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Abstract 

Maintaining amphibian populations in managed forests requires a balance between timber extraction and retaining 

functional connectivity for animals that use multiple vegetation types to satisfy habitat requirements, particularly 

where extensive harvesting may increase fragmentation. Quantifying dispersal patterns in response to harvest, 

especially across high-contrast edges adjacent to unlogged forest, is critical for evaluating the effects of harvest 

configuration on amphibians. We tested the initial post-metamorphic orientation of juvenile wood frogs (Lithobates 

sylvaticus) at edges in harvests (31– 60% retention standwide) in the Acadian forest of Maine, USA, during the period 

when juveniles emigrate from breeding pools. We released juveniles (n = 621) in 10-m diameter arena enclosures 

spanning edges. Frog movement in uncut controls (~70 –75% canopy) was contrasted with movement in the following: 

harvester trails (0% retention) running parallel to edges of uncut forest; perpendicular harvester trails; or residual strips 

of partially cut matrix-forest (~30% retention) between trails. We observed a nonsignificant trend for higher 

proportions of individuals entering control forests versus harvests (x1
2 = 2.504, P = 0.113) and a stronger trend for 

movements into control forests versus perpendicular-oriented trails (52:35 for forest versus treatment; x1
2 = 3.322, P = 

0.068). The biological relevance of such patterns warrants further consideration. Juveniles may enter partial harvests at 

rates similar to those for intact forest, but quantifying the effects of harvest configuration on movement patterns, 

residency times, and ultimately survival is necessary to determine whether these harvests represent sink habitats.  

 

 



Introduction 

Integrating timber management goals with biodiversity conservation often involves linking management of unlogged 

areas with forest practices on adjacent harvested areas, especially for relatively mobile animals that navigate multiple 

vegetation types to meet habitat needs (Hunter and Schmiegelow 2011, Driscoll et al. 2013). For amphibians in 

managed-forest landscapes, quantifying the tendency of post-metamorphic juveniles to enter harvests across 

high-contrast edges adjacent to unlogged forest remains a critical challenge in predicting population responses to forest 

harvesting due to the vital link between successful juvenile dispersal and population regulation (e.g., Semlitsch 2008). In 

northeastern North America, this issue gains additional traction as silvicultural methods shift away from intensive 

clearcutting toward partial harvesting, because the cumulative effects of multiple entries implemented over large areas 

may only increase the effects of fragmentation (e.g., Vanderwel et al. 2009, Hocking et al. 2013a). Successful dispersal 

may depend on the characteristics of the matrix that intervenes between suitable habitats (Kuefler et al. 2010, Burgess 

et al. 2012). Thus, quantifying the movement patterns of individuals as they encounter logging-induced edges could 

have important implications for maintaining connectivity as harvest practices trend away from even-aged management.  

In recent decades, understanding the effects of forest management on amphibian populations has been of particular 

concern because of their demonstrated sensitivity to habitat loss or fragmentation (deMaynadier and Hunter 1995), 

biphasic life histories linking terrestrial and aquatic systems (Davic and Welsh 2004, Tilghman et al. 2012), and potential 

keystone roles in forest ecosystems as abundant apex predators in detrital food webs (Walton 2005, Best and Welsh 

2014, Semlitsch et al. 2014). Many studies have documented long-term negative impacts of complete canopy removal 

(i.e., clearcutting) on amphibian distribution and abundance (Karraker and Welsh 2006, Semlitsch et al. 2009, Popescu 

et al. 2012). Similarly, high-contrast edges between recently cut and mature forests have exhibited low permeability to 

movements (Stamps et al. 1987, Popescu and Hunter 2011), probably because of higher levels of sunlight, wind speeds, 

and greater variation in humidity and temperature found at the edge relative to those in the interior forest (Harper et 

al. 2005, Olson et al. 2007). Yet, there remains a critical need to assess amphibian movement across landscapes that 

may be fragmented by logging (e.g., Graeter et al. 2008) because long-term population viability may depend on 

dispersal vis-a`-vis unidirectional movement of some juveniles from natal areas to new breeding locations (Pilliod et al. 

2002, Semlitsch 2008). In contrast to assumptions of patch-matrix models that oversimplify the nonforested matrix as 

inhospitable, recent evidence suggests that some frogs may transit various vegetation types (including open cover) 

during the dispersal period, even if they are unsuitable for settling (Mazerolle 2004, Cline and Hunter 2014). Further 

behavioral studies may elucidate factors influencing juvenile amphibian movements in forests fragmented by logging 

and, specifically, may quantify their movements relative to various harvested and nonharvested vegetation types within 

the matrix (Franklin and Lindenmayer 2009, Van Buskirk 2012). 

The need to assess amphibian dispersal behavior in forestry settings is particularly pressing in northeastern North 

America, where harvesting practices have shifted from a heavy reliance on intensive clearcutting in distinct patches to 

more extensive partial harvesting where stands are naturally regenerated. Typically, partial harvests in the Acadian 

region are implemented in herring-bone patterns of parallel harvester machine trails (3–4 m wide) spaced 15–20 m 

apart; often 30–60% of the matrix stand between the trails is removed (Bataineh et al. 2013) (Figure 1). We define 

harvests that remove 40–60% of the stand basal area as “heavy partial harvests.” Partial harvesting is currently the 

predominant form of timber extraction in Maine, USA, accounting for 95% of the total 186,703 ha harvested during 

2012 (Maine Forest Service 2013). This trend has been attributed to changes in forest policy, market conditions, 

equipment technology, silvicultural knowledge, and landownership including large quasi-industrial landbases where 

logging contractors can balance investments for extensive operations that often result in strong geometric harvest 

arrays (Sader et al. 2003). Multiple entries using a diversity of cut-to-length result in variable stocking, stand structure, 

and fragmentation patterns. 



However defined, there is a limited understanding of how heavy partial harvesting implemented in a herringbone 

pattern affects regeneration, future stand structure, or landscape-level composition (Bataineh et al. 2013). The dearth 

of information hinders our ability to devise silvicultural prescriptions, project future wood supplies, and assess 

biodiversity impacts (Driscoll et al. 2013). For example, in a review of wildlife responses to partial harvesting (sensu 

lato), researchers found that 38 of 65 vertebrate species associated with mature or old boreal forest decreased in 

abundance after high-intensity harvesting (30% retention) (Vanderwel et al. 2009, also see Rosenvald and Lõhmus 

2008), a result corroborated by other studies that documented a negative relationship between harvest intensity and 

amphibian habitat use (e.g., Homyack and Haas 2009) and survival (Todd et al. 2014). However, few studies provide a 

mechanistic link of vegetation structure to faunal response (e.g., Vanderwel et al. 2011), and there is a need to 

investigate species responses through field studies of wildlife responses to treatments, including studies of movement 

patterns. Throughout the Acadian region, partial harvesting is increasing fine-scale spatial heterogeneity (depicted in 

Figure 1) at widely varying harvesting intensities, which raises concerns about the effects of this form of management 

on a diversity of biota including amphibians.  

 
Study Species  

We studied the wood frog (Lithobates sylvaticus) because of its widespread distribution in North America and its 

dependence on closed-canopy forest. This species has demonstrated high sensitivity to forest removal and avoids forest 

edges (deMaynadier and Hunter 1998, Semlitsch et al. 2008). After emergence from natal pools, juveniles inhabit moist 

terrestrial landscapes, foraging on invertebrates and hibernating within refugia (e.g., burrows, tree root channels, leaf 

litter, and coarse woody material) (Cushman 2006). Although some juveniles will return to natal sites to breed (i.e., 

philopatry), ultimate dispersal success (i.e., juveniles surviving to breed in new sites) is estimated to be 18–20% (Berven 

and Grudzien 1990). Dispersal distances have been recorded at >1,000 m (females: 1,140 ± 324 m; males: 1,276 ± 435 

m), with a maximum of 2,530 m (Semlitsch and Bodie 2003). Postbreeding movements of adults have been estimated to 

be 102–340 m (Baldwin et al. 2006) and >300 m (Vasconcelos and Calhoun 2004). The scale of overland movements 

may make this species vulnerable to upland habitat disturbances that result in alterations of movement patterns and 

dispersal success.  

Study Goal and Predictive Framework for Post-metamorphic Movements  

Our goal was to document the short-term behavioral responses of juvenile wood frogs to habitat condition during the 

post-metamorphic period. Within each arena, juvenile frog movements in uncut control forest were contrasted with 

one of three conditions in the adjacent partially harvested stand immediately next to the arena: harvester trails running 

parallel to the edge of the uncut forest; harvester trails running perpendicular to the edge; or residual strips of partially 

cut matrix forest between trails (Figure 1).  

We hypothesized that five environmental factors (i.e., vegetation structure, microclimate, food, conspecifics, and 

predators) might influence observed juvenile movement behavior at the edge between the control and partially 

harvested forest. Previous studies have documented that amphibians may alter movement behavior in response to 

habitat extent (Rothermel and Semlitsch 2002), substrate (Baughman and Todd 2007, Semlitsch et al. 2012), vegetation 

structure (Stevens et al. 2004), physiological factors such as stress hormone levels (Janin et al. 2012), microclimate 

(Rittenhouse et al. 2008), and predation risk (Pittman et al. 2013). We conjectured that the frogs in our study were 

largely in a directed mode and were using a variety of cues (e.g., visual, chemosensory, and others) to explore in search 

of food, cover, and appropriate microclimate, often influenced by habitat and landscape features beyond the 

boundaries of our experimental arenas.  

Given that partial harvesting reduces overstory cover and eliminates cover completely in the harvester trails 

(cumulatively comprising >20% of the managed stand), our guiding hypothesis was that juveniles would move toward 



vegetation that provided greater cover from thermal stress and predators. We further hypothesized that movement 

timing would be more protracted in the control if some frogs were able to occupy suitable microhabitats in the 

experimental area. Finally, we speculated that harvester trail orientation might influence responses. Specifically, we 

conjectured that parallel trails would be more permeable to movements than perpendicular trails.  

Methods  

Study Sites  

Our experiment was conducted in Penobscot County, Maine, on harvests prescribed by American Forest Management 

(AFM), a private timber company that conducts harvests representative of current regional practices. AFM’s Northeast 

Region currently manages greater than 400,000 ha in Maine and New Hampshire (T. Massey, pers. comm., American 

Forest Management, Inc., Nov. 21, 2013). We used two study sites in Titcomb Pond and Great Pond Townships, Maine 

(44.94°N, 68.43°W and 44.99°N, 68.31°W, respectively) that had similar prescriptions, and where edges were oriented 

in different cardinal directions relative to trails (Figure 1) to eliminate any possible directional bias. Multiple harvest 

entries had occurred on our sites; intensive clearcutting was conducted in the late 1980s, but more recent harvests 

were broadly categorized as second or third stage shelterwoods with harvesting traffic concentrated in parallel strips 

(Figure 1). The most recent timber removal occurred in 2008 or 2009. All harvests were performed using whole-tree 

removal (Timbco 425 track harvester and grapple skidder; Timbco LLC, Morrisville, NC) with delimbing off-site; trails 

were devoid of canopy and diminished in cover objects that might serve as amphibian refugia.  

The prescription goal was to maintain 80% forested conditions, with 20% occupied in trails and a standwide nominal 

goal of 31–60% crown closure (with 0% closure in the center of harvester trails, this would mean 39–75% in residual 

strips). We documented 27.4– 30.4% average canopy cover across residual strips, suggesting standwide closure of 23%. 

The width of harvester trails ranged from 4.9 to 5.5 m, depending on sizes of equipment and trees. The distance 

between harvester trails (center-to-center, not edge-to-edge) was 22.8–27.4 m. Our closest experimental arenas were 

124 m apart, and the farthest were 12.7 km apart.  

Our study region is characterized by a humid continental climate (Köppen Dfb) (Peel et al. 2007), with warm-hot, humid 

summers and cold-severely cold winters, and is part of the Acadian region (Seymour 1995), a transitional zone between 

temperate forest and boreal forests. Partial disturbances from insect, wind, and natural senescence and small-scale gap 

dynamics probably characterized the presettlement natural disturbance regime (Seymour et al. 2002, Fraver et al. 

2009). However, extensive forest management has generated a mosaic of mixed-wood stands of various age classes 

(e.g., Arseneault et al. 2011). Our sites were composed of a mixture of northern conifers and tolerant hardwoods: red 

spruce (Picea rubens), balsam fir (Abies balsamea), eastern hemlock (Tsuga canadensis), eastern white pine (Pinus 

strobus), northern white cedar (Thuja occidentalis), red maple (Acer rubrum), bigtooth aspen (Populus grandidentata), 

paper birch (Betula papyrifera), and American beech (Fagus grandifolia). Stand composition indicated a successional 

shift toward hardwood dominance (30–70% basal area).  

Experimental Design and Arenas  

We constructed nine experimental arenas at the edge of intact forest and partially harvested stands representing three 

harvest treatments always paired with a control (Figure 1). We built nine 10-m diameter arenas (3 treatments X 3 

replicates) using partially opaque polyethylene silt-fence 40–50 cm in height plus 10–15 cm buried in the ground. 

Arenas of 10 m are small relative to the general distribution patterns of amphibians near edges (deMaynadier and 

Hunter 1998), but detailed studies of the movements of juvenile wood frogs indicate that they are responsive to edges 

at such fine scales. Recent studies (e.g., Popescu and Hunter 2011, Pittman and Semlitsch 2013, Pittman et al. 2014) use 

direct tracking methods to follow individual movement and indicate that dispersing juvenile amphibians are able to 



perceive proximate conditions and make movement decisions at quite small spatial scales (5–10 m) during the 

post-metamorphic period in managed forest settings. In particular, two studies (Popescu and Hunter 2011, Cline and 

Hunter 2014) determined that juvenile wood frogs actively avoided open-canopy habitats and sharp edges and returned 

toward closed-canopy forest at 0 and 10 m distances in recent clearcuts and other open-canopy habitats. Thus, we 

designed 10-m diameter experimental arenas to document the juvenile amphibian movement decisions (relative to 

each silvicultural edge) at a fine and immediate spatiotemporal scale. Within each arena, we buried two pitfall traps 

along the inner perimeter of fence walls, one in the middle of the control forest portion of the fence and another 

directly opposite. Arena walls were 60 cm in height and buried 15–20 cm into the ground to minimize metamorph 

trespass or escape from arenas during trials. Pitfalls consisted of two 10-cm aluminum cans taped together and buried 

24-cm in the ground, with a 10-cm deep funnel extending into buckets (Figure 1).  

Juvenile Amphibian Rearing and Release  

Before the experiment, we collected 12 L. sylvaticus egg masses from diverse breeding locations (e.g., natural vernal 

pools, roadside ditches, and skidder ruts) at the University of Maine’s Dwight B. Demeritt Experimental Forest, Maine 

(44.92°N, 68.67°W) during the spring egg-laying season (April–May 2011). Larvae and metamorph frogs were reared 

communally in seminatural mescosms (12 cattle tanks; 1,500 liters each) at a forested site using methods described in 

Cline and Hunter (2014). At Gosner stages 242, individuals were transferred into large plastic bins (200 liters; moist leaf 

litter) for 1–2 days until metamorphosis (stage 47) (Gosner 1960). Because of this mixing of individuals at the larval 

stage (i.e., egg masses from different sources were distributed among multiple tanks), a genetic effect of clutch was 

unlikely.  

Frogs were released in five batches of individuals from mixed clutches over 20 days: one batch each on July 6, 12, 15, 

18, and 26, 2011. Before each release, we measured (snout-vent length), marked (single different toe clip per batch), 

and randomly assigned frogs to one of our two study sites, three treatments, and nine arenas. We released 7–18 frogs 

per batch (621 frogs across five batches). Frogs were placed at the forest edge and in the arena center 1–2 hours after 

sunset and then traps were monitored daily between 6:30 and 11:00 am from July 6 and August 10. Because each pitfall 

trap was placed in the center of each 180° treatment “arc” of silt-fence framing each arena, an individual frog that 

elected to move toward the center of one treatment would ultimately fall in the pitfall trap associated with that 

treatment if it continued to move in the same direction of its initial orientation when it encountered the fence. If an 

individual frog continued to orient in the direction that it selected immediately after release, it would be “guided” (by 

the silt fence) to the pitfall trap associated with the directionality of its initial movement decision. Changes in initial 

movement orientation and directionality have been documented for juvenile wood frogs during the post-metamorphic 

period (e.g., Popescu and Hunter 2011, Cline and Hunter 2014) and might even be common during the exploratory 

phase of juvenile dispersal if immediate cues (or experimental treatments in our study) do not act strongly on individual 

movement decisions. We released subsequent batches only after recapture rates were >40% of the total number 

released in the prior batch. By waiting 3–8 days between batches, most frogs from the prior releases had been 

recaptured (minimizing density-dependent effects). Recaptured frogs were returned to forest near their pools of natal 

origin.  

Microclimate and Habitat Sampling  

We characterized microclimate, microhabitat, and stand-scale vegetation within arenas and adjacent control and 

partially cut forests. We recorded hourly temperatures (° C) and relative humidity (%) using 36 iButton hygrochron 

dataloggers (Maxim, Inc., Dallas, TX) for the duration of the experiment. Temperatures were measured at the center of 

each arena at (1) ground level, (2) under refugia (i.e., 5–8 cm under coarse woody material or slash), and (3) 120 cm 

aboveground in shade; we also measured ground-level relative humidity (4). We sampled hourly temperature in the 

control and partial-harvested treatment 15 m from the edge.  



We characterized vegetation and microhabitat in terms of ground cover, canopy closure, vegetation height, 

dominant-species composition, leaf-litter depth, and soil moisture. Sampling occurred in 54 3 X 3-m (9 m2) plots 

positioned within each arena (2 plots per arena; 1 in the control and 1 in the partial-harvest treatment semicircle) and 

outside of each arena, 10 m into each control or treatment (4 plots per arena). We measured percent vegetation cover 

in four height classes (0–0.5, 0.5–1, 1–2, and >2 m) and dominant composition at the tree, shrub, and herb level. We 

estimated percent canopy cover using a densiometer (Moosehorn CoverScopes, Medford, OR). We estimated ground 

cover as the percentage of 3 X 3-m plots classified as leaf litter, moss/lichen, herbaceous, slash, bare soil, and rocks. We 

collected leaf-litter depths and soil moisture (Field-Scout TDR 100 soil moisture meter; Spectrum Technologies, Aurora, 

IL) at 8 cm belowground at 3 randomly determined locations per plot.  

Analytical Approach  

To assess the initial orientation of each frog relative to the forest edge and recapture outcomes, our dependent variable 

was the proportion of frogs that were recaptured in the control versus treatments out of the total released per 

treatment, arena, and batch. We used pairwise tests for proportions and X2 tests to estimate differences in proportions 

of recaptures at the individual and batch levels.  

We also evaluated potential differences in movement timing (1–25 days after release). For each recaptured frog, we 

calculated the number of days that had passed between the date of initial release and final recapture and evaluated 

differences using a nonparametric (X2) Kruskall-Wallis test for proportions (R package [coin]) (Ho-thorn et al. 2008), 

selected because it is well suited for data that comprise proportions and does not assume a normal distribution of the 

residuals. We examined the goodness of fit of our observed movement timing data (i.e., the number of individuals 

recaptured on days 1–25 post-release, pooled by treatment) relative to predicted values using a nonlinear mixed-effects 

model, allowing for nested random effects and assuming a nonlinear exponential decay function (R package [nlme]) 

(Lindstrom and Bates 1990, Pinheiro and Bates 2000). We assessed potential differences in the size of metamorphs 

(SVL) released among treatments and arenas using a one-way analysis of variance (ANOVA) and Tukey’s honestly 

significant difference (HSD) single-step test for multiple comparisons. In the strictest sense, statistical tests were 

deemed significant at P < 0.05 and marginally significant at P<0.07. However, we also acknowledged that field studies in 

behavioral landscape ecology may be suggestive of biologically relevant patterns at slightly elevated αlevels (i.e., 

P≤0.10) relative to tightly controlled studies of animal behavior in laboratory settings where single causation factors are 

more easily isolated (e.g., Okland 2007, Garamszegi et al. 2009). All statistical tests were conducted in R, version 3.0.2 (R 

Development Core Team, Vienna, Austria 2013). 

Results 

Our experimental design generated three simple metrics to quantify the initial post-metamorphosis orientation of 

juvenile L. sylvaticus released at partially harvested forest edges: movement direction of recaptured individuals; 

percentage of released animals that were recaptured; and movement timing and latency (described below). The 

average size of juveniles was 15.4±0.1 mm (snout-vent length [SVL]), with no significant differences among batches 2–5 

(i.e., 12, 15, 18, and 26 July, 2011); batch 1 individuals (July 6) were significantly smaller (13.9 ± 0.1 mm; F1,243 = 4.27, P < 

0.001; ANOVA, Tukey’s HSD). 

Movement Behavior at the Harvest Edge: Initial Post-metamorphosis Orientation and Proportion of Recaptures 

Across all trials, we recaptured a greater proportion (54.8%) of frogs in the control forest portions of enclosures than in 

the partial harvest areas (45.2%, based on the distribution of 270 recaptured individuals out of 621 released) (Figure 2). 

A test for global significance (i.e., forest captures versus treatment captures summed across sites, arenas, and batches) 

was not strictly significant (x1
2=2.504, P=0.113), but the trend may have biological relevance. Analysis by treatment 



revealed a trend for avoiding the edges that were oriented perpendicular to trails (captures=52:35 for forest versus 

treatment; x1
2 = 3.322, P = 0.068) (Figure 2), but no trend in arenas located adjacent to parallel trails (57:53 for control 

forest and treatment, respectively; x1
2 = 0.146, P = 0.703) or at the confluence with residual strips (39:34 for control 

versus treatment; x1
2 = 0.343, P= 0.558). 

Departures from the Harvest Edge: Percentage of Frogs Recaptured in Experimental Arenas 

Across all arenas, 43.2% of released frogs were recaptured (270/621) (Table 1). We observed the least proportion of 

recaptures in the control versus residual strip arenas (30.4–36.2% across replicates); in contrast, we observed the 

highest recaptures within arenas located at the edge of harvester trails (mean percent recaptures_ 42.0% for 

perpendicular trails and 53.2% for parallel; x8
2= 19.20, P = 0.013) (Table 1). Among batches, the percentage of 

recaptures tended to be greater earlier in the emergence season (43.1–51.0% between July 6 and 18 versus 27.8% for 

those released on July 26), although these differences were insignificant (x4
2 = 0.7.51, P = 0.111). 

Latency at the Edge: Movement Timing and Potential Short-Term Residency 

Most movements (92.5%) occurred within the first 8–10 days after a release, and the timing of recaptures did not differ 

significantly between the control and partial-harvest portions of arenas (P = 0.693 for comparison of generalized linear 

mixed models) (Figure 3). However, it is noteworthy that individuals could persist along the forest edge (presumably in 

temporary settling mode or latency) for up to 25 days postrelease (n = 17 from initial batch releases on July 6 and 12). 

Finally, treatment-side captures occurred earlier (59.2% by day 2 versus 46.6% for control side) (Figure 3), although 

differences were insignificant (x1
2 = 1.501, P = 0.221). 

Harvested and Forested Edge: Microclimate and Microhabitat Features 

As expected, we observed a >10° C difference in average daily maximum temperatures between control and partially 

cut forest at points 10 m from the edge (23.7° C versus 33.9° C, respectively) (Table 2). Within arenas, we observed the 

lowest daily maximum air, ground, and refugia temperatures in the residual strip arenas (31.8°, 33.9°, and 30.7°, 

respectively) and the highest average daily maximum at ground level in arenas abutting harvester trails (40.4° and 38.8° 

in parallel and perpendicular, respectively). On average, treatment edges maintained similar levels of ground-level 

humidity (84.3– 88.6%), although mean daily minimums showcase the wide range of possible moisture levels (driest in 

parallel trail treatments: 37.8%) (Table 2).  

By design, the control had high canopy cover within and outside of arenas (68 and 73%, respectively) (Table 3). Tree 

canopy cover was moderate in the residual strips (27 and 30% within and outside arenas), which was below prescribed 

targets (31–60% closure). In contrast, low-vegetation layers (0.5–2 m) dominated harvester trails; herbaceous and shrub 

layers constituted 24–35% of cover (tree canopy cover: 19.6 and 6.4% within and outside of arenas, respectively). For 

ground cover, leaf litter and moss together accounted for >70–89% in the control, whereas herbaceous vegetation and 

slash comprised high coverage in trails (31 and 21%, respectively, within arenas; 21 and 40% outside arenas). Soil 

moisture was highly variable among sites (9.1–23.2%) and greatest in control forest outside of arenas. The greatest 

average soil moisture was in harvester trails (21%), presumably due to reduced transpiration. Leaf-litter depth ranged 

from 1.4 to 2.5 cm but was deepest in control and partial cuts (e.g., 2.4 and 2.5 cm within arenas, respectively) and 1.8 

cm in all trails (Table 3).  

Discussion  

Despite the well-established body of knowledge on the effects of even-aged silviculture on amphibians (e.g., 

deMaynadier and Hunter 1999, Semlitsch et al. 2009, Todd et al. 2014), there is still much to learn about effects on 

movements (and ultimately natal dispersal), particularly in the context of the heavy partial-harvesting practices that 



have become prevalent in the Acadian region (Thorpe and Thomas 2007, Turner et al. 2013). In this study, we tested the 

initial and short-term orientation of juvenile frogs at the edge of heavy partial harvests (average, 30.4% retention; 

nominal goal, 31–60%) (Table 3) to evaluate whether pool emigrants might respond differently to harvests by altered 

movement patterns. Contrary to our prediction, we observed no statistically significant difference in the proportions of 

individuals entering the control forest versus harvests, although P =0.11 may be suggestive of a biologically relevant 

pattern for field studies in behavioral ecology (e.g., Garamszegi et al. 2009). The only difference that approached strict 

statistical significance was for selection of forest versus perpendicular-oriented trail (52:35 for forest versus treatment; 

P =0.068). This pattern suggests that the vegetative structure and microclimatic regime of partially harvested stands is 

not as likely to be avoided by emigrating juveniles as clearcuts (e.g., Semlitsch et al. 2008).  

Comparisons with Prior Studies of Partial Canopy Removal and Juvenile Amphibians  

A recent meta-analysis on the effects of timber harvest on terrestrial amphibians highlights considerable variation: 

Tilghman et al. (2012) found that short-term population declines (of fully terrestrial species) ranged from 29% in partial 

harvests (95% confidence interval [CI] =-2 to 51% for 108 species and 24 studies) to 62% for clearcutting (95% CI 

=29-80%). In particular, patterns of amphibian response to partial cutting are confounded by wide variations in harvest 

intensities (when reported: retention of 30–70% canopy and 4–59 m2/ha basal area). In accord with some past studies 

of partial harvests and amphibians (e.g., Perkins and Hunter 2006, Popescu et al. 2012, Todd et al. 2014), our 

experimental animals showed little difference in the use of control and partial-cut treatments (Figure 2). For example, 

similar abundances of western slimy salamanders (Plethodon albagula) occurred in uncut control and partially 

harvested forest with 60% stocking density retained (Hocking et al. 2013b). Yet, some prior studies suggest a contrary 

pattern, instead detecting decreases in species abundances after high-intensity (30% retention) partial harvesting 

(Morneault et al. 2004, Vanderwel et al. 2009, Tilghman et al. 2012). Our study occurred in heavy harvests with low 

canopy retention (average of 30.4%) (Table 3), and our focus was on initial dispersal decision-making. Studies of 

individual movements across a range of harvest intensities will be critical for elucidating dispersal success and survival. 

For example, in a study of the effects of partial canopy removal (~75% retention) on survival of ambystomatid 

salamanders in North America, Todd et al (2014) found that adults survived as well as or better in partially harvested 

stands as in controls, but juvenile survival in harvests was significantly less. Low juvenile survival in partially cut stands 

could mean that these harvests constitute habitat sinks if individuals are willing to enter harvests but then have high 

mortality during the critical post-metamorphic or dispersal period. 

It is not surprising that by retaining some structural features of more mature forests, partial harvests may exhibit 

weaker effects on populations than intensive clearcutting (e.g., Steventon et al. 1998, Semlitsch et al. 2009, Titus et al. 

2014). However, evidence suggests that there may be cumulative negative impacts of partial harvesting due to 

repeated-stand entries (Reichenbach and Sattler 2007, Homyack and Haas 2013). If populations cannot recover quickly, 

multiple harvests may depress abundances on decadal scales (e.g., Petranka et al. 1993, Harper and Guynn 1999, 

Karraker and Welsh 2006). 

 

Effects of Partial-Harvest Landscape Configuration on Juvenile Orientation 

Consistent with predictions, our results suggest that the perpendicular trail orientation may represent a partial filter to 

movements (captures = 52:35 for forest versus treatment; P = 0.068) (Figure 2). Studies indicate that amphibians modify 

movements in response to ground substrate (Semlitsch et al. 2012), habitat extent (Walston and Mullin 2008), 

vegetation structure, microclimate (Rittenhouse et al. 2008), and physiology (Janin et al. 2012). Pool-exiting juvenile 

salamanders (Ambystoma texanum) and wood frogs have also been shown to exhibit nonrandom orientation influenced 

by the width and shape of the surrounding forest (Walston and Mullin 2008). At our sites, the harvest pattern resulted 



in a high perimeter/area ratio for strips within stands (<6-m-wide skid trails; <28-m-wide residual strips) and two 

different edge configurations: where trails were perpendicular about 20% of the edge would be trail-to-forest and for 

parallel trails 100% of the edge would be trail-to-forest. If frogs rely on visual orientation cues, animals may have 

perceived an increase in predation or desiccation risk when facing a perpendicular trail; this is consistent with prior 

evidence that pool-exiting amphibians can perceive forest from at least 10 m (Rosenberg et al. 1998, Pittman and 

Semlitsch 2013) and with a recent study of our target species suggesting that juveniles in open cover orient toward 

forest 40–55 m away (Cline and Hunter 2016). 

 

Potential Effect of Microclimate and Microhabitat on Edge Effects and Forest Influence 

It is well established that timber harvesting temporarily modifies microclimatic regimes for amphibians (Feder 1983, 

Karraker and Welsh 2006) and thus may affect orientation and habitat selection for dispersers (e.g., Baker et al. 2013). 

Given that partial harvesting reduces canopy cover overall and eliminates it completely in trails, we hypothesized that 

juveniles would avoid our treatments. Overall, our results suggest only limited links between humidity, temperature, 

and the ecophysiology associated with frog behavior because the microclimate regime of our treatments did not deter a 

significant portion of frogs from entering (with the possible exception of the perpendicular-oriented trails). However, 

limited evidence suggests a possible link between microclimate and frog behavior. Notably, more frogs in the treatment 

side of arenas were captured early (59.2% by day 2 versus 46.6% for the control side captures) (Figure 3) perhaps 

because they moved quickly due to risk of desiccation. We also observed lower mean daily maximum temperatures at 

all levels in residual strip arenas (range, 30.7–33.9°) relative to trails. Although microclimate appeared to play a limited 

role in frog behavior during our study, we should note that the relative influence of these factors on amphibian 

movements may differ markedly by region; for example, between Maine and Missouri (Semlitsch et al. 2008) where the 

climate is hotter and drier. 

 

Implications for Future Research and Forest Management  

In our experiment, we focused on a short-term behavioral response—the initial movement direction of pool-exiting 

juveniles— because post-metamorphic movements and eventual dispersal potentially involve large-scale travel. During 

this post-metamorphic period, unexperienced or naive frogs may be willing to enter open trails or strips even if they 

differ from preferred conditions for settlement. Given our short time frame, we urge caution in extrapolating to adult 

stages or other seasons when the behavioral context may involve prior experience, site fidelity, or nonrandom 

directionality. Indeed, the use of partial harvests and subsequent survival may differ between adults and juveniles 

(Popescu et al. 2012), and juveniles have also been shown to make forays of >30 m into open-canopy vegetation before 

changing direction toward forest (Cline and Hunter 2014). In our study, we constrained movement within 10 m and thus 

could not evaluate the ability of individuals to enter treatments, assess habitat, and change directionality. We did not 

construct arenas solely in control forest (rather, our arenas straddled uncut control forest), a feature that could be 

useful for future studies in partial harvest settings, although it is well documented that juvenile amphibians 

demonstrate more meandering paths, random directionality, and prolonged latency when transiting through intact 

forest (i.e., >20 years post-harvest) (Popescu and Hunter 2011, Cline and Hunter 2016). Longer-term tracking of 

individual movements (e.g., using fluorescent powder or another tracking mechanism) is needed to elucidate behavior 

(e.g., search mechanisms, velocities, and path tortuosity) and to determine scales over which movement decisions are 

made.  



Current forest practices in the Acadian forest are creating unprecedented harvest configurations (i.e., extensive strips of 

trails and logged matrix), and the effects of this spatial structure on wildlife populations remains relatively unknown 

(Fuller et al. 2004, Reichenbach and Sattler 2007, Graham-Sauvé et al. 2013). Partial harvesting may result in (1) 

increased forest edge and fragmentation, (2) expanded harvester-trail coverage, (3) greater variability in harvest 

intensity, and (4) more frequent stand entry, all of which may affect habitat connectivity and biodiversity patterns. Our 

study is among the first to empirically test individual amphibian behavior in partial harvests as currently implemented in 

the Acadian region. However, we need more studies to assess the ability of individuals to survive within harvests (Todd 

et al. 2014) or recolonize regenerating partial harvests between entries (Homyack and Haas 2009). Ultimately, the 

habitat value of partially harvested forests for amphibians will depend on whether populations are capable of persisting 

and across a complete cycle of harvests, and this will require some dispersal among breeding sites.  

Predicting these responses to partial harvesting is hindered by the dearth of direct, long-term studies of stand 

composition and structural changes over time (Bataineh et al. 2013), which underscores the need to develop a scheme 

to better describe harvest intensity, stand reentry, and landscape configuration. In summary, to conserve amphibian 

population connectivity in landscapes where partial-harvest silviculture is predominant, we need to integrate more 

refined descriptions of harvest practices with studies of individual behavior across a range of approaches to harvesting.  
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Figures 

 

 
Figure 1 Experimental design for evaluating the initial dispersal orientation of juvenile wood frogs (L. sylvaticus) in 2011 along three types of 
linear edges between partial harvest treatments and intact forest (i.e., closed-canopy mixed-wood stands directly adjacent to heavy partial 
harvests). Silvicultural edge treatments included tracts of uncut control forest located (A) parallel to harvester trail (trail within cut; 100% 
canopy removal), (B) perpendicular to harvester trail (trail within cut; 100% canopy removal), and (C) adjacent to residual strips of partially cut 
forest (off-trail). Each experimental arena (two replicates of each edge treatment, for a total of n = 9 arenas in two study landscapes) consisted 
of a 10-m diameter circular silt-fence enclosure (40–50 cm height), extending 10–15 cm in the ground. Two pitfall traps (indicated by open 
circles, above) were buried on the fence interior of each arena, located in opposite cardinal directions and extending into each edge treatment 
to test initial frog orientation following experimental release (mark-recapture). 



 

Figure 2 Observed proportions of juvenile L. sylvaticus recaptured in forest or partial harvest treatments, after experimental releases along 
three types of silvicultural edges between contiguous control forest and heavy partial-harvested stands in 2011 (means ±SE). Silvicultural edge 
treatments included tracts of uncut control forest located parallel to harvester trail (trail within cut; 100% canopy removal), perpendicular to 
harvester trail (trail within cut; 100% canopy removal), and adjacent to residual strips of partially cut forest (without harvester traffic) within 
the harvested stand. Values on the y-axis are observed proportions of released individuals recaptured in pitfall traps averaged across 
treatments (n = 3 arena types), individual arenas (n = 9 arenas), and experimental batches (constituting 621 individual frogs released during 5 
batches between July 7 and Aug. 2, 2011). Differences in the orientation of recaptured juvenile frogs approached significance in the edge 
treatment with perpendicular trail configuration (middle bars in above graph; X

2 
=3.322; P = 0.068). 

  



Table 1 Numbers of juvenile wood frogs (L. sylvaticus) recaptured in experimental arenas after releases located along three types of silvicultural edges between control forest and three 
partial-harvest treatments (parallel harvest trail, perpendicular harvest trail, and residual strips of partially cut forest between trails) in 2011. 

 

 

 

  



 

 

 

 

 
Figure 3 Timing of movements of juvenile L. sylvaticus experimentally released in three treatments in enclosed arenas along 
silvicultural edges between control forest and partially harvested stands. The number of recaptured individuals (y-axis) denotes 
the number recaptured in either the forested (A) or partially harvested (B) semicircle of each experimental arena out of the total 
released for that treatment and arena (means ± SE). Each line of the response designates one of five experimental release dates or 
batches (constituting 621 individual frogs released during 5 batches on July 6, 12, 15, 18, and 26, 2011). The first 8–10 days 
accounted for the majority of movements as detected by recaptures (however, note the scale bar difference for the response 
variable between graphs). Individuals not recaptured by the conclusion of the experiment (Aug. 2, 2011) may have suffered direct 
mortality or settled in the arena. 

 

  



 

 

 

 

 
Table 2 Mean daily maximum temperature and relative humidity of control forest and three partial-harvest treatments during 
experimental juvenile amphibian releases along silvicultural edges. 

 
 



 

 
Table 3 Habitat characteristics (means ±SE) of control forest and three partial-harvest forestry treatments in central Maine during experimental juvenile amphibian releases along silvicultural 
edges in 2011 (July 6–August 10). 
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