (Sedman, Gelembiuk et 

al. 1990). Once the favorable start codon is detected, a 60S ribosomal sub-unit joins the PIC, 

resulting in the formation of an 80S ribosome (Hinnebusch and Lorsch 2012).  
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1.2.1 Translation elongation and termination 

The addition of each amino acid into a nascent peptide during translation elongation 

is characterized by moving of the 80S ribosome along the length of the mRNA at a distance 

of three nucleotides precisely. During the initial process of decoding, amino-acyl-t-RNAs 

form a complex with eEF1A bound to GTP to form a complex that is transferred to the A-site 

of a ribosome. When a match is found between the amino-acyl-t-RNA and a codon on the 

mRNA, a new amino acid is added to the nascent peptide. The addition of the amino acid to 

the nascent peptide results in a massive rearrangement of the ribosome in which each sub-

unit rotates relative to each other. This causes the translocation of the ribosome along the 

mRNA, which is facilitated by the energy released from GTP-hydrolysis by eEF-2. With this 

movement, a new codon is exposed to the A-site while the P-site is still attached to the 

nascent peptide. This process continues until the A-site encounters a termination codon. Once 

a ribosome reaches a termination codon, releasing factors bind to the P-site and promote 

hydrolysis of peptidyl-tRNA. This results in the termination of translation coupled with the 

release of the poly-peptide chain from the translation complex (Lareau, Hite et al. 2014, Ali, 

Ur Rahman et al. 2017). This process is illustrated in Figure1.1 

 
Figure 1.1: Translation initiation and elongation 

AAAA 

EIF4G 



 4	

1.3 mRNA degradation 

Once an mRNA is exported in to the cytoplasm, it either undergoes translational 

repression, or gets translated and eventually undergoes degradation (Moore 2005). mRNA 

degradation is a common process by which to regulate the turnover of mRNA, thereby 

regulating protein expression. The most common form of mRNA degradation is de-

adenylation of mRNA followed by exonuclease digestion. As soon as an mRNA enters the 

cytoplasmic region of a cell, de-adenylation is initiated. Usually, 5'-capping and 3' 

polyadenylation along with the binding proteins (PABP) causes an mRNA to become 

resistant to 5' and 3' exonucleases (Muhlrad, Decker et al. 1994, Mangus, Evans et al. 2003). 

Thus, mRNA degradation is characterized by removing of cap structures, de-adenylation on 

the 3'UTR, followed by exonuclease activity on the 5' and 3' ends of the mRNA. De-

adenylation is initiated by the CCR4-CAF1 complex in eukaryotes leading to decapping of 

the 5' end by DCP1-DCP2 complex, and subsequent exo-nucleolytic degradation by XRN1 

(Beelman and Parker 1995, Tucker, Valencia-Sanchez et al. 2001, Chen, Chiang et al. 2002, 

Coller and Parker 2004, Yamashita, Chang et al. 2005, Zheng, Ezzeddine et al. 2008). During 

the normal translation process, once the ribosome recognizes the stop codon at the end of the 

mRNA transcript, a UPF1-eRF1-eRF3 trimer complex interacts with PABP in the 3'UTR 

(Ivanov, Gehring et al. 2008, Shyu, Wilkinson et al. 2008). This interaction results in the 

recruitment of PAN3 which allows for the recruitment of PAN2 (Zheng, Ezzeddine et al. 

2008). This PAN3-PAN2 complex also interacts with and recruits a CCR4/CAF1 deadenylase 

complex, resulting in the formation of a super-deadenylase complex (Boeck, Tarun et al. 

1996, Brown, Tarun et al. 1996, Uchida, Hoshino et al. 2004).  
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During conditions in which a stop codon exists in the open-reading frame of an 

mRNA, deadenylation at the 3' end is triggered, leading to mRNA degradation. This process 

is known as non-sense mediated decay (NMD) (Nagy and Maquat 1998). During NMD, 

ribosomes are able to recognize and distinguish a pre-termination codon (PTC) from normal 

termination codon due to the presence of proteins in exons that are responsible for splicing 

that helps in the formation of exon junction complexes (EJCs) (Kashima, Yamashita et al. 

2006, Rebbapragada and Lykke-Andersen 2009). Once the ribosome recognizes a PTC in 

conjunction with EJC's, this recognition amplifies the recruitment of PAN3 to PABP, and 

triggers de-adenylation followed by mRNA degradation. Figure 1.2, shows some of the main 

players involved in the deadenylation and degradation of mRNA. 

 
Figure 1.2: mRNA degradation by deadenylation 

CCR4-CAF1 
AAAAA 

PABP 

EIF4G 
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1.4 Post-transcriptional regulation of gene expression 

The regulation exerted during mRNA translation or degradation is termed post-

transcriptional regulation of gene expression. The relationship of this process to 

transcriptional and translation regulation is shown in Figure 1.3. Each step during post-

transcriptional gene expression is tightly regulated, and this regulation is essential for 

physiological responses of cells, especially in mammals. Sequence or structure-specific, 

single stranded (ss)-RBPs or double stranded (ds)-RBPs and non-coding (nc)-RNAs 

including micro-RNAs (miRNAs), are key factors that regulate both translation and mRNA 

degradation. In this section, I will discuss miRNA-mediated post-transcriptional regulation of 

gene expression. 

 
 

Figure 1.3: Gene expression stages and regulation 
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1.4.1 miRNA mediated post-transcriptional regulation of gene expression  

miRNAs are a large family of endogenous ~22 nucleotide (nt) nc-RNAs that regulate 

the translational efficiency and decay of mRNAs (Krol, Loedige et al. 2010). The mouse 

genome is estimated to encode about 722 miRNAs, and these are predicted to control the 

activity of ~50% of all protein-coding genes (Baek, Villen et al. 2008, Griffiths-Jones, Saini 

et al. 2008, Selbach, Schwanhausser et al. 2008, Friedman, Farh et al. 2009). Although a 

miRNA is ~22nt in length, a seed sequence of ~2-8nt long is essential for an interaction of a 

miRNA with its mRNA target. miRNA interaction with a target mRNA results in lower 

mRNA levels. This miRNA-mediated lowering of mRNA levels has been shown to account 

for ~75-85% of the resultant protein level change, suggesting the impact of miRNAs on gene 

expression occurs predominantly during the post-transcriptional stage (Hendrickson, Hogan 

et al. 2009, Guo, Ingolia et al. 2010).  

The mechanisms by which miRNAs regulate the process of translation and mRNA 

degradation have been well characterized. Extensive base pairing of the miRNA “seed” 

sequence to the target mRNA inhibits protein synthesis (Bartel 2009). Translational 

repression, or an Argonaut (AGO)-catalyzed cleavage of the target mRNA, ensues upon 

binding (Fabian, Sonenberg et al. 2010, Djuranovic, Nahvi et al. 2011). When a seed 

sequence is one hundred percent complementary to the target mRNA, a trinucleotide repeat 

containing protein, TNRC6/GW182 is recruited onto the 3'UTR region of the mRNA by 

AGO. Binding of the TNRC6/GW182 then recruits PAN2-PAN3 followed by the CCR4-

NOT exonuclease, resulting in deadenylation and mRNA degradation respectively (Fabian, 

Sonenberg et al. 2010, Jonas and Izaurralde 2015).  
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The actual role of miRNAs in translational regulation is still inconclusive, as some 

studies report that miRNAs promote translation activation or elongation instead of repression 

(Vasudevan, Tong et al. 2007, Zhang, Tang et al. 2017). The role of miRNAs in regulating 

translation is likely tissue specific and would vary depending on the features (e.g. presence of 

AU-Rich elements (ARE) or short 3'UTR sequence) and the fate of the mRNA (storage or 

translation). Although the exact mechanism by which miRNAs promote translation needs 

further understanding, the mechanism by which miRNA dependent translational repression 

occurs has been well characterized.  Binding of both a miRNA that contains a mismatched 

seed sequence, along with AGO, in the 3'UTR of an mRNA leads to the recruitment of a 

TNRC6/GW182 complex, which dissociates PABP (Huntzinger, Braun et al. 2010, Moretti, 

Kaiser et al. 2012, Zekri, Kuzuoglu-Ozturk et al. 2013). This leads to the release of a closed 

loop structure that would otherwise stabilize the PIC. This is followed by recruitment of a 

CCR4-NOT complex for deadenylation along with the decapping enzyme, DDX6 (Chen, 

Boland et al. 2014, Mathys, Basquin et al. 2014). Figure 1.4 illustrates some of the players 

that contribute to miRNA mediated mRNA degradation and translational inhibition. 
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Figure 1.4: miRNA mediated translation inhibition and mRNA degradation 

 

The expression and conservation of miRNAs along with their associated proteins in 

plants, flies, nematodes and vertebrates suggests that miRNA-mediated regulation of gene 

expression is conserved and is important for regulating cell fates in multiple forms of life. 

miRNA mediated post-transcriptional regulation was first identified in 

Caenorhabditis.elegans. During the first larval phase of C.elegans, mRNA encoding the 

transcription factor LIN-14 is degraded by binding of a small RNA, lin-4, to its 3'UTR region 

(Lee, Feinbaum et al. 1993, Wightman, Ha et al. 1993). During embryonic development in 

zebrafish, maternal oocyte mRNAs are translationally inhibited and then degraded by the 

expression of miR-430, which targets hundreds of mRNAs in the 3'UTR region (Bazzini, Lee 

et al. 2012).    

In mice, many miRNAs exhibit strict developmental stage and tissue-specific 

expression patterns (Landgraf, Rusu et al. 2007). Several studies have shown that miRNAs 

are essential in the development of organs, including heart, brain, skin and skeletal muscle, 
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the development of male and female germline, and in blood cell differentiation. A failure in 

miRNA-mediated post-transcriptional regulation leads to several developmental disorders or 

diseases in adult systems (Coffre and Koralov 2017, Horsburgh, Fullard et al. 2017, Li, Fu et 

al. 2017, Rajman and Schratt 2017, Weiss and Ito 2017, Wojciechowska, Braniewska et al. 

2017, Tesfaye, Gebremedhn et al. 2018).  

During the early stages of heart muscle development in mice, miR-133a and miR-1a 

suppress smooth muscle generation and enhance cardiomyocyte proliferation by targeting the 

3'UTR regions of CyclinD2 and Hand2, respectively (Liu, Bezprozvannaya et al. 2008, 

Heidersbach, Saxby et al. 2013). Elevated levels of Sox6 expression, creating an imbalance 

between the differentiation of fast and slow twitch muscles, was observed with the loss of a 

heart-specific miR-203a during heart muscle differentiation in mouse (Ding, Chen et al. 

2015). miRNAs are also needed for proper development of the nervous system. For example, 

miRNAs, miR-9 and let-7b directly target the 3'UTR and suppress NR2E1 receptor 

expression and translation of CyclinD1, thereby regulating neuronal stem cell self-renewal 

and differentiation during early neuronal development in mice. miR-9 also regulates neuronal 

differentiation in the developing mouse retina (Qu, Sun et al. 2010, Ding, Chen et al. 2015). 

Anti-proliferative and pro-differentiative Tis21 expression is regulated by miR-92 interaction 

with the 3'UTR region of its mRNA. Loss of this regulation results in microcephaly in mouse 

(Fei, Haffner et al. 2014).  

During germ line development of mice, several miRNAs are differentially expressed, 

among which two major classes-miR17-92 and miR290-295 clusters have been shown to be 

critical (Hayashi, Chuva de Sousa Lopes et al. 2008, Ventura, Young et al. 2008). miR-17-92 

micro RNAs are highly expressed in early primordial germ cell stages and then become 
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downregulated in female primordial germ cells (PGCs) (Tang, Kaneda et al. 2007). Whole 

body knock out of the miR290-295 cluster results in female mice that can survive up to 

adulthood, but are sterile, suggesting the importance of this cluster in successful female 

gamete development (Blakaj and Lin 2008). The role of miRNAs in male gamete 

development will be discussed in detail in section 1.5. 

1.4.2 miRNA biogenesis 

miRNAs are transcribed by RNA polymerase II as long pri-miRNAs that are capped, 

polyadenylated and frequently spliced, while a minor group of miRNAs are transcribed from 

the introns of protein-coding genes. The formation of a stem-loop structure in the primary 

(pri)-miRNA acts as a substrate for two members of the RNase III family of enzymes, 

DROSHA and DICER (Bernstein, Caudy et al. 2001, Grishok, Pasquinelli et al. 2001, 

Hutvagner, McLachlan et al. 2001, Ketting, Fischer et al. 2001, Knight and Bass 2001).  

pri-miRNAs are characterized by the presence of a UGU motif in the apical loop, a 

GHG motif in the stem, and a UG and CNNC motif in the basal region (Auyeung, Ulitsky et 

al. 2013). DGCR8 first recognizes and binds to the apical UGU motif recruiting DROSHA 

through its C-terminal tail. DROSHA is then placed at the UG motif close to a hairpin loop, 

cleaving the pri-miRNA to an ~70 nucleotide stem-loop containing, pre-miRNA (Denli, Tops 

et al. 2004, Gregory, Yan et al. 2004, Han, Lee et al. 2004, Landthaler, Yalcin et al. 2004, 

Nguyen, Jo et al. 2015). The pre-miRNA is actively transported to the cytosol via Exportin-5 

and incorporated into a multiprotein complex containing the second RNase III enzyme, 

DICER (Yi, Qin et al. 2003, Lund, Guttinger et al. 2004). 

 DICER contains an ATPase/RNA helicase domain, a PAZ domain, two RNAseIII 

domains and a C-terminal RNA binding domain (Yan, Yan et al. 2003, Zhang, Kolb et al. 
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2004, Lau, Guiley et al. 2012). DICER binds to pre-miRNA upon recognition of a 5'end free 

phosphate group by the PAZ domain (Park, Heo et al. 2011). The distance between the PAZ 

and RNAse domains acts as ruler for DICER cleavage, leading to cleavage of a hairpin loop 

structure (Macrae, Zhou et al. 2006). This cleavage results in the formation of a mature mi-

RNA duplex, among which, one strand acts as a lead strand that targets mRNA while the 

other strand gets degraded.  While DICER alone can process miRNA, the presence of 

dsRBPs, such as TARBP2 or PRKRA, helps DICER to recognize miRNAs from other types 

of small RNAs in an RNA crowded environment (Lee, Zhou et al. 2013, Wilson, Tambe et al. 

2015). Mature miRNA, along with TARBP2 and DICER, recruits AGO proteins, resulting in 

the formation of RNA induced silencing complex (RISC) and the occurrence of RNA 

interference (RNAi) as illustrated in Figure 1.5 (Chendrimada, Gregory et al. 2005, Haase, 

Jaskiewicz et al. 2005, Chakravarthy, Sternberg et al. 2010, Kawamata and Tomari 2010, 

Czech and Hannon 2011). The role of some of these biogenesis factors in regulating key 

physiological processes will be described in detail in the following sections. 
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Figure 1.5: Canonical miRNA biogenesis 

1.4.3 DICER  

The RNAseIII enzyme DICER has been extensively studied as an endonuclease that 

cleaves dsRNA into small non-coding RNA including miRNAs and silencing (si) RNAs. 

DICER expression is conserved in many eukaryotes exhibiting RNAi mechanisms. RNAi 

mediated through siRNA and miRNA relies on expression of a single DICER protein in many 

vertebrates including mammals (Gao, Wang et al. 2014, Svobodova, Kubikova et al. 2016). 

In contrast to mammals, which express one Dicer gene, some animals, including Drosophila 

melanogaster, the shrimp Litopenaeus vannamei and the planarian Schmidtea mediterranea, 

two Dicer genes, Dicer1 and Dicer2, are expressed. Dicer1 is required for miRNA 

biogenesis, and ATP-dependent Dicer2 is required for siRNA biogenesis (Lee, Nakahara et 

al. 2004).  

Recent studies have shown the ability of DICER to process small nc-RNAs other than 

miRNAs or siRNAs. These include tRNA fragments (tRFs).  Among several groups of tRFs, 
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the major groups have been classified as 3' U tRFs, 5' U trFs and 3' CCA tRFs (Lee, Shibata 

et al. 2009). Among these groups, 5' U trFs and 3' CCA tRFs are characterized by the 

presence of 5' phosphate and 3' hydroxyl groups, which can be recognized and cleaved by 

DICER (Babiarz, Ruby et al. 2008). In vitro and in vivo experiments have shown that 

mammalian DICER generates CU1276, which is a ~22nt long tRNA (Gly)-derived small 

RNA that inhibits the translation of Rpa1 mRNA by binding to its 3'UTR region (Cole, 

Sobala et al. 2009, Langenberger, Cakir et al. 2013, Maute, Schneider et al. 2013). DICER 

has also been shown to be required for production of miRNAs from snoRNAs and rasiRNAs 

from double stranded structures of LINE-1elements (Saraiya and Wang 2008, Faulkner 

2013). In mice, the depletion of DICER is associated with ectopic expression of Alu-repeat 

RNAs. This causes Geographic Atrophy in the eye, suggesting DICERs ability to cleave Alu 

repeats (Kaneko, Dridi et al. 2011).  

DICER localization within the cell is different for humans and mice.  Human DICER 

is localized inside the cell cytoplasm and nucleus, where it mediates multiple functions, 

including regulating the synthesis of siRNA, the synthesis of ribosomal (r) RNA by binding 

to rDNA, and formation of heterochromatin structure (Fukagawa, Nogami et al. 2004, 

Sinkkonen, Hugenschmidt et al. 2010, Kalantari, Chiang et al. 2016). However, in mouse 

using a reporter system in vivo, DICER was shown to be exclusively cytoplasmic in cells 

from several tissues, suggesting its role in post-transcriptional regulation is localized to the 

cytoplasm (Much, Auchynnikava et al. 2016).  

DICER in mice has been shown to be essential for the development and normal 

physiological function of almost every organ. During early embryonic development in mice, 

maternal DICER and DICER-dependent miRNAs are expressed until the 8-cell stage and 
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then taken over by endogenous DICER (Murchison, Stein et al. 2007, Tang, Kaneda et al. 

2007). Complete loss of DICER expression in the developing mouse embryo results in 

embryonic lethality by embryonic day7.5 (E7.5), just before gastrulation (Bernstein, Kim et 

al. 2003).  

Cell-specific knock out studies in male and female reproductive organs of mice 

suggest a role of DICER in successful gamete development (Hong, Luense et al. 2008). In 

mice, DICER is expressed in both somatic and germ cells of the testis (Comazzetto, Di 

Giacomo et al. 2014). Dicer ablation in PGCs as early as E10 using Tnap-cre causes defects 

in proliferation of germ cells, and in post-natal spermatogenesis (Hayashi, Chuva de Sousa 

Lopes et al. 2008, Maatouk, Loveland et al. 2008). Ddx4-cre mediated deletion of Dicer 

expression in spermatogonia at E18 results in defective meiotic progression characterized by 

a delay in transition from leptotene to zygotene or pachytene, and apoptosis of pachytene 

spermatocytes during germ cell development (Romero, Meikar et al. 2011).  Sertoli cell 

specific deletion using Amh-cre results in the absence of Sertoli cell maturation followed by 

germ cell loss and degeneration of seminiferous tubules (Papaioannou, Pitetti et al. 2009, 

Papaioannou, Lagarrigue et al. 2011). Post-natal ablation of DICER expression in 

spermatogonia of a mouse testis using Stra8-icre or Ngn3-Cre results in defective 

spermiogenesis (Korhonen, Meikar et al. 2011, Greenlee, Shiao et al. 2012). However, Stra8-

icre mediated deletion also causes a delay in meiotic cell stage progression, whereas Ngn3-

cre mediated deletion leads to a defect in cell-cell junction formation between haploid 

spermatids and Sertoli cells (Korhonen, Yadav et al. 2015). Prm1-Cre mediated deletion of 

Dicer in haploid spermatids results in improper chromatin condensation, abnormalities in 
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sperm shape and defective translation regulation due to loss of miRNA expression (Chang, 

Lee-Chang et al. 2012).  

Of interest, the phenotype of Dgcr8-/- mice is less severe than that of Dicer-/- (Wu, 

Song et al. 2012, Zimmermann, Romero et al. 2014). As described in section 1.4.2, DGCR8 

has an important role in miRNA biogenesis. Together, these results, along with the role of 

DICER in regulating multiple cellular processes, suggests that the severe phenotype observed 

in many organs due to loss of DICER expression cannot be due to improper miRNA 

biogenesis alone.  

1.4.4 TARBP2 

Protein-RNA binding screens using HIV-TAR RNA helped lead to the identification 

of human TRBP1 and TRBP2 and cloning of the encoding gene from Hela cells (Gatignol, 

Buckler-White et al. 1991). These two proteins are identical to each other except for the 

presence of an additional 21amino acids towards the N-terminus of TRBP2, due to 

translation of an alternative first exon (Bannwarth, Talakoub et al. 2001). The gene encoding 

TRBP is present on human chromosome 12 and in mouse, Tarbp2 gene is located on 

chromosome 15. Usage of alternative promoters adjacent to each other during transcription 

results in the inclusion of alternative exons in its mRNA. The murine homolog of human 

TRBP, termed PRBP or TARBP2, was identified and characterized several years after the 

cloning of the human gene. It was identified by screening a cDNA library for RNA binding 

proteins from mouse testes (Lee, Fajardo et al. 1996). TARBP2 is expressed at high levels in 

both human and murine testis compared to any other organs (Lee, Fajardo et al. 1996, Siffroi, 

Pawlak et al. 2001). Homologs of TRBP were identified in other animals including Xenopus 

(homolog is termed Xlrbpa) (Eckmann and Jantsch 1997), Drosophila (homolog is named 
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Loquacious or LOQ) (Forstemann, Tomari et al. 2005) and C. elegans (termed RDE-4) 

(Blanchard, Parameswaran et al. 2011). 

Murine PRBP or TARBP2 is 93% identical to human TRBP with three structural 

domains: dsRBD1, dsRBD2 and dsRBD3. dsRBD1 and dsRBD2 together are essential for 

binding of these proteins to double stranded RNA. Among these domains, the second domain 

has the strongest affinity for RNA due to the presence of a KR-helix motif in its structure 

(Daviet, Erard et al. 2000, Benoit, Imbert et al. 2013). Previously, it was shown that TARBP2 

binds to asymmetric structures formed by perfectly matched, GC rich regions of double 

stranded RNA (Lee, Fajardo et al. 1996, Parker, Maity et al. 2008, Kini and Walton 2009, 

Gredell, Dittmer et al. 2010). However, it is still unclear if sequence or structure determines 

the binding of TARBP2 to mRNA as recent studies indicate that TARBP2 binds to bulge 

structures formed by unpaired regions of miRNA stem (Zhu, Kandasamy et al. 2018). The 

role of dsRBD3 in binding to RNA is unknown even though it exhibits structural homology 

with the other two domains. However, this domain plays a role in the binding of TARBP2 

with other proteins, including DICER, PRKRA, MERLIN. Hence, this domain is also known 

as the MeDiPal domain (Cosentino, Venkatesan et al. 1995, Lee, Kim et al. 2004, Laraki, 

Clerzius et al. 2008, Daniels, Melendez-Pena et al. 2009, Chukwurah, Willingham et al. 

2018).  

Although TARBP2 was first identified as a protein that binds to HIV-TAR RNA and 

enhances its replication in human cells, it has been extensively studied as a protein that 

regulates RNAi (Chendrimada, Gregory et al. 2005, Forstemann, Tomari et al. 2005, Haase, 

Jaskiewicz et al. 2005). Inside a cell containing several types of RNAs, TARBP2 binds to the 

3' ends of siRNA (Gredell, Dittmer et al. 2010) or the stem structure of miRNA (Zhu, 
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Kandasamy et al. 2018) in an ATP-independent manner, and recruits DICER to the opposite 

end near the stem loop structure of the pre-miRNA (Koh, Kidwell et al. 2013, Wilson, Tambe 

et al. 2015). Using high throughput sequencing (HTS), Morin and co-workers established 

that each pre-miRNA can be processed to produce mature miRNAs that deviate from the 

annotated reference miRNAs (Morin, O'Connor et al. 2008). These “isomiRs” are loaded into 

the RISC and mediate post-transcriptional gene regulation (Cloonan, Wani et al. 2011). 

IsomiRs can be generated by changing the DROSHA or DICER cleavage sites in the pri-

miRNA and pre-miRNA, respectively. Regarding the roles of TARBP2, several independent 

groups have shown the importance of this protein in regulating the isomiR production using 

different model systems (Fukunaga, Han et al. 2012, Lee and Doudna 2012, Lee, Zhou et al. 

2013). For example, Loquacious (Loqs), the Drosophila ortholog of TARBP2, can change the 

DICER dependent cleavage site up to 2nt positions (Fukunaga, Han et al. 2012). With the 

loss of LOQS expression, miRNAs of different lengths with altered seed sequences are 

generated, even though they are derived from the same pre-miRNA. Such a sequence change 

to the miRNA seed sequence could dramatically influence the repertoire of targeted mRNAs. 

Loss of TARBP2 expression in human cells results in deregulation of mature miRNA 

expression and accumulation of isomirs (Kim, Yeo et al. 2014). In summary, the above 

studies have shown roles of TARBP2 in miRNA biogenesis and with respect to this, being 

able to regulate miRNA diversity and downstream mRNA targets by controlling DICER 

cleavage sites. 

Based on its above described roles, it might be hypothesized that TARBP2 would be 

involved in mediating normal development, and the findings from number of studies support 

this. For example, results from cell specific ablation of TARBP2 expression in cardiac cells 
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suggest a role for TARBP2 in regulating the switch between fast and slow twitching muscles 

through RNAi mediated translation regulation (Ding, Chen et al. 2015). Recent studies have 

shown that TARBP2 regulates localized translation of BDNF through an RNAi dependent 

mechanism in neuronal cells, thereby regulating BDNF mediated dendritogenesis (Antoniou, 

Khudayberdiev et al. 2018). Overall, all these studies suggest the role of TARBP2 in post-

transcriptional regulation during development could be due to miRNA dependent translation 

regulation.  

A constitutive null allele of Tarbp2 on the C57BL/6J strain mouse was shown to be 

lethal. On a mixed genetic background (B6129S4) animals survive up to adulthood, although 

they are smaller than littermate controls and have a shorter life span (Zhong, Peters et al. 

1999). Mice that survive and live up to reproductive age are sterile with accompanying 

defects in translational activation of Protamine 1 (Prm1) mRNA, which is under temporal 

translational regulation during spermiogenesis (Lee, Fajardo et al. 1996, Zhong, Peters et al. 

1999). It is unknown if the defective translational activation of the Prm1 mRNA is mediated 

through the action of TARBP2 as a cofactor of DICER and whether the effect is dependent 

on miRNAs.  

Recently, some studies have elucidated the role of TARBP2 in RNAi independent 

mechanisms. In metastatic breast cancer cells, TARBP2 was shown to bind directly to 

secondary structure elements in 3'UTR regions of App and Znf395 transcripts. This binding 

lead to the destabilization of these transcripts, thereby promoting the invasion of metastatic 

cells (Goodarzi, Zhang et al. 2014). Under stress conditions, especially during viral infections 

or during the M1-G transition in normal cell cycle progression, TARBP2 inhibits eIF2 

phosphorylation, thus promoting global translation in Hela cells (Park, Davies et al. 1994, 
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Kim, Yeo et al. 2014). While studies such as these suggest a role for TARBP2 in RNAi 

independent mechanism, further studies are required to provide more evidence in this regard.  

Even though the role of TARBP2 in siRNA and miRNA biogenesis in mammalian 

systems is evident based on biochemical and in-vitro analyses, there is a need to investigate if 

TARBP2 has a role in miRNA biogenesis in vivo and if the translation regulation observed 

during murine spermatogenesis is dependent on miRNAs. My research is focused on 

providing some insights in this regard and I will discuss my findings in the next two chapters. 

1.4.5 PRKRA 

PRKRA was identified as a protein that binds to Protein kinase regulated by RNA 

(PKR) under stress conditions resulting in enhanced phosphorylation of eIF2a thereby 

shutting down global translation (Patel and Sen 1998, Patel, Handy et al. 2000). Through this 

mechanism, PRKRA acts as a key modulator of the anti-viral and anti-proliferative effects of 

IFN. Although several studies suggest the role of PRKRA is to activate PKR, one study 

suggests the role of PRKRA is to negatively regulate PKR activity during anterior pituitary 

development (Dickerman, White et al. 2015). Together, these studies suggest that the actual 

mechanism of PRKRA-mediated translation regulation varies during normal versus stress 

conditions.  

In one study using human cell lines, it was shown that under normal cell homeostasis 

conditions, TARBP2 directly binds to PRKRA, inhibiting PRKRA-mediated activation of 

PKR and promoting translation. However, this TARBP2-PRKRA interaction was absent 

under stress conditions, leading to global translation shutdown (Daher, Laraki et al. 2009). 

This study suggests the antagonistic roles of TARBP2 and PRKRA in regulating global 

translation.  
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Prkra is the only mammalian Tarbp2 paralog and encodes a protein with high 

sequence and structural similarity to TARBP2. Like TARBP2, PRKRA contains two dsRBDs 

and a C-terminal “Medipal” domain that interacts with DICER (Laraki, Clerzius et al. 2008). 

Studies on the role of PRKRA in small RNA biogenesis have been conflicting. Several 

biochemical studies have suggested a role of Prkra in small RNA biogenesis as a cofactor of 

DICER. However, loss of Prkra in HeLa cells has no effect on mature miRNA levels 

suggesting PRKRA has no role in miRNA biogenesis in mammalian systems. (Kim, Yeo et 

al. 2014).  

Like TARBP2, PRKRA plays an important role during murine development. Prkra-/- 

mice exhibit developmental defects with reduced body size. These mice have severely 

impaired hearing due to abnormalities in the outer ear and inner ear, exhibiting microtia in 

the outer ear (Rowe, Rizzi et al. 2006). Some mutant mice exhibit pituitary anterior lobe 

hyperplasia, and these mice are sterile due to defects in pituitary function (Peters, Seachrist et 

al. 2009).  

In human patients with Dystonia, using high-density genome wide SNP genotyping, a 

mutation in the Prkra gene was identified in a novel DYT16 genome locus suggesting its role 

in causing Dystonia among humans. These patients were resistant to translation-based 

levodopa therapy, suggesting the mechanism of disease phenotype is related to PRKRA 

interplay in translation regulation (Camargos, Scholz et al. 2008). 

Although there is enough evidence to suggest an interaction between PRKRA and 

PKR under stress conditions, there is a need to explore the actual mechanism by which 

PRKRA regulates translation during normal cell homeostasis. Furthermore, none of these 

studies have characterized the role of PRKRA in small RNA biogenesis in vivo, which 
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introduces an important gap, considering the structural similarity with TARBP2 and binding 

properties with DICER.  In Chapter.2, I present data addressing the role of PRKRA in 

miRNA biogenesis during murine embryogenesis.   

1.5 Spermatogenesis and post-transcriptional regulation of gene expression 

        Spermatogenesis is the process during which spermatozoa are produced from 

diploid spermatogonia after mitotic proliferation, meiosis and haploid spermatid 

differentiation (referred to as spermiogenesis). New transcription, and presumably, regulated 

RNA degradation, effect the major changes in mRNA populations during the cell state 

transitions that occur during spermatogenesis. As transcription ceases by the end of meiosis, 

and translation continues throughout spermatogenesis, translational regulation is required for 

correct temporal protein synthesis of many proteins involved in spermatid differentiation, 

including the highly basic transition proteins (TNP1, TNP2) and protamines (PRM1, PRM2) 

that are required for chromatin condensation in mature sperm (Monesi 1964, Monesi, 

Geremia et al. 1978, Braun 1998, Brewer, Corzett et al. 2002). RNA degradation, RNA 

stabilization and temporal translation during spermatogenesis rely on RNA-binding proteins, 

small non-coding RNAs, and nucleases.  

As mentioned earlier, transcript stability in cells, including germ cells, is dependent 

on adenylation of mRNA at the 3' end. A number of proteins have been characterized that 

regulate this adenylation. Testis specific poly-adenylation protein, TPAP was identified as an 

important regulator of murine spermatogenesis (Kashiwabara, Zhuang et al. 2000, 

Kashiwabara, Noguchi et al. 2002). Germ cell specific loss of TPAP results in improper 

spermatid differentiation due to defective polyadenylation of mRNA (Kashiwabara, Tsuruta 

et al. 2016). Several poly-A binding proteins including, PABPC1, testis-specific PABPC2 and 
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EPAB bind to mRNAs and protect them from enzyme-mediated deadenylation during murine 

spermatogenesis (Kimura, Ishida et al. 2009, Ozturk, Guzeloglu-Kayisli et al. 2012, Ozturk, 

Guzeloglu-Kayisli et al. 2014, Kashiwabara, Tsuruta et al. 2016).  

The regulation of mRNAs expressed during germ cell development is also mediated 

at the level of storage and control of translation. Several sequence-specific or structure-

specific RBPs bind to germ cell specific mRNAs to promote their storage or translation. The 

sequence specific RNA binding proteins include the Y-box proteins (YBX) including, YBX-

1 (MSY-1), YBX-2 (MSY-2) and YBX-3 (MSY-4), which are expressed in murine testis and 

are shown to be required for successful male gamete development (Gu, Tekur et al. 1998, 

Davies, Giorgini et al. 2000, Mastrangelo and Kleene 2000, Snyder, Soundararajan et al. 

2015). Indicative of their role in regulating mRNA translation, these proteins bind to Y-box 

recognition sequences of mRNA (Chowdhury and Kleene 2012) and stabilize mRNA on the 

mRNP complex (Yang, Morales et al. 2007, Xu and Hecht 2008). Studies indicate that these 

proteins are redundant for each other in stabilizing and regulating the translation of mRNAs 

including those encoded by Tnp1, Tnp2, Prm1, Prm2, Akap4, Akap3, Smcp and Spata18 

during murine male gamete development (Giorgini, Davies et al. 2001, Chowdhury and 

Kleene 2012, Snyder, Soundararajan et al. 2015). A sequence-independent RBP, PTBP2, 

binds to 3'UTR region of Pgk2 mRNA, thereby stabilizing this mRNA after its transcription 

in spermatocytes until its translation in haploid spermatids (Xu and Hecht 2007, Xu and 

Hecht 2008).  

Prm1 mRNA is under tight translational regulation during haploid spermatid 

differentiation, and its precocious translation leads to sterility (Lee, Haugen et al. 1995). 

RNA binding proteins including SPNR (Schumacher, Lee et al. 1995, Schumacher, Artzt et 
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al. 1998), and TARBP2 (also known as PRBP, see section 1.4.4) (Lee, Fajardo et al. 1996, 

Zhong, Peters et al. 1999) bind to specific sites on the 3'UTR-region of Prm1 and help 

regulate its proper translation. However, the exact mechanism by which these proteins 

regulate Prm1 translation remains to be elucidated. Overall, these findings suggest that 

mammalian germ cells express sequence-specific or sequence-independent proteins binding 

specific or non-specific mRNAs to ensure proper storage and translation. 

Small noncoding (snc) RNAs including siRNAs, miRNAs and piRNAs, along with 

proteins involved in their biogenesis or RISC formation, are also expressed in germ cells 

(Saxe and Lin 2011). piRNAs are a class of germ cell specific sncRNAs that interact with 

PIWI proteins including MILI and MIWI2, and lead to epigenetic silencing of transposon 

encoding regions of germ cells  (Aravin, Gaidatzis et al. 2006, Girard, Sachidanandam et al. 

2006). piRNAs are expressed in the pre-meiotic and meiotic cell populations, with highest 

levels in pachytene spermatocytes (Li, Roy et al. 2013). Several proteins, including MVH 

(Kuramochi-Miyagawa, Watanabe et al. 2010), Protein maelstrom homolog  (Soper, van der 

Heijden et al. 2008), MOV10L1 (Zheng, Xiol et al. 2010), GASZ/ASZ1 (Ma, Buchold et al. 

2009), MITOPLD (Watanabe, Chuma et al. 2011) and FKBP6 (Xiol, Cora et al. 2012), which 

contribute to successful male gamete development in mice, have been identified to play a 

role in piRNA biogenesis pathways. Although there is an indication of piRNAs involvement 

in translation regulation, the exact mechanism by which piRNAs regulate translation during 

murine spermatogenesis still needs to be explored. 

The other class of sncRNAs that are extensively studied and reported in regulating 

transcript stability and translation are miRNAs, which were introduced earlier in this chapter. 

Phenotypes that result from the loss of the enzymes DROSHA and DICER, which, as 
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described earlier are involved in miRNA synthesis in murine testis, suggest the importance of 

miRNA expression during male germ cell development. The level of miRNA expression 

changes during cell state transitions of murine male gametogenesis, with highest levels 

reported in spermatocytes and haploid cells (Ro, Park et al. 2007). Consistent with their 

expression patterns, miRNAs are required for successful germ cell stage progression during 

murine male gamete development (Hayashi, Chuva de Sousa Lopes et al. 2008).  

In mice, specific miRNAs like miR-34b/c and miR-449 are essential for post-meiotic 

gene expression regulation (Yu, Raabe et al. 2005, Comazzetto, Di Giacomo et al. 2014). The 

key spermatid differentiation factor gene Tnp2, which marks the initiation of the 

spermiogenesis process, is regulated at the transcript level and translation level by miR-122a 

and miR-469, respectively (Yu, Raabe et al. 2005, Dai, Tsai-Morris et al. 2011). miR-469 

also regulates translation of Prm2, expression of which is need for spermiogenesis (Dai, Tsai-

Morris et al. 2011). It is still unclear if the binding of miRNAs to target mRNAs in germ cells 

inhibit or promote their translation, so this needs to be investigated. 

As discussed earlier, miRNA-dependent or independent mRNA degradation is 

characterized by deadenylation and decapping, and several genes regulate these processes 

during germ cell development. The deadenylase enzyme CCR4-NOT is expressed in murine 

germ cells and is recruited onto 3'UTR regions of several mRNAs, including Nanos, Sycp3 

and Dazl by a RBP DND to promote deadenylation followed by degradation of transcripts 

(Cook, Munger et al. 2011, Suzuki, Niimi et al. 2016, Yamaji, Jishage et al. 2017). The 

expression of testes specific decapping enzymes, including DDX4 and DDX25 are essential 

for germ cell proliferation, meiotic progression and haploid sperm differentiation (Tanaka, 

Toyooka et al. 2000, Gutti, Tsai-Morris et al. 2008). 
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Overall spermatogenesis is a complex process during which, post-transcriptional 

regulation of gene expression involves an interplay of several RBPs and sncRNAs. The exact 

molecular mechanisms through which these factors coordinate to regulate germ cell stage 

progression needs to be explored in detail to obtain a better understanding of gene expression 

regulation during mammalian spermatogenesis. 

The current state of knowledge regarding miRNAs and a key miRNA biogenesis 

factor, DICER, in post-transcriptional regulation of gene expression in vivo is substantial. 

However, the roles of the DICER co-factors, TARBP2 and PRKRA, in post-transcriptional 

regulation of gene expression in vivo remain relatively unknown. The following chapters will 

describe a series of experimental analyses aimed at understanding the role of TARBP2 and 

PRKRA in miRNA biogenesis in vivo. In an effort to provide information that will increase 

understanding of the role of TARBP2 during post-transcriptional regulation of gene 

expression, future chapters will also describe a possible role of miRNAs in regulating 

translation elongation during spermatogenesis.    
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CHAPTER 2. ROLE OF TARBP2 DURING MURINE EMBRYONIC 

DEVELOPMENT 

2.1 Introduction 

The following chapter will outline a series of experiments and analyses that have led 

to the conclusion that TARBP2 has a role in miRNA biogenesis during embryonic 

development. This is consistent with in vitro validation of the role of TARBP2 as a co-factor 

of DICER. Additionally, the following analyses present novel evidence for possible 

redundancy between TARBP2 and PRKRA, independent of miRNA biogenesis.  

Conditional ablation of Dicer in oocytes using Zp3Cre results arrest in meiosis I as a 

consequence of spindle dysfunction and defects in chromosome congression (Murchison, 

Stein et al. 2007, Tang, Kaneda et al. 2007). Furthermore, conditional gene targeting has 

revealed DICER functions in the development or homeostasis of embryonic and fetal organs 

including the cardiovascular, genitourinary, musculoskeletal and nervous systems (Bernstein, 

Kim et al. 2003, O'Rourke, Georges et al. 2007, Saal and Harvey 2009, Zehir, Hua et al. 

2010, Small and Olson 2011). These data are consistent with a model where miRNAs 

function in the proper development of numerous mammalian organs and that disruptions in 

this small RNA biogenesis pathway can result in congenital birth defects and in extreme 

cases fetal death. The mouse Tarbp2 gene encodes a 365-amino acid protein that is localized 

predominantly to the cytoplasm and Tarbp2 -/- mice on a hybrid background are viable but 

have reduced body size and are male sterile (Zhong, Peters et al. 1999). Previously 

characterized Prkra mutant mice are homozygous viable with cranial-facial defects (Rowe, 

Rizzi et al. 2006, Dickerman, White et al. 2015) and like Tarbp2 mutants exhibit postnatal 
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growth retardation on several genetic backgrounds, including C57BL/6J. The developmental 

defect phenotype in different tissues of Tarbp2 -/- and Prkra -/- mutants led us to investigate 

their role as DICER cofactors in vivo. 

2.2 Experimental Methods 

2.2.1 Mouse mutants 

Tarbp2 tm1reb (Zhong, Peters et al. 1999) mice were genotyped as described 

previously. Genotyping for the Prkra lear1J was carried out as recommend by the Jackson 

Laboratory mutant repository. 

2.2.2 High throughput sequencing of small RNAs 

E15.5 C57BL/6J-Tarbp2 tm1reb and C57BL/6J-Prkra lear1J embryos were generated 

through timed mating intercrosses of heterozygous male and female mutant mice. Embryos 

were dissected at 15.5 days post coitum and the associated yolk sac was used for genotyping. 

The developmental stage was confirmed using Theiler staging criteria for mouse embryo 

development. Embryos were decapitated and both body and head were immediately 

immersed in RNAlater (ThermoFisher). Whole fetuses (head and body) were homogenized in 

Trizol followed by purification of total RNA using the QIAGEN miRNeasy kit. High-

throughput sequencing libraries containing small non-coding RNAs (e.g. miRNA or piRNAs) 

were generated using 1ug of total RNA and the Illumina TruSeq small RNA library 

preparation kit (Illumina Inc., USA). Individually barcoded fetal libraries were pooled and 

sequenced (100 base pair-end reads) on a single HiSeq 2000 flow cell lane running version 3 

chemistry. Illumina CASAVA software was used to carry out BCL to Fastq conversion. All 

the samples were passed through quality control and sequence with poor base qualities were 



 29	

removed. The adaptors sequences were removed using clip_adaptors.pl module of mirdeep 

(v2.0.0.5) (Friedlander, Mackowiak et al. 2012). Raw reads were collapsed based on 

sequence identity using collapse_reads_md.pl module of mirdeep2. Collapsed reads were 

further annotated for miRNA by mapping to miRBase version 21 (Griffiths-Jones, Saini et al. 

2008, Kozomara and Griffiths-Jones 2011, Friedlander, Mackowiak et al. 2012) using the 

miraligner module of seqbuster (Pantano, Estivill et al. 2010). IsomiR’s were identified using 

R isomiRs (v1.3.0) package of seqbuster package. Pairwise differential expression was 

performed among different groups using DESEQ2 (v1.12.4) (Love, Huber et al. 2014). 

2.2.3 Quantitative RT-PCR and TaqMan assays 

Adult tissues were used for total RNA extraction (TRIzol-Invitrogen), followed by the 

production of random primed cDNA (Invitrogen-18080051). Real time PCR using SYBR 

green (ABI 7500, ThermoFisher) and the ddCT method for calculating relative gene 

expression were used to determine Prkra and Tarbp2 transcript levels. b-actin amplification 

was used as an endogenous control. For miRNA taqman assays, total RNA is extracted 

(TRIzol extraction-Invitrogen) from transformed MEFs, followed by production of cDNA 

specific to each miRNA (Thermo Fischer- 4427975) using TaqMan miRNA reverse 

transcription kit (Thermo Fischer- 4366596). TaqMan PCR using TaqMan Universal Master 

Mix II (Thermo Fischer- 4440042) and the ddCT method for calculating relative transcript 

expression were used to determine mature miRNA levels. U6 amplification was used as an 

endogenous control.  
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2.2.4 Western blotting 

PRKRA and TARBP2 protein levels were assayed from the tissues and MEFs using 

standard western blotting protocols. Rabbit monoclonal antibody raised against a synthetic 

peptide corresponding to the C-terminal end of human PRKRA (AbCam #ab75749) and 

TARBP2 antibody from previous study (Zhong, Peters et al. 1999) was used to quantify the 

protein levels. GAPDH was used as a loading control. 

2.2.5 Cell culture, transformation and cell number calculation 

Mouse embryonic fibroblast cells (MEFs) were isolated at E11.5 and were 

transformed by infecting with viral supernatant from SV40 T antigen (pBABE Sv40 T 

antigen from Addgene #13970) packaged cells (Plat-E ecotropic packaging). To obtain stably 

transfected clones, cells were selected with 2µg/ml Puromycin and single clones were 

isolated using clonal rings. Transformed MEFs were cultured in Dulbecco's modified Eagle's 

medium (DMEM containing high glucose level; GIBCO) supplemented with 10% fetal 

bovine serum (Invitrogen). For cell number quantification transformed MEFs were seeded at 

an initial density of 1 × 105 cells/well on the day prior to treatment with 40mg/ml DMSO, 

enoxacin and incubated at 37 °C in 5% CO2. The cell numbers were calculated on Day0, 

Day3, Day5 using Trypan blue staining and Countess cell counter. 

2.2.6 Embryo dissesction and b-gal staining 

Time matings were set up to collect the embryos varying from embryonic day E8.5 to 

E13.5. Embryo genotypes were determined by PCR from yolk sac DNA. Embryos were fixed 

in 4% paraformaldehyde and stained overnight in X-Gal containing solution to visualize β-

galactosidase activity derived from the lacZ gene tag in Tarbp2 targeted mutation. For tissue 
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sections, embryos were frozen in OCT and cryostat sectioned. Sections were fixed (0.2% 

Gluteraldehyde) and stained as above. Sections were post-fixed, counterstained with Nuclear 

Fast Red, mounted and imaged under the Olympus Nanozoomer with the desired 

magnification. 

2.2.7 Skeletal staining and histology 

For ossified bone and cartilage staining, E15.5 embryos were processed using an 

alizarin red/alcian blue standard staining protocol (Hogan, Beddington et al. 1994). Embryos 

collected at E18.5 were fixed for histology in Bouin’s fixative, then paraffin embedded. 

10um serial sections were processed using hematoxylin and eosin (H&E) staining. 

2.2.8 Data and reagent availability 

miRNA sequencing data has been uploaded to BioprojectID: PRJNA423238: Mus 

musculus musculus. Raw sequence reads (TaxId: 39442) SRA ID: SRP127346. 

2.3 Results  

2.3.1 Tarbp2 is broadly expressed during embryonic development  

To determine where Tarbp2 is expressed during embryonic development, we analyzed 

β-galactosidase expression in heterozygous Tarbp2 tm1reb/+ embryos (herein referred to as 

Tarb2 -/+) containing a LacZ insertion that transcriptionally tags the Tarbp2 gene (Figure 

2.1.A). In whole-mount staining of Tarbp2 +/- embryos, we observed high levels of β-

galactosidase activity throughout all stages of development, as early as E8.5 when Dicer is 

expressed (Figure 2.1.B). In sections of E13.5 organs, we detected expression in some, but 

not all, cells in the heart, hindbrain and liver (Figure 2.1.C). This organ expression was 

confirmed by RT-PCR analysis of Tarbp2 in wild-type E13.5 extracts (Figure 2.1.C). Tarbp2 
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is expressed in all adult mouse tissues, with abundant transcript levels in the testis, although 

expression is restricted by cell type (Zhong, Peters et al. 1999).  Thus, mouse Tarbp2 is 

broadly expressed from early embryonic stages through to adulthood with likely cell-type 

specific expression in many, if not all, tissues. 

 
Figure 2.1. TARBP2 is expressed in murine embryos 

(A) Schematic representation of the Tarbp2tm1REB allele. A cassette containing negative (DTA) 

selection, positive selection (Neomycin, Neo) and lacZ was inserted into exon2 with a 5’ 

splice acceptor (sa) sequence. B=BamHI, K=KpnI. (B) β-galactosidase activity in Tarbp2 

tm1Reb/+ embryos from E8.5 to E13.5 stage of development. (C) β-galactosidase activity in 

sections of E13.5 organs of Tarbp2tm1REB/+ transcriptional reporter mice (blue= β-gal, 

red=nuclear fast red). Top and bottom insets show higher magnification images of indicated 

genotypes. Scale bar, 200um. RT-PCR in wild-type E13.5 organs total RNA extracts for 

Tarbp2 (M/H Brain, mid/hind brain). 
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2.3.2 Tarbp2 null animals are smaller but exhibit no gross anatomical defects  

Previously, we reported a smaller body size, early postnatal lethality and male sterility 

in Tarbp2 -/- mice on a mixed genetic background (Zhong, Peters et al. 1999). To determine if 

early defects in ossification could explain the size difference in mutant animals, we stained 

E15.5 embryos with alizaran red/alcian blue to mark bone and cartilage, respectively. Stained 

embryos were smaller than control littermates (Figure 2.2.A) with delayed ossification of 

tympanic and spinal column. To compare the size of organs and soft tissues in Tarbp2 

mutants, we performed microCT on E15.5 embryos. We observed a 20% decrease in total 

volume in Tarbp2 mutants compared to controls (red outline, Figure 2.2.B) but no significant 

relative difference in the size of any single organ or tissue. We conclude growth retardation 

defects begin in utero, as early as E15.5.  

 
Figure 2.2 Anatomical defects in Tarbp2 null animals 

(A) Alizarin red (bond) and alcian blue (cartilage) staining of E15.5 wild type and TARBP2 -/- 

B6 embryos showing defects in developmental patterning. (B) microCT scans of E15.5 wild-

type and TARBP2 -/- B6 embryos, red outline shows smaller volume in mutant. 
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2.3.3 Tarbp2 null allele is embryonic lethal on the C57BL/6J mouse strain 

Tarbp2 -/- mice have reduced body mass and perinatal lethality on mixed strain 

background (Zhong, Peters et al. 1999). Because genetic background can impact phenotypic 

variation, we tested whether strain background had an effect on the phenotypes observed in 

Tarbp2 mutants, and therefore compared the frequency of observed homozygotes on the 

129S4 (129) background to C57BL/6J (B6) background. In heterozygous (het) x het breeding 

crosses in the 129 background, we observed a significant reduction in the number of Tarbp2 -

/- homozygotes at P21, suggesting reduced viability on the 129 background (Table2.1). 

Tarbp2 -/- mutants on the B6 genetic background exhibited an even more extreme phenotype. 

In het x het crosses, we were unable to recover any homozygous animals at P14. 

Furthermore, at E17.5, we observed only 13% of the expected 25% homozygous animals. In 

crosses between 129 Tarbp2 +/- females and B6 Tarbp2 +/- males, we observed the expected 

Mendelian ratios at P21, suggesting that the 129 genetic background has one or more 

modifiers that can suppress the lethality observed on the B6 background. 

Strain Age +/+ +/− −/− 

129S4 (129) P21 29 (26%) 66 (58%) 18 (16%) 

C57BL/6J (B6) E17.5 

P14 

11 (21%) 

23 (31%) 

35 (66%) 

53 (69%) 

7 (13%) 

0 (0%) 

129 x B6 F1 P21 22 (23%) 51 (53%) 23 (24%) 

Table 2.1. Background strain dependence of Tarbp2 

2.3.4 Prkra1J mutants are viable with anatomical defects 

Like TARBP2, PRKRA binds DICER and has been shown to influence miRNA 

biogenesis in vitro. To compare the requirements for Tarbp2 and Prkra during development, 

we next analyzed Prkra mutant mice. Three spontaneous mutant Prkra alleles (lear, little 
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ear) have arisen in The Jackson Laboratory repository colony, displaying small body size and 

reduced ear size. These phenotypes are similar to the previously characterized Prkra targeted 

mutant (Rowe, Rizzi et al. 2006) and chemically induced mutants (Dickerman, White et al. 

2011) that produce a complete PRKRA protein deficiency or a protein isoform deficient in 

dsRNA binding, respectively. The lear1J allele (referred to herein as Prkra -) contains a 

splice donor mutation in intron 5 (Figure 2.3.A). Using RT-PCR on RNA from E13.5 Prkra -

/- mutant organ extracts, we found a significant decrease in Prkra expression in heart and 

kidney (Figure 2.3.B). Furthermore, immunoblots for PRKRA protein showed dramatically 

decreased levels in liver, lung, kidney and spleen, with complete loss of protein in the heart 

(Figure 2.3.C). Thus, Prkra1J is a strong hypomorphic or null allele that phenocopies 

previously characterized spontaneous and targeted alleles. 

 
Figure2.3 Prkralear1j mutant characterization 

(A) Summary of genomic/protein locations of the spontaneous learJ (little ears, The Jackson 

Laboratory) Prkra allele (1j), and an engineered insertion in exon (ex) 8 (tm1Gsc). (B) RT-

PCR of Prkra transcripts in E13.5 organ extracts show significant decreases (*p-value<0.05) 

in heart and kidney. (C) Immunoblot for PRKRA shows decreased protein levels in all organs 

analyzed. 
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2.3.5 Tarbp2 -/-; Prkra -/- double-mutants die by mid-gestation 

Because Dicer mutants die by E7.5 (Figure 2.4.A), while Tarbp2 -/- mutants die peri-

natally, and Prkra mutants are viable but have reduced body size and ear deformities, we 

asked whether there might be functional redundancy between Tarbp2 and Prkra during early 

embryogenesis. To test this, we crossed Tarbp2 +/-; Prkra +/- double-heterozygotes and 

genotyped animals at birth. We failed to obtain any Tarbp2 -/-; Prkra -/- (B6) animals. We 

therefore looked at earlier embryonic time points and recovered one E18.5 double-mutant 

that was half-the-size of control littermates and exhibited severe shortening of the snout 

(Figure 2.4.C). Additionally, the heart was smaller and there were open cranial sutures (not 

shown). This animal was able to survive quite late considering we were only able to recover 

one double-mutant out of an expected eight, at E12.5 (Figure 2.4.B, chi-square p<0.05). To 

determine if open cranial features were a hallmark of Prkra mutants, and if they are affected 

by the Tarbp2 locus, we analyzed cranial morphology using microCT in 8-week-old animals. 

We consistently observed open cranial sutures in Prkra -/- mutants, and reduction in Tarbp2 

gene dosage further exacerbated this phenotype, as exemplified in Tarbp2 -/+; Prkra -/- 

mutants (Figure 2.4.D). These data indicate the structurally similar dsRBPs, TARBP2 and 

PRKRA, genetically interact. 
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Figure 2.4. Tarbp2 -/-; Prkra -/- mutants die at midgestation 

(A) Summary of developmental stages of survival or embryonic lethality of Dicer -/-, Tarbp2 -

/- or Prkra -/- single-mutants and Tarbp2 -/-; Prkra -/- double-mutants. (B) Number of E12.5 

embryos harvested from crossing Tarbp2 -/+; Prkra -/+ double-heterozygotes. Χ2=19.283 (8 

degrees of freedom), two-tailed p-value=0.0134. (C) An E18.5 Tarbp2 -/-;Prkra -/- mutant that 

is significantly smaller than a Tarbp2 +/-;Prkra +/+ sibling, and has a shorter snout. (D) 

MicroCT images of skull showing immature fusion and opening of cranial sutures. RTPCR in 

wild-type E13.5 organs total RNA extracts for Prkra (M/H Brain, mid/hind brain). 
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2.3.6 miRNA processing is altered in Tarbp2 -/- but not Prkra -/- mutants 

The difference in phenotypes between Dicer, Tarbp2 and Prkra single and double-

mutants led us to ask whether TARBP2 and PRKRA influenced DICER-mediated miRNA 

biogenesis in vivo. We collected total RNA from E15.5 B6 Tarbp2 -/- and Prkra -/- embryos 

and generated high-throughput sequencing libraries of small non-coding RNAs for RNA-

sequencing (RNA-seq). Using an FDR pass of <0.05, we found that the expression levels of 

74 mature miRNAs were significantly changed in Tarbp2 -/- mutants (Figure 2.5.A). 

Interestingly, these transcripts were both decreased (n=46, 62%) and increased (n=28, 38%) 

suggesting that TARBP2 is required for a sub-population of miRNAs during this stage of 

development. Conversely, there was no change in the expression of miRNAs in Prkra -/- 

embryos (Figure 2.5.B), suggesting that PRKRA has no discernable role in miRNA 

biogenesis during this stage of development. Biochemical data suggests the dsRBPs can 

influence strand selection of the processed pre-microRNA. As TARBP2 determines the site 

of cleavage by DICER, and addition or deletion of a nucleotide can alter the stability of 

processed miRNA arms, we compared the overall expression level changes of 3p-miRNAs 

and 5p-miRNAs.  Significant expression level changes were observed in both populations, 

however there were more changes to 3p-miRNAs (44 out of 74) than 5p-miRNAs (30 out of 

74) in Tarbp2 -/- embryos compared to wild-type embryos, suggesting a preferential defect in 

processing of 3p-miRNAs in the absence of TARBP2 (Figure 2.5.C). Also, in Tarbp2 -/- 

embryos we observed that there was an increase in the number of reads mapped to 3p-

miRNAs with an addition (An) or deletion (Dn) of nucleotides at the 5’ end compared to wild-

type embryos (Figure 2.5.D) suggesting an improper cleavage site selection by DICER in the 

absence of TARBP2. 
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Figure 2.5 Tarbp2 regulates processing of a subclass of pre-miRNAs. 

(A) Plot of miRNA transcripts in Tarbp2 -/- whole embryos at E15.5 and their fold-changes by 

average expression using RNA-seq. (B) Plot of miRNA transcripts in Prkra -/- whole embryos 

at E15.5 and their fold-changes by average expression using RNA-seq. (C) Plot of overall 

expression fold change of 3p and 5p miRNA transcripts in C57BL/6J Tarbp2 -/- whole 

embryos at E15.5 compared to wild-type embryos. (D) Plot of 3p arm miRNA transcripts 

with one, two or three nucleotide (n=1,2,3) addition (An) or deletion (Dn) at 5’ end in Tarbp2 
-/- whole embryos at E15.5 and their fold-changes by counts per million (cpm) using RNA-

seq. 
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 In Prkra -/- mutant embryos the level of expression of 3p-miRNAs and 5p-miRNAs 

remained the same as in wild-type embryos (Figure 2.6.A), as did the length of the 3p-

miRNAs (Figure 2.6.B). A comparison of the observed changes in miRNA populations in 

Tarbp2 -/- and Prkra -/- mutants is shown in Figure 2.6.C. Because an equal number of reads 

were mapped to miRNAs and other small non-coding RNAs independent of the genotype 

(Figure 2.6.D), we conclude that TARBP2 but not PRKRA is required for the processing of a 

subclass of miRNAs at E15.5. 
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Figure 2.6 Prkra is not required for canonical miRNA biogenesis at E15.5 

(A) Fold-change of over-all expression of 3p and 5p miRNA transcripts in C57BL/6J Prkra -/- 

whole embryos at E15.5 compared to wild type embryos. (B) Plot of 3p arm miRNA 

transcripts with one, two or three nucleotide (n=1,2,3) addition (An) or deletion (Dn) at 5’ 

end in Prkra -/- whole embryos at E15.5 and their fold-changes by counts per million (cpm) 

using RNA-seq. (C) A table chart summarizing the type of deregulation and number of 

miRNAs in Tarbp2 -/- and Prkra -/- compared to wild-type (D) Chart of percent reads of 

miRNAs versus other small non-coding RNAs in the RNA-seq libraries, per genotype and 

background. 
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2.3.7 Pharmacological assessment of the role of TARBP2 and PRKRA on miRNA 

processing 

In a screen for small molecules that modify RNAi activity, the synthetic antibacterial 

compound enoxacin was identified as an enhancer of RNAi (Shan, Li et al. 2008). Several 

studies have reported that enoxacin binds human TARBP2, increases TARBP2 affinity for 

pre-miRNAs and enhances the processing of pre-miRNAs to mature miRNAs (Melo, 

Villanueva et al. 2011, Cornaz-buros, Riggi et al. 2014). To confirm our findings that 

TARBP2, but not PRKRA, is involved in miRNA processing during embryogenesis, we 

examined the effect of enoxacin on growth of mouse embryonic fibroblasts (MEFs) derived 

from Tarpb2 -/- and Prkra -/- mutant embryos. Western blot analysis showed that PRKRA and 

TARBP2 were detected in MEFs derived from wild-type embryos but not Prkra -/- or Tarbp2 

-/- mutants, respectively (Figure 2.7.A). To assess whether enoxacin differentially affected 

Prkra -/- but not Tarbp2 -/- mutant MEFs, we treated the cells with DMSO and enoxacin as 

described previously (Melo, Villanueva et al. 2011). When cell numbers from Day 0, Day 3 

and Day 5 were plotted comparing DMSO treated cells with enoxacin, we observed that 

Tarbp2 -/- mutants were more resistant to enoxacin than wild-type and Prkra -/- mutant MEFs 

at Day 3, although by Day 5 all genotypes were similarly affected (Figure 2.7.B). To directly 

test the effect of enoxacin on miRNA levels, we measured the effect of enoxacin on the 

abundance of 10 miRNAs whose levels were altered in Tarbp2 -/- E15.5 embryos. Treatment 

of wild-type MEFs with enoxacin significantly decreased the relative levels of 3/8 miRNAs 

(Figure 2.7.C top), although none of the levels of miRNAs were elevated as we had 

predicted. The levels of two of the miRNAs, miR-127 and miR145, remained significantly 

depressed in Prkra -/- MEFs, while the levels of one miRNA, miR-120, were rescued, 
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although not to wild-type levels (Figure 2.7.B middle).  On the other hand, mutation of 

Tarbp2 rescued levels of miR-127 and miR145 to wild-type levels, but had no effect on miR-

120 and actually resulted in an increase in two miRNAs, let-7e and miR-484, that had been 

unaffected in wild-type MEFs. From these observations, we conclude that enoxacin does act 

solely through TARBP2 and there is no direct correlation with the increase in miRNAs and 

the effect of enoxacin on cell growth of transformed MEFs. 
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Figure 2.7 Enoxacin has its effect on transformed MEFs independent of Tarbp2 or Prkra 

(A) Immunoblot for TARBP2 and PRKRA shows the expression or absence of these proteins 

based on their genotype in transformed MEFs. (B) Graphical representation of cell numbers 

for the indicated genotype after enoxacin treatment from Day 0 to Day 5. Relative units are 

obtained after normalizing the cell numbers from enoxacin treatment to the cell numbers with 

DMSO treatment. (*p-value<0.05, **p-value<0.005) (B) Expression fold-change of 10 

quantified mature miRNAs in transformed MEF cell lines with the indicated genotype upon 

enoxacin treatment (*p-value<0.05, **p-value<0.005).   
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2.4 Discussion 

       Previous in vitro studies suggested that TARBP2 and PRKRA act as co-factors of 

DICER for the processing of pre-miRNA to mature-miRNAs. The discordance between the 

phenotypes of Dicer1 -/-, Tarbp2 -/-, and Prkra -/- single mutants led us to test these findings 

and to determine if TARBP2 and PRKRA have redundant functions in miRNA biogenesis.  

 Our results strongly suggest that Tarbp2 and Prkra genetically interact during 

embryonic development. Earlier studies have established the essentiality of Dicer during 

oogenesis and embryogenesis. Maternal Dicer mRNA, which is present throughout oocyte 

development (Murchison, Stein et al. 2007), is required for completion of meiosis 1 

(Murchison, Stein et al. 2007, Tang, Kaneda et al. 2007), and elimination of zygotic Dicer 

expression results in an embryonic lethality phenotype by E7.5. We failed to recover the 

expected number of Tarbp2 -/-, Prkra -/- double-mutants at E12.5, and recovered only one 

double-mutant embryo, which was severely abnormal, at E18.5. It is possible that the missing 

embryos died prior to E7.5, similar to that of Dicer-/- embryos, and that the few embryos 

recovered at E12.5 and E18.5 could be due to incomplete penetrance of the double-mutant 

phenotype. Furthermore, we found that the allele status at Tarbp2 affected the closure of 

cranial sutures observed in Prkra -/- mutants. 

miRNA sequencing of wild-type and single mutants at E15.5 revealed that TARBP2, 

but not PRKRA, is essential for proper miRNA biogenesis of a set of miRNAs during 

embryonic development. We chose to analyze E15.5 embryos because of the lack of an 

observable phenotype in single mutants at that time point and because double-mutant 

embryos were absent, suggesting a requirement for both TARBP2 and PRKRA at that stage. 

We observed changes in abundance and length of both 3p and 5p miRNAs in Tarbp2 -/- 
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mutants, although the extent of aberrant processing of 3p-miRNAs was greater than for 5p-

miRNAs. Our findings for TARBP2 are supported by a recently published study using 

knock-out cell lines (Kim, Yeo et al. 2014). We did not observe differences in abundance, 

sequence or length of miRNAs in Prkra -/- mutants, suggesting that PRKRA is not involved 

in miRNA biogenesis during murine embryogenesis. However, given that we were able to 

detect minor levels of PRKRA in some tissues (Figure 2.3.C), although not in MEFs (Figure 

2.7.A), it remains an open possibility that PRKRA is involved in miRNA biogenesis. 

Interestingly, the absence of TARBP2 affected some but not all miRNAs. Of the 74 

miRNAs whose levels were affected, 28 were increased and 46 were decreased. We do not 

know the basis for the selectivity. In addition, because we used RNA isolated from whole 

embryos, we do not know if the affected miRNAs are expressed in the same cells or in 

different cells. These observations support the hypothesis that DICER acts independently of 

TARBP2 prior to E7.5, as not all miRNAs require TARBP2 for their biogenesis. We also 

observed a dependency for TARBP2 on isomiR biogenesis with a bias towards a stronger 

effect on 3p-miRNAs as previously reported (Wilson, Tambe et al. 2015). The effect of this 

change could alter the half-life or stability of improperly processed mature miRNAs and 

ultimately result in the deregulation of RISC complex formation. Improper targeting of 

mRNAs by isomiRs could result in the developmental defects observed in Tarbp2 -/- animals. 

The viability of B6129F1 Tarbp2 -/- hybrids may also be explained by the restricted effect of 

loss of TARBP2 on miRNA biogenesis. Heterozygosity at miRNA and target mRNA loci 

across the genome may alter the global miRNA/mRNA profile and suppress the relatively 

minor changes in miRNA levels and isomiR types observed in Tarbp2 -/- mutants.  In support 

of this, we attempted to identify quantitative trait loci in the 129 strain that suppress the 
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lethality and growth defects observed in B6. Assaying for both viability and body weight we 

mapped several loci with modest LOD scores across the genome that correlated with one or 

both phenotypes, indicating that there are multiple loci that contribute to enhanced survival 

and body weight in the F1 hybrid, N2 or mixed backgrounds (unpublished data).   

In an attempt to pharmacologically strengthen our findings, we assessed the effect of 

enoxacin on MEFS derived from Tarbp2 -/- and Prkra -/- mutant embryos. Enoxacin has been 

previously reported to inhibit growth of cancer cells by enhancing miRNA processing 

through a direct physical interaction with TARBP2 miRNA (Shan, Li et al. 2008, Melo, 

Villanueva et al. 2011, Cornaz-buros, Riggi et al. 2014). If TARBP2 and PRKRA are 

redundant, then cells expressing either of these proteins should have a similar response with 

enoxacin treatment. If enoxacin acts only through TARBP2, then Tarbp2 -/-, but not Prkra -/- 

mutant MEFS should be resistant to it effects. We initially found that the growth of 

transformed Tarbp2 -/- MEFs was more sensitive to enoxacin than Prkra -/- MEFs, supporting 

the possibility that enoxacin may act through TARBP2. However, molecular analysis failed 

to reveal an increase in miRNA levels in any genotype, and the changes that were observed 

were opposite of what has been observed in cancer cells. Based on these observations, we 

conclude that the growth effects of enoxacin on transformed MEFs is independent of 

TARBP2 or PRKRA and that enoxacin may act through a different mechanism in 

transformed MEFs than in cancer cells. 

The discordant phenotypes between Dicer and Tarbp2 mutants, and the observation 

that only a subset of miRNAs are affected in Tarbp2 mutants, suggest DICER does not 

require a co-factor for processing some pre-miRNAs, or that another as yet unidentified co-

factor of DICER functions in early embryogenesis.  It has recently been shown that DICER 
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interacts with a ADAR, and lack of this association in Adar1 mutants impacts the biogenesis 

of mature miRNAs at E11.5 (Ota, Sakurai et al. 2013). These combined results suggest that 

DICER interacts with different dsRBPs in canonical miRNA biogenesis during embryonic 

development and this association is specific to developmental stage. DICER may also 

perform a function in early embryogenesis that is independent of miRNA biogenesis as has 

been previously suggested (Johanson, Lew et al. 2013). 

The failure to detect defects in miRNA biogenesis in Prkra mutants at E15.5, and the 

discordant phenotypes between Dicer single mutants and Tarbp2 -/-; Prkra -/- double-mutants, 

suggests that double-mutant phenotype is not solely due to defects in miRNA biogenesis. The 

severity of the phenotype in Tarbp2 -/-; Prkra -/- double-mutant embryos could be due to the 

combination of defects in miRNA biogenesis, as a consequence of the absence of TARBP2, 

coupled with defects in endo-siRNA biogenesis as a consequence of the absence of PRKRA. 

That said, deletion of Dicer failed to affect the ability of siRNAs to repress gene expression 

in murine embryonic stem cells (Murchison, Partridge et al. 2005). Alternatively, TARBP2 

and PRKRA could be functioning in a shared pathway that is independent of DICER-

mediated pre-miRNA processing. TARBP2 has been shown to act independently of DICER 

to destabilize dsRNA (Goodarzi, Zhang et al. 2014), while PRKRA regulates translation by 

activating PKR (Daniels and Gatignol 2012), a global regulator of translation.  The absence 

of both proteins could result in increased levels of dsRNA, hyper activation of PKR and loss 

of global control of translation leading to broad inhibition of development. 
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CHAPTER 3. ROLE OF TARBP2 DURING MURINE 

SPERMATOGENESIS 

3.1 Introduction 

The following chapter will outline a series of experiments and analyses that have led 

to the conclusion that TARBP2 has a role in miRNA biogenesis during spermatogenesis. This 

is consistent with our observation based on in vivo studies in the previous chapter. 

Additionally, the following analyses present novel evidence for possible role of TARBP2 

dependent miRNAs in regulating translation elongation during murine gametogenesis. 

As discussed in Chapter 1.4.3, DICER is required at various stages of 

spermatogenesis to ensure the production of fully differentiated spermatozoa. It is also a 

component of chromatoid bodies, an intracellular focal domain that organizes and controls 

RNA processing in haploid spermatids (Comazzetto, Di Giacomo et al. 2014). Cell-specific 

and developmental stage-specific ablation of Dicer1 in murine testes results in disruption of 

DICER1 mediated miRNA biogenesis leading to sterility (Maatouk, Loveland et al. 2008, 

Korhonen, Meikar et al. 2011, Romero, Meikar et al. 2011, Greenlee, Shiao et al. 2012). 

Together these studies highlight the importance of miRNA biogenesis pathways and miRNAs 

in murine male germ cell development. The role of specific miRNAs, like miR-34b/c and 

miR-449, miR-122a and miR-469 during post-transcriptional gene regulation of Tnp1, Tnp2 

and Prm2 in post-meiotic germ cells was discussed in Chapter 1.5. (Yu, Raabe et al. 2005, 

Dai, Tsai-Morris et al. 2011, Comazzetto, Di Giacomo et al. 2014). Human patients with 

asthenozoospermia and oligoasthenozoospermia are characterized by downregulation of 

several miRNA expression levels in germ cells, suggesting a conserved role for miRNAs in 
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regulating cell state transitions during male gamete development in mammals (Liu, Cheng et 

al. 2012, Abu-Halima, Hammadeh et al. 2013). 

Compared to somatic tissues, and to DICER expression in the testis, TARBP2 is 

highly expressed in the testis where it is predominantly expressed in germ cells (Lee, Fajardo 

et al. 1996). TARBP2 is first expressed at low levels in pachytene spermatocytes and then at 

high levels in round spermatids. Previously we generated a constitutive null allele of Tarbp2 

that is lethal on a C57BL/6J background. However, on a mixed genetic background some 

animals survive, although they are smaller than littermate controls and have a shorter life 

span (Zhong, Peters et al. 1999). Mice that survive and live to reproductive age are sterile 

with accompanying defects in translational activation of Prm1 mRNA, which is under 

temporal translational regulation during spermiogenesis (Fajardo, Haugen et al. 1997, Zhong, 

Peters et al. 1999). Because these studies were completed before the discovery of miRNAs, it 

is unknown if the defective translational activation of the Prm1 mRNA is mediated through 

the action of TARBP2 as a cofactor of DICER and whether the effect is dependent on 

miRNAs.  

 In the previous chapter, we reported that loss of TARBP2 during C57BL/6J murine 

embryonic development results in downregulation of a subset of mature miRNAs and 

increased isomir accumulation, demonstrating the essential role of TARBP2 in miRNA 

biogenesis in vivo. To overcome embryonic lethality, and to study the effect of loss of 

TARBP2 on a pure genetic background, we report here the consequences of conditional 

ablation of Tarpb2 in spermatogenic cells. 
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3.2 Experimental Methods 

3.2.1 Animals and tissue collection: 

C57BL/6J mice bearing Tarbp2fl/fl (Ding, Chen et al. 2015) were generously provided 

by Dr. Da-Zhi Wang (Harvard University). All experimental animals were maintained on 

C57BL/6J background. Tg(Stra8i-cre1Reb) was used to excise Tarbp2 in the germ cells 

(Sadate-Ngatchou, Payne et al. 2008). To generate conditional Tarbp2−/− male mice, we first 

mated Tarbp2fl/fl males with wild type Tarbp2 and Tg (Stra8i-cre1Reb) females. Tarbp2flox/WT; 

Stra8-icre+ males were crossed with Tarbp2fl/fl females to generate Tarbp2flox/Δ; Stra8-icre+ 

males. These males have Tarbp2−/− germ cells and referred to as Tarbp2Δ/fl; Stra8icre+ male 

mice. Excision of Tarbp2 from germ cells was confirmed by measuring Tarbp2 transcript and 

TARBP2 protein levels in Tarbp2Δ/fl and Tarbp2Δ/fl; Stra8icre+ testes. For all procedures, 

mice were sacrificed by CO2 exposure followed by cervical dislocation. The Institutional 

Animal Care and Use Committee at Jackson Laboratory (JL) approved all animal procedures 

(Permit Number: 07007). 

3.2.2 Histology and immunofluorescence analysis: 

Epididymes and testes were fixed overnight in Bouins fixative at 4°C and then 

washed in water prior to paraffin embedding by the Histology Core Facility. 5-µm sections 

were stained with hematoxylin and PAS for histological analyses. For immunofluorescence 

studies, slides containing 5-µm sections were deparaffinized in xylene (2 times for 5 min 

each), followed by a 5-min rinse in 100% ethanol. Slides were rehydrated by 5min 

incubations in 100%, 95%, 70% and 50% ethanol followed by citrate buffer antigen retrieval. 

Tissue sections were blocked in PBS containing 5% normal goat serum and then incubated 
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with primary antibodies overnight at 4°C. Primary antibodies were used at the following 

dilutions: TARBP2 (1:500) and PRM1 (1:200). Following 3x washes for 5 minutes in PBS, 

the sections were incubated at room temperature for an hour with goat anti-mouse conjugated 

to Alexa Fluor R568 (Life Technologies) (1:1000) in PBS containing 0.05% Tween-20. 

Following 3x washes in PBS-T in the dark, sections were mounted with Vectashield medium 

containing DAPI (Vector Laboratories). Fluorescence was imaged using a Nikon Eclipse 

E600 equipped with a digital camera and formatted using Photoshop software (Adobe 

Systems).  

3.2.3 Sperm count and morphology 

Epididymes were dissected from adult mice and diced in 1 ml of phosphate buffered 

saline (PBS). The diced tissue was incubated at 37°C for an hour to release sperm that were 

then diluted in PBS (1:10) and counted using a hemocytometer. Duplicate counts were 

evaluated for each mouse sample (N = 6) and expressed as mean ± S.D. Sperm morphology 

was assessed by mounting spermatids in Vectashield with DAPI and imaging the spermatids 

on a Leica SP5 laser scanning confocal microscope. 

3.2.4 Protein isolation and western blotting 

Testes frozen in liquid nitrogen were pulverized into fine powder on dry ice and then 

suspended in protein extraction buffer (150mM NaCl, 20mMTris-HCl, pH 8.0, 1.0% Triton 

X-100, 0.1% SDS, and Complete EDTA-free protease inhibitor [Roche]). After complete 

dissolution of powder, protein concentrations were determined using Bradford reagent (Bio-

Rad). For western blot analyses, the following primary antibodies were used: anti-TARBP2 
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(Abnova, MAB0811), anti-SPATA21 (Abcam, ab173912) and anti-GAPDH (Cell signaling 

Tech., 14C10). 

3.2.5 Isolation of basic nuclear proteins and immunoblotting 

Basic nuclear proteins, including PRM1 and PRM2 from the testis were isolated as 

described (Lee, Haugen et al. 1995). Basic proteins were separated on a 15% acetic-acid urea 

gel and stained with amido black for detection. The samples were run on a separate gel and 

transferred to a PVDF membrane using 0.7% acetic acid and 1M Urea (Sigma-Aldrich) at 20 

volts for 1 h. The membrane was blocked in 5% non-fat milk in 1X PBS (pH 9.0) at room 

temperature and incubated in Hup1N (PRM1) antibody (1:1000) or Hup 2b (PRM2) antibody 

(1: 5000) at 4°C overnight (Hup1N and Hup 2b antibodies were purchased from Briar patch 

Biosciences LLC). The membrane was rinsed 3x in TBST for 20 minutes and incubated with 

goat anti-mouse IgG-HRP (1:1000) in 5% non-fat milk in TBST for 2 h at room temperature. 

Following 3 x 10 minute washes in TBST and the membrane was developed using the ECL 

western blotting detection kit. 

3.2.6 RNA isolation, high-throughput sequencing and data analysis 

Spermatocytes and round spermatids were isolated from testes using FACS-sorting as 

described previously (Lima, Jung et al. 2017). Total RNA was isolated using Trizol-

extraction (Invitrogen, 15596018) followed by analysis on an Agilent Bioanalyzer to 

determine quality. miRNA and mRNA were separated using AMPure XP beads following the 

manufacturers protocol. mRNA sequencing libraries were constructed using the Stranded 

Total RNA LT with Ribo-Zero TM Gold Library Prep kit (Illumina) and single-end 75bp 

reads sequenced on an Illumina HiSeq 2500 to a minimum depth of 30 million reads per 
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sample. miRNA sequencing libraries were constructed using the Stranded Total RNA LT with 

Ribo-Zero TM Gold Library Prep kit (Illumina) and single-end 75 bp reads sequenced on an 

Illumina HiSeq 2500 to a minimum depth of 30 million reads per sample. mRNA sequencing 

reads were aligned to a C57BL/6J transcriptome (Ensemble release 80) and TPM counts were 

calculated via RSEM (Li and Dewey 2011). miRNA sequencing reads were aligned to 

reference miRBase release 2 and estimated miRNA TPM counts using IsomiRs package in R 

(Griffiths-Jones, Saini et al. 2008, Morin, O'Connor et al. 2008, Pantano, Estivill et al. 2010). 

Statistical analysis was performed using the R-Bioconductor package, DEseq2 (Love, Huber 

et al. 2014). 

3.2.7 Polysomal fractionation and northern blotting analysis 

Testes from Tarbp2Δ/fl; Stra8icre and suitable control littermates were isolated at 6 

weeks of age and immediately placed into lysate buffer and homogenized. Sucrose gradient 

and Northern blot analysis was performed as described previously (Snyder, Soundararajan et 

al. 2015). 

3.2.8 Electron microscopy analysis 

Whole testes were fixed in 4% PFA, overnight at 4°C. For chromatin structure 

analysis samples were post-fixed in 2% aqueous osmium tetroxide, rinsed in PBS, then 

dehydrated with ethyl alcohol. Samples were then infiltrated and embedded with Embed 812 

resin (Electron Microscopy Sciences, Hatfield, PA) and the blocks were polymerized in a 

60°C oven for 48 hours. 90nM sections were cut on a Leica UC6 ultra microtome and 

sections were collected on 300 mesh copper grids. For Immuno-EM, samples were 

dehydrated up to 70% ETOH, infiltrated with LR White resin (Electron Microscopy 
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Sciences, Hatfield, PA) and then embedded in the same resin in a 50°C oven for 24 hours. 

90nM sections were collected on 200 mesh nickel grids. For PRM1 staining, citrate buffer 

antigen retrieval was performed on a PCR machine at 94°C for 40min. Staining was 

performed as described in section 3.2.5, using PRM1 antibody (1:40) followed by secondary 

antibody coupled with gold particles (1:120). Copper and Nickel Grids were fixed with 2.5% 

glutaraldehyde and stained with 1% aqueous uranyl acetate and Reynold’s lead citrate. After 

staining with 1% aqueous uranyl acetate/Reynold’s lead citrate, grids were viewed on a JEOL 

JEM 1230 transmission electron microscope and images collected with an AMT 2K digital 

camera. 

3.2.9 Sequencing data availability: 

All sequencing data uploaded to SRA database of NCBI with a BioprojectID: 

PRJNA432569. 

3.3 Results 

3.3.1 Conditional deletion of Tarbp2 in germ cells arrests spermatid differentiation  

To ablate Tarbp2 expression in spermatogenic cells, we used a Stra8 promoter-driven 

cre-recombinase (Stra8-icre). By quantitative real-time PCR we confirmed that Tarbp2 

mRNA is absent in pachytene spermatocytes and round spermatids (Figure 3.1.A) isolated 

from the testes of 6wk old Tarbp2Δ/fl;Stra8icre+ mice. TARBP2 protein was also greatly 

reduced in whole-testis extracts compared to the GAPDH control (Figure 3.1.B). Immuno 

staining using a TARBP2 antibody on cross-sections of 6wk old Tarbp2Δ/fl; Stra8icre+ mice 

confirmed loss of TARBP2 expression in pachytenes and round spermatids (Figure 3.1.C). 
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Breeding studies indicated that conditional ablation of Tarbp2 in male germ cells caused 

sterility (Table 3.1) 

♂ ♀ # of litter # of ♂ pups # of ♀ pups 

Tarbp2Δ/fl;Stra8icre+ Tarbp2Δ/fl 0 0 0 

Tarbp2Δ/fl Tarbp2Δ/fl;Stra8icre+ 12 43 59 

Table 3.1. Tarbp2Δ/fl;Stra8icre+  males are sterile  

 

 
Figure 3.1-Germ cell specific loss of TARBP2 expression in Tarbp2Δ/fl;Stra8icre+ mice  

(A) qRT-PCR analysis indicating fold-change of Tarbp2 transcript in pachytenes and round 

spermatids comparing Tarbp2Δ/fl;Stra8icre+ with Tarbp2Δ/fl control (**p<0.005) (n=3). (B) 

Immunoblot for TARBP2 (~48kda) protein expression in testes from 6wk old 

Tarbp2Δ/fl;Stra8icre+ and Tarbp2Δ/fl mice. GAPDH (~35kda) was used as a loading control. 
(C) Testis cross-sections from 6wk old Tarbp2Δ/fl and Tarbp2Δ/fl;Stra8icre+ indicating 

TARBP2 expression in Pachytenes (Pach) and Round spermatids (RS) in Tarbp2Δ/fl and loss 

of TARBP2 expression in these cells in Tarbp2Δ/fl;Stra8icre+ animals (n=6).  Sections stained 

with TARBP2-antibody, counterstained with DAPI. 
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To investigate if loss of TARBP2 in germ cells affected spermatogenesis, we 

compared testes histological sections from 6wk old Tarbp2Δ/fl;Stra8icre+ mice to those from 

control littermates. We observed normal germ cell development through meiosis. However, 

unlike controls, spermatid elongation was disrupted and included abnormal nuclear 

morphogenesis and formation of symplasts (Figure 3.2). 

 
Figure 3.2-Germ cell specific loss of TARBP2 results in defective spermatid elongation 

Histological analysis of testis cross-sections stained with PAS from Tarbp2Δ/fl 

Tarbp2Δ/fl;Stra8icre+ mice at 40X magnification corresponding to Stages I-XII of male 

gamete development. Arrows indicate defective spermatid elongation and arrow heads 

indicate nuclear symplasts. 
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Electron microscopy (Figure 3.3.A) and acridine orange staining on isolated 

spermatids (Figure 3.3.B) confirmed defects in nuclear condensation, while phase contrast 

microscopy of isolated testicular sperm (Figure 3.3.C) confirmed defects in nuclear 

morphogenesis including double-headed sperm and tails mis-attached to the mid-region of 

the head (Fig.S1E). 

 
Figure 3.3 Improper nuclear condensation and morphology in Tarbp2-/- sperm 

(A) Electron microscopy images of sperm from Tarbp2Δ/fl (left panel) and 

Tarbp2Δ/fl;Stra8icre+ (right-panel). Images taken at 20K mag. (B) Acridine orange (AO) 

staining analysis of elongating spermatids at 40X magnification indicates Red, Green and 

Blue (DAPI) colored fluorescence in Tarbp2Δ/fl and absence of Green fluorescence in 

Tarbp2Δ/fl;Stra8icre+ suggesting improper chromatin condensation. (C) Phase contrast 

microscopy, gray-scale images of sperm stained with DAPI from Tarbp2Δ/fl (top-panel, normal 

looking sperm) and Tarbp2Δ/fl;Stra8icre+ (bottom-panel, left: abnormal spermatozoa with 

flagellum attached to equatorial region of head, right: double-headed spermatozoa). 
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Together these data suggest that TARBP2 is required for post-meiotic spermatid 

differentiation and that its absence causes multiple defects in nuclear and tail morphogenesis. 

3.3.2 Altered mature miRNA levels in Tarbp2Δ/fl;Stra8icre+ mice 

TARBP2 has been shown to be a co-factor of DICER (Chendrimada, Gregory et al. 

2005), and increased miRNA expression levels overlap with TARBP2 expression during 

spermatogenesis (Ro, Park et al. 2007). To determine whether loss of TARBP2 in germ cells 

affected the accumulation of mature miRNAs, we collected total RNA from Hoechst-stained 

and FACS-sorted spermatocytes and round spermatids (Figure 3.4), and generated libraries of 

small non-coding RNAs for high-throughput miRNA-sequencing (miRNA-seq). 

 
Figure 3.4- FACS assisted sorting of germ cells based on DNA content  

(Germ cells from testes of 6 week old Tarbp2Δ/fl (top-panel) and Tarbp2Δ/fl;Stra8icre+ (bottom 

panel) animals were isolated by FACS. Hoechst 3342 dye was used to label the DNA content 

of cells. Cells were assigned into 4C (spermatocytes) and 1C (round spermatids) depending 

on the level of staining and size. Propidium Iodide was used to distinguish live and dead cells 

(n=3) 
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Using an FDR pass of <0.05, we found that the expression level of 75 mature 

miRNAs were significantly changed by at least two-fold in Tarbp2Δ/fl; Stra8icre+ 

spermatocytes (Figure 3.5.A). miRNA transcripts were both decreased (n=47, 62.6%) and 

increased (n=28, 37.3%). Similar analyses of miRNA-seq data obtained from round 

spermatids, revealed that the expression level of 74 mature miRNAs were significantly 

altered (Figure 3.5.B). Among these, 28 miRNAs were down-regulated in both spermatocytes 

and round spermatids, whereas 19 were unique to spermatocytes and 21 to round spermatids 

(Figure 3.5.C). Previous studies have shown that loss of TARBP2 results in altered cleavage 

site selection by DICER and the generation of isomirs (Kim, Yeo et al. 2014, Wilson, Tambe 

et al. 2015). Loss of TARBP2 in germ cells also resulted in altered Isomirs in spermatocytes 

(Figure 3.6.A) and round spermatids (Figure 3.6.B). These studies confirm that during 

spermatogenesis, and as previously shown in early embryos (Chapter 2. Figure 2.5), that 

TARBP2 is required for the processing of a subclass of pre-miRNAs into different Isomir 

types. 
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Figure 3.5-Altered mature miRNA levels in Tarbp2Δ/fl;Stra8icre+ mice 

(A) MA-Plot of miRNA transcripts in Tarbp2Δ/fl;Stra8icre+  spermatocytes at 6wks of age 

and their fold-changes by average expression using miRNA-seq. Upregulated - 

log2Foldchange>1, FDR<0.05; Down-regulated- log2Foldchange <-1, FDR<0.05. (B) MA-

Plot of miRNA transcripts in Tarbp2Δ/fl;Stra8icre+ round spermatids at 6wks of age and their 

fold-changes by average expression using miRNA-seq. Upregulated - log2Foldchange > 1, 

FDR < 0.05; Down-regulated- log2Foldchange <-1, FDR < 0.05. (C) Venn-diagram 

representing the number of specific and common miRNAs down-regulated in spermatocytes 

and round spermatids. 
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Figure 3.6- Altered isomiR expression in Tarbp2Δ/fl;Stra8icre+ mice 

(A) MA-Plot of Isomirs in Tarbp2Δ/fl;Stra8icre+  spermatocytes at 6wks of age and their fold-

changes by average expression using miRNA-seq. Upregulated - log2Foldchange>1, 

FDR<0.05; Down-regulated- log2Foldchange <-1, FDR<0.05. (B) MA-Plot of isomirs in 

Tarbp2Δ/fl;Stra8icre+ round spermatids at 6wks of age and their fold-changes by average 

expression using miRNA-seq. Upregulated - log2Foldchange > 1, FDR < 0.05; Down-

regulated- log2Foldchange <-1, FDR < 0.05. 

   

3.3.3 Altered mRNA transcript levels in Tarbp2Δ/fl;Stra8icre+ mice 

Because we observed deregulation of miRNA processing in spermatocytes and round 

spermatids with the loss of TARBP2, we investigated if any protein-coding transcripts were 

deregulated. Using total RNA from which the small RNA libraries were generated, we 

generated libraries for high throughput mRNA sequencing. Using an FDR pass of <0.05, we 

found that the expression levels of 346 mRNAs were significantly altered in 

Tarbp2Δ/fl;Stra8icre+ spermatocytes (Figure 3.7.A), and among these, 174 were up-regulated 

and 172 were down-regulated. In round spermatids, the expression levels of 446 mRNAs 

were significantly altered and among these, 263 were up-regulated and 183 were down-

regulated (Figure 3.7.B). Among the total number of up-regulated transcripts in 
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spermatocytes and round spermatids, 85 were common to both cell types, whereas 89 were 

unique to spermatocytes and 178 were unique to round spermatids (Figure 3.7.C).  

In-silico analysis predicted a significant negative Pearson’s correlation between the 

expression levels of down-regulated miRNAs and upregulated mRNAs in spermatocytes and 

round spermatids prepared from Tarbp2Δ/fl;Stra8icre+ testes (data not shown). Altered 

mRNAs included essential spermatid differentiation factors Tnp2, Prm1, and Prm2, which 

encode proteins involved in chromatin condensation. Various target-site prediction 

algorithms (e.g. Target scan, miRANDA, miRSVR, RNA-Hybrid with Dfree-energy>-

20)(Kruger and Rehmsmeier 2006, Betel, Wilson et al. 2008, Betel, Koppal et al. 2010, 

Agarwal, Bell et al. 2015) predict that significantly-altered miRNAs in both spermatocytes 

and round spermatids target the 3'UTR regions of these same transcripts (Figure 3.7.D), 

suggesting that TARBP2, acting as a co-factor to DICER to process a subclass of miRNAs, 

regulates the stability or translation of several key transcripts coding for spermatid 

differentiation factors, including Tnp2, Prm1 and Prm2.  
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Figure 3.7- Altered mRNA levels in Tarbp2Δ/fl;Stra8icre+ mice and miRNA binding sites 

in 3'UTR regions 

(A) MA-Plot of mRNA transcripts in Tarbp2Δ/fl;Stra8icre+ spermatocytes at 6wks of age and 

their fold-changes by average expression using RNA-seq. Upregulated - log2Foldchange>1, 

FDR<0.05; Down-regulated- log2Foldchange <-1, FDR<0.05.  (B) MA-Plot of mRNA 

transcripts in Tarbp2Δ/fl;Stra8icre+  round spermatids at 6wks of age and their fold-changes 

by average expression using mRNA-seq. Upregulated - log2Foldchange>1, FDR<0.05; 

Down-regulated- log2Foldchange <-1, FDR<0.05. (C) Venn-diagram representing the number 

of specific and common mRNAs up-regulated (log2Foldchange>0.5, FDR<0.05) in 

spermatocytes and round spermatids. (D) Diagrammatical representation of 3'-UTR regions 

of Tnp2, Prm1 and Prm2 along with in-silico predicted miRNA targeting sites. Each color as 

indicated in key represents log2fold-change of corresponding miRNA from miRNA 

sequencing data. 
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3.3.4 TARBP2 regulates translation of spermatid differentiation factors 

Because we detected an increase in Prm1 mRNA in Tarbp2Δ/fl;Stra8icre+ germ cells, 

we also investigated PRM1 protein expression. In wild type animals, PRM1 was first 

detected in elongating spermatid nuclei in Stage XII seminiferous tubules (Figure 3.8.A, top 

right). Strong immunostaining of PRM1 was also found in residual bodies of elongated 

spermatids in Stage VII tubules prior to the release of the spermatids into the lumen at 

spermiation (Figure 3.8.A, top left), confirming previous studies on the temporal expression 

pattern of PRM1 during spermiogenesis (Fajardo, Haugen et al. 1997). In 

Tarbp2Δ/fl;Stra8icre+ mice, PRM1 was also first detected in elongating spermatids in Stage 

XII tubules (Figure 3.8.A, bottom right). However, immunofluorescence was also detected in 

elongating spermatids in Stage VII and Stage IX tubules (Figure 3.8.A, bottom left and 

center), and in elongating spermatids in other staged-tubules (data not shown), but not in 

residual bodies in Stage VII (Figure 3.8.A, bottom left), confirming that spermatid 

differentiation is abnormal. The presence of PRM1-positive elongating spermatids in Stage 

IX (Figure 3.8.A, bottom center) and Stage XII tubules (Figure 3.8.A, bottom right) also 

suggests that spermiogenesis is incomplete and that undifferentiated elongating spermatids 

are retained at spermiation.  

To further investigate the expression of the basic nuclear proteins involved in 

chromatin condensation, we analyzed basic proteins extracted from Tarbp2Δ/fl and 

Tarbp2Δ/fl;Stra8icre+ testes . Surprisingly, we were unable to detect PRM1 with either 

amido-black staining (Figure 3.8.B) or by western blotting (Figure 3.8.C) in either the 

sonication-sensitive or sonication -resistant fractions. We also failed to detect TP2, PRM2 

and any of the PRM2 precursor proteins in Tarbp2Δ/fl;Stra8icre+ mice (Figure 3.8.B).  
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The failure to detect PRM1 protein in whole-testis extracts could be due to the lack of 

sensitivity of amido-black staining and western blotting compared to immunofluorescence of 

individual cells in sections, coupled with an arrest in spermatid differentiation prior to the 

completion of the normal temporal window of PRM1 expression, which would result in less 

protein in whole-testis extracts. To address this possibility, we also assayed by western 

blotting the presence of SPATA 21 (Iida, Yamashita et al. 2004), which is normally expressed 

during spermiogenesis and whose mRNA levels were not altered (Figure 3.8.C). The ability 

to detect SPATA 21 protein in extracts suggest that the failure to detect PRM1 is not due to an 

early block in spermatid differentiation that prevents the accumulation of sufficient protein 

for detection. 

 To further investigate the failure to detect PRM1 by western blotting and 

amido-black staining, we used polysome profiling to determine the extent to which Prm1 

mRNA was recruited from the mRNP fraction to actively translating ribosomes. Prior to its 

translation in elongating spermatids, Prm1 mRNA is normally stored in round spermatids as 

an mRNA ribonucleoprotein particle (mRNP) that sediments with the 40S ribosomal protein 

subunit (Kleene 1989). Upon recruitment to polysomes and translation in elongating 

spermatids, Prm1 mRNA is reduced in size from approximately 550 nucleotides (nts) down 

to 400 nts due to shortening of its poly(A) tail (Kleene 1989).  As expected, in polysomes 

prepared from control testes, we detected the bulk of the stored Prm1 mRNA in fractions 2 

and 3, corresponding to the 40S and 60S ribosomal subunits, and the deadenylated forms of 

the mRNA in fractions 8-11, corresponding to actively translated mRNAs containing 

ribosomes spaced ~ 50 nts apart (Cataldo, Mastrangelo et al. 1999) (Figure 3.8.D, left).  In 

polysomes prepared from Tarbp2Δ/fl;Stra8icre+ testes, we also detected the majority of the 
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Prm1 mRNA in fractions 2 and 3. However, unlike the control, the deadenylated forms of 

Prm1 RNA were found in fractions 4-6, corresponding to the 80S monosome (fraction 4) and 

single or small polysomes (fractions 5 and 6). The presence of the deadenylated forms or 

Prm1 mRNA in fractions 4-6, which normally is a signature of active translation in fractions 

8-11, suggests that the initiation of translation of Prm1 mRNA was inefficient, or that 

translation elongation was blocked or stalled. Interestingly, the mRNAs encoding the other 

basic proteins that we failed to detect by amido-black staining, were also shifted from the 

higher to lower fractions in the gradient, where they were also deadenylated, suggesting that 

translation initiation or elongation was also stalled on those mRNAs (Figure 3.7.D).  
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Figure 3.8- Altered PRM1 expression and defective translation elongation in  

Tarbp2Δ/fl; Stra8icre+ mice  

(A) Testis cross-sections stained with PRM1-antibody and counterstained with DAPI.PRM1 

expression in elongating spermatids (es) of stage XII but not stage IX and elongated 

spermatids (ES) of stage VII tubules in Tarbp2Δ/fl (top panel), where as PRM1 expression is 

observed in every staged tubule in Tarbp2Δ/fl;Stra8icre+ (bottom panel) (n=4) PRM1 

expression is absent in round spermatids (RS) of mutant and wild-type control tubules. (B) 

Amido-black staining analysis of total basic proteins in sonication resistant (SR) and 

sonication sensitive (SS) nuclear fractions from testes of Tarbp2Δ/fl;Stra8icre+ and Tarbp2Δ/fl 

mice (n=2). The positions of TNP2, PRM1 and PRM2 (precursor, mature, processed form) 

are indicated. (C) Western-blot analysis of PRM1, SPATA21 and GAPDH (loading control).  

(D) Absorbance profiles of sucrose gradient fractionation of lysate extracted from 6wk old 

Tarbp2Δ/fl;Stra8icre+ and Tarbp2Δ/fl testes. Each peak represents corresponding fractions as 

indicated. Numbers 1-11 represent collected fractions and their corresponding location in the 

absorbance profile. Northern blot analysis of Prm1, Prm2, Tnp2, and Tnp1 mRNA extracted 

from fractions collected in polysomal analysis of Tarbp2Δ/fl;Stra8icre+ and Tarbp2Δ/fl testes. 

Total RNA extracted from samples before loading onto sucrose gradient and fraction numbers 

are indicated. Adenylated [(AAAA)N] and de-Adenylated [(AA)n] forms of mRNA are 

indicated. 
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3.3.5 Altered PRM1 localization in TARBP2 deficient elongating spermatids 

As discussed above, the ability to detect PRM1 by immunofluorescence but not by 

amido-black staining or by western blotting, could be due to differential sensitivity of the 

methods. However, the polysome analysis suggested the additional possibility that the failure 

to detect full-length protein could also be due to a failure to complete translation elongation. 

The antibody used to detect PRM1 recognizes the amino terminus of the protein. A prediction 

of this hypothesis should be the detection of the amino terminal region of PRM1 outside of 

the nucleus.  To test this hypothesis, we performed immunogold staining of PRM1. In control 

animals, the gold particles were mostly detected with the condensed chromatin or with the 

nuclear membrane (Figure 3.9.A, left). However, in Tarbp2Δ/fl;Stra8icre+ mice, immunogold 

staining was detected in the cytoplasm as well as in the nucleus (Figure 3.9.A, right). 

Statistical analysis confirmed a differential distribution of gold particles between the control 

and mutant (Figure 3.9.B). In wildtype sperm, PRM1 immunogold staining was either 

localized near the nuclear envelope (at least 2-5 gold particles in 23 out of 30 cells) or on 

chromatin (1-7 gold particles in 28 out of 30 cells), but never in cytoplasm. In 

Tarbp2Δ/fl;Stra8icre+ mice,  PRM1 was consistently found in the cytoplasm (at least 2-9 gold 

particles in 22 out of 25 cells), on chromatin in few incidences (at least 1-12 gold particles in 

14 out of 25 cells), but rarely near the nuclear membrane structures (1-3 particles in 3 out of 

25 cells). Together these data suggest that the absence of TARBP2 results in a block in 

translational elongation and retention of partially synthesized PRM1 in the cytoplasm where 

it is presumably associated with stalled ribosomes. 
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Figure 3.9 - Altered PRM1 localization in TARBP2 deficient elongating spermatids and 

TARBP2 dependent miRNAs in translation elongation 

(A) Electron microscopy images of sperm from Tarbp2Δ/fl (left panel) and 

Tarbp2Δ/fl;Stra8icre+ (right-panel) mice showing gold-particles (as indicated by arrows) 

representing localization of PRM on chromatin, nuclear membrane and cytoplasmic 

structures. Images taken at 20K mag. (B) Graphical representation of number of gold 

particles localized to three different structures as observed in each sperm cell from Tarbp2Δ/fl 

(n=30) and Tarbp2Δ/fl;Stra8icre+ (n=25) testes. p-value indicate results from students t-test. 

(C) Diagrammatical representation of the possible role of TARBP2 in regulating translation 

of spermatid differentiation factors through miRNAs binding to 3'UTR region. 
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3.4 Discussion 

Previous studies have shown that DICER is required in germ cells for murine 

spermatogenesis (Korhonen, Meikar et al. 2011, Romero, Meikar et al. 2011, Greenlee, Shiao 

et al. 2012) and that male mice lacking TARBP2 on a mixed genetic background are infertile 

(Zhong, Peters et al. 1999). We extended these previous studies here by generating a germ 

cell-specific knockout of Tarbp2 on a pure C57BL/6J background and investigated the 

molecular mechanism underlying the sterility. Cell-specific ablation of Tarbp2 resulted in a 

change in the abundance and isomer type of a subclass of miRNAs in both meiotic and post-

meiotic cells. Predicted mRNA targets of the miRNAs were both elevated and reduced, 

including transcripts encoding the highly basic protamines required for chromatin 

condensation. mRNAs were recruited for translation however there was a reduction in 

polyribosomes and the accumulation of detectable PRM1 protein in the cytoplasm, 

suggesting that TARBP2-dependent miRNAs mediate translation elongation.  

Germ cell-specific ablation of Dicer using Stra8 or Ngn3 promoter-driven cre 

recombinases results in both meiotic and post meiotic defects (Romero, Meikar et al. 2011, 

Greenlee, Shiao et al. 2012). As might be expected, mutation of Dicer has a stronger effect 

on spermatid differentiation than ablation of Tarbp2. DICER ablation results in the loss of all, 

or nearly all, miRNAs, and endogenous short interfering (endo-siRNAs), whereas as loss of 

TARBP2 affects only a sub-class of miRNAs.  In Tarbp2fl/fl ; Stra8-icre mice, spermiogenesis 

is blocked after initiation of PRM1 expression, whereas in  Dicerfl/fl ; Stra8-icre mice, 

spermatogenesis halts prior to the onset of protamine synthesis (Greenlee, Shiao et al. 2012). 

Several independent studies have reported a role for TARBP2 as a cofactor for the 

RNAse III enzyme DICER in canonical miRNA biogenesis in cell culture (Chendrimada, 
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Gregory et al. 2005, Wilson, Tambe et al. 2015). In the testis, TARBP2 is expressed in a cell 

type-specific manner and overlaps with increased miRNA expression levels (Lee, Fajardo et 

al. 1996, Ro, Park et al. 2007). Loss of TARBP2 resulted in altered processing of a subset of 

miRNAs in the same cell populations leading us to conclude that TARBP2 also functions as a 

co-factor of DICER during male gamete development. The absence of TARBP2 during 

embryonic development also results in altered processing of a sub-set of miRNAs (Pullagura, 

Buaas et al. 2018). The miRNAs that are affected in Tarbp2-/- embryos differ from those in 

spermatids, suggesting that other cell-type specific factors control either the expression or 

selectivity in processing of TARBP2-dependent miRNAs.  

miRNAs are essential for post-transcriptional regulation of gene expression in meiotic 

and haploid cells, either for regulating transcript levels or by regulating translation of 

spermatid differentiation factors (Yu, Raabe et al. 2005, Dai, Tsai-Morris et al. 2011). 

Consistent with this we observe a decrease in a sub-set of miRNA transcripts with an up-

regulation of their target mRNA transcripts. Most of these mRNA transcripts are known to 

play a role in several key events including nuclear compaction, chromatin condensation and 

tail morphogenesis.  

The failure to detect full-length PRM1 protein and other spermatid differentiation 

factors suggests that TARBP2-dependent miRNAs regulate translation. To characterize the 

effect of the loss of TARBP2 on the translation, we analyzed RNA collected from polysomal 

fractions. mRNAs for Tnp1, Tnp2, Prm1 and Prm2 were elevated in monosomal fractions in 

Tarbp2Δ/fl;Stra8icre+ testes, supporting a role for TARBP2 in translation elongation. This 

was further supported by the presence of both full-length and shortened transcripts, which 

suggests that the transcripts sedimenting with the monosomal fractions had undergone 
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translation initiation, as deadenylation normally accompanies translation in male germ 

cells(Kleene 1989). Our studies are consistent with a recent report suggesting a role for 

miRNAs in the movement of transcripts with short 3’UTRs from mRNP fraction to 

polysomes (Zhang, Tang et al. 2017).  

While our study clearly demonstrates changes in mature miRNA levels and up-

regulation of their corresponding mRNA targets in Tarbp2Δ/fl;Stra8icre+ mice, the failure to 

detect full-length protein was unlikely to be a consequence of the cells failing to differentiate 

to the stage at which the proteins are normally synthesized, as we could detect PRM1 by 

immunofluorescence in Stage XII elongating spermatids. It is also unlikely to be due to 

transcript levels, as mRNAs for Prm1, Prm2, Tnp1 and Tnp2 were all elevated in 

Tarbp2Δ/fl;Stra8icre+ mice. The ability to detect PRM1 by immunofluorescence could simply 

be due to the increased sensitivity of immunofluorescence, or it could be due to the failure to 

synthesize the full-length protein in the mutant. The antibody used recognizes the amino 

terminus, which would be able to detect newly synthesized PRM1 on sections but not in total 

protein extracts. The detection of PRM1 in the cytoplasm by immuno-EM also suggests a 

function for TARBP2-dependent miRNAs in translation elongation. The pioneer round of 

translation, or an early block in translation elongation, can generate defective ribosome 

products (DRiPs) that are usually rapidly degraded (Bourdetsky, Schmelzer et al. 2014). The 

detection of PRM1 in the cytoplasm by immuno-gold staining could be due to the detection 

of PRM1 DriPS.  

  Dicer ablation in haploid cells using a Prm1-driven cre-transgene results in 

defective translation due to sequestration of Prm1 mRNA by elevated levels of ARPC5 

(Chang, Lee-Chang et al. 2012). Elevation of ARPC5 is due to a down regulation of miR-
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22/883-5p that targets Arpc5. In our study, we did not observe a deregulation of miR-22/883-

5p miRNA. Instead, we observed deregulation of in-silico predicted Arpc5 targeting miRNAs 

(miR-9-5p, miR-471-3p, miR-425-3p, miR-466g, miR-677-5p). Differences in these studies 

could be due to the temporal window of Dicer and Tarbp2 ablation, or to the selectivity of 

TARBP2 in processing a subclass of miRNAs. 

Posttranscriptional control plays a major role in the successful development of male 

gametes (Schafer, Nayernia et al. 1995, Laiho, Kotaja et al. 2013). In the case of chromatin 

compaction, the mRNAs encoding Prm1 and Prm2 are synthesized in round spermatids and 

stored as mRNPs for up to 7 days before being recruited for translation in elongating 

spermatids (Kleene, Distel et al. 1983, Kleene, Distel et al. 1984). Translational repression of 

Prm1 is mediated by sequences in its 3’UTR (Fajardo, Haugen et al. 1997) and temporal 

translational delay is essential for completion of spermatid differentiation (Lee, Haugen et al. 

1995). The mechanism of translational repression is not fully understood but requires the Y 

box proteins YBX2 and YBX3 proteins (Snyder, Soundararajan et al. 2015). Our previous 

studies of a whole body knockout of Tarbp2 revealed a role for Tarbp2 in translational 

activation of Prm1 (Zhong, Peters et al. 1999), although the mechanism underlying the defect 

was not known, in part because miRNAs had not yet been discovered.  The results reported 

here show that TARBP2-miRNAs are required for translation elongation of mRNAs that are 

subject to temporal translational delay. It has yet to be determined if the mechanism of 

translational depression is initiated by miRNAs, or if miRNAs are simply required for 

translation elongation following translational activation. 
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CHAPTER 4. SUMMARY AND FUTURE DIRECTIONS 

4.1 Summary of key findings 

The study described in this dissertation sought to identify in vivo, the role of TARBP2 

during post-transcriptional regulation of gene expression. Using two different C57BL/6J 

strain mouse models, one with constitutive null allele of Tarbp2 and another with a germ cell 

specific knock out of Tarbp2, we analyzed miRNA expression levels during embryonic 

development and spermatogenesis. In my research findings, TARBP2 was shown to regulate 

the expression of a sub-set of miRNAs at embryonic day 15.5 (E15.5) during murine 

embryonic development and in post-meiotic cells during spermatogenesis. Based on my 

findings, I propose a role of TARBP2 in processing unique pre-miRNAs into mature 

miRNAs.  

I observed TARBP2 expression along with DICER at every stage of murine 

embryonic development. However, I found a discordance in the Tarbp2-/- (lethality at E18.5) 

phenotype compared to the Dicer -/- (lethality at E7.5) (Bernstein, Kim et al. 2003) 

phenotype. Based on this observation, I propose a role of TARBP2 dependent miRNAs in 

regulating murine embryonic development of multiple organs at stages later than E7.5. 

Similarly, as determined by using the same germ-cell specific cre, there is a discordance in 

the effect on spermatid differentiation stage from TARBP2 ablation compared to DICER 

ablation (Greenlee, Shiao et al. 2012). This observation further strengthens my hypothesis 

that TARBP2 regulates developmental stage-specific and cell-specific miRNA mediated post-

transcriptional regulation.  
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Germ-cell specific ablation of TARBP2 altered mature miRNA levels coupled with 

aberrant translation elongation of mRNAs.  Along with Prm1, these abnormally translated 

mRNAs, including Tnp1, Tnp2, and Prm2, have multiple target sites for TARBP2-dependent 

miRNAs in their 3'UTR regions. Together, these observations suggest that TARBP2-

dependent miRNAs regulate translation elongation of spermatid differentiation factors during 

murine spermatogenesis. Furthermore, by generating Tarbp2-/- Prkra-/- double mutant mice, I 

uncovered the existence of possible redundant function between TARBP2 and PRKRA, 

independent of miRNA biogenesis. 

4.2 Future Directions 

4.2.1 TARBP2-dependent miRNA biogenesis 

In vitro studies have shown that TARBP2 binds to dsRNA formed both by perfectly 

matched GC rich sequences or structures formed by mis-match pairing (Lee, Fajardo et al. 

1996, Parker, Maity et al. 2008, Kini and Walton 2009, Gredell, Dittmer et al. 2010, Zhu, 

Kandasamy et al. 2018).   Future work should be focused on identifying features of miRNAs 

specific to TARBP2 binding in vivo. In part, by utilizing in silico motif and structure analysis 

for deregulated miRNAs from Tarbp2-/- embryos and spermatids, conserved features among 

these miRNAs can be evaluated. In addition, miRNA sequencing of Tarbp2-/- embryos from 

stages E7.5 to E18.5, combined with mRNA sequencing will reveal transcriptional networks 

dependent on TARBP2 mediated post-transcriptional regulation of gene expression during 

murine embryonic development. 
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4.2.2 miRNA mediated translation regulation of spermatid differentiation factors 

miRNA-mediated post-transcriptional regulation has been shown to be characterized 

by inhibition of translation followed by mRNA degradation. An independent study suggests a 

role of miRNAs in activating translation of mRNA after they bind to ARE elements of 

mRNA in human cells (Vasudevan, Tong et al. 2007). In my study, I failed to observe TNP1, 

TNP2, PRM1 and PRM2 in Tarbp2 -/- testes. The transcripts encoding these proteins contain 

multiple TARBP2-dependent miRNA target sites in their 3'-UTR regions. I hypothesized that 

TARBP2 dependent-miRNAs bind to Tnp1, Tnp2, Prm1 and Prm2 mRNAs in their 3'UTR 

regions and promote their translation during murine male gametogenesis. In silico prediction 

has provided a list of miRNAs that could target these mRNA with high confidence. In vitro 

experimental analysis can be performed to verify these predictions.  One type of experiment 

involves using miRNA mimic versions of these miRNAs in vitro. These miRNA mimics 

could be expressed in HeLa cells along with a luciferase reporter gene to which a 3'UTR 

sequence of each Tnp1, Tnp2, Prm1 and Prm2 mRNA is attached. By comparing with 

suitable controls and analyzing the amount of luciferase reporter protein expressed in the 

presence and absence of each miRNA mimic, a relation between the miRNA expression and 

translation of its corresponding putative mRNA target can be evaluated. One caveat for this 

proposed experiment is that HeLa cells do not express regulatory elements in the same way 

that germ cells would express those factors. This difference would itself affect the translation 

profiles of Tnp1, Tnp2, Prm1 and Prm2 along with TARBP2-dependent miRNAs in germ 

cells. Hence, these findings cannot be translated directly to in vivo observations. A 

complementary approach to address this issue would be to generate a germ cell specific 
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knock out of each individual TARBP2 dependent miRNA and analyze the effect on 

translation of each of their corresponding mRNA targets. 

One key observation during my research is the detection of amino-terminus of PRM1 

in the cytoplasmic region of Tarbp2-/- elongating spermatids. This could be due to the release 

of defective ribosome products as a consequence of a pioneer round of translation or an early 

block of translation elongation.  This observation can be confirmed by a direct approach, 

immunoEM analysis using an PRM1 antibody raised against its C-terminal epitope. It would 

be interesting to perform an immunoEM analysis using antibodies against other aberrantly 

translated mRNAs in Tarbp2-/- germ cells, including those encoding PRM2, TNP2 and TNP1. 

This would help to determine if DriPs due to loss of TARBP2 function are specific to PRM1 

or if it is a general phenomenon observed in germ cells.  If my observation holds true, a germ 

cell specific proteomic analysis in Tarbp2 -/- germ cells, using mass spectrometry, will help to 

identify the accumulation of DriPs from mRNAs, whose translation elongation is dependent 

on TARBP2 mediated miRNA biogenesis.  

4.2.3 miRNA dependent translation elongation in germ cells 

In the absence of TARBP2 expression, I observed defective translation elongation of 

Tnp1, Tnp2, Prm1 and Prm2. Previously, it was reported that during murine gametogenesis, 

miRNAs bind to mRNAs that have short 3'UTR regions and control their movement from 

mRNP onto polysomes as haploid germ cell differentiation unfolds (Zhang, Tang et al. 2017). 

Interestingly, Tnp1, Tnp2, Prm1 and Prm2 contain shorter 3'UTR regions. Based on this, I 

hypothesize that miRNA dependent translation elongation, can be unique to mRNAs under 

temporal translation regulation during haploid germ cell differentiation. As these cells are 

transcriptionally inactive, there are limited ribosomal proteins available. Hence, there is a 
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need for controlled use of these proteins. I hypothesize that miRNA mediated translation 

elongation regulation can happen through controlled recruitment of ribosomal proteins or by 

stabilization of ribosomes on translating mRNA.  

To address this in vivo, a ribosomal profiling assay using a RPL22 ribo-tag strategy as 

described earlier (Sanz, Yang et al. 2009) could be performed to analyze the occupancy of 

ribosomes in the presence and absence of TARBP2. Considering the embryonic lethality of a 

constitutive null allele of Tarbp2, multiple genetic crosses would have to be made to obtain 

males with germ cell-specific depletion of Tarbp2 and expression of ribo-tag. If this strategy 

is pursued, its success will be dependent on the efficiency of germ cell specific cre-

recombinase in recombining lox-p sites in two allelic regions corresponding to Tarbp2 fl/fl and 

Rpl22 fl/fl.  

It is proposed that another variable affecting results is the identity of the cells in the 

system being analyzed. This is based on recent studies which suggest that the cellular or sub-

cellular interactome can regulate the occupancy of ribosomal proteins on to translating 

mRNAs (Simsek, Tiu et al. 2017). Because the ribo-tag strategy was developed to study 

translation in brain, one has to account for the fact that they will be utilizing this strategy in a 

different organ system-the testis-which will have a different ribosomal interactome from that 

found in the brain. In particular, the profile of ribosomal proteins essential for translation of 

Tnp1, Tnp2, Prm1 and Prm2 can be different from that of RPL22. If this will be the case, in 

particular, if ribo-tagged RPL22 is not expressed at the same time that ribosomes were 

translating the mRNA for each of these targets, then it might be difficult to label the 

translating complex with ribo-tagged RPL22a and determine the ribosome occupancy. In 

such a scenario, there would be a need to identify the ribosomal proteins required for 
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translation of these transcripts. One approach would be to analyze the expression of 

transcripts coding for ribosomal proteins from mRNA-seq data derived from germ cells 

during murine spermatogenesis, and then perform an RNA immunoprecipitation of these 

transcripts using antibodies against those proteins. Once a suitable ribosomal protein is 

identified, then a mouse model would have to be generated using a strategy similar to that 

used for the ribo-tag mouse model.  This would be challenging due to the unavailability of 

working antibodies against ribosomal proteins, and the subsequent need to generate 

monoclonal antibodies against the several ribosomal proteins that would be tested.  

In vitro studies cannot be applied to study translation of these transcripts due to the 

difference in Ribo-interactome proteins expressed in vitro compared to in vivo. In addition, 

the expression of proteins from these transcripts, which would be derived from germ cells, is 

lethal to somatic cells, which would be used to express those transcripts. The major 

impediment to study translation in germ cells directly is the lack of proper germ cell culture 

techniques. Therefore, future work should be focused on developing a strategy to culture 

germ cells, perhaps in 2D or 3D culture systems.  

4.2.4 Role of PRKRA in vivo  

The role of PRKRA in miRNA biogenesis still remains an open question due to a low 

level of PRKRA expression in the Prkralear1j mouse model (Figure 2.3.C). To address this 

issue, miRNA expression levels in E15.5 embryos bearing a constitutive null allele of Prkra 

would have to be analyzed and compared to suitable controls including Tarbp2 -/- embryos. 

This would reveal the role of PRKRA in miRNA biogenesis and if any, the uniqueness of 

PRKRA dependent miRNAs compared to TARBP2 dependent ones. These miRNAs should 

be analyzed in terms of their sequence or structural features. 
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4.2.5 Redundancy between TARBP2 and PRKRA 

Several in vitro studies have reported that an RNAi independent mechanism of 

TARBP2 in translation regulation occurs through inhibition of PRKRA mediated activation 

of PKR (Daher, Laraki et al. 2009). Even though these studies have shown PRKRA as a 

translation inhibitor, in vivo study focused on understanding the role of PRKRA in anterior 

pituitary lobe development suggests its role in that context as a translation enhancer 

(Dickerman, White et al. 2015). My research on murine embryonic development suggests 

possible redundancy between these two proteins-TARBP2 and PRKRA- independent of 

miRNA biogenesis. However, failure to observe the co-expression of TARBP2 and PRKRA 

among individual cell populations in tissue systems including heart, brain and testis poses a 

major challenge for addressing redundancy between these proteins. I observed that loss of 

TARBP2 in germ cells leads to translation elongation defects. These cells do not express 

PRKRA. To address redundancy between TARBP2 and PRKRA in regulating translation in 

germ cells, a Prkra transgene under the control of an Hspa2 promotor (Inselman, Nakamura 

et al. 2010) can be expressed in Tarbp2-/-  germ cells and the effect on translation of 

transcripts derived from Prm1, Prm2 and Tnp2 can be monitored. Another approach to 

investigate this redundancy would be to replace the Tarbp2 allele in its genomic region with 

the Prkra allele using a strategy similar to that described previously (Tvrdik and Capecchi 

2006) and investigate the effects on miRNA biogenesis, mRNA stability and translation 

regulation during spermatogenesis. 
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4.2.6 RNAi independent role of TARBP2 

My research did not rule out the possibility of RNAi-independent mechanisms for 

TARBP2 in post-transcriptional regulation of gene expression. An independent study using 

breast cancer cell lines showed that TARBP2 directly binds to secondary structures of mRNA 

and helps in the degradation of these mRNAs (Goodarzi, Zhang et al. 2014). Future work 

should be focused on investigating the existence of such direct interactions during murine 

germ cell development. Cross-linking immunoprecipitation (CLIP) of TARBP2-bound RNA 

sequences combined with high through put sequencing, would help to identify the exact 

sequences preferred by TARBP2. Sequence analysis combined with transcriptome wide 

mapping would reveal if TARBP2 can bind directly to mRNA sequences or if TARBP2 

mediated post-transcriptional regulation is exclusively mediated through miRNAs in vivo. 

This study would also provide information regarding sequence or structure specificity for 

TARBP2 binding. A major challenge in this approach would be to standardize a CLIP-seq 

protocol suitable for germ cells, which express high levels of RNA and dsRBPs. So far, 

CLIP-Seq has been standardized for brain tissue or neuronal cells and for human cell lines, 

but not for germ cells.  

4.2.7 Strain dependency of TARBP2 related phenotype 

As discussed earlier, constitutive null allele of Tarbp2 on C57BL/6J was embryonic 

lethal whereas on a B6129S4 background, mice were able to survive up to adulthood. 

Similarly, germ cell specific loss of TARBP2 leads to exhibition of severe phenotype in 

C57BL/6J compared to a milder germ cell related phenotype in the B6129S4 strain. My 

experiment to identify genetic modifiers on mixed background revealed the possible 

existence of multiple modifiers dispersed all over the genome (unpublished data). This raises 
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a possibility that these modifiers could exist in the genomic region coding for miRNAs. 

Using computational approaches, a thorough investigation to identify these loci and careful 

characterizing, including their SNPs, will provide useful insight into the role of strain 

dependent SNPs in miRNA expression and efficiency. Further investigation using diversity 

outbred mice to identify SNPs in miRNA coding regions and in genes encoding miRNA 

biogenesis factors across several strains of house mice would provide a possible model to 

study miRNA-mediated post-transcriptional regulation and possibly a model to evaluate 

RNAi therapeutics for pre-clinical studies.  
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