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Nonstationarity in seasonality of extreme precipitation: A
nonparametric circular statistical approach and its application
Nirajan Dhakal1,2,3, Shaleen Jain1,2,4, Alexander Gray1,5, Michael Dandy2, and Esperanza Stancioff1,5

1Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, Orono, Maine, USA, 2Department of
Civil and Environmental Engineering, University of Maine, Orono, Maine, USA, 3Northeast Climate Science Center,
Amherst, Massachusetts, USA, 4Climate Change Institute, University of Maine, Orono, Maine, USA, 5Sea Grant Program,
University of Maine Cooperative Extension, Waldoboro, Maine, USA

Abstract Changes in seasonality of extreme storms have important implications for public safety, storm
water infrastructure, and, in general, adaptation strategies in a changing climate. While past research on this
topic offers some approaches to characterize seasonality, the methods are somewhat limited in their ability to
discern the diversity of distributional types for extreme precipitation dates. Herein, we present a comprehen-
sive approach for assessment of temporal changes in the calendar dates for extreme precipitation within a cir-
cular statistics framework which entails: (a) three measures to summarize circular random variables (traditional
approach), (b) four nonparametric statistical tests, and (c) a new nonparametric circular density method to pro-
vide a robust assessment of the nature of probability distribution and changes. Two 30 year blocks (1951–
1980 and 1981–2010) of annual maximum daily precipitation from 10 stations across the state of Maine were
used for our analysis. Assessment of seasonality based on nonparametric approach indicated nonstationarity;
some stations exhibited shifts in significant mode toward Spring season for the recent time period while
some other stations exhibited multimodal seasonal pattern for both the time periods. Nonparametric circular
density method, used in this study, allows for an adaptive estimation of seasonal density. Despite the limita-
tion of being sensitive to the smoothing parameter, this method can accurately characterize one or more
modes of seasonal peaks, as well as pave the way toward assessment of changes in seasonality over time.

1. Introduction

The conventional approach to interpreting Earth’s climatic variability—based on variables such as precipitation
and temperature—assumes that event recurrence and their distribution can be understood as largely time-
invariant statistical processes (often termed as the stationarity assumption). As a result, numerous societal con-
cerns, such as public safety and infrastructure design benefit from place-based estimates of rare event statistics,
such as the magnitude of 100 year rain event etc. In the United States, NOAA Rainfall Frequency Atlas is an
important resource for this information [Hershfield, 1961]. Such statistical characterization of historical weather
and climatic risk allows decision makers to choose levels of protection against extreme weather events; how-
ever, an underlying assumption is that the past is a good analog for the future. The assumption of hydroclimatic
stationarity is being increasingly questioned, and has led to stimulating discussions in environmental science lit-
erature [e.g., Jain and Lall, 2000, 2001; Milly et al., 2008; Montanari and Koutsoyiannis, 2014]. Departures from the
stationary statistics of weather and climate variables stem from periodicities and trends, as well as changes
within the earth system (such as transformation of pristine landscapes stemming from urbanization).

While there is a significant and growing body of knowledge (case studies and methodologies) related to
changes in the magnitude of extreme precipitation [Karl and Knight, 1998; Groisman et al., 2001; DeGaetano,
2009; Higgins and Kousky, 2013], little attention has been devoted to changes in their seasonality (for example,
based on the calendar date of extreme events). Significant changes in seasonality of extreme events not only
challenge infrastructure and asset management, potentially the increased complexity of events and impacts
also require distinct responses. For example, in the case of culverts, a pervasive element of stormwater infra-
structure, extreme rain events during different seasons result in a diversity of flooding conditions. For exam-
ple, in cold regions, malfunctioning culverts in Winter and Spring suffer from blockages due to ice; Summer
and Fall season rain events result in debris and brush buildup, thus reducing flow volumes conveyed. Thus, an
understanding of shifts toward new extreme event seasons or weakening and intensification within known
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seasonal windows has significance for characterization of local hydroclimatic change, as well as usable knowl-
edge to inform adaptation efforts. In this study, we consider the following research question: What are some
robust approaches to understand and characterize the nature and extent of changes in seasonality of extreme pre-
cipitation? To this end, we present a fresh empirical statistical approach and case study from New England
region. In answering this question, this work complements the emerging research literature that focuses on
nonstationarity from the standpoint of extreme event magnitude and intensity [Khaliq et al., 2006; Mirhosseini
et al., 2013; Salas and Obeysekera, 2013; Cheng and AghaKouchak, 2014].

In the past, several methods have been used to analyze trends in seasonality of precipitation characteristics.
Some of these methods are based on estimation of seasonality index from mean monthly rainfall and mean
annual rainfall [Walsh and Lawler, 1981]. Other methods are based on estimation of linear trends in precipi-
tation extremes for four traditionally fixed meteorological seasons: Winter - starting December 1 and ending
February 28 (February 29 in a Leap Year)(DJF), Spring - starting March 1 and ending May 31 (MAM), Summer
- starting June 1 and ending August 31 (JJA), and Fall (Autumn) - starting September 1 and ending Novem-
ber 30 (SON) [Moberg et al., 2006; Zolina et al., 2008]. Relatively few studies have examined the change in
the timing or seasonality [Pal et al., 2013]. Rajagopalan and Lall [1995] examined the change in seasonality
of daily precipitation in the western United States using a nonparametric approach based on nonhomoge-
neous Poisson process applied to precipitation records before and after 1950. Pryor and Schoof [2008] inves-
tigated the seasonality of precipitation over contiguous U.S. by analyzing change in the calendar date on
which a certain percentile of annual total precipitation was achieved for three different 30 year time periods
between 1911 and 2000. More recently, Pal et al. [2013] documented station-specific shifts in wet and dry
seasons over U.S. based on Markovian precipitation models. While the published literature offers useful
methods to characterize seasonality, these approaches are somewhat limited in their ability to discern the
diversity of distributional types for extreme precipitation dates. Seasonal weather and atmospheric moisture
pathways show regional patterns, often determined by the large-scale, general circulation of the atmos-
phere [Hirschboeck, 1988]. These factors can greatly influence the length and number of seasonal precipita-
tion windows within a year. As a result, the probability distribution of extreme event timing tends to be
more often multimodal and less well aligned with calendar months and predefined seasons.

Given the limitations noted above, we developed a robust statistical approach for seasonality assessment
based on directional/circular statistics [Mardia and Jupp, 2000; Jammalamadaka and SenGupta, 2001] applied
to hydroclimatic variables. Directional/circular statistics is a branch of statistics that deals with directions,
where random variables are represented by angles measured with respect to some starting point and sense
of rotation [Jammalamadaka and SenGupta, 2001]. Standard statistical methods used for analysis of ordinary
linear data (for example, like computing the sample mean and the sample variance) are inappropriate for anal-
ysis of circular data [Mardia and Jupp, 2000; Jammalamadaka and SenGupta, 2001; Lee, 2010]. Judicious use of
circular statistics provides an improved understanding of environmental variables modeled as circular random
processes (for example, the timing of an event within a cycle). In this study, daily precipitation records were
used to derive time series of calendar dates for annual maximum daily precipitation, and analyzed using circu-
lar parametric and nonparametric statistical approaches. Circular probability distributions assign probabilities
to each point on the circumference of a unit circle representing a direction (discussed in detail later). Although
the issue of seasonality characterization for precipitation has been recognized for over a century [Cook, 1910],
to our knowledge, very few studies have used the circular approach for seasonality assessment of extreme
rainfall or other hydrologic variables. Markham [1970] made an initial attempt by representing mean monthly
rainfall totals as vectors whose magnitude and direction were denoted, respectively, by the mean monthly
values and their time of occurrence over the calendar year. Later Bayliss and Jones [1993] and Burn [1997]
used the circular approach for seasonality assessment of hydrological extreme events by considering the
mean date and variability of occurrence of extreme events. Parajka et al. [2009, 2010] used a similar approach
to evaluate seasonality of precipitation and streamflow records. More recently, Lee et al. [2012] used circular
statistical approach to determine regionalization of extreme precipitation across South Korea. All the previous
studies based on circular statistical approaches employ two summary statistical measures to characterize sea-
sonality. The inability of these traditional summary statistics to detect and model event-timing distributions
with multiple seasons remains a significant challenge. Nonparametric circular density approach, presented in
this study, offers an adaptive and robust alternative. To this end, such an approach can accurately characterize
one or more modes representing seasonal peaks, as well as pave the way for an assessment of changes in sea-
sonality over time. Results have salience for both hydroclimatic change studies and infrastructure adaptation
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considerations. It is worth noting that this work augments the rich body of knowledge in statistical hydrology,
wherein nonparametric approaches have been used profitably in flood estimation, streamflow, and rainfall
modeling [e.g., Lall, 1995]. However, this is the first study to use circular statistical approach within a nonpara-
metric framework for hydrologic application.

1.1. Data and Study Region
The state of Maine, located in the northeastern region of the United States, is divided into three climate
divisions by National Weather Service: Northern, Southern Interior, and Coastal (Figure 1a). These climate
divisions cover 54%, 31%, and 15% of the state’s total area, respectively [Jacobson et al., 2009]. The elevation
in Maine ranges from 0 to 1606 m above sea level. The average annual precipitation (in three climate divi-
sions) ranges between 1016 and 1168 mm (40 and 46 in.) [Sen Gupta et al., 2011]. At the climate division
level, no appreciable patterns in seasonality are seen, however, the coastal region is wettest in winter, while
in the north, summer is slightly wetter than winter [Jacobson et al., 2009].

For this study, daily precipitation records for the 1951–2010 period from 12 stations across the state of
Maine were obtained from the Historical Climatology Network database [Easterling et al., 1996]. A number
of records in this database are incomplete. Following screening criteria were used for this study: (a) percent-
age of missing values per year less than 20%, and (b) record length greater than or equal to 50 years. Of the
12 precipitation records (Figure 1a), two (Houlton and Acadia National Park) were excluded; fewer than 50
years of records were available for analysis for both stations. For all the remaining 10 stations, each of the
months consists of at least 93% of the data set (Figure S1).

1.2. Seasonality Characterization of Extreme Precipitation
A preliminary assessment of seasonality is based on an examination of total counts of annual maximum
daily precipitation events that fall on each month of the year over the 60 year historical record. Histograms

Figure 1. (a) A map of the study region, climate divisions, and locations of 10 long-term U.S. Historical Climatology Network precipitation stations in Maine, (b) histograms showing
counts of annual maximum daily precipitation per each month of the year for the period 1951–2010 (n 5 60), (c) circular plot showing the date of occurrence of a particular event within
a year on the circumference of a unit circle centered at origin, and (d) circular plot of annual maximum daily precipitation for the period 1951–2010 for Lewiston, Maine. A Rose diagram
(which is equivalent to the histogram for the linear case) is also shown to represent frequencies of annual maximum daily precipitation event dates.
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depicting these counts are shown in Figure 1b. We also estimated the percentage of such counts for four
fixed seasons: Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON), and listed in Table S1. From Figure
1b and Table S1, we can see that both monthly and seasonal counts exhibit remarkable diversity across 10
stations. For example, for stations like Presque Isle and Brassua Dam, majority of extreme precipitation
events occur during Summer (JJA) and Fall (SON) seasons (Table S1). While for stations like Portland and
Lewiston, in addition to the Summer and Fall seasons, there is significant portion of events occurring during
Winter (DJF) and Spring (MAM) seasons. On the other hand, counts for stations like Farmington and Eastport
show more or less uniform behavior with extreme precipitations occurring evenly throughout all the four
seasons. Such complex behavior observed in seasonal distribution of extreme event counts affirms the
need for a superior technique for more clear and accurate representation of seasonality.

As noted above, a robust approach to characterize seasonality is by using the circular statistical approach. A circu-
lar statistical approach considers the date of occurrence of particular event within a year as polar coordinates on
the circumference of a unit circle centered at origin as shown in Figure 1c [Jammalamadaka and SenGupta, 2001].
Note that for Figure 1c, r 5 1 and each direction (hi) thus corresponds to a point on the circumference of the unit
circle. The angular position of the date of occurrence (D) of an extreme precipitation event ‘‘i’’ is defined using:

hi5Di
2p

365

� �
(1)

where hi is the angular value (in radians) for the extreme event ‘‘i,’’ D 5 1 for 1 January and D 5 365 for 31
December (D 5 366 for leap year); analogously, in terms of angular value in radians, 0 radian corresponds to 1
January and 2p radian corresponds to 31 December. For a sample of n extreme precipitation events, this infor-
mation can be plotted on a circle to provide a visual representation of seasonality. Figure 1d shows such a
graphical representation of annual maximum daily precipitation for the period 1951–2010 for Lewiston, Maine.
A Rose diagram (which is equivalent to the histogram for the linear case) for this data set is also shown.

From a sample of n extreme precipitation events, the x and y coordinates of the mean extreme precipitation
date around the year are determined using:

�x 5

Xn

i51
cos hið Þ
n

(2)

�y 5

Xn

i51
sin hið Þ

n
(3)

where �x and �y are the x and y coordinates of the mean extreme precipitation date. The direction represent-
ing mean date of occurrence of n extreme precipitation events is then obtained using:

�h 5 tan 21 �y
�x

� �
(4)

The variability of n extreme precipitation event occurrences about the mean date is obtained using the
mean resultant length:

q5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x 21�y 2

p
n

(5)

q is a dimensionless measure of the spread of the data and the value of q ranges from 0 (indicating greater
variability in the date of occurrence of extreme precipitation events) to 1 (indicating all the extreme precipi-
tation events occurred on the same day of the year). Four previous studies [Bayliss and Jones, 1993; Burn,
1997; Parajka et al., 2009, 2010] have used angular representation of seasonality (similar to equations
(1)–(5)) for analysis of precipitation and streamflow records.

The circular standard deviation (csd) is calculated based on the following equation [Mardia and Jupp, 2000]:

csd5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22ln q

p
(6)

Parameters h, q, and csd offer simplified and accessible station-by-station summary of annual maximum
daily precipitation variability for the 1951–2010 period (Table 1). Values of h range from 2.91 to 5.60,
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indicating the computed means corre-
sponding to 17 June and 20 November,
respectively. Based on the calendar day
corresponding to the estimated h, we
can see that a majority of estimates fall
within the September–October. Values
of q range from 0.04 to 0.49, and values
of csd range from 1.19 to 2.29. Based
on q and csd, we can see that for Pre-
sque Isle (q 5 0.49, csd 5 1.19), there is
strong unimodal pattern; while for
Farmington (q 5 0.04, csd 5 2.59) there
is no seasonal pattern. Moreover, a
number of stations like Portland
(q 5 0.20, csd 5 1.79) and Lewiston
(q 5 0.17, csd 5 1.90) exhibit bimodal
pattern. It is interesting to note that for

both stations in the Coastal climate division (Portland and Eastport) as well as three other nearby stations in
the Southern Interior climate division (Lewiston, Woodland, and Gardiner), the mean date of occurrence h
falls during October–November. On the other hand, variability is lower (indicated by higher values of q and
lower values of csd) for all the three stations (Brassua Dam, Presque Isle, and Millinocket) in the Northern cli-
mate division.

Linear and circular statistical analysis of precipitation extremes (Figure 1b and Table 1) reinforces the view
that there is significant diversity in the patterns of seasonality, when computed based on the distribution of
event dates. In general, unimodal distributions appear more an exception than a rule in the analysis of daily
precipitation extreme dates. Careful diagnosis of the nature of data is warranted for accurate assessment of
seasonality.

1.3. Seasonality of Synthetic Data
To develop a clear appreciation of the relative merits of the three circular statistical measures (equations
(4)–(6)), we generated three different types of synthetic data for analysis of seasonality using circular statisti-
cal measures. As noted in the case of historical records analyzed in the previous section, we anticipate that
our three example cases broadly span the range of distribution types found in nature. Three different types
of synthetic data, with a sample size of 30, with their frequency distribution are shown in Figure 2. Figure 2a
represents ‘‘pseudo’’ uniform data with no preferred direction (uniform distribution discussed in detail later);
Figure 2b represents ‘‘pseudo’’ unimodal data concentrated from January to April; Figure 2c represents
‘‘pseudo’’ trimodal data concentrated from October to December, February to April, and June to August.

Table 1. Seasonality of Annual Maximum Daily Precipitation for 1951–2010
Period, Estimated From the Circular Statistical Analysis

Station

Circular Statistics

(�h)a
Mean

Day of Year
Variability

(q)b
Standard

Deviation (csd)c

Brassua Dam 4.41 256 (11 Sep) 0.34 1.46
Corinna 4.12 240 (26 Aug) 0.25 1.66
Eastport 4.76 277 (2 Oct) 0.13 2.01
Farmington 2.91 169 (17 Jun) 0.04 2.59
Gardiner 4.79 278 (4 Oct) 0.19 1.83
Lewiston 5.08 295 (20 Oct) 0.17 1.90
Millinocket 4.55 265 (20 Sep) 0.31 1.53
Portland 5.60 325 (20 Nov) 0.20 1.79
Presque Isle 4.34 252 (8 Sep) 0.49 1.19
Woodland 4.93 287 (12 Oct) 0.35 1.44

aEquation (4).
bEquation (5).
cEquation (6).

Figure 2. Three types of synthetic data (n 5 30) plots and their Rose diagrams: (a) ‘‘pseudo’’ uniform data with no preferred direction, (b) ‘‘pseudo’’ unimodal data concentrated from Jan-
uary to April, and (c) ‘‘pseudo’’ trimodal data concentrated in the following seasonal windows: October–December, February–April, and June–August.
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The prefix ‘‘pseudo’’ is added to signify the limited sample size-based representation of the underlying dis-
tribution types.

Values of h, q, and csd estimated for three cases of synthetic data are presented in Table 2. For ‘‘pseudo’’ uni-
form data (case (a)), as expected, q is small and csd is high indicating no seasonal peaks. For ‘‘pseudo’’
unimodal data (case (b)), as expected, q is high and csd is low indicating strong seasonality. For ‘‘pseudo’’ tri-
modal data (case (c)) q is small and csd is high; h for this case indicates that the mean date of occurrence is
1 December. However, this estimated circular mean is a misleading indicator of the dominant season. A
small value of q (0.20) indicates that the extreme event date is highly variable; however, the nature of pre-
ferred seasonal windows or modes is not captured by this metric.

In addition to the estimation of three statistical parameters, h, q, and csd, another approach to analyze and
understand the nature of seasonal distribution uses well-designed statistical tests to assess the relative fit of
the data set to a probability distribution type. In general, a system with preferred seasonality shows depar-
tures from uniformity/uniform distribution. Three nonparametric uniformity tests have been used and
tested extensively in the circular statistics literature: Rayleigh Test, Rao Spacing Test, and Kuiper Test [Mardia
and Jupp, 2000; Jammalamadaka and SenGupta, 2001]. For example, Fahidy [2013] applied these three tests
to chemical process analysis. A null hypothesis of no seasonal preference in extreme precipitation event
dates can be tested efficiently with these approaches. Rayleigh test is based on the significance of the
mean resultant length q [Jammalamadaka, 1972; Mardia and Jupp, 2000]. The alternative hypothesis of this
test is a unimodal distribution with unknown mean direction and unknown mean resultant length. Evi-
dently, the hypothesis of uniformity is rejected when q is too large. Hence, this test is efficient for the sea-
sonality assessment for those cases where there is strong unimodal seasonal pattern or no seasonal
(uniform) pattern. Rao Spacing test is based on the sample arc length. For n observations, Rao Spacing test
statistic can be interpreted as the uncovered part of the circumference when n arcs of length 1/n are placed
starting with each of the n observed points on the circle [Jammalamadaka and SenGupta, 2001]. Hence, if
the underlying distribution is uniform, n successive observations should be approximately evenly spaced.
Note that the circular uniform distribution for our case represents ‘‘no seasonality.’’ Wherefore, large devia-
tions from this distribution resulting from unusually large spaces or unusually short spaces between obser-
vations are evidence for seasonality. According to Fahidy [2013], Rao Spacing test is more prone to reject
the null hypothesis than the Rayleigh and the Kuiper test since it carries a smaller Type I error; however,
based on the nature of the statistical data, rejection of null hypothesis cannot be absolutely certain. Kuiper
test is based on the hypothesis that the observations come from a population with a specified empirical dis-
tribution function. Kuiper test statistic is a rotation-invariant Kolmogorov-type test statistic [Jammalama-
daka and SenGupta, 2001]. It measures the distance between the cumulative uniform distribution function
and the empirical distribution function.

Test statistics from all three tests are presented in Table 2 for each of synthetic data. As expected, for the
‘‘pseudo’’ uniform data (case (a)), the null hypothesis of uniformity is accepted indicating no seasonality,
and for the ‘‘pseudo’’ unimodal data (case (b)), the null hypothesis of uniformity is rejected indicating sea-
sonality. However, for the ‘‘pseudo’’ trimodal data (case (c)) also the null hypothesis of uniformity is
accepted indicating no seasonality. It is worth noting from Table 2 that for all the three uniformity tests,
larger values of the test statistic indicate proclivity toward clustering or seasonality. Also based on our analy-
sis of different types of synthetic data (not shown here), we noticed that Rayleigh test is powerful (nonuni-
form) against unimodal but not against multimodal alternatives of uniformity. Both Rao Spacing and Kuiper
tests are consistent (nonuniform) against unimodal as well as multimodal alternatives; Rao Spacing test
being more powerful among these two tests. However, none of these tests can capture the actual nature of

Table 2. Seasonality of Three Distinct Cases of the Synthetic Data, Estimated From the Circular Statistical Analysis

Synthetic Data Case

Circular Statistics Uniformity Tests Hewitt Test
Maximum Rank

Sum (3 Month Window)�h q csd Rayleigh Rao Spacing Kuiper

Uniform (a) 3.96 (17 Aug) 0.02 2.69 0.02 108.63 0.94 29
Unimodal (b) 0.80 (15 Feb) 0.89 0.49 0.89** 261.02** 4.30** 33**
Trimodal (c) 5.79 (1 Dec) 0.20 1.79 0.20 149.74 1.61 31

**p value� 0.05; *0.05 < p value <0.1.
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seasonality for complex data as encountered in case (c). In other words, when any of these tests is not
rejected, we cannot conclude that the data follow the uniform distribution or there is no seasonal pattern
(as for case (c)). Rather, there is insufficient evidence to reject the null hypothesis of uniformity.

We also used a nonparametric test based on work of Hewitt et al. [1971] and Rogerson [1996] to test the null
hypothesis of no seasonality against the alternative hypothesis of seasonality in the data. One interesting
aspect of this approach is the ability to incorporate prior knowledge (for example, window lengths based
on the climatological length of rainy season at the location) in analyses. Hewitt et al. [1971] developed sea-
sonality test in the monthly data based on maximum rank-sum observed for any six-consecutive period.
Later, Rogerson [1996] generalized this test, where the peak period can be 3, 4, or 5 months. In our case, we
used peak period of 3 months to estimate Hewitt’s test statistic, and the results are listed in Table 2. Results
obtained are similar to those from the three uniformity tests used above; while uniform and unimodal cases
are relatively well assessed by the statistical tests; the multimodal cases need a more comprehensive
approach, perhaps with attention to local changes in the probability density. To sum up, methods based on
three summary statistics, and four uniformity tests are useful for assessing seasonality for simple data like
cases (a) (unimodal) and (b) (uniform), while for more complex data like case (c), results from one or all of
these methods may be misleading. To this end, our nonparametric circular approach, which offers a locally
adaptive methodology to analyze the diversity of distributions types, including multimodality is presented
next.

2. Robust Characterization of Seasonality

Figure 3 provides a schematic representation of a circular analysis approach for the seasonality assessment,
which includes comprehensive analysis of seasonality based on the statistical tests discussed in the previous
section, as well as a new nonparametric density approach described below. Computations were performed
on the R Statistical Computing Platform, and utilized the statistical package ‘‘circular’’ [Agostinelli and Lund,
2013]. For the nonparametric circular method, extreme precipitation dates were used to compute the circu-
lar probability distribution. Four previous studies [Bayliss and Jones, 1993; Burn, 1997; Parajka et al., 2009,
2010] have used the circular statistical approach for assessing the seasonality. However, no work to our
knowledge has been devoted to the seasonality of extreme precipitation. Circular statistical approach
assigns probabilities to each point on the circumference (of a unit circle) representing a direction. In other
words, circular distribution is a way of defining directional distributions. In our case, each data point is the
angular position of the occurrence date of extreme precipitation events and circular distribution represents
the seasonal distribution of these dates. For circular distribution, the density estimates (and their properties)
depend on the selection of the smoothing kernel (in our case, the von Mises distribution) and its smoothing
parameter, known as bandwidth. The von Mises distribution or a Circular Normal distribution is a symmetric
unimodal distribution with probability density function:

f ðh; l; jÞ5 1
2pI0ðjÞ

ejcos ðh2lÞ; 0 � h < 2p; (7)

where 0� h< 2p is a mean direction, j� 0 is a concentration parameter, and I0 (j) is the modified Bessel
function of the first kind and order zero [Jammalamadaka and SenGupta, 2001, section. 2.2.4]. The von Mises
probability distribution is symmetric about the directions l and l 1 p (by the symmetry of the cosine func-
tion). Since the cosine function has maximum value at h 5 l, the mean direction, l, coincides with the
modal direction. The parameter, j, measures the concentration toward the mean direction l in such a way
that, as the value of j increases, the higher will be the concentration toward the mean direction l (Figure
S2). In other words, the concentration parameter plays the role of the smoothing parameter (or bandwidth)
for the circular probability density estimation using the von Mises kernel. As the overall density estimate is
sensitive to the choice of bandwidth, a discussion of results obtained for our data is presented next. Readers
are referred to Mardia and Jupp [2000] and Jammalamadaka and SenGupta [2001] for additional details
regarding circular distributions and their properties.

2.1. Bandwidth Selection
Numerous approaches have been developed for bandwidth selection in circular density estimation.
For example, data-driven procedures were proposed by Hall et al. [1987] using cross-validation method.
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Taylor [2008] derived a rule of thumb that consists of minimizing the asymptotic mean integrated squared
error. More recently, Oliveira et al. [2012] introduced a plug-in procedure for bandwidth selection in kernel
circular density estimation. For any of these methods, the chosen bandwidth minimizes some error crite-
rion. Bandwidth for our study was estimated using the likelihood cross-validation method (LCV). LCV
method selects a bandwidth that maximizes the likelihood cross-validation function [Oliveira et al., 2013,
equation (8)]. LCV method provides reasonable bandwidth results for bi/multimodal distributions [Oliveira
et al., 2013]. Note that in cases with small sample size for complex models, which are mixtures of 3, 4, or 5
circular distributions, none of the smoothing parameter selectors will provide accurate results. To this end,
we estimated an optimal bandwidth for each station from bootstrap resampling (which is the resampling
with replacement). The annual maximum precipitation of the 60 extreme events from 1951 to 2010 was
resampled 1000 times and each time a bandwidth was estimated from the new sample of 30 extremes
using LCV method. The median value of the 1000 bandwidth estimates was taken as a representative opti-
mal bandwidth for a particular station.

2.2. Results From Robust Approach
Before discussing seasonality results based on kernel circular density for our study locations, we first exam-
ined circular density estimates for the three cases of synthetic data discussed in section 1.3. Density esti-
mates for synthetic data are presented in Figure 4. Note that bandwidth for each case was estimated using
LCV method. Probability density estimates are assessed for significance based on resampling technique.
Resampling techniques provide an idea of the nature of the uncertainty resulting from sampling errors and

Figure 3. Schematic diagram showing a comprehensive circular analysis approach for the seasonality assessment; three summary statis-
tics, four statistical tests, and a nonparametric approach are pursued to provide a robust assessment of the nature of probability distribu-
tion and changes therein.
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internal variability [Kharin and Zwiers, 2005]. For
our study, uncertainty was measured using a
bootstrap method [Rust et al., 2011]. In Figure 4,
the dashed lines represent median estimate for
significance based on density estimates using
resampled data (N 5 1000). Each of our resampled
data comprise of a uniform distribution with no
seasonality. We checked the significance of the
type of distribution: uniform (no seasonality) ver-
sus nonuniform (seasonality) as done for the four
uniformity tests. In other words, we assessed the
significance based on point-by-point estimate of
variability against the assumed uniform distribu-
tion (null). From Figure 4, we can see that esti-
mates of kernel circular density successfully
captures the actual distribution of data and sea-
sonality therein, for all the three cases. For the
data case (c), the estimates of circular density cap-
ture all three distinct modes as shown in Figure
4c. Although estimates of kernel density are sensi-
tive to the smoothing parameter, this approach
affords flexibility in capturing multiple modes in
the seasonality and is superior to traditional meth-
ods based on measures to summarize circular ran-
dom variables and the four nonparametric
statistical tests. As noted previously, capturing
multimodality in the seasonal distribution of the
extreme precipitation dates is extremely impor-
tant for a variety of hydrologic applications con-
texts, especially the timing of seasonality-specific
decisions for infrastructure maintenance and
assessment of regional hydrologic change. To this
end, we used our approach to assess the seasonal-
ity of annual maximum daily precipitation for all
10 stations. Using the optimal bandwidth (dis-
cussed in section 2.1), kernel circular density was
computed for each station based on the calendar
dates of annual maximum daily precipitation for
the period 1951–2010. The circular density esti-
mates for Lewiston, Maine is presented in Figure
5. Note that in Figure 5, circular data are summar-
ized using a Rose diagram. For Lewiston, Maine,
although the circular distribution appears close to
uniform, two seasonal modes are also visible, one
from September to January and another from
March to July. Distributions for 5 out of 10 stations
exhibit similar seasonal pattern, while for the
remaining 5 stations, kernel density estimates
show somewhat unimodal seasonal pattern span-
ning the June–January period.

3. Temporal Changes in Seasonality

As noted previously, several studies have examined
temporal changes in extreme rainfall magnitude

Figure 4. Nonparametric circular probability density estimates for
three types of synthetic data. Probability density estimates are
assessed for significance based on density estimates using resampled
data. A median estimate is obtained from the ensemble of distribu-
tions resulting from bootstrap resampling (N 5 1000).
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and intensity, and found a gen-
eral trend toward increases in
the northeast United States. In
this context, a salient question
is that of examining the trends
in the seasonality of extreme
rainfall. In this section, we pres-
ent an assessment of temporal
changes in seasonality of daily
extreme precipitation based on
both the traditional circular sta-
tistical analysis method as well
as the kernel circular density
method. Change point analysis
has been widely used to detect
changes in time series statistics
for linear data. We used change
point analysis to detect the
change in mean direction (h)
and the results are presented
in Table S2. We can see that
only Lewiston shows the signifi-
cant change in h (the change
point is at 21October). The limi-
tation of this analysis for the

circular data is that the underlying distribution is unimodal [Ghosh et al., 1999] and it is not able to cap-
ture the change at multiple points.

In the past, numerous studies have used moving window analysis to assess the temporal changes in the
precipitation extremes. For the circular approach, moving window analysis is useful for assessing the
change in seasonality if the seasonal distribution is strongly unimodal and the variability does not show any
sharp decrease with time. We present an example of such analysis for Presque Isle, Maine in Figure 6. A 30
year moving window estimates of h and q is shown in Figure 6. We can see that h and q do not exhibit any
specific trend with time; the annual precipitation maxima typically occur during September. The seasonality
in this case is strongly unimodal as represented by large value of q. For most of the stations, however, the
seasonal pattern of extreme rainfall is diverse with small q and high csd as seen from our analysis in section
1.2. For such cases, the moving window analysis cannot completely capture the actual nature of seasonality.
In addition, the appropriate estimation of bandwidth is difficult if we want to use the kernel density method
with the moving window analysis. Herein, we selected two 30 year blocks (1951–1980 and 1981–2010) of
annual maximum daily precipitation for assessing the temporal change in seasonality.

3.1. Results From Traditional Circular Approach
Here we present an assessment of temporal changes in seasonality based on traditional circular approach.
Parameters h and q were estimated for each block of annual maximum precipitation separately for all the
10 stations and listed in Table 3. From Table 3, we can see that for three stations: Brassua Dam, Corinna, and
Lewiston, the mean date of occurrence h has shifted from Fall season (respectively months of October, Sep-
tember, and November) toward earlier months (respectively, months of August, July, and July) for the recent
time period. For all the three stations, the variability in the extreme precipitation dates has increased for the
recent time period (shown by the decreasing value of q). Although for Eastport also there is shift in the
mean date h toward earlier months; however there is decrease in variability for the recent time period.
Farmington is the only one station where the mean date h has markedly shifted from earlier months toward
later part of the year (March (Spring) to August (Fall)) for the recent time period. On the other hand, for Port-
land and Gardiner, the mean date of occurrence h is highly variable for both time periods indicating no sea-
sonal pattern. Similarly, for other two stations: Presque Isle and Woodland, h and q indicate that there is
unimodal seasonal pattern occurring during Fall season for both time periods. Again these results

Figure 5. Empirical Probability Density Function (EPDF) estimates based on the calendar
dates of annual maximum daily precipitation for Lewiston, Maine. Bandwidth for the ker-
nel density estimates is evaluated using the likelihood cross-validation method.
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strengthen the fact that for most of stations, the seasonal pattern of extreme rainfall is diverse and complex
for both time periods as we previously observed from the complete record (stationary) in section 1.2. Specif-
ically three statistical measures provided us important information regarding the seasonality for both time
periods and changes therein for stations with distinct unimodal seasonality pattern like Presque Isle and
Woodland. However, for other stations where there is diversity in the seasonal pattern, these metrics were
not able to completely decipher the seasonality change.

Figure 6. A 30 year moving window estimate of seasonality for Presque Isle, Maine shown by the mean date h and variability q for the
period 1951–2010.

Table 3. Seasonality of Annual Maximum Daily Precipitation for the Periods 1951–1980 and 1981–2010, Estimated Separately From the Circular Statistical Analysis

Station

1951–1980 1981–2010

Circular Statistics Uniformity Tests

Hewitt Test

Circular Statistics Uniformity Tests

Hewitt Test�h q Rayleigh Rao Spacing Kuiper �h q Rayleigh Rao Spacing Kuiper

Brassua Dam 4.94 (12 Oct) 0.45 0.45** 150.14 2.03** 32 3.77 (5 Aug) 0.38 0.38** 150.65 1.73* 33**
Corinna 4.55 (20 Sep) 0.35 0.35** 151.40* 1.81** 31 3.46 (19 Jul) 0.23 0.23 124.84 1.28 31
Eastport 5.58 (18 Nov) 0.11 0.11 122.96 1.04 29 4.31 (6 Sep) 0.23 0.23 123.72 1.27 29
Farmington 1.08 (2 Mar) 0.16 0.16 111.50 1.09 27 3.85 (10 Aug) 0.19 0.19 111.87 1.23 30
Gardiner 5.55 (17 Nov) 0.24 0.24 155.82* 1.55 29 4.17 (29 Aug) 0.25 0.25 118.65 1.48 33**
Lewiston 5.52 (15 Nov) 0.36 0.36** 159.33** 2.00** 33* 3.44 (17 Jul) 0.17 0.17 117.57 1.29 27
Millinocket 4.85 (7 Oct) 0.25 0.25 118.50 1.40 27 4.35 (8 Sep) 0.39 0.39** 123.33 1.80** 31
Portland 6.23 (26 Dec) 0.20 0.20 137.74 1.50 31 5.15 (25 Oct) 0.27 0.27 159.86** 1.89** 33*
Presque Isle 4.35 (8 Sep) 0.53 0.53** 163.42** 2.37** 33* 4.33 (7 Sep) 0.45 0.45** 142.00 2.08** 31
Woodland 4.75 (1 Oct) 0.42 0.42** 132.81 1.71* 33** 5.14 (24 Oct) 0.31 0.31* 155.21* 1.65* 33**

**p value� 0.05; *0.05< p value< 0.1.
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In addition to these exploratory data analysis, three nonparametric uniformity tests: Rayleigh, Rao Spacing,
and Kuiper as well as nonparametric Hewitt test were performed to test the null hypothesis of no seasonal
variation in extreme precipitation event dates for each block of annual maximum precipitation data sepa-
rately, and the results are listed in Table 3. As seen in Table 3, Rayleigh test statistics are significant for five
stations for the earlier time period and for four stations for the recent time period; only for the three cases

Figure 7. Schematic diagram showing the nonparametric framework for quantifying distribution of seasonality and temporal changes
therein.
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are the test statistics significant for the same station for both time periods. Note that Rayleigh test is power-
ful (nonuniform) against unimodal alternatives only. Only for the three consensus stations, we can conclude
that there is strong (unimodal) seasonality for both time periods. Rao Spacing test statistics are significant
for four stations for the earlier time period and only for two stations for the recent time period; with no con-
sensus stations for both time periods. Likewise, Kuiper test statistics are significant for five stations for both
time periods; as for Rayleigh test, only for the three cases are the test statistics significant for the same sta-
tion for both time periods. Note that both Rao Spacing and Kuiper tests are consistent (nonuniform) against
unimodal as well as multimodal alternatives. For those stations where the test statistics are significant from
either of these tests, we can conclude that there is existence of seasonality (uni or multimodal). Hewitt test
statistics based on peak period of 3 months are significant for three stations for the earlier time period and
for four stations for the recent time period; with only one consensus station. All of the tests results offer use-
ful information regarding the nature of data and their seasonal distribution in the two time periods. How-
ever, for a number of cases, we did not obtain the consensus results from all these tests and the results

Figure 8. Probabilistic assessment of temporal changes in the seasonality of annual maximum daily precipitation. Two 30 year blocks (1951–1980 and 1981–2010) of annual maximum
daily precipitation were considered for the analysis. Bandwidth for the kernel density is evaluated using LCV method. (a) Kernel circular density estimates for Lewiston, Maine for 1951–
1980 (black) and 1981–2010 (grey) estimated using bandwidth optimized from complete data set (1951–2010; n 5 60), (b) Kernel circular density estimates for Lewiston, Maine for 1951–
1980 (black) and 1981–2010 (grey) estimated using two different bandwidths evaluated from two 30 year blocks of data separately; in Figures 8a and 8b, probability density estimates
are assessed for significance based on density estimates using resampled data. A median estimate is obtained from the ensemble of distributions resulting from bootstrap resampling
(N 5 1000), (c) significant results estimated as described in Figure 8a for all stations, and (d) significant results estimated as described in Figure 8b for all stations.
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were inconclusive. For these cases, we expect our data to be complex and multimodal like the synthetic
case (c). Subsequently, we used the robust approach based on the kernel circular density for assessing the
temporal changes in seasonality of the extreme precipitation and presented in the next section.

3.2. Results From Robust Approach
A schematic diagram showing the steps to assess the temporal change in seasonality based on the non-
parametric density approach is provided in Figure 7. As the results of kernel density, estimates are sensitive
to bandwidth; here we used two different criteria to estimate bandwidth using LCV method. For the first
criteria, a single optimized bandwidth is obtained for each station from the complete data set (1951–2010;
n 5 60) using the bootstrap resampling as described in section 2.1. For the second criteria, two different
bandwidths were evaluated from two 30 year blocks of data separately for each station. Kernel circular den-
sity estimates were obtained for all stations for each time period separately. Density estimates for Lewiston,
Maine obtained using bandwidth optimized from complete data set is shown in Figure 8a and using two
different bandwidths evaluated from two 30 year blocks of data separately is shown in Figure 8b. Probabil-
ity density estimates for the 1951–1980 (black) and 1981–2010 (grey) are assessed for significance based on
density estimate using resampled data. A median estimate is obtained from the ensemble of distributions
resulting from bootstrap resampling (N 5 1000). From Figures 8a and 8b, we can see that the seasonal distri-
bution of extreme precipitation events has changed from unimodal to somewhat uniform for the recent
time periods, irrespective of the criteria used for the selection of bandwidth. Previously, significant mode is
only concentrated in the October–January period; while for the recent period, the mode during this period
has gotten weaker and there is simultaneous emergence of the significant mode during April–July period.
Note that these results are sensitive to the threshold used to assess the significance.

Figure 9. Temporal changes in seasonality for two 30 year blocks (1951–1980 and 1981–2010) of annual maximum daily precipitation esti-
mated using two different bandwidth selection criteria (Figures 8c and 8d); black lines represent density estimates for the period 1951–
1980, and grey lines represent the density estimates for the period 1981–2010. A ‘‘consensus’’ estimate is obtained based on the statisti-
cally significant overlapping time periods from the two (black and grey) estimates.
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Significant results of the density estimates using bandwidth optimized from complete data set are pre-
sented in Figure 8c for all 10 stations. From Figure 8c, we can see that for three stations (Woodland, Presque
Isle, and Millinocket) there is no significant temporal change in seasonality with the distribution concen-
trated in the July-December period; while for other three stations (Brassua Dam, Corinna, and Lewiston),
there is emergence of modes during Spring season for the recent time period. Moreover, for the remaining
four stations, seasonal distribution is showing multimodal patterns for both time periods. Significant results
of kernel circular density estimates using two different bandwidths evaluated from two 30 year blocks of
data separately are presented in Figure 8d for all 10 stations. From Figure 8d, we can see that for Presque
Isle there is no significant temporal change in seasonality with the distribution concentrated in the July-
November period; while for four stations (Woodland, Brassua Dam, Corinna, and Lewiston), there is emer-
gence of modes during Spring season for the recent time period. Moreover, for the remaining four stations,
seasonal distribution is showing multimodal patterns for both time periods.

Above analysis corroborates the fact that the density estimates are influenced by the bandwidth selec-
tion criteria. To this end, we estimated the consensus results of the density estimates from Figures 8c
and 8d. Consensus temporal changes in seasonality for two 30 year blocks (1951–1980 and 1981–2010)
of annual maximum precipitation estimated using two different bandwidth selection criteria (Figures 8c
and 8d) is presented in Figure 9; black lines represent density estimates for the period 1951–1980 and
grey lines represent the density estimates for the period 1981–2010. A ‘‘consensus’’ estimate was
obtained based on the statistically significant overlapping time periods from the two (black and grey)
estimates. From Figure 9, we can see that for three stations (Woodland, Presque Isle, and Millinocket)
there is no significant temporal change in seasonality with the distribution concentrated in the July-
December period; while for other three stations (Brassua Dam, Corinna, and Lewiston), there is emer-
gence of modes during Spring season for the recent time period. Moreover, for the remaining four
stations, significant seasonal distribution is showing multimodal patterns for both time periods. Emer-
gence of significant modes during Spring season has a significant impact on the repair and mainte-
nance of the infrastructures. Heavy rainfall events that are now more likely to occur earlier in the year
should shift decisions based on managing those events (e.g., clearing blocked or clogged culverts,
regrooming roadside ditches, etc.) earlier in the year as well.

4. Summary and Conclusions

In this paper, we presented a circular statistical approach for the assessment of temporal changes in season-
ality of extreme precipitation across the state of Maine. Two 30 year blocks (1951–1980 and 1981–2010) of
annual maximum daily precipitation were used for analysis. Preliminary assessment of seasonality was done
by evaluating mean date and variability of the date of occurrence of extreme precipitation events, the
method previously used by four other studies [Bayliss and Jones, 1993; Burn, 1997; Parajka et al., 2009, 2010].
In addition, we also used four nonparametric tests: Rayleigh, Rao Spacing, Kuiper, and Hewitt test to check
the null hypothesis of no seasonality against the alternative hypothesis of seasonality. These methods pro-
vided us some useful insight regarding the distribution of data and the seasonality therein; these methods
worked perfectly well for the cases where the distribution of extreme event timing is unimodal (one domi-
nant season) or uniform (no preferred season). However, distribution of extreme event timing tends to be
more often multimodal. For such cases, results from one or all of these methods may be misleading. Daily
precipitation records were used to develop records of calendar dates for extreme precipitation, and com-
pute the circular probability distribution. Systematic exposition of methods used for seasonality assessment
were presented in Figures 3 and 7.

Nonparametric circular density approach, used in this study, offers an adaptive alternative for an assessment
of changes in seasonality over time. Note that the temporal changes in seasonality may appear due to
weakening of modes within one season (Fall) and simultaneous strengthening of modes in one or all of the
other seasons (Winter, Spring, or Summer) or it may appear due to the emergence of completely new
modes (shifting of mode from Fall to Spring season). The kernel circular density approach accommodates
the range of seasonality change types noted above. It is worth noting that estimates of the kernel circular
density are sensitive to: (a) threshold used to assess the significance and (b) the bandwidth selection crite-
ria. To address the latter issue, we used two different criteria to estimate two bandwidths using LCV
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approach. Subsequently, temporal changes (based on two 30 year blocks) in seasonality were evaluated
based on a consensus approach, as shown in Figure 9.

Temporal changes in seasonality of extreme precipitation events have salience for both hydroclimatic
change studies and infrastructure adaptation considerations. These results pave the way for concurrent
evaluation of possible future changes in seasonality based on gridded data obtained from different climate
model simulations. Moreover, the shifting of extreme storm timing offers municipal officials an opportunity
to revisit the timing of seasonality-specific decisions. For example, decisions linked to stormwater manage-
ment (e.g., clearing blocked or clogged culverts, repairing roadside ditches) can be appropriately resched-
uled to be in line with identified changes in the timing of heavy rainfall events.

In this study, no attempt was made to seek climatological explanations for observed changes in the season-
ality of extreme precipitation. Efforts to understand the causal factors involve analyses of seasonal availabil-
ity and delivery pathways of atmospheric moisture, which in turn are determined by the large-scale general
circulation of the atmosphere [Hirschboeck, 1988; Nakamura et al., 2013], as well as its moisture carrying
capacity. Regional-scale analyses based on our approach have the potential to offer important insights
regarding changing patterns of rainfall extremes. Our ongoing work seeks to generalize the proposed
approach for application to regional and global scales.
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