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Abstract 

Influenza A Virus (IAV) causes over 21,000 deaths annually in the United States 

alone. The innate immune response to IAV includes the production of reactive oxygen 

species (ROS) via NADPH oxidase. ROS are known to impact signaling pathways and 

cellular processes in order to eliminate IAV, but can cause permanent damage to lung 

epithelial cells in the process. One gene involved in the production of ROS is Neutrophil 

Cytosolic Factor 1 (ncf1), which codes for a subunit of NADPH oxidase. Mutations in 

ncf1 have been correlated with chronic granulomatous disease, chronic inflammation, and 

autoimmunity. Studying ncf1 in response to IAV infection could potentially lead to the 

discovery of novel therapies for viral disease. 
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Introduction 
Innate Immune System 
 

The innate immune system is the host’s first line of defense and is responsible for 

recognizing foreign particles. It is comprised of physical barriers, such as skin, and 

chemical barriers, such as the low pH of sweat (Wilson et al., 2011). These barriers 

prevent pathogens from infecting the host’s tissues. If the barriers are breached, the 

innate immune system will respond to the threat using proinflammatory cytokines and 

chemokines. Inflammation allows migration of leukocytes from the blood vessels into the 

damaged or infected tissue (Owens et al., 2013).  

The majority of the cells released into the tissue in response to infection are phagocytic 

cells, like 

neutrophils and 

macrophages. These 

cells can engulf a 

pathogen, destroy it, 

then either present 

the fragments to 

other leukocytes or 

release the 

fragments (Fig 1). Both macrophages and neutrophils will produce a respiratory burst, 

which generates reactive oxygen species (ROS). The magnitude of this respiratory burst 

is indicative of the innate immune health of an organism, since the production of ROS is 

a necessity in killing phagocytized pathogens. Once the body is clear of foreign cells, 

cytokines will be released to trigger apoptosis of leukocytes and halt the inflammatory 

Fig 1 A neutrophil engulfing bacteria. The center 
panel shows two bacteria (red arrows) fully 
engulfed by the neutrophil.  
(Wood et al., 1946) 
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response (Owens et al., 2013). Studying the cells of the innate immune system can lead to 

discovery of the roles of specific cells and proteins in response to viral infection. 

Viruses 
 
 Viruses are obligate intracellular parasites that typically enter host cells through 

cell-surface receptors that are recognized by viral surface proteins. Once the virus has 

entered the cell, it will shed its protein coat and utilize the host’s machinery, to some 

degree, to replicate its genome. This replication step is prone to error, generating 

mutations in the genome of 

the new viral particles. Fully 

assembled viral progeny exit 

the cell and are able to infect 

surrounding host cells and 

continue the infection cycle. 

Viruses often kill the host 

cell during this final stage, 

damaging the tissue and 

causing some of the common 

viral symptoms (Owens et al., 

2013).  Viruses can cause a 

plethora of infections and diseases in humans and have evolved numerous ways to evade 

the human immune system (Fig. 2). One of the common viral infections in humans is the 

seasonal flu, caused by Influenza viruses. 

Fig. 2 Overview of viral infections in humans 
(Harvey et al., 2006) 
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Influenza A Virus 
 
 Influenza A virus (IAV) is responsible for 21,000 deaths and over 170,000 

hospitalizations annually in the United States alone and has been known to give rise to 

pandemic outbreaks, primarily due to a genome that can mutate rapidly (Owens et al., 

2013). IAV infections cause different host responses, depending on the age and overall 

health of the host. Disease symptoms can range from asymptomatic to a severe form of 

febrile respiratory disease, depending on the age and overall health of the host. Enhanced 

disease severity and high mortality is common in infants, the elderly, and in 

immunocompromised individuals (Pulendran and Maddur, 2014).  

Influenza is a negative sense single-stranded RNA virus that belongs to the 

Orthomyxoviridae family. It infects the respiratory tract, specifically alveolar epithelial 

cells, of humans and several other animal species, sometimes causing permanent damage 

to alveolar tissue (Pulendran and Maddur, 2014). Two types of surface glycoproteins are 

found on the viral surface: hemagglutinin (HA) and neuraminidase (NA). HA trimers aid 

in the attachment of the virus to the host cell by binding to sialic acid groups on the 

surface of the host cell’s plasma membrane. NA is an enzyme that cleaves sialic acid 

from naïve viral glycoproteins to aid in viral budding from an infected host cell. New 

strains of Influenza are named based on different antigenic subtypes of HA and NA 

(Owens et al., 2013). 

 IAV has been a focal point of biomedical research due to the potential of its 

rapidly mutating antigens to result in pandemic outbreaks (Trumpey et al. 2005). There 

are two mechanisms behind antigenic variation in HA and NA. The first, antigenic drift, 

occurs through a series of spontaneous point mutations that result in minor changes to 
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HA and NA over time. The other mechanism, antigenic shift, results in a new subtype of 

influenza with markedly different HA and NA structures (Owens et al., 2013). Due to 

antigenic shift and antigenic drift, changes in IAV strains are random and hard to predict. 

A more complete understanding of the host’s immune response to IAV may result in new 

treatments and therapies. 

Innate Immune System in Response to Influenza 
 

The human body has several mechanisms for resisting or eliminating IAV, the 

first being the mucosal layers found in the nasopharyngeal and respiratory tracts. The 

mucosal membrane can effectively trap the virus and expel it through sneezing, coughing, 

or swallowing of mucus (Owens et al., 2013). If IAV breaches this barrier, innate 

immune cells resist the infection of respiratory alveolar cells. These cells generate 

proinflammatory cytokines and chemokines that promote recruitment of other innate 

immune cells.  

One of the first innate immune cells to arrive at the site of infection are 

neutrophils. Multiple studies have shown that neutrophils are recruited to the upper and 

lower respiratory tract during IAV infection and play a critical role in limiting virus 

replication (Pulendran and Maddur, 2014). Lethal dose infection of IAV in mice depleted 

of neutrophils produced increased virus titers in the lungs with increased mortality when 

compared to lethal dose infections in wild-type mice (Tate et al., 2008, 2011). 

Neutropenia in mice infected with influenza also led to exacerbated pulmonary 

inflammation, edema, and respiratory dysfunction. Additionally, depletion of neutrophils 

can allow a mild influenza infection to progress to a severe clinical disease state (Tate et 

al., 2009). The mechanisms behind the role of neutrophils in the innate immune response 
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to IAV are largely unknown. One emerging target of innate immune research has been 

the production of reactive oxygen species (ROS) by neutrophils in response to infection. 

The goal of this study is to determine the role one protein that is partially responsible for 

the production of ROS in response to IAV. 

Reactive Oxygen Species 
 
 ROS are generated by the NADPH oxidase (NOX) protein complex in order to 

destroy phagocytized pathogens (Owens et al., 2013). The source of ROS in the lung has 

been an intensive area of study, revealing NADPH oxidase 2 (NOX2) as the NOX 

primarily responsible for the respiratory burst observed in phagocytic cells. Upon 

activation of NOX2, phosphorylation and translocation of the cytosolic regulatory 

subunits, p47phox (ncf1), p67phox (ncf2), and p40phox (ncf4) occur. These subunits associate 

with the membrane subunits of NOX2, allowing electron transfer from NADPH and 

ultimately reducing O2 to O2 
– . Studies of NOX2 in IAV-infected mice have shown that 

loss of NOX2 leads to increased clearance of IAV, reduced inflammation, and improved 

lung function (Grandvaux et al., 2015).  

NOX have also been shown to promote chemotaxis of phagocytic cells, such as 

macrophages and neutrophils, during C. albicans infection. Time-lapse imaging of NOX-

blocked zebrafish infected with C. albicans showed a lower number of neutrophils 

recruited to the infection site at early and late stages of infection (Brothers et al., 2011, 

2013). Taken together, it has been shown that recruitment of phagocytic cells and their 

production of ROS is an essential component of the immune response. 

While ROS play a vital role in eliminating pathogens during the innate immune 

response, collateral damage to surrounding tissue can occur due to excessive or 
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prolonged inflammation (Segal et al., 2012). The production of ROS from phagocytic 

cells is responsible for many acute and chronic lung inflammatory diseases including 

acute lung injury, acute respiratory distress syndrome, asthma, and COPD (Grandvaux et 

al., 2015). The balance between the production of ROS and limiting the injury from 

excessive inflammation is critical in host survival (Segal et al., 2012). Studying how the 

components of NOX work to achieve this balance can lead to a more complete 

understanding of the impact of ROS during IAV infections. Studying how the 

components of NOX work to achieve this balance can lead to a more complete 

understanding of the impact of ROS during IAV infections. 

Neutrophil Cytosolic Factor 1 
 
 Ncf1, previously known as p47phox, codes for a cytosolic subunit of NOX2 and has 

been shown to be vital in the elimination of pathogens. Knockdown of ncf1 causes a loss 

of phagocyte recruitment comparable to that of NOX2 knockdown, a result that suggests 

ncf1 is required for sufficient phagocyte recruitment (Brothers et al., 2013). Additionally, 

ncf1 knockout mice were shown not to produce superoxide anion and were unable to 

effectively kill staphylococci. In these studies, mice developed lethal infections and 

granulomatous inflammation similar to that in human chronic granulomatous disease 

(CGD), an inherited disease characterized by the failure to mount an innate defense 

against bacterial and fungal infections (Jackson et al., 1995). Taken together, these 

studies show that ncf1 has a critical role in both phagocyte recruitment and in phagocyte 

activity. 

 



 

 

7 

Zebrafish as a Model Organism 
 

Animal models are used in biomedical research to study the pathogenesis of 

human diseases at the organismal, cellular, and molecular levels. Zebrafish (Danio rerio) 

bridge the gap between invertebrates, such as C. elegans and Drosophila melanogaster, 

and mammals, such as mice, rats, and sheep (Fig. 3). Zebrafish share a number of 

physiological, anatomical, and genetic characteristics with humans while still maintaining 

the ease of use of a lower organism (Goldsmith and Jobin, 2012). This model has been 

used since the 1930s, 

when it was introduced as 

a developmental and 

embryological model. 

The unique combination 

of optical clarity and 

embryological 

manipulability made 

zebrafish a classic model 

in this field of research. 

In the 1980s, their use 

extended to cloning, 

mutagenesis, 

transgenesis, and genetic 

mapping. (Lieschke and 

Currie, 2007). 

Fig. 3 A comparison of model organisms commonly used 
in the study of human pathophysiology. The zebrafish is a 
cheap, effective model. (Lieschke and Currie, 2007) 
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 Since its introduction as a research model, the zebrafish has been utilized due to 

its larval transparency (through 7 days post fertilization), high fecundity (100 eggs per 

clutch), amenability to genetic manipulation, and overall genetic and organ system 

homology to humans (Fig. 4). Other benefits of using the zebrafish as a model organism 

include external fertilization, which allows access to all developmental stages, egg size 

(0.7mm in diameter), which allows for hundreds of eggs to be utilized in one experiment, 

and rapid development, with all major organs fully developed within the first 36 hours 

post fertilization 

(Spence et al. 

2008).  

Addition

ally, zebrafish 

have many 

characteristics 

that make them 

an ideal model for the study of the innate immune response to Influenza virus. The innate 

immune system of a zebrafish is very similar to that of the human; it contains many of the 

same cell types including neutrophils, Natural Killer cells, monocytes, and macrophages, 

as well as cytokines and their associated signaling molecules and pathways. The innate 

immune system of a zebrafish is fully functional within 48 hours post fertilization (hpf), 

while the adaptive immune system takes 4 – 6 weeks to develop. This allows for easy 

observation of the innate immune system without interference from the adaptive immune 

system (Goldsmith and Jobin, 2012). Larval transparency aids in the examination of the 

Fig. 4 Diagram of zebrafish anatomy at 6 days post 
fertilization. Larval transparency and small size are two 
benefits associated with using the zebrafish. SB=swim 
bladder. Scale bar is 1mm (Goldsmith and Jobin, 2012) 
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host immune system’s interaction with the pathogen in vivo and in real time. Because 

zebrafish are amenable to genetic manipulation, strains have been developed with 

fluorescently marked phagocytic cells to further aid in the visualization of the host-

pathogen interaction (Lieschke and Currie, 2007). 

Previous studies in the Kim Lab have shown that zebrafish are an exceptional 

model organism for the study of IAV. Zebrafish epithelial cells have the same α – 2,6 

linked sialic acid residues found on human IAV receptor cells, permitting human IAV to 

attach to, and enter, zebrafish cells. It has been shown that IAV is able to replicate in 

zebrafish cells and cause a systemic infection, leading to mortality in the zebrafish host. 

Furthermore, infected zebrafish present a pathology phenotype that is parallel to that in 

IAV-infected humans (Fig. 5). By 24 hours post infection (hpi), zebrafish become 

lethargic with yolk sac and pericardial edema that worsens over time. Histopathological 

analysis of the infected zebrafish showed characteristic symptoms of IAV, such as 

necrosis and edema. Additionally, fluorescence imaging of host infection using a GFP-

expressing strain of 

IAV demonstrated the 

multiplication of IAV 

in the infected 

zebrafish (Gabor et 

al., 2014). 

 This study 

utilizes zebrafish as a 

model organism to 

Fig. 5 IAV infection causes phenotypic changes 
in zebrafish. Infection caused pericardial edema 
(black arrowheads), yolk sac edema (white 
arrowheads), craniofacial abnormalities (red 
arrowhead in D), and arched backs (red 
arrowhead in F). (Gabor et al., 2014) 
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study the role of ncf1 in the innate immune response to IAV. Zebrafish were used in the 

study to show the effects of ncf1 knockdown on the innate immune system with and 

without IAV infection. Determining the role of ncf1 in the innate immune response to 

IAV could lead to novel viral therapies for viral diseases. 
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Materials and Methods 
 
Zebrafish Care and Maintenance 

 Zebrafish embryos were collected at the one-cell stage of development from the 

spawning of wild-type (AB) zebrafish. The embryos were stored in egg water (deionized 

water and 60mg/L of Instant Ocean, Spectrum Brands, Madison, WI) at 28°C. The egg 

water was changed every 24 hours and dead zebrafish were collected and disposed of 

daily. Unused zebrafish were euthanized by immersion in a lethal dose of tricaine and 

were disposed of properly.  

Respiratory Burst Assay 

1.0 mg of H2DCFDA was dissolved in 1 mL dimethyl sulfoxide (DMSO). This 

stock solution was stored at -20°C until use. 1mg phorbol myristate acetate (PMA) was 

dissolved into 1mL of DMSO to produce a 1mg/mL stock, which was stored at -80°C 

until use. A working solution of H2DCFDA was made by adding 20 µL of H2DCFDA to 

20 µL of DMSO in a 1.7 mL microcentrifuge tube wrapped in aluminum foil. A working 

solution of PMA was made by adding 10 µL of PMA to 490 µL of nuclease free water in 

a 1.7 mL microcentrifuge tube. 

 A dosing solution of H2DCFDA was made by adding 4990 µL of egg water and 

10 µL of H2DCFDA working solution to a 15 mL conical tube labeled “H”. A dosing 

solution of H2DCFDA and PMA was then created by adding 4890 µL of egg water, 10 

µL of H2DCFDA working solution, and 100 µL of PMA working solution into a 15 mL 

conical tube labeled “H+P”. Both dosing solutions were wrapped in aluminum foil and 

kept on ice until use. 
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 Zebrafish were added individually to a 96-well microplate along with 100 µL of 

egg water. Columns 1-4 contained control zebrafish while columns 5-8 contained ncf1 

MO zebrafish. The H2DCFDA dosing solution was poured into a 25 mL reservoir. 100 

µL of H2DCFDA dosing solution was added to columns 1-4, one channel at a time. The 

H2DCFDA and PMA dosing solution were then poured into another 25 mL reservoir. 

100 µL of the H2DCFDA and PMA dosing solution were added to columns 5-8, one 

column at a time. 

 The microplate was then covered with aluminum foil and placed on a shaker for 

20 seconds at 150 rpm to ensue the homogeneity of the mixture. The microplate was read 

at time = 0 hr in a microplate reader set to read fluorescence: Excitation – 485 nm, 

Emission – 528 nm, Optics position – top 510 nm, Sensitivity – 65, and a 5 second 

shaking before the read. The microplate was also read at time = 4 hr. 

The data were analyzed by subtracting the average fluorescence of the un-induced 

control group from the individual PMA-induced control group’s florescence values. The 

same calculation was done using the experimental PMA-induced and un-induced groups. 

The data were organized into two columns: a control + PMA column and an experimental 

+ PMA column. The mean and standard deviations were calculated from the normalized 

fluorescence values of the two columns. The means of the two columns were compared 

using an unpaired, two-tailed t-test. The means of the two groups, control + PMA column 

and experimental + PMA, were graphed with error bars to show the standard deviations 

(Goody et al., 2013); (Hermann et al., 2004). 

Morpholino Injections  
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 A morpholino (MO) is an oligonucleotide that binds to complementary RNA, 

temporarily knocking down expression of the targeted gene by blocking translation or 

pre-mRNA splicing (Draper et al., 2001). Most MOs work for 7 days, allowing ample 

time for experimental observations. Approximately 400 zebrafish embryos were collected 

at the one-cell stage of development and microinjected with 3ng/embryo of MO to 

knockdown ncf1. Approximately 400 embryos at the one-cell stage were injected with 

3ng/embryo of control MO. The zebrafish were stored in a 28°C incubator. 

Influenza A Virus Infection 

 The MO injected zebrafish were dechorionated manually using forceps at 2 days 

post fertilization (2dpf). Approximately 60 zebrafish were injected with APR8 at 1.5×104 

EID50/embryo IAV 

into the duct of Cuvier 

to create a systemic 

infection (Fig. 6). 

Thirty ncf1 MO 

zebrafish and 30 control 

MO zebrafish were 

injected with IAV while 

30 additional ncf1 MO 

zebrafish and control 

MO zebrafish were injected with a control. The control contained phenol red for 

visualization and Hank’s Balance Salt Solution, a buffer used to maintain pH and osmotic 

balance. Zebrafish that were not properly injected were removed and disposed of 

Fig. 6 The duct of Cuvier is a large vein found 
along the yolk sac in 2dpf zebrafish. It runs 
directly into the heart, creating a rapid systemic 
infection.  
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properly to ensure all animals included in the study were infected with either IAV or the 

control. After viral injection, the zebrafish were stored in 50mL of egg water at 33°C. 

Every 24 hours, dead fish were removed and the egg water was changed. 

Fixing 

 At 4 dpi zebrafish were fixed with 4% paraformaldehyde, which kills the fish and 

crosslinks their proteins into a rigid structure, ensuring their durability for long-term 

storage and imaging. Fish were incubated at room temperature on the bench top for 1-2 

hours then rinsed out of the fixative using PBS containing 0.1% Tween. The fish were 

washed 3 times with PBS 0.1% Tween then left in PBS 0.1% Tween in a dark 4° C 

incubator for up to one month before imaging.  

Quantitative Polymerase Chain Reaction (qPCR) 

 qPCR was used to quantify the amount of gene expression in real time. Zebrafish 

were infected with either IAV or a mock infection at 2 dpf with no MO. The zebrafish 

were fixed at 12 hpi, 24 hpi, 48 hpi, 72 hpi, and 96 hpi. cDNA was then extracted from 

the fixed fish following iScript protocol (BioRad, 2007). A master mix was made using 

5.0 µL of PerfeCTa SYBR Green from Quanta BioSciences, 0.2 µL of 10uM forward and 

reverse primers, and 3.8 µL of NFW. 1.0 µL of cDNA was added to the master mix to 

create 10 µL total. This solution with cDNA from mock-infected fish was placed in rows 

A-C. The solution with cDNA from IAV-infected fish was placed in rows D-F. Column 1 

contained 12-hpi cDNA, column 2 contained 24-hpi cDNA, column 3 contained 48-hpi 

cDNA, column 4 contained 72-hpi cDNA, and column 5 contained 96-hpi cDNA. 

Column 6 was left blank, and this pattern was repeated in columns 7-11. Rows 1-5 

measured the expression of the gene of interest, ncf1, while rows 7-11 measured the 
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expression of a control gene, 18S. 18S is a housekeeping gene and will always show the 

same amount of expression. 

 During qPCR, the gene of interest is repeatedly amplified and the fluorescent 

nucleic acid stain, SYBR, binds to the accumulating DNA product, resulting in enhanced 

dye fluorescence. The fluorescence values are measured and are directly correlated to the 

amount of DNA produced during the amplification process.  

Mounting 

 Before imaging was possible, zebrafish had to be mounted in agarose gel. Fish 

were individually placed into wells of a 24-well plate. All liquid was removed from the 

wells using a 3mL plastic transfer pipette. A 1% solution of agarose was poured into the 

well to cover the bottom of the well along with the entire fish. Before the gel could 

harden, the fish was positioned on its side for easy viewing in the inverted microscope. 

PBS was added on top of the hardened gel, the plate was wrapped in aluminum foil, and 

was stored in a 4°C incubator until needed for imaging. 

Confocal Imaging 

 Confocal microscopy was performed to visualize morphological changes, such as 

edema, in the zebrafish. Laser scanning confocal microscopy allows for imaging of a 

specimen in a series of different focal planes to create a 3D image. The software program 

allows images to be compiled, saved, and processed.  
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Results 

Ncf1 knockdown causes a decreased respiratory burst in zebrafish.  

 A respiratory burst assay of control zebrafish and ncf1 MO zebrafish was done to 

determine the difference in the magnitude of the respiratory burst produced. The 

magnitude of a respiratory burst is indicative of the amount of ROS produced by 

phagocytic cells. Zebrafish with ncf1 knockdown exhibited a significantly smaller 

respiratory burst than control zebrafish. This suggests that ncf1 plays a critical role in the 

production of ROS. A decrease in the production of ROS can be either beneficial or 

detrimental to an organism. Some production of ROS is necessary to eliminate infections 

or heal wounds, but too much ROS production can cause damage to surrounding host 

cells (Segal et al., 2012). In the case of IAV infection, ROS can cause permanent damage 

to lung epithelial tissue (Grandvaux et al., 2015). 
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Fig. 7 Knockdown of ncf1 in zebrafish significantly reduces the magnitude of the 
respiratory burst. 
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qPCR of ncf1 after infection with IAV shows significant upregulation of ncf1 at 48 

hours post infection (hpi) and at 96 hpi.  

 A qPCR assay of ncf1 in IAV-infected zebrafish was done to determine whether 

ncf1 has any response, negative or positive, to IAV. The results of this study show that 

ncf1 is significantly upregulated at 48 hpi and 96 hpi, while there is no change at 24 hpi 

and an insignificant amount of upregulation at 72 hpi. It cannot be determined from these 

data whether ncf1 is being upregulated as part of the host’s immune response to IAV or 

as a mechanism of IAV infection. Because ncf1 is responsible for the recruitment and 

activity of phagocytic cells, one assumption could be that ncf1 is upregulated to boost the 

host’s immune response and recruit more phagocytic cells to the site of infection, leading 

to an increase in the production of ROS. 

 

 

 

 

 

Fig. 8 Ncf1 is significantly upregulated at 48 hpi and 96 hpi with IAV. 
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Ncf1 knockdown significantly decreases survival of IAV-infected zebrafish 

 Six trials were done (represented below in Fig. 8) to confirm that ncf1 knockdown 

does not enhance the survival of IAV-infected zebrafish, contradicting previous studies 

done on IAV infections and IAV (Grandvaux et al., 2015).  In fact, based on the data 

presented here, it appears that ncf1 knockdown decreases the survival rate of IAV-

infected zebrafish when compared to control IAV-infected zebrafish. These findings are 

consistent with previous studies done on ncf1 in response to C. albicans infection in 

zebrafish (Brothers et al., 2013; Jackson et al., 1995). An interesting observation about 

these data is that only 90% of the ncf1 MO zebrafish with mock infections survived while 

100% of the control zebrafish with mock infection survived. This may indicate that ncf1 

aids in zebrafish survival with or without IAV infection. However, more research is 

necessary to confirm this hypothesis. 

 

 Fig. 9 Knockdown of ncf1 does not enhance survival of IAV-infected zebrafish. 
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Discussion 
 

IAV infections are responsible for over 21,000 deaths and 170,000 

hospitalizations annually in the U.S alone, costing billions of dollars in healthcare. IAV is 

a particularly important focal point for research because it can give rise to pandemic 

infection, as it has in the past. Influenza vaccines have decreased the risk of Influenza 

infection in humans by 50-60%, but there are very few effective therapies for those who 

do acquire an infection (CDC, 2016). A more complete understanding of the host’s 

immune response to IAV could lead to more effective therapies for this and other viral 

diseases. 

The goal of this study was to understand more completely the role of ncf1 in the 

innate immune response to IAV infection. qPCR was used to examine the effect of IAV 

infection on ncf1. It was found that IAV infection upregulated ncf1 at 48 and 96hpi. Ncf1 

was then knocked down using a MO injection. A respiratory burst assay was performed 

to determine the effect of ncf1 on the production of ROS and it was found that ncf1 

knockdown significantly decreases the production of ROS. Zebrafish were injected with 

ncf1 MO or a control MO then injected with IAV or a mock injection to create four 

subsets of zebrafish. These fish were observed for 5 days post infection to determine the 

effect of ncf1 knockdown on survival rates. These fish were also imaged using a confocal 

microscope to view the effects of ncf1 knockdown on the development of pericardial and 

yolk sac edema. It was found that ncf1 knockdown significantly decreased survival rates 

in IAV-infected zebrafish. 

These data show that ncf1 is critical in the host’s innate immune response to IAV. 

Previous work shows that NOX2 (of which ncf1 is a component) can cause permanent 
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damage to epithelial tissue during IAV infection due to the prolonged inflammatory 

response of immune cells that secrete proinflammatory cytokines (Grandvaux et al., 

2015). However, it has also been shown that NOX2 and ncf1 play a role in sufficient, not 

prolonged, phagocyte recruitment and activity (Brothers et al., 2014). These data 

emphasize the importance of the balance between exacerbated inflammation and 

insufficient inflammation, as pointed out by Segal et al., 2012. These studies also yielded 

critical information about the role of NOX2 and ncf1 in the innate immune response to 

fungal and viral infections, but it is clear from the present study that future research on 

the topic should be aimed at determining the appropriate amount of inflammation for 

affectively eliminating an IAV infection while minimizing damage to surrounding 

epithelial cells.  

 The present study produced preliminary data that can lead to further 

investigations of the role of ncf1 in the innate immune response to IAV. The data 

collected led to new questions about ncf1’s role in the innate immune system, as well as 

in the overall health of uninfected zebrafish. Previous work from the Kim lab (Gabor et 

al., 2014) showed that IAV-infected zebrafish exhibit phenotypic changes including 

pericardial and yolk sac edema (Fig. 5). It was observed during infection trials that ncf1 

MO fish, whether subjected to mock infection or infected with IAV, exhibited increased 

edema when compared to control zebrafish with mock infection or with IAV infection 

(Fig 10). Other work performed in the Kim lab has shown that the ncf1 MO has no off-

target effects and that any phenotypic changes are likely to be due to the loss of ncf1 

(Jacob Longfellow, personal communication).   
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Another 

question that arose 

during this study was 

how the knockdown of 

ncf1 would affect an 

RBA with IAV 

infection. Fig. 7 shows 

an RBA of control 

zebrafish compared to 

ncf1 knockdown 

zebrafish, in the 

absence IAV infection. During this study, one RBA with IAV infection was performed, 

but the results were inconclusive. It would be beneficial to the overall understanding of 

ncf1’s role in an IAV infection to perform several RBA’s of ncf1 MO with IAV infection. 

Neutrophil response to viral infection is not understood completely. Since it is known that 

ncf1 has a critical role in phagocyte recruitment and activity, it would be useful to know 

whether or not ncf1 knockdown decreases the magnitude of ROS produced during an 

IAV infection. To test this, a neutrophil-specific RBA could be performed. 

Cytokine profiling of ncf1 MO zebrafish and control MO zebrafish could also 

yield valuable information. Ncf1 is known to be partially responsible for the recruitment 

and activity of phagocytic cells, which, along with engulfing foreign particles, releases 

cytokines for further recruitment of immune cells. Cytokine profiling would determine 

whether or not ncf1 plays a role in the release of cytokines from phagocytic or other cells 

Fig. 10 Confocal imaging of control, ncf1-morphant, IAV-infected, and 
mock-infected zebrafish shows increased edema in IAV-infected 
zebrafish as well as ncf1-morphant zebrafish. 

ncf1 MO IAV 

ncf1 MO HBSS CT MO HBSS 

CT MO IAV 



 

 

22 

after IAV infection. Cytokine production is vital in the innate immune response and 

determining which genes are involved in their production would be a worthy endeavor.  

Lastly, genetic manipulation of zebrafish to overexpress the ncf1 message, and 

therefore protein, would add to what is already known about how ncf1 responds to an 

IAV infection. Overexpressing a gene can make the gene’s normal effects, such as 

increased edema or dysfunction in organ systems, easier to visualize. All of these studies 

would lead to a greater understanding of the role of ncf1 in the innate immune response to 

IAV in zebrafish, with the hope of discovering novel therapies for viral diseases. 
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