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ABSTRACT 
 
 

The human JC polyomavirus (JCPyV) persists as an asymptomatic infection in the 

kidneys of healthy individuals within the majority of the global population. Viral 

infection of JCPyV is established through peroral transmission due to poor sanitary 

practices. In severely immunocompromised individuals, JCPyV migrates to the central 

nervous system (CNS), resulting in the fatal and incurable demyelinating disease 

progressive multifocal leukoencephalopathy (PML). Virus-host cell interactions regulate 

infectious processes and influence viral pathogenesis. JCPyV attachment to host cells is 

mediated by α2,6-linked LSTc while internalization is mediated by 5-hydroxytryptamine 

serotonin type 2 receptors (5-HT2Rs). Activation of 5-HT2Rs can induce intracellular 

calcium (Ca2+) release upon ligand binding to activate the inositol triphosphate receptor 

(IP3R) signaling pathways. The goal of this project was to determine the role of 

intracellular Ca2+ flux in JCPyV infection. JCPyV induces Ca2+ flux from the ER almost 

immediately upon infection. Limiting Ca2+ release from the ER by inhibition of the IP3R 

with chemical antagonists significantly reduced JCPyV infection in both human kidney 

and brain cells, demonstrating a dependence on Ca2+ flux to regulate JCPyV infection. 

Although, JCPyV-induced Ca2+ flux occurs at times consistent with viral attachment and 

entry, analyses of these steps by flow cytometric assays, revealed that JCPyV attachment 

and entry were not affected by modulation of Ca2+ flux. These findings demonstrate that 

Ca2+ flux is regulated upon JCPyV infection and provide important insights into the 

activation of signaling pathways to drive the infectious process. In the future, this work 

can increase our understanding of PML pathogenesis and aid in the development of novel 

PML therapeutics.  
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INTRODUCTION 
 
 
 

Overview 

Defined as obligate intracellular parasites, viruses are comprised of either an RNA 

or DNA genome, which is surrounded by a capsid composed of viral proteins, and 

sometimes a lipid envelope which encases the capsid1. For a virus to replicate, it must 

invade a host cell that is both susceptible and permissive to infection, as viruses usurp 

host cell machinery to mediate their replication and cause disease2. As a result, the host 

immune system develops specialized mechanisms to identify and destroy invading 

pathogens. A body’s first line of defense against invading pathogens are physical barriers 

such as epithelial tissues, stomach acid, and saliva3. To combat these defenses, pathogens 

have evolved to interact with cellular receptors and trick the host into internalizing them. 

Once inside, however, the pathogen must inhibit the activation of host intrinsic, innate, 

 

 

 

 

 

 

 

 

 Figure 1. Schematic of JCPyV genome: early and late genes. The non-coding 
control region (NCCR) contains the open reading frame (ORF) for the early genes 
(counter clockwise) and late genes (clockwise). The early genes include large T 
antigen (TAg) while the late gene include structural proteins such as viral protein 
1 (VP1). Used with permission from Ferenczy et al. 2012. Clinical Microbiology 
Reviews. 25, 471–506. 
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and adaptive immune responses to avoid destruction1. Due to the efficiency of the host 

immune system, some viruses are only capable of inducing disease once the immune 

system has been suppressed and are therefore defined as opportunistic viruses1.  

In 1971, a novel opportunistic virus was isolated from a patient suffering from 

progressive multifocal leukoencephalopathy (PML) and was named the human JC 

polyomavirus (JCPyV) after the patient’s initials4. The human JCPyV is non-enveloped 

with a capsid comprised of three viral proteins (VP1, VP2, VP3) and is ~45 nm in 

diameter5. The genome is circularized double stranded DNA containing one set of early 

and late-transcribed genes with a total length of 5130 base pairs (Figure 1)6. However, 

while the physical properties of JCPyV have been well examined, the infectious lifecycle 

of the virus remains poorly understood.  

JCPyV is thought to be transmitted via peroral transmission during early 

childhood due to poor sanitation practices, as it is shed in the urine and can be found in 

untreated wastewater7,8. Data based on recent serological studies suggest that at least 50-

80% of the human population is infected with JCPyV9. In healthy individuals, JCPyV 

establishes itself as an asymptomatic infection in the kidney and remains there as a 

lifelong, persistent infection controlled by the patient’s immune system8. When an 

individual becomes severely immunocompromised due to HIV infection, or through the 

use of immunosuppressive therapies for immune-mediated diseases like multiple 

sclerosis (MS), JCPyV can migrate from the kidney to the central nervous system 

(CNS)10. Within the CNS, JCPyV can infect the glial cells, astrocytes and 

oligodendrocytes, and result in their lytic destruction. These cells are critical for the 

production and maintenance of myelin within the brain and are necessary for healthy 
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brain function5. The destruction of the myelin-producing cells leads to severe 

demyelination, resulting in a disease called progressive multifocal leukoencephalopathy 

(PML)11.  

Due to gaps in our knowledge concerning viral-host cell interactions there are no 

effective therapies or treatments for either JCPyV infection or PML. As a result, the 

disease proves fatal to the majority of patients within 1 year of symptom onset4. To 

develop successful treatments, it is imperative to first understand the viral-host cell 

interactions that allows the virus to evade the immune system, persist within the host, and 

eventually become the etiological agent for PML. Further research investigating the 

signaling pathways that regulate these viral-host cell interactions in JCPyV infection will 

provide necessary insights into the infectious lifecycle and could serve as a platform for 

the development of effective treatments for populations at risk for PML. 

 
Progressive multifocal leukoencephalopathy 

While JCPyV was originally isolated in 1971, the first descriptions of PML were 

noted as early as 1930, and officially defined as a novel disease in 19584,14. The fatal 

disease was identified due to the destruction of the oligodendrocytes along with 

morphological changes in astrocytes and oligodendrocytes4. PML has an incidence rate 

(5-10%) in AIDS patients and is described as an AIDS defining illness15. Due to the 

increased use of immunosuppressive therapies for immune-mediated diseases like MS 

and Crohn’s disease, the incidence of PML has increased in these populations15. 

However, due to a lack of effective treatments for JCPyV infection or PML, the best 

options for patients are to treat the underlying immunosuppression by administering 

highly active antiretroviral therapy (HAART) for those infected with HIV or cease  
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immunomodulatory therapies for the preexisting disease like MS16. As a result, therapies 

are ranked in classes based upon their likelihood to increase a patient’s risk of developing 

PML4. The risk stratification is calculated based upon the risks and benefits to the patient 

by taking the therapy and ensures that patients who are at a high risk of developing this 

fatal disease are routinely examined4. 

Diagnosis of PML is accomplished through multiple methods. One common 

methodology is magnetic resonance imaging (MRI) to examine the brain for the loss of 

myelin, which appears as white plaque regions in the brain or CNS (Figure 2)7. In 

addition to identification of plaques through MRI, the preliminary diagnosis must also be 

confirmed through the presence of biomarkers, assays determining JCPyV load, and 

assays for JCPyV mRNA. A strong biomarker for PML in MS patients receiving the drug 

Natalizumab is CD62L, a selectin present on CD4+ T cells, that has been shown to be 

expressed at lower levels in patients that develop PML7. Patients can also be tested for 

the presence of JCPyV antibodies and genetic material in urine samples through PCR 

Figure 2.  Images of PML lesions and rapid disease progression. Magnetic 
resonance imaging scans utilizing 3D Flair techniques. White matter located in 
the brain marks the development of plaques over 2-months. Red arrow points to 
areas of PML lesions. Image credit: Biogen Idec. 
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techniques 7. Early detection of JCPyV infection for patients at risk of developing AIDS 

or beginning immunosuppressive therapies alerts physicians to closely monitor those 

patients for the development of PML. 

Upon disease onset, PML can develop in multiple regions of the brain and often 

spreads to multiple areas17. As a result, there is a wide range of symptoms that may be 

presented based on which region of the brain is being affected15. Classic symptoms can 

include vision impairment, loss of memory, and hemiparalysis15. It is also common for 

the afflicted individual to experience personality disorders upon symptom onset8. Once a 

patient begins showing clinical symptoms, PML proves fatal to the majority of patients 

within one year4. With no effective therapies or treatments available for either this 

disease or JCPyV infection, the only option patients receiving immunosuppressive 

therapies have is to cease immunosuppressive therapies. In doing so, however, patients 

face the progression of the underlying condition such as cancer, MS, or Crohn’s 

disease6,8,19. Additionally, ending immunosuppressive therapies also increases the 

patient’s risk of developing immune reconstruction inflammatory syndrome (IRIS)18. 

IRIS is caused by a rapid return of immune cells within the CNS and results in severe 

inflammatory responses and worsen the underlying disease condition18. Conversely, for 

individuals with HIV or AIDS initiation of HAART can delay onset of PML19. 

 
JCPyV infectious lifecycle 

Before JCPyV can disseminate through its host and cause PML, it must 

successfully establish a persistent infection. A successful JCPyV infection is dependent 

upon the virus encountering a permissive host cell, requiring the cell to have specific 

functionalities that support viral infection. Research has found that JCPyV initially 
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attaches to host cells via α2,6 linked sialic acids on lactoseries tetrasaccharide c (LSTc)12. 

This virus-host cell interaction is mediated by the JCPyV capsid protein, viral protein 1 

(VP1), which contains multiple binding sites for LSTc12. Interestingly, research suggests 

that in patients diagnosed with PML, VP1 has undergone mutations indicating that these 

mutations may be required for JCPyV spread from initial sites of infection to the CNS21. 

Following attachment to LSTc, JCPyV requires serotonin receptors to aid in viral 

infection23. 

 Serotonin 5-hydroxytryptamine (5-HT) receptors are seven transmembrane 

spanning G-protein-coupled receptors22. While there are multiple families of 5-HTRs, 

only the subtype 5-HT2Rs have been shown to be essential for JCPyV infection22,23. 

Currently, the mechanism by which 5-HT2Rs mediate JCPyV internalization is poorly 

understood. However, inhibition of the 5-HT2Rs inhibits JCPyV infection but has no 

effect on viral attachment to host cells 23,24. Interestingly, when 5-HT2Rs are expressed in 

human kidney cells, which naturally do not express the receptors but do express LSTc, 

the cells gain the ability to internalize JCPyV and can become infected22. Recent work 

from the Maginnis Laboratory suggests that JCPyV-mediated activation of 5-HT2Rs 
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results in viral 

internalization via 

clathrin-mediated 

endocytosis 

(Mayberry and 

Maginnis, 

unpublished data). 

This data 

corroborates the 

finding, which 

showed that inhibition of clathrin-mediated endocytosis reduced JCPyV internalization25. 

Once inside the cell, JCPyV traffics through the cytoplasm via endosomes and caveolin-1 

vesicles5. The virus is then deposited into the endoplasmic reticulum (ER) where the 

capsid undergoes a partial uncoating event prior to translocation to the nucleus for viral 

transcription and replication (Figure 3)26.  

 Upon arrival in the nucleus, the JCPyV genome is transcribed in a temporally-

regulated fashion in which the early genes are transcribed first (Figure 1)4. One of the 

early genes codes for the protein large tumor antigen (large T antigen (T Ag)), which is a 

major regulator of JCPyV replication4. Accumulation of T Ag within the cells promotes 

the transition from the production of early gene products, to late gene products, including 

VP16. Additionally, T Ag is capable of binding to host cell DNA to promote its transition 

from the G0 to S phase through the activation of host transcription factors4. While not all 

transcription factors required for JCPyV transcription have not been identified, some 

Figure 3. JCPyV internalization and infectivity pathway. JCPyV attaches to α2,6 LSTc 
receptor and enters cells by 5-hydroxytryptamine receptors (5-HT2)R through clathrin-mediated 
endocytosis. JCPyV traffics to early endosomes and cav-1 positive late endosomes, then to the 
ER where it undergoes uncoating, and enters the nucleus where transcription and replication 
occur. Used with permission from Maginnis et al. 2015. J. Neurovirol. 21, 601–13. 
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have been characterized that play an important role in JCPyV transcription including 

nuclear factor of activated T cells (NFAT)28. 

NFAT is regulated by the serine/threonine phosphatase calcineurin, which is 

activated by calcium (Ca2+) flux from the ER through the interaction of inositol 

triphosphate (IP3) with its receptor (IP3R)29. Upon activation, NFAT migrates from the 

cytoplasm to the nucleus and directly binds to promoter regions on the JCPyV genome to 

initiate transcription28. Inhibition of calcineurin utilizing the chemical inhibitor 

Cyclosporine a (CsA), results in a significant reduction in JCPyV infection28. Manley et 

al. demonstrated the importance of NFAT binding to JCPyV DNA to promote 

transcription of both the early and late viral genes. While these findings suggest the 

importance of NFAT regulation in JCPyV infection, the role of the IP3R signaling 

cascade in NFAT activation during JCPyV infection remains uncharacterized. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5-HT2R-activation of Ca2+/CaM signaling pathway. Activation of 5-HT2R leads to 
IP3 activation of the IP3R causing a release of Ca2+ from the ER, leading to the activation of 
calmodulin (CaM), which then binds to specific sites on the intracellular loops on the 5-HT2R, 
and/or calcineurin, which activates nuclear factor of activated T cells (NFAT), a transcription 
factor required for JCPyV infection. Inhibition of IP3R was accomplished utilizing the 
competitive inhibitor, 2-APB. 
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IP3R-mediated calcium signaling 

While the role of 5-HT2Rs in JCPyV entry and infection are not completely understood, it 

is known that ligand activation of 5-HT2Rs can activate multiple signaling cascades, 

which have been observed to regulate the JCPyV lifecycle20. The 5-HT2R recruits 

calmodulin (CaM), which activates phospholipase C (PLC) and hydrolyses PIP2 into IP3 

and diacylglycerol (DAG)29. Free IP3 binds to its receptor (IP3R) which is imbedded 

within the ER membrane and elicits a flux of calcium ions (Ca2+) into the cytoplasm. 

Increased cytoplasmic Ca2+ then becomes a universal regulator for a multitude of 

signaling cascades within a cell including activation of calcineurin, a seine/threonine 

phosphatase that regulate the activation of host transcription factors like NFAT and 

cellular proliferation (Figure 4)45. Additionally, the free Ca2+ may bind to CaM and result 

in binding to intracellular binding domains on the 5-HT2R, which stabilizes its expression 

on the exterior of the cell. 

Recent studies suggest that viruses have evolved to elicit the release of ER Ca2+ 

stores to drive various stages in their reproductive lifecycles. For example, the human 

immunodeficiency virus (HIV) is an enveloped, negative-stranded RNA virus that 

utilizes IP3R-mediated Ca2+ flux to localize Gag, viral structural proteins responsible for 

virion maturation, to the plasma membrane30. At the membrane, Gag mediates viral 

egress via endocytic sorting complex required for transport (ESCRT)31. Meanwhile, 

Dengue virus (DENV), an enveloped, positive-stranded RNA virus, induces Ca2+ flux 

from the ER to initiate store-operated Ca2+ entry (SOCE) to drive viral replication32. 

Furthermore, coxsackievirus B (CVB) is a nonenveloped, positive-sense RNA virus that 

utilizes IP3R-mediated Ca2+ flux to induce vacuolization of cells, which mediates viral 
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internalization and trafficking through the cell33. While these viruses have different 

physical structures, genomes, and egress strategies, they are all unified in their 

dependence on intracellular Ca2+ to drive infection. Based on the viral-induced Ca2+ flux 

pathways elicited by a wide-range of viruses and JCPyV activation of potential Ca2+-

driven signaling pathways through 5-HT2Rs22, MAPK26, and NFAT28, it is hypothesized 

that JCPyV also depends on IP3R-mediated Ca2+ release to drive the infectious viral 

lifecycle. 

 
Research goals 

The goal of this thesis research was to define the role of IP3R-mediated 

intracellular Ca2+ flux from the ER in regulating JCPyV infection. Studies using an ER-

specific Ca2+ reporter assay to track Ca2+ levels within the ER, suggest that JCPyV 

infection induces the release of ER Ca2+ stores at 2 h post infection. To determine 

whether Ca2+ flux is necessary for JCPyV infection, an IP3R chemical inhibitor was 

utilized and resulted in a dose-dependent-decrease in both viral VP1 and T Ag 

expression. JCPyV-induced Ca2+ flux within 0-3 h following viral infection, times that 

are consistent with viral attachment and entry. To elucidate the step in the virus lifecycle 

affected by the inhibition of Ca2+ flux, JCPyV attachment and internalization were 

examined. However, data revealed that treatment with the IP3R inhibitor had no effect on 

viral attachment or entry when compared to untreated cells. Together, these results 

suggest that JCPyV activates Ca2+ flux upon infection, and Ca2+ flux regulates JCPyV 

infection at a post-entry step in the virus lifecycle.  

 These data provide researchers with greater insight into the JCPyV infectious 

lifecycle and helps to increase our general understanding of the viral-host cell interactions 
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that impact human disease. Additionally, these experiments increase our understanding of 

the importance of Ca2+ signaling in viral infections within the field of virology. It is 

possible that this information may provide the insights necessary to identify novel targets 

for antivirals therapies for populations at risk of developing the fatal disease PML.  
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MATERIALS AND METHODS 
 
 
 

Cell culture maintenance 

Cell culture experiments were conducted utilizing Lab Gard II laminar flow hoods to 

maintain a sterile environment. SVG-A (human fetal glial cells transformed with SV40 T 

antigen) and human embryonic kidney cell lines that stably express 5-HT2AR 

(HEK293A-5-HT2AR) were generously provided from Dr. Walter Atwood’s laboratory 

(Brown University). Cells were maintained in T75 flasks and were grown in a humidified 

incubator at 37oC with 5% CO2. Cell lines were passaged upon visually reaching 90% 

confluency, as observed using a light microscope. SVG-A cells were cultured in 

Minimum Essential Medium (MEM) with 10% fetal bovine serum (FBS), 1% 

penicillin/streptomycin (P/S) (Mediatech, Inc.), and 0.2% plasmocin (Invivogen). 

HEK293A-5-HT2AR cells were cultured with Dulbecco’s Modified Eagle Medium 

(DMEM) with the same concentrations of FBS, P/S, and plasmocin. For subculturing, 

cells were detached from flasks with 4 mL of 0.5% trypsin-EDTA (Gibco, Thermo 

Fischer Scientific) and incubated at 37oC for 5 mins. Following incubation, 9 mL of fresh 

media was added and transferred to a 15 mL conical tube. The cell suspension was 

centrifuged at 2,000 rpm for 5 min. Media was aspirated off the pelleted cells, which 

were then resuspended in 10 mL of fresh complete media and divided into a new flask for 

continued growth. The new T75 was incubated in a humidified incubator at 37oC and 5% 

CO2 until confluency was reached again.  
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Inhibition of Calcium Flux 

2-APB Treatment of SVG-A cells: Wells of a 24-well plate (Grenier Bio-One) were 

seeded with 2.4e5 cells/well in complete MEM and incubated in a humidified incubator 

at 37oC overnight (O/N). Once cells reached ~80% confluency by visual inspection, 

media was removed, and the 2-APB (Sigma-Aldrich) inhibitor, a competitive inhibitor of 

the IP3R, was added in complete MEM with a final volume of 1 mL/well (concentrations 

specified in Figure Legends). Cells were then incubated at 37oC for 2 h and then infected 

(described below).  

2-APB Treatment of HEK293A-5-HT2AR cells: Wells of a 24-well plate (Grenier Bio-

One) were seeded with 2.4e5 cells/well in complete MEM and incubated in a humidified 

incubator at 37oC O/N. Once cells reached ~80% confluency by visual inspection, media 

was removed, and the 2-APB inhibitor, a competitive inhibitor of the IP3R, was added in 

complete MEM with a final volume of 1 mL/well (concentrations specified in Figure 

Legends).  

Xestospongin C treatment of SVG-A cells: Wells of a 24-well plate (Grenier Bio-One) 

were seeded with 2.4e5 cells/well in complete MEM and incubated in a humidified 

incubator at 37oC O/N. Once cells reached ~80% confluency by visual inspection, media 

was removed, and the Xestospongin C inhibitor, an inhibitor of the IP3R, was added in 

complete MEM with a final volume of 1 mL/well (concentrations specified in Figure 

Legends). Cells were then incubated at 37oC for 30 min and then infected (described 

below).  

U73122 Treatment of SVG-A cells: Wells of a 24-well plate (Grenier Bio-One) were 

seeded with 2.4e5 cells/well in complete MEM and incubated in a humidified incubator 
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at 37oC O/N. Once cells reached ~80% confluency by visual inspection, media was 

removed, and the inhibitor U73122, which targets PLC, was added in complete MEM 

with a final volume of 1 mL/well (concentrations specified in Figure Legends). Cells 

were then incubated at 37oC for 24 h and then infected (described below).  

 
Cellular Proliferation Assay (MTS) 

To determine cytotoxic effects of chemical inhibitors, wells in a 96-well plate (Grenier 

Bio-One) were seeded with 1e4 cells/well in complete MEM and incubated at 37oC O/N. 

Once cells reached 80% confluency they were treated with the selected chemical, after 

which fresh media was added to a final volume of 100 µL per well. A volume of 20 µL of 

the MTS/PMS solution was then added, and cells were incubated at 37oC for 1 h. Post 

incubation, absorbance was recorded at 490 nm utilizing a BioTek Synergy2 plate reader. 

The average absorbances were calculated and compared to untreated cells at selected 

timepoints.  

 
JCPyV infection 

Cells that were pretreated with a chemical, control, or transfected with ER-GCaMP had 

media removed prior to infection. Cells were inoculated with JCPyV in fresh media 

(multiplicity of infections (MOIs) specified in Figure Legends). Viral infections were 

conducted in either complete MEM for chemical inhibitors, or phenol red-free complete 

MEM for ER-GCaMP transfected cells as specified. Cells were incubated with viral 

inoculums of 200 µL for 24-well plate and 40µL for a 96-well plate for 1 h incubation at 

37oC, then cells were fed with 1 mL of complete MEM for a 24-well plate (Grenier Bio-

One), or 60 µL for a 96-well plate (Grenier Bio-One). Cells that were being examined for 
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T Ag expression were incubated for 48 hpi while those being examined for VP1 

incubated for 72 hpi.  

 
Fluorescence Focus Assay (FFA) 

Following infection, cells were washed with 1 mL of 1XPBS then fixed in ice cold 

methanol. Fixed cells were then incubated at -20oC for at least 10 mins, washed three 

times for 10 mins with 1XPBS, and then permeabilized with PBS-0.5% TX100 during a 

15-min incubation.  

T Ag Staining: Following permeabilization, cells were blocked with 10% goat serum in 

1XPBS at RT for 45 min. Cells were then stained for presence of T Ag utilizing the 

primary PAB692 (1:50) and incubated at 37oC for 1 h (generously provided by the 

Tevethia lab, Penn State). Cells were washed with 1XPBS Tween (0.01%) three times at 

RT for 5 min. An anti-mouse Alexa Fluor-594 secondary antibody was used to detect the 

primary antibody, and cells were incubated at 37oC for 1 h. Finally, cells were washed 

with 1XPBS three times at RT for 5 min, then stored in 1XPBS Tween (0.01%) at 4oC 

prior to visualization and quantitation. 

VP1 Staining: Following permeabilization, cells were blocked with 10% goat serum at 

RT for 45 min. Cells were stained with a primary antibody PAB597 (1:10), a hybridoma 

supernatant, which produces a monoclonal antibody for JCPyV VP1 (provided by Ed 

Harlow), and incubated at 37oC for 1 h. Cells were washed with 1XPBS three times at RT 

for 5 min. An anti-mouse Alexa Fluor-488 secondary antibody (1:1000) (Thermo Fisher 

Scientific) was used to detect the primary antibody and incubated at 37oC for 1 h. Finally, 

cells were washed with 1XPBS three times at RT for 5 min and then stored in 1XPBS 

Tween (0.01%) at 4oC prior to visualization and quantitation. 
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Quantification: Cells were quantified for infectivity via epifluorescence microscopy by 

counting VP1+ cells in at least 5 visual fields per well in triplicate wells for 3 separate 

experiments. Expression of VP1 was observed under a 10x objective for a 24-well plate 

or 20x for a 96-well plate using a Nikon Eclipse Ti epifluorescence microscope. The total 

number of cells/visual field was quantified by staining cellular DNA with DAPI. DAPI 

positive cells were quantified using a binary created in the Nikon NIS-Elements Basic 

Research software (Version 4.5), which controls for equal diameter and circularity of 

DAPI+ nuclei based upon threshold fluorescence. The percentage of infected cells was 

calculated by dividing VP1+ cells by the total number of cells, and then normalizing 

values to the negative control (i.e. DMSO).  

 
Flow cytometry to measure JCPyV attachment 

SVG-A cells were cultured to 100% confluency in 6-well plates (Grenier Bio-One) and 

were treated with a DMSO control or 2-APB (300 µM) in complete MEM at 37oC for 2 

h. Cells were then removed from plates by washing with 1XPBS, then incubated with 

Cellstripper (Corning). SVG-A cells were pelleted at 376 x g at 4oC for 5 min and 

washed in 1XPBS. Cells were incubated with Alexa-488 fluorescently labeled JCPyV 

(JCPyV-488) in PBS (100 µL total volume) on ice for 2 h, agitating every 15 min. 

Following incubation, cells were washed and pelleted by centrifugation before being 

resuspended in a final volume of 500 µL of 1XPBS. Viral attachment (JCPyV-488) was 

examined utilizing a BD LSRII (BD Biosciences) with a 488 laser excitation line 

(Benton, Dickinson, and Company). Data were analyzed based upon 10,000 events using 

BD FACSDIVA (Benton, Dickinson, and Company) and FlowJo software (Tree Star, 

Inc.).  
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Trypan blue quenching assay 

SVG-A cells were plated to 100% confluency in 6-well plates (Grenier Bio-One) and 

pretreated with complete MEM containing either DMSO control or 2-APB (300 µM) at 

37oC for 2 h. Cells were then harvested by washing cells with 1XPBS, then incubated 

with Cellstripper (Corning) at 37oC for 5 min. Cells were centrifuged at 375 x g at 4oC 

for 5 min. The pellet was washed with 1XPBS, cells were pelleted again, and finally 

resuspended in phenol-free complete MEM and chilled at 4oC for 30 min. Cells were 

pelleted and resuspended with JCPyV-488 and incubated at 4oC for 1.5 h with agitation 

every 15 min. Post incubation, cells were resuspended with cold phenol-free complete 

MEM and were either fixed (attachment) or incubated at 37oC for 90 min (entry). At 0 or 

90 min post-incubation, cells were pelleted and resuspended in 4% PFA on ice for 10 

min. Cells were then washed and resuspended in 1XPBS or 1XPBS with Trypan blue 

(0.016%) in a final volume of 500 µL. Addition of Trypan blue to pre-treated JCPyV-488 

incubated cells quenches extracellular fluorescence. Therefore, only internalized JCPyV-

488 would remain detectable to the flow cytometer. Analysis for viral internalization was 

completed utilizing a BD LSRII equipped with a 488 laser line. Data were analyzed with 

BD FACSDIVA (Becton, Dickinson and Company) and FlowJo software (Tree Star, 

Inc.). Quenched (addition of Trypan blue) and protected samples (without Trypan blue) 

from DMSO- and 2-APB-treated cells were assessed by flow cytometry to determine 

viral attachment (incubation at 4oC only) and viral internalization (incubation at 37oC). 

Percent protected fluorescence of average FITC readings from quenched and protected 

samples were calculated by normalizing the mean fluorescence to cells alone. Three 

samples were examined for each condition, with each sample containing 10,000 events. 
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ER-GCaMP assay 

SVG-A cells were plated 5e3 cells/well in a 96-well black chimney, clear bottom plate 

(Grenier Bio-One) and incubated O/N at 37oC in complete MEM. Cells were then 

transfected with a plasmid containing the ER-GCaMP (provided by Drs. Tim Ryan and 

Julie Gosse) with Fugene6 (Promega) at a 0.2µg of DNA to 0.6µL of Fugene6 in a 

volume of 10 µL/well in phenol-free complete MEM. Cells were incubated at 37oC for 24 

h. The transfection treatment was then removed and replaced with complete MEM and 

incubated at 37oC for 48 h. Cells were then washed with a Tyrode’s buffer (pH 7.4) at 

37oC for 30 min. Cells treated with ionomycin or Tyrode’s buffer immediately before 

analysis every 45 sec for 1h (excitation 485/20 and emission 528/20) using a BioTek 

Synergy2 plate reader with Gen5 (version 5.0). Other cells were infected with JCPyV in 

Tyrode’s buffer at a MOI 0.5 FFU/cell and read every min for 3 h (excitation 485/20 and 

emission 528/20) using a BioTek Synergy2 plate reader with Gen5 (version 5.0). 

Readings were normalized to non-transfected or uninfected samples. 

 
Statistical Analysis 

Significance was determined utilizing the Microsoft Excel student’s paired t-test for at 

least triplicate samples. P values of < 0.05 were considered statistically significant.  
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RESULTS 
 
 
 

JCPyV directly induces Ca2+ flux from the ER 

Viral-host cell interactions that occur during viral attachment can induce Ca2+ flux 

from the ER to drive viral processes such as internalization, trafficking, replication, and 

egress by activating critical proteins31. The role of JCPyV-induced Ca2+ flux has 

remained unclear, yet recent studies have shown that ERK26 and NFAT28, which can also 

be regulated by IP3R-mediated Ca2+ release, are critical modulators of the JCPyV 

infectious lifecycle. To 

examine whether Ca2+ 

release occurs during 

JCPyV infection, an assay 

was developed to measure 

ER- specific Ca2+ release in 

SVG-A cells, a glial cell 

line optimized for studies of 

JCPyV infection. SVG-A cells were transfected with a plasmid containing the sequence 

for a molecular reporter of ER-specific Ca2+ signaling, ER-GCaMP. The molecule 

consists of an enhanced green fluorescent protein (GFP) synthetically attached to a CaM 

and M13 peptide, both of which act as Ca2+ binding domains, with an ER localization 

signal34. ER-GCaMP can only be excited and emit a signal when bound to Ca2+ ions 

within the ER. Emission is detected via plate reader and measured as relative 

Figure 5. ER-GCaMP is efficient for examining ER Ca2+ flux. SVG-A 
cells were transfected with an ER-GCaMP plasmid and incubated for 48 h. 
Cells were then treated with ionomycin. At selected time points, cells were 
analyzed for fluorescence intensity with a BioTek plate reader at 37oC every 
45 sec for 1 h to determine relative fluorescence units (RFUs). Data are 
representative of three experiments completed with three samples per 
treatment. ER-GCaMP is efficient for examining ER Ca2+ flux. 
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fluorescence units (RFUs). Therefore, changes in fluorescence measurements represent 

the relative levels of Ca2+ within the ER.  

To determine the sensitivity of the assay, transfected cells were examined for 

RFUs over the course of 1 h after adding ionomycin, a Ca2+ ionophore, or a CTL 

(DMSO) to the cells (Figure 5). Results showed a stable expression of RFUs in the CTL-

treated cells for the duration of the experiment while those treated with ionomycin 

showed a complete abolishment of relative fluorescence units immediately upon addition. 

These results therefore 

indicate that this assay is 

sensitive enough to detect 

variations in ER Ca2+ 

concentrations. Next, to 

determine the effect of 

JCPyV infection on Ca2+ 

flux, cells were mock 

infected (uninfected) or 

infected. Fluorescence was 

recorded for six samples 

every min for 3 h.  Mock-

infected cells retained a 

stable expression of RFUs 

throughout the duration of 

the experiment, while the 

Figure 7. 2-APB is efficient for inhibiting ER Ca2+ flux. SVG-A cells were 
transfected with an ER-GCaMP plasmid and incubated for 48 h. Cells were pretreated 
for 2-APB or CTL (DSMO) then treated with ionomycin. At selected time points, 
cells were analyzed for fluorescence intensity with a BioTek plate reader at 37oC 
every 45 sec for 1 h to determine relative fluorescence units (RFUs). ER-GCaMP is 
efficient for examining ER Ca2+ flux. 

Figure 6. JCPyV induces Ca2+ release from ER. SVG-A cells were transfected 
with an ER-GCaMP plasmid and incubated for 48 h. Cells were then infected with 
JCPyV (MOI = 0.5 FFU/cell). At selected time points, cells were analyzed for 
fluorescence intensity with a BioTek plate reader at 37oC every min for 3 h to 
determine relative fluorescence units (RFUs). Data are representative of three 
experiments completed with six samples per treatment. JCPyV infection induces 
ER Ca2+ release. 
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infected cells showed a complete abolishment at the time of infection (Figure 6). These 

results therefore suggest that JCPyV host-cell interactions are capable of eliciting an ER 

Ca2+ during infection, presumably as early at the viral attachment and entry5,12,22.  

 

IP3R-mediated Ca2+ flux is required for JCPyV infection 

While the ER-GCaMP studies revealed that JCPyV infection results in a release of ER 

Ca2+ stores at times consistent with viral attachment and entry, the role of Ca2+ flux on 

the JCPyV infectious cycle was unclear. Upon release from the ER, free Ca2+ ions act as 

ubiquitous secondary regulators for cellular functions35. Other viruses including HIV, 

influenza virus, and Dengue virus have been shown to induce Ca2+ flux from the ER to 

drive various steps in their infectious processes31,32. Therefore, to examine the effect of 

ER Ca2+ flux inhibition, cells were pretreated with various chemical inhibitors of the 

IP3R-mediated Ca2+ release signaling cascade to examine their effect on JCPyV infection. 

The competitive inhibitor of the IP3R, 2-APB36 (Figure 4), was tested for efficacy by 

determining whether it could inhibit Ca2+ flux from the ER utilizing the ER-GCaMP 

assay. Results showed that cells pretreated with 300 µM of 2-APB compared to CTL-

Figure 8. Pretreatment of cells with 2-APB inhibits nuclear expression of TAg. A) HEK-5-HT2AR cells were treated for 1 h or 
B) SVG-A cells were treated for 2 h with either a control (CTL) or 2-APB at 37oC and then infected with JCPyV at a MOI of 0.1 
FFU/cell. Cells were fixed, stained, and quantified for TAg expression by indirect immunofluorescence microscopy. Data represent 
the average percent infection for 3 visual fields for triplicate samples. Experiment was completed once in triplicate. Error bars 
represent the SD. *, P<0.03 and **, P<0.005, and ***P<0.005. Treatment with 2-APB reduces JCPyV infection. 
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treated cells retained higher relative fluorescence when treated with ionomycin (Figure 

7). These results therefore suggest that 2-APB is efficient at inhibiting Ca2+ flux from the 

ER.  

To further characterize whether Ca2+ flux is required for JCPyV infection, the 

kidney cell line HEK293A that stably express 5-HT2AR22 (HEK-5-HT2AR) and the glial 

cell line SVG-A cells were pretreated with 2-APB at indicated concentrations for 2 h, 

then infected with JCPyV. Infection was quantified using a fluorescence focus assay 

(FFA) of viral infectivity. Treatment of SVG-A cells with 2-APB lead to a dose-

dependent decrease in nuclear expression of both the early gene product T Ag (Figure 8) 

and late gene product VP1 (Figure 9). Additionally, SVG-A cells were pretreated with 

Xestospongin C, another competitive inhibitor of the IP3R, and then examined by FFA 

for VP1 expression (Figure 10). 

These results indicated a 

significant decrease of ~20% in 

viral infection, thereby 

corroborating with the 2-APB 

results (Figure 10). Given that 

PLC regulates the production of 

IP3 (Figure 4), SVG-A cells were 

pretreated with a PLC inhibitor 

(U73122) or DMSO control for 24 h prior to infection. Infectivity was scored using a 

FFA and cells were examined for VP1 expression. Cells treated with U73122 

demonstrated a ~20% decrease in JCPyV infection in comparison to DMSO control-

Figure 9. SVG-A cells treated with 2-APB inhibits nuclear expression 
of VP1. SVG-A cells were treated with either a control (CTL) or 2-APB, 
an inhibitor of ER Ca2+ release, then infected with JCPyV at an MOI of 0.1 
FFU/cell at 37oC for 1 h. Cells were fixed, stained, and quantified for VP1 
expression by indirect immunofluorescence microscopy. Data represent the 
average % infection for 3 visual fields for triplicate samples. Data are 
representative of three experiments completed in triplicate. Error bars 
represent the SD. *, P<0.05 and **, P<0.005. Treatment with 2-APB 
prevented JCPyV infection. 
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treated cells (Figure 11), suggesting the importance of the IP3R signaling pathway in 

JCPyV infection. To ensure chemical treatments were not inducing cellular cytotoxicity, 

SVG-A cells were subjected to treatments as described in the experimental procedures 

and a cellular proliferation assay was performed (Figure 12). The concentrations used in 

these studies did not exhibit cellular 

toxicity. Together, these data suggest 

that JCPyV utilizes IP3R-mediated 

Ca2+ flux from host cell ER stores to 

drive infection.  

 
JCPyV attachment is independent of 

IP3R-mediated Ca2+ flux 

Analysis of Ca2+ release from the ER 

upon JCPyV infection using the ER-

GCaMP assay revealed that Ca2+ 

release occurs immediately following 

infection (0-3 h), and which is a time 

consistent with viral attachment and 

entry5,12,20,22. To define whether 

JCPyV depends on IP3R-mediated 

Ca2+ release from the ER Ca2+ flux, 

viral attachment to cells treated with 2-

APB was measured by flow cytometry. 

SVG-A cells were pretreated with 300 

Figure 10. Pretreatment of cells Xestospongin C inhibits nuclear 
expression of VP1. SVG-A cells were pretreated with either a control 
(CTL) or Xestospongin C (Xesto C) for 1 h, then infected with JCPyV 
at an MOI of 0.1 FFU/cell at 37oC for 1 h. Media was added, and cells 
incubated for 72 h. Post incubation, cells were fixed, stained, and 
quantified for nuclear VP1 expression indirect immunofluorescence 
microscopy. The bars represent the average number of infected cells 
for 3 fields of view for triplicate samples. The error bars represent the 
SD. Xestospongin C resulted in ~30% decrease in JCPyV infection *, 
P<0.04. 

Figure 11. Pretreatment of cells with U73122 inhibits nuclear 
expression of VP1. SVG-A cells were pretreated with either a 
control (CTL) or U73122 at 37ᴼC for 24 h, then infected for 1 h. 
Media was added and cells incubated for 72 h. Post incubation, cells 
were fixed, stained, and quantified for nuclear VP1 expression 
indirect immunofluorescence microscopy. The bars represent the 
average number of infected cells for 3 fields of view for triplicate 
samples. Experiment was completed three times in triplicate. The 
error bars represent the SD. U73122 resulted in a dose dependent 
decrease in JCPyV infection. *, P<0.005. 
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µM of 2-APB, or CTL (DMSO) at 37oC for 2 h. Cells were detached from plates, 

suspended, and incubated at 4oC on ice to induce rigidity in the cell membranes to limit 

JCPyV internalization. Treated cells were then incubated with an Alexa-488-labeled 

JCPyV (JCPyV-488) at 4oC on ice to mediate viral attachment for 90 min37. Viral 

attachment was measured by flow cytometry analysis of the mean fluorescence (JCPyV-

488) of 10,000 events per treatment (Figure 13). Results showed no significant change in 

the mean fluorescence between the 2-APB- or control-treated cells, and that fluorescence 

is correlated to the presence of JCPyV-488 attachment to SVG-As. These results suggest 

that inhibition of Ca2+ release from the ER with 2-APB treatment does not affect JCPyV 

binding to host cells. Therefore, it is likely that Ca2+ flux regulates a post-attachment step 

in the JCPyV lifecycle.  

Figure 12. Chemical inhibitors do not affect cellular proliferation. SVGA cells were treated with either a control (CTL) 
A) 2-APB for 2 h, B) U73122 for 24 h, or C) Xestospongin C for 1h at 37ᴼC. Post incubation, treatment was removed and 
replaced with an equivalent volume of media, and cells were incubated at 37ᴼC for a total of 72 h. MTS was then added to 
each well and incubated for 1h at 37ᴼC. Absorbance was measured at 490 nm. Data represent the average absorbance for 
triplicate samples. Data are representative of three experiments completed in triplicate. Error bars represent SD. Pretreating 
SVGA cells with 2-APB, U73122, or Xestospongin C does not induce cytotoxicity. 
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JCPyV internalization is independent of IP3R-mediated Ca2+ flux 

Recent data has demonstrated the importance of ER Ca2+ signaling in driving viral 

internalization in the infectious viral lifecycles, including the viral entry step the herpes 

simplex virus38. Further, ER Ca2+ flux occurs very early during JCPyV infection (Figure 

6), suggesting that Ca2+ flux may regulate viral internalization. To determine whether 

Ca2+ flux regulated JCPyV entry, SVG-A cells were pretreated with 300 µM of 2-APB or 

a CTL (DMSO), and cells were 

suspended in 1XPBS and incubated at 

4oC on ice for 30 mins to induce 

membrane rigidity. Cells were then 

incubated with JCPyV-488 in 1XPBS at 

either at 4oC on ice (attachment) and 

fixed or shifted to 37oC (entry) for 90 min 

(Figure 14). Post incubation, cells were 

washed and treated with or without 

Trypan blue, which quenches the 

extracellular Alexa-488 fluorescence 

while internalized fluorescent molecules 

are protected from quenching37. 

Triplicate samples were analyzed by flow cytometry (10,000 events for each sample). 

Data was analyzed to determine the amount of virus that had been internalized (% 

protected fluorescence), which revealed no change in mean fluorescence between the 

control- or 2-APB- pretreated SVG-A cells (Figure 14). These results suggest that IP3R-

Figure 13. 2-APB does not affect JCPyV attachment to 
SVG-A cells. To examine viral binding, SVG-A cells were 
pretreated for 2 h with 2-APB, DMSO (CTL), or PBS (Cells 
alone) then incubated with fluorescently-labeled JCPyV 
(JCPyV-488) on ice for 1 h. Cells were analyzed using flow 
cytometry to detect JCPyV-488. The mean fluorescence 
intensity was determined for 10,000 events measured. 
Pretreatment of cells with 2-APB does not impact JCPyV 
attachment. 
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mediated Ca2+ flux has no effect on JCPyV internalization. Therefore, it is hypothesized 

that Ca2+ flux, which is required for JCPyV infection, affects a post-attachment and post-

internalization step in the JCPyV replication cycle.  
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DISCUSSION 
 
 
 

Due the diverse role of Ca2+ in cellular signaling, it is defined as a ubiquitous 

secondary signaling regulator in healthy cells and during times of human disease35. 

Research has shown that specific viral-host cell interactions can elicit Ca2+ release from 

the ER to promote viral infection27,31,36,38. Interestingly, Ca2+ flux can be initiated upon 

ligand binding and activation of G-protein coupled receptors (GPCRs), which include the 

5-HT2Rs that are required for JCPyV entry and infection22,23. Subsequent signaling 

cascades are initiated and result in the activation of the IP3R, a Ca2+ ion channel located 

within the membrane of the ER39. This free cytosolic Ca2+ is responsible for activating 

various host transcription factors, proteins involved with endocytosis in addition to 

dictating cellular proliferation and death, and membrane budding40. 

This research has shown that JCPyV infection results in the release of ER Ca2+ at 

times consistent with viral attachment and entry through a novel application of the ER-

GCaMP assay (Figure 6)20,34. Additionally, examination of both early and late viral gene 

products revealed a dose-dependent decrease in viral protein expression in cells 

pretreated with either an IP3R or PLC inhibitor. These results suggest that the Ca2+ flux 

regulates a step in the JCPyV infectious cycle prior to transcription (Figure 8-10). 

However, there was no change in either viral attachment or entry in the presence of the 2-

APB inhibitor (Figures 13 and 14), suggesting that Ca2+ flux has no effect on JCPyV 

attachment or entry. Therefore, JCPyV-induced Ca2+ flux is hypothesized to regulate a 

process post viral entry and prior to transcription and has the potential to regulate 
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multiple steps in the JCPyV infectious cycle, such as trafficking, partial uncoating of the 

viral capsid, and activation of host transcription factors.  

Following internalization, JCPyV is trafficked through the cytoplasm within the 

endocytic compartment via early endosomes and caveolin-1+ vesicles25,41. Early 

endosome formation and function are 

closely regulated by Ras-associated 

binding protein 5 (Rab5)42. Rab5 is 

activated via GTPases that are 

regulated by GPCRs43. Rab5 recruits 

Rab effector proteins, which are 

responsible for endosomal fusion and 

trafficking42. As JCPyV has been 

shown to require a specific family of 

GPCRs, 5-HT2Rs, it is possible that 

their activation not only mediates 

viral internalization, but also induces ER Ca2+ flux to activate Rab5 for early endosomal 

trafficking. Early endosomal trafficking is a necessary step in the JCPyV lifecycle, which 

results in delivery of the virus to the ER where the capsid undergoes a partial uncoating4. 

This uncoating process is required for viral deposition into the cytosol and eventual 

translocation to the nucleus where the viral genome is released for transcription and viral 

replication4. It is therefore possible that modulation of the ER Ca2+ release inhibits viral 

trafficking and therefore reduces viral transcription. This would therefore be consistent 

Figure 14. 2-APB does not affect JCPyV entry in SVG-A cells. 
SVG-A cells were pretreated with 2-APB at 37oC for 2 h then 
incubated with fluorescently-labeled JCPyV on ice for 1 h for viral 
attachment. Cells were treated with or without trypan blue to 
quench extracellular fluorescence or incubated at 37oC for 90 min 
to mediate viral entry and subsequently treated with trypan blue. 
Internalized virions were protected within the cell and capable of 
detection using flow cytometry. Pretreatment of cells with 2-APB 
does not affect JCPyV internalization. 



 
 

29 

with results showing inhibition of Ca2+ flux results in decreased expression of both early 

and late viral gene products (Figure 8 and 9).  

Additionally, it is also possible that IP3R-mediated ER Ca2+ flux, thereby altering 

the ER’s internal environment, is affecting JCPyV capsid uncoating. Research has shown 

that inhibiting the release of cellular Ca2+ stores negatively affects the viral uncoating 

processes within the ER37. Research by Nelson et al. suggests that release of ER Ca2+ 

activates ER-localized enzymes responsible for mediating JCPyV uncoating37. Therefore, 

it is possible that JCPyV induces IP3R-mediated ER Ca2+ to regulate the ERAD pathway 

and subsequent capsid uncoating within the ER. This Ca2+ release would occur early in 

the JCPyV lifecycle, which is demonstrated through the ER-GCaMP assay examining ER 

Ca2+ in JCPyV infected cells (Figure 6). Failure of JCPyV to partially uncoat in the ER 

would inhibit the delivery of the viral genome into the nucleus, and therefore inhibit viral 

transcription. This is also consistent with the reduced expression of both early and late 

viral gene products when IP3R-mediated Ca2+ release was inhibited with 2-APB (Figure 

7).  

Furthermore, ER Ca2+ flux could affect the activation of the protein kinase C 

(PKC) signaling pathway, which occurs post-entry and prior to viral transcription in the 

JCPyV lifecycle26. Cytosolic Ca2+ is capable of activating PKC, a kinase, which regulates 

the MAPK signaling pathway44. PKC initiates the MAPK cascade by phosphorylating 

Ras, which leads to the subsequent activation of Raf, MEK, and ERK44. Interestingly, the 

ER-GCaMP results revealed that Ca2+ flux occurs immediately upon viral infection. 

These results interestingly coincide with recent studies showing that the activation of 

ERK through phosphorylation occurs shortly after JCPyV infection26.  Interestingly, the 
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activation of ERK has also been linked to the regulation of NFAT, a molecule known to 

be a critical regulator in JCPyV transcription and infection28,45. Therefore, it is possible 

that JCPyV induced Ca2+ release is promoting viral gene transcription by regulating 

necessary transcription factors through the activation of PKC.  

As Ca2+ is defined as a universal secondary regulator, the ion itself would not be a 

viable target for either JCPyV infection or PML35. Inhibition of the ion could result in 

host cell death and thus lead to serious medical complications. One example is the 

importance of Ca2+ release in neuron activity. In this pathway glutamate activates a 

GPCR to create IP3, which then binds to its receptor and induces a Ca2+ flux. This 

calcium flux results in Ca2+-initiated Ca2+ release (CICR) and creates action potential 

within the pacemaker neurons of a human brain29. Similarly, Ca2+ signaling is also a 

critical regulator for muscle contraction, including muscles involved in regulating the 

heart29. Thus, it would be better to utilize our understanding of the role Ca2+ signaling 

pathway in regulating JCPyV infection to identify novel targets for JCPyV therapies. As 

the data has shown that ER Ca2+ release fails to inhibit viral attachment or internalization, 

yet it does have an effect on viral replication, and future research could help identify 

possible therapeutic targets such as transcription factors (NFAT) or activation of kinases 

such as ERK that regulate phosphorylation of transcription factors. Currently, there are 

inhibitors for the phosphatase calcineurin (Cyclosporin A) which regulates NFAT, and 

U0126 which inhibits ERK activation26,28. These could serve as the basis for developing 

novel therapies. 

Additionally, this research has described a new molecular assay sensitive enough 

to detect changes in Ca2+ concentrations within a selected organelle during viral 
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infection. This assay, along with the Ca2+ inhibition assays, has provided deeper insight 

how viral-host cell interactions regulate JCPyV infection and specifically how IP3R-

mediated Ca2+ release regulates viral infection and pathogenesis. These findings can be 

applied broadly to the field of virology to increase our understanding of viral-induced 

signaling pathways that drive viral infection, influence viral pathogenesis, and ultimately 

influence human disease development.  
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