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The sustainable management of forest landscapes requires an understanding of the functional 

relationships between management practices, changes in landscape conditions, and ecological 

response. This presents a substantial need of spatial information in support of both applied research and 

adaptive management. Satellite remote sensing has the potential to address much of this need, but 

forest conditions and patterns of change remain difficult to synthesize over large areas and long time 

periods. Compounding this problem is error in forest attribute maps and consequent uncertainty in 

subsequent analyses. The research described in this document is directed at these long-standing 

problems.  

Chapter 1 demonstrates a generalizable approach to the characterization of predominant 

patterns of forest landscape change. Within a ~1.5 Mha northwest Maine study area, a time series of 

satellite-derived forest harvest maps (1973-2010) served as the basis grouping landscape units according 

to time series of cumulative harvest area. Different groups reflected different harvest histories, which 

were linked to changes in landscape composition and configuration through time series of selected 

landscape metrics. Time series data resolved differences in landscape change attributable to passage of 

the Maine Forest Practices Act, a major change in forest policy. Our approach should be of value in 

supporting empirical landscape research. 



 

Perhaps the single most important source of uncertainty in the characterization of landscape 

conditions is over- or under-representation of class prevalence caused by prediction bias. Systematic 

error is similarly impactful in maps of continuous forest attributes, where regression dilution or 

attenuation bias causes the overestimation of low values and underestimation of high values. In both 

cases, patterns of error tend to produce more homogeneous characterizations of landscape conditions. 

Chapters 2 and 3 present a machine learning method designed to simultaneously reduce systematic and 

total error in continuous and categorical maps, respectively. By training support vector machines with a 

multi-objective genetic algorithm, attenuation bias was substantially reduced in regression models of 

tree species relative abundance (chapter 2), and prediction bias was effectively removed from 

classification models predicting tree species occurrence and forest disturbance (chapter 3). This 

approach is generalizable to other prediction problems, other regions, or other geospatial disciplines. 
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PREFACE  

Spatial data play important roles in forest research and management. Forest attribute maps 

provide a basis for planning and executing field studies, developing and calibrating ecological models, 

quantifying ecosystem processes or services, and evaluating environmental change. Forest managers 

need as much relevant information as possible on the spatial distribution and condition of forest 

resources within their management areas and in the surrounding ecosystem to set management 

objectives, project changes, and plan management actions. With growing emphasis on the sustainable 

provision of non-timber ecosystem services and on the effects of rapidly changing external drivers (e.g., 

climate, forest pests, market conditions), research and management will increasingly require spatial 

data sources that can provide information on forest conditions at multiple scales, with frequent and 

timely updates, and at reduced cost (Franklin, 2001). Satellite remote sensing has the potential to satisfy 

these information needs. From programs such as Landsat or Sentinel, for example, the routine 

acquisition of satellite imagery supports estimation and mapping of current forest conditions as well as 

regular updates; new images can be readily compared to older images to detect changes in landscape 

conditions using well-established methodologies, some of which were initially developed at the 

University of Maine (e.g., Sader and Winne, 1992; Wilson and Sader, 2002). The ~40-year depth of the 

Landsat image archive in particular facilitates studies of forest landscape dynamics. However, the spatial 

and temporal heterogeneity of forests and forest change are difficult to synthesize over large areas and 

long time periods. New methods are needed to identify patterns of change, associate change with 

driving forces, and quantify the impact of map error and other sources of uncertainty on subsequent 

analyses.  

 The Atlantic Northern Forest of Maine provides a worthy setting for this sort of work. Maine lies 

within a transition zone between the northern boreal forest and the southern temperate deciduous-

dominant forest (Likens and Franklin, 2009), and includes approximately 4 Mha of nearly contiguous, 
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undeveloped forestland across northern and western sections. Tree species diversity is relatively high, 

and the combined impacts of natural disturbance and a long history of timber harvesting includes 

structural diversity at stand and landscape scales. Rapid post-disturbance recovery and frequent cloud 

cover contribute additional technical difficulties to the prediction and monitoring of forest conditions via 

satellite remote sensing. However, the importance of characterizing and quantifying landscape change 

cannot be overstated, as major changes in disturbance impacts and management practices have elicited 

concerns regarding the sustainable provision of forest values. 

The spruce-fir forests of the region are subject to periodic infestations of the eastern spruce 

budworm (Choristoneura fumiferana (Clem.)), a native pest that causes widespread defoliation and 

mortality of balsam fir (Abies balsamea) and spruce (Picea spp.) trees (Irland et al., 1988; Seymour, 

1992). Maine's last outbreak occurred ca. 1972–1988 and stimulated broad-scale salvage harvesting by 

clearcut at rates well above recognized long-term allowable levels (Irland et al., 1988). The legacy of 

salvage clearcutting remains in large continuous tracts of young forest, much of which was converted 

from spruce-fir to deciduous and mixed types following extensive regeneration failures (Seymour, 1992). 

Public concern over the size and prevalence of salvage clearcuts led to the passage of the Maine Forest 

Practices Act (FPA; 12 MRSA §8867-A to §8888) in 1989 and its implementation in 1991. The FPA 

fundamentally changed management practices by placing restrictions and disincentives on clearcutting, 

and marked a transition between two very different disturbance regimes. State records indicate that 

annual harvest area roughly doubled during the 1990s (Maine Forest Service, 2000, 1994) as landowners 

maintained similar extraction rates via partial harvest practices that require a larger footprint to achieve 

the same volume removal. Post-FPA partial harvesting is dominated by the nonselective removal of 

merchantable timber within and adjacent to machine trails, leaving a matrix of unharvested or lightly 

harvested area between trails and high variability in disturbance intensity over small scales. 
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Chapter 1 characterizes predominant patterns of cumulative landscape change caused by both 

pre- and post-FPA harvest practices across a ~1.5 Mha study area in northwest Maine. Landsat imagery 

and forest inventory data were used to develop and validate forest composition maps and a time series 

of forest harvest maps spanning the period 1973-2010. Time series of cumulative harvest area were 

used to segment the study area into groups of landscape units with similar harvest histories. These were 

linked to changes in landscape composition and configuration in order to characterize the evolution of 

landscape conditions in response to forest management practices before and after the abrupt change 

induced by the FPA. In some groups (24% of landscape units), budworm salvage logging caused rapid 

loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage 

clearcuts and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected 

by salvage (56% of landscape units), post-FPA partial harvesting caused loss and subdivision of intact 

mature forest at even greater rates. Patch shape complexity and edge density reached high levels even 

where cumulative harvest area was relatively low. Contemporary practices introduced more numerous 

and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a 

correspondingly large amount of edge. Pre- and post-FPA management regimes impacted different 

areas to different degrees, producing different trajectories of landscape change that should be 

recognized when studying the impact of policy and management practices on forest ecology. Chapter 1 

demonstrates a relatively simple yet novel means of synthesizing predominant patterns of change 

associated with specific landscape units, with the spatial and temporal resolution needed to attribute 

change to different management regimes. 

The forest cover and disturbance maps used in the chapter 1 analysis were produced using well-

established unsupervised classification techniques previously developed and employed to good effect in 

Maine (Jin and Sader, 2005; Sader and Legaard, 2008; Sader and Winne, 1992; Wilson and Sader, 2002). 

Although these techniques remain effective and useful, they are extremely inefficient, requiring 
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extensive visual interpretation and on-screen editing to achieve high accuracy. More importantly, the 

data production and analysis methods used in chapter 1 largely ignored the potential impact of map 

error on landscape pattern. Small quantities of map error can have large impacts on landscape pattern 

metrics used to characterize and quantify landscape change (Langford et al., 2006; Wickham et al., 

1997). Uncertainty in metric values appears to increase exponentially with increasing map error (Shao 

and Wu, 2008), and the effects of different error characteristics likely vary depending on landscape 

characteristics and the specific landscape metrics applied (Li and Wu, 2004; Shao et al., 2001; Wickham 

et al., 1997). Maps of depicting landscape conditions at different times should generally have different 

error characteristics, simply because there is no established methodology to control error characteristics 

during map production. Similarly, when landscape pattern metrics are used to compare the effects of 

markedly different disturbance or management regimes in effect at different times, results will be 

affected to some extent by differences in map error. In the specific case of the chapter 1 analysis, 

change caused by clearcut harvesting was more accurately represented in maps than change caused by 

partial canopy removal, and differences in spatial error patterns presumably contributed to observed 

differences in landscape pattern. 

With respect to the representation of landscape pattern in categorical maps, one of the most 

impactful aspects of map error is the systematic over- or under-representation of class prevalence 

caused by prediction bias (Shao et al., 2003; Shao and Wu, 2008). A classification algorithm is biased 

when omission and commission error rates are imbalanced. This can be caused by any number of 

factors, but for supervised classification algorithms, bias is often a product of training data imbalance 

(He and Garcia, 2009). When training samples from one class substantially outnumber those from 

another, a classification algorithm can achieve higher accuracy by preferentially assigning samples to the 

majority class. Bias is a similarly impactful problem with maps intended to represent continuous 

quantities rather than discrete classes. In this context, regression dilution or attenuation bias is caused 
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by predictor variable uncertainty and leads to the systematic over-estimation of low values and under-

estimation of high values (Rejou-Mechain et al., 2014; Xu et al., 2009). The effects are similar to those of 

a classification bias in that landscapes are often represented as less variable or more homogeneous than 

would otherwise be the case. Strong systematic error can result in the gross misrepresentation of forest 

conditions.  

Chapters 2 and 3 present a machine learning (ML) method that is capable of minimizing both 

total and systematic error in both continuous and categorical maps of forest conditions. Chapter 2 

addresses attenuation bias in models of tree species relative abundance (percent of total aboveground 

live biomass) based on multitemporal Landsat and topoclimatic predictor data. Following extensive 

development, a multi-objective support vector regression (MOSVR) algorithm was used to 

simultaneously minimize both total prediction error and systematic error caused by attenuation bias. 

Applied to 13 tree species in a northwest Maine study area, MOSVR performed well compared to other 

prediction methods including single-objective SVR minimizing total error (SOSVR), Random Forest (RF), 

gradient nearest neighbor (GNN), and Random Forest nearest neighbor (RFNN) algorithms. MOSVR 

produced the least systematic error for all species with total error that was markedly less or comparable 

to that of other methods. Predicted patterns of dominance/codominance matched observations well. 

Although others have presented means of reducing attenuation bias in parametric regression models, 

MOSVR provides an effective nonparametric approach, and should be fully generalizable to other 

remote sensing applications and prediction problems. 

 Chapter 3 presents a multi-objective support vector classification algorithm (MOSVC) that 

simultaneously minimizes classification bias and either omission or commission error. Multi-objective 

optimization is used to produce alternative solutions that express tradeoffs between class accuracy and 

bias under the expectation that different tradeoffs may be more or less beneficial for specific 

applications. Applied to the prediction of tree species occurrence in northwest Maine, MOSVC produced 
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diverse sets of alternative models and maps including solutions with zero bias. In contrast, the 

traditional single-objective approach to model training produced inconsistent and biased outcomes 

because individual training criteria could not adequately control the balance of omission/commission 

error. MOSVC solutions with different levels of bias produced different representations of class 

distributions depending on spatial patterns of omission and commission error. This was made most 

apparent when used to map forest disturbance because omission/commission errors were visible 

through comparison of pre- and post-disturbance imagery. MOSVC produced disturbance maps with 

uniformly high overall accuracy but with different error characteristics demonstrating different impacts 

of omission and commission error on disturbance class configuration. By approaching error reduction as 

a multi-objective optimization problem, MOSVC produces alternative solutions that can be used to meet 

specific application needs or compared to evaluate the sensitivity of application outcomes to map error 

characteristics.  

The algorithms described in chapters 2 and 3 are highly accurate and highly adaptive to different 

data characteristics. They require very little oversight or intervention, and are therefore amenable to 

large-scale application. They are, however, also very computationally demanding. Producing data at high 

volume and low cost will require a computationally efficient software implementation that capitalizes on 

high-performance computing resources. Current work has therefore focused on the development of an 

efficient code base, including new approaches to accelerate the execution of genetic algorithms. 

Efficient front-end and back-end data handling will facilitate high-volume data production from 

advanced land-imaging satellite systems, including Landsat 8 and Sentinel 2. Work is proceeding on user 

interfaces to simplify algorithm execution and map production across large areas, with user control of 

key output map characteristics. The goal is to enable low-cost delivery of products statewide using 

software implementations that will work well in other regions. Future efforts will bring this work full-
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circle, such that new maps are used to better characterize forest conditions and landscape change 

throughout the state.  
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CHAPTER 1 

EVALUATING THE IMPACT OF ABRUPT CHANGES IN FOREST POLICY AND MANAGEMENT PRACTICES 

ON LANDSCAPE DYNAMICS: ANALYSIS OF A LANDSAT IMAGE TIME SERIES IN THE ATLANTIC 

NORTHERN FOREST 

1.1. Abstract 

Sustainable forest management is based on functional relationships between management actions, 

landscape conditions, and forest values. Changes in management practices make it fundamentally more 

difficult to study these relationships because the impacts of current practices are difficult to disentangle 

from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., 

forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a 

severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. 

Following clearcut regulation in 1991, management practices shifted abruptly to near complete 

dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we 

assessed cumulative landscape change caused by these very different management regimes. We 

modeled predominant temporal patterns of harvesting and segmented a large study area into groups of 

landscape units with similar harvest histories. Time series of landscape composition and configuration 

metrics averaged within groups revealed differences in landscape dynamics caused by differences in 

management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision 

of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often 

averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were 

little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and 

subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density 

reached high levels even where cumulative harvest area was relatively low. Contemporary practices 

introduced more numerous and much smaller patches of stand-replacing disturbance (typically 
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averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted 

different areas to different degrees, producing different trajectories of landscape change that should be 

recognized when studying the impact of policy and management practices on forest ecology. 

1.2. Introduction 

 Forest policy and management practices within the U.S. have changed substantially following 

widespread dissatisfaction with management overly focused on the production of wood fiber and game 

species habitat. Over the past several decades, managers of public and private lands have to varying 

degrees incorporated a much wider set of objectives including the protection or provision of amenities, 

biodiversity, and ecosystem services (Kohm and Franklin, 1997; Seymour and Hunter, 1999). Much of 

this change followed from recognition that management practices had undermined the landscape 

conditions needed to support certain forest values. Advances in scientific knowledge, stakeholder 

engagement, and government oversight of public interests have led to changes in public policy and 

private forest practices intended to improve the function of managed forest landscapes (Cubbage and 

Newman, 2006; Kohm and Franklin, 1997; Seymour and Hunter, 1999). There are many, varied 

mechanisms of change. Management has evolved in response to public perception and market 

incentives. More abrupt changes have resulted from legislation and implementation of forest policy by 

government at all levels, from municipal to federal. State governments have been particularly active in 

legislating and enforcing regulatory programs (Cubbage and Newman, 2006; Ellefson et al., 2007). Due 

to the complexity of ecological, economic, and social issues intertwined in the problem of forest 

management, regulatory programs are put into place with incomplete knowledge of future effects.  

The sustainable management of forest landscapes and development of effective forest policy 

requires an understanding of the functional relationships between management practices, changes in 

landscape conditions, and ecological response. Abrupt changes in forest policy or other drivers of 

landscape dynamics make it fundamentally more difficult to evaluate these relationships. Because 
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ecological processes operate over a wide range of temporal scales, responses to landscape change are 

time-dependent. Changes in species presence or abundance are frequently delayed following periods of 

rapid landscape change, and ecological communities take time to equilibrate to new landscape 

dynamics imposed by new management practices (Ewers and Didham, 2006; Jackson and Sax, 2010; 

Schrott et al., 2005; With, 2007). Delayed responses may effectively decouple ecological processes from 

recent patterns of landscape change (With, 2007). The degree to which this occurs will vary depending 

on species life histories and the spatiotemporal dynamics of forest disturbance and recovery (Schrott et 

al., 2005; With, 2007), but in general the ecological effects of forest policy change may emerge over long 

timeframes. This may be particularly true where past management practices imposed landscape 

conditions that persist for long periods. Legacies of past management practices (e.g., forest 

composition, spatial configuration of stand types) persist because they limit management options or 

alter patterns of natural disturbance or succession (James et al., 2007; Sturtevant et al., 2014). 

Unrecognized legacies and lagged responses may confound the attribution of observed ecological 

impacts to specific management practices.  

 Empirical studies of forest loss or fragmentation effects commonly rely on a space-for-time 

substitution (Pickett, 1989), where replicate landscapes or patches are selected based on the current 

amount or configuration of forest (e.g., McGarigal and McComb, 1995; Radford et al., 2005). Although 

the intent is to study a fundamentally dynamic process, replication occurs in space rather than time, and 

landscape disturbance history is treated as an extraneous variable that is not controlled by experimental 

design. Inferences require the assumption that disturbance history acts as a random error term 

(Eberhardt and Thomas, 1991) when in fact it may be confounded with the experimental variables of 

current forest amount or configuration (Schrott et al., 2005). Studies that are intended to reveal impacts 

of landscape change should integrate disturbance history or temporal variability of landscape condition 

into study design (e.g., Price et al., 2013). Similarly, where different management practices have been 
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imposed at different times, knowledge of management history is needed to differentiate the 

consequences of contemporary practices from persistent impacts of past practices. Empirical evidence 

will otherwise be difficult to establish following abrupt changes in management regimes, when empirical 

study is perhaps most needed. 

 Satellite images provide the synoptic views needed to characterize forest conditions and 

landscape change. The ~40-year depth of the Landsat image archive in particular facilitates studies of 

forest landscape dynamics. However, there are relatively few retrospective analyses of landscape 

dynamics following abrupt changes in forest management practices. In the Pacific Northwest region of 

the U.S., Landsat image time series have been used to address the consequences of federal forest policy 

change (Healey et al., 2008; e.g., Kennedy et al., 2012). Landsat-derived forest cover maps and 

disturbance time series have been used to evaluate changes in forest conditions following the collapse 

of socialism in Eastern Europe and the former Soviet Union (e.g., Baumann et al., 2012; Bergen et al., 

2008). In these cases, disturbance rates or measures of landscape change were summarized over time 

periods of interest (i.e., periods before and after policy change or sociopolitical reform) and over study 

areas defined by political boundaries, ecoregions, or image extents. Results provide summaries of 

change in useable forms, but the spatiotemporal dynamics of landscape change are resolved only in so 

far as they are partitioned by predetermined time periods or study areas. Empirical study of ecological 

processes affected by management requires knowledge of how management practices have influenced 

landscape dynamics across a range of ecologically relevant scales, but the spatial and temporal 

heterogeneity of management effects are difficult to synthesize over large areas and long time periods. 

 The Atlantic Northern Forest of the northeastern U.S. encompasses roughly 11 million hectares 

within a transition zone between the northern boreal forest and the southern temperate deciduous-

dominant forest. A substantial portion of this area lies within northern Maine, the largest contiguous 

block of undeveloped forestland in the nation (~4 Mha). Despite a long history of logging and 
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commercial management for fiber production, major changes in management practices within recent 

decades have led to contemporary landscape conditions with little historical precedent. The spruce-fir 

forests of the region are subject to periodic infestations of the eastern spruce budworm (Choristoneura 

fumiferana (Clem.)), a native pest that causes widespread defoliation and mortality of balsam fir (Abies 

balsamea) and spruce (Picea spp.) trees (Irland et al., 1988; Seymour, 1992). Maine's last outbreak 

occurred ca. 1972-1988 and stimulated broad-scale salvage harvesting by clearcut (Irland et al., 1988). 

Public concern over the size of salvage clearcuts led to the passage of the Maine Forest Practices Act 

(FPA; 12 MRSA §8867-A to §8888) in 1989 and its implementation in 1991. The FPA fundamentally 

changed management practices by placing restrictions and disincentives on clearcutting. As a proportion 

of annual harvest area, clearcuts fell from 44% in 1989 to 10% in 1994 (Maine Forest Service, 1994) and 

less than 5% by 2000 (Maine Forest Service, 2000).  

Management practices in Maine have elicited concerns regarding the sustainable provision of 

forest values. During the budworm outbreak, salvage logging rates were well above recognized long-

term allowable levels (Irland et al., 1988). Regeneration failures within salvage clearcuts resulted in the 

conversion of large areas of spruce-fir forest to deciduous and mixed types (Seymour, 1992). Following 

implementation of the FPA, state records indicate that annual harvest area roughly doubled during the 

1990s (Maine Forest Service, 2000, 1994) as landowners maintained similar extraction rates via partial 

harvest practices that require a larger footprint to achieve the same volume removal. The spatial 

dynamics associated with implementation of the FPA have been partially assessed. Analysis of a Landsat-

derived disturbance time series (1988-1999) found that implementation of the FPA coincided with a 

change toward fewer and smaller clearcut patches, and fewer but larger partial harvest patches (Sader 

et al., 2003). A subsequent analysis of Landsat-derived forest cover and disturbance data found that 

harvest patches of the 1980s were larger and more compact than patches of the 1990s, but this study 

did not differentiate clearcuts from partial harvests (Sader et al., 2006). Management practices and 
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harvest rates differ between private forestland owners (Hagan et al., 2005; Jin and Sader, 2006), 

suggesting important differences in post-FPA landscape change. However, rates and patterns of 

landscape change attributable to pre- and post-FPA management regimes have not been sufficiently 

resolved to support a more complete assessment of policy impact on landscape dynamics. 

 The objective of our research was to characterize predominant patterns of cumulative 

landscape change in the Atlantic Forest of northern Maine, and to evaluate how pre- and post-FPA 

management regimes have influenced landscape conditions across space and time. We used Landsat 

imagery and forest inventory data to develop and validate forest composition maps and a time series of 

forest harvest maps (1973-2010). We modeled predominant temporal patterns of harvesting and 

segmented a large study area into groups of landscape units with similar harvest histories. We then 

linked harvest history with changes in landscape composition and configuration in order to characterize 

the evolution of landscape conditions in response to forest management practices before and after 

abrupt change induced by the FPA. Our approach provided an objective synthesis of predominant 

patterns of change associated with specific landscape units, with the spatial and temporal resolution 

needed to attribute change to different management regimes.  

1.3. Methods 

1.3.1. Study Area 

 Our northern Maine, U.S.A. study region (Fig. 1.1) was defined by the overlap of Landsat images 

and includes ~1.5 Mha of forestland. Rural development and agriculture are concentrated in a few small 

areas. Topography is generally flat or rolling with occasional low mountains and an extensive network of 

rivers, lakes, and wetlands. Forest types are typical of the Atlantic Northern Forest and generally occur 

in predictable patterns associated with climatic gradients and soil conditions determined by glacial 

deposition (Seymour, 1995). Northern hardwood species (Acer rubrum, Acer saccharum, Betula 

alleghaniensis, Betula papyrifera, Fagus grandifolia) predominate across lower hilltops and at mid-slope. 
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Spruce-fir species (Abies balsamea, Picea glauca, Picea mariana, Picea rubens) predominate where soil 

or microclimatic conditions exclude the more demanding hardwoods. Mixedwood stands commonly 

occur along ecotones or as a result of successional dynamics following disturbance. Shade-intolerant 

hardwood species (e.g., Populus tremuloides, Betula papyrifera) are commonly found following intense 

disturbance. Periodic defoliation by spruce budworm is the most prominent form of natural disturbance. 

Windthrow is common but generally results in small canopy gaps (Lorimer and White, 2003). Virtually all 

forestland is considered commercially productive (Seymour, 1995) and roughly 90% is private. Public 

lands are interspersed and primarily state-owned. 

 
 
Figure 1.1. Northern Maine, U.S.A. study area with 5 km square sample landscape units 
superimposed. Harvesting trends and patterns of landscape change were calculated for forestland 
assumed available for harvest. Mapped forest composition classes demonstrate the spatial distribution 
of general forest types at the onset of our study period (1975).  State and provincial boundaries 
displayed in the inset map were obtained from the National Atlas of the U.S. (Political Boundaries) and 
the Atlas of Canada (National Frameworks Data, Census Subdivisions and Population Ecumene). 
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1.3.2. Data Production  

 Forest harvest and composition maps were assembled from a time series of Landsat 

Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) 

images acquired during summer leaf-on conditions (Table 1.1). Consecutive images were spaced 1-4 

years apart, as determined by the availability of high quality, predominantly cloud-free imagery. 

Mapping procedures were applied to forested pixels as identified by the 1993 Maine Gap Analysis 

Program (GAP) land cover map. The GAP map represents conditions near the midpoint of our time 

series, and discriminated forest from non-forest with an estimated 100% accuracy within our study area 

(Hepinstall et al., 1999). Not all forestland within our study area is operable or available for harvesting. 

To normalize harvest rates and metrics of landscape change according to the amount of available 

Table 1.1. Landsat images used to map forest harvesting (1973-2010) and forest composition (1975 
and 2004). Images were acquired over Landsat Worldwide Reference System (WRS)-2 path 12, row 28 
(1985-2010) and WRS-1 path 13, row 28 (1973-1982). Unless otherwise indicated, images were obtained 
from the U.S. Geological Survey Earth Resources Observation and Science Center. 
 

Acquisition date 
Landsat 
sensor 

Landsat 
satellite 

 % forestland under 
cloud/shadow 

2010, August 30 TM 5 <0.1 
2007, June 17a TM 5 0.8 
2004, June 10 TM 5 0.8 
2001, May 25 ETM+ 7 < 0.1 
2000, August 26 ETM+ 7 1.6 
1999, June 13 TM 5 < 0.1 
1997, June 23 TM 5 16.0 
1995, July 4 TM 5 5.0 
1993, September 16b TM 5 15.9 
1991, June 7b TM 5 < 0.1 
1988, September 2 TM 5 0.9 
1988, September 2 MSS 5 0.9 
1985, June 22c MSS 5 4.3 
1982, July 30 MSS 3 0.9 
1978, August 11 MSS 2 < 0.1 
1975, August 9 MSS 2 0 
1973, July 23c MSS 1 0.1 

aAreas of cloud cover filled with TM image data acquired on 22 August 2007. 
bAvailable through the Maine GAP Analysis Project. 
cAvailable through the North American Landscape Characterization project. 
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forestland in different landscape units, we masked forest pixels over 823 m (2700 ft) in elevation or 

>40% slope, as determined from the 1 arc-second National Elevation Dataset. Harvesting under these 

conditions has historically been allowed by special permit only, and we consider these areas inoperable 

or otherwise unavailable for harvest. Forested islands were masked as well, with the exception of one 

large island with a history of harvesting. Less than 3% of forestland was masked as unavailable. Refer to 

Appendix A for a detailed description of image processing performed prior to forest harvest and 

composition mapping. 

1.3.2.1. Forest Harvest Mapping, 1973-2010 

 Forest harvest maps were produced using a change detection procedure based on vegetation 

index values calculated from sequential Landsat images. As initially described by Sader and Winne 

(1992), forest canopy disturbance and recovery can be visualized using a three-band color composite 

image incorporating values of the normalized difference vegetation index (NDVI = [near-infrared - red] / 

[near-infrared + red]) acquired on three separate dates. Classification of the three-date NDVI data 

produces a thematic map depicting forest canopy changes (Sader et al., 2003). Other vegetation indices 

may be substituted for the NDVI and the normalized difference moisture index (NDMI = [near-infrared - 

mid-infrared] / [near-infrared + mid-infrared]) has been found particularly effective in discriminating 

partial canopy disturbance using TM/ETM+ data (Jin and Sader, 2005; Wilson and Sader, 2002). Whereas 

the NDVI represents a normalized contrast between near-infrared and red reflectance, the NDMI 

contrasts near-infrared and mid-infrared reflectance. The improved sensitivity of the NDMI to partial 

canopy disturbance is generally attributable to the heightened sensitivity of mid-infrared wavelengths to 

differences in forest canopy structure, leaf area, and biomass (Cohen and Goward, 2004; Jin and Sader, 

2005).  

 We classified three-date NDMI and NDVI composites to produce forest change maps from 

TM/ETM+ and MSS image sequences, respectively. MSS imagery lacks a mid-infrared band required for 
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calculation of the NDMI. This difference, coupled with reduced spatial and radiometric resolution, limits 

the efficacy of MSS imagery for detection of partial canopy disturbance. Disturbances mapped using 

MSS imagery (1973-1988) represent stand-replacing events, predominantly spruce budworm salvage 

clearcuts. Disturbances mapped using TM/ETM+ imagery (1988-2010) represent a wide range of 

intensities, and we differentiated two intensity classes interpreted as stand-replacing and partial canopy 

disturbance. The stand-replacing class was intended to represent harvests in which a new cohort was 

established following removal of a large proportion of the canopy, whether by clearcut as defined by the 

FPA (12 MRSA §8868, Maine Forest Service Rules Chapter 20) or by other harvest types. Mapped 

disturbance events were almost exclusively the result of harvest operations and we therefore refer to 

our data as a time series of forest harvest maps.  

 Harvest maps were produced by unsupervised classification of overlapping three-date NDVI or 

NDMI image sequences (e.g., 1973-1975-1978, 1975-1978-1982, …). Classification of a three-date 

sequence mitigates the impact of cloud cover in the second image provided the first and third give clear 

views. An ISODATA algorithm applied to each three-date composite produced 50 statistical classes that 

were interpreted into forest disturbance, regrowth, and no-change information classes. Stand-replacing 

and partial harvest classes derived from TM/ETM+ imagery were differentiated based on the relative 

magnitude of NDMI change, guided by visual interpretation of Landsat imagery and available aerial 

photography. Confusion between light partial harvests and changes induced by factors such as 

atmospheric effects or interannual variability in forest phenology were resolved through on-screen 

editing (Sader and Legaard, 2008). Individual harvest maps were compiled for each time interval (e.g. 

1973-1975, 1975-1978, …) by combining equivalent harvest classes from overlapping three-date change 

maps. Harvest patches less than 0.81 ha in size were removed, and a 3x3 pixel majority filter was applied 

to consolidate patch boundaries and simplify the patch structure of maps produced from TM/ETM+ 

imagery to more closely match maps produced from the lower resolution MSS imagery.  
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 We produced a time series of maps depicting cumulative harvest impact (1975-2010) by 

overlaying successive harvest maps. For each time series date, a pixel was labeled as regenerating forest 

if preceding intervals included a harvest 1973-1988 or a stand-replacing harvest 1988-2010. A pixel was 

labeled as partially harvested if preceding intervals included only a single partial harvest. When 

preceding intervals included multiple partial harvests, pixels were labeled as regenerating forest, 

reflecting the anticipated ecological and silvicultural effects of multiple entries within the ~20-year 

period over which partial harvests were mapped (1988-2010). For each date of our time series, the 

result depicts the cumulative footprint of harvest operations since 1973.  

1.3.2.2. Forest Type Mapping, 1975 and 2004 

 We mapped forest composition using equivalent unsupervised classification methods applied to 

each of the 1975 MSS and 2004 TM images. Dates were selected on the basis of cloud cover and image 

quality. For the purpose of forest type mapping, small areas of cloud cover in the 2004 image were 

replaced with data from the 2001 ETM+ image. Statistical classes produced from an ISODATA algorithm 

were aggregated to coniferous-dominant (>75% coniferous), deciduous-dominant (>75% deciduous), 

and mixed type classes through visual interpretation of Landsat imagery, with reference to available 

aerial photography and existing land cover maps. In some previously disturbed areas, exposed soils, 

woody debris, or herbaceous vegetation precluded the assignment of forest type and pixels were 

instead assigned to an indeterminate class. Patches less than 0.81 ha in size were removed and a 3x3 

majority filter was applied to each map to consolidate patch boundaries and simplify the 2004 patch 

structure to more closely match the 1975 data.  

 Assignment of ISODATA classes to forest types was subjective and sometimes difficult. A 

mistaken assignment could lead to bias in the representation of forest type extent. If for example pixels 

representing forest with a deciduous component of 70-75% were mistakenly committed to the 

deciduous-dominant class rather than the mixed class, the extent of the deciduous class would be 
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overestimated according to the class definition of >75% deciduous. We used validation data obtained 

from field plots (described below and in Appendix B) to iteratively refine the aggregation and labeling of 

ISODATA classes to ensure that the 1975 and 2004 maps provide unbiased representations of forest 

type classes at the same thresholds of forest composition. For each map, we identified coniferous- and 

deciduous-dominant class thresholds for which omission and commission errors were balanced. To do 

so, we varied coniferous and deciduous threshold values from 50-95% in increments of 5%, assigned 

reference class labels based on threshold values, and calculated omission and commission error rates. 

We iteratively refined the maps and reevaluated error rates until a reasonable balance was achieved at 

the same threshold for both maps, facilitating meaningful comparisons of class extent between maps. 

1.3.3. Data Validation 

 The U.S. Forest Service Forest Inventory and Analysis (FIA) Program provides quality-assured 

measurements of forest attributes from a national network of field plots adhering to a systematic 

sampling design (McRoberts et al., 2005). We made extensive use of FIA data as a statistically rigorous 

basis for map validation. However, use of field plot data for map validation is subject to uncertainty 

arising primarily from mismatches in location and scale between field plots and map pixels. Validation 

using FIA data should be considered an assessment of agreement with an accepted and widely utilized 

source of information on forest conditions, rather than an assessment of accuracy against ground truth. 

Here we provide an overview of our validation procedures; details are provided in Appendix B.  

1.3.3.1. Harvest Time Series Validation 

 FIA estimates of forest age have been used to validate Landsat-derived disturbance time series 

under the assumption that trees sampled for age estimation germinated at the time of disturbance 

(Thomas et al., 2011). However, age is an imprecise estimate of the timing of past disturbance due to 

estimation uncertainty and variation in the timing of germination with respect to canopy removal. A 

new cohort may have been established from a seed source several years following disturbance or as 



13 

advance regeneration prior to disturbance. Alternatively, visual interpretation of Landsat imagery is a 

credible means of dating disturbance events (Cohen et al., 2010; Sader et al., 2003; Sader and Legaard, 

2008). Unfortunately, visual discrimination of harvest intensity at the pixel scale is highly subjective. We 

developed a validation procedure based on visual interpretation of Landsat imagery over FIA plot 

locations. Image interpretation was used to date harvest events; FIA plot data were used to discriminate 

stand-replacing and partial harvests.  

 In Maine, the contemporary FIA inventory design was established in 1999, with 20% of plots 

surveyed annually during sequential 5-year cycles. Although data are available from plots measured 

during earlier inventories, coordinate locations are known for only a fraction of those plots. We 

therefore used data collected during contemporary inventory cycles to discriminate past harvest 

intensity. A harvest event identified by image interpretation was labeled stand-replacing provided FIA 

age dated stand origin to 1970 or later (allowing for advance regeneration prior to 1973) and field crews 

labeled the stand as either sapling or poletimber. However, for plots harvested after 1999, recorded 

stand age was an unreliable indicator of stand-replacing disturbance because age estimates frequently 

corresponded to a few residual stems rather than a newly established cohort. In these cases, intensity 

classes were discriminated using plot measurements made during consecutive 5-year inventory cycles; a 

harvest was labeled stand-replacing if plot basal area (cross-sectional area of stems measured at 1.37 m) 

was reduced by >70%.  

 Our validation sample of 509 plots was insufficient to produce reasonably precise accuracy 

estimates for individual time series intervals. We therefore aggregated intervals into six validation 

classes: 1973-1988 stand-replacing harvest, 1988-1999 stand-replacing harvest, 1988-1999 partial 

harvest, 1999-2010 stand-replacing harvest, 1999-2010 partial harvest, and intact mature forest (no 

history of harvest, 1973-2010). Map and reference validation class labels were assigned in a manner 

consistent with the construction of cumulative harvest maps. Where multiple entries occurred, labels 
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were assigned based on the date of first stand-replacing disturbance. Where multiple partial harvests 

occurred, labels of either 1988-1999 or 1999-2010 stand-replacing were assigned based on the date of 

second entry. Map and reference labels were compiled into an error matrix. Overall accuracy, user 

accuracy (the complement of class commission error), producer accuracy (the complement of class 

omission error), and corresponding standard error estimates were calculated by poststratification (Card, 

1982). Additionally, we evaluated the accuracy of our 2010 cumulative harvest map by further 

aggregating validation classes into regenerating, partially harvested, and intact mature forest. 

1.3.3.2. Forest Type Validation 

 The 1975 and 2004 forest type maps were validated using FIA plot measurements of coniferous 

and deciduous live tree basal area collected during 1980-1982 and 1999-2003 inventories, respectively. 

Differences in dates between maps and field inventories were resolved by excluding samples where 

intervening harvests occurred. For 2004 map validation, we excluded plots mapped as harvested from 

1999-2004; for 1975, we excluded plots mapped as harvested from 1975-1982. A sample of 445 plots 

remained for validation of the 2004 map; only 70 plots were available for validation of the 1975 map. As 

previously described, we identified coniferous-dominant and deciduous-dominant class thresholds for 

which errors were best balanced and mapped class extents least biased. Following refinements made to 

improve consistency between maps, an error matrix was compiled for each map based on selected 

threshold values. Estimates of overall, user, and producer accuracy were calculated by poststratification 

(Card, 1982). 

1.3.4. Data Analysis 

 To quantify harvest rates through time, identify trends, and associate trends with changes in 

landscape conditions, we tessellated our study area into landscape units using a 5 km square grid (Fig. 

1.1). A 5 km grid cell size was a somewhat arbitrary compromise: small enough to resolve spatial 

variations in harvest history and consequent landscape change, but large enough to calculate 
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meaningful trends in harvest rates and landscape pattern metrics. We excluded grid cells with <50% 

available forest or <5% of available forest harvested from 1975-2010 (17 cells). A sample of 608 grid cells 

remained.  

1.3.4.1. Empirical Orthogonal Function (EOF) Analysis of Cumulative Harvest Time Series 

 An EOF analysis identifies a sequence of uncorrelated patterns or modes of variability that 

characterize variation within a two-dimensional data set (Preisendorfer, 1988). EOF analysis is 

commonly employed in meteorology and oceanography, where conventional applications decompose 

time series of geospatial data into characteristic spatial patterns whose contributions to observed 

variation change through time. EOF outcomes can just as readily be interpreted as characteristic 

temporal patterns whose contributions to observed variation differ between locations (e.g., Small and 

Elvidge, 2013). We performed an EOF analysis to identify characteristic temporal patterns of variation in 

cumulative harvest area sampled across our 5 km grid. Cumulative harvest time series were arranged as 

rows within a matrix X (M = 608 rows; N = 15 columns). EOF analysis decomposed X into matrices A and 

B such that X = A·B (A is MxN; B is NxN). The rows of B represented a sequence of mutually uncorrelated 

patterns of temporal variability referred to as empirical orthogonal functions (EOFs). The columns of A 

represented a complementary set of spatial patterns referred to as amplitude functions. The observed 

cumulative harvest time series were thereby represented as linear combinations of temporal EOFs, 

whose contributions were given by the spatial amplitude functions. EOF analysis is mathematically 

equivalent to principal component analysis (PCA). The temporal EOFs are computed as the eigenvectors 

of the dispersion matrix XTX and are equivalent to the loading vectors or principal components of a PCA. 

The spatial amplitudes correspond to the PCA scores obtained by projecting the time series of X onto 

the subspace spanned by the EOFs.  

 A traditional EOF analysis or PCA is sensitive to extreme observations and outliers, which can 

distort the outcome such that dominant modes of variability represent contrasts between anomalous 
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and regular observations rather than patterns of variability within regular observations (Hubert and 

Engelen, 2004). We performed our EOF analysis using a variant of the robust algorithm ROBPCA that is 

also suitable for skewed distributions (Hubert et al., 2009; Verboven and Hubert, 2010). Cumulative 

harvest area distributions were significantly skewed for 9 of the 15 time series dates (medcouple, p < 

0.05; (Brys et al., 2004)). The ROBPCA algorithm is based on robust estimation of the covariance matrix 

from a specified proportion of samples with minimal outlyingness. The proportion of samples used may 

range from 0.5 to 1, and the value selected represents a compromise between the robustness and 

efficiency of the estimate. We used a sample proportion of 0.9 following exploratory analysis which 

suggested that relatively few outliers were present. Outcomes were not sensitive to the exact value 

used. Prior to analysis, we centered and scaled the cumulative harvest time series by removing the 

median and dividing by the median absolute deviation (computed across all cells, for each observation 

date). Scaling improved the fit of the EOF model for intervals near the beginning and end of the study 

period. 

 Paired EOFs and amplitude functions comprise orthogonal modes of variability, ordered by the 

amount of total variance explained. We modeled cumulative harvest time series as linear combinations 

of dominant EOFs, selected based on the proportion of overall variance explained by successive modes. 

By including only dominant modes, modeled time series represent statistically coherent variability in 

harvesting patterns that occurred over large portions of the study area. The ROBPCA algorithm provides 

a measure of orthogonal distance between samples and the subspace defined by dominant EOF modes. 

Unusually large orthogonal distances indicate outlying samples that do not conform to characteristic 

patterns defined by dominant modes. We identified 12 orthogonal outliers using the ROBPCA nominal 

cutoff value (Hubert et al., 2009) and excluded them from subsequent analyses.  
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1.3.4.2. Predominant Patterns of Harvesting and Landscape Change 

 To classify predominant temporal patterns of harvesting from the EOF analysis and to associate 

those patterns with groups of grid cells, we performed an agglomerative hierarchical clustering (Everitt 

et al., 2011) of modeled time series. Using Ward's minimum variance method (Ward, 1963),  we 

produced a dendrogram and identified clusters of grid cells with similar harvest history. The mean of the 

modeled time series from each cluster demonstrated a predominant pattern of harvesting through time, 

representative of a group of landscape units. 

 Landscape composition metrics were calculated for grid cells and averaged within groups to 

evaluate changes associated with predominant harvesting trends. Within our time series of cumulative 

harvest maps, available forestland was classified as either regenerating, partially harvested, or intact 

mature forest (no harvesting, 1973-2010). The EOF and cluster analyses produced time series of 

cumulative harvest area, the reciprocal of intact mature forest area. We also produced time series of 

cumulative partial harvest and regenerating forest area to evaluate changes in harvest intensity 

associated with predominant harvesting trends. Available forestland was summarized by 1975 forest 

type to associate harvest history and landscape change with initial landscape composition. To evaluate 

composition change as a legacy of harvest practices, we quantified forest type change between 1975 

and 2004 for areas harvested before 2004. Composition change in unharvested forestland was not 

evaluated as part of this research. 

 Early successional and intact late successional forest patches are landscape elements of 

particular interest, given the expansion of partial harvest practices in the 1990s. Cumulative changes in 

the patch configuration of regenerating and intact mature forest were evaluated by calculating time 

series of landscape metrics. We selected a small number of metrics of general relevance to forest 

ecology that quantify primary aspects of class configuration thought to have been affected by changes in 

management practices. Metrics were calculated using Fragstats version 4.2 (McGarigal et al., 2012). 
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Area-weighted mean patch size (Area_AM; ha) and area-weighted mean fractal dimension (Frac_AM; 

unitless) were calculated as measures of average patch area and shape complexity. Patch density (PD; 

patches/100 ha) was calculated as a simple measure of patch subdivision. The prevalence of edge 

conditions was quantified by edge density (ED; m/ha). An eight-neighbor rule was used for patch 

delineation. Non-forest and unavailable forest classes were treated as external to the landscape in order 

to normalize metric values across grid cells containing different amounts of managed forestland. Grid 

cell borders and non-forest edges were not included in the calculation of ED. Unavailable forest edges 

were included in the calculation of regeneration ED but not intact mature ED (i.e., unavailable forest was 

treated as intact mature forest for the purpose of calculating ED).  

1.4. Results 

1.4.1. Data Validation 

 Harvest validation classes were mapped with an overall accuracy of 88% (Table 1.2). User and 

producer accuracies for the intact mature class were high (>95%) and well balanced, indicating an 

accurate depiction of overall harvest footprint. Stand-replacing harvests of 1973-1988 were mapped 

with high accuracy (89-91%) compared to subsequent periods in which confusion between stand-

replacing and partial harvests reduced accuracies for both classes (75-91%). Individual class accuracies 

were reasonably well balanced save for 1988-1999 stand-replacing harvests, which may have been 

systematically under-represented. However, the criteria used to establish reference class labels differed 

between periods, and differences in class accuracy estimates may partly reflect inconsistency in 

discriminating harvest intensity from available validation data. The 2010 cumulative harvest map 

depicted regenerating and partially harvested forest with >86% and >75% accuracy, respectively (Table 

1.3). Overall accuracy associated with regenerating, partially harvested, and intact mature forest classes 

approached 90%. 
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Table 1.2. Error matrix and accuracy estimates for validation classes aggregated from the 1973-2010 forest harvest time series. Standard error 
estimates are provided in parentheses.  
 

Mapped 
validation 
class 

Reference validation class 

1973-1988 
stand-replacing 

1988-1999 
stand-replacing 

1988-1999 
partial harvest 

1999-2010 
stand-replacing 

1999-2010 
partial harvest 

Intact 
mature1 

Total User 
accuracy 

1973-1988  
stand-replacing 

73 1 2 0 0 4 80 91.3% 
(3.2%) 

1988-1999 stand-
replacing 

1 49 3 1 0 0 54 90.7% 
(4.0%) 

1988-1999 
partial harvest 

3 7 36 0 0 2 48 75.0% 
(6.3%) 

1999-2010 stand-
replacing 

1 1 1 30 7 0 40 75.0% 
(6.9%) 

1999-2010 
partial harvest 

1 0 0 7 33 3 44 75.0% 
(6.6%) 

Intact mature1 4 2 2 0 3 232 243 95.5% 
(1.3%) 

Total 83 60 44 38 43 241 509  
Producer 

Accuracy2 
88.6% (2.7%) 77.2% (4.4%) 83.9% (5.0%) 81.6% (5.0%) 76.4% (5.1%) 95.3% 

(1.5%) 
  

Overall Accuracy2 87.9% (1.4%)        
aNo harvesting, 1973-2010. 
bEstimated by poststratification using known pixel counts. 
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Table 1.3. Error matrix and accuracy estimates for the 2010 cumulative harvest map. Standard error 
estimates are provided in parentheses. 
 

Mapped forest 
class 

Reference forest class 

 Regenerating Partially 
harvested 

Intact mature1 Total User accuracy 

Regenerating 157 13 4 174 90.2% (2.3%) 
Partially harvested 18 69 5 92 75.0% (4.5%) 
Intact mature1 6 5 232 243 95.5% (1.3%) 

Total 181 87 241 509  
Producer accuracy2 86.6% (2.0%) 81.3% (3.6%) 95.4% (1.5%)   
Overall accuracy2 89.3% (1.3%)     

aNo harvesting, 1973-2010. 
bEstimated by poststratification using known pixel count 
 
 Forest type classes for 1975 and 2004 were mapped with overall accuracies of 76% and 68%, 

respectively (Tables 1.4 and 1.5). Individual class accuracy estimates were similarly lower for 2004 than 

for 1975, presumably due to more heterogeneous landscape conditions. Off-diagonal entries in error 

matrices indicated confusion between the mixed class and both coniferous- and deciduous-dominant 

classes. There was little confusion between coniferous and deciduous classes. Error matrices and 

accuracy estimates were derived using class definitions for which omission and commission errors were 

best balanced and class accuracies acceptably high for both maps. Using coniferous-dominant and 

deciduous-dominant class thresholds of >80% and >70% basal area, respectively, errors were very well 

balanced for 2004 forest type classes (Table 1.5). User and producer accuracies for the 1975 map (Table 

1.4) suggested under-representation of coniferous forest area and over-representation of mixed forest 

under these same class definitions, but the relatively small validation sample and correspondingly large 

standard error estimates made this inconclusive. Available validation data suggested that user and 

producer accuracies were best balanced under these class definitions.  
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Table 1.4. Error matrix and accuracy estimates for the 1975 forest type map. Standard error estimates 
are provided in parentheses.  
 

1975 mapped  
forest type 

Reference forest type 

Coniferousa Mixed Deciduousb Total User accuracy 

Coniferousa 15 3 0 18 83.3% (9.0%) 
Mixed 6 22 4 32 68.8% (8.3%) 
Deciduousb 1 3 16 20 80.0% (9.2%) 

Total 22 28 20 70  
Producer accuracyc 74.0% (6.6%) 76.5% (6.4%) 78.9% (8.5%)   
Overall accuracyc 76.2% (5.0%)     

a>80% coniferous basal area. 
b>70% deciduous basal area. 
cEstimated by poststratification using known pixel counts. 
 
Table 1.5. Error matrix and accuracy estimates for the 2004 forest type map. Standard error estimates 
are provided in parentheses.  
 

2004 mapped forest 
type 

Reference forest type 

Coniferousa Mixed Deciduousb Total User accuracy 

Coniferousa 107 45 1 153 69.9% (3.7%) 
Mixed 43 122 36 201 60.7% (3.5%) 
Deciduousb 6 31 118 155 76.1% (3.4%) 

Total 156 198 155 509  
Producer accuracyc 70.7% (2.9%) 59.9% (2.7%) 76.5% (2.9%)   
Overall accuracyc 68.3% (2.0%)     

a>80% coniferous basal area. 
b>70% deciduous basal area. 
cEstimated by poststratification using known pixel counts. 
 
1.4.2. EOF Analysis of Cumulative Harvest Time Series 

 By 2010, 61% of available forestland was mapped as harvested, and 40% regenerated by stand-

replacing or multiple partial harvests. Averaged across all grid cells, harvest rates increased ca. 1985 and 

then remained quite constant at about 2% per year (median cumulative harvest time series; Fig. 1.2). 

The EOF analysis decomposed cumulative harvest time series into characteristic patterns of deviation 

from the median series. We retained 3 dominant EOF modes, which collectively explained 92% of total 

variance of the centered and standardized time series (62%, 23%, and 7% of total variance). This 3-mode 

EOF model provided an adequate representation of temporal trends for the great majority of individual 

time series (>90% of variance captured at 78% of grid cells; <70% of variance captured at 2% of cells). 
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 Time series of mapped and modeled cumulative harvest area at two sample locations (Fig. 1.2) 

illustrate the suitability of the EOF model for representing trends and smoothing the irregularities 

resulting from more erratic year-to-year changes in harvest rates. For the first of these sample 

landscapes (Landscape A; Fig. 1.2), harvest area increased rapidly through the first half of the study 

period (compared to the median time series), and then changed very little during the second half. The 

Figure 1.2. Forest harvest trends and landscape change for two sample grid cells. Mapped and 
modeled cumulative harvest time series for two arbitrary sample grid cells, expressed as a proportion of 
available forestland. The median cumulative harvest time series (n = 608) is shown for reference. Images 
of landscape conditions include cumulative harvest impact superimposed over the 1975 forest type map 
for a subset of time series dates, and the 2004 forest type map. Comparison of the 1975 and 2004 forest 
type data indicates areas where intervening harvests induced changes in forest type. 
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extensive harvesting of the 1970s and 1980s was predominantly stand-replacing and directed at 

coniferous forest. By 1985, more than half of available forestland was regenerated. As indicated by the 

2004 forest type map, much of that area was converted from coniferous-dominant to mixed. Within the 

second sample landscape (Landscape B; Fig. 1.2), harvesting consisted of both stand-replacing and 

partial canopy removals primarily during the second half of the study period within deciduous and mixed 

forest. Little harvesting occurred prior to 1985. Harvest rates were relatively modest between 1985 and 

2004 and were somewhat elevated thereafter. 

1.4.3. Harvesting Trends 

 From hierarchical clustering of modeled cumulative harvest time series, we identified six well-

defined groups (Fig. 1.3a) ranging in size from 10% to 22% of grid cells. The mean time series from each 

group represented a predominant pattern of harvesting through time (Fig. 1.3b). For groups 1-2 (24% of 

grid cells), harvest rates exceeded median rates during the first half of the study period, particularly for 

group 1, and then dropped during the second half. The group 3 time series closely resembled the 

median time series. Groups 4-6 (56% of grid cells) shared the characteristics of relatively little harvesting 

early on followed by elevated rates during later years. Group 5 was notable in that harvest rates were 

exceptionally low through the 1980s but very high through the 1990s and 2000s.  

 Time series of cumulative regenerating and partially harvested forest area (Fig. 1.4) differ 

substantially between groups. Note that partial harvests were not mapped prior to 1988. Groups 1-2 

were notable for rapid, heavy harvesting during the first half of the study period, followed by moderated 

rates of both stand-replacing and partial harvesting through the second half. Groups 4 and 5 were most 

strongly differentiated from other groups by high rates of partial harvesting, although high harvest rates 

during the 1990s and 2000s were sustained by both stand-replacing and partial harvests. Group 6 stand-

replacing and partial harvest rates were low or moderate throughout the study period.  
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Figure 1.3. Predominant patterns of harvesting. (a) Dendrogram produced by agglomerative 
hierarchical clustering of modeled cumulative harvest time series. Six groups of landscape units were 
identified for subsequent analysis (sample sizes provided in parentheses). (b) Mean cumulative harvest 
area time series for each of the groups identified in (a), expressed as a proportion of available 
forestland. Vertical bars represent the interquartile range. Bars are provided at a subset of dates and are 
offset horizontally to improve visual clarity. (c) Spatial distribution of groups identified in (a). Hatching 
indicates outlying samples excluded from further analysis.  
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1.4.4. Patterns of Landscape Change 

 Time series of landscape metrics quantified the cumulative effects of harvesting on forest 

configuration. Time series of average patch size for intact mature forest (Fig. 1.5a) reflected trends in 

cumulative harvest area (Fig. 1.3b); periods of rapid patch size reduction coincided with periods of rapid 

harvesting. Patch density (Fig. 1.5b) increased through time, most rapidly in groups 4 and 5 during the 

1990s and 2000s. For groups 1-5, the amount of edge between intact mature forest and harvested 

forest (Fig. 1.5c) increased and then peaked as harvest area approached and then surpassed 50% of 

available forestland. The increase in edge density was most rapid in groups 4 and 5 during the 1990s. 

Trajectories of average patch shape complexity (Fig. 1.5d) were similar in general character to those of 

edge density, but with peak values occurring somewhat earlier and with little change in groups 1-2 over 

the course of our study period. 

 

 

 
 
Figure 1.4. Time series of regenerating and partially harvested forest area. Cumulative time series of 
(a) regenerating forest area and (b) partially harvested forest area, expressed as a proportion of 
available forestland and averaged within groups identified by cluster analysis of modeled cumulative 
harvest time series. Vertical bars represent the interquartile range. Bars are provided at a subset of 
dates and are offset horizontally to improve visual clarity. 
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 Large differences between groups in time series of regenerating forest area (Fig. 1.4a) were only 

partly reflected in configuration metrics. Changes in average regenerating forest patch size (Fig. 1.6a) 

were greatest for group 1, increasing from less than 200 ha in 1975 to more than 800 ha by 1988. In 

contrast, average patch size remained low for groups 3-6. Group 5 values remained well below 200 ha 

despite relatively rapid increases in regenerating forest area during the 2000s (Fig. 1.4a). Regenerating 

patch density (Fig. 1.6b) generally increased throughout the study period, but this trend was less 

pronounced for group 2 and not apparent for group 1. The largest values of patch density were attained 

 

Figure 1.5. Time series of intact mature forest configuration metrics. Time series of cumulative change 
in (a) area-weighted mean patch size, (b) patch density, (c) edge density, and (d) area-weighted mean 
fractal dimension for intact mature forest, averaged within groups identified by cluster analysis of 
modeled cumulative harvest time series. Vertical bars represent the interquartile range. Bars are 
provided at a subset of dates and are offset horizontally to improve visual clarity. 
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by group 5 following rapid increase during the 1990s and 2000s. Despite low rates of stand-replacing 

disturbance in group 6 (Fig. 1.4a), patch density increased steadily and was quite high by 2010. The 

amount of regenerating forest edge (Fig. 1.6c) was greatest for groups 1-2 until the 2000s when group 4 

attained comparable levels following rapid gains beginning in the late 1980s. Group 5 edge density 

increased rapidly during the 2000s. Average patch shape complexity of regenerating forest (Fig. 1.6d) 

increased during the first half of the study period, generally leveled somewhat during the 1990s, and 

then increased once more during the 2000s, most markedly for groups 4 and 5. Throughout the study 

period, regenerating patch shape complexity was greatest for groups 1-2. 

 
 
Figure 1.6. Time series of regenerating forest configuration metrics. Time series of cumulative change 
in (a) area-weighted mean patch size, (b) patch density, (c) edge density, and (d) area-weighted mean 
fractal dimension for regenerating forest, averaged within groups identified by cluster analysis of 
modeled cumulative harvest time series. Vertical bars represent the interquartile range. Bars are 
provided at a subset of dates and are offset horizontally to improve visual clarity. 
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 The average initial composition of sample landscapes differed between groups, although there 

was a large amount of variability between landscapes in any single group (Fig. 1.7a). In 1975, groups 1-2 

contained more coniferous-dominant forest and less deciduous-dominant and mixed forest than other 

groups. Forest type classes were least balanced for group 1, with coniferous forest comprising 51% and 

deciduous forest 12% of available forestland. Conversely, group 5 contained more deciduous (33%) and 

less coniferous forest (25%) than other groups. The composition of groups 4 and 6 were very similar. The 

amount of forest of indeterminate type in 1975 was greatest for groups 1-2, a result of harvesting during 

the early 1970s.  

 Between 1975 and 2004, harvesting and subsequent forest recovery resulted in substantial 

changes in landscape composition (Fig. 1.7b). On average all groups lost coniferous-dominant 

forestland. For groups 1-4, the coniferous forest lost amounted to about 20% of harvested forestland. 

For groups 1-3, much of this area transitioned to mixed or deciduous forest types, and the amount of 

forest classified as indeterminate remained little changed (recovery from early disturbance was 

 
 
Figure 1.7. Initial landscape composition and changes in composition, 1975-2004. (a) Proportion of 
available forestland classified by 1975 forest type. (b) Change in forest type between 1975 and 2004, 
expressed as a proportion of forestland harvested prior to 2004 (negative values indicate loss; positive 
values indicate gain). Values were calculated for individual sample grid cells and then averaged within 
groups identified by cluster analysis of modeled cumulative harvest time series. Error bars represent the 
interquartile range. 



29 

balanced by disturbance in later years). Groups 4 and 5 lost both coniferous and mixed forest. This was 

partially balanced by an increase in deciduous forest for group 4, but a substantial proportion of total 

harvest area (~20%) was mapped as indeterminate due to high harvest rates during the 1990s and early 

2000s. 

1.5. Discussion 

 During the spruce budworm outbreak of ca. 1972-1988, there were no legislative definitions or 

standards in place to regulate the practice of clearcutting. As the outbreak progressed, landowners 

engaged in extensive pre-salvage and salvage logging operations that typically took the form of large 

commercial clearcuts, much larger than would have been planned in the absence of the outbreak (Irland 

et al., 1988). The FPA was designed to regulate the execution of clearcuts larger than 14 ha (revised to 8 

ha in 1999; 12 MRSA §8869), and its implementation in 1991 marked a fundamental and abrupt change 

in forest policy and management.  

Averaged across all grid cells, cumulative harvest area increased more or less linearly (Fig. 1.2). 

From the cluster analysis, group 3 reflected this trend but contained only 20% of grid cells (Fig. 1.3). The 

cumulative harvest time series of the other five groups differed substantially from the area-wide 

average. These groups of grid cells comprised segments of the study area with different management 

histories. Groups 1-2 (24% of grid cells) were differentiated from other groups by elevated rates of 

stand-replacing harvests during the budworm outbreak (Fig. 1.4). Harvesting continued at moderated 

rates throughout the post-FPA period, then set against landscape conditions created by salvage logging. 

In contrast, harvesting within groups 4-6 (56% of grid cells) predominantly occurred during the post-FPA 

period. A large increase in group 5 harvest rates coincided with the end of the budworm outbreak and 

enactment of the FPA (Fig. 1.3b). Group 4 harvest rates increased during the late 1980s, but most 

harvest area accrued post-FPA with particularly high partial harvest rates during the 1990s. Similarly, 
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although group 6 harvest rates remained low to moderate post-FPA, most harvest area accrued during 

that time.  

 Implementation of the FPA had the intended effect of reducing the size of clearcuts (Sader et al., 

2003), and more generally the size of stand-replacing patches. Although our stand-replacing harvest 

class did not adhere to the FPA clearcut definition (12 MRSA §8868), average stand-replacing patch size 

calculated from individual harvest maps (rather than cumulative harvest maps) dropped dramatically 

between 1988 and 1991 for groups of grid cells affected by pre-FPA logging (Fig. 1.8a). Average patch 

size of stand-replacing harvests varied dramatically between cells prior to 1991, often exceeding 100 ha 

for groups 1 and 2. By comparison, post-FPA stand-replacing patch sizes were uniformly low for all grid 

cells, with group averages below 15 ha. In contrast, overall harvest patch sizes (stand-replacing and 

partial harvest classes combined) remained relatively high post-FPA, with group 5 averages approaching 

the pre-FPA values of groups 1-2 (Fig. 1.8b). The FPA placed a strong disincentive on clearcutting. State 

records indicate that clearcutting fell from 44% of annual harvest area in 1989 to <5% by 2000, and 

 
 
Figure 1.8. Changes in average harvest patch size through time. Area-weighted mean patch size for (a) 
the stand-replacing harvest class and (b) the combined stand-replacing and partial harvest class, 
calculated at each time series interval. Values were averaged within groups identified by cluster analysis 
of modeled cumulative harvest time series. Vertical bars represent the interquartile range. Bars are 
provided at a subset of dates and are offset horizontally to improve visual clarity. 
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annual harvest area roughly doubled during that time (Maine Forest Service, 2000, 1994). Within typical 

post-FPA partial harvest blocks, timber is removed within and adjacent to machine trails, leaving a 

matrix of unharvested or lightly harvested area between trails. Partial harvests are composed of 

typically small areas of complete or nearly complete canopy removal intermixed with areas of light or 

negligible canopy disturbance.  

 Predominant patterns of cumulative landscape change created by pre- and post-FPA 

management regimes were revealed by time series of intact mature and regenerating forest metrics. 

Groups 1-2 most clearly represented salvage logging impact. During the 1970s and 1980s, salvage 

caused a rapid decrease in the average patch size of intact mature forest (Fig. 1.5a) and a rapid increase 

in the average patch size of regenerating forest (particularly for group 1; Fig. 1.6a). Intact mature forest 

patch density increased during this period (Fig. 1.5b), but regenerating patch density changed relatively 

little (Fig. 1.6b). Edge density between intact mature forest and regenerating forest increased (Figs. 1.5c 

and 1.6c), but the average patch shape complexity of intact mature forest changed little, and the patch 

shape complexity of regenerating forest was comparable (Figs. 1.5d and 1.6d). These trends were 

consistent with the subdivision of mature forest by salvage clearcut of large contiguous tracts of spruce-

fir (e.g., Landsape A, Fig. 1.2). Subsequent harvesting during the post-FPA period resulted in continued 

subdivision of intact mature forest at rates similar to the salvage period (Fig. 1.5b). Otherwise, changes 

in configuration metrics of both intact mature forest and regenerating forest were considerably 

reduced. The primary effect of the post-FPA regime in grid cells with a prominent salvage logging legacy 

appears to have been the production of more small patches of intact mature forest, with little influence 

on other metrics.  

Groups 4-6 represented segments of our study area that were little affected by salvage logging 

but heavily impacted by post-FPA harvesting. Similar to salvage in groups 1-2, over time there was 

substantial loss and subdivision of intact mature forest. In groups 4 and 5, average patch size decreased 
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and patch density increased at rates that actually exceeded those of groups 1 and 2 pre-FPA (Figs. 1.5a 

and 1.5b). Edge density and patch shape complexity increased sharply during the 1990s as well (Figs. 

1.5c and 1.5d). In group 6, cumulative harvest area was lower (Fig. 1.3b) and the loss and subdivision of 

intact mature forest correspondingly reduced (Figs. 1.5a and 1.5b), yet edge density and patch shape 

complexity increased to levels approaching or exceeding all other groups (Figs. 1.5c and 1.5d). Post-FPA 

partial harvest practices resulted in complex patches of intact mature forest and high edge densities 

presumably due to residual inclusions of mature forest within harvest blocks. In sharp contrast to 

salvage logging in groups 1-2, average regenerating forest patch sizes in groups 5 and 6 remained very 

low (Fig. 1.6a). Group 5 regenerating patch density increased rapidly in the 1990s and 2000s, surpassing 

all other groups by 2004 (Fig. 1.6b). Group 5 edge density increased rapidly during the 2000s, ultimately 

exceeding the values of groups 1-2 at the end of the salvage period (Fig. 1.6c) despite considerably less 

regenerating forest area (Fig. 1.4a). Group 6 regenerating forest patch size, edge density, and shape 

complexity remained relatively low, but patch density steadily increased throughout the study period 

(Fig. 1.6). Patterns within these groups indicate that post-FPA stand-replacing harvest patches were 

more numerous, much smaller, and simpler in shape compared to the pre-FPA salvage logging period 

(e.g., Landscape B, Fig. 1.2). 

 Not surprisingly, groups that were most heavily impacted by budworm salvage logging were also 

those with the greatest amount of coniferous-dominant forestland in 1975 (groups 1-2, Fig. 1.7a). 

Groups 4-6 contained less coniferous forestland and we attribute the contrast in management history 

and landscape change between groups 1-2 and groups 4-6 in large part to differences in initial landscape 

composition and vulnerability to the budworm outbreak. Initial composition set different segments of 

the study area on fundamentally different trajectories of landscape change. However, groups 4 and 6 

differed very little in the relative abundance of 1975 forest types (Fig. 1.7a), and comparisons between 

them suggest the influence of some other factor that affected post-FPA harvest patterns. Private 
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ownership diversified greatly during the 1990s as industrial forest products companies restructured and 

sold their lands to investment entities, nonprofit conservation groups, high net-worth individuals, and 

other owner types (Hagan et al., 2005; Jin and Sader, 2006). We hypothesize that post-FPA differences in 

harvest rates, intensities, and trajectories of landscape change may have been influenced by differences 

in management incentives between different landowners (e.g., fiber production vs. resource 

conservation). Previous research documented differences in harvest rates between categories of 

ownership and ownership change (2006), but the influence of owner-to-owner variability on patterns of 

landscape change remains unclear.  

 The relative importance of individual landowner behavior, public forest policy, and management 

or disturbance legacies on contemporary trajectories of landscape change is an important question with 

implications extending to regional forest planning, management, and conservation. Because multiple 

forest values are often maintained only when actions are integrated over large areas with diverse forest 

conditions, it is important to understand the relative influence of factors that act to either enhance or 

reduce landscape-scale heterogeneity. Within northern Maine, salvage logging introduced persistent 

heterogeneity at the scale of 5 km landscape units due to large clearcut operations. However, another 

important aspect of salvage legacy is loss of coniferous-dominant forest area (Fig. 1.7b) and consequent 

homogenization of forest composition due to clearcut operations that failed to adequately regenerate 

spruce and fir (Seymour, 1992). Management under the FPA further homogenized landscape structure 

by effectively eliminating large clearcuts and incentivizing the expansion of partial harvesting. Under the 

post-FPA management regime, differences between landowners in management incentives, objectives, 

or strategies may provide an important source of landscape heterogeneity. Given the small amount of 

publicly owned forestland within the state of Maine (approximately 7% (McCaskill et al., 2011)), the 

sustainable management of Maine's forest resources will require a clearer understanding of landscape 
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dynamics and management outcomes under various forms of private ownership, as well as closer 

consideration of the ways in which public policy may constrain outcomes.  

 The changes in landscape composition and configuration we have quantified imply potentially 

important impacts on forest ecology and wildlife. Salvage clearcuts created large blocks of early 

successional forest habitat, benefitting the federally threatened Canada lynx (Lynx canadensis) (Simons, 

2009). In Maine, the primary prey of lynx, snowshoe hare (Lepus americanus), are found at highest 

density within coniferous and mixed regenerating forest ~15-35 years post-harvest (Fuller and Harrison, 

2005; Homyack et al., 2007; Robinson, 2006). The current amount and configuration of this high-quality 

lynx foraging habitat is largely a product of pre-FPA salvage logging. Post-FPA harvest practices produce 

smaller and more numerous regenerating forest patches, promoting the subdivision of high-quality lynx 

foraging habitat (Simons, 2009). Additionally, the large annual footprint of post-FPA partial harvesting 

and accelerated loss and subdivision of intact mature forest suggest rapid loss of suitable habitat or 

reduction of habitat quality for species that require features associated with mid- and late-successional 

forest, such as the American marten (Martes americana) (Fuller and Harrison, 2005). For species that 

are either dependent upon landscape legacies or potentially impacted by rapid habitat modification, 

responses to contemporary management may be difficult to establish without knowledge of landscape 

history and disturbance trends. Our analysis demonstrated one approach by which landscape 

disturbance history can be defined and evaluated using a time series of Landsat-derived forest 

disturbance maps. 



35 

CHAPTER 2 

MULTI-OBJECTIVE SUPPORT VECTOR REGRESSION REDUCES SYSTEMATIC ERROR IN MODERATE 

RESOLUTION MAPS OF TREE SPECIES ABUNDANCE 

2.1. Abstract 

When forest conditions are mapped from empirical models, uncertainty in remotely sensed predictor 

variables can cause the systematic overestimation of low values, underestimation of high values, and 

suppression of variability. This regression dilution or attenuation bias is a well-recognized problem in 

remote sensing applications, with few practical solutions. Attenuation is of particular concern for 

applications that are responsive to prediction patterns at the high end of observed data ranges, where 

systematic error is typically greatest. We addressed attenuation bias in models of tree species relative 

abundance (percent of total aboveground live biomass) based on multitemporal Landsat and 

topoclimatic predictor data. We developed a multi-objective support vector regression (MOSVR) 

algorithm that simultaneously minimizes total prediction error and systematic error caused by 

attenuation bias. Applied to 13 tree species in the Atlantic Northern Forest of the northeastern U.S., 

MOSVR performed well compared to other prediction methods including single-objective SVR 

minimizing total error (SOSVR), Random Forest (RF), gradient nearest neighbor (GNN), and Random 

Forest nearest neighbor (RFNN) algorithms. SOSVR and RF yielded the lowest total prediction error but 

produced the greatest systematic error, consistent with strong attenuation bias. Underestimation at 

high relative abundance caused strong deviations between predicted patterns of species 

dominance/codominance and those observed at field plots. In contrast, GNN and RFNN produced 

dominance/codominance patterns that deviated little from observed patterns, but predicted species 

relative abundance with lower accuracy and substantial systematic error. MOSVR produced the least 

systematic error for all species with total error often comparable to SOSVR or RF. Predicted patterns of 

dominance/codominance matched observations well, though not quite as well as GNN or RFNN. MOSVR 
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provides an effective nonparametric approach to the reduction of systematic prediction error, and 

should be fully generalizable to other remote sensing applications and prediction problems. 

2.2. Introduction 

As forest ecosystems are pushed beyond historic conditions by anthropogenic disturbance and 

environmental change, there is increasing need to forecast future conditions as a basis for policymaking 

and management planning. Ecological forecasting requires quantitative understanding of ecological 

processes, and how existing conditions are likely to affect processes moving forward. Detailed 

measurements and observations are needed to develop this understanding. Field data and specifically 

forest inventory measurements provide great detail at high accuracy, but are collected from a sample of 

small plots. Forecasting at broader scales relevant to forest policy and management requires 

extrapolation of plot measurements across large contiguous areas.  

Forest conditions are typically predicted across landscapes and regions from empirical 

relationships between field measurements and remote sensing data. Uncertainty in remotely sensed 

predictor variables can cause severely detrimental patterns of prediction error. At moderate spatial 

resolutions, a prominent and impactful source of uncertainty in predictor variables may be physical 

differences in measurements between field plots and image pixels (Xu et al., 2009). Whereas the ideal 

remotely sensed predictor data would represent the same ground area as reference plot data, scale and 

location mismatches introduce uncertainty in predictor values. Forest inventory measurements are 

typically obtained over plots that are a fraction of the size of moderate resolution image pixels. The 

USDA Forest Service Forest Inventory and Analysis (FIA) program, for example, provides measurements 

from a national network of field plots composed of a cluster of four subplots, each <0.02 ha (McRoberts 

et al., 2010). Subplots span an area roughly equivalent to a 3x3 neighborhood of 30 m Landsat pixels. 

Subplot area however, equates to only 8% of that pixel neighborhood. In the presence of sub-pixel 

variation of forest conditions, average conditions across a pixel neighborhood likely will not correspond 
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to those measured at FIA subplots (Rejou-Mechain et al., 2014; Xu et al., 2009). Image georeferencing or 

registration error coupled with GPS error in plot coordinates further interferes with the physical 

correspondence of pixels and plots (Xu et al. 2009). Potentially compounding these problems are 

differences in timing between image acquisitions and plot measurements and additional sources of 

predictor uncertainty associated with remote sensing platforms, instrumentation, viewing conditions, 

and data handling. 

Without correcting for uncertainty in predictor variables, regression algorithms generally assign 

variation in the predictors to variation in the response given the predictors, causing what is known as 

regression dilution or attenuation bias (Bartlett et al., 2009; Frost and Thompson, 2000). The strength of 

the relationship between predictors and response is underestimated, resulting in a characteristic 

pattern of prediction error where low values tend to be overestimated, high values tend to be 

underestimated, and the variability of predictions relative to reference data is suppressed. Although 

attenuation bias is a long-recognized problem in remote sensing (Curran and Hay, 1986), recent studies 

have emphasized a general lack of appreciation of its impacts, and a lack of suitable options for their 

correction. Rejou-Mechain et al. (2014) emphasized the importance of attenuation bias in the 

estimation of aboveground biomass by regression against field plot measurements. They asserted that 

attenuation bias was largely ignored in remote sensing applications, and demonstrated that established 

statistical approaches to reducing bias may be inadequate. Xu et al. (2009) asserted that attenuation 

bias is a pervasive problem in remote sensing of forest attributes, and suggested that no analytical 

method was capable of eliminating this bias. After analyzing causes using simple error models, they 

suggested that field data be collected over a spatial support similar to the size of pixels or pixel 

neighborhoods used for prediction. Yet they also demonstrated that location mismatches can cause 

severe attenuation regardless. Robinson et al. (2013) recognized strong attenuation bias when 

estimating aboveground biomass from FIA plot data and airborne L-band radar, and suggested that FIA 
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plots may not provide suitable reference observations. However, FIA or similar inventory data are 

commonly used for model training, often resulting in patterns of error consistent with attenuation bias 

(e.g., Blackard et al., 2008; Frescino et al., 2001; Ohmann et al., 2014; Ohmann and Gregory, 2002; 

Powell et al., 2010; Riemann et al., 2010). Attenuation is a potential problem for applications that are 

specifically dependent upon or influenced by patterns of prediction at high or low values, and outcomes 

may be affected in ways that are difficult to identify or correct.  

Our interest in attenuation bias stemmed from a specific need to map tree species distributions 

for initialization of the LANDIS-II forest landscape model (FLM) (Gustafson et al., 2000; Mladenoff, 2004; 

Scheller et al., 2007). FLMs are complex process models that simulate the spatiotemporal dynamics of 

forest ecosystems (Xi et al., 2009). FLMs operate over a raster representation of forest conditions, 

typically at moderate resolutions (30-250 m). They are therefore well suited to forecasting ecosystem 

dynamics based on conditions mapped by remote sensing, and are increasingly useful in a predictive 

capacity for strategic decision support (Gustafson, 2013). Within LANDIS-II, grid cells are populated by 

cohorts of trees defined by species and age. Processes including establishment, growth, competition, 

and mortality are tracked for each cohort in each cell, and cells are linked by the spatial processes of 

seed dispersal and disturbance (Scheller et al., 2007). To simulate dynamics stemming from existing 

forest conditions, LANDIS-II applications require detailed map data for model initialization. However, 

application across large areas (millions of hectares) generally requires simplification of cohort structure 

to reduce computational requirements. We adopted a LANDIS-II initialization strategy that defined 

cohort structure based on the relative abundance of the three most abundant species in a given cell. 

This strategy required accurate predictions of species relative abundance and dominance/codominance 

from moderate resolution imagery and geospatial data. FIA measurements were our sole source of 

reference data.   
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 A potentially favorable approach to producing the species distribution data needed for LANDIS-II 

initialization is nearest neighbor imputation, where response data is assigned to a pixel by averaging 

reference observations from a set of k similar pixel locations (Dijak, 2013; Duveneck et al., 2015; Scheller 

et al., 2008). Similarity is determined by spectral or environmental covariates. Nearest neighbor 

methods are advantageous in that they can be used to populate pixels with an entire suite of 

observations obtained at reference plot locations. In case of k = 1, observations from individual plots are 

imputed to pixels, retaining the plot-level covariance structure between variables and ensuring 

ecological realism. However, nearest neighbor methods cannot extrapolate beyond the range of 

observed data, and for k = 1 imputed values (and combinations of values) are strictly limited to those 

observed. Regression methods that model species distributions individually may achieve greater 

accuracy for individual species, particularly if reference data are limited. On the other hand, combining 

multiple species models subject to strong attenuation bias may compound error in predictions of 

codominance. 

In the context of species distribution modeling, little attention appears to have been paid to the 

specific problem of estimating species codominance, though impacts of prediction bias have been 

considered for co-occurrence. In this case, stacked predictions from a set of individual species models 

tend to overestimate species co-occurrence or richness, and this has been linked to attenuation bias in 

models of species probability of occurrence (Calabrese et al., 2014). More generally, a number of 

approaches have been advanced to reduce attenuation bias in parametric species distribution models, 

using error-in-variables (Foster et al., 2012) or Bayesian methods (Denham et al., 2011; McInerny and 

Purves, 2011). Here we present an approach based on nonparametric machine learning models, 

specifically support vector machines (SVMs). SVMs induce relationships between remote sensing data 

and field measurements without pre-specification of a form for the modeled relationship. Predictions 

based on these relationships are often more accurate than those based on parametric statistical models 



40 

because relationships between variables are often too complex or too little understood to pre-specify an 

appropriate parametric model form. SVMs were originally developed for binary classification (Vapnik, 

1995) but have been widely applied to regression problems (Mountrakis et al., 2011; Salcedo-Sanz et al., 

2014).   

Use of SVMs requires the specification of several free parameters that determine model fit, and 

optionally the selection of a subset of predictor variables. SVMs are sensitive to parameter settings, 

which adds complexity to the model selection process because adequate performance cannot be 

assured under any pre-specified or default values (Brereton and Lloyd, 2010). Our approach exploits the 

complexity of SVM model selection to obtain a set of solutions with different levels of prediction error 

and attenuation bias. Because attenuation arises from the minimization of error in the presence of 

predictor uncertainty, regression model training presents a trade-off between total prediction error and 

the systematic component of error caused by attenuation bias. Total and systematic error can be 

simultaneously minimized as partially conflicting objectives using multi-objective optimization methods 

(Jin, 2006; Konak et al., 2006). Multi-objective model training produces a set of solutions with different 

trade-offs between objectives - for example, an increase in systematic error associated with a reduction 

of total error. Our goal was to obtain solutions with reduced systematic error at acceptable levels of 

total error. 

We present a support vector regression method based on model training by a multi-objective 

genetic algorithm (GA), and evaluate its use in predicting tree species relative abundance and 

codominance from multitemporal Landsat imagery and topoclimatic surfaces. We include a detailed 

algorithm description, and compare predictions of species relative abundance and codominance with 

those obtained from other modeling approaches including Random Forests and nearest neighbor 

methods. Finally, we discuss the merits of multi-objective model training for this specific application and 

for the reduction of attenuation bias more generally. 
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2.3. Methods  

2.3.1. Study Area 

 The Atlantic Northern Forest of the northeastern U.S. occupies a transition zone between the 

northern boreal forest and the southern temperate deciduous-dominant forest (Likens and Franklin, 

2009), and includes approximately 4 Mha of nearly contiguous, undeveloped forestland across northern 

and western Maine. Our 1.9 Mha study region (Fig. 2.1) was defined by the overlap of Landsat 

Worldwide Reference System path 12, row 28 and the political boundary between northwestern Maine 

and Quebec, Canada. Topography is generally flat or rolling with occasional low mountains and an 

extensive network of rivers, lakes, and wetlands. Tree species diversity is relatively high as the northern 

limit of southern species overlaps with the southern limit of northern species (Nightingale et al., 2008). 

Forest type distributions are associated with climatic gradients, topo-edaphic conditions, and 

disturbance history (Seymour, 1995). Northern hardwood species (A. saccharum, Betula alleghaniensis, 

Fagus grandifolia) predominate across lower hilltops and at mid-slope. Spruce-fir species (Abies 

balsamea, Picea rubens, P. mariana) predominate where soil or microclimatic conditions exclude the 

more demanding hardwoods. Mixedwood stands commonly occur along ecotones or as a result of 

 
 
Figure 2.1. Study area. Northern Maine, U.S.A. study area encompassing 1.9 Mha of forestland. State 
and provincial boundaries obtained from the National Atlas of the U.S. (Political Boundaries) and the 
Atlas of Canada (National Frameworks Data, Census Subdivisions and Population Ecumene). 
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succession following disturbance. Shade-intolerant hardwood species (Betula papyrifera, Populus spp.) 

are commonly found following intense disturbance.  

2.3.2. Reference and Predictor Data 

Predictive models of species relative abundance are based on reference data provided by the 

USDA Forest Service FIA Program. The contemporary network of field plots adheres to an equal 

probability sampling design, with plots randomly located within 2428 ha hexagonal tiles (McRoberts et 

al., 2005). The FIA program maintains the confidentiality of true plot locations to protect the privacy of 

landowners and to preserve plot integrity (Smith, 2002). True locations were made available for use 

through a collaborative agreement with the USFS Northern Research Station FIA Program. Tree 

measurement data were used to calculate species relative abundance as a proportion of estimated live 

aboveground biomass (stems >2.54 cm diameter, measured at 1.37 m; DRYBIOT variable, FIADB v3.0). 

Since 1999, 20% of plots within Maine have been surveyed annually during 5-year inventory cycles 

(McRoberts et al., 2005). 

Our primary source of spatial predictor data was Landsat TM and ETM+ imagery. We selected 

images form the early 2000s to maximize the availability of cloud-free imagery prior to the failure of the 

ETM+ scan line corrector in May 2003 and to support a LANDIS-II simulation start date of 2010. We 

targeted images acquired at different times throughout the growing season (late April through early 

October) to exploit species-specific phenological patterns. Frequent and extensive cloud cover dictated 

the use of images acquired over multiple years, and we ultimately selected eight relatively cloud- and 

snow-free images spanning a roughly 5-year observation period (2001-2006) matching a FIA inventory 

cycle (Table 2.1). Images were obtained from the U.S. Geological Survey Earth Resources Observation 

and Science Center and the Multi-Resolution Land Characteristics Consortium at 30 m resolution with 

standard terrain correction applied. Clouds and cloud shadows were masked using a semi-automated 

procedure developed in-house. Errors were corrected by on-screen digitization. Bands 1-5 and 7 (visible 
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and reflective infrared) were extracted for further processing as spatial covariates. Visible snow cover in 

early-season imagery was masked by unsupervised classification using an ISODATA algorithm and visual 

interpretation of snow-covered classes. Images were converted to top-of-atmosphere reflectance and 

then corrected for topographic illumination effects using the SCS+C algorithm (Soenen et al., 2005), with 

slope and aspect calculated from the 1 arc-second (30 m) National Elevation Dataset (NED).  

Forest canopy change during the 5-year observation period dissociated image characteristics 

from field measurements at affected plot locations. We therefore masked locations of apparent canopy 

cover change using available leaf-on images acquired in 2001, 2004, and 2007 (Table 2.1). The 

iteratively-reweighted multivariate alteration detection transformation (Canty and Nielsen, 2008) was 

applied to 2001-2004 and 2004-2007 image pairs to estimate a probability of spectral change during 

each interval. Intervals were combined by selecting the maximum probability of change, and a threshold 

Table 2.1. Landsat images used for predictive modeling of tree species relative abundance. Images 
were acquired over Landsat Worldwide Reference System-2 path 12, row 28. Images were obtained 
from the U.S. Geological Survey Earth Resources Observation and Science Center unless indicated 
otherwise. 
 

Acquisition date 
Landsat 
sensor 

Landsat 
satellite 

% forest under 
cloud/shadow  

% forest under 
snow 

Species abundance:     
 April 29, 2006 TM 5 - 1.0 
 May 12, 2005 TM 5 1.7 0.8 
 May 25, 2001 ETM+ 7 1.2 <0.1 
 June 10, 2004 TM 5 0.4 - 
 July 20, 20011 TM 5 0.9 - 
 Sept. 14, 2004 TM 5 0.3 - 
 Sept. 30, 2001 ETM+ 7 - - 
 Oct. 6, 2006 TM 5 3.0 - 
     
Canopy change:2     
 July 20, 20011 TM 5 0.9 - 
 June 10, 2004 TM 5 0.4 - 
 June 19, 2007 TM 5 9.0 - 

1Available from the Multi-Resolution Land Characteristics consortium. 
2Images used to mask spectral change resulting from disturbance and regrowth over the observation 
period used for prediction of species relative abundance. Cloud-contaminated data in the June 19, 2007 
image were replaced with data from a Landsat 5 image acquired on Aug. 22, 2007. 
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was selected to identify 20% of forest pixels as change pixels. Threshold selection was arbitrary, but 

visual inspection of the resulting 2001-2007 change mask indicated close correspondence with canopy 

disturbance and visible regrowth in previously disturbed stands. 

 Additional spatial covariates included climate and terrain attributes thought to be relevant to 

tree establishment or growth. Terrain data included 10 morphometry, 8 lighting/visibility, and 11 

hydrology variables (Table 2.2) calculated from the 1 arc-second (30 m) NED and the National 

Hydrography Dataset (NHD) using the System for Automated Geoscientific Analyses software, version 

2.1.4 (Conrad et al., 2015). The NED was lightly smoothed with a Gaussian filter to reduce the effects of 

random error and systematic artifacts (circular filter element, radius = 90 m, σ = 1.5). Terrain slope, 

aspect, and curvature were calculated from a second-order polynomial fit (Zevenbergen and Thorne, 

1987). Direct insolation was calculated at mid-month, April-September, by assuming a uniform 65% 

atmospheric transmittance, a value that produced insolation estimates in good agreement with a 

previously published regional climate model (Ollinger et al., 1995). Hydrology variables including 

catchment area, flow path length, and distance to stream channel were calculated using a bidimensional 

flow routing algorithm (Quinn et al., 1991) after filling sinks in the NED (Wang and Liu, 2006). Synthetic 

stream channel networks were derived from the catchment area raster after masking and dilating NHD 

water bodies using a 5x5 filter element. The dilated water body mask reduced the tendency for channels 

to initiate near the edges of water bodies, where the flow routing algorithm produced large estimates of 

flow accumulation. Climate data were obtained from the USDA Forest Service Rocky Mountain Research 

Station, Moscow Forestry Sciences Laboratory, and included 17 variables (Table 2.2) derived from 

monthly temperature and precipitation surfaces interpolated from weather station data for the climate 

normal period of 1961-1990 (Rehfeldt, 2006). Climate data were available at approximately 1 km spatial 

resolution. 
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Table 2.2. Terrain and climate variables used to model and map tree species relative abundance. 
Terrain variables were calculated using the System for Automated Geoscientific Analyses (SAGA) 
software (Conrad et al., 2015) with default settings unless otherwise specified. Climate variables were 
obtained directly from the USDA Forest Service Rocky Mountain Research Station, Moscow Forestry 
Sciences Laboratory. 
 

Terrain morphometry (10 variables) 

 Elevation   

 
Slope Local terrain slope, from fit of 

second-order polynomial 
 

 
Aspect Local terrain aspect, from fit of 

second-order polynomial 
cos(aspect - 45⁰) + 1  
(Beers et al., 1966) 

 
Curvature Local terrain curvature, from fit of 

second-order polynomial 
Tangential, profile, and plan 
curvature 

 

Topographic 
position index 

Difference between elevation and 
mean elevation of circular 
neighborhood (Guisan et al., 1999) 
 

150 m, 300 m, 1000 m, 2000 m 
neighborhood radii 

Lighting/visibility (8 variables) 

 
Visible sky Proportion of hemisphere 

unobstructed by terrain (Häntzschel 
et al., 2005) 

10,000 m search radius 

 
Sky view factor Ratio of diffuse irradiance to that of 

an unobstructed horizontal surface 
(Häntzschel et al., 2005) 

10,000 m search radius 

 

Direct insolation Potential incoming solar radiation single day estimate at mid-month, 
April-September;  
65% atmospheric transmittance 
 

Hydrology (11 variables) 

 Catchment area Upslope area or flow accumulation log10 transformed 

 
Catchment height Difference between elevation and 

mean elevation of upslope pixels  
 

 Catchment slope Mean slope of upslope pixels  

 
Catchment aspect Mean aspect of upslope pixels cos(aspect - 45°) + 1 

(Beers et al., 1966) 

 
Flow path length Mean distance of flow from upslope 

pixels 
 

 

Distance to stream 
channel  

Shortest distance (or distance 
component) to synthetic stream 
channel network calculated by flow 
routing algorithm 

overland distance and horizontal, 
vertical distance components;  
stream networks from 10 ha and 50 
ha flow initiation thresholds 
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Table 2.2 continued 

Climate (17 variables) 

d100 Julian date on which the sum of degree-days >5°C reaches 100 
dd0 Degree-days <0°C (from mean monthly temperatures) 
dd5 Degree-days >5°C (from mean monthly temperatures) 
fday Julian date of the first autumn freeze 
ffp Length of the frost-free period (days) 
gsdd5 Degree-days >5°C accumulated over the frost-free period 
gsp Growing season precipitation (April-September) 
map Mean annual precipitation 
mat_tenths Mean annual temperature 
mmax_tenths Mean maximum temperature of warmest month 
mmindd0 Degree-days <0°C (from mean minimum monthly temperatures) 
mmin_tenths Mean minimum temperature of coldest month 
mtcm_tenths Mean temperature of coldest month 
mtwm_tenths Mean temperature of warmest month 
sday Julian date of last spring freeze 
smrpb Summer precipitation balance (July+Aug.+Sept. / April+May+June) 
smrsprpb Summer/spring precipitation balance (July+Aug. / April+May) 

 

 

Covariate values were extracted at forested FIA plots. Landsat and terrain data were compiled 

by averaging values from forest pixels within 3x3 neighborhoods surrounding plot centers; climate 

predictor data were extracted as 1 km pixel values. Forest pixels were differentiated from non-forest 

using the 1993 Maine Gap Analysis Program (GAP) land cover map, augmented with the agricultural 

classes of the 2001 National Land Cover Database (NLCD). The 1993 GAP map differentiated forest from 

non-forest with an estimated 100% accuracy in our study area (Hepinstall et al., 1999). Incorporation of 

the 2001 NLCD agricultural classes accounted for a small amount of land cover change predating our 

2001-2006 observation period. We excluded reference locations with missing data due to forest cover 

change, cloud/shadow cover, or snow cover. SVMs are generally incapable of working with incomplete 

predictor data and for the purposes of algorithm development and evaluation, we elected to exclude 

samples with missing data rather than incorporate an additional algorithm for imputing missing data. 

Remaining plot locations yielded a training/validation data set consisting of 349 samples.  
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2.3.3. Background 

2.3.3.1. Support Vector Regression (SVR) 

Following Vapnik (1998, 1995), development of the SVR algorithm is based on estimation of a 

linear regression function  

(1)  𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 

where 𝑤, 𝑥𝜖ℝ𝑑. The regression estimate is obtained by minimizing 

(2)  
1

2
‖𝑤‖ +

1

𝑛
∑ 𝐿𝜖(𝑓(𝑥𝑖), 𝑦𝑖)𝑛

𝑖=1  

where the Euclidean norm of the weight vector w gives the flatness of the regression function (a 

geometric representation of model complexity) and Lϵ is the so-called ϵ-insensitive loss function: 

(3)  𝐿𝜖(𝑓(𝑥𝑖), 𝑦𝑖) = {
0, 𝑖𝑓 |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜖

|𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Lϵ defines a margin of width ϵ bounding the regression function, with nonzero loss applied only to 

training samples lying outside that margin. Minimization of Eq. (2) is equivalent to the minimization of 

(4)  
1

2
‖𝑤‖ + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜖 + 𝜉𝑖

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗

𝜖, 𝜉𝑖, 𝜉𝑖
∗ ≥ 0

 

where ξi and ξi
* are nonzero slack variables that quantify the deviation of the observed values above or 

below the margin and the constant C specifies a trade-off between the minimization of flatness (model 

complexity) and minimization of prediction error for a given value of ϵ. The training samples lying 

outside the margin are referred to as support vectors (SVs). They alone determine the regression 

function estimate 𝑓(𝑥). A smaller margin width ϵ generally corresponds to a larger number of SVs and a 

more complex solution that may fit the training data well but may not generalize to new data. A unique 

solution to the constrained minimization problem of Eq. (4) is found through the introduction of 
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Lagrange multipliers αi to derive the dual formulation, followed by the use of standard quadratic 

programming techniques to obtain the optimal weight vector  

(5)  𝑤0 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑛
𝑖=1  

and solution 

(6)  𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)〈𝑥, 𝑥𝑖〉 + 𝑏𝑛

𝑖=1  

The SVs are the training samples with nonzero αi. 

 A nonlinear representation is obtained by projecting the training data into a high dimensional 

feature space via a mapping function Φ(x): 

(7)  𝑥𝜖ℝ𝑛 → 𝛷(𝑥) =  [𝜙1(𝑥), 𝜙2(𝑥), … , 𝜙𝑛(𝑥)]𝑇𝜖ℝ𝑓 

A linear function is approximated in this new feature space, resulting in a solution that is potentially 

highly nonlinear when expressed in the original variable space. Rather than define the mapping directly, 

SVMs rely on an implicit definition of Φ(x) provided by a kernel function defined as 

(8)  𝐾(𝑥, 𝑥𝑖) = 〈𝛷(𝑥), 𝛷(𝑥𝑖)〉 

Using the kernel function K, the similarities between samples given by inner products in the high 

dimensional feature space are computed directly in the original variable space, providing the solution  

(9)  𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥, 𝑥𝑖) + 𝑏𝑛

𝑖=1  

K must satisfy particular criteria and in practice users typically specify a function from one of a few 

families. Each requires the specification of one or more free parameters. A popular choice is the 

Gaussian radial basis function (RBF) of width γ: 

(10)  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (
−‖𝑥𝑖−𝑥𝑗‖

2

2𝛾2 ) 

Narrower kernels correspond to more complex solutions when expressed in the original variable space. 

The RBF kernel typically performs well due to several computational and practical advantages, including 

the need to specify only a single free parameter (Brereton and Lloyd, 2010; Salcedo-Sanz et al., 2014).  
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 The parameters ϵ, C, and γ collectively determine the complexity of the regression function and 

its ability to generalize to new data. Optimal values are problem-specific, varying with the available 

training data and set of predictor variables. There is often little basis for their selection apart from 

testing a very large number of possible combinations against validation data. SVR parameterization is 

therefore equivalent to a search for an optimal combination of values from a multidimensional search 

space. The complexity of the problem is further increased if the search is expanded to include the 

selection of a subset of predictor variables. As with other statistical or machine learning methods, 

variable selection reduces computational complexity and can facilitate interpretation of modeled 

relationships. Of greater significance to our application, variable selection can alter predictive 

performance, perhaps reducing systematic error. Similar benefits may follow from the selection of a 

subset of available training data (Blum and Langley, 1997). All aspects of model specification are ideally 

performed simultaneously, and several classes of heuristic optimization or search algorithms are 

suitable, including ant colony optimization (e.g., Huang, 2009; Samadzadegan et al., 2012), particle 

swarm optimization (e.g., Li and Tan, 2010; Lin et al., 2008), and genetic algorithms (e.g., Bazi and 

Melgani, 2006; Friedrichs and Igel, 2005; Huang and Wang, 2006). 

2.3.3.2. Genetic Algorithms 

GAs are population-based optimization algorithms founded on the analogy of evolution by 

natural selection. A population of possible solutions is subjected to a selection pressure, leading to the 

evolution of traits associated with improved outcomes (Holland, 1975; Zäpfel et al., 2010). A GA 

optimization of SVR parameters ϵ, C, and γ treats each parameter as a gene and a combination of 

parameter values as a genotype of an individual solution. Observed characteristics of a trained SVR 

model constitute the phenotype of an individual solution, and these could include various measures of 

regression error. A GA designed to minimize a specific error metric (e.g., RMSE) applies a selection 

pressure to the population of solutions by favoring the perpetuation of genes that are associated with 
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lower metric values. Over successive generations the population evolves to include models with 

progressively lower error.  

 A GA creates a new generation of solutions by recombining properties of existing solutions 

(Zäpfel et al., 2010). A certain proportion of individuals are selected as parents, with probability of 

selection determined by a specific fitness metric. A recombination operation is applied to pairs of parent 

solutions to generate members of the new generation. Recombination ensures inheritance of genetic 

information from fit individuals, while introducing novelty to the next generation. The iterative 

recombination and replacement of solutions will generally lead to a loss of population diversity and a 

less comprehensive search for solutions (Zäpfel et al., 2010). Random mutations of genes are interjected 

at each generation to promote diversity and encourage a more expansive search. Evolution proceeds 

until a specified criterion is met, for example, convergence of population traits such that additional 

iterations result in little further improvement, or execution of a specified number of generations. Upon 

termination the typical GA returns the individual with maximum fitness as the optimal solution. By 

combining a guided search with a certain level of randomization, GAs are capable of obtaining near-

optimal solutions from a large and complex search space (Goldberg, 1989). 

GAs have been applied to a variety of SVM optimization problems, including parameter 

selection for both classification and regression (e.g., Friedrichs and Igel, 2005; Lorena and De Carvalho, 

2008; Üstün et al., 2005; Wu et al., 2009), variable selection (e.g., Li et al., 2011), and simultaneous 

parameter and variable selection (e.g., Bazi and Melgani, 2006; Huang and Wang, 2006). The 

predominant approach is to identify a single best solution according to a single model performance 

objective. However, GAs are very well suited to multi-objective optimization. As a population-based 

algorithm, they explore different portions of the search space simultaneously and from a single run they 

can provide a large and diverse set of solutions expressing trade-offs between objectives (Konak et al., 

2006). Ghoggali et al. (2009) applied a multi-objective GA to a pair of semi-supervised image 
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classification problems, and demonstrated that the simultaneous minimization of SVM classification 

error and number of SVs (as a measure of model complexity) produced better results than the 

minimization of either criterion alone. Suttorp and Igel (2006) described the use of a multi-objective GA 

to train SVMs for pedestrian detection from infrared images obtained by driver assistance systems. 

Control of classifier performance was attained through the simultaneous minimization of omission error, 

commission error, and number of SVs. Pasolli et al. (2011) selected parameter values for SVR models to 

predict soil moisture from synthetic aperture radar imagery using a multi-objective GA designed to 

optimize RMSE, R2, and the slope of the relationship between predicted and observed values. Here we 

apply a similar approach to the prediction of tree species abundance. 

2.3.4. Multi-objective SVR (MOSVR) Algorithm Description 

We implemented a multi-objective SVR (MOSVR) algorithm that includes parameter selection, 

variable selection, and a form of training sample selection. Variable and sample selection are primarily 

employed as a basis for diversifying SVR models, supporting the evolution of models with a wide range 

of error characteristics. Our approach to sample selection is to specify a subset of reference samples as 

eligible for exclusion from model training. All reference samples are used for model validation within a 

k-fold cross-validation (CV) procedure. Use of a GA requires the expression of individual models in the 

form of a genotype subject to selection, genetic recombination, and mutation. Each SVR model is 

represented by a bit string chromosome, composed of segments encoding parameter values, variable 

selection, and sample exclusion (Fig. 2.2). The lengths of segments representing parameter values 

determine the levels of precision with which real values are represented by binary encoding. Variable 

selection is encoded as a bit string segment with length equal to the number of available covariates, 

interpreted as a binary mask specifying selection of specific covariates. Sample exclusion is similarly 

encoded as a segment with length equal to the number of samples made eligible for exclusion, 
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indicating specific samples to be excluded from model training. The GA is initiated with a uniform 

random population of a user-specified size. 

Numerous multi-objective GAs have been published and reviewed (Konak et al., 2006). Our 

approach is based on the popular NSGA-II algorithm (Deb et al., 2002) implemented in the MATLAB 

Global Optimization Toolbox, Release 2014a (The MathWorks, Inc., Natick, Massachusetts, USA). The 

LIBSVM open source software (Chang and Lin, 2011) is used for SVM training and prediction. The 

MATLAB implementation of NSGA-II acts as a wrapper for LIBSVM. A diagrammatic representation of 

algorithm details is provided in Fig. 2.3.  

 For each generation of solutions, NSGA-II differentiates groups of parents (P) and offspring (Q) 

of equal size. Initially all individuals are random and specification of P0 and Q0 is arbitrary. The 

chromosome representing each member of the current population (Pt  Qt) is decoded into real-valued 

SVM parameters and variable selection and sample exclusion masks, used to extract variables and 

training samples from reference data. Individual models are trained and validated by a k-fold CV. 

Continuous variables are scaled to unit range ([0,1]) at each CV iteration to prevent the disproportionate 

influence of those with larger numeric ranges. The CV procedure is repeated a user-specified number of 

times and results averaged to reduce the uncertainty of objective function estimates (Kim, 2009). CV 

estimates of objective function values are assigned to each member of the current population. Objective 

functions quantify total error (RMSET) and systematic error (RMSESYS):  

𝑔1 = 𝑅𝑀𝑆𝐸𝑇 = [
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2𝑛

𝑖=1
]

1
2⁄

 

 
 
Figure 2.2. Genetic algorithm chromosome design. Bit string chromosomes are composed of segments 
encoding model parameter values, predictor variable selection, and training sample exclusion. 
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𝑔2 = 𝑅𝑀𝑆𝐸𝑆𝑌𝑆 = [
1

𝑛
∑ (𝑎 + 𝑏𝑦𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
]

1
2⁄

 

where a and b are the intercept and slope of the least squares regression between predicted values 

𝑓(𝑥𝑖) and observed values yi (Willmott, 1981).  

The objective functions map solutions into a two-dimensional objective space Ф = {g1(p) g2(p) | 

p ϵ Ω}, where Ω is the set of all possible solutions. Solution pi is said to dominate solution pj provided 

 

Figure 2.3. Multi-objective support vector regression algorithm implementation. Following selection of 
training and validation data, SVR models are fit and predictions made using LIBSVM. Objective function 
values are estimated by repeated cross-validation, and serve as the basis for population sorting, parent 
selection, and genetic operations embedded within the nondominated sorting genetic algorithm 
(NSGA-II). 
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g1(pi) ≤ g1(pj) and g2(pi) ≤ g2(pj) with at least one strict inequality. In other words, one solution dominates 

another if it is better in one objective and at least as good in the other. A solution is nondominated if 

neither objective can be improved further without a worsening of the other. The set of nondominated 

solutions in Ω is referred to as the Pareto set, and the image of the Pareto set in the objective space Ф is 

the Pareto front. The goal of NSGA-II is to closely approximate the true Pareto set by driving evolution 

toward the Pareto front. 

 At each generation, NSGA-II sorts the current population of solutions (Pt  Qt) into a sequence 

of nondominated fronts (F1, F2, ...). The first front F1 includes all nondominated solutions from the total 

population and is the current best approximation of the Pareto front. Once F1 is obtained, these 

solutions are removed from the population, and the next front F2 is obtained as nondominated solutions 

from the reduced population. The process is iterated until all population members have been assigned 

to a front. NSGA-II subsequently identifies one half of the population as the next generation of parents 

(Pt+1), selecting solutions from successive fronts. The maximum number of parent solutions selected 

from F1 is constrained to a user-specified proportion of the total population in order to promote 

population diversity throughout algorithm execution. Additional fronts are added to Pt+1 in succession 

until one cannot be accommodated in its entirety. At that point, solutions are selected from sparse or 

less crowded portions of the front to further promote population diversity. 

 The next generation of offspring (Qt+1, equal in size to Pt+1) are obtained through genetic 

recombination and mutation of parent solutions. A user-specified proportion of offspring are produced 

through genetic recombination of a pair of parent solutions, and the remainder through mutation of a 

single parent. Individual parents are identified by tournament selection (Zäpfel et al., 2010), where a 

user-specified number of solutions are randomly selected from Pt+1 and the best is selected as a parent. 

Better solutions lie on lower ranked fronts and in less crowded regions along their front. Genetic 

recombination may occur through one of several standard crossover operations in which an offspring is 
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constructed from bit string segments copied from its parents. Different recombination operations 

determine the manner in which information is exchanged and the potential degree of novelty 

introduced through exchange (Zäpfel et al. 2010). An offspring produced by mutation is a copy of its 

parent subjected to a mutation operation that switches individual bit values with a user-specified 

probability. Once offspring have been produced, parent and offspring chromosomes  are 

decoded and the process repeats. 

 Stopping criteria are evaluated at each generation after solutions are sorted into nondominated 

fronts. The algorithm is assumed to have converged to a close approximation of the Pareto front when 

the change in spread of solutions along F1 averaged over a user-specified number of generations is less 

than a user-specified threshold. Alternatively, the algorithm stops when the generation count exceeds a 

user-specified maximum. Once stopped, members of F1 are retrained using all available training samples 

and returned as a set of alternative solutions expressing tradeoffs between RMSET and RMSESYS. 

2.3.5. MOSVR Algorithm Execution 

From the FIA data compiled for our study area, we modeled and mapped the relative abundance 

of 13 tree species for eventual inclusion in our LANDIS-II applications (Table 2.3). SVR parameter values 

were constrained within reasonable ranges (log(γ) ϵ [-4,0]; log(C) ϵ [-1,3]; log(ϵ) ϵ [-4,0]). A set of 78 

reference samples was made eligible for exclusion from model training, including samples with high 

spectral variability within pixel neighborhoods, averaged across all images and bands, as well as samples 

for which FIA records indicated presence of non-forest cover types. Note that we retained samples for 

which FIA records indicated multiple forest types. All reference samples were used for model validation 

in a 10-fold, 10 times repeated CV. 

We specified GA parameters that balanced population diversity against execution time. The GA 

operated on a population of 500 chromosomes, with a maximum of 20% maintained on the 

approximate Pareto front. Parent chromosomes were selected by tournament with 10 participants. 70% 

)QP( 1t1t  
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of offspring were generated by crossover of parent chromosomes, using the ‘scattered’ crossover 

operation in which bits were selected from each parent at random. 30% of offspring were generated by 

mutation of parents, with a mutation rate of 2.5%. Scattered crossover and a relatively high mutation 

rate promoted population diversity and exploration of the solution space. Approximate Pareto fronts 

typically stabilized by 80-100 generations, and algorithm execution was limited to 120 generations. 

The estimation of RMSESYS by linear least squares regression of CV predictions onto observed 

values was in some cases sensitive to outlying samples whose CV predictions deviated strongly from 

those of other samples with similar observed values. In these cases, removal of outliers was required to 

ensure that a small number of influential samples did not drive the GA toward less desirable solutions by 

distorting RMSESYS estimates. We implemented an automated outlier removal strategy at 30, 60, 90 

generations based on the identification of influential outliers for each member of the F1 front. Outlying 

samples were identified by applying a threshold to absolute studentized residuals. Influential outliers 

Table 2.3. Reference data characteristics of the 13 modeled tree species.  
 

Species Common 
Name 

Species 
Code1 

Prevalence2 Mean 
Relative 
Abundance3 

Median 
Relative 
Abundance3 

Maximum 
Relative 
Abundance3 

Abies balsamea Balsam fir ABBA 0.84 0.15 0.089 0.92 
Acer rubrum Red maple ACRU 0.69 0.11 0.045 0.91 
Acer saccharum Sugar maple ACSA3 0.38 0.12 0 0.99 
Betula alleghaniensis Yellow birch BEAL2 0.62 0.11 0.045 0.82 
Betula papyrifera Paper birch BEPA 0.65 0.11 0.036 0.74 
Fagus grandifolia American 

beech 
FAGR 0.26 0.036 0 0.64 

Fraxinus americana White ash FRAXI 0.14 0.013 0 0.43 
Picea glauca White spruce PIGL 0.24 0.017 0 0.59 
Picea mariana Black spruce PIMA 0.099 0.037 0 0.99 
Picea rubens Red spruce PIRU 0.81 0.16 0.079 0.90 
Pinus strobus White pine PIST 0.19 0.031 0 0.57 
Thuja occidentalis Northern 

white cedar 
THOC2 0.41 0.072 0 0.81 

Tsuga canadensis Eastern 
hemlock 

TSCA 0.084 0.012 0 0.45 

1Species codes used by the USFS FIA Program. 
2Prevalence was calculated as the proportion of FIA plots at which the species was present. 
3Relative abundance was calculated as a proportion of estimated live aboveground biomass (of stems 
>2.54 cm diameter, measured at 1.37 m). 
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were identified as those whose removal resulted in a change in RMSESYS exceeding a threshold level, 

when expressed as a proportion of RMSET. Samples identified as influential outliers in the majority of F1 

solutions were removed from both training and validation data. For most species, we applied a residual 

threshold of 3 and a RMSESYS threshold of 1%. For FRAXI, PIMA, and TSCA we used more conservative 

threshold values of 4 and 2% to reduce the number of outliers removed. The number of outliers 

removed for each species ranged from zero to seven, and averaged four. 

Lastly, at the end of MOSVR execution, an individual solution was selected from the midsection 

of the Pareto front where solutions represented a compromise between RMSESYS and RMSET. We 

selected the model positioned nearest to the origin after unit-scaling RMSESYS and RMSET values to 

normalize for differences in magnitude between the two. Other selection methods were informally 

evaluated and appeared to have little practical influence on outcomes as long as they targeted the 

midsection of the Pareto front. 

2.3.6. Model Comparisons  

 We compared MOSVR results to those obtained from Random Forest (RF; Breiman 2001), 

gradient nearest neighbor (GNN; Ohmann and Gregory, 2002), Random Forest nearest neighbor (RFNN; 

Crookston & Finley 2008), and single-objective SVR (SOSVR) algorithms. RF is an ensemble algorithm 

based on regression trees, and has been widely applied in species distribution modeling and remote 

sensing applications due to its typically high predictive accuracy and ease of use. RF requires 

specification of several parameters, but results are not overly sensitive to parameter selections and 

default values are often used. GNN has been used extensively for regional tree species distribution 

modeling based on moderate resolution remote sensing and geospatial data. GNN was originally 

developed and has been commonly applied as a k = 1 nearest neighbor algorithm, with proximity 

calculated within a feature space defined by a canonical correspondence analysis (CCA) of plot 

measurements and image or environmental predictor data. RFNN is another k = 1 nearest neighbor 
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variant, with proximity obtained from the nodes of one or more RF models. RFNN shares the advantages 

of GNN, but is based on a novel, non-Euclidean distance metric that may lead to improved outcomes 

(Hudak et al., 2008). We also implemented a single-objective approach to SVR model training (SOSVR) 

using a traditional GA (MATLAB Global Optimization Toolbox, Release 2014a) minimizing RMSET, 

because SVR model selection is typically based on minimization of overall prediction error. Finally, to 

evaluate the relative benefits of variable and sample selection strategies employed by MOSVR, we 

compared results to two alternative MOSVR execution strategies that included parameter selection 

only, and parameter plus variable selection but no sample selection.  

 All MOSVR execution strategies used the same GA settings and the same outlier removal 

strategy. SOSVR runs were executed using the same values for applicable GA settings, and included 

parameter, variable, and sample selection. For the remaining algorithms we adopted typical parameter 

settings and execution strategies using R v 3.0.3 (R Core Team, 2017). RF models were fit with the R 

package randomForest, v 4.6-12 (Liaw and Wiener, 2002), with an ensemble size of 2000 and default 

parameter settings (mtry = one third of the number of predictor variables; nodesize = 5). For GNN, CCA 

models were first fit with the R package vegan, v 2.4-3 (Oksanen et al., 2017) using the relative 

abundance of all species as the multivariate response. Following Ohmann and Gregory (2002), we 

performed a forward stepwise variable selection procedure based on AIC, permutation testing, and a 

check of variance inflation factors. Variables were considered for addition in the order of their 

contribution to constrained inertia (equivalent to AIC when all variables are continuous). Variables were 

added provided they were deemed significant by a permutation test (p = 0.01, 99 permutations) and 

provided all variance inflation factors remained below 20. Nearest neighbor imputation was based on 

Euclidian distance calculated from the first seven CCA axes (accounting for >95% of total variation 

explained), scaled by their constrained eigenvalues. GNN imputation, and execution of the RFNN 

algorithm, was performed using the R package yaImpute, v 1.0-26 (Crookston and Finley, 2008). The 
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RFNN imputation was based on a combined nodes matrix obtained by three separate RF models, fit to 

total live aboveground biomass, the species with maximum relative abundance based on aboveground 

live biomass, and the relative abundance of that species.  

Fitted models of all types were run through a 10-fold CV 100 times with different random 

partitions. To ensure fair comparisons amongst model types, we removed CV predictions associated 

with influential outliers in MOSVR, on a species by species basis. We compared mean model 

performance metrics from CV predictions (RMSET, RMSESYS, linear slope, and R2), and calculated 95% 

confidence intervals under the assumption that metrics obtained by repeated CV were approximately 

normal. We also compared outcomes by visual evaluation of the relationship between CV predictions 

and observed values, focusing on systematic deviations from a 1:1 relationship. We calculated 

dominance and codominance as the frequency with which any species or pair of species occurred or co-

occurred as one of the three most abundant species, based on our anticipated use of model outcomes 

for LANDIS-II initialization. Mean predicted dominance/codominance frequencies and corresponding 

confidence intervals were calculated from CV repetitions, and compared against observed values.  

2.4. Results 

The approximate Pareto fronts obtained by MOSVR generally shared a common geometry. 

Solutions were distributed more or less evenly across a curvilinear front suggesting that the true Pareto 

front was ostensibly continuous, with incremental change in one objective balanced by incremental 

change in the other (Fig. 2.4a). At one end, models had comparatively low total error, but high 

systematic error, apparent as a deviation from the 1:1 relationship between predicted and observed 

values (Fig. 2.4b). At the other end, models had comparatively low systematic error but higher total 

error (Fig. 2.4d). As expected, SVRs accomplished a reduction of total error only with an associated 

increase in systematic error, consistent with greater attenuation bias. Fronts were convex toward the 

origin (Fig. 2.4a) such that nearer to either end the value of one objective function changed much more 
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quickly than the other. Rather than select models with minimal systematic error from one end of the 

front, where small decreases in RMSESYS were associated with large increases in RMSET, we selected 

models from the midsection (Fig. 2.4a), where total prediction error represented more of a compromise 

between systematic and total error (Fig. 2.4c). 

Several patterns appeared when comparing model performance metrics across all model types 

and all species (Table 2.4). SOSVR attained the least total error for all but a single species. The least 

systematic error, when expressed as a percentage of total error, was always attained by MOSVR. The 

 
 
Figure 2.4. Pareto front and sample of Pareto-optimal models for species ABBA (balsam fir). (a) The 
approximate Pareto front obtained by MOSVR (including parameter, variable, and sample selection). (a-
c) Mean predicted values obtained from 100 repetitions of a 10-fold CV plotted against observed values 
for models lying at different positions along the Pareto front. For comparison to other prediction 
methods, and for use in forest mapping, a model was selected from the midsection of the (Model 2). 
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slope between predicted and observed values was also greatest (closest to one) for MOSVR models. R2 

values were generally greatest for MOSVR models as a result of reduced levels of systematic error, 

although the low total error obtained by SOSVR occasionally resulted in R2 values as high or higher. Of 

the three MOSVR execution strategies evaluated, the least systematic error was typically attained 

through the simultaneous selection of parameter values, variables, and samples (MOSVR A in Table 2.4). 

In a number of cases, parameter and variable selection (MOSVR B) achieved similar levels of systematic 

error, and in one case significantly lower systematic error. However, in all of these cases total error 

exceeded that achieved with sample selection. Parameter selection alone (MOSVR C) failed to reduce 

systematic error to the levels achieved with the introduction of variable selection. For these reasons, all 

MOSVR results presented hereafter were obtained with parameter, variable, and sample selection. In 

nearly all cases, nearest neighbor methods (GNN and RFNN) resulted in the greatest total error, and RF 

models the greatest systematic error. Compared to the best MOSVR outcomes (MOSVR A) in which 

systematic error ranged from 10-42% of total error across species, systematic error in RF models 

accounted for 62-93% of total error. Nearest neighbor methods attained levels of systematic error 

between those of MOSVR and RF models, provided MOSVR models included variable selection. 
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Table 2.4. Predictive performance by species and model type. Performance metrics were obtained 
from linear regression of CV predictions against observed values, averaged across 100 repetitions of a 
10-fold CV. Bracketed values provide 95% confidence intervals. Bolded entries highlight model types 
that produced either the best mean metric value for a given species, or a value whose confidence 
interval overlapped that of the best. Results are presented for three MOSVR execution strategies: 
parameter, variable, and sample selection (MOSVR A); parameter and variable selection (MOSVR B); and 
parameter selection only (MOSVR C). 
 
  RMSET RMSESYS (% RMSET) OLS slope R2  

ABBA MOSVR A 0.1201 [0.1193, 0.1208] 23.95 [23.29, 24.61] 0.834 [0.830, 0.839] 0.604 [0.600, 0.608] 

 MOSVR B 0.1325 [0.1316, 0.1334] 22.78 [22.22, 23.33] 0.826 [0.822, 0.831] 0.550 [0.545, 0.554] 

 MOSVR C 0.1313 [0.1309, 0.1316] 57.89 [57.69, 58.09] 0.560 [0.558, 0.562] 0.449 [0.446, 0.452] 

 SOSVR 0.1085 [0.1083, 0.1088] 58.72 [58.57, 58.88] 0.630 [0.629, 0.632] 0.605 [0.603, 0.607] 

 RF 0.1272 [0.1272, 0.1273] 76.67 [76.65, 76.68] 0.435 [0.435, 0.436] 0.458 [0.457, 0.458] 

 GNN 0.1858 [0.1848, 0.1869] 60.71 [60.15, 61.28] 0.348 [0.341, 0.356] 0.143 [0.138, 0.148] 

 RFNN 0.1823 [0.1816, 0.1829] 45.70 [45.43, 45.97] 0.527 [0.523, 0.532] 0.240 [0.236, 0.243] 

ACRU MOSVR A 0.1712 [0.1702, 0.1723] 23.97 [23.45, 24.49] 0.733 [0.727, 0.738] 0.312 [0.307, 0.316] 

 MOSVR B 0.1459 [0.1450, 0.1468] 42.84 [42.43, 43.25] 0.591 [0.585, 0.596] 0.319 [0.313, 0.324] 

 MOSVR C 0.1476 [0.1472, 0.1480] 77.91 [77.76, 78.06] 0.249 [0.247, 0.252] 0.145 [0.142, 0.147] 

 SOSVR 0.1262 [0.1260, 0.1263] 80.07 [80.00, 80.14] 0.338 [0.337, 0.339] 0.317 [0.316, 0.319] 

 RF 0.1427 [0.1426, 0.1427] 89.30 [89.28, 89.31] 0.167 [0.167, 0.168] 0.136 [0.136, 0.137] 

 GNN 0.1885 [0.1875, 0.1895] 60.29 [59.86, 60.72] 0.258 [0.251, 0.265] 0.065 [0.062, 0.068] 

 RFNN 0.1888 [0.1881, 0.1895] 69.44 [69.21, 69.66] 0.142 [0.139, 0.145] 0.025 [0.024, 0.026] 

ACSA3 MOSVR A 0.1189 [0.1178, 0.1200] 11.36 [10.65, 12.08] 0.937 [0.932, 0.941] 0.730 [0.726, 0.734] 

 MOSVR B 0.1084 [0.1074, 0.1093] 12.19 [11.47, 12.91] 0.938 [0.934, 0.942] 0.766 [0.762, 0.769] 

 MOSVR C 0.1159 [0.1155, 0.1164] 39.29 [38.97, 39.60] 0.780 [0.778, 0.782] 0.697 [0.695, 0.699] 

 SOSVR 0.0869 [0.0867, 0.0871] 51.46 [51.28, 51.63] 0.785 [0.784, 0.786] 0.827 [0.826, 0.827] 

 RF 0.1252 [0.1252, 0.1253] 61.83 [61.80, 61.87] 0.633 [0.632, 0.633] 0.639 [0.639, 0.640] 

 GNN 0.1664 [0.1648, 0.1680] 30.77 [29.96, 31.57] 0.763 [0.756, 0.771] 0.500 [0.493, 0.506] 

 RFNN 0.1698 [0.1691, 0.1706] 30.22 [29.81, 30.63] 0.760 [0.756, 0.764] 0.486 [0.482, 0.490] 

BEAL2 MOSVR A 0.1433 [0.1425, 0.1441] 33.65 [33.27, 34.03] 0.654 [0.650, 0.658] 0.310 [0.306, 0.314] 

 MOSVR B 0.1408 [0.1397, 0.1419] 34.59 [34.16, 35.02] 0.649 [0.645, 0.654] 0.316 [0.312, 0.321] 

 MOSVR C 0.1305 [0.1300, 0.1309] 74.32 [74.14, 74.49] 0.305 [0.302, 0.307] 0.189 [0.186, 0.192] 

 SOSVR 0.1101 [0.1099, 0.1102] 75.54 [75.43, 75.64] 0.403 [0.402, 0.404] 0.373 [0.371, 0.375] 

 RF 0.1265 [0.1265, 0.1265] 85.54 [85.53, 85.56] 0.220 [0.220, 0.220] 0.177 [0.176, 0.177] 

 GNN 0.1708 [0.1699, 0.1716] 57.63 [57.18, 58.08] 0.289 [0.282, 0.297] 0.077 [0.073, 0.080] 

 RFNN 0.1723 [0.1716, 0.1729] 56.03 [55.68, 56.38] 0.302 [0.298, 0.306] 0.079 [0.077, 0.081] 
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Table 2.4 continued 

  RMSET RMSESYS (% RMSET) OLS slope R2  

BEPA MOSVR A 0.1233 [0.1226, 0.1240] 30.53 [29.98, 31.08] 0.726 [0.721, 0.731] 0.417 [0.413, 0.421] 

 MOSVR B 0.1115 [0.1110, 0.1120] 48.09 [47.62, 48.55] 0.611 [0.607, 0.615] 0.422 [0.418, 0.426] 

 MOSVR C 0.1257 [0.1252, 0.1262] 64.03 [63.75, 64.31] 0.412 [0.409, 0.415] 0.254 [0.250, 0.258] 

 SOSVR 0.0962 [0.0959, 0.0965] 62.54 [62.30, 62.79] 0.561 [0.558, 0.563] 0.510 [0.507, 0.513] 

 RF 0.1279 [0.1279, 0.1279] 92.60 [92.58, 92.61] 0.137 [0.137, 0.137] 0.131 [0.130, 0.131] 

 GNN 0.1830 [0.1820, 0.1839] 63.73 [63.29, 64.17] 0.148 [0.140, 0.155] 0.021 [0.019, 0.023] 

 RFNN 0.1672 [0.1667, 0.1678] 67.33 [67.04, 67.62] 0.178 [0.174, 0.182] 0.038 [0.036, 0.039] 

FAGR MOSVR A 0.0577 [0.0570, 0.0583] 20.92 [20.12, 21.72] 0.851 [0.845, 0.856] 0.592 [0.586, 0.598] 

 MOSVR B 0.0638 [0.0631, 0.0644] 9.73 [9.000, 10.47] 0.926 [0.920, 0.932] 0.575 [0.569, 0.581] 

 MOSVR C 0.0725 [0.0720, 0.0730] 51.61 [51.07, 52.14] 0.531 [0.526, 0.536] 0.318 [0.312, 0.323] 

 SOSVR 0.0486 [0.0483, 0.0490] 52.82 [52.17, 53.47] 0.678 [0.673, 0.684] 0.632 [0.626, 0.637] 

 RF 0.0671 [0.0671, 0.0672] 73.25 [73.23, 73.28] 0.391 [0.390, 0.391] 0.317 [0.316, 0.317] 

 GNN 0.1037 [0.1030, 0.1045] 48.92 [48.13, 49.71] 0.368 [0.356, 0.380] 0.097 [0.091, 0.103] 

 RFNN 0.0882 [0.0875, 0.0890] 52.56 [51.96, 53.16] 0.421 [0.412, 0.430] 0.168 [0.161, 0.175] 

FRAXI MOSVR A 0.0457 [0.0455, 0.0460] 35.99 [35.47, 36.51] 0.633 [0.628, 0.639] 0.307 [0.302, 0.311] 

 MOSVR B 0.0481 [0.0478, 0.0485] 40.10 [39.51, 40.68] 0.570 [0.563, 0.577] 0.252 [0.246, 0.257] 

 MOSVR C 0.0489 [0.0487, 0.0490] 73.05 [72.82, 73.28] 0.206 [0.203, 0.210] 0.072 [0.070, 0.074] 

 SOSVR 0.0416 [0.0416, 0.0417] 91.28 [91.19, 91.37] 0.152 [0.151, 0.153] 0.138 [0.136, 0.140] 

 RF 0.0468 [0.0468, 0.0468] 90.50 [90.48, 90.51] 0.059 [0.058, 0.059] 0.017 [0.017, 0.017] 

 GNN 0.0548 [0.0543, 0.0552] 71.15 [70.60, 71.71] 0.131 [0.123, 0.138] 0.025 [0.022, 0.028] 

 RFNN 0.0625 [0.0623, 0.0628] 62.28 [62.03, 62.53] 0.132 [0.129, 0.136] 0.015 [0.014, 0.015] 

PIGL MOSVR A 0.0470 [0.0467, 0.0473] 41.54 [40.83, 42.25] 0.547 [0.537, 0.556] 0.233 [0.226, 0.240] 

 MOSVR B 0.0446 [0.0442, 0.0450] 49.89 [49.12, 50.67] 0.482 [0.471, 0.494] 0.226 [0.217, 0.235] 

 MOSVR C 0.0590 [0.0587, 0.0593] 61.64 [61.33, 61.95] 0.158 [0.152, 0.164] 0.022 [0.020, 0.024] 

 SOSVR 0.0394 [0.0393, 0.0394] 88.74 [88.67, 88.82] 0.189 [0.187, 0.190] 0.167 [0.165, 0.170] 

 RF 0.0443 [0.0443, 0.0443] 90.35 [90.32, 90.38] 0.080 [0.079, 0.080] 0.031 [0.031, 0.032] 

 GNN 0.0558 [0.0549, 0.0568] 70.43 [68.79, 72.08] 0.093 [0.076, 0.110] 0.017 [0.012, 0.022] 

 RFNN 0.0679 [0.0672, 0.0687] 65.77 [65.16, 66.39] -
0.034 

[-0.038, -0.031] 0.001 [0.001, 0.001] 

PIMA MOSVR A 0.0543 [0.0538, 0.0548] 15.15 [14.21, 16.08] 0.928 [0.922, 0.933] 0.777 [0.773, 0.780] 

 MOSVR B 0.0626 [0.0621, 0.0631] 17.65 [16.53, 18.78] 0.899 [0.892, 0.906] 0.713 [0.708, 0.717] 

 MOSVR C 0.0899 [0.0895, 0.0904] 43.52 [43.06, 43.97] 0.639 [0.634, 0.643] 0.420 [0.416, 0.425] 

 SOSVR 0.0560 [0.0554, 0.0565] 36.51 [35.72, 37.30] 0.813 [0.808, 0.818] 0.740 [0.735, 0.744] 

 RF 0.0947 [0.0946, 0.0948] 75.35 [75.30, 75.40] 0.346 [0.345, 0.347] 0.265 [0.264, 0.266] 

 GNN 0.0948 [0.0933, 0.0962] 39.24 [37.90, 40.58] 0.661 [0.650, 0.671] 0.404 [0.394, 0.413] 

 RFNN 0.0970 [0.0962, 0.0978] 40.25 [39.69, 40.82] 0.639 [0.634, 0.644] 0.377 [0.371, 0.383] 
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Table 2.4 continued 

  RMSET RMSESYS (% RMSET) OLS slope R2  

PIRU MOSVR A 0.1571 [0.1563, 0.1579] 36.11 [35.64, 36.58] 0.685 [0.680, 0.690] 0.414 [0.410, 0.418] 

 MOSVR B 0.1666 [0.1656, 0.1675] 35.24 [34.82, 35.65] 0.674 [0.670, 0.678] 0.377 [0.373, 0.381] 

 MOSVR C 0.1774 [0.1768, 0.1781] 60.99 [60.72, 61.27] 0.399 [0.395, 0.402] 0.206 [0.203, 0.210] 

 SOSVR 0.1385 [0.1382, 0.1387] 75.52 [75.40, 75.64] 0.418 [0.417, 0.420] 0.407 [0.405, 0.409] 

 RF 0.1568 [0.1567, 0.1568] 82.34 [82.32, 82.35] 0.283 [0.283, 0.284] 0.247 [0.246, 0.247] 

 GNN 0.2114 [0.2102, 0.2125] 60.02 [59.65, 60.39] 0.297 [0.292, 0.302] 0.091 [0.088, 0.094] 

 RFNN 0.1973 [0.1966, 0.1979] 57.20 [56.85, 57.56] 0.372 [0.368, 0.377] 0.146 [0.143, 0.149] 

PIST MOSVR A 0.0896 [0.0891, 0.0901] 33.73 [33.21, 34.24] 0.675 [0.670, 0.681] 0.357 [0.352, 0.362] 

 MOSVR B 0.1038 [0.1032, 0.1043] 34.44 [33.94, 34.95] 0.616 [0.610, 0.622] 0.257 [0.253, 0.261] 

 MOSVR C 0.0979 [0.0975, 0.0983] 67.42 [67.13, 67.72] 0.292 [0.289, 0.295] 0.124 [0.121, 0.127] 

 SOSVR 0.0801 [0.0800, 0.0803] 85.22 [85.14, 85.29] 0.265 [0.264, 0.267] 0.257 [0.255, 0.259] 

 RF 0.0952 [0.0952, 0.0952] 88.08 [88.06, 88.10] 0.104 [0.104, 0.104] 0.044 [0.044, 0.044] 

 GNN 0.1239 [0.1229, 0.1250] 61.68 [60.99, 62.36] 0.180 [0.168, 0.192] 0.031 [0.027, 0.035] 

 RFNN 0.1204 [0.1196, 0.1211] 63.82 [63.49, 64.15] 0.174 [0.170, 0.178] 0.030 [0.029, 0.032] 

THOC2 MOSVR A 0.1252 [0.1244, 0.1260] 25.05 [24.58, 25.52] 0.783 [0.779, 0.787] 0.461 [0.457, 0.465] 

 MOSVR B 0.1388 [0.1383, 0.1394] 32.72 [32.40, 33.04] 0.684 [0.681, 0.688] 0.358 [0.355, 0.361] 

 MOSVR C 0.1376 [0.1371, 0.1381] 65.31 [65.05, 65.57] 0.373 [0.370, 0.376] 0.208 [0.205, 0.211] 

 SOSVR 0.1112 [0.1109, 0.1114] 75.20 [75.05, 75.34] 0.419 [0.417, 0.420] 0.401 [0.398, 0.403] 

 RF 0.1374 [0.1374, 0.1375] 87.25 [87.23, 87.26] 0.166 [0.166, 0.166] 0.111 [0.111, 0.112] 

 GNN 0.1715 [0.1704, 0.1725] 61.74 [61.01, 62.46] 0.261 [0.251, 0.271] 0.073 [0.068, 0.077] 

 RFNN 0.1864 [0.1857, 0.1871] 60.19 [59.80, 60.59] 0.217 [0.211, 0.222] 0.042 [0.040, 0.044] 

TSCA MOSVR A 0.0450 [0.0446, 0.0454] 20.90 [20.09, 21.71] 0.824 [0.817, 0.831] 0.495 [0.488, 0.502] 

 MOSVR B 0.0506 [0.0502, 0.0510] 20.87 [19.89, 21.85] 0.802 [0.792, 0.812] 0.424 [0.416, 0.432] 

 MOSVR C 0.0609 [0.0606, 0.0612] 61.89 [61.60, 62.19] 0.292 [0.288, 0.297] 0.095 [0.092, 0.098] 

 SOSVR 0.0404 [0.0402, 0.0405] 82.56 [82.37, 82.76] 0.372 [0.369, 0.375] 0.427 [0.422, 0.432] 

 RF 0.0532 [0.0532, 0.0532] 81.28 [81.24, 81.32] 0.184 [0.184, 0.185] 0.090 [0.089, 0.090] 

 GNN 0.0640 [0.0630, 0.0651] 68.25 [66.92, 69.57] 0.178 [0.166, 0.190] 0.044 [0.038, 0.049] 

 RFNN 0.0708 [0.0704, 0.0712] 65.14 [64.61, 65.67] 0.129 [0.122, 0.136] 0.017 [0.015, 0.019] 
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 Patterns of prediction error summarized by model performance metrics were readily apparent 

in residuals obtained by subtracting the linear fit between predicted and observed values. Species ABBA 

provides a representative example (Fig. 2.5). All model types produced some degree of systematic 

overestimation of relative abundance for observed values <0.2, although in this case overestimation by 

MOSVR was negligible for relative abundance >0.05. All model types produced a systematic 

underestimation of relative abundance for observed values >0.2. The magnitude of underestimation 

increased as observed relative abundance increased, producing large apparent error at high relative 

abundance. The magnitude of systematic error at high abundance varied between models, with GNN 

producing the most and MOSVR the least (Fig. 2.5f). For species ABBA, the SOSVR and RF models clearly 

produced the least residual scatter or unsystematic error, while RFNN and GNN produced the most. This 

latter result did not hold in general, as the amount of unsystematic error in MOSVR predictions 

exceeded that in nearest neighbor predictions for most species. This follows from the fact that, although 

MOSVR did typically produce lower total error than nearest neighbor methods (Table 2.4), large 

reductions in systematic error were achieved in part by allowing for greater levels of unsystematic error. 

Because MOSVR models were selected to balance systematic and total error, further reduction in either 

systematic or unsystematic error could have been achieved, but only at the expense of the other. The 

degree to which MOSVR mitigated systematic over- and under-prediction varied from species to species 

(Fig. 2.6), partly because we adopted a strategy for selecting a specific model from the Pareto front that 

was based on a balance between objectives, rather than a specified magnitude of systematic error. 

Regardless, MOSVR always reduced systematic underestimation at the high levels of relative abundance 

that would presumably most influence predicted patterns of dominance/codominance.
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Figure 2.5. Trends in residual values for selected model types fit to species ABBA (balsam fir). 
Residuals plotted against observed values for (a) MOSVR, (b) SOSVR, (c) RF, (d) GNN, and (e) RFNN 
model types. For visualization of trends, we plotted the mean of residuals obtained from 100 repetitions 
of a 10-fold CV, and overlay a lowess curve (local weighted least squares regression of a first degree 
polynomial, spanning 20% of samples). (f) Lowess curves fit to residual plots for direct comparisons 
between model types.
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Figure 2.6. Trends in residual values for selected model types fit to individual tree species. Lowess 
curves fit to residual plots (demonstrated in Fig. 2.5) for each of five model types and 12 individual 
species. Lowess curves for species ABBA are provided in Fig. 2.5.  
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 Species dominance and codominance was calculated as the frequency with which species 

occurred or co-occurred as one of the three most abundant, as observed in FIA data or as predicted. 

Patterns of observed dominance and codominance largely reflected species associations found in the 

most prevalent forest types of the region (Fig 2.7a). Elevated dominance/codominance of ABBA and 

PIRU were consistent with a high prevalence of upland spruce-fir. Similarly, dominance/codominance of 

ACSA3 and BEAL2 reflected a high prevalence of northern hardwood. Although typically occurring as a 

northern hardwood associate, FAGR occurred at somewhat lower relative abundance across our study 

area (Table 2.3), and this was reflected in dominance/codominance. A high prevalence of mixedwood 

associations was reflected in dominance/codominance patterns involving the hardwoods ACRU, BEAL2, 

and BEPA, and the softwoods ABBA and PIRU. BEPA commonly occurs at relatively high abundance 

following intense disturbance, which is common throughout much of our study area. A number of 

species are either not prevalent within our study area (FRAXI, PIMA, TSCA) or not generally found at high 

relative abundance (PIGL, PIST) (Table 2.3), and this was reflected in observed dominance/codominance. 

Of the model types evaluated, nearest neighbor methods and RFNN in particular produced 

patterns of dominance and codominance that most closely conformed to those observed (Figs. 2.7e and 

2.7f). The maximum absolute difference between observed dominance/codominance frequencies and 

those predicted by GNN and RFNN was about 4% and 2%, respectively, and absolute differences 

averaged less than 1% for both. In contrast, both SOSVR and RF models resulted in predicted patterns 

that deviated from observations much more strongly (Figs. 2.7c and 2.7d), with absolute differences 

averaging about 2% for each but exceeding 10% in a number of instances. The largest differences were 

over-estimates of codominance, and for RF several of these amounted to a near doubling of observed 

frequencies. MOSVR produced patterns much closer to those observed and to those predicted by the 

nearest neighbor methods, with a maximum absolute difference of about 6%, and an average absolute 

difference of about 1%. There were few consistencies in patterns of over- or under-estimation between 
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Figure 2.7. Observed and predicted patterns of species codominance. (a) Observed codominance 
frequency, or the proportion of FIA plots at which a pair of species co-occurs as one of the three most 
abundant species. Difference between predicted codominance frequency and observed codominance 
frequency for (b) MOSVR, (c) SOSVR, (d) RF, (e) GNN, and (f) RFNN model types. Predicted codominance 
values were calculated as mean values obtained from 100 repetitions of a 10-fold CV. The maximum 
width of corresponding 95% confidence intervals ranged from 0.4% for RF models to 0.7% for GNN. 
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MOSVR, GNN, and RFNN. SOSVR and RF were somewhat more consistent in their tendencies to over- or 

under-estimate certain dominance/codominance values. 

2.5. Discussion 

Motivated by our need of initialization data for the LANDIS-II forest landscape model, our goal 

was to develop a method of predicting individual tree species relative abundance from moderate 

resolution data at high accuracy and with minimal systematic error. Comparisons of multiple prediction 

algorithms across 13 tree species indicated that our MOSVR algorithm accomplished that goal (Table 2.4 

and Figs. 2.5 and 2.6). As expected, algorithms that yielded the lowest total prediction error (RF and 

SOSVR) also produced the greatest systematic error, consistent with a strong attenuation bias arising 

from predictor variable uncertainty. Although these methods effectively minimized mean prediction 

error, they did so at the cost of systematic over- and underestimation at low and high ends of observed 

data distributions. Underestimation at high relative abundance in particular appears to have affected 

predicted patterns of species dominance and codominance, causing strong deviations from those 

observed at FIA plots (Figs. 2.7c and 2.7d). In contrast, two variants of k = 1 nearest neighbor methods 

(GNN and RFNN) reproduced observed dominance/codominance patterns with comparatively little error 

(Figs. 2.7e and 2.7f). By simultaneously imputing reference measurements of all species, these methods 

retained plot-level relationships between species and reproduced dominance/codominance patterns 

most closely. However, total prediction error was comparatively high for individual species, and typically 

included a large component of systematic error (Table 2.4). Others have emphasized the strength of 

nearest neighbor methods in producing reliable community-level outcomes (Henderson et al., 2014; 

Ohmann and Gregory, 2002). In this case, despite their reproduction of observed 

dominance/codominance frequencies, nearest neighbor methods yielded predictions of individual 

species relative abundance with comparatively low accuracy, subject to strong attenuation bias. MOSVR 

produced the least systematic error for all species, at levels of total error that were always less than 
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nearest neighbor methods and often comparable to either SOSVR or RF (Table 2.4). Predicted 

dominance/codominance frequencies agreed with observations much more closely than SOSVR and RF, 

though not quite as well as GNN or RFNN (Fig. 2.7). Nonetheless, by reducing systematic error in 

individual species models, MOSVR balanced the benefits of GNN and RFNN against those of SOSVR and 

RF. Others have developed methods of reducing systematic error in parametric statistical models of 

species distributions (Denham et al., 2011; Foster et al., 2012; McInerny and Purves, 2011). Here we 

have demonstrated an approach based on a nonparametric, machine learning algorithm.  

MOSVR was able to achieve our primary objective of reducing systematic error by treating the 

minimization of both total and systematic error as training objectives within a multi-objective 

framework. Multi-objective model training requires a statistical learning process capable of generating 

diverse solutions through the controlled manipulation of model structure. SVMs are well-suited in the 

sense that manipulation of a few free parameters can dramatically alter the geometry of decision 

boundaries (Brereton and Lloyd, 2010). Pasolli et al. (2011) previously implemented a multi-objective 

method for SVR parameter selection. For our species relative abundance problems, parameter selection 

alone failed to achieve desired reductions in systematic error (Table 2.4). Meaningful reductions 

required additional complexity in model specification, achieved through the integration of variable and 

sample selection. Different variable combinations were expected to have different levels of impact on 

attenuation bias due to differences in spatial or temporal observation characteristics. Integration of 

variable selection into GA chromosome design enabled population diversification across a much larger 

search space, ultimately leading to the evolution of models with substantially reduced bias (Table 2.4). 

Our sample selection mechanism led to further improvements in model performance in some cases, 

presumably for similar reasons. SVR models are directly determined by individual samples (SVs) lying on 

or outside margin boundaries. The removal or addition of a SV necessarily changes model fit, whereas 

removal of a sample lying within the SVR margin does not. We made certain samples eligible for 
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exclusion based on an assumption that they were more likely to be SVs under a variety of model 

specifications due to observed variability in land cover or image characteristics. Enabling their exclusion 

further reduced bias or total error in certain cases. 

The addition of variable and sample selection resulted in a very large search space. With a 

population of 500 individuals and a maximum generation count of only 120 (determined by available 

computational resources), the GA sampled a vanishingly small proportion of the total number of 

potential solutions. Intuitively, we might have expected parameter selection alone to yield the best 

results because the GA would have been much more likely to obtain a good approximation to a true 

global optimum. That was clearly not the case. Greater complexity in model specification and a larger 

search space was clearly needed to produce the desired solutions. Many predictor variables were 

correlated, and some samples eligible for exclusion likely had no effect on model fit because they were 

consistently placed within SVR margins. These factors would have reduced the effective size of the 

search space. Additionally, trade-offs between objectives may have followed a characteristic pattern 

that was determined more by the physical characteristics of the data and less by the specifics of SVM 

models; there may have been many, many ways to achieve the same or similar objective function 

values. Lastly, GAs provide a guided search mechanism, and are capable of evaluating a highly diverse 

set of solutions while narrowing in on aspects of model specification that are most associated with 

desirable performance characteristics (Goldberg, 1989). For our application, the NSGA-II algorithm was 

highly effective when presented with a sufficiently diverse population of potential solutions. 

Use of a GA for model training bears certain implications for model interpretation, particularly in 

a multi-objective framework. Similar performance characteristics may be achieved with different model 

specifications, and models lying near to one another on the Pareto front may show substantive 

differences in SVR parameters or variable/sample selections. MOSVR relative abundance models 

included on average 21 of 94 variables, and excluded on average 24 samples from model training (Table 
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2.5). For nearly all species, models included spectral, terrain, and climatological variables. This was 

expected given known influences of climatic gradients, topo-edaphic conditions, and disturbance history 

on current forest type and tree species distributions. We caution against over-interpretation of variable 

selections and sample exclusions at this point. GAs provide a group selection mechanism, and we cannot 

be sure that any individual variable (or sample) provided a substantive contribution to model 

performance. Additional steps could be taken to evaluate the relative importance of variables in 

particular. Post-hoc analyses of response and covariate values could be used to illuminate important 

relationships between variables (e.g., Goldstein et al., 2014), and more comprehensible decision rules 

can be obtained by modeling the SVR predictions themselves (e.g., Martens et al., 2007). Inspection of 

variable selection and variable importance patterns across the Pareto front may provide insight into 

how certain variables may influence attenuation. As is typical of ML approaches, further work on 

methods of model interpretation is warranted.  

Table 2.5. Multi-objective support vector regression variable and training sample selection. 
 

Species 
Code1 

Number of variables selected Training 
samples 
excluded 

Training 
samples 

used 

Spring image 
bands2 (of 18) 

Summer image 
bands3 (of 12) 

Fall image 
bands4 (of 18) 

Terrain 
(of 29) 

Climate 
(of 17) 

ABBA 7 4 4 6 6 21 326 
ACRU 4 2 0 10 3 29 320 
ACSA3 2 2 3 3 4 29 314 
BEAL2 2 4 5 8 2 38 308 
BEPA 3 5 5 7 3 26 318 
FAGR 6 1 4 5 1 18 325 
FRAXI 1 5 7 2 7 25 323 
PIGL 3 4 5 5 0 17 326 
PIMA 4 4 7 5 2 19 323 
PIRU 5 3 7 7 7 16 327 
PIST 3 4 5 8 4 21 324 
THOC2 6 2 8 4 4 19 328 
TSCA 1 3 2 3 6 28 317 

1Species codes used by the USFS FIA Program. 
2April 29, 2006; May 12, 2005; May 25, 2001. 
3June 10, 2004; July 20, 2001. 
4Sept. 14, 2004; Sept. 30, 2001; Oct. 6, 2006. 
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Although MOSVR effectively reduced systematic error, there is room to question when this is 

necessary or desirable. Riemann et al. (2010) compared biomass predictions from a GNN variant to FIA 

observations and found over-estimation at low biomass and under-estimation at high biomass. They 

recognized that the scale mismatch between moderate resolution pixels and FIA plots was at least 

partially responsible for this pattern, but treated it as a product of the map validation process and 

reference data uncertainty rather than a pattern of systematic error caused by attenuation bias in the 

predictive model. They reasoned that if the validation data had been collected at the same scale as the 

predictions (250 m pixels), this pattern of disagreement would have been less pronounced or absent. 

Spatial averaging of plot and pixel values across progressively larger grid cells led to a progressive 

reduction in the magnitude of systematic disagreement. This was cited as evidence that systematic 

disagreement was not the product of prediction bias, but rather an artifact of validation by direct 

comparison of plots and pixels. They suggested that this plot-pixel comparison may be inappropriate, 

even when the predictive algorithm was trained on the same plot data set. 

Whether systematic disagreement between FIA plots and map pixels reveals model bias or a 

validation artifact depends in large part on the nature of predictor variable uncertainty. Xu et al. (2009) 

examined this issue in the context of ordinary linear regression. Using a field measurement protocol 

specifically designed to investigate the effects of mismatches in scale and location between plots and 

pixels, they evaluated prediction error patterns against those expected from two types of predictor 

variable uncertainty. When the observed predictor W is a noisy realization of the true or ideal predictor 

X (W = X + U, where the error term U has zero mean and is independent of X such that E(W|X) = X), the 

Classical error model applies. This corresponds to the situation in which plots are larger than pixels, or a 

species responds to a long-term average but the corresponding predictor variable reflects a shorter 

timeframe (as would be the case for our mid-month insolation predictors, for example). When the 

observed predictor is considered a smooth representation of the true or ideal predictor (X = W + U and 
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E(X|W) = W), the Berkson error model applies. This corresponds to the situation in which plots are 

smaller than pixels, or a species responds to environmental conditions over a shorter timeframe than 

predictors represent (as may be the case when species are affected by extreme conditions that are not 

resolved by climatological predictors). Xu et al. (2009) demonstrated that although Berkson error does 

cause apparent systematic error in cross-validation outcomes, that pattern is no longer present when 

predictions are compared to new reference observations made at the same scale. Linear models are not 

biased by Berkson error. In contrast, Classical error does cause strong attenuation bias of the model 

itself, affecting coefficients and introducing systematic error that does not go away when reference data 

are scaled to match pixels.  

The Berkson model fits the situation in which moderate resolution predictors are paired with FIA 

plots, and the work of Xu et al. (2009) would appear to validate the assertions of Riemann et al. (2010) 

on those grounds. However, several factors virtually ensure that actual predictor error deviates from the 

Berkson model. Other sources of predictor uncertainty undoubtedly compound error associated with 

scale mismatches. Location mismatches caused by georeferencing or GPS error, for example, are best 

represented by a mixture of Classical and Berksen error and can cause attenuation bias more severe 

than Classical error associated with a scale mismatch (Xu et al., 2009). Additionally, many applications 

build models using predictors with different patterns of uncertainty, some of which may be best 

represented by Berkson error and some by Classical error. For species distribution models that utilize 

environmental variables, the nature of predictor uncertainty may differ by species due to different 

responses to environmental conditions (e.g., differing sensitivity to extreme vs. average conditions). 

Finally, the analysis provided by Xu et al. (2009) was based on ordinary linear regression. Both Berkson 

and Classical error can cause attenuation bias and systematic prediction error when models are 

nonlinear or nonparametric (Carroll et al., 1995). For these reasons, the systematic error apparent in 

numerous studies, including Riemann et al. (2010), is at least partially attributable to true attenuation 
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bias. It is also worth noting that a comparison of spatially averaged predictions and plot values neither 

contradicts nor corroborates the presence of attenuation bias in the predictive model. Assuming 

minimal mean bias and relatively homogeneous spatial error patterns, averaging across larger and larger 

areas will reduce systematic disagreement even if the underlying predictive model is severely biased. 

This simply means that under-estimates are balanced by over-estimates, and is entirely consistent with 

the origin of attenuation bias in the minimization of average error. In the absence of a more thorough 

accounting of predictor uncertainty and its effects within a specific modeling framework, it seems safe 

to conclude that systematic deviations in plot-pixel comparisons are at least partially indicative of true 

bias. 

 The ultimate impact of attenuation bias on map use will presumably depend on map- and 

application-specific factors. Attenuation does not degrade mean predictive accuracy, and area averages 

should be minimally affected. However, attenuation can dramatically affect spatial prediction patterns, 

particularly at the high end of observed values. Species ABBA provides a convenient illustration. MOSVR 

and SOSVR models explained nearly identical amounts of variation in observed values, but MOSVR 

predictions had less systematic error and SOSVR predictions had less scatter and lower total error (Table 

2.4 and Fig. 2.5). Spatial patterns of prediction were notably different at landscape scales (Fig. 2.8). 

Whereas MOSVR predicted values up to 100%, SOSVR predictions only infrequently exceeded 75%. The 

stronger attenuation bias of SOSVR generally suppressed local variability and produced a more diffuse 

pattern of species relative abundance than expected. MOSVR reduced attenuation bias, producing what 

we consider to be more realistic spatial patterns including patches of high ABBA relative abundance. 

These differences are sufficient to affect map use. ABBA is the primary host of the eastern spruce 

budworm (Choristoneura fumiferana Clem.), a native defoliator that causes widespread mortality during 

cyclic outbreaks (Morin et al., 2007). Vulnerability to spruce budworm defoliation is in large part 

determined by primary host relative abundance, with the greatest impact anticipated to occur in mature 
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stands exceeding 75% primary host abundance (Hennigar et al., 2011). Attenuation bias can cause 

systematic under-estimation of vulnerability, potentially affecting projected patterns of budworm 

impact. This is only one example of the general problem posed by attenuation bias in remote sensing 

applications. MOSVR provides one way to reduce bias while maintaining high overall predictive accuracy 

and the benefits of a nonparametric approach. 

 

Figure 2.8. Spatial predictions of relative abundance for species ABBA (balsam fir). Relative abundance 
predicted from (a, c) MOSVR and (b, d) SOSVR models, across two randomly positioned sample 
landscapes 12 km x 12 km in size. Masked areas include nonforest pixels and forest pixels affected by 
canopy change during the study period or missing data due to cloud or snow cover. Predictions were 
truncated at 0 and 100%. 
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2.6. Conclusions 

 Patterns of error observed in predictions of tree species relative abundance were consistent 

with strong attenuation bias caused by uncertainty in remote sensing and geospatial predictor data. 

Comparing results across different predictive models, systematic error as a fraction of total error was 

typically greatest in regression models that achieved the lowest overall error. Pronounced 

underestimation at high relative abundance caused large deviations between predicted and observed 

patterns of species dominance and codominance. As expected, nearest neighbor methods produced 

better agreement with observed dominance/codominance by preserving observed species associations. 

Yet predictive accuracy was low and attenuation bias was high for individual species. MOSVR effectively 

reduced systematic error for all species while maintaining comparatively low total error, and improved 

predicted patterns of dominance/codominance to a level approaching that of the nearest neighbor 

methods. 

 Others have made compelling arguments that physical differences in scale and location between 

pixels and field plots are primary contributors to attenuation bias (Rejou-Mechain et al., 2014; Xu et al., 

2009), and some have suggested that the use of FIA or similar forest inventory data for model training 

may be ill-advised (Robinson et al., 2013; Xu et al., 2009). Yet FIA data is used to train predictive models, 

and although error patterns at the scale of predictions are not always reported (e.g., Duveneck et al., 

2015; Wilson et al., 2012), results are probably subject to some level of attenuation bias. Not all 

systematic error is indicative of model bias, but without a thorough accounting of predictor uncertainty 

and its impact on predictions in a specific modeling framework, it may be best to assume that some 

level of correction is warranted. In that case, MOSVR may provide an effective means of reducing 

systematic error in nonparametric regression models. 
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CHAPTER 3 

CONTROLLING MAPPED CLASS PREVALENCE AND THE BALANCE OF ERROR BY MULTI-OBJECTIVE 

OPTIMIZATION OF SUPPORT VECTOR CLASSIFICATION MODELS 

3.1. Abstract 

The mitigation of uncertainty in remote sensing applications requires not just the reduction of 

prediction error but consideration of error patterns and their impacts on data use. In a thematic 

mapping context, commission and omission errors typically have different consequences, and an 

imbalance between the two results in a biased estimation of class prevalence and a biased 

representation of class distributions. An unbiased classification may be desirable, but given the 

tremendous diversity of map uses, the balance of error and level of bias achieved should be informed by 

intended use. We present a multi-objective support vector classification algorithm (MOSVC) that 

simultaneously minimizes classification bias and either omission or commission error through optimal 

parameterization of support vector machines (SVMs), selection of covariate subsets, and flexible use of 

available training data. Multi-objective optimization produces alternative solutions that express 

tradeoffs between class accuracy and bias under the expectation that different tradeoffs may be more 

or less beneficial for specific applications. We demonstrate MOSVC within a multispectral remote 

sensing context by mapping tree species occurrence and canopy disturbance in the temperate Atlantic 

Northern Forest of Maine, U.S.A. Applied to three different species occurrence problems, MOSVC 

produced diverse sets of alternative models and maps including solutions with zero bias. In contrast, 

single-objective optimization of SVMs produced inconsistent and biased outcomes because individual 

training criteria could not adequately control the balance of omission/commission error. MOSVC 

solutions with different levels of bias produced different representations of class distributions 

depending on spatial patterns of omission and commission error. This was most apparent for the canopy 

disturbance problem because omission/commission errors were visible through comparison of pre- and 



80 

post-disturbance imagery. MOSVC produced disturbance maps with uniformly high overall accuracy 

(>97%) despite extensive cloud contamination and the absence of image pre-processing. Yet maps with 

different error characteristics demonstrated different impacts of omission and commission error on 

disturbance class configuration. By approaching error reduction as a multi-objective optimization 

problem, MOSVC produces alternative solutions that collectively control predicted class prevalence and 

the balance of omission/commission error. Individual solutions can be selected to meet specific 

application needs, or multiple solutions can be compared to evaluate the sensitivity of application 

outcomes to map error characteristics.  

3.2. Introduction 

 Spatial data and satellite-derived maps in particular play diverse roles in the ecological and 

environmental sciences. Remote sensing and map data provide a basis for planning and executing field 

studies, developing and calibrating models, quantifying ecosystem processes or services, and evaluating 

environmental change. Natural resource managers use maps to characterize resource conditions, 

project changes, and direct management actions. Maps are, however, abstract and imperfect 

representations of environmental variation. Map error heightens uncertainty in application outcomes, 

and for this reason new analytical methods are continually sought to improve map accuracy. Many 

remote sensing applications have adopted and elaborated pattern recognition or machine learning (ML) 

algorithms, most notably supervised algorithms based on neural networks (Mas and Flores, 2008), 

kernel methods including support vector machines (Mountrakis et al., 2011), decision trees (Gislason et 

al., 2006; Pal and Mather, 2003), or k-nearest neighbors (McRoberts et al., 2010). In the context of 

supervised learning, ML algorithms induce relationships between predictor and response variables 

without pre-specification of a form for the modeled relationship, for example by fitting a model made 

up of many simple components or primitive functions (e.g., decision rules in a classification tree). 

Predictions based on induced relationships are often more accurate that those based on more 
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traditional parametric statistical models because relationships between variables are often too complex 

or too little understood to pre-specify an appropriate parametric model form. Nonetheless, a certain 

level of error remains due to ecological and environmental complexity, data availability, measurement 

limitations, or other factors.  

 Inferences and decisions must be made within the context of map error, and mitigation of 

uncertainty in map applications requires not only reduction of error but consideration of error patterns 

and their impacts on map use. Here we specifically consider binary classification or presence-absence 

models, where observations are categorized into either positive or negative cases. Prediction errors are 

one of two types, either false positives or false negatives, or equivalently commission or omission errors 

for the positive class. The balance between commission and omission error dictates the degree to which 

class prevalence is either over- or underestimated by the model, and hence biased high or low on the 

map. 

 Many applications would benefit from classification methods that not only reduce overall error 

but control patterns of error and consequent bias in mapped class prevalence. Although there are 

established methods of deriving unbiased estimates of class area from biased maps (Olofsson et al., 

2013), applications that require the spatial representation provided by a map remain subject to bias. 

Elimination of bias from mapped class distributions has received comparatively little attention, although 

Puertas et al. (2013) present an approach based on numeric optimization of thresholds applied to 

predicted probabilities of class membership. More generally, costs associated with over- and under-

representation of positive cases are likely to differ, such that different directions or levels of bias are 

likely to have different impacts, either positive or negative (e.g., Loiselle et al., 2003; Václavík and 

Meentemeyer, 2009; Wilson et al., 2005). For example, the efficiency and effectiveness of conservation 

planning and reserve design are differentially impacted by both omission and commission error, but in 

ways that depend on how conservation goals are formulated (Rondinini et al., 2006). When the costs of 
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over- or under-representation differ, it may be desirable to not just reduce bias but to control bias. 

Atkinson et al. (2007) reduced commission error at the expense of elevated omission error when 

mapping the occurrence of individual ash and sycamore trees to obtain a large and accurate sample of 

tree locations for point pattern analysis. Maps often serve as a basis for sampling design, and control of 

omission/commission error and class bias could assist sampling in a number of ways, for example by 

improving the efficiency of stratified sampling through manipulation of the uniformity of map-based 

strata (Cochran, 1977). Another common map analysis objective is the quantification of class 

configuration, and configuration metrics are known to be sensitive to map error (Langford et al., 2006; 

Shao and Wu, 2008). Shao and Wu (2008) suggested that configuration metrics should be more reliable 

when omission and commission error are balanced, but landscape ecologists rarely quantify the impact 

of classification error (Lechner et al., 2012) and we are not aware of any specific assessment of the 

impact of biased class prevalence on calculated metric values. A certain level of bias could provide a 

more reliable representation of certain aspects of spatial configuration, depending on the spatial 

patterning of omission and commission error. This suggests not just control of map bias, but a 

systematic evaluation of sensitivity to different levels of bias. 

 Biased estimation of class prevalence has received considerable attention in ML research due to 

the well-recognized impact of imbalanced training data on classifier performance. When class 

proportions are imbalanced, ML methods (and statistical learning techniques in general) commonly 

produce undesirable levels of bias by favoring the majority class when attempting to fit a parsimonious 

model. Strategies exist to compensate for this effect, either by resampling the training data or 

restructuring the learning problem (e.g., cost-sensitive learning) (He and Garcia, 2009). However, ML 

model training typically involves tuning model structure to minimize overall error or optimize some 

other measure of model performance. If the training criterion cannot adequately distinguish different 

degrees or directions of imbalance between omission and commission error, the model training process 
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cannot adequately control the degree or direction of classification bias (Mouton et al., 2010). 

Alternatively, the balance of error and the level of bias in predicted class prevalence can be controlled 

by modeling continuous probabilities of class membership and then applying different thresholds to 

obtain presence/absence maps (Freeman and Moisen, 2008; Puertas et al., 2013). Ecological 

applications have focused considerable attention on this approach, using for example logistic regression 

or Random Forests (Breiman, 2001) to model probability of occurrence. Thresholds are often selected 

based on measures of presence/absence predictive performance (Freeman and Moisen, 2008). This 

approach to controlling error patterns is therefore similar to the selection of a model training criterion in 

that it requires prior specification of an appropriate performance metric or an appropriate balance 

between omission and commission error. It also assumes that a single probability model will produce 

sufficiently accurate binary classifications from various plausible thresholds, when in fact it may not 

(Calabrese et al., 2014; Jiménez-Valverde et al., 2013).  

 A different approach to controlling the balance between omission and commission error is to 

simultaneously minimize both as conflicting objectives. Multi-objective optimization of conflicting 

performance metrics results in a set of models that collectively express tradeoffs between different 

modeling objectives, rather than a single model identified as best according to a single objective (Jin, 

2006; Konak et al., 2006). Multi-objective optimization therefore recognizes the ambiguity in evaluating 

models for different aspects of performance that cannot be optimized independently, such as omission 

and commission error rates. Consider the set of all possible model solutions Ω and let commission and 

omission error be represented by the objective functions fCE and fOE. The objective functions map 

solutions from Ω into a two-dimensional objective space Ф = {fCE(p) fOE(p) | p ϵ Ω}. Solution pi is said to 

dominate solution pj provided fCE(pi) ≤ fCE(pj) and fOE(pi) ≤ fOE(pj) with at least one of these inequalities 

being a strict inequality. In other words, one solution dominates another if it is better in one objective 

and at least as good in the other objective. A solution is nondominated if neither objective can be 
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improved further without a worsening of the other. The set of nondominated solutions in Ω is referred 

to as the Pareto set, and the image of the Pareto set in the objective space Ф is referred to as the Pareto 

front. The Pareto front describes tradeoffs between objectives - for example, the increase in commission 

error fCE associated with a given reduction of omission error fOE, or vice versa. The goals of 

simultaneously minimizing omission and commission error by multi-objective optimization would be to 

obtain a diverse set of alternative models and maps, each expressing a near-optimal solution for a 

particular balance of omission/commission error or equivalently a particular level of bias, including zero 

bias.  

 We present a multi-objective optimization algorithm for presence-absence or binary 

classification problems. Our approach utilizes support vector machines (SVMs) optimized by a multi-

objective genetic algorithm (GA). SVMs were originally developed for binary classification (Vapnik, 

1995), although they have been widely applied to multiclass, single-class, and regression problems 

(Mountrakis et al., 2011; Salcedo-Sanz et al., 2014). As binary classifiers SVMs are capable of 

discriminating classes with complex, overlapping distributions within a high-dimensional feature space, 

producing decision boundaries that generalize well to new data (Brereton and Lloyd, 2010). Use of SVMs 

requires the specification of several free parameters that determine model fit, and optionally the 

identification of an optimal subset of predictor variables or training samples. SVMs are sensitive to 

parameter settings, which adds complexity to the model selection process because adequate 

performance cannot be assured under any pre-specified or default parameter values. Our approach 

exploits the complexity of SVM model selection to obtain a diverse set of solutions that tradeoff 

commission and omission error. From that set, specific models may be used to control map bias or to 

explore the impact of different levels of bias. In the sections that follow, we provide a description of our 

multi-objective support vector classification algorithm (MOSVC) and its implementation (section 3). We 

then demonstrate MOSVC within a forest remote sensing context by mapping tree species occurrence 
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and canopy disturbance in the temperate Atlantic Northern Forest of Maine, U.S.A. (sections 4 and 5). 

We first review relevant aspects of SVMs, GAs, and presence-absence model performance (section 2; 

readers familiar with these topics may wish to skip ahead). 

3.3. Background 

3.3.1. Support Vector Machines 

 Binary classification by SVMs is based on the concept of fitting a decision boundary between 

classes based on training samples, with no assumptions regarding their statistical distribution. Here we 

follow the conceptual framework provided by Brereton and Lloyd (2010) in their comprehensive review 

of SVMs. In the simplest case, training data are sampled from two classes whose distributions are 

separable by a linear margin within a multi-dimensional feature space, with some small subset of 

observations lying along margin boundaries. Different subsets of observations define different 

orientations of the linear margin between the two classes. SVMs identify the optimal decision boundary 

as the one that corresponds to a margin of maximum width. The samples that define the maximum 

margin, and hence the decision boundary, are called support vectors (SVs). The SVs are often few, and 

no other training samples have any bearing on the location of the boundary.  

 When classes cannot be separated using linear boundaries defined in the original feature space, 

SVMs fit decision boundaries by projecting the data into a new space of higher dimension in which linear 

separation is possible. Training data are mapped across higher dimensions using a kernel function 

defined within the original feature space, and a boundary is fit by linear margin maximization within the 

new space. When expressed in the original feature space, the boundary is nonlinear and potentially 

highly complex, but still defined by a set of SVs. The kernel function must satisfy particular criteria and in 

practice users typically specify a function from one of a few families. Each requires the specification of 

one or more free parameters. The Gaussian radial basis function (RBF) of a specified width (γ) is popular 

because it is typically very effective and requires specification of only one parameter (Brereton and 
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Lloyd, 2010). Narrow RBF kernels essentially allow for the projection of training data into extremely high 

dimensions with a large number of SVs. Narrow kernels therefore correspond to more complex 

boundaries. 

 To control complexity a regularization term is introduced into the boundary optimization 

problem that allows for the definition of a margin that includes certain training samples within its width. 

For classes with overlapping distributions, the margin expands to accommodate overlap, allowing for a 

simpler boundary between training samples and presumably less error when the model is generalized to 

predict new observations. Another free parameter, the penalty error term (C), determines the degree of 

regularization by stipulating a certain level of tolerance of training samples within the margin and 

potentially on the wrong side of the decision boundary (i.e., misclassified training samples). A high 

penalty error implies low tolerance, resulting in a narrow margin and complex boundary that fits the 

training data closely. A single penalty error term implies an equal misclassification cost amongst all 

training samples. When training data are heavily imbalanced, equal treatment of misclassified samples 

causes the decision boundary to migrate toward the minority class, biasing predictions in favor of the 

majority (He and Garcia, 2009; Tang et al., 2009). In the so-called cost-sensitive SVM (Tang et al., 2009), 

different penalty error values are applied to samples from different classes. A larger penalty error 

applied to the minority class reduces the tolerance of minority samples within the margin, pushing the 

decision boundary toward the majority class and offsetting the effect of class imbalance. The cost-

sensitive SVM requires the specification of two penalty error terms, or equivalently a single penalty 

error term (C) and a weight (Cw ≥ 1) applied to the penalty error for the minority class.  

 Optimal kernel functions and penalty error values are problem-specific, varying with the 

available feature set and training data. There is little basis for their selection apart from testing a very 

large number of possible combinations against validation data. Some form of data partitioning (e.g., 

cross-validation) is used to estimate the expected prediction error under different combinations of 
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parameter values (Brereton and Lloyd, 2010). Model parameterization is therefore equivalent to a 

search for an optimal combination of values from a multidimensional search space. The complexity of 

the problem is further increased when the search includes selection of an optimal subset of predictor 

variables, or an optimal subset of training samples. SVMs perform well given a large number of 

predictors since classification does not require estimation of class distributions (Bazi and Melgani, 2006), 

but selection of an optimal variable subset can improve results (Huang and Wang, 2006). Similar 

benefits may follow from selection of an optimal training sample (Blum and Langley, 1997). Parameter, 

variable, and sample selection should ideally be performed within a single search, and several classes of 

heuristic optimization or search algorithms are suitable, including ant colony optimization (e.g., Huang, 

2009; Samadzadegan et al., 2012), particle swarm optimization (Li and Tan, 2010; e.g., Lin et al., 2008), 

and genetic algorithms (Bazi and Melgani, 2006; e.g., Friedrichs and Igel, 2005; Huang and Wang, 2006). 

3.3.2. Genetic Algorithms 

 GAs are population-based optimization algorithms founded directly on the analogy of evolution 

by natural selection. A population of possible solutions is subjected to a selection pressure, leading to 

the evolution of traits associated with improved outcomes (Goldberg, 1989; Holland, 1975; Zäpfel et al., 

2010). Considering optimization of a cost-sensitive SVM with a RBF kernel and no variable or training 

sample selection, individual solutions correspond to specific combinations of γ, C, and Cw. These three 

parameters are treated as analogous to genes, and a specific combination of parameter values 

equivalent to the genotype of an individual solution. The observable characteristics of a trained model 

or corresponding map constitute the phenotype of the individual solution, and these could include 

various measures of classification accuracy, model complexity, or map attributes. A GA designed to 

minimize classification error as a phenotypic trait applies a selection pressure to the population of 

solutions by favoring the perpetuation of genes that are associated with lower error. Over successive  
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generations or iterations of the GA, the population evolves to include models with progressively lower 

classification error. 

 At each iteration of the search process, a GA creates a new generation of solutions by 

recombining properties of existing solutions (Zäpfel et al., 2010). A certain proportion of individuals are 

selected as parents, with probability of selection determined by a specific fitness metric. A 

recombination operation is applied to pairs of parent solutions to generate members of the new 

generation. Recombination ensures inheritance of genes or genetic information from fit individuals, 

while introducing novelty to the next generation. The iterative recombination and replacement of 

solutions will generally lead to a loss of population diversity and a less comprehensive search for an 

optimal solution (Zäpfel et al., 2010). Random mutations of genes are interjected at each generation to 

promote diversity and encourage a more expansive search. Evolution proceeds until a specified criterion 

is met, for example, convergence of population traits such that additional iterations result in little 

further improvement, or execution of a specified number of generations. Upon termination the typical 

GA returns the individual with maximum fitness as the optimal solution. 

 By combining a guided search with a certain level of randomization, GAs are capable of 

obtaining globally optimal solutions from a large and complex search space (Goldberg, 1989). GAs have 

been successfully applied to a variety of SVM optimization problems, including parameter selection for 

both classification and regression problems (Friedrichs and Igel, 2005; Lorena and De Carvalho, 2008; 

Üstün et al., 2005; Wu et al., 2009), feature selection (Li et al., 2011), and simultaneous parameter and 

feature selection (Bazi and Melgani, 2006; Huang and Wang, 2006). The predominant approach is to 

identify an optimal or near-optimal solution according to a single model performance objective. 

However, GAs are very well suited to multi-objective optimization. As a population-based algorithm, 

they explore different portions of the search space simultaneously and from a single run they can 

provide a large and diverse set of solutions expressing tradeoffs between objectives (Konak et al., 2006). 
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Ghoggali et al. (2009) applied a multi-objective GA to a pair of semi-supervised image classification 

problems, and demonstrated that the simultaneous minimization of SVM classification error and 

number of SVs (as a measure of model complexity) produced better results than the minimization of 

either criterion alone. Suttorp and Igel (2006) described the use of a multi-objective GA to train SVMs 

for pedestrian detection from infrared images obtained by driver assistance systems. Control of classifier 

performance was attained through the simultaneous minimization of omission error, commission error, 

and number of SVs. We are unaware of any similar attempt to control classifier performance for 

mapping applications. 

3.3.3 Model Performance Metrics 

 By comparing predicted class membership to observed class membership, omission and 

commission errors can be cross-tabulated in a confusion matrix (Table 3.1) from which various 

evaluation metrics can be calculated (Fielding and Bell, 1997; Stehman and Czaplewski, 1998). Different 

metrics reflect different aspects of model performance or map accuracy (Table 3.2). One of the simplest 

is overall accuracy or the proportion of samples predicted correctly (PPC). Sensitivity and specificity are 

the proportions of true positive and true negative cases that were correctly predicted by the model and 

hence correctly labeled by the map. Positive and negative predictive values (PPV and NPV) are the 

proportions of predicted positive and predicted negative cases that were truly positive and negative. 

Sensitivity and PPV are often referred to as the producer's and user's accuracy (PA and UA) for the 

positive class (Story and Congalton, 1986), reflecting the generic interests of a map producer to capture 

known locations of occurrence on the map, and of a map user to identify new locations of occurrence 

from the map. PA and UA are directly determined by class omission and commission error, and the 

balance between PA and UA corresponds to the degree to which class prevalence is either over- or 

underestimated. For example, high UA (low commission error) and low PA (high omission error) indicate 

that class prevalence is underestimated by the model and hence positive cases are systematically under-
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represented on the map. Balanced PA and UA implies that the mapped class prevalence is unbiased 

relative to the reference data. Alternative measures of model performance have been devised to 

quantify tradeoffs between omission and commission error, for example by contrasting sensitivity and 

specificity (e.g., the G metric, Kubat and Matwin, 1997) or UA and PA (e.g., the F metric, van Rijsbergen, 

1979) (Table 3.2). 

 

 

Table 3.1. Confusion matrix for a binary classification or presence-absence model. We assume a 
probability sample design and express matrix entries as proportions of the sampled population (e.g., 
map pixels).  
 

  Reference Class  
 

 Positive (+) Negative (-) 
Predicted 

Proportions 

Predicted or 
Mapped Class 

Positive (+) p++ p+- p+· 

Negative (-) p-+ p-- p-· 

 Reference 
Proportions 

p·+ p·-  

 

Table 3.2. Model evaluation or map accuracy metrics for a binary classification or presence-absence 
model. See Table 3.1 for notation. 
 

Metric  Calculation 

Proportion Predicted Correctly (PPC)  p++ + p-- 

Sensitivity  p++ / p·+ 
Specificity  p-- / p·- 
Positive Predictive Value (PPV)  p++ / p+· 
Negative Predictive Value (NPV)  p-- / p-· 
Commission error1 or false positive 

proportion 
 

p+- / p+· 

Omission error1 or false negative 
proportion 

 
p-+ / p·+ 

Producer's accuracy (PA)1  p++ / p·+ = 1 - omission error 
User's accuracy (UA)1  p++ / p+· = 1 - commission error 
G2  (sensitivity · specificity)1/2 
F1,3  (2 · UA · PA) / (UA + PA) 

1Calculated for the positive class 
2Geometric mean of sensitivity and specificity (Kubat and Matwin, 1997) 
3Harmonic mean of UA and PA (van Rijsbergen, 1979) 
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3.4. Algorithm Description and Implementation 

3.4.1. Algorithm Overview 

 The MOSVC algorithm is based on optimization of SVMs using a multi-objective GA, and allows 

for flexible use of available reference data and spatial covariates (Fig. 3.1). Because control of 

classification bias requires consistent estimation of map error or accuracy metrics, we assume the use of 

reference data collected by a probability sampling design, where the probability of including any 

mapped location is known and nonzero. Complex probability sampling designs are accommodated 

through specification of sample inclusion probabilities (Cochran, 1977; Stehman and Czaplewski, 1998). 

Probability samples are partitioned for model training and validation by k-fold cross-validation (CV). All 

probability samples are used for model validation, but we allow a specified subset to be made eligible 

for exclusion from model training, either to provide additional flexibility for model fit or to reduce the 

potential influence of certain samples on model fit. We further allow for the use of ancillary 

training/validation data collected by a non-probability, haphazard, or unknown sampling design. 

Inclusion of ancillary samples may be beneficial, either by eliminating specific sources of error, 

improving results for a rare class that may be inadequately represented in the probability sample, or by 

 
 
Figure 3.1. Multi-objective support vector classification algorithm overview. Classification is based on 
SVMs optimized using a multi-objective GA. Simultaneous optimization of multiple model performance 
metrics results in a set of maps that express different degrees of balance between performance 
objectives.  
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leveraging additional data collected for other purposes or by other means. Ancillary samples are 

included in model training but not model validation, ensuring consistent estimation of model 

performance metrics and map accuracy estimates. Spatial covariates may include both continuous and 

categorical variables, reformatted as numeric indicator or dummy variables. All continuous variables are 

scaled to unit range ([0,1]) to prevent the disproportionate influence of those with larger numeric 

ranges. Variable or feature selection is employed to eliminate noisy or uninformative variables and to 

reduce computational complexity. 

3.4.2. Algorithm Implementation 

 Optimization by GA requires the expression of individual SVM models in the form of a genotype 

subject to selection, genetic recombination, and mutation. We express individual models in the form of 

a bit string chromosome, composed of segments encoding parameter values, variable selection, and 

optional sample exclusion (Fig. 3.2). RBF kernel width (γ), penalty error (C), and penalty error weight (Cw) 

values are encoded as bit string segments whose lengths (coupled with user-specified minimum and 

maximum values) determine the precision with which each parameter is represented by binary 

encoding. Variable selection is encoded as a bit string segment with length equal to the number of 

available covariates, interpreted as a binary mask specifying selection of specific covariates. Optional 

sample exclusion is similarly encoded as a segment with length equal to the number of samples eligible 

for exclusion, indicating specific samples to be excluded from model training. The maximum number of 

samples permitted to be excluded in any individual chromosome is capped at a user specified 

percentage of those eligible for exclusion. The GA is initiated with a uniform random population of a 

user-specified size. 

 Numerous multi-objective GAs have been published and reviewed (Konak et al., 2006). Our 

approach is based on the popular NSGA-II algorithm (Deb et al., 2002) as implemented in the MATLAB 

Global Optimization Toolbox, Release 2014a (The MathWorks, Inc., Natick, Massachusetts, USA). We use 
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the LIBSVM open source software (Chang and Lin, 2011) for SVM training and prediction. The MATLAB 

implementation of NSGA-II acts as a wrapper for model induction using LIBSVM, and includes a 

customized fitness evaluation function. A diagrammatic representation of algorithmic details is provided 

in Fig. 3.3.  

 At each iteration of the search, or for each generation of solutions, NSGA-II differentiates groups 

of parents (P) and offspring (Q) of equal size. Initially all individuals are random and specification of P0 

and Q0 is arbitrary. The chromosome representing each member of the current population is 

decoded into real-valued SVM parameters, a variable selection mask, and a sample exclusion mask. The 

masks are used to extract variables from the original reference data block and to identify training and 

validation samples. Individual models are trained and validated by stratified k-fold CV, with strata 

defined by reference class label. Stratification ensures the uniform distribution of samples belonging to 

each class across folds for consistent evaluation of cost-sensitive SVMs. When available, ancillary 

samples are included in the training data for each of the k iterations of the CV procedure. Data scaling is 

applied at each CV iteration. The entire CV procedure is repeated a user-specified number of times and 

results averaged to reduce estimation uncertainty (Kim, 2009). CV estimates of model performance 

metrics are used to assign objective function values to each member of the current population.  

)QP( tt 

 
 
Figure 3.2. Genetic algorithm chromosome design. Bit string chromosomes are composed of segments 
encoding model parameter values (RBF kernel width, penalty error, and penalty error weight), predictor 
variable selection, and optional training sample exclusion.  
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 In principle, simultaneous minimization of commission and omission error should produce a set 

of solutions expressing a full range of classification bias. In practice, users may wish to find solutions that 

are biased in only one direction, and for any given problem it may be easier to find near-optimal 

alternative solutions if bias is restricted to one direction. We therefore minimize either commission or 

omission error, and a measure of the extent to which class prevalence is biased either high or low. When 

minimizing commission error, models will tend to under-predict class prevalence, and we therefore pair 

 

Figure 3.3. Multi-objective support vector classification algorithm implementation. Following selection 
of training and validation data, SVMs are fit and predictions made using the LIBSVM open-source 
software. Objective function values are estimated by cross-validation, and serve as the basis for 
population sorting, parent selection, and genetic operations embedded within the nondominated 
sorting genetic algorithm (NSGA-II). 
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commission error with an objective function based on the ratio of reference to predicted class 

prevalence: 

1) f1 = commission error = p+- / p+· 

2) f2 = |p·+ / p+· - 1| + 1 

(following the notation used in Tables 3.1 and 3.2). For solutions that underestimate prevalence, the 

ratio p·+ / p+· is minimized by obtaining predicted prevalence approaching the reference prevalence, 

resulting in a ratio approaching 1. However, ratios <1 will occur for solutions within the GA population 

that overestimate class prevalence. We assume that solutions biased in the wrong direction may be 

valuable for the evolution of favorable population traits if their bias is relatively small. For solutions 

biased toward overestimation, Eq. 2 essentially reassigns an objective function value >1, and we permit 

these solutions to persist in the population. By simultaneously minimizing Eqs. 1 and 2, we obtain a set 

of nondominated models with minimum commission error or maximum UA for different degrees of class 

under-representation. Alternatively, to obtain models expressing minimum omission error or maximum 

PA for different degrees of class over-representation, we simultaneously minimize omission error and an 

objective function based on the ratio of predicted to reference class prevalence: 

3) f1 = omission error = p-+ / p·+ 

4) f2 = |p+· / p·+ - 1| + 1 

We additionally constrain proportional over- or under-representation to a reasonable range to prevent 

an accumulation of undesirable solutions. A solution is considered undesirable if the predicted 

prevalence of either class differs from the reference prevalence by more than a factor of six (an arbitrary 

value found suitable for the problems we consider here).  

 Once objective functions have been evaluated for all members of the current population 

, NSGA-II sorts solutions into a sequence of nondominated fronts (F1, F2, ...). The first front 

F1 includes all nondominated solutions from the total population. Once F1 is obtained, these solutions 

 tt QPp 
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are removed from the population, and the next front F2 is obtained as nondominated solutions from the 

reduced population. The process is iterated until all population members have been assigned to a front. 

NSGA-II subsequently identifies one half of the population as the next generation of parents (Pt+1), 

selecting solutions from successive fronts. The maximum number of parent solutions selected from F1 is 

constrained to a user-specified proportion of the total population in order to promote population 

diversity throughout algorithm execution. Additional fronts are added to Pt+1 in succession until one 

cannot be accommodated in its entirety. For the front that is only partially accommodated, solutions are 

selected from sparse or less crowded portions of the front to further promote population diversity. 

 The next generation of offspring (Qt+1, equal in size to Pt+1) are obtained through genetic 

recombination and mutation of parent solutions (Fig. 3.4). A user-specified proportion of offspring are 

produced through genetic recombination of a pair of parent solutions, and the remainder through 

mutation of a single parent. Individual parents are identified by tournament selection (Zäpfel et al., 

2010), where a user-specified number of solutions are randomly selected from Pt+1 and the best is 

selected as a parent. Better solutions lie on lower ranked fronts and in less crowded regions along their 

front. Genetic recombination may occur through one of several crossover operations (Fig. 3.4a) in which 

an offspring is constructed from one or more bit string segments copied from each parent. Different 

recombination operations determine the manner in which information is exchanged and the potential 

degree of novelty introduced through exchange (Zäpfel et al., 2010). An offspring produced by mutation 

is a copy of its parent subjected to a mutation operation that switches individual bit values with a user-

specified probability (Fig. 3.4b). Once offspring have been produced, parent and offspring chromosomes 

 are decoded and the process repeats. )QP( 1t1t  
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 Stopping criteria are evaluated at each generation after solutions are sorted into nondominated 

fronts. The algorithm is assumed to have converged to a close approximation of the Pareto front when 

the change in spread of solutions along F1 averaged over a user-specified number of generations is less 

than a user-specified threshold. Alternatively, the algorithm stops when the generation count exceeds a 

user-specified maximum. Once stopped, members of F1 are retrained using all available training samples 

and returned as a set of alternative solutions expressing tradeoffs between accuracy and bias objectives. 

3.5. Example Applications: Study Area and Methods 

3.5.1. Study Area 

 We demonstrate MOSVC by mapping tree species occurrence and canopy disturbance in the 

temperate Atlantic Northern Forest of Maine, U.S.A. The Northern Forest of the northeastern U.S. 

encompasses roughly 11 Mha within a transition zone between the northern boreal forest and the 

southern temperate deciduous-dominant forest (Likens and Franklin, 2009), including ~4 Mha of nearly 

contiguous, undeveloped forestland across northern and western Maine. Tree species diversity is 

relatively high as the northern limit of southern species overlaps with the southern limit of northern 

species (Nightingale et al., 2008). Our ~1.9 Mha study region (Fig. 3.5) was defined by the overlap of 

 

Figure 3.4. Genetic recombination and mutation operations. Graphical depiction of a) genetic 
recombination and b) genetic mutation operations within MOSVC. 
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Landsat images used to map species occurrence and canopy disturbance in northwestern Maine. 

Topography is generally flat or rolling with occasional low mountains and an extensive network of rivers, 

lakes, and wetlands. Roughly 90% of forestland is privately owned, and private lands are predominantly 

managed for commercial production.  

3.5.2. Tree Species Occurrence 

 For the purposes of demonstrating and evaluating MOSVC, we mapped the occurrence of black 

ash (Fraxinus nigra), eastern white pine (Pinus strobus), and red spruce (Picea rubens). Black ash is a key 

cultural and economic resource of Maine's Native American communities because its wood is uniquely 

suited to basket weaving. Black ash is threatened by the invasive emerald ash borer (Agrilus planipennis) 

(Herms and McCullough, 2014; Ranco et al., 2012) and maps of its distribution are needed to better 

evaluate the existing resource and to plan response. Eastern white pine and red spruce are economically 

important timber species and the primary and alternate hosts of the pine leaf adelgid (Pineus pinifoliae), 

a native insect whose life cycle depends on intergenerational migration between primary and alternate 

host trees. Pine adelgid causes only minor damage to spruce but can kill up to 100% of new pine shoots 

during heavy infestations, leading to significant growth reduction and mortality (Balch and Underwood, 

 
 
Figure 3.5. Study area. Northern Maine, U.S.A. study area encompassing ~1.9 Mha of forestland. State 
and provincial boundaries obtained from the National Atlas of the U.S. (Political Boundaries) and the 
Atlas of Canada (National Frameworks Data, Census Subdivisions and Population Ecumene). 
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1950; Dimond and Bishop, 1968). For the first time since the early 1960s, a significant outbreak is 

spreading within northern Maine, with observable damage centered in our study area (Currier et al., 

2015). Maps of pine and spruce distributions are needed to direct field assessments of damage, evaluate 

landscape risk factors, and forecast outbreak development. 

3.5.2.1. Reference Data and Spatial Covariates 

 Predictions of species occurrence are based on reference data provided by the USDA Forest 

Service Forest Inventory and Analysis (FIA) Program. The FIA Program provides quality-assured 

measurements of forest attributes from a national network of field plots adhering to an equal-

probability sampling design. The contemporary design is based on a hexagonal tessellation, with one 

plot randomly located within each 2428 ha tile (McRoberts et al., 2005). The FIA program maintains the 

confidentiality of true plot locations to protect the privacy of landowners and to preserve plot integrity 

(Smith, 2002). True locations were made available for use through a collaborative agreement with the 

USFS Northern Research Station FIA Program. 

 Spatial covariates included multispectral imagery, terrain attributes, and climate surfaces 

(details provided in Appendix C). We sought to obtain Landsat Thematic Mapper (TM) or Enhanced 

Thematic Mapper Plus (ETM+) images acquired at different times throughout the growing season in 

order to exploit species-specific foliar phenology. Frequent and extensive cloud cover necessitated the 

collection of imagery across multiple years. We selected imagery from the early 2000s when Landsat 5 

and Landsat 7 were both fully operational. We obtained eight nearly cloud- and snow-free images 

acquired between late April and early October, 2001-2006. Since 1999, Maine FIA data have been 

collected in rolling 5-year inventory cycles, with 20% of plots surveyed annually. Due to low prevalence 

of ash and pine within our study area, we used FIA observations collected over a full inventory cycle (i.e., 

2002-2006) coincident with the acquisition of selected Landsat images. Additional spatial covariates 

included climate and terrain attributes thought to be relevant to tree establishment or growth. Terrain 
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data included 10 morphometry, 8 lighting/visibility, and 11 hydrology variables calculated from the 1 

arc-second (30 m) NED and the National Hydrography Dataset (NHD). Climate data included 17 variables 

mapped at approximately 1 km spatial resolution and representing the 1961-1990 climate normal 

period, obtained from the USDA Forest Service Rocky Mountain Research Station, Moscow Forestry 

Sciences Laboratory.  

 Covariate values were extracted at 712 forested FIA plots lying within our study area. Under the 

modern FIA inventory design, field plots consist of a center subplot with three satellite subplots 

(McRoberts et al., 2005), sampling an area loosely equivalent to a 3x3 neighborhood of 30 m pixels 

(Cooke, 2000). Landsat and terrain predictor data were compiled by averaging pixels within 3x3 

neighborhoods surrounding plot centers; climate predictor data were extracted as 1 km pixel values. For 

the purposes of demonstrating and evaluating our classification method, we excluded locations where 

pixel neighborhoods were impacted by apparent forest cover change during the 5-year observation 

period (299 samples). We also masked cloud and snow cover from affected images, causing loss of data 

for certain acquisition dates at some plot locations. SVMs are generally incapable of working with 

incomplete predictor data, and rather than incorporate an additional data imputation algorithm, we 

elected to exclude reference locations with missing data (64 samples). Remaining plot locations yielded 

a training/validation data set consisting of 349 samples.  

 For black ash, FIA tree measurements were used to produce a binary response variable 

indicating presence/absence. For both pine and spruce, we used tree measurement data to calculate 

relative abundance as a proportion of estimated live aboveground biomass (of stems >2.54 cm diameter 

measured at 1.37 m) and produced binary response variables indicating presence at 5% or greater 

relative abundance (an arbitrary threshold imposed to exclude low levels of abundance for the study of 

pine adelgid dynamics).  
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3.5.2.2. Algorithm Execution 

 For each species occurrence problem, we present two sets of multi-objective optimization 

outcomes: 1) simultaneous minimization of Eqs. 1 and 2 (maximization of UA with minimal class under-

representation), and 2) simultaneous minimization of Eqs. 3 and 4 (maximization of PA with minimal 

class over-representation). Each optimization problem was repeated 5 times to demonstrate 

stochasticity in MOSVC outcomes. We compare multi-objective outcomes with the results of single-

objective optimization using either PPC, F, or G (Table 3.2) as the objective function, each repeated 5 

times using a single-objective GA (MATLAB Global Optimization Toolbox, Release 2014a). 

 All optimization problems included parameter and feature selection. Parameter values were 

constrained within reasonable ranges (log(γ) ϵ [-4,1]; log(C) ϵ [-1,3]; log(CW) ϵ [1,2]). For pine and red 

spruce we executed additional MOSVC runs with certain reference samples eligible for exclusion during 

model training. For the maximization of UA with minimal class under-representation (Eqs. 1 and 2), we 

allowed any positive case (relative abundance ≥5%) to be excluded from model training under the 

assumption that this would provide greater flexibility in the search for models that under-predict 

prevalence. For the maximization of PA with minimal class over-representation (Eqs. 3 and 4), we 

assumed that exclusion of certain negative cases would similarly provide greater flexibility in the search 

for models that over-predict prevalence. We therefore allowed cases with relative abundance <5% but 

>0 to be eligible for exclusion under the reasoning that these specific cases may be most restrictive of 

predicted distributions. All reference samples were used for model validation in a 10-fold, 10 times 

repeated CV. The GA operated on a population of 500 chromosomes, with a maximum of 20% 

maintained on the approximate Pareto front. Parent chromosomes were selected by tournament with 

10 participants. 70% of offspring were generated by scattered crossover of parent chromosomes; 30% 

were generated by mutation, with a mutation rate of 2.5%. Scattered crossover and a relatively high 

mutation rate promoted population diversity and prevented early convergence. Additionally, we 
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specified convergence criteria that ensured execution of >100 generations, up to a maximum of 300. 

Single-objective optimization problems were executed using the same values for applicable settings, but 

returned a single solution rather than a set of Pareto-optimal solutions.  

3.5.3. Forest Canopy Disturbance 

 Within the commercial forests of northern Maine, logging represents the most prevalent and 

widespread form of disturbance, with timber predominantly removed by mechanized partial harvesting. 

Clearcutting accounts for less than 5% of annual harvest area (Maine Forest Service, 2014, 2005). Within 

a typical partial harvest, trees are removed within and adjacent to machine trails, with light or negligible 

removal between trails. Although partial harvests of low to moderate intensity maintain quasi-

continuous canopy cover, contemporary rates of partial harvesting cause rapid loss and fragmentation 

of intact mature forest, accumulation of small regenerating forest patches, and a corresponding increase 

in edge-affected forest area (Legaard et al., 2015). For wildlife species or forest values that are 

potentially sensitive to the extent or configuration of either intact mature or early successional forest 

conditions, management may require knowledge of past disturbance trends or regular monitoring of 

ongoing harvest activity. Here we demonstrate MOSVC within a multispectral change detection context 

by mapping forest canopy disturbance. 

3.5.3.1. Reference Data and Spatial Covariates 

 Landsat TM images acquired during the summers of 2004 and 2007 were selected for 

disturbance mapping (details provided in Appendix C). A 3-year interval between relatively cloud-free, 

leaf-on Landsat images is not uncommon for this region (Legaard et al., 2015), contributing additional 

difficulty to disturbance detection due to post-disturbance vegetation growth within the observation 

interval (Jin and Sader, 2005). Patterns of cloud cover within these specific images afforded an 

opportunity to demonstrate the response of MOSVC to a common source of error in forest change 

detection using multispectral imagery. Cloud cover in the post-disturbance image and cloud shadow in 
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the pre-disturbance image introduced patterns of spectral change similar to those caused by canopy 

disturbance. Because rates of canopy disturbance are typically low, even relatively small amounts of 

cloud- or shadow-induced error can introduce an intolerably large amount of uncertainty and bias in a 

forest disturbance map (Huang et al., 2010). Automated masking is difficult due to the highly variable 

spectral characteristics of cloud- and shadow-affected pixels (Huang et al., 2010; Zhu and Woodcock, 

2012), and cloud cover remains a problem for change detection applications. Small cumulus clouds and 

cloud shadows were sparsely scattered within the 2004 image. Stratocumulus clouds were present over 

a much larger portion of the 2007 image, with cloud conditions ranging from entirely opaque to largely 

transparent. To evaluate the performance of MOSVC for change detection under cloudy conditions, we 

implemented a reference sampling procedure with the intent of adequately representing 2007 cloud 

cover. The much less prevalent 2004 cloud/shadow conditions were not adequately represented, and 

we instead incorporated an ancillary, non-probability sample to reduce shadow-induced error. 

 Reference data were compiled as a stratified random sample with image strata defined by 

multispectral change patterns revealed by the iteratively-reweighted multivariate alteration detection 

transformation (IR-MAD; Canty and Nielsen, 2008). A threshold was applied to the IR-MAD component 

that best represented forest disturbance patches to define a disturbance stratum containing 19.7% of 

forest pixels. Most were not impacted by any discrete disturbance event, but nonetheless displayed 

broadly similar patterns of spectral change (including 2007 cloud cover). A random sample of 500 

training/validation locations were selected from the disturbance stratum. All forest pixels not included 

in the disturbance stratum (including 2004 cloud shadow) were allocated to a second stratum from 

which 250 locations were randomly selected. Inclusion probabilities were calculated as the ratio of 

stratum sample size to total stratum size. To quantify the influence of cloud and cloud shadow on 

predictive accuracy, we drew an additional random sample of 100 reference locations from 

cloud/shadow masks generated for each image.  
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 Reference labels were assigned by visual interpretation of individual sample pixels in the 

Landsat image pair (Cohen et al., 2010, 1998; Legaard et al., 2015; Sader and Legaard, 2008). A trained 

image interpreter recorded the occurrence of a canopy disturbance at reference locations provided 

spectral changes, image texture, and other contextual cues were consistent with either harvesting or 

natural canopy disturbance. Natural disturbance at the pixel scale was extremely rare, and although 

harvesting was generally readily apparent, pixel-level identification of disturbance could be difficult due 

to prior disturbance, regrowth during the 3-year observation interval, or heterogeneous forest 

conditions. The interpreter indicated reference locations for which confidence was low, and these were 

made eligible for exclusion from model training. Finally, reference locations affected by cloud or shadow 

were labeled as disturbed if disturbance was visually discernible. Locations were labeled as undisturbed 

if opaque cloud or dark shadow obscured the state of the forest canopy. We expected MOSVC to resolve 

disturbance if discernible to the interpreter, regardless of cloud/shadow conditions. 

 To model and map pixel-level disturbance we used both individual pixel values and 3x3 

neighborhood statistics as predictor variables. Use of neighborhood information reduced fine-scale 

spatial variability in disturbance maps and lessened the need for subsequent spatial filtering, but at the 

cost of a larger number of predictor variables. From both 2004 and 2007, raw digital numbers for TM 

bands 1-7 were obtained for individual sample pixels and summarized within 3x3 neighborhoods. 

Summary statistics included the mean, median, standard deviation, and range of forest pixels, yielding a 

total of 70 predictor variables.  

3.5.3.2. Algorithm Execution  

 For the forest disturbance problem, we present a single set of multi-objective optimization 

outcomes resulting from the simultaneous minimization of Eqs. 1 and 2, equivalent the maximization of 

UA with minimal class under-representation. For the purposes of evaluating patterns of forest 

disturbance (e.g., harvest patch characteristics), under-representation may be preferable to over-
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representation because interannual variability in forest phenology or canopy condition tends to 

introduce undesirable patterns of commission error as predicted class prevalence increases. Although 

the characterization of error patterns is itself of interest, for the purpose of demonstrating use of 

MOSVC we present only the single set of results, repeated 5 times. 

 Optimization included parameter selection, feature selection, and exclusion of low-confidence 

samples. We used a 10 times repeated 5-fold CV and the same GA settings as those used for species 

occurrence modeling. 2004 cloud shadow was in fact consistently mapped as forest disturbance, due to 

its lack of representation in the training/validation sample. From a rapid visual inspection, we identified 

a set of 30 ancillary reference locations situated in false change patches caused by 2004 shadow. 

Ancillary data comprised a non-probability, purely haphazard sample obtained to reduce shadow-

induced error. Ancillary data were included in another set of 5 MOSVC runs, but with GA populations 

initialized using the final populations from the prior set of runs. The MOSVC algorithm was iterated over 

an additional 100 generations and outcomes were compared with prior runs. 

3.6. Example Applications: Results 

3.6.1. Tree Species Occurrence 

 The results of a single black ash run demonstrate relationships between model performance 

metrics for each type of optimization problem (Fig. 3.6). Model performance estimates described a 

negative relationship between UA and class prevalence (the UA Pareto front, Fig. 3.6a). Higher UA 

estimates were attained by reducing the predicted prevalence of the positive class to include only those 

areas where true positive cases were predictable with higher accuracy. The UA front included solutions 

whose estimated performance varied from ~60% UA at 100% of reference prevalence to 100% UA at 

~40% of reference prevalence. The former was an unbiased outcome, with UA equal to PA and predicted 

prevalence equal to reference prevalence; the latter was a heavily biased outcome, with high UA and 

low PA indicating that the corresponding map would identify a subset of true ash locations with high 
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accuracy. Performance estimates described a positive relationship between PA and class prevalence (the 

PA Pareto front, Fig. 3.6b), with higher PA attained by increasing predicted prevalence to include more 

true positive cases. The PA front included solutions that varied from ~65% PA at 100% reference 

prevalence to 100% PA at ~250% reference prevalence. The latter was a biased outcome where all true 

positive cases were predicted correctly, but at the expense of greater commission error and a more than 

doubling of class area. 

 Model optimization by MOSVC is based on CV estimates of objective function values that are 

subject to uncertainty, particularly when training/validation samples are few or classes are heavily 

imbalanced (e.g., 6.6% of reference plots contained black ash). To evaluate CV estimation uncertainty, 

we replicated the stratified, repeated k-fold CV procedure 100 times using different random partitions. 

We used kernel density estimation to summarize CV variability for each MOSVC model, applying a 

Gaussian kernel to replicated CV estimates with optimal bandwidth provided by Bowman and Azzalini 

(1997, page 37). We iteratively evaluated threshold density values to obtain a 90% volume contour from

 
 
Figure 3.6. Black ash occurrence - model performance and estimation uncertainty. MOSVC outcomes 
and associated uncertainty (shaded) expressing tradeoffs between a) UA and under-representation of 
ash occurrence as a proportion of reference prevalence, and b) PA and over-representation of ash 
occurrence. Also shown for selected models are replicate CV estimates used to derive uncertainty 
envelopes by kernel density estimation. 
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the density estimates, representing approximately 90% of the estimation uncertainty introduced by 

random partitioning of training/validation data.  

For black ash, the 90% contour for any individual model typically spanned about 10% UA or PA, 

and about 10-20% of class prevalence. The superposition of 90% contours (Fig. 3.6, shaded) 

demonstrated aggregate uncertainty around MOSVC outcomes, primarily caused by the distribution of a 

small number of positive cases across CV folds. UA and PA fronts were situated near the more favorable 

edge of the uncertainty envelope defined by 90% contours because UA and PA estimates returned by 

MOSVC were biased high. Use of CV estimates for optimization presumably caused over-estimation of 

UA and PA because the algorithm favored models with high estimated accuracy under the specific CV 

partitioning used during model training/validation. Prevalence estimates were on average nearly equal 

to mean CV estimates obtained by repartitioning. The magnitude of CV uncertainty reflects reference 

data availability, and for black ash uncertainty was relatively high, as was the tendency to over-estimate 

class accuracy. For two solutions lying near one another on either front, CV uncertainty implies that 

performance estimates may not reflect true differences in mapped distributions. However, solutions 

that differ in estimated performance by an amount that exceeds apparent levels of CV uncertainty will 

produce maps with substantively different error characteristics.  

 In our study area black ash is thought to be most commonly distributed within deciduous and 

mixed forested wetland communities occupying basins, drainage bottoms, or groundwater seepage sites 

along gentle slopes (Maine Forest Service, 2008; Maine Natural Areas Program, n.d.). A map of black ash 

with predicted prevalence equal to reference prevalence generally conformed to these patterns, even 

though estimated class accuracy was only 61% (Fig. 3.7a). In comparison, a map with higher UA could be 

more desirable for certain applications, including the identification of areas with trees suitable for 

basket making, because their occurrence could be verified with greater efficiency. A model with 

predicted prevalence equal to one half of reference prevalence had an estimated UA of 95% (Fig. 3.6a). 
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In the corresponding map (Fig. 3.7b), ash occurrence was generally more consolidated within a smaller 

number of patches. 

  

 
 
Figure 3.7. Black ash occurrence maps. Predicted occurrence of black ash from MOSVC models with 
performance estimates of a) 61% UA and predicted prevalence equal to reference prevalence, and b) 
95% UA and predicted prevalence equal to one half reference prevalence. Predicted occurrence is 
superimposed over the topographic position index (1 km neighborhood radius; Guisan et al., 1999), with 
lighter areas indicating upper slopes and hilltops and darker areas indicating lower slopes and drainage 
bottoms. Hydrographic features were obtained from the National Hydrography Dataset. c) Landsat TM 
image acquired on June 10, 2004 (bands 4, 5, and 3 shown in red, green, and blue). 
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 For black ash, five MOSVC runs produced parallel UA fronts (Fig. 3.8a). Differences in estimated 

performance were modest across all levels of performance, although aggregate uncertainty was 

elevated. PA fronts displayed greater variability (Fig. 3.8b). MOSVC produced unbiased models in all 

runs, but PA fronts were fully extended in only two runs, and 100% PA was achieved at very different 

levels of prevalence. Run-to-run variability was greatest at high PA but pronounced at all levels of 

performance, with the estimated accuracy of unbiased models ranging from 64-76%. Greater variability 

between fronts suggests that the simultaneous optimization of PA and prevalence was a more difficult 

problem, leading to more variable solutions.  

 We compared MOSVC outcomes to performance estimates of models derived from single-

objective optimization of different model training criteria. Single-objective outcomes were plotted 

alongside either UA or PA fronts depending on whether they corresponded to a proportional under- or 

over-representation of prevalence (single-objective uncertainty envelopes not shown for visual clarity). 

Use of PPC as a training criterion resulted in gross under-representation of black ash prevalence (18-30% 

of reference prevalence) (Fig. 3.8a). The G metric produced solutions with very high predicted class 

 
 
Figure 3.8. Black ash occurrence - replicate runs compared to single-objective optimization outcomes. 
MOSVC outcomes from five replicate runs, and associated uncertainty (shaded), expressing tradeoffs 
between a) UA and under-representation of ash occurrence as a proportion of reference prevalence, 
and b) PA and over-representation of ash occurrence. Also shown are performance estimates of models 
obtained by single-objective optimization. 
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prevalence (213-290% of reference prevalence) (Fig. 3.8b). The F metric produced less biased outcomes 

although with a substantial over-representation of class prevalence nonetheless (130-146% of reference 

prevalence). Optimization by either F or G (but not PPC) produced solutions that were comparable to a 

subset of MOSVC solutions. 

 MOSVC outcomes followed different patterns for eastern white pine. UA fronts from runs 

employing parameter and feature selection, but no sample exclusion, included unbiased solutions but 

were truncated at <85% UA (Fig. 3.9a). UA fronts therefore offered limited representations of tradeoffs 

between accuracy and bias. CV uncertainty around UA fronts was comparable to that of black ash, 

presumably because positive cases were similarly rare (13.8% of reference plots). PA fronts however, 

were less variable with reduced uncertainty around CV estimates of class accuracy (Fig. 3.9b). PA fronts 

followed similar trajectories from about 70% PA at 100% reference prevalence to 100% PA at about 

220% reference prevalence. The results of single-objective optimization were qualitatively similar to 

those for black ash, with PPC and G resulting in under- and over-estimation of prevalence. Use of F 

generally resulted in over-estimation (Fig. 3.9b), but also produced an unbiased model in one run (Fig. 

3.9a). With positive cases eligible for exclusion from model training, MOSVC produced UA fronts ranging 

from ~70-75% UA at 100% of reference prevalence to 100% UA at ~40-55% of reference prevalence (Fig. 

3.9c). UA fronts were no longer truncated, estimated performance was improved (i.e., greater UA at any 

given prevalence), and CV variability was generally reduced. The effects of sample exclusion on PA fronts 

were less pronounced, presumably because only 19 of 301 negative cases were made eligible for 

exclusion (those with nonzero abundance). 

 

  



111 

 Red spruce presented a different problem than either pine or black ash, with a reference 

prevalence of 59% and a reasonable balance between positive and negative cases. Run-to-run variability 

was lower and CV estimation uncertainty was greatly reduced (i.e., 90% contours for individual solutions 

typically spanned <2% predicted accuracy or prevalence) (Fig. 3.10). In the absence of sample exclusion, 

UA and PA fronts included unbiased models with estimated class accuracies of ~79-84%. UA fronts 

extended to 100% accuracy at roughly 30-50% of reference prevalence (Fig. 3.10a). Two of the five PA 

 
 
Figure 3.9. Eastern white pine occurrence - replicate runs compared to single-objective optimization 
outcomes. MOSVC outcomes from five replicate runs, and associated uncertainty (shaded), expressing 
tradeoffs between a) UA and under-representation of pine occurrence as a proportion of reference 
prevalence, and b) PA and over-representation of pine occurrence, obtained by parameter and feature 
selection but no sample exclusion. Also shown are performance estimates of models obtained by single-
objective optimization. The five replicate runs shown in c) and d) were obtained as before but with a 
subset of samples made eligible for exclusion from model training. 
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fronts were truncated at ~85% accuracy, but three extended to nearly 100% accuracy at slightly less 

than 160% of reference prevalence (the limit imposed on feasible solutions based on the predicted 

prevalence of negative cases) (Fig. 3.10b). Patterns of single-objective outcomes differed from those of 

pine or ash. Use of PPC resulted in solutions with little bias (103-105% of reference prevalence) (Fig. 

3.10b). Use of G tended to as well (Fig. 3.10b), although one run produced a substantial underestimation 

of prevalence (84% of reference prevalence) (Fig. 3.10a). F produced results with a consistent and 

comparatively strong negative bias (75-80% of reference prevalence) (Fig. 3.10a). Use of sample 

 
 
Figure 3.10. Red spruce occurrence - replicate runs compared to single-objective optimization 
outcomes. MOSVC outcomes from five replicate runs, and associated uncertainty (shaded), expressing 
tradeoffs between a) UA and under-representation of red spruce occurrence as a proportion of 
reference prevalence, and b) PA and over-representation of red spruce occurrence, obtained by 
parameter and feature selection but no sample exclusion. Also shown are performance estimates of 
models obtained by single-objective optimization. The five replicate runs shown in c) and d) were 
obtained as before but with a subset of samples made eligible for exclusion from model training. 
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exclusion improved MOSVC outcomes, with both UA and PA fronts consistently shifted toward more 

favorable solutions, although the added complexity of the optimization problem did result in somewhat 

greater run-to-run variability (Figs. 3.10c and 3.10d).  

3.6.2. Forest Canopy Disturbance 

 Reference data for disturbance models were obtained as a stratified random sample. After 

calculating inclusion probabilities by stratum and weighting observations accordingly, we obtained a 

reference prevalence of 7.6%. MOSVC produced unbiased solutions with estimated disturbance class 

accuracies of 90-92% (Fig.11). UA fronts displayed a very consistent relationship between UA and 

predicted prevalence to about 99% UA and 75-80% of reference prevalence. CV uncertainty was 

relatively low, with 90% contours typically spanning 1-2% UA and 2-4% prevalence. CV estimates of UA 

were biased high, but typically by less than 1%. Execution of MOSVC included sample exclusion, with 70 

low-confidence or ambiguous interpretations made eligible for exclusion. Sample exclusion had a minor 

(though consistently positive) effect on model performance estimates. 

  

 
 
Figure 3.11. Forest canopy disturbance - replicate runs. MOSVC outcomes from five replicate runs, and 
associated uncertainty (shaded), expressing tradeoffs between UA and under-representation of canopy 
disturbance as a proportion of reference prevalence.  
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 Disturbance maps with different levels of predicted prevalence demonstrated differences in 

spatial patterns that were clearly attributable to omission and commission error, visible by inspection of 

TM imagery (Fig. 3.12). This was most apparent when comparing areas that were subject to different 

 
 
Figure 3.12. Forest disturbance maps. Predicted distributions of forest canopy disturbance for two 
example areas subjected to different patterns and intensities of disturbance. a-b) 2004 Landsat TM 
image (bands 4, 5, and 3 shown in red, green, and blue). c-d) 2007 TM image. e-f) Disturbance predicted 
from two MOSVC models with different patterns of error and different levels of predicted class 
prevalence. At an estimated 92% UA, predicted prevalence was nearly equal to reference prevalence 
(cyan); at an estimated 96% UA, predicted prevalence was reduced to about 90% of reference 
prevalence (yellow, superimposed over cyan).  
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levels of disturbance intensity. For visual comparison, we superimposed a biased, low-prevalence class 

distribution (UA = 96.0%, PA = 86.6%, predicted prevalence = 90.2% of reference prevalence) over a 

nearly unbiased one (UA = 92.0%, PA = 91.6%, predicted prevalence = 99.6% of reference prevalence). 

The biased predictions under-represented disturbance due to elevated levels of omission error. 

Omission errors were concentrated in areas affected by low-intensity disturbance (Fig. 3.12c), where the 

biased predictions produced a more disconnected class distribution (Fig. 3.12e). In an area impacted by 

harvesting at greater intensity (Fig. 3.12d), the biased predictions produced a much more adequate 

representation of disturbance patches, whereas the unbiased predictions marginally over-represented 

the extent and connectivity of disturbance due to greater commission error (Fig. 3.12f). This was also an 

area in which subtle differences in canopy conditions introduced spectral change where no discrete 

disturbance occurred. The unbiased predictions included relatively well-connected patches of 

commission error, whereas commission error within the biased predictions generally occurred as small 

groups of pixels that could be removed by spatial filtering.  

 Cloud cover in the 2007 image and cloud shadows in the 2004 image were expected to 

introduce commission error. Despite variable viewing conditions caused by 2007 cloud cover, 

disturbance maps included only small and scattered patches of cloud-induced commission error (Fig. 

3.13, dashed lines). A random sample of 100 locations drawn from the 2007 cloud/shadow mask were 

predicted with 100% accuracy in the MOSVC maps shown in Fig. 3.13. Disturbance was accurately 

predicted beneath cloud cover provided it was partially transparent in the infrared bands. However, 

cloud shadows in the 2004 image introduced distinct patches of commission error (Figs. 3.13a and 3.13c, 

solid lines). From a random sample of 100 reference locations drawn from the 2004 cloud/shadow mask, 

13% of predictions were incorrect, all commission errors contributed by shadow. Shadow impacted a 

small fraction of mask pixels and a very small fraction of forested pixels, but visibly shadowed pixels 

were almost always predicted in error. We subsequently collected an ancillary, haphazard sample of 30 
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observations from shadow-induced false-positive pixel locations to supplement MOSVC training data. 

Comparing outcomes with equal predicted class prevalence (Figs. 3.13c and 3.13d), the ancillary training 

data reduced shadow-induced commission error, with only 3% of the 2004 cloud/shadow reference 

locations predicted in error. The ancillary data had a similar positive impact on MOSVC outcomes across 

the full range of estimated UA or class prevalence, based on similar reductions in cloud/shadow 

reference data error.  

 
Figure 3.13. Cloud- and shadow-induced error in forest disturbance maps. Example area demonstrating 
the effects of cloud and cloud shadow in a) the 2004 Landsat TM image (bands 4, 5, and 3 shown in red, 
green, and blue) and b) the 2007 TM image on commission error patterns in c) a nearly unbiased map 
with estimated 92% UA. To reduce commission error caused by 2004 cloud shadow, an ancillary sample 
of shadowed locations was introduced into model training, with the outcome shown in d) a nearly 
unbiased map with estimated 91.6% UA.  
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3.7. Discussion 

 MO-SVM performs heuristic optimization of SVMs within a multi-objective framework, providing 

simultaneous control of both classification error and bias. Applied to three different species occurrence 

problems, MOSVC produced diverse sets of alternative models and maps including solutions with zero 

bias. In contrast, single-objective optimization using a similar GA produced inconsistent and biased 

outcomes because individual training metrics could not control both omission and commission error. Of 

the three training metrics considered for single-objective optimization (F, G, and PPC; Table 3.2), we 

might have expected F to consistently produce the least biased outcomes across problems with different 

levels of reference prevalence, since F balances UA against PA. PPC and G can clearly produce heavily 

biased outcomes when positive and negative reference cases are imbalanced, as was the case for black 

ash and pine (Figs. 8 and 9). Yet F tended to produce a substantial positive bias in these problems as 

well. For red spruce, where reference cases were more nearly balanced, F produced a comparatively 

strong negative bias while G and PPC tended to produce a small positive bias (Fig. 3.10). MOSVC 

controlled both class accuracy and bias by design, and always produced an unbiased solution. The multi-

objective optimization framework also produced alternative solutions under the expectation that 

different tradeoffs between class accuracy and bias may be more or less beneficial for any specific map 

use.  

 To obtain an accurate and complete representation of tradeoffs between accuracy and bias, 

multi-objective optimization requires a statistical learning process capable of generating diverse 

solutions through the controlled manipulation of model structure. SVMs are well-suited in the sense 

that manipulation of a few free parameters can dramatically alter the geometry of decision boundaries 

(Brereton and Lloyd, 2010). Moreover, the effect of different SVM parameter combinations is partially 

dependent on covariate selection. Although SVMs have performed well in a wide variety of remote 

sensing applications (Mountrakis et al., 2011) including tree species distribution and forest cover or 
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disturbance mapping (Gavier-Pizarro et al., 2012; e.g., Guo et al., 2005; Huang et al., 2008; Kuemmerle 

et al., 2009), the complexity of SVM model specification could be considered a weakness relative to 

other ML approaches whose outcomes may be less affected by user-determined settings. In a multi-

objective context, however, sensitivity of decision boundaries to parameter and variable selection is a 

strength. For species occurrence problems in particular, a wide range of model performance 

characteristics were obtained by through the selection of different combinations of parameter values 

and variable subsets. On the other hand, parameter and variable selection by stochastic search could 

produce different model specifications with very similar performance characteristics. Model 

interpretation is therefore made difficult both through the use of a "black box" ML algorithm and 

stochastic optimization of algorithm performance. Although post-hoc analyses of response and 

covariate values could be used to illuminate some important relationships between variables (e.g., 

Goldstein et al., 2014), the strength of MOSVC is clearly not in model interpretation, but rather the 

reduction of prediction error and control of its characteristics. 

 Within a single run the MOSVC algorithm evaluated a very large number of SVM models, but did 

not always yield a set of solutions expressing a full range of tradeoffs between performance objectives. 

Most notably, MOSVC initially failed to return pine occurrence models with high UA (Fig. 3.9a). Further 

elaboration of the GA chromosome (Fig. 3.2) and differentiation of training and validation data (Fig. 3.3) 

allowed for certain reference samples to be identified for possible exclusion from model training. 

Sample exclusion offered another means of affecting decision boundaries by changing which samples 

were available to define the SVM margin. In principle all samples could be made eligible for exclusion, in 

which case the algorithm could select an optimal subset. However, sample exclusion lengthens the GA 

chromosome and adds complexity to the search space, potentially impeding convergence to near-

optimal solutions. For pine the consequences of sample exclusion were mixed. UA fronts were extended 

to ~100% accuracy and performance levels were generally improved, but PA fronts were little affected 
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(Fig. 3.9). Sample exclusion improved both UA and PA fronts for red spruce, although benefits were 

most pronounced for PA fronts (Fig. 3.10). Depending on the problem, selection of a subset of training 

samples can clearly improve SVM performance, but optimal sample selection has received little 

attention compared to optimal feature selection. Within a remote sensing context, however, it has long 

been recognized that SVMs can be well-trained with the careful selection of training samples (Foody and 

Mathur, 2006, 2004).  

 Statistical learning relies on representative training data, and for many applications the available 

data will be insufficient to resolve certain influential relationships between variables, leading to specific 

patterns of prediction error. In the forest disturbance problem, reference data were initially incapable of 

discriminating patterns of spectral change caused by canopy disturbance from those caused by cloud 

shadow in the pre-disturbance image. Visibly shadowed pixels were almost always predicted in error, 

producing undesirable patches of false change (Fig. 3.13). Augmentation of training/validation data to 

resolve specific sources of error like this generally requires careful consideration of sample inclusion 

probabilities for consistent estimation of predictive performance. After differentiating training and 

validation data within the MOSVC implementation (Fig. 3.3), ancillary training data could be introduced 

without affecting the consistency of CV estimates. To reduce the impact of cloud shadows on 

disturbance maps, we introduced a small ancillary sample obtained from a haphazard selection of 

shadowed locations. Because ancillary samples were not used for model validation, they did not 

influence MOSVC outcomes by providing new information on model performance. Instead, ancillary 

samples changed decision boundaries because they were formerly misclassified by SVM models and 

were therefore incorporated into the training process as SVs. The altered decision boundaries affected 

model performance characteristics, and we therefore iterated MOSVC over additional generations to 

achieve a new set of solutions. The new MOSVC fronts were very similar to the old fronts because 

shadowed pixels remained poorly represented by validation data. Yet the end effect was the near 
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elimination of commission error due to cloud shadow (Fig. 3.13), accomplished without adding excessive 

complexity to reference data collection, model performance estimation, or GA optimization.  

 GAs provide a solution to the difficult problem of identifying optimal SVM model structures, but 

themselves require the specification of a large number of settings. User-specified options generally 

affect the breadth of the search or the likelihood of convergence to local optima. For most applications 

of MOSVC, rapid convergence will probably be less desirable than a slower but fuller exploration of 

alternative solutions. We specified GA options that should generally promote population diversity and 

delay convergence (e.g., scattered crossover and a relatively high mutation rate). However, the benefits 

of exploring a diverse population of solutions will be partially undermined by uncertainty in estimates of 

model performance. CV uncertainty causes inconsistent approximation of the Pareto front, contributes 

to the over-estimation of model performance metrics, and probably increases the number of 

generations needed for convergence. We found that repeated cross-validation was necessary to reduce 

estimation uncertainty, despite the obvious impact to execution time. Fortunately, GA runtime can be 

reduced by parallel calculation of fitness metrics. The difficulties of training and validating models with 

limited reference data are not unique to MOSVC, but validation uncertainty does have specific 

implications for the degree to which model performance characteristics can be controlled. Ideally, 

MOSVC outcomes closely approximate the true underlying relationships between accuracy and class 

prevalence such that any small change in one objective is attained with minimal change in the other. In 

reality, optimality is gauged by uncertain estimates of model performance. However, solutions that 

differ in estimated performance by an amount that exceeds approximate levels of CV uncertainty will 

produce maps with substantively different error characteristics and levels of prediction bias. 

 The effects of classification bias on spatial representation or class configuration will depend on 

the spatial distribution of the response variable and on spatial patterns of omission and commission 

error. Effects will be problem specific, potentially complex, and difficult to infer from a single map when 
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spatial patterns of error not well known. For the canopy disturbance problem, omission and commission 

errors within any single disturbance map were visible through the comparison of pre- and post-

disturbance imagery (Fig. 3.12). Omission errors were most prevalent in areas where disturbance 

intensity was light. The patchy nature of disturbance meant that omission errors were clumped and 

typically in close proximity to predicted disturbance. Commission errors were commonly caused by year-

to-year changes in canopy condition. Although often more prevalent within certain forest stands, 

commission errors tended to be more widely scattered. A comparison of MOSVC maps with different 

degrees of bias and different levels of omission and commission error highlighted these patterns and 

their contribution to mapped class configuration. A biased map with comparatively high omission error 

tended to provide a more disconnected spatial representation of disturbance patches in areas affected 

by low-intensity disturbance (Fig. 3.12e). An unbiased map with comparatively high commission error 

had fairly large and somewhat consolidated patches of false change where fewer, smaller, and more 

scattered patches were present in the biased map (Fig. 3.12f). All models including the most heavily 

biased had very high overall accuracy (estimated PPC >97%), and in most areas models produced very 

similar predictions. But a comparison of maps with different error characteristics highlighted areas 

where a heightened prevalence of either omission or commission error impacted class configuration. 

 Map error may be approached from different viewpoints (see Edwards and Fortin, 2001). Error 

can be viewed as a potential impediment to map use that should be reduced as much as possible. To 

that end, a classification model is fit to minimize a specified measure of error, returning a best solution 

conditioned on available data and the selected training criterion. Alternatively, map error can be viewed 

as an inherent element of spatial representation that cannot be dissociated from a 'true' class 

distribution, but whose characteristics and consequences need to be better understood and more 

effectively controlled. These are not opposing viewpoints, but they are usually set apart by virtue of the 

fact that classification approaches do not provide adequate or predictable control of error 
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characteristics, nor do they provide alternative solutions needed to evaluate tradeoffs and their 

consequences. Despite important developments in the characterization of map error and spatial 

uncertainty (e.g., Kyriakidis, 2001; McGwire and Fisher, 2001), most map users have limited options and 

a limited ability to infer whether or how possible alternatives could improve application outcomes. 

Multi-objective optimization by MOSVC provides alternative solutions that systematically differ in terms 

of error characteristics and classification bias. An individual solution can be selected if application needs 

are known. Multiple solutions can be compared to evaluate the sensitivity of application outcomes to 

map error characteristics. In either case, multi-objective optimization of classification models can 

simultaneously reduce and control error in a way that may be of practical benefit whenever a ML 

modeling approach is appropriate.  
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APPENDIX A: CHAPTER 1 LANDSAT IMAGE PROCESSING  

Forest harvest and composition maps were assembled from a time series of Landsat 

Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) 

images acquired during summer leaf-on conditions (Table 1.1). Consecutive images were spaced 1-4 

years apart, as determined by the availability of high quality, predominantly cloud-free imagery. Images 

were either obtained from the U.S. Geological Survey (USGS) Earth Resources Observation and Science 

Center or available for use through other programs (Hepinstall et al., 1999; Lunetta et al., 1998).  

 Change detection and composition mapping procedures were applied to forested pixels as 

identified by the 1993 Maine Gap Analysis Program (GAP) land cover map. The GAP map represents 

conditions near the midpoint of our time series, and discriminated forest from non-forest with an 

estimated 100% accuracy within our study area (Hepinstall et al., 1999). All images were geo-referenced 

to a previously rectified 1991 image that was used to produce the GAP map. TM and ETM+ images 

acquired 1988-2007 were rectified using a second-order polynomial transformation applied to 30-35 

well distributed ground control points, with nearest neighbor resampling (RMSE <15 m). The 2010 TM 

image was obtained from the USGS with Level 1T Standard Terrain Correction and close inspection 

indicated that no further geocorrection was necessary. MSS images were rectified using a second-order 

polynomial transformation applied to 25-30 ground control points (RMSE <30 m) and resampled to 30 m 

by cubic convolution to match the spatial resolution of the TM/ETM+ imagery.  

 For each of the MSS and TM/ETM+ image sequences, a subset of image bands was selected for 

change detection and forest type mapping. TM/ETM+ red band 3, near-infrared band 4, and mid-

infrared band 5 were retained, a combination that provides most of the image information content for 

northern temperate and boreal forests (Häme, 1991; Horler and Ahern, 1986; Sader, 1990). MSS green 

band 1, red band 2, and near-infrared band 4 were retained following the observation that near-infrared 

band 3 was less comparable to TM/ETM+ data (Crist and Cicone, 1984). Clouds and cloud shadows were 
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delineated and masked using an on-screen digitization procedure. Cloud cover typically affected a small 

fraction of forestland (Table 1.1). Extensive cloud cover on 17 June 2007 was mitigated by substituting 

cloud-contaminated areas with TM image data acquired on 22 August 2007. The substitution of cloud-

free data was not possible for images acquired in 1993 and 1997.  

 To facilitate visual interpretation, images were transformed to a common radiometric scale 

using a relative radiometric normalization procedure applied separately to MSS and TM/ETM+ imagery. 

A preliminary change detection procedure known as multivariate alteration detection was first applied 

to consecutive image pairs to identify pixels whose spectral characteristics had not changed (Canty et 

al., 2004). Band values were extracted from a random sample of 5000 no-change pixels and linear 

normalization parameters were estimated using Theil-Sen regression (Olthof et al., 2005). Normalization 

parameters were used to derive a common radiometric scale for each band, preserving the full 

radiometric resolution of all images (Du et al., 2002, 2001). Normalization was performed to enhance 

visual consistency between images, and to reduce image-to-image differences in the impact of 

atmospheric effects on derived vegetation index values. However, the classification procedures used to 

produce forest harvest and composition maps (unsupervised classification guided by visual 

interpretation of Landsat images and ancillary data) do not assume a common radiometric scale across 

images. Normalization was therefore not a requirement (Song et al., 2001), and normalization outcomes 

were accordingly evaluated by qualitative visual assessment only.  
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APPENDIX B: VALIDATION OF CHAPTER 1 MAPS 

Validation Overview 

 The U.S. Forest Service Forest Inventory and Analysis (FIA) Program provides quality-assured 

measurements of forest attributes from a national network of field plots adhering to a statistically 

rigorous systematic sampling design (McRoberts et al., 2005; Smith, 2002). We made extensive use of 

FIA data for validation of Landsat-derived forest harvest and type maps. Since 1999, 20% of FIA plots 

within Maine have been surveyed annually during 5-year inventory cycles. Earlier inventories were 

conducted at irregular intervals using different designs (McRoberts et al., 2005). Under the modern 

inventory design, FIA plots consist of a center subplot with three satellite subplots, each 0.017 ha in size 

(McRoberts et al., 2005). Subplots will generally fall within an area defined by a 3x3 pixel block (90x90 

m), and subplots constitute 8% of that area. The suitability of FIA data for map validation is affected by 

mismatches in location and scale between FIA plots and pixel neighborhoods, uncertainty of field 

measurements, and for maps spanning long time periods, changes in inventory design. Validation using 

FIA data should be considered an assessment of agreement with an accepted and widely utilized source 

of information on forest conditions, rather than an assessment of accuracy against ground truth. The FIA 

program maintains the confidentiality of plot locations to protect the privacy of landowners and to 

preserve plot integrity (Coulston et al., 2006; Smith, 2002). True plot locations were made available for 

our use through a collaborative agreement with the USFS Northern Research Station FIA Program. 

Harvest Time Series Validation Procedure 

 Visual interpretation of TM/ETM+ imagery has been established as a credible source of 

reference data for the validation of forest disturbance maps (Cohen et al., 2010, 1998; Sader et al., 

2003; Sader and Legaard, 2008). Even very light partial harvests are discernible due to characteristic 

spectral response, texture, and clearly visible access roads. Stand-replacing and heavy partial harvests 

are similarly apparent in MSS imagery. However, visual discrimination of disturbance intensity classes is 
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difficult and subjective. Forest inventory data provided by the FIA program provide a valuable 

alternative source of reference data. Forest age estimates at FIA plots represent the average age of 

overstory trees and, assuming they were established at the time of disturbance, the year of disturbance 

should be given by the year of field measurement minus stand age. However, if the overstory cohort 

was established from a seed source following disturbance or as advance regeneration prior to 

disturbance, the date of stand origin may be over- or underestimated, respectively. Field methods 

introduce additional uncertainty. Typically 2-3 trees are subjectively selected for aging. Age is estimated 

by coring and ring count at 1.37 m with the addition of a constant to approximate time elapsed between 

germination and growth to the height of coring (U.S. Forest Service, 2012). Thomas et al. (2011) 

validated forest disturbance time series (occurrence maps) by independent analyses of TM/ETM+ image 

interpretations and FIA forest age estimates. They concluded that validation is improved through the 

use of both reference sources, but they did not integrate the two into a single assessment. We found 

the visual discrimination of harvest intensity classes to be highly subjective, and FIA age to be an 

uncertain measure of time since disturbance. However, FIA plot data provide an objective basis for the 

discrimination of harvest intensity classes and image interpretation provides accurate identification of 

harvest dates. We adopted an approach to reference class labeling that leveraged the strength of one 

against the weakness of the other. 

Our validation approach was based on the visual interpretation of satellite imagery over FIA plot 

locations to obtain reference class labels. Image interpretation was used to date harvest events; FIA plot 

data were used to discriminate stand-replacing and partial harvests. A trained image interpreter 

recorded the occurrence of a harvest provided spectral changes, image texture, and other contextual 

cues were consistent with harvesting in the vicinity of the plot and provided harvest operations 

appeared to have affected the majority of pixels within a 3x3 neighborhood surrounding plot center. 

Use of a 3x3 majority is consistent with FIA plot configuration (Cooke, 2000). A harvest recorded by 
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visual interpretation was labeled stand-replacing provided FIA age dated stand origin to 1970 or later 

(allowing for advance regeneration established prior to 1973) and the field-assigned stand size class was 

either sapling or poletimber. A substantial fraction of plots sampled multiple forest condition classes, as 

identified by FIA field crews (U.S. Forest Service, 2012). Age and stand size criteria were required of all 

sampled conditions. Age estimates were unreliable indicators of disturbance intensity for harvests that 

occurred after 1999, because age estimates frequently corresponded to a few remaining large stems 

rather than the new cohort which will eventually dominate the canopy. For plots harvested after 1999, 

an alternate approach was used to assign reference classes based on repeated plot measurements made 

during the 1999-2003 and 2004-2008 inventory cycles. Where the 5-year period between plot 

measurements included a harvest recorded by visual interpretation, that harvest was labeled stand-

replacing if plot basal area (cross-sectional area of stems measured at 1.37 m) had been reduced by at 

least 70%. This basal area removal threshold was identified as that for which errors between stand-

replacing and partial harvest classes were best balanced and mapped class extents least biased. 

 Of 671 FIA plots, we excluded 111 that contained non-forest cover types or field condition 

classes. We excluded 51 samples where a harvest was interpreted to have occurred after 1999 but the 

timing of plot measurements did not allow for both pre-harvest and post-harvest assessment of forest 

conditions. This occurred when the harvest either preceded plot measurement during the 1999-2003 

inventory cycle or followed plot measurement during the 2004-2008 inventory cycle. The latter case 

included all harvests that occurred 2008-2010. The validation sample size of 509 was insufficient to 

produce reasonably precise estimates of class accuracy for individual time series intervals. We therefore 

aggregated intervals into the following six harvest validation classes: 1973-1988 stand-replacing harvest, 

1988-1999 stand-replacing harvest, 1988-1999 partial harvest, 1999-2010 stand-replacing harvest, 1999-

2010 partial harvest, and intact mature forest (no history of harvest, 1973-2010). Map and reference 

validation class labels for each sample were assigned in a manner consistent with the construction of 



142 

cumulative harvest maps. Where multiple entries were mapped or interpreted to have occurred, the 

corresponding map or reference label was assigned based on the date of the first stand-replacing 

disturbance. If multiple partial harvests occurred, a validation class label of either 1988-1999 stand-

replacing or 1999-2010 stand-replacing was assigned based on the date of the second entry. Reference 

labels were compared to the pixel locations coincident with plot centers, resulting in a per-pixel 

validation of harvest data. 

 Map and reference labels were compiled into an error matrix. Overall accuracy, user accuracy 

(the complement of class commission error), producer accuracy (the complement of class omission 

error), and corresponding standard error estimates were calculated using poststratified estimators 

(Card, 1982; Zhu et al., 2000). Mapped pixel counts were calculated for each of the validation classes, 

and the validation sample was treated as a random sample stratified by validation class. 

Poststratification produces more efficient estimates of overall and producer accuracy than those 

obtained using formulae for a simple random sample; user accuracy estimates are equivalent (Card, 

1982; Stehman, 2009). Additionally, we evaluated the accuracy of our 2010 cumulative harvest map by 

further aggregating validation classes into regenerating, partially harvested, and intact mature forest.  

Forest Type Validation Procedure 

 FIA plot measurements of coniferous and deciduous live tree basal area were used to derive 

reference class labels for validation of the 1975 and 2004 forest type maps. Reference labels were 

compared to pixel locations coincident with plot centers. The 2004 map was validated with data 

collected during the 1999-2003 inventory cycle. The 1975 map was validated using FIA data collected 

during the 1980-1982 inventory, which included a large proportion of samples consisting of a single 0.08 

ha plot (U.S. Forest Service, 1981). At these locations, multiple forest conditions within a 3x3 pixel 

neighborhood were less likely to have been sampled than under the modern plot design. To improve the 

comparability of validation data sets, we removed multiple-condition plots from the 2004 validation 
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sample. Differences in dates between field data collection and satellite image acquisition resulted in 

cases where intervening harvests altered forest conditions. For 2004 map validation, we excluded 

samples where pixels within the 3x3 neighborhood surrounding plot center were mapped as harvested 

1999-2004. For 1975 map validation, we excluded samples where neighborhood pixels were harvested 

1975-1982. A total of 445 samples remained for validation of the 2004 map. Because accurate plot 

coordinates are known for only a small subset of plots sampled during the 1982 inventory, only 70 

samples were available for validation of the 1975 map.  

 We identified coniferous-dominant and deciduous-dominant class thresholds for which errors 

were best balanced and mapped class extents least biased. To do so, we varied coniferous and 

deciduous threshold values from 50-95% in increments of 5%, assigned reference class labels based on 

threshold values, and calculated omission and commission error rates. We iteratively refined the maps 

and reevaluated error rates until a reasonable balance was achieved at the same threshold for both 

maps, facilitating meaningful comparisons of class extent between maps. Although we initially defined 

coniferous-dominant and deciduous-dominant classes using a 75% basal area threshold, we were better 

able to balance commission and omission error after adjusting class thresholds to 80% and 70%, 

respectively. An error matrix was compiled for each map based on these selected threshold values. 

Estimates of overall, user, and producer accuracy were calculated by poststratification (Card, 1982; Zhu 

et al., 2000). 

Interpretation of Validation Outcomes 

 The overall agreement between map and reference harvest validation classes was high (Tables 

1.2 and 1.3). The largest source of disagreement was confusion between harvest intensities, rather than 

confusion between harvest periods. Errors between stand-replacing and partial harvests were balanced 

for 1999-2010, indicating that the stand-replacing harvest class consistently represented harvests where 

>70% of basal area had been removed. Errors were similarly well balanced for 1973-1988, but not for 
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1988-1999. Use of field age and stand size criteria to infer stand-replacing disturbance may have been 

more appropriate for the clearcutting practices of the 1970s and 1980s than the partial harvest practices 

of the 1990s. Alternatively, harvest intensity may have been systematically under-represented for the 

1990s, perhaps due to cloud cover in several 1990s images (Table 1.1). We adapted the three-date 

classification method to detect change in cloudy areas using preceding and succeeding images. As a 

consequence, harvest intensity may have been under-estimated due to regrowth during the longer 

periods between clear observations. We cannot verify this due to insufficient validation sample sizes. 

Possible impacts to regenerating forest metrics are unknown, but the alternative of wholly missing 

harvests due to cloud cover would certainly have affected cumulative harvest area time series and intact 

mature forest metrics. 

 Forest type classes for both 1975 and 2004 were mapped with reasonably high overall 

accuracies (Tables 1.4 and 1.5). Overall accuracy and individual class accuracy estimates were higher for 

1975 than for 2004. Although differences between FIA inventory designs and sample sizes complicate 

comparison, lower accuracies for the 2004 map probably reflect more heterogeneous forest landscape 

conditions. Off-diagonal entries in both error matrices indicated confusion between the mixed class and 

both coniferous- and deciduous-dominant classes. There was little confusion between coniferous and 

deciduous classes. Using coniferous-dominant and deciduous-dominant class thresholds of >80% and 

>70% basal area, respectively, errors were very well balanced for 2004 forest type classes and 

reasonably well balanced for 1975. User and producer accuracies for the 1975 map suggested under-

representation of coniferous forest area and over-representation of mixed forest under these same class 

definitions, but the relatively small validation sample and correspondingly large standard error 

estimates made this inconclusive. Available validation data suggested that user and producer accuracies 

were best balanced under these class definitions. Note that had more historic field plot locations been 

available, perhaps we could have balanced errors using the original class thresholds of 75%. 
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Nonetheless, our validation procedure served the purpose of ensuring that forest type classes in both 

maps represented the same forest conditions, so that map comparisons were meaningful. 
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APPENDIX C: PREPARATION OF SPATIAL PREDICTOR DATA USED IN CHAPTER 3 

Our primary source of spatial predictor data for species occurrence mapping was Landsat TM 

and ETM+ imagery acquired at different times throughout the growing season (late April through early 

October) (Table C.1). Frequent cloud cover necessitated the collection of imagery across multiple years. 

We selected eight relatively cloud- and snow-free images spanning a roughly 5-year observation period 

(2001-2006) to match a full forest inventory field measurement cycle (McRoberts et al., 2005). Landsat 

images were obtained from the Multi-Resolution Land Characteristics consortium and U.S. Geological 

Survey Earth Resources Observation and Science Center at 30 m resolution with standard terrain 

correction applied. Clouds and cloud shadows were masked using a semi-automated procedure 

developed in-house. Masks were inspected and errors were corrected by on-screen digitization. Bands 

1-5 and 7 (visible and reflective infrared) were extracted for further processing as spatial covariates. 

Visible snow cover in early-season imagery was masked by unsupervised classification using an ISODATA 

algorithm and visual interpretation of snow-covered classes. Images were converted to top-of-

atmosphere reflectance and then corrected for topographic illumination effects using the SCS+C 

algorithm (Soenen et al., 2005), with slope and aspect calculated from the 1 arc-second (30 m) National 

Elevation Dataset (NED).  

Several additional factors confounded associations between multi-temporal imagery and field 

plot data. Harvesting during the 5-year observation period dissociated image characteristics from field 

measurements at affected reference locations. Additionally, rapid vegetation growth following harvests 

that preceded the observation period introduced spectral variation across images that was due primarily 

to changes in canopy cover rather than canopy phenology. We therefore masked locations of apparent 

canopy cover change using available summer, leaf-on images acquired in 2001, 2004, and 2007 (Table 

C.1). The iteratively-reweighted multivariate alteration detection transformation (IR-MAD; Canty and 

Nielsen, 2008) was applied to 2001-2004 and 2004-2007 image pairs to estimate a probability of spectral 
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change during each interval. Intervals were combined by selecting the maximum probability of change, 

and a probability threshold was selected that resulted in identification of 20% of forest pixels as change 

pixels. Threshold selection was arbitrary, but visual inspection of the resulting 2001-2007 change mask 

indicated close correspondence with contemporary disturbance and visible regrowth in previously 

disturbed stands. Forest and non-forest pixels were differentiated using the 1993 Maine Gap Analysis 

Program (GAP) land cover map, augmented with the agricultural classes of the 2001 National Land Cover 

Database (NLCD). The 1993 GAP map differentiated forest from non-forest with an estimated 100% 

accuracy in our study area (Hepinstall et al., 1999), but incorporation of the 2001 NLCD agricultural 

classes was necessary to account for a small amount of apparent land cover change.  

 Landsat images used for canopy disturbance mapping were acquired during summer leaf-on 

conditions. Specific images were selected based on patterns of cloud cover. Landsat TM images acquired 

Table C.1. Landsat images used to model and map tree species occurrence (ca. 2004) and canopy 
disturbance (2004-2007). Images were acquired over Landsat Worldwide Reference System-2 path 12, 
row 28. Unless otherwise indicated, images were obtained from the U.S. Geological Survey Earth 
Resources Observation and Science Center. 
 

Acquisition date 
Landsat 
sensor 

Landsat 
satellite 

% forest under 
cloud/shadow  

% forest under 
snow 

Species occurrence:     
 April 29, 2006 TM 5 - 1.0 
 May 12, 2005 TM 5 1.7 0.8 
 May 25, 2001 ETM+ 7 1.2 <0.1 
 June 10, 20042 TM 5 0.4 - 
 July 20, 20011,2 TM 5 0.9 - 
 Sept. 14, 2004 TM 5 0.3 - 
 Sept. 30, 2001 ETM+ 7 - - 
 Oct. 6, 2006 TM 5 3.0 - 
     
Canopy disturbance:     
 June 10, 20042 TM 5 0.4 - 
 June 19, 20072 TM 5 9.0 - 

1Available from the Multi-Resolution Land Characteristics consortium. 
2Images used to mask spectral change resulting from disturbance and regrowth over the observation 
period used for species occurrence modeling and mapping. For this purpose only, cloud-contaminated 
data in the June 19, 2007 image were replaced with data from a Landsat 5 image acquired on Aug. 22, 
2007.  
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in 2004 and 2007 (Table C.1) were obtained from the U.S. Geological Survey Earth Resources 

Observation and Science Center at 30 m resolution with standard terrain correction applied. No 

additional steps were taken to prepare imagery for disturbance mapping. Cloud and cloud shadow 

masks were produced for each image as a basis for evaluating the accuracy of MOSVC in affected areas.   

 Additional spatial covariates for species occurrence mapping included climate and terrain 

attributes thought to be relevant to tree establishment or growth. Terrain data included 10 

morphometry, 8 lighting/visibility, and 11 hydrology variables (Table C.2) calculated from the 1 arc-

second (30 m) NED and the National Hydrography Dataset (NHD) using the freely distributed System for 

Automated Geoscientific Analyses GIS software, version 2.1.4 (Conrad et al., 2015). The NED was lightly 

smoothed with a Gaussian filter to reduce the effects of random error and systematic artifacts (circular 

filter element, radius = 90 m, σ = 1.5). Terrain slope, aspect, and curvature were calculated from a 

second-order polynomial fit (Zevenbergen and Thorne, 1987). Direct insolation was calculated at mid-

month, April-September, by assuming a uniform 65% atmospheric transmittance, a value that produced 

insolation estimates in good agreement with a previously published regional climate model (Ollinger et 

al., 1995). Hydrology variables including catchment area, flow path length, and distance to stream 

channel were calculated using a bidimensional flow routing algorithm (Quinn et al., 1991) after filling 

sinks in the NED (Wang and Liu, 2006). Synthetic stream channel networks were derived from the 

catchment area raster after masking and dilating NHD water bodies using a 5x5 filter element. The 

dilated water body mask reduced the tendency for channels to initiate near the edges of water bodies, 

where the flow routing algorithm produced large estimates of flow accumulation. Climate data were 

obtained from the USDA Forest Service Rocky Mountain Research Station, Moscow Forestry Sciences 

Laboratory, and included 17 variables (Table C.2) derived from monthly temperature and precipitation 

surfaces interpolated from weather station data for the climate normal period of 1961-1990 (Rehfeldt, 

2006). Climate data were available at approximately 1 km spatial resolution. 
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Table C.2. Terrain and climate variables used to model and map tree species occurrence (ca. 2004). 
Terrain variables were calculated using the System for Automated Geoscientific Analyses (SAGA) GIS 
software (Conrad et al., 2015) with default settings unless otherwise specified. Climate variables were 
obtained directly from the USDA Forest Service Rocky Mountain Research Station, Moscow Forestry 
Sciences Laboratory. 
 

Terrain morphometry (10 variables) 

 Elevation   

 
Slope Local terrain slope, from fit of 

second-order polynomial 
 

 
Aspect Local terrain aspect, from fit of 

second-order polynomial 
cos(aspect - 45⁰) + 1  
(Beers et al., 1966) 

 
Curvature Local terrain curvature, from fit of 

second-order polynomial 
Tangential, profile, and plan 
curvature 

 

Topographic 
position index 

Difference between elevation and 
mean elevation of circular 
neighborhood (Guisan et al., 1999) 
 

150 m, 300 m, 1000 m, 2000 m 
neighborhood radii 

Lighting/visibility (8 variables) 

 
Visible sky Proportion of hemisphere 

unobstructed by terrain (Häntzschel 
et al., 2005) 

10,000 m search radius 

 
Sky view factor Ratio of diffuse irradiance to that of 

an unobstructed horizontal surface 
(Häntzschel et al., 2005) 

10,000 m search radius 

 

Direct insolation Potential incoming solar radiation single day estimate at mid-month, 
April-September;  
65% atmospheric transmittance 
 

Hydrology (11 variables) 

 Catchment area Upslope area or flow accumulation log10 transformed 

 
Catchment height Difference between elevation and 

mean elevation of upslope pixels  
 

 Catchment slope Mean slope of upslope pixels  

 
Catchment aspect Mean aspect of upslope pixels cos(aspect - 45°) + 1 

(Beers et al., 1966) 

 
Flow path length Mean distance of flow from upslope 

pixels 
 

 

Distance to stream 
channel  

Shortest distance (or distance 
component) to synthetic stream 
channel network calculated by flow 
routing algorithm 
 

overland distance and horizontal, 
vertical distance components;  
stream networks from 10 ha and 50 
ha flow initiation thresholds 
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Table C.2 continued 

Climate (17 variables) 

 d100 Julian date on which the sum of degree-days >5°C reaches 100 
 dd0 Degree-days <0°C (from mean monthly temperatures) 
 dd5 Degree-days >5°C (from mean monthly temperatures) 
 fday Julian date of the first autumn freeze 
 ffp Length of the frost-free period (days) 
 gsdd5 Degree-days >5°C accumulated over the frost-free period 
 gsp Growing season precipitation (April-September) 
 map Mean annual precipitation 
 mat_tenths Mean annual temperature 
 mmax_tenths Mean maximum temperature of warmest month 
 mmindd0 Degree-days <0°C (from mean minimum monthly temperatures) 
 mmin_tenths Mean minimum temperature of coldest month 
 mtcm_tenths Mean temperature of coldest month 
 mtwm_tenths Mean temperature of warmest month 
 sday Julian date of last spring freeze 
 smrpb Summer precipitation balance (July+Aug.+Sept. / April+May+June) 
 smrsprpb Summer/spring precipitation balance (July+Aug. / April+May) 
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