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Abstract 

 

Experts with different land use interests often use differing definitions of land suitability 

that can result in competing land use decisions. We use Bayesian belief networks linked to 

GIS data layers to integrate empirical data and expert knowledge from two different land 

use interests (development and conservation) in Maine’s Lower Penobscot River 

Watershed. Using ground locations and digital orthoquads, we determined the overall 

accuracy of the resulting development and conservation suitability maps to be 82% and 

89%, respectively. Overlay of the two maps show large areas of land suitable for both 

conservation protection and economic development and provide multiple options for 

mitigating potential conflict among these competing land users. The modeling process can 

be adapted to help prioritize and choose among different alternatives as new information 

becomes available, or as land use and land-use policies change. The current model 

structure provides a maximal coverage strategy that allows decision makers to target and 

prioritize several areas for protection or development and to set specific strategies in the 

face of changing ecological, social, or economic processes. Having multiple options can 

generate new hypotheses and decisions at more local scales or for more specific 

conservation purposes not yet identified by stakeholders and decision makers in the region. 

Subsequently, new models can be developed using the same process, but with higher 

resolution data, thereby helping a community evaluate the impacts of alternative land uses 

between different prioritized areas at finer scales. 
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1 Introduction 

 

Rapid conversion of forests and agriculture lands has spurred new efforts to develop strategic 

visions for guiding future development and conservation of open space in the U.S. Land 

suitability assessment (LSA) is one planning approach that has been widely used for determining 

the fitness of a given tract of land for a defined use (Steiner et al., 2000). In theory, LSA provides 

a means of pre-planning which lands are most appropriate for specific future land use activities, 

including resource protection. Unfortunately, the concept of LSA is generally applied without a 

consistent set of guidelines or metrics. Thus, for example, experts in the field of urban planning 

and conservation assessment often use different criteria to evaluate desirable landscape features, 

optimal weighting schemes, and the capacity of the land to support their objectives and values 

(Dramstad et al., 1996; Jongman and Pungetti, 2004; Turner et al., 2001). This leads to differing 

definitions of suitability, and hence a lack of standard methodologies among different fields of 

expertise. Different definitions of suitability are also incorporated into different environmental,  

socio-economic, and cartographic indices  (Carrion-Flores  and  Irwin,  2004;  Dong et al., 2008; 

Marull et al., 2007; Seto and Kaufmann, 2003). While useful, such indices are often complex, 

difficult to understand, not easily adaptable to new data, and not easily transferrable between 

different spatial scales (Frohn, 1998; Neel et al., 2001; Wickham and Riitters, 1995; Wickham et 

al., 1997; Wu et al., 2002). 

 

A number of approaches have been developed to articulate a framework for identification and 

protection of high value conservation lands. The goal of systematic conservation assessment 

(SCA) is to represent the biodiversity (usually at the species or community level) of a region 

and allow the persistence of ecological processes that maintain resilience (Margules and 

Pressey, 2000). Reserves have typically been designed as contiguous corridors or isolated 

patches occurring in remote areas that are unsuitable for commercial activity (Margules and 



 
Pressey, 2000). The challenge is to identify priority areas that incorporate representative 

biological communities (e.g., vegetative land cover types), and their processes (e.g., dispersal 

and migration), while striking a balance between biodiversity conservation and socioeconomic 

development (Klein et al., 2008; Rouget et al., 2006).  

 

Models such as Marxan facilitate the design of protected areas by minimizing the total length of 

their perimeter (i.e. edge) relative to the total planning unit cost of a reserve (Ball and 

Possingham, 2000; Possingham et al., 2000). Such models are crucial for designing reserves and 

corridors that incorporate spatial connectivity and species persistence (Possingham et al., 2000; 

Pressey et al., 2003; Rouget et al., 2003). However, these landscape-scale design approaches do 

not typically also consider socioeconomic factors or the social and economic sustainability of 

rural economies (Anderson and Berglund, 2003). Furthermore, they provide few options over a 

large area that would allow communities to prioritize different strategies, adapt their strategies to 

future policy changes, or consider future land use pressures. 

 

Urban and conservation planners often lack the luxury of time, money, and certainty when 

searching for scientific evidence to evaluate the effectiveness of alternative management options. 

Augmenting this is the fact that scientific literature can be voluminous and difficult to interpret, 

and models often support a wide range of forecasts due to their interpretive flexibility (Finlayson, 

1994). All of these factors add to the uncertainty of scientific knowledge. Thus, land use 

decisions are often made without considering the most up-to-date information of physical, 

biological, and anthropological phenomena and their interactions (Pullin et al., 2004). Even when 

scientific evidence is available for land use decisions, the framework may not be available to 

ensure that it is used in the planning and evaluation process (Pullin et al., 2004). Thus, 

approaches that can integrate experience (i.e., expert knowledge and opinion) with available data 

and are easily updated as new information becomes available would be invaluable to 



 
practitioners, policy makers, and the public. 

 

Several studies have demonstrated the use of Bayesian belief networks (BBN) for integrating 

expert knowledge and empirical data (Chow and Sadler, 2010; Henriksen et al., 2007; Marcot et 

al., 2006; Smith et al., 2007). Many of these studies focus on identifying species occurrence or 

habitat suitability based on environmental variables (i.e., empirical data) and management 

actions (i.e., experience) (Dlamini, 2010; Prato, 2005; Smith et al., 2007; Steventon, 2008). The 

few BBN models that address the field of urban development suggest such models can be useful 

for detecting drivers of urban land use change and for exploring alternative planning scenarios 

(Kocabas and Dragicevic, 2007; Ma et al., 2007; Pourret et al., 2008). BBN models are 

particularly useful when empirical data are limited and decisions are based largely on expert 

knowledge as is often the case with endangered species and land tenure changes (Norberg and 

Cumming, 2008; Smith et al., 2007). In addition, BBNs are easy to calibrate, validate, and update 

as new information becomes available (Smith et al., 2007). Thus, BBN models fit well with the 

concepts of adaptive management (Prato, 2005) and can be a useful tool for organizing current 

thinking, generating testable hypotheses, and comparing alternatives. 

 

We develop a process designed to help urban and conservation planners to begin building 

relationships with each other and to provide a diversity of ideas as well as transparency among 

the different groups, thereby creating flexibility in decision making. The model building exercise 

explained here is a first step in this process that we believe can be used to facilitate future 

decision making. We suggest that BBNs are the best tool to use in this process because: (1) they 

are dynamic and take spatial complexity into consideration; (2) the model parameters have clear 

semantic interpretation and the conditional probabilities are easily understandable unlike weights 

in more complex models (i.e., it is not a black box); (3) BBNs have a learning component such 

that probabilities can be updated as new information becomes available; and (4) they incorporate 

the uncertainty of scientific knowledge (Kocabas and Dragicevic, 2007). By using diverse 



 
stakeholder input to build BBN models, we are developing an adaptive organizational process 

that will be useful for bringing people together to organize current thinking, generate multiple 

working hypotheses, and compare possible alternative futures that are guided by observation, 

inference, and careful thinking (Chamberlain, 1897). 

 

We use expert opinion from two fields of interest – urban planning and conservation assessment 

– along with available remote sensing and Geographic Information System (GIS) data linked to 

two BBN models. Our aim is to use an idealized scenario for development using simple Smart 

Growth principles (e.g., directing development towards existing communities, stakeholder 

collaboration on development decisions, and mixed land uses) thought to limit sprawl for urban 

and amenity-based development (Smart Growth Network, 2002). We use a similar approach to 

identify potential areas for future conservation land by identifying riparian and large wetland 

connectivity corridors, as well as isolated patches of high value natural habitat and their 

proximity to current conservation lands. Rather than compare scenarios of alternatives and 

assumptions for these different land use interests, we seek a useful and practical way to identify 

suitable areas for urban and amenity-based development, areas that provide connectivity to 

existing conservation lands, and areas of common ground between developers and conservation 

managers. Our goal is to develop a land use planning and cooperative stakeholder analysis tool 

that provides decision makers with multiple options for targeting and prioritizing areas for 

conservation protection and development. 

 

2 Study area and methods 

 

The Lower Penobscot River Watershed (LPRW) is a 9974 km2 area located in Penobscot and 

Piscataquis Counties of Northern Maine (Fig. 1). Land use change in the area is largely driven by 

forest management (Acheson and McCloskey, 2008; Lilieholm et al., 2010), conservation 

(Cronan et al., 2010), and urbanization (Stein et al., 2005; White et al., 2009). Many of the 



 
problems facing the LPRW, such as urban sprawl, increasing tax rates, and increased pressure on 

wildlife habitat areas (e.g., loss of wetlands) are also found in other areas throughout the United 

States and Canada (Kocabas and Dragicevic, 2007; Ma et al., 2007; Radeloff et al., 2010; Rouget 

et al., 2003, 2006; Stein et al., 2005; White et al., 2009). We focus on linking social, economic, 

and ecological variables in order to develop a cooperative stakeholder analysis and land use 

planning tool that would enhance the sustainability of human and natural systems in the LPRW. 

 

We identify these variables by conducting a review of the current literature (e.g., Kocabas and 

Dragicevic, 2007; Lilieholm et al., 2010; Ma et al., 2007; Radeloff et al., 2010; Rouget et al., 

2003, 2006; Stein et al., 2005; White et al., 2009), engaging stakeholders in the research process 

through focus groups, and holding several meetings with scientists with expertise in ecology, 

economics, and forestry. Input from stakeholders were obtained through individual interviews, 

focus groups, and state conferences and included town planners, land trust practitioners, Non-

governmental organizations, economic developers, land use consultants, and government 

officials from the Maine State Planning Office. We used the elicited information to develop two 

BBNs that represent the functional relationships among the variables identified by experts to be 

important for: (1) encouraging Smart Growth principles for development, and (2) identifying 

future conservation lands (Smart Growth Network, 2002). 

 

In the following section, we describe the model building process by first building influence 

diagrams as proposed by Marcot et al. (2006) (Figs. 2 and 3). We then explain each layer of the 

diagram as well as the rationale for the chosen variables, their functional relationships, and the 

discrete states used to represent the influences that each variable has on suitability (Marcot et al., 

2006). We use the Netica® BBN software (version 4.09; Norsys Software Corporation, 

Vancouver, British Columbia) to create BBNs with boxes and arrows (i.e., nodes and links) 

representing functional relationships among variables (Steventon et al., 2006). In our BBNs, each 

node has two to four user-defined states with a table that expresses the probability of each state 



 
either as prior distributions or as conditional on the probability of each state for the nodes 

feeding into it (Steventon et al., 2006). The nodes and states used in each model are further 

explained in Appendices A and B. The prior probability tables are specified from case files of the 

empirical GIS data, whereas the conditional probability tables (CPT) are entered manually based 

on expert opinion (Marcot et al., 2006). Maps representing the GIS variables used within each 

BBN model were stacked pixel-for-pixel using an ITTVIS (ITT Visual Information Solutions, 

2009, Boulder, CO) programming code. We used a combination of ITTVIS and ERDAS Imagine 

(2010, ERDAS, Inc., Atlanta, GA) software to produce the final suitability maps for both BBN 

models. 

 

2.1. Creating the BBN model for development suitability 

 

The influence diagram for the development model (Fig. 2) contains seven remotely sensed and 

GIS data layers (variables) thought to influence Smart Growth development principles in Maine 

as identified by the literature (e.g., Brookings Institution, 2006; Kocabas and Dragicevic, 2007; 

Ma et al., 2007; Radeloff et al., 2010; Rouget et al., 2003, 2006; Stein et al., 2005; White et al., 

2009), experts, and stakeholders. We use GIS and remote sensing data currently available from 

the Maine Office of GIS (MEGIS) because it represents the data most likely to be used by 

decision makers in the region. 

 

2.1.1. Land available for development 

 

The amount of land available for development in the LPRW was determined from a land cover 

map obtained from MEGIS and created using LandSat TM data acquired in June of 2004. The 

initial 23 class map was recoded using ERDAS Imagine and represents the two states (i.e., 

available and unavailable) for all potential development in the LPRW (Appendix A). Because we 

are interested in future development and potential sprawl, we assume areas classified as urban to 



 
be unavailable. Likewise, because we are interested in finding common ground between 

developers and conservation interests, wetlands and forested wetlands are assumed unavailable 

for development. Areas already classed as current conservation lands are also assumed to be 

unavailable for development. 

 

2.1.2. Population data layer 

 

The LPRW includes of 145 municipalities, 8 of which are designated by the State of Maine as 

regional hubs or service centers that provide the majority of jobs, commercial activity, and social 

resources for the area (Brookings Institution, 2006). The largest of these regional hubs is Bangor, 

which has a population of 31,473 people (U.S. Census, 2000). The larger Bangor Metropolitan 

area (population 87,333) consists of Bangor and 13 surrounding towns (three of which are also 

considered hubs). The remaining towns include 14 large rural towns (combined population 

43,640; includes the remaining four hubs), 46 moderately sized rural towns (combined 

population 48,699), and 71 small towns and Unorganized Territories (combined population 

5750). The towns outside the Bangor Metropolitan area and the four remaining hubs average less 

than one housing unit per 10 hectares of land (Brookings Institution, 2006). 

 

We obtained town boundaries for the LPRW from MEGIS. The population states were based on 

the 14 towns that comprise the Bangor Metropolitan area and the number of people per square 

mile for each of the remaining 131 towns within the LPRW (MEGIS and U.S. Census Bureau 

2000) (Appendix B). The population variable assumes that amenities that are accessible from 

metropolitan centers are more desirable (Radeloff et al., 2010). 

 

2.1.3. Municipal property tax rates 

 

While the overall population of Northern Maine has increased since 2000, the regional hubs have 



 
lost population to the rural town periphery (Brookings Institution, 2006). This population 

dispersal or “sprawl” is driving-up costs of service provisions for surrounding rural towns. 

Although an increased tax base can lower per-capita expenditures early in a town’s growth cycle, 

evidence suggests that costs in Maine increase significantly as the population surpasses a 

threshold of 2500–6000 people (Brookings Institution, 2006). In fact, average property tax rates 

in regional hubs of Maine are currently 48% higher than those found in outlying towns 

(Brookings Institution, 2006). Thus, we assume that rising costs lead to an increase in taxes that 

leads to further sprawl. 

 

The states for the municipal property tax rates (the socio-economic variable) came from the 2008 

Municipal Valuation Return Statistical Summary (MVRSS; Maine Revenue Office) and are 

based on equal frequency in three of the four range classes (Appendix B). The MVRSS reported 

tax rates for 94 of the 145 towns in the LPRW. The 51 towns with unreported tax rates were 

Unorganized Townships containing between one and nine people per square mile (2.6 km2) of 

land and were classified in the low tax rate category (Appendix B). The municipal tax rate 

variable assumes that areas with higher tax rates are less desirable for development and thus 

encourages sprawl (Brookings Institution, 2006). 

 

2.1.4. Amenity-based and urban development 

 

Compounding the trends of rising costs and sprawl is the fact that nearly 16% of all dwellings in 

Maine are designated as seasonal homes (Brookings Institution, 2006). In the LPWR, many of 

these homes are located on shorefront property, near existing conservation lands, or in other rural 

areas high in natural amenities. While amenity-based development may bolster the local tax 

base, it can also increase home prices in rural towns, thereby compounding the problem of 

sprawl. 

 



 
Through a combination of increased taxes, home prices, and desire to live in less densely 

populated areas, sprawl results in the conversion of rural fields and woodlots, thereby placing 

increased conversion pressure on forest resources in the LPRW. In addition, much of the sprawl 

occurs along once scenic roads and along the Interstate Highway I-95 corridor in the form of 

shopping centers. The great North Woods, quaint town centers, and rural scenic roadways are all 

part of the quality-of-place that makes Maine and the LPRW an attractive area to live (Reilly and 

Renski, 2007). Sprawl threatens the aesthetic quality and the ecological and economic integrity 

of these features within the LPRW and throughout Maine (Brookings Institution, 2006). 

 

The final drivers of urban development (i.e., the distance layers; Fig. 2) and their states were 

chosen based on information from the Brookings Institution (2006), Smart Growth principles, 

and expert opinion (Appendix B). The initial road and urban area layers were obtained from 

MEGIS and created from the original land cover map using various functions in ERDAS 

Imagine. Distances were based on the assumption that being close to current roads and urban 

areas makes best use of existing infrastructure while lessening the effect of sprawl and the 

conversion of rural fields and woodlots (Brookings Institution, 2006; Kocabas and Dragicevic, 

2007). Development in such locations should decrease pressure on natural resources and 

maintain opportunities for agriculture and working forests. 

 

Likewise, the amenity-based development variables and their states were chosen based on 

information from the Brookings Institution (2006) and expert opinion (Appendix B). The initial 

current conservation land and large water body (i.e., lakes and ponds greater than 4.05 ha) layers 

were created from the original land cover map using various functions in ERDAS Imagine. 

Distances were based on the assumption that being close to lakes and ponds or current 

conservation land was more preferable than areas far away from such amenities (Brookings 

Institution, 2006; Radeloff et al., 2010). 

 



 
2.2. Creating the BBN model for conservation suitability 

 

We again reviewed the current literature, consulted scientists, and used the elicited information 

to build an influence diagram for conservation suitability as proposed by Marcot et al. (2006) 

(Fig. 3). The diagram contains five GIS data layers (variables) identified by experts and 

stakeholders thought to be important for identifying riparian and large wetland connectivity 

corridors as well as isolated patches of high value natural habitat and their proximity to existing 

conservation lands. 

 

Nearly 90% of Maine’s land area is under private ownership and subject to the development and 

land use pressures described above. In response to these pressures, over 100 land trusts operating 

in partnership with landowners, foresters, recreationists, environmental NGOs, and state and 

federal programs have permanently protected over two million hectares of land – approximately 

17% of the State – through a variety of voluntary, market-based approaches ranging from fee 

simple acquisition to conservation easements (Cronan et al., 2010). In the LPRW, 8.2% (81,585 

ha) of the land exists under some form of conservation designation. Many of these lands, while 

protected from development, remain as part of Maine’s working landscape producing wood fiber 

for the State’s forest products sector, food and forage under agricultural production, and open 

space for recreation. This innovative mix of conservation and working landscape protection is in 

many ways unique to the Northeast (Fairfax et al., 2005; Foster, 2009; Foster et al., 2010; Ginn, 

2005; Lilieholm et al., 2010). 

 

There are several approaches for designing conservation corridors that incorporate biological 

pattern and process (Possingham et al., 2000; Pressey et al., 2003; Rouget et al., 2003). These 

approaches generally involve trade-offs between representation and persistence (Margules and 

Pressey, 2000; Rouget et al., 2006). In addition, connectivity corridors can sometimes be harmful 

for biodiversity and isolated patches of natural habitat may instead be a desired outcome 



 
(Dobson et al., 1999). Rouget et al. (2006) used systematic design principles of representation 

and persistence to address these issues and designed corridors to achieve biodiversity patterns 

and processes. We used the Beginning with Habitat (BWH) Focus Areas (see below) identified 

by biologists from Maine’s Department of Conservation and the Department of Inland Fisheries 

and Wildlife along with riparian corridors and wetlands to represent fixed spatial processes (i.e., 

corridors and isolated patches) that act as surrogates of ecological and evolutionary processes 

(Rouget et al., 2006). 

 

It has been shown that riparian buffers perform as well as corridors in achieving vegetation type 

targets and are often used to ensure biodiversity persistence (Rouget et al., 2006). BWH Focus 

Areas represent documented locations of rare plants, animals and natural communities, high-

quality common natural communities, significant wildlife habitats, and their intersection with 

large blocks of undeveloped habitat. These focus areas are a planning tool for conservation 

entities and towns in Maine to help them concentrate conservation initiatives and open space 

planning in the areas with the greatest biodiversity significance. 

 

2.2.1. Land available for future conservation 

 

The amount of land available for future conservation lands in the LPRW was created from the 

same land cover map previously described. The initial 23 class map was re-coded differently 

than above in order to represent the two states (i.e., available and unavailable) for all potential 

future conservation lands in the LPRW (Appendix A). Unavailable land includes urban areas, 

roads, water, and current conservation lands (Appendix B). All other land cover types were 

considered available as potential future conservation land. 

 

2.2.2. Data layers 

 



 
The initial riparian corridor GIS layer was obtained from MEGIS and published by the United 

States Geological Survey in 2004. The initial layer represents all perennial streams (first to 

eighth order) in the LPRW. The BWH GIS layer represents “Focal Areas” of statewide 

ecological significance that merit special conservation attention. The large wetlands map was 

created from the National Land Cover Database (2001) land cover layer using ArcGIS (ESRI, 

2008, version 9.3, Redlands, CA) and selecting all wooded and emergent wetland features in the 

LPRW greater than or equal to 8.1 ha. 

 

2.2.3. Conditional probability tables for both BBNs 

 

For the availability layer (i.e., the land cover map that acts as a filter; Figs. 2 and 3), the prior 

probability was assigned based on the percent of the study area covered by each state. CPTs for 

the linked GIS variables were populated using conditional probabilities calculated from the 

combined GIS variables. There are no empirical data for the two pressure nodes and the overall 

suitability node (Fig. 2) or the connectivity and overall suitability nodes (Fig. 3). Therefore, the 

CPTs for these nodes were populated using expert opinion as described by Marcot et al. (2006) 

(see Tables 1 and 2 for an example). For the development BBN, the first state for each of the four 

distance variables (Fig. 4) represents the actual location of the road, town, conservation land, and 

water body. These states (or categories) represent pixels that are already developed (e.g., an 

actual road) or cannot be developed (e.g., water). Thus, they assume an impossible state when 

combined with other states and cannot be developed (i.e., they are treated as a negative state 

finding in the BBN model). This leaves nine rows remaining in both pressure CPTs that 

represent logical conditions that drive development of amenity-based development pressure. 

Likewise, for the conservation BBN, the first state of the distance to current conservation land 

variable (Fig. 5), represents the actual location of current conservation land and thus also 

assumes an impossible state when combined with the other states. This leaves 12 rows remaining 

in the connectivity CPT that represent logical conditions that determine connectivity availability. 



 
The CPT assessments among experts did not differ in terms of the logic involved (e.g., areas that 

were close to a road and close to town were chosen by everyone to be 85–100% suitable for 

development). Thus, for the purposes of this paper, we assumed that changes in logic would have 

a greater effect on map output than changes in CPT value. Since there were no differences in 

logic among the participants, we did not systematically explore the possible map outputs 

resulting from the many possible differences in CPT values. The actual numbers in the expert 

opinion CPTs were obtained by taking the average from the input of several experts who 

“pegged the corners” while filling-out the CPTs as suggested by Marcot et al. (2006). 

 

2.3. Suitability maps 

 

The ITTVIS code was used to create a case file in which each row contained the GIS variable for 

a single pixel in the study area. The case file was run through each BBN model using the 

“Process Cases” function in Netica®. The probability distribution for the suitability node was 

output for each case (i.e., pixel). The outputs obtained were joined back to the attribute table of 

the original layer and mapped. We measured the sensitivity or influence of the variables on 

overall suitability using entropy reduction (see Marcot et al., 2006; Smith et al., 2007) within the 

Netica® software. Our goal is not to produce the “best” model for the LPRW, so we do not 

examine how different possible values for the states and CPTs or different model structures may 

affect the map outputs. Instead, our goal is to show how a participatory modeling process using 

BBN can be used to identify potential areas suitable for development and conservation. Thus, we 

use the values and structure chosen by the experts and stakeholders and assume that no one 

model will provide a panacea for understanding and managing complex natural and human 

systems (Pourret et al., 2008). 

 

2.4 Accuracy assessment 

 



 
The final classification for both the development and conservation maps was stratified by the 

suitability categories of each map (Congalton, 1991). For the development map, 100 sites (i.e., 

20 for each suitability category) were randomly chosen for assessment. For the conservation 

map, 90 sites (30 for each suitability category) were chosen. Each assessment site was identified 

visually from 2005 digital orthoquad photographs obtained from MEGIS and ground surveys and 

checked against suitability type to determine if the location met the criteria of each model (e.g., 

whether or not the location was actually close to a road). Because some pixels may contain more 

than one suitability type (i.e., mixed pixels), each assessment site was deemed acceptable if there 

was a 5-pixel class majority within a 3 x 3 pixel window (Congalton, 1991). An error matrix 

quantified accuracy of the final suitability maps (Congalton, 1991). The producer accuracy (i.e., 

omission errors) provides the probability that an area on the ground that was identified as a 

particular suitability type (e.g., urban area) was depicted as such on the map (Congalton, 1991). 

User accuracy (commission errors) is the probability that a point on the map classified as a 

particular suitability category will actually be that category on the ground (Congalton, 1991). 

KHAT summarizes the overall results and measures the difference between the actual agreement 

in the error matrix (i.e., between reference data and the suitability map and indicated by the 

diagonal) and the chance agreement indicated by the row and column totals (i.e., marginals) 

(Congalton, 1991). 

 

3 Results 

 

3.1. Development model 

 

The complete model for development suitability is shown in Fig. 4. The states of the urban 

development pressure variables (i.e., distance to roads and urban areas) assume a compact 

growth scenario and represent distances important to the principles of Smart Growth. These two 

layers create different amounts of pressure for development depending on the combination of 



 
distances to roads or towns (Appendix B and Fig. 4). The municipal tax rate variable modifies 

development pressure and assumes that areas with higher taxes are less desirable for 

development and encourages sprawl (Brookings Institution, 2006). The states of the amenity-

based driver variables are based on the assumption that being close to either large bodies of 

water or current conservation land will increase the pressure for seasonal home development in 

the LPRW (Brookings Institution, 2006). The population variable acts to modify this pressure by 

assuming that amenities that are accessible from metropolitan centers are more desirable 

(Radeloff et al., 2010). Sensitivity analysis suggests that urban suitability is the most influential 

factor for development suitability (Table 3). 

 

3.2. Conservation model 

 

The states of the connectivity driver variables (i.e., distance to riparian areas and current 

conservation lands) assume an environmental growth scenario (Fig. 5). Distances (states) for the 

current conservation lands are described above and in Appendix B. Distances for the riparian 

areas were based on forestry Best Management Practices (BMPs) for riparian buffers that have 

been identified as important to various wildlife species and water quality issues (Briggs et al., 

1998). We assumed that riparian areas would provide the most suitable land form to connect 

current conservation lands with future lands or with each other. Large wetlands and areas 

designated as BWH Focal Areas were then used as modifiers to assume that areas with high 

connectivity that also include either of these attributes are more suitable than areas without these 

attributes (Appendix B and Fig. 5). Sensitivity analysis suggests connectivity is the most 

influential factor for conservation suitability (Table 3). 

 

3.3. Suitability maps 

 

The area of land within the LPRW considered as potentially available for development (i.e., the 



 
top filter node in Fig. 4) represents 75% (752,925 ha) of the total area, almost 20 times the 

38,550 ha currently classified as urban or developed by the original MEGIS land cover map 

(Appendix A). Fig. 6 shows the probability of development suitability being high. The total area 

identified as high probability (60–100% probability) of high suitability for development is 

279,532 ha (37% of the available area) (Fig. 6). 

 

The area of land considered potentially available for future conservation (i.e., the top filter node 

in Fig. 5) represents 83% (830,889 ha) of the total area, 10 times the 81,575 ha currently held as 

conservation land within the LPRW (Appendix A). Fig. 7 shows the probability of future 

conservation suitability being high. The total area identified as high probability (60–100% 

probability) of high suitability for future conservation land is 305,268 ha (37% of the available 

area) (Fig. 7). 

 

Fig. 8 shows overlapping and non-overlapping areas of high probability of high suitability for 

development and conservation. Non-overlapping areas for development represents 21% (157,834 

ha) of the land considered available for development. Likewise, non-overlapping areas for future 

conservation represents 22% (183,570 ha) of the land considered available for conservation. 

Areas of conflict represent about 15–16% of the available land, whereas areas with low 

probability for development and conservation represent 42–47% of the available land. 

 

 3.4. Accuracy assessment 

 

The overall accuracy of the development map was 82%, with producer’s and user’s accuracy for 

each suitability class ranging from 69 to 94% and 65 to 95%, respectively (Table 4). The overall 

accuracy of the conservation map was 89%, with producer’s and user’s accuracy for each 

suitability class ranging from 80 to 97% and 77 to 97%, respectively (Table 4). 

 



 
4 Discussion 

 

The primary finding of this study was that in a growing, yet still largely rural area, our modeling 

process can identify large areas of land suitable for conservation protection and economic 

development, while providing multiple options for avoiding conflict among competing land 

users. The current structure of our models provides a strategy that allows decision makers to 

target and prioritize several areas for protection or development, and to set specific strategies in 

the face of changing ecological, social, or economic processes. For example, our models allow 

decision makers to conserve 100% of wetlands in the LPRW, while still identifying 157,834 ha 

of land highly suitable for development (more than four times the amount currently classified in 

the LPRW as Urban; Appendix A). This same area of land for development does not conflict 

with the spatial ecological processes represented by riparian corridors and BWH Focus Areas or 

with conservation implementation opportunities to incorporate existing conservation areas. 

Furthermore, we used BWH Focus Areas, wetlands, and riparian corridors to represent fixed 

spatial processes (i.e., corridors and isolated patches) that act as surrogates of ecological and 

evolutionary processes (Rouget et al., 2006). Thus, our models are designed to identify areas that 

capture biological processes and represent diverse vegetation patterns, while also providing 

options for areas that integrate with existing conservation lands or act as isolated patches. 

 

Having multiple options can generate new hypotheses and decisions at more local scales (e.g., 

deciding on the location of one or more shopping centers or housing developments) or for more 

specific conservation purposes (e.g., protection of an endangered plant or animal) as of yet 

unidentified by stakeholders and decision makers in the region. Subsequently, new models can 

be developed using the same process, but with higher resolution data, thereby helping a 

community decide between different prioritized areas at finer scales. For example, identifying 

suitable areas for conservation and urban development will provide multiple potential locations 

for future development projects that do not interfere with the protection of important ecosystems 



 
(e.g., wetlands). However, there are factors not considered in the current suitability models (e.g., 

ownership and land value). Thus, higher resolution spatial data will likely be needed for specific, 

smaller-scale (i.e., parcel-level) planning. This will require new or updated BBN models, 

informed by the existing modeling framework, to allow planners and stakeholders to continue to 

build relationships and learn from past experience. 

 

Song and M’Gonigle (2001) suggest that the road to good science “is to break free of the 

stranglehold that centralized institutions have long had on our concepts of what is true and what 

is possible.” The key is a democratic approach to knowledge itself through a participatory 

process with open dialogue and debate among various stakeholders (Song and M’Gonigle, 2001). 

We envision the process developed here as a starting point for such an approach. For example, 

by combining the current model with other land use interests (e.g., agriculture and forestry) a 

land use strategy could be further developed through a stakeholder-driven process, perhaps 

similar to the mega conservancy network concept suggested by others (Brunckhorst, 2000; 

Hobbs and Saunders, 1991; Rouget et al., 2006). These networks help to strategize and align 

visions for landscape futures and cooperatively manage capital flows (e.g., ecological, economic, 

or social) to better ensure achievement of competing land use outcomes (Brunckhorst, 2000; 

Hobbs and Saunders, 1991; Rouget et al., 2006). 

 

The need for conservation assessment in the LPRW is evidenced by the potential change and 

escalation in land use pressure in the area (Brookings Institution, 2006; Stein et al., 2005; White 

et al., 2009). Our modeling process is one tool in addressing the challenge of providing economic 

opportunity, while preserving quality-of-place. When implemented with other conservation 

instruments (e.g., laws and guidelines, BMPs, etc.), we hope to ensure conservation of 

biodiversity as well as economic opportunities important to coupled human and natural systems. 

For example, we are currently working to combine the current development and conservation 

models with similar models for forestry, agriculture, and ecotourism into an overall model that 



 
will use BBN, decision networks, and cellular automata to assess trade-offs from differing 

stakeholder perspectives (Kocabas and Dragicevic, 2007). The outcomes of such assessments 

could then be used to guide land use legislation and policy. 

 

This level of stakeholder involvement is a key Smart Growth principle that ensures transparency 

and defensibility and should increase stakeholder capacity to develop, understand and react to 

alternative futures (Smart Growth Network, 2002). By using such models to engage a diverse set 

of stakeholders, we expect to foster increased collaboration, expanded social capital, and better-

targeted development and conservation proposals. To the extent that these outcomes are realized, 

we would expect to gain incremental improvements in quality-of-place and more sustainable 

rural and urban economies across the region. 

 

5 Conclusion 

 

Efforts to develop a democratic, holistic view of the environment will benefit from decision tools 

that allow for comparisons of the consequences and trade-offs associated with different land use 

alternatives. We believe that the cooperative stakeholder planning and analysis process described 

in this paper can be a starting point for such an approach. Because we cannot know with 

certainty the spatial distribution of future land uses (Ma et al., 2007), our modeling process 

provides maps showing several possible locations (options) for both economic development and 

conserving important ecological areas. Our current models offer a low-cost, easily understood, 

standardized, and rapid assessment tool that can be used as a first-step to identify and implement 

Smart Growth principles of development and minimize conflict with land conservation efforts. 

Future models can be adapted to help prioritize and select among different alternatives as new 

information becomes available (e.g., land tenure and land value) or as policy changes occur. The 

process allows us to synthesize experience and scientific knowledge and accelerate the 

movement of knowledge between academic institutions, practitioners, policy makers, and the 



 
public. Together, we can facilitate the transfer of scientific knowledge into meaningful action. 
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Figures 

Fig. 1. Location of the Lower Penobscot River Watershed in Maine, USA. 

 

 

  



 
Fig. 2. Influence diagram showing key factors affecting urban and amenity-based 

development in the Lower Penobscot River Watershed. 

 

 

 

  



 
Fig. 3.  Influence diagram showing key factors affecting connectivity to current 

conservation lands in the Lower Penobscot River Watershed. 

 

 

 

  



 
 

 

 

  



 
 

 

  



 
 

Fig. 4. The parameterized Bayesian belief network model for identifying areas suitable for 

commercial and residential development within the Lower Penobscot River Watershed. Black 

bars represent prior and conditional probabilities (Marcot et al., 2006). Grey boxes show a 

negative state finding that is represented as 0 percent probability for that state (see Section 2). 

 

 

 

  



 
 

Fig. 5. The parameterized Bayesian belief network model for identifying areas of connectivity 

to current conservation lands within the Lower Penobscot River Watershed. Black bars 

represent prior and conditional probabilities (Marcot et al., 2006). Grey boxes show a negative 

state finding that is represented as 0 percent probability for that state (see Section 2). 

 

 

 

  



 
 

 

 

  



 
 

Fig. 6.  Map for the Lower Penobscot River Watershed showing the probability of an area being 

highly suitable for development (terms are defined in Section 2). 

 

 

 

  



 
 

Fig. 7. Map for the Lower Penobscot River Watershed showing the probability of an area being 

highly suitable for future conservation land (terms are defined in Section 2). 

 

 

 

  



 
 

Fig. 8. The Lower Penobscot River Watershed showing areas of potential compromise and 

conflict between areas highly suitable for future development and conservation land. 

 

 

 

 


	The University of Maine
	DigitalCommons@UMaine
	5-2011

	Using Bayesian Belief Networks to Identify Potential Compatibilities and Conflicts Between Development and Landscape Conservation
	Jon T. McCloskey
	Repository Citation


	Microsoft Word - Lilieholm Using Bayesian belief networks to identify potential compatibilities and conflicts between FINAL

