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The world’s increasing population requires an increase in transportation fuel production.  

The lack of production of transportation fuels due to the shortage of fossil fuel resources 

combined with concerns about global emissions of carbon dioxide from fossil fuel combustion 

are the two major issues that have driven researchers to actively pursue alternative sources for oil 

production. Biomass is being considered as an alternative feedstock to produce fuel and 

chemicals due to its abundance and renewability. It has many features that make it suitable as a 

source of transportation fuel production. However, the bio-oil produced by the fast pyrolysis 

process has many undesirable characteristics that reduce its quality as a transportation fuel. The 

major problem that causes these negative properties is mainly the oxygenated groups that are 

present in the bio-oil.  

In this research, the goal was to produce a high-quality bio-oil with low or zero oxygen 

content that could be suitable for use as a transportation fuel. To do that, four different biomass 

feedstocks were pyrolyzed at the same operating conditions using a process developed by the 

UMaine group. This process is called formate-assisted fast pyrolysis or FAsP. Oils produced 

from the fast pyrolysis of these four feedstocks contained oxygen contents of 16, 21, 26 and 27



 
 

 
 

 wt.% and were generated either by formate-assisted pyrolysis or hot-gas filter pyrolysis of pine 

sawdust. The generated bio-oils were then hydrotreated over an inexpensive commercially 

available nickel on silica-alumina catalyst and high hydrogen pressure to produce a hydrocarbon 

fuel. Hydrotreating experiments were conducted in a downflow trickle bed reactor at 

temperatures between 300-400 ºC and reactor pressures between 750-1400 psi with a hydrogen 

flow rate of 100 sccm over several days. Liquid yields, carbon yields, final product oxygen 

content, and H:C ratio were determined as a function of time-on-stream. 

 For the 16 wt.% oxygen content bio-oil, the longest time onstream, 345 hours, was 

achieved at an average bed temperature of 300 °C, reactor pressure of 1400 psi, hydrogen flow 

rate of 100 sccm and a weight hourly space velocity of 0.06 hr-1. The carbon of the raw bio-oil 

that ended up in the hydrotreated oil fraction of this experiment was 91.8% with a liquid yield of 

95.3%. The highest carbon and hydrogen contents measured for the hydrotreated liquid products 

from all experiment were 87.0 wt.%, 14.2 wt.% and the lowest were 75.0 wt.%, 10.6 wt.% 

respectively. Partial deactivation of the catalyst over time was evident due to the quality of the 

oil product collected, which saw the density, oxygen content and viscosity increase and the H:C 

ratio and carbon content decrease. The partial deactivation was more pronounced for higher 

oxygen-containing bio-oil feedstocks and for higher temperatures >300 oC.  

Calcium formate pretreatment of biomass prior to pyrolysis produces stable bio-oils with 

reduced oxygen content. These stable bio-oils can be successfully upgraded into hydrocarbon 

fuels in a single catalytic hydrotreatment step that ran up to 15 days without significant 

deactivation and reactor plugging. This improvement eliminates the need for an oil stabilization 

step prior to hydrotreatment that is required for conventional bio-oil upgrading.  

Keywords: Transportation fuels, catalysts, upgrading, bio-oil, pyrolysis, calcium formate 
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CHAPTER 1: CONVERSION OF BIOMASS TO BIO-OIL AND BIO-OIL 

CHARACTERIZATIONS 

1.1 Introduction 

 

Energy consumption of non-renewable hydrocarbons has largely increased recently due 

to the growing global worldwide population. The global emissions of CO2 from fossil fuel 

combustion and cement production are responsible for the global temperature rise and climate 

change and have continued to grow by 2.5% per year on average over the past decade 

(Friedlingstein et al. 2014). As a result of the continuous global warming, climate change is 

largely irreversible for 1,000 years after emissions stop (Solomon et al. 2014). 

Finding another route to produce fuel and chemicals has become imperative. Biomass is 

being considered as an alternative feedstock to produce transportation fuels. Biomass-derived 

fuels can be produced within a relatively short cycle. The process of producing bio-oil is 

relatively inexpensive and considered to be eco-friendly. Biomass has a worldwide abundance 

and it can be used instead of the world’s fossil fuels in a variety of applications. From all 

biomass sources, Lignocellulosic biomass is the most abundant naturally occurring raw material, 

where there are more than 400 million dry tons of biomass available each year for potential 

energy use (Downing et al. 2011). However, methods to convert biomass to fuels have several 

difficulties. 

In this research, the goal was to produce a high-quality bio-oil with low or zero oxygen 

content that could be suitable for use as a transportation fuel. To do that, we followed two steps. 

We first produced bio-oils with different oxygen contents using formate-assisted fast pyrolysis 

(FAsP) process followed by catalytic upgrading to transportation fuel. In Chapter 3, we will 
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show how we prepared the feedstocks, the pyrolysis system configuration, the operating 

conditions used, and the physical and chemical compositions of bio-oils produced. In Chapter 4, 

we will discuss the upgrading process of these bio-oils. This will include the catalyst that we 

have used, the operating conditions used and the reactor configuration. A Thermo Scientific 

Model Flash 2000 elemental analyzer (CHNO) was used to determine the elemental composition 

of the oils. A Shimadzu Q2010 GC-MS was used to characterize the organic fractions of each oil 

product. Gas products were analyzed using SRI 8610C portable GC. The moisture content in the 

FAsP oils was performed using Karl-Fisher titration. The pyrolysis and the upgrading processes 

will be described along with detailed physical and chemical analysis of bio-oil products. 

 

1.2 Lignocellulosic biomass 

 

Wood is constructed of three different major components: cellulose, hemicellulose, and 

lignin. Wood can contain about 40 to 44% of cellulose ((C6H10O5)n), 20 to 30% of hemicellulose 

((C5H8O4)n) and 18 to 35% of lignin, and all compositions are by dry weight of wood (Carrasco 

2013). The composition of the major biomass feedstocks is shown in Table 1.1. 

 

Plant Lignin % Cellulose % Hemicellulose % Extractives Ash 

Willow 19.7 48.5 13.9 No data 1.7 

Pine 25.9 41.7 20.5 2.7 0.3 

Eucalyptus 27.2 46.3 14.9 1.9 1.1 

Hybrid 

Poplar 

 

25.7 

 

41.5 

 

17.9 

 

4.2 

 

1.8 

Table 1. 1 Composition of general lingo-cellulosic materials (Basu 2010). 
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1.3 Thermochemical conversion of biomass 

 

The thermochemical conversion process is one of the major routes that is being used to 

convert biomass to fuel and chemicals. In this process, the heat is utilized to chemically 

decomposes biomass feedstocks and producing viable sources of energy. This process is 

comprised of four methods which are Combustion, Gasification, Liquefaction, and Pyrolysis. 

Pyrolysis method will be discussed here. Main thermochemical conversion processes for biomass 

conversion into fuels and chemicals are listed in Figure 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 1 Thermochemical conversion processes of biomass (McKendry et al. 2002). 
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1.3.1 Pyrolysis 

 

Pyrolysis is a process done in an inert atmosphere and in the absence of air. It involves 

the rapid heating of biomass to temperatures between 450-600 oC, the rapid condensing of 

pyrolysis vapor and short residence times. Organic vapors, water, gases and char are the 

pyrolysis products. Pyrolysis oil can be made using many pathways. These pathways can be done 

either using the conventional slow pyrolysis route or the flash pyrolysis route named also as fast 

pyrolysis. The slow pyrolysis route is a process done using slow heating rates with long 

residence time and a temperature range between (400-600 oC). Fast pyrolysis route, on the other 

hand, takes place at elevated temperature and short residence times. Mohan showed that the fast 

pyrolysis route can produce 60–75 wt.% of liquid bio-oil, 15–25 wt.% of solid char, and 10–20 

wt.% of no condensable gases all depending on the feedstock used (Mohan et al. 2006). On the 

other hand, the slow pyrolysis route can produce 29.9–47.0 wt.% of liquid bio-oil, 19–33.9 wt.% 

of solid char, and 22.2–45.8 wt.% of no condensable gases all depending on the feedstock and 

the temperature used (Phan et al. 2008). 

Fast pyrolysis process has the ability to produce a high yield of liquid fuel from any type 

of biomass feedstock. Liquid bio-oil collected from fast pyrolysis process is the most useful 

product that can be further upgraded into fuel and valuable-added chemicals (Bridgwater et al. 

2000). Despite the advantages that one can get from the fast pyrolysis method, bio-oil has many 

drawbacks that need to be overcome. The high oxygen content is the major obstacle to pyrolysis 

oil utilization. In addition to the high oxygen content, bio-oil has high water content and it is 

highly acidic, etc. To overcome these undesirable characteristics, bio-oil needs an extra step, 

upgrading step, to remove the oxygenated compounds and enhance its final properties to be used 

as a substitute for petroleum derived-fuels.  
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The pyrolysis and the upgraded liquid products can be evaluated using the O:C and H:C 

ratios. These ratios are important when we need to compare the pyrolysis or the upgraded liquid 

products quality with the transportation fuels quality (French et al. 2010).  

The yields and chemical compositions of the bio-oil obtained from the fast pyrolysis of 

different biomass feedstocks varied from type to type of wood due to the differences in the 

compositions of the wood.  Yields of the main pyrolysis products, the lignocellulosic material 

composition, and the chemical composition of produced bio-oil are listed in Table 1.2. 

 Pine 

sawdust 

(softwood) 

Mesquite 

sawdust 

(hardwood) 

Wheat 

shell 

Yields of the main pyrolysis products (wt.%)    

Pyrolysis liquid 50.3 38.7 38.0 

char 28.9 36.6 36.1 

Gases 20.8 24.7 25.9 

Properties of the biomass raw materials (%, dry basis)    

Moisture content 10.2 12.5 18.8 

Ash 0.3 0.6 5.4 

Lignocellulosic material composition (%, dry basis)    

Cellulose 35 40-45 10-15 

Hemicellulose 29 25-30 30 

Lignin 28 11-28 4-8 

Higher heating value (HHV, MJ/Kg) 15.4 15.4 14.1 

Chemical composition of treated liquid and bio-oil 

identified by GC-MS (%) (wt.%, dry basis) 

   

Acids 18.71 16.99 18.91 

Esters 8.29 7.62 8.62 

Linear Aldehydes and ketones 17.52 9.12 7.34 

Cyclic Ketones 6.11 5.77 6.06 

Furans 5.95 6.25 3.44 

Alcohols and sugars 9.81 8.06 6.04 

Ethers 0.80 1.22 1.38 

Phenols 15.74 28.23 19.02 

Hydrocarbons and derived 0.80 2.15 2.42 

Others oxygenated cyclic compounds 2.91 3.96 2.64 

Nitrogen compounds 1.53 1.18 1.48 

Table 1. 2 Pyrolysis products from different lignocellulosic biomass (Bertero et al. 2012). 
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1.4 Chemical composition of bio-oil 

 

The chemical composition of bio-oil depends upon the chemical composition of the 

biomass feedstock and the operating conditions used. In general, bio-oils are composed of two 

main groups, namely, organic and inorganic. The oxygenated groups present in the bio-oils are 

ketones, aldehydes, carboxylic acids, and alcohols. Aldehydes, ketones, furans, anhydrosugars, 

sugars, acids, esters and a few hydrocarbons, ethers and alcohol which include phenolic 

compounds are the major organic groups that are present in the liquid phase obtained from 

cellulose and hemicellulose pyrolysis (Wei et al. 2012). Bio-oils are also composed of 

multifunctional compounds, such as hydroxyacetic acid, hydroxyacetaldehyde, hydroxyacetone, 

and 3-hydroxy- 3-methoxy benzaldehyde (Diebold 2000). In addition to the organic compounds 

present in the bio-oil, there are also some inorganic compounds that affect pyrolysis oil stability. 

Potassium, sodium, magnesium and calcium are naturally present in the biomass. These 

inorganic compounds, especially potassium and calcium catalyze biomass decomposition and 

char-forming reactions during biomass pyrolysis leading to suspended submicron particles in the 

pyrolysis oil (Agblevor et al. 1995). The growth of these char particles increases their 

concentrations in the bio-oils and make them problematic for combustion in different engines 

(Agblevor et al. 1995).  
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As mentioned in Diebold 2000, the exact composition of the bio-oil results from a 

complex interrelationship of: 

 

1. The biomass used as a feedstock including dirt and moisture contents. 

 

2. Organic nitrogen or protein content of the feedstock. 

 

3. The heat transfer rate and the final char temperature during the pyrolysis process. 

 

4. The extent of vapor dilution in the reactor. 

 

5. Vapor residence time and temperature in the reactor. 

 

6. Vapor residence time and temperature in the heated transfer lines from the pyrolysis reactor 

to the quench zone. 

 

7. Whether the vapors pass through the accumulated char such as in hot gas char filtration. 

 

8. The efficiency of the system that is used to separate the char from the bio-oil vapors before 

condensation equipment. 

 

9. The efficiency of the condensation equipment that is used to recover the volatile components 

from the non-condensable gas stream, such as water and low molecular weight esters. 

 

10. Whether the suspended char fines remove from the condensate by filtration.  

 

11. Feedstock water content. 

 

12. The contamination extent of the bio-oil during storage by leaching of the containers. 

 

13. Exposure to air during storage. 

 

14. The length of storage time. 

 

15. The storage temperature. 

 

 

 

 

 

 

 

 

 

 



 
 

8 
 

1.5 Physical properties of bio-oil 

 

Bio-oils obtained during pyrolysis of biomass are dark brown, highly viscous with a 

distinctive smoky odor. In general, the physical properties of bio-oil change with changing the 

conditions and feedstocks. The grades of bio-oils are determined by characteristics such as 

oxygen content, density, viscosity, pour point, heating value, flash point, ignition temperature, 

water content, solids content, sulfur content, ash content, flash point and pour point. Bio-oils are 

also characterized by aging term, which is defined as the change of physical properties of bio-

oils with time. The physical properties of bio-oil are listed in Table 1.3. 

 

Table 1. 3 Physical properties of bio-oil derived from wood (Bridgwater et al. 2000). 
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Bio-oil has more than 300 compounds. Most of them contain oxygen that has a negative 

effect on bio-oil properties. Some of these oxygenated compounds could be removed through the 

fast pyrolysis route, but the bio-oil still contains 30-40 wt.% oxygen (Sipila et al. 1998). The 

highly oxygenated groups cause the bio-oil to be very acidic where the total acid number (TAN) 

is greater than 100 and make it extremely corrosive (Oasmaa et al. 2010).  The viscosity is also 

affected by these highly oxygenated groups because certain compounds induce polymerization 

reactions, causing the viscosity of the oil to increase drastically over time (Diebold 2000). Bio-

oil becomes a less valuable fuel due to the presence of high oxygen content, which leads to many 

issues, including utilization and handling. Bio-oil has a much lower energy density than 

conventional fossil fuel, has poor stability and it is not miscible with hydrocarbons, which are all 

due to the high oxygen content.  

Kim reported that bio-oils contain approximately 15-60% water (Kim et al. 2013). This 

water content is from the original moisture content present in the biomass feedstock and from the 

dehydration reactions that take place during the pyrolysis process. It was reported that the high-

water content caused by both the pyrolysis reactions and the moisture present in the feed results 

in lowering the heating value and density. On the other hand, having high water content in the 

bio-oil results in reducing the oil viscosity which improves bio-oil flow characteristics. 

Viscosity is defined as the resistance of the liquid to flow. Bio-oils viscosity can vary 

over a wide range (35-1000 cP at 40 °C) and that depends on the feedstocks and the conditions 

by which they create. When bio-oils are stored, their viscosity increase with time and that is 

defined as an “aging” which is one of the bio-oils characteristics.  Through aging, bio-oils suffer 

from the polymerization or the condensation reactions that take place between the compounds 

present in the bio-oils, leading to the formation of larger molecules. This increased viscosity is 
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accelerated by exposure of bio-oils to oxygen and to ultra-violet light or by increasing 

temperature (Czernik et al. 2004). Scholze concluded that pyrolysis oils suffer strongly 

accelerated polymerization reactions when they are heated to 80 °C or more. During aging, the 

viscosity increased from 84.5 cSt after one month to 162.3 cSt after 12 months, whereas the pH 

and density values remained almost unchanged (Scholze 2002). According to Peacocke, the 

density of pyrolysis oil decreased with increased temperature where it decreased from 1.205 

g/cm3 at 20 °C to 1.150 g/cm3 at 80 °C (Peacocke 1994). Viscosity is one of the obstacles that 

causes instability in the oils. Bridgwater has mentioned that the oil’s viscosity could be reduced 

or controlled by the addition of alcohols such as ethanol or methanol (Bridgwater 2012). Many 

investigations have done by different authors to study the possibility of changing the stability of 

oils by adding a catalyst to the fuel during the pyrolysis process (Diebold 1991). Another 

investigation done by Joseph showed that there are several classes of compounds that give rise to 

instability, like vinyl compounds (Joseph et al. 2016). It is important to identify the reactive 

compounds and the reactions that cause the instability of oils during aging because knowing 

them is contributing to finding different ways to handle them and leading to improve the oil 

quality.  

Acetic and formic acids are two examples of the organic acids that are present in the 

pyrolysis oil and make it highly acidic. Pyrolysis of untreated biomass results in an oil that has a 

total acid number (TAN) of greater than 100 and a pH of 2-3 (Oasmaa et al. 2010). Because of 

this low pH, pyrolysis oils are corrosive to common metal construction materials. Volatile acids 

form 60-70% of the pyrolysis oil acidity, the acidity is also influenced by other groups of 

compounds in fast pyrolysis oils which include phenolics, fatty and resin acids, and hydroxy 

acids (Oasmaa et al. 2010). The pH test method is a useful method to measure the pH of the oils 
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and knowing which applications may suffer a considerable damage in case of treatment with 

corrosive oils (Coverdell 2010). In a study done by Oasmaa et al., they concluded that there is a 

slight increase in acetic and formic acids during the first 2 months of storage and their 

concentrations remained the same during the stability test at 80 oC for 24 h (Oasmaa et al. 2010). 

They also reported that there is no any change in the TAN during the aging of fast pyrolysis oil. 

It is important to know the oils pH and TAN in order to improve the quality of the oil and also 

determine which compounds are stable and which ones are reactive during studies of bio-oil. 

Bio-oil has a lower heating value which is less than 50% of that for a conventional fuel 

oil. This low heating value is caused primarily by the presence of oxygen and water in the oil. 

Removal of oxygen and water from bio-oil increases the heating value and improves oil fuel 

quality. 

The application of bio-oil has been limited because of the undesirable characteristics 

described above. Oxygen removal from bio-oil is the single most important step that will lead to 

stabilizing and improving bio-oil properties toward final use as a transportation fuel. 
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1.6 Removal of oxygen during pyrolysis 

 

Fast pyrolysis methods have been modified to remove oxygen in-situ, prior to post-

pyrolysis upgrading. These techniques seek to alter the pyrolysis pathways to favor increased 

deoxygenation either through changing pyrolysis conditions, adding catalysts, or pretreating the 

feedstock with salts. A review of these techniques is presented below. 

 

1.6.1 Catalytic fast pyrolysis 

 

Pyrolysis of biomass that occurs in the presence of a cracking catalyst such as a zeolite 

will result in increased gas production producing an oil of lower yield but with less oxygen 

content (Williams et al. 1995). The catalyst can either be co-fed with the biomass in the pyrolysis 

reactor or held in a bed downstream of the reactor contacting the vapor/gas stream exiting the 

reactor.  Catalytic fast pyrolysis of biomass generally produces an oil that is rich in aromatics, 

stable and has a lower oxygen content. Because of the cracking, carbon is lost in the gas stream, 

resulting in low mass and energy yields. Carlson concluded that the products that are produced 

through catalytic fast pyrolysis are more stable and have lower oxygen content than those from 

conventional pyrolysis (Carlson et al. 2009).  Despite the fact that the catalytic fast pyrolysis 

method is considered one of the effective methods for producing stabilized and deoxygenated 

pyrolysis oil, there are some significant drawbacks. Zeolite catalysts are sensitive to alkali and 

alkaline earth metals present in biomass feedstocks. These alkali and alkaline earth metals 

deposited on the catalysts and linearly increased over time leading to a steady decrease in the 

overall acidity of the catalysts over time (Paasikallio et al. 2014). This drawback makes this 

method economically unfavorable. 
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1.6.2 Hot gas filtration 

 

Hot gas filtration has been used to remove fine char particles from the vapor/gas stream 

exiting the pyrolysis reactor. Case recently published that running pyrolysis under conditions of 

increased residence time and a hot gas filter at temperatures greater than 400 oC resulted in 

increased cracking reactions producing a lower oxygen content oil (Case et al. 2014b). Further 

analysis of their oil indicated increased stability relative to conventional oils. This method can 

produce more stable pyrolysis oil but that depends on the type of hot gas filter used and the 

operating temperature (Baldwin et al. 2013). Pyrolysis oils produce using hot gas filter have 

lower solid contents, lower viscosity and alkali metal contents compared to the pyrolysis oils that 

produce using conventional cyclone separators (Hoekstra et al. 2009). Char filter element after a 

run is shown in Figure 1.2.  The drawbacks of the hot gas filtration method are the low liquid 

yield and it has not been demonstrated to use it for long time-on-stream. 

  

 

 
Figure 1. 2 Simplified schematic of pyrolysis system shown the location of the hot gas filter 

housing and filter element (Case et al. 2014b). 
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1.6.3 Pretreating with calcium compounds 

 

Pretreatment of biomass with calcium compounds prior to fast pyrolysis is a method 

developed at the University of Maine. Several calcium compounds were tested as pretreatments 

where they were mixed with pine sawdust first and then pyrolyzed in a fluidized bed pyrolysis 

reactor at 500 oC with higher residence times (Case et al. 2014a). The addition of calcium 

formate, carbonate, sulfate, hydroxide and oxide to pine sawdust prior to pyrolysis results in a 

significant decreasing in the oxygen content and producing more stable oil except for calcium 

sulfate which was inert during pyrolysis (Case et al. 2014a). In a study done by Wang et al., they 

concluded that the addition of calcium hydroxide completely prevented the formation of acids, 

moderately reduced the formation of furans and sugars, and increased ketone and alcohol yields 

(Wang et al. 2010). They attributed that to the neutralization of carboxylic acid groups that are 

present in hemicelluloses, leading to the formation of carboxylate salts instead of acids. Their 

results also showed that there is an increase in the overall liquid yield with the addition of 

calcium hydroxide. Calcium oxide is another calcium compound that has been studied. It was 

found that there is a significant decrease in the oxygen content which was from 39 wt.% to 31 

wt.% at a high CaO/pine ratio with a slight increase in the overall bio-oil yield (Lin et al. 2010). 

In Case et al. study, they found that the gas yield is reduced with the addition of calcium 

hydroxide and calcium oxide compared to untreated pine. Calcium formate is the most important 

calcium compound because it can contribute to decreasing the oxygen content to about 16 wt.% 

with high heating rate and high carbon yield compared to the pyrolysis of untreated biomass. The 

deoxygenation of the liquid product can be done without a decrease in the overall liquid yield or 

H:C ratio and that is due to the incorporation of hydrogen and carbon from the calcium formate 

with the biomass (Case et al. 2014a). This method is a straightforward process and done in a 
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single-step reactor without the usage of the hydrogen gas. It is also a cheap process due to the 

low cost of calcium compounds (Carlson et al. 2011). Interestingly, it reduces the cost of the 

upgrading process due to the less oxygen content present in the oil produced from the biomass 

pretreated with calcium compounds. Table 1.4 shows the comparison between the fast pyrolysis 

and the formate-assisted pyrolysis (FAsP).  

 Fast Pyrolysis (Carrasco 2013) FAsP (Case et al. 2014a) 

Oil mass yield, wt.% 60 23 

Oxygen content, wt.% 35 16 

HHV MJ/Kg 25 32 

O:C (oil) 0.28 0.16 

H:C (oil) 1.15 1.15 

Stability Not stable Stable 

Upgrading (hydrotreating) Two stages One stage 

Table 1. 4 Comparison between fast pyrolysis and FAsP. 

 

 

1.7 Description of research  

 

This research study involved preparing bio-oils of different oxygen content using fast 

pyrolysis methods developed at the University of Maine. These oils were produced using 

formate-assisted pyrolysis (FAsP) process. The resulting oils of different oxygen contents were 

then hydrotreated over a commercial nickel / silica-alumina catalyst in a continuous flow, trickle 

bed reactor for up to 15 days. The effect of hydrotreating operating conditions on oil yield and 

composition were examined for the different oils. In addition, catalyst robustness was examined. 

Recommendations are made regarding hydrotreating conditions and oil feed quality on the final 

product oil yield and composition.  
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CHAPTER 2: A REVIEW OF BIO-OIL UPGRADING INTO TRANSPORTATION 

FUEL: CATALYSTS, OPERATING CONDITIONS, REACTORS AND REACTIONS 

2.1 Introduction 

 

As discussed in Chapter 1, bio-oils produced from the fast pyrolysis process have many 

undesirable characteristics that reduce their quality as transportation fuels. The major problem 

that causes these negative properties is mainly the oxygenated groups that are present in the bio-

oil. Besides that, there are a group of complex compounds that are present in the bio-oil which 

make it very hard to upgrade or to use as a transportation fuel. Through the fast pyrolysis 

process, these oxygenated groups can be reduced but cannot be totally eliminated, so another 

process or step should be taken into consideration to remove the remaining oxygenated 

compounds.  The major oxygenated compounds present in the bio-oil are saccharides, alcohols, 

ketones, aldehydes, carboxylic acids, phenolic compounds, lignin oligomers and water (Brown 

2011). Many upgrading methods have been investigated to remove the oxygenated compounds 

and produce high-quality fuels from bio-oils.  

Hydrodeoxygenation, HDO, is the most important process that has been studied 

extensively and is considered a unique process to produce high energy with oxygen-free content 

hydrocarbons. The HDO process is normally done in the presence of hydrogen pressure and 

catalysts at elevated temperatures where the oxygen is rejected in the form of water and some 

gases. The HDO process can produce bio-oils with high quality and zero oxygen content, but that 

depends upon many concerns that affect this process. Hydrogen consumption is one of the 

concerns that the HDO process suffered from as described in Chapter 1. A major concern with 

the HDO process is the catalyst lifetime. Another major concern is the cost such as the cost of 

the expensive catalysts and units used. Many catalysts have been studied extensively during the 
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few past years. Some of them were successful to remove the oxygen content from the oils, some 

were not. Some of them were deactivated quickly after starting of the hydrotreatment, some of 

them stood actively for some hours or days. As a result of the usual rapid catalyst deactivation, 

negative properties appear such as lower product yields and reactor plugging; therefore, the 

development of an effective catalyst is a very important role in the HDO process. Finding the 

optimum reaction conditions and catalysts that can tolerate the severe conditions are the main 

focus for many authors these days. In this study, instead of focusing on optimizing reaction 

conditions for hydrotreating unstable pyrolysis oils, we examined the effect of feedstock 

chemical composition on catalyst lifetime, yields, oxygen removal, and hydrogen uptake during 

HDO. During this study, hydroprocessing experiments were conducted for more than 15 days 

without stopping.  

 

 

2.2 Catalysts, operating conditions and reactor configurations for bio-oil upgrading 

Many catalysts have been investigated over the past 30 years for bio-oil upgrading. In 

this section, we are going to present the catalysts that have been used during the HDO process. 

Because of their importance in this process, we are going to present them in detail. 

 

2.2.1 Sulfided catalysts 

The first two catalysts used in the upgrading process were the sulfided catalysts 

NiMo/Al2O3 and CoMo/Al2O3. They have been tested first by (Elliott et al. 1984). These two 

sulfided catalysts were used in the petroleum industry first for the purpose of desulfurization and 

used again in the biomass area. CoMo/Al2O3 catalyst is be able to successfully remove the sulfur 
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from the petroleum oil down to a few ppm (Prins 2008) and it is the best regarding the 

deoxygenation activity (Wildschut 2009). 

Elliott et al. 1988 have used these two catalysts in a two-step hydroprocessing treatment. 

They have changed the operating temperature from a low-temperature range (250 to 280 oC) to a 

high-temperature range (370 to 400 oC). The reason behind this treatment was to eliminate the 

problems of the polymerization of bio-oils during the start of experiments, as well as the 

problems with the reactor blockage. These two stages have reduced the problems of the 

polymerization of bio-oils but coke formation that leads to plug formation was still present. 

Wildschut et al. 2009a reported a paper about a hydrotreatment done by comparing 

sulfided CoMo/Al2O3 and NiMo/Al2O3 catalysts with noble metal catalysts (Ru/C, Pd/C) in a 

two-stage treatment in a batch system. The first stage was at 250 °C under 100 bar H2 for 4 

hours, while the second one was at 350 °C under 100 bar H2 for 4 hours too.  Ru/C catalyst was 

the best regarding the deoxygenation activity followed by Pd/C with high oil yield than the two 

sulfided catalysts. The low amount of sulfur in the feed results in a low yield and makes it 

difficult to use these catalysts. So, appropriate amounts of sulfur should be added to the feed to 

maintain the sulfidation state of the catalysts and keep them active. 

Horacek et al. 2017 also reported a work on the sulfided catalysts (CoMo/Al2O3 and 

NiMo/Al2O3). Their work was similar to the work done by Elliott et al. 2012. The reactor was 

divided into three reaction zones. They tried five reference tests with different operating 

conditions and different catalysts. In the first reference test, they used the CoMo/Al2O3 catalyst. 

In the second, third and fourth reference tests, they used the NiMo/Al2O3 catalyst with different 

operating conditions. In the fifth test, they used the CoMo/Al2O3 catalyst at the bottom of the 

reactor and the NiMo/Al2O3 catalyst at the top of the reactor. In the first reference test, they used 
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the CoMo/Al2O3 catalyst with temperature ranges of (170–250 oC), (250–350 oC), and (350–450 

oC) for the first, second and third zones respectively and WHSV between 0.2-0.4 hr -1. The 

CoMo/Al2O3 catalyst showed a good selectivity towards diesel-like products than the NiMo 

catalyst. The major problem with the alumina as support is the low stability at high temperature 

in the presence of water. For the first reference test, the CoMo/Al2O3 catalyst deactivated after 

only 30 hours on-stream with a reactor blockage after 40 hours on-stream. 

Elliott 2007 reported a work on the bio-oil hydrotreatment done by Veba Oel AG using 

the sulfided CoMo and NiMo catalysts. The operating conditions for this work were 17.8 MPa 

pressure, 350-370 oC temperature and WHSV between 0.25-0.8 g/ g h in a continuous feed 

bench-scale reactor. 88.0-99.9% was the deoxygenation rates that have been achieved with a 

relative constant oil yield of 30-35%. During this work, the catalyst experienced considerable 

deactivation quickly due to the gum-like deposits that blocked the reactor. As a result of that, a 

stabilization step was necessary to keep the catalyst activity higher because these sulfided 

catalysts seemed to be deactivated quickly by a single stage treatment. 

In a work done by Viljava et al. 2000, they discussed some drawbacks for the presence of 

sulfur prior to hydroprocessing. They concluded that the hydrodeoxygenation activity of the 

sulfided catalyst decreased in the presence of H2S. The sulfided catalyst was mostly deactivated 

by coke and high molecular weight products that formed during the hydroprocessing process, 

water formed during the HDO process also acted as an inhibitor (Delmon et al. 1996).  

Elliott et al. 2012 reported a work done using a fixed-bed reactor with a trickle flow 

where the bio-oil and hydrogen gas entered the top of the catalyst bed and passed through to the 

exit. Sulfided Ru/C catalyst was used at the top of the reactor at 170 °C with a liquid hourly 

space velocity (LHSV) of 0.19 whereas the sulfided CoMo or NiMo catalysts used at the bottom 
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of the reactor at 400 °C and 0.19 LHSV. A sulfiding agent was added to the feed before starting 

the experiment to maintain 100 ppm sulfide. The upgraded product had an oxygen content 

ranging between 0.2-2.7 wt.%. For all three tests, a plugging in the front end of the catalyst bed 

was observed especially in the heat-up zone, that could belong to the catalyst coking in the high-

temperature stage, but there is little evidence of this. There was also a pressure buildup across the 

reactor over time (10-100 hours) due to the polymer formation. The hydrogen consumption using 

sulfided NiMo catalyst was 572–669 L/L of feed. These three tests were run successfully for 90-

99 hours on-stream before reactor plugging happened, which might be caused by the char 

particles present in the bio-oil. Bio-oils need to be pre-filtered prior to hydroprocessing in order 

to reduce or remove these particles. The NiMo catalyst produced the more saturated product 

(higher H:C ratio) than the CoMo catalyst but with higher hydrogen consumption. The 

compositions of the oil product are listed in Table 2.1. 

 

 
Table 2. 1 Oil product composition from the hydroprocessing of bio-oils (Elliott et al. 2012). 

 

 



 
 

21 
 

Despite the success that these catalysts have in the petroleum area, there are some 

drawbacks of using these sulfided catalysts in the biomass area. PNNL reported that the cost of 

the hydrotreating procedure is very expensive because for example Ru catalysts had to be 

replaced every 30 days. The reason behind this replacement was due to the coke formation and 

unstable feedstock. Other drawbacks were the economic scale of sulfur usage and finally the 

contamination of the product. As a result of these drawbacks, many efforts have been spent by 

researchers to find alternative catalysts. The nickel and transition metal catalysts were the second 

options to try which will be discussed in the following sections.  

 

 

2.2.2 Nickel catalysts 

 

Yang et al. 2014 investigated the hydrodeoxygenation of anisole obtained from the flash 

pyrolysis of lignocellulosic biomass. This hydrodeoxygenation was done using a series of Ni-

containing (20 wt.% loading) catalysts based on carriers as diverse as SBA-15, Al-SBA-15, γ-

Al2O3, microporous carbon, TiO2 and CeO2 in a continuous flow reactor under 3 bar of hydrogen 

pressure, 290–310 oC of moderate temperature and space velocities of 20.4 and 81.6 h−1. In this 

work, they were trying to see the influence of metal-support interactions on the anisole HDO 

selectivity toward aromatic products. At 290 oC and 3 bar, Ni/C catalyst gave the highest 

benzene yield which was 64% with a conversion of 98%. The anisole conversion was almost 

100% for the Ni–Al-SBA-15, Ni/SBA-15 and Ni/ γ-Al2O3 catalysts. The anisole conversion was 

90% for Ni/CeO2 and 47% for Ni/TiO2. The conversion and selectivity of the catalysts above 

were all under the conditions of 290 oC and 3 bar. Under 290 oC and 3 bar, the 

hydrodeoxygenation efficiency approached 100% in most of the catalysts except for the Ni/CeO2 

and Ni/C with a <10% production of oxygenated compounds. Finally, they concluded that the 
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support seems to have a huge effect on the selectivity of the HDO of anisole, where the catalysts 

based on reducible oxides such as Ni/TiO2, Ni/CeO2 as well as Ni/C showed a high selectivity 

toward aromatics than others. Higher temperature and lower space velocity were the optimum 

operating conditions that lead to high aromatic production.  

Jin et al. 2014 reported a similar hydrotreatment work to the work done by Yang et al 

2014 above except using different reactor set-up, less nickel weight loading, different operating 

conditions and a new tested support which was SiO2. In this work, anisole was investigated using 

a series of Ni-containing (10 wt.% loading) catalysts based on carriers as diverse as Ni/AC, Ni/ γ 

-Al2O3, Ni/SBA-15, Ni/SiO2 in a batch set-up under 0.5–3.0 MPa of hydrogen pressure and 180–

220 oC of temperature. The anisole conversion was 100% for all four Ni catalysts after 90 min 

on-stream, and the main products were cyclohexyl methyl ether (CME), cyclohexanol (CHL), 

cyclohexane (CHE), cyclohexyl ether (CCE). The Ni/AC produced most of the aromatic ring-

saturated cyclohexyl methyl ether. The highest activity in the HDO of anisole was showed by 

Ni/SiO2 which was 95%. They concluded that the hydrogen pressure and the temperature play a 

significant role on both anisole conversion and main products distribution, where the conversion 

increases from 22% to 99% when the pressure goes from 0.5 to 3.0 MPa, while the reaction 

temperature has a significant effect toward the oxygen-removal. 

Phan et al. 2015 published a study on the hydrodeoxygenation of guaiacol using NiMo 

catalyst based on different supports at 250 oC and a hydrogen pressure of 5 MPa. The supports 

were γ -Al2O3, CeO2, and SBA-15. NiMo/SBA-15 was the most effective catalyst that displayed 

the highest activity toward the HDO of guaiacol with a conversion of 90% and an HDO degree 

of 67.5% with high yields of cyclohexane and other saturated ring compounds.  NiMo/CeO2 also 

showed higher performances in the HDO reaction of guaiacol.  
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Ardiyanti et al. 2012a have published a study on the catalytic hydrotreatment of fast 

pyrolysis oil using non-sulfided bimetallic NiCu/ δ-Al2O3 catalyst with various Ni/Cu ratios 

(0.32 to 8.1 w/w). In this study, they started the hydrotreatment reactions with the anisole as a 

model compound in a continuous fixed bed reactor at 300 oC and a pressure of 10 bar with 

WHSV values between 3 and 6 h−1. Next, they switched to fast pyrolysis oil in a batch autoclave 

for 1 hour at 150 oC followed by 3 hours at 350 oC all at a pressure of 100 bar. For the anisole 

hydrotreatment, the catalyst was very active in anisole deoxygenation with a conversion between 

66.1 and 95.3 mol%.  The main products using the NiCu/ δ-Al2O3 catalyst for the anisole 

hydrotreatment were benzene and cyclohexane, while the HDO selectivity was between 70 and 

96%. For the pyrolysis oil hydrotreatment, the yield of the product oil obtained over NiCu/ δ-

Al2O3 was between 35 and 42 wt.%. The carbon yield in the upgraded bio-oil was between (64–

75 wt.%) and the oxygen content was between 10.4 and 17.1 wt.% (dry basis) after was 40.1 

wt.% (dry basis) in the original fast pyrolysis oil with an O:C ratio of 0.08–0.17 and a H:C ratio 

of 1.0–1.6. In conclusion, they suggested that the bimetallic 16Ni2Cu catalyst (with a Ni to Cu 

wt.% ratio of eight) was the most active catalyst for the hydrotreatment of both anisole and 

pyrolysis oil. The hydrogen consumption was 146 L/Kg feed.  

Ardiyanti et al. 2012b have used the pyrolysis oil that obtained from the fast pyrolysis of 

pine wood as a feedstock in this work. In this work, they used the same bimetallic Ni–Cu catalyst 

that was discussed earlier in Ardiyanti et al. 2012a but over various supports such as CeO2–ZrO2, 

ZrO2, SiO2, TiO2, rice husk carbon, and Sibunite with a 7.5 to 9.0 (Ni), 3.1–3.6 wt.% (Cu) for the 

inorganic supports and a 17.1–17.8 (Ni), 7.1–7.8 (Cu) for the carbon supports. The 

hydrotreatment of fast pyrolysis oil was done in a batch set-up at 350 oC and 200 bar. The yield 

of the liquid organic phase was between 36-45 wt.% with an oxygen range between 5.4–16.1 
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wt.% (dry basis) after it was 40.1 wt.% in the original fast pyrolysis oil. The O:C ratio of the 

upgraded oil was between 0.08–0.18 while the H:C ratio was between 1.10–1.45. The gases 

produced during the hydrotreatment were CO, CO2, CH4 and small hydrocarbons where the 

various supports seem to not have a huge effect on the amount of gas produced. The NiCu/TiO2 

showed the highest activity with the most favorable product oil. The CeO2–ZrO2 support was 

found to have the highest levels of the carbon deposition on the catalyst whereas the lowest 

levels were for the ZrO2 and TiO2 supports. The hydrogen consumption for all catalysts used was 

between 85-194 L/Kg feed. 

Leng et al. 2013 concluded that the NiFe bimetallic catalyst is the most effective catalyst 

because it showed an excellent activity toward the oxygen removal for three model compounds 

of bio-oil (furfuryl alcohol, benzene alcohol and ethyl oenanthate). The bimetallic catalyst was 

supported on γ -Al2O3 and tested in a tubular quartz reactor. The heating value of the upgraded 

product increased to 43.9 MJ/kg after it was 37.8 MJ/kg in the original bio-oil with an increase in 

the pH too. In this study, a loading of 15% Ni to 5% Fe were the optimum values that provided 

the highest activity and selectivity. At 300 oC, the conversion of furfuryl alcohol and benzene 

alcohol was more than 85% and about 15% for ethyl oenanthate. At 400 oC, the conversions of 

furfuryl alcohol, benzene alcohol and ethyl oenanthate to 2-methylfuran, toluene and heptane 

were found to be 100, 95.48 and 97.89% respectively at conditions of 0.01 ml/min flow speed 

and 1 atm. The flow speed has an opposite effect on the conversions and yields, so the higher 

flow speeds the lower the conversions and yields. The author suggested that the major reaction 

pathway during this process is the cleavage of C–O rather than C– C. 

Eaton et al. 2015 published a work on thermal deoxygenation (TDO) of neutralized 

biomass acid hydrolysate (levulinate and formate salt mixtures). Calcium or magnesium 
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hydroxides were the compounds used to neutralize the acids.  A Ni/SiO2-Al2O3 catalyst was used 

in a vertical downflow tubular reactor. Mg-derived TDO (Mg-TDO) with an oxygen content of 

3.9 wt.% and Ca-derived TDO (Ca-TDO) with an oxygen content of 5.7 wt.% were the oils that 

they used. The hydroprocessing experiment done using Mg-TDO was under 350 °C, 5.2 MPa H2 

pressure, 100 sccm H2 flow rate with a feed flow rate varied from 0.02 to 0.05 mL/min and 

WHSV of 0.12−0.3 h−1. The hydroprocessing experiment done using Ca-TDO was under 300 

°C, 5.2 MPa H2 pressure, 200-300 sccm H2 flow rate with a feed flow rate varied from 0.1−0.3 

mL/min and WHSV of 0.06−0.18 h−1. The amount of Mg-TDO fed was 425 g processed over 

169 hours, while the amount of Ca-TDO fed was 11.2 kg processed over 703 hours both ran 

without catalyst regeneration. The oil produced through the hydroprocessing experiment of Ca-

TDO had less oxygen content and suitable for transportation fuels, where the density was 

improved from 1.01 kg/dm3 to 0.89 kg/dm3 and the H:C ratio increased from 1.1 to 1.65. The 

major compounds identified in the products were naphthenes, monoaromatics, partially saturated 

polyaromatics, and only trace oxygenates while alkanes remained minor components. They 

concluded that the TDO oils that they used are potentially compatible with existing refinery 

operations and catalysts, where a 700 hours on-stream processing was achieved through these 

oils without real problems. They also expected that the catalyst lifetime can be improved through 

these oils to approach the 2-years expected lifetime in industrial catalyst installations. 
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2.2.3 Noble metal catalysts 

 

 

2.2.3.1 Pd/C catalyst  

 

Elliott et al. 2009a reported a catalytic hydrotreatment work focused on the process 

experimentation undertaken at PNNL using a range of operating parameters such as pressure, 

temperature and flow rate with different biomass feedstocks. Hydrotreating experiments were 

done using a Pd/C catalyst in a bench-scale, fixed-bed reactor with lower and higher 

temperatures of (310 and 375 oC) and LHSV of (0.18 and 1.12). The hydrocracking experiments 

were the second step that was done using the oil obtained from the first step, hydrotreating step, 

at 400 oC, 2000 psig, and 0.4 LHSV, using a conventional hydrocracking catalyst. For the 

hydrotreating results, the biomass feedstock was not the major key that had a huge effect on the 

yield structure, hydrogen consumption. Table 2.2 shows the effect of feedstocks on the 

hydrotreating results at 340 oC, 2000 psig with large excess hydrogen flow and 0.14–0.25 LHSV. 

 

 

Table 2. 2 Effect of feedstock on the hydrotreating process results. 

 

Carbon dioxide was the main gas product produced with a small amount of methane for 

all tests. From the tests that they did, plugging of the catalyst bed was the major problem.  The 
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plugging was at the front end of the catalyst bed, especially in the heat-up zone. A pressure 

buildup was seen over time between 10-100 hours depending on the operating conditions. The 

pressure buildup was due to the formation of polymer as they mentioned. For the next step, 

hydrocracking step, high oil and gas yields were observed in these experiments with high 

amounts of hydrocarbon gases rather than carbon dioxide. The hydrogen consumption was much 

higher in these experiments than the hydrotreating experiments. In the hydrocracking step, 

catalyst coking was observed with no pressure buildup across the reactor. 

Cheng et al. 2017 reported a work done using the same catalyst, Pd/C, in a batch reactor 

with different temperatures (200 oC, 250 oC and 300 oC). The high reaction temperatures, 250 oC 

and 300 oC, seemed to have good results by increasing the hydrocarbon content of biofuels. A 

temperature of 250 oC produced biofuels with the highest heating value, highest hydrocarbons 

content and lowest water content. However, the two temperatures, 250 and 300 oC, contributed to 

decreasing the biofuel yields and increasing the gas yields. In general, the oxygen content was 

decreased from 48.78 wt.% to values ranging (30.20- 36.85 wt.%). The major oxygenated 

compounds such as aldehydes, ketones, acids and phenols were reduced in the upgraded biofuels 

compared to the raw feedstock. Catalyst deactivation was the problem identified, which was 

mainly attributed to the coke deposition on the catalyst, which was leading to the blocking of the 

catalyst pores masked active sites on the catalyst surface.  

Wildschut et al. 2009b conducted a catalytic hydrotreatment study using D-glucose, D-

cellobiose, and D-sorbitol at 250 oC temperature, 4.3 hours reaction time and 100 bar hydrogen 

pressure using Ru and Pd on carbon catalysts in water. The Pd/C catalyst was used with the D-

glucose on the similar operating conditions described above. H2, CO, CO2, ethane and propane 

were the main gases produced by Pd/C. The clues of this study indicated that the Pd/C catalyst 
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was less active than the Ru/C catalyst under the same operating conditions. It took 3.5 hours to 

reach the full conversion of D-glucose, while it took only 1 hour to reach the full conversion of 

D-glucose for Ru/C.  

 

2.2.3.2 Ru/C catalyst 

 

Elliott et al. 2009b reported a hydrotreatment work using Ru and Pd catalysts over 

various temperatures 150, 200, 250, and 300 oC in a batch reactor. Guaiacol, Furfural and Acetic 

acid were the three model compounds that represented the bio-oil in this study. For the 

hydrotreating of guaiacol, furfural and acetic acid at 150 oC and 200 oC, the primary products 

were 2-methoxycyclohexanol, small amounts of ethanol and THF-MeOH respectively. For the 

250 oC hydrotreating, the major products were cyclohexanol, high amounts of ethanol and 

MTHF respectively. For the 300 oC hydrotreating, the main products were phenol, low amounts 

of ethanol and MTHF respectively. For the acetic acid as a feed using Ru/C as a catalyst, the 

conversion was too low for the temperatures below 200 oC and the gas production was too high 

for the temperatures higher than 250 oC. In general, they concluded that the ruthenium catalyst 

seems to be a more effective catalyst for hydrogenations in this study than palladium. 

Sanna et al. 2015 investigated the Ru/C and Pt/C catalysts with the continuous flow 

hydrogenation of the water-soluble fraction of bio-oil (WSBO). Single and two stage processes 

have been discussed in this study. Ru/C catalyst has been used with a temperature range from 75 

to 175 oC in a single stage continuous flow reactor. At 75 and 100 oC, 2-furanone, furfural, 5-

HMF, hydroxyacetaldehyde and methyl-cyclopentanedione were the only reactants that have 

been converted into products which were comprised of 15% of the identified reactants. At 125 

oC, hydroxy acetone, catechol, phenol, levoglucosan and sugars were the reactants that have been 
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converted into products which represented 56% of the reactants. At 150 oC, all the reactants have 

almost been converted (90%) except for the acetic acid and phenol. At 175 oC, plugging of the 

reactor was identified after 8 hours on-stream which was due to the coke reactions. They 

concluded that the coke was generated as a result of the carbon that was deposited in the free 

section of the reactor at 150 and 175 oC, which was generated at the beginning of the experiment. 

In the two stages step, two different reactors in series were used where the Ru/C was used in the 

first stage and either Ru/C or Pt/C was used in the second stage. 26-28% more of the feed was 

converted using two-stage processes than the single stage process. At 250 oC, the liquid yield 

with Ru/C was decreased to 38% after it was 70% at 220 oC. At 1445 psi, the amount of 

hydrogen required was decreased from 7 wt.% at 750 psi to 4 wt.% of hydrogen all at 250 oC 

using Ru/C. The amount of carbon converted to the gas phase decreased to about 20% using 

higher space velocities with Ru/C and operating conditions of (6 h−1, 750 psi, 250 oC). This 

yielded a decrease in the carbon yield of the desired products to 16% less than the first stage 

process. As a result of the low yield of the desired products, this paper suggested that the high-

temperature hydrogenation of water-soluble bio-oil cannot be done with this catalyst and 125 oC 

is the low hydrogenation temperature that can be used with Ru/C.  

Wildschut et al. 2010 reported a paper on the Ru/C catalyst that has been used for the 

hydrogenation of the pyrolysis oil at a temperature of 350 oC and a pressure of 200 bar in a batch 

reactor. Three different phases have been observed in the liquid product after reaction with 

substantial amounts of coke and char, as well as gas phase organics. There was an increase in the 

oil yield during the first hour on-stream until 4 hours where it reached the maximum which was 

65 wt.%. The oil yield then started to decrease for longer times (>4 hours) where it dropped 

down to 10 wt.% after 6 hours on-stream due to the formation of gaseous phase components such 
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as methane, ethane, propane, CO/CO2 with methane and CO2 as the main gas phase products. 

The carbon content was 84 wt.% during the first 4 hours on-stream and decreased to 70 wt.% 

between 4 to 6 hours. The H:C and O:C ratios were increased as a function of reaction time with 

an O:C ratio of 0.02 to 0.07 and an H:C ratio of 1.05 to 1.32 when going from 1 hour to 6 hours 

reaction times. 

 

2.2.3.3 Mono- and bimetallic noble metal catalysts over ZrO2 

 

Gutierrez et al. 2009 tested zirconia-supported (ZrO2) mono- and bimetallic noble metal 

(Rh, Pd, Pt) catalysts for the hydrogenation of guaiacol at 100 oC and 8 MPa for 5 hours. They 

used guaiacol again for the hydrodeoxygenation at 300 oC and 8 MPa for 3 hours. Hydrogenation 

and hydrodeoxygenation steps were all done in a batch reactor. The guaiacol was the selected 

model compound for wood-based pyrolysis oil. The conversion of guaiacol at (100 oC and 8 MPa 

for 5 hours) was 13.8% for the monometallic Pd and Pt catalysts, while it was 100% for the 

ZrO2-supported Rh and RhPt catalysts. Hydrogenated oxygen-containing compounds were the 

main compounds that have been produced by all catalysts used in this study at 100 oC. The 

carbon deposition was higher for the Rh catalyst and lower for the less active catalysts (PdPt, Pd, 

Pt). The O:C ratio obtained with all the catalysts was 0.29 mol/mol while the H:C ratio obtained 

with Rh and RhPt catalysts was 1.95 mol/mol. For the HDO process at 300 oC, the conversion of 

guaiacol was 100% for all noble metal catalysts. Rh and RhPd catalysts were the best catalysts 

regarding the lowest O:C ratio. In this study, they tested a combination of Pd and Pt in the 

bimetallic PdPt catalyst and the combination of Pd or Pt with Rh. The first combination, PdPt, 

showed bad results while the second one, RhPd or RhPt, showed good results where the 

conversion increased to 98.7% on the RhPt catalyst and to 32.7% on the RhPd catalyst. This 
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paper concluded that the Rh-containing catalysts are the most active noble metal catalysts 

regarding both the HDO and hydrogenation of guaiacol and for both lower and higher 

temperatures. 

Ardiyanti et al. 2011 investigated the same catalysts listed above in Gutierrez et al. 2009 

except for changing the operating conditions to the following (350 oC, 20 MPa total pressure, 

and 4 hours reaction time) and the feedstock to the fast pyrolysis oil obtained from fast pyrolysis 

of lignocellulosic biomass. The yield of the upgraded oils was between 37.3–46.7 wt.% with an 

O:C ratio between 0.07–0.10 and an H:C ratio between 0.99–1.19. The oxygen content was 

between 7.7-11.0 wt.% (dry basis) compared to 40.1 wt.% for the feed. Pd/ZrO2 showed the 

highest activity followed by Rh/ZrO2 which produced the best product properties. Pt/ZrO2 

showed less activity compared to the Rh and Pd analogs. The hydrogen consumption for all 

catalysts used was between 54-186 L/Kg feed. 

 

2.2.4 Other catalysts  

 

Adjaye et al. 1994 investigated the following catalysts: HZSM-5, silicalite, H-mordenite, 

H-Y and silica-alumina for the upgrading of bio-oil in a fixed bed micro-reactor operated at 1 

atm, 3.6 WHSV and temperatures of 330 and 410 oC. In this study, the overall performance 

followed the order: HZSM-5 > H-mordenite > H-Y > silica-alumina, silicalite. 

Zhao et al. 2011 investigated the following catalysts Ni2P/SiO2, Fe2P/SiO2, MoP/SiO2, 

Co2P/SiO2 and WP/SiO2 for the upgrading of guaiacol gas phase in a packed bed reactor operated 

at 1 atm and a temperature range of 200–300 oC. The activity for HDO of guaiacol followed the 

order: Ni2P>Co2P>Fe2P, WP, MoP. 
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Mortensen et al. 2013 investigated 23 different catalysts for the upgrading of phenol in a 

batch reactor operated at 275 oC and 100 bar H2. Ni/ZrO2 was the only active non-noble metal 

catalyst whereas the Ni/C was inactive for the HDO of phenol. The order of catalysts regarding 

the HDO activity were as follows: Ni/ZrO2 > Ni-V2O5/ZrO2 > Ni-V2O5/SiO2 > Ru/C > Ni/Al2O3 

> Ni/SiO2 >> Pd/C > Pt/C. 

Bui et al. 2012 studied a series of silica-supported metal phosphides for the upgrading of 

2-methyltetrahydrofuran (2-MTHF) in a packed-bed reactor operated at 300 °C and 1 atm. The 

activity order was as follows: Ni2P > WP > MoP > CoP > FeP > Pd/Al2O3. 

Echeandia et al. 2010 investigated the Ni–W catalysts supported on activated carbon for 

the upgrading of 1 wt.% phenol hydrodeoxygenation in n-octane in a fixed-bed reactor operated 

at temperatures of 423 to 573 K and a hydrogen pressure of 1.5 MPa. Ni–W/AC catalyst was 

considered as a promising candidate for HDO processes and can result in better catalytic 

performance. Catalysts supported on activated carbon resulted in a lower coke formation 

compared to the classical alumina support. 

 

 

2.3 Catalytic hydrotreatment reactions 

 

There is a complex reaction network appears during the catalytic upgrading of bio-oil. 

Mortensen et al. 2011 listed the reactions that occurred during the hydrotreating as well as the 

reasons that can be attributed to the high diversity of compounds in the feed. The reactions that 

take place for both zeolite cracking and HDO are cracking, decarbonylation, decarboxylation, 

hydrocracking, hydrodeoxygenation, hydrogenation, and polymerization. 

 



 
 

33 
 

2.4 Catalysts deactivation  

 

Many papers have been published recently regarding the deactivation of the catalysts used 

in the upgrading of the bio-oils obtained from the biomass sources. Furimsky et al. 1999 listed 

the reasons behind the deactivation of the catalysts. The first reason for the catalyst’s 

deactivation is attributed to the poison that adsorbs on active catalyst sites, resulting in either 

incapacitating the site or competition with the reactants of a given reaction.  This kind of 

deactivation is due to the reactant, reaction intermediates or products, as well as the extraneous 

compounds present in the feed such as N2 compounds and water. The second reason is attributed 

to the coke deposition on the catalysts. This kind of deactivation is caused by polymerization 

reactions leading to blocking of the catalyst pores, and it can be analyzed using TGA method 

(Thermogravimetric analysis). The third reason is attributed to the metals present in the feed that 

will deposit on the catalyst surface and cause deactivation. The last reason of the catalyst’s 

deactivation as mentioned in Furimsky et al. 1999 is due to the changes in catalyst structure, 

metal sintering, which is due to the temperature change after a prolonged period of reaction time 

causes a reduction in the interfacial sites between the metal particles and the support. Metal 

sintering can be tested using transmission electron microscopy (TEM) technique. Leaching the 

active metal of catalyst into the liquid phase is another reason for catalyst’s deactivation. It can 

be tested using ICP analysis method. 
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2.5 Summary 

 

Many catalysts have been employed during the hydrodeoxygenation process. Each 

catalyst used had some drawbacks with some success and that depended on the feedstocks used, 

the operating conditions and the catalyst strength towards the reactions happened during the 

process. Regarding sulfided catalysts, CoMo/Al2O3 catalyst was a good HDO catalyst due to the 

high deoxygenation activity and good selectivity to diesel-like products. 

Regarding nickel catalysts, Ni/TiO2, Ni/CeO2 as well as Ni/C showed high selectivity 

toward aromatics than others for the hydrodeoxygenation of anisole under 290 oC and 3 bar. 

Ni/SiO2 catalyst showed the highest activity in HDO of anisole under 5–30 bar of hydrogen 

pressure and 180–220 oC of temperature. Ni2P was the best catalyst for the hydrodeoxygenation 

of guaiacol and 2 methyl tetrahydrofuran under 300 oC and 1 atm. Ni/ZrO2 was the best catalyst 

regarding the HDO of phenol under 275 oC and 100 bar H2. NiMo/SBA-15 and NiMo/CeO2 were 

the most effective catalysts that displayed the highest activity toward the HDO of guaiacol under 

250 oC and a hydrogen pressure of 50 bar. The bimetallic NiCu/ δ-Al2O3 (with a Ni to Cu wt.% 

ratio of eight) was the most active catalyst for both anisole and pyrolysis oil hydrotreatments. 

NiCu/TiO2 showed the highest activity with the most favorable product oil using pyrolysis oil as 

a feedstock under 350 oC and a pressure of 200 bar.  

Regarding noble metal catalysts, Ru/C catalyst was the best for the D-glucose 

hydrotreatment under 250 oC temperature and 100 bar hydrogen. Ruthenium catalyst seems to be 

a more effective catalyst for hydrogenations in a study used Guaiacol, Furfural and Acetic acid 

as three model compounds under various temperatures 150, 200, 250, and 300 oC. Rh-containing 

catalysts (Rh/ ZrO2
 and RhPd or RhPt/ ZrO2) were the most active noble metal catalysts 

regarding both the HDO and hydrogenation of guaiacol and for the lower (100 oC, 80 bar) and 



 
 

35 
 

higher temperatures (300 oC, 80 bar). Pd/ZrO2 showed the highest activity followed by Rh/ZrO2 

where they produced the best product properties for pyrolysis oil hydrotreatment under 350 oC, 

200 bar total pressure. 

A Ni/SiO2-Al2O3 was the catalyst used by Eaton et al. 2015 on thermal deoxygenation 

(TDO) of neutralized biomass acid hydrolysate (levulinate and formate salt mixtures) under 300 

°C, 5.2 MPa H2, 200-300 sccm H2 flow rate with a feed flow rate varied from 0.1−0.3 mL/min 

and WHSV of 0.06−0.18 h−1. This catalyst showed a unique HDO activity for 700 hours on-

stream processing with an 11.2 kg of material processed.  

There are tradeoffs in choosing a catalyst. Some catalysts can remove the whole oxygen 

from the oils used as feedstocks, but they are either expensive or cannot be regenerated again. 

Some of them are cheap and active but the problem is with the low oil yield. Based on these 

tradeoffs and the issues associated with the catalysts described in this chapter, we chose the same 

catalyst used by Eaton et al. 2015 for our oxygenated pyrolysis oils due to many reasons:  

1. It is active, cheap and does not regenerate through experiments. 

2. It stands actively for long time-on-stream. 

3. Higher amounts of material can be processed through it.  

4. It yields higher oil yields with lower density. 

5. It yields products with lower oxygen content and higher H:C ratio. 
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CHAPTER 3: FAST PYROLYSIS OF FORMATE ASSISTED PRETREATED PINE 

SAWDUST AT ATMOSPHERIC CONDITION 

 

This chapter describes the fast pyrolysis experiments along with the materials, methods, 

operating conditions and instruments used in this research study. 

 

3.1 Introduction 

 

The conversion of biomass to transportation fuel requires a solid-to-liquid transformation 

while also removing oxygen and adding hydrogen. Thermal conversion pathways involving 

pyrolysis first create an oxygenated hydrocarbon liquid called bio-oil. The bio-oil is then 

hydrotreated over a catalyst and high-pressure hydrogen to produce a hydrocarbon fuel. In this 

chapter, four different biomass feedstocks were pyrolyzed at the same operating conditions 

(temperature around 500 ºC, a pressure of 1 atm and a total N2 flow rate of 6 L/min.) using a 

process known as formate-assisted fast pyrolysis or FAsP, which is a new process devolved by 

UMaine group. These feedstocks had different calcium formate/pine sawdust mass loadings and 

contained oxygen contents of 16, 21, 26, and 27 wt.%. The bio-oils obtained through this process 

have less oxygen content and are more stable compared to conventional pyrolysis oils. This 

process reduces the cost of the downstream upgrading process, which then requires less 

hydrogen consumption and needs a simpler upgrading system set-up. 
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3.2 Material and methods 

 

3.2.1 Feedstock preparation 

 

Bio-oils were generated from pine sawdust pretreated with different quantities of calcium 

formate salt. The pine sawdust (Pinus strobus) was obtained from the University of Maine 

Advanced Structures and Composite Center (AEWC). Calcium formate salt in solid form was 

purchased from GEO Specialty Chemicals. Four different biomass feedstocks were prepared. 

The calcium formate mass loadings were different in three of them while the fourth was pine 

sawdust without pretreatments.  The mass loadings for the three feedstocks were as follows: 140 

gm (100% calcium formate loading), 122.5 gm (87.5% calcium formate loading) and 70 gm 

(50% calcium formate loading) each to 100 gm pine sawdust. The element analysis of pine 

sawdust is given in Table 3.1. 

 

Table 3. 1 Analysis of pine sawdust. 
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The feedstocks were all prepared in the same manner as follows: calcium formate was 

incorporated with the pine sawdust by forming a solution/suspension with the salt in deionized 

water, and then incorporated the dry sawdust. The mixture then sat in a beaker for at least 12 

hours with a temperature around 25 oC. The pretreated pine was then oven dried to 

approximately 5-10% moisture content. IR-35 Infrared Moisture Analyzer (Denver Instrument) 

shown in Figure 3.1 was the analyzer used to check the moisture content in all biomass 

feedstocks.  

 

 

Figure 3. 1 IR-35 Infrared Moisture Analyzer (Denver Instrument). 

A mixture of pine sawdust pretreated with calcium formate is shown in Figure 3.2 below. 
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Figure 3. 2 Biomass feedstock after achieved the desired moisture content. 

Finally, the solid material was ground and sieved to achieve a particle size smaller than 

1.5 mm for feed consistency. A U.S. standard sieve No. 14 shown in Figure 3.3 was used to 

achieve the desired particle size. 

 

Figure 3. 3 U.S. Standard Sieve No.14. 
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3.2.2 Description of fast pyrolysis system along with fast pyrolysis process 

 

 

Figure 3. 4 Schematic of fast pyrolysis process (Case 2015). 

The schematic as shown in Figure 3.4 was used in this study with some modifications 

made to achieve the desired operating conditions. In this schematic, nitrogen, supplied by two 

tanks, was fed to the fluidized bed reactor and the biomass feeder, called a hopper feed. Both 

were controlled by rotameters. The first nitrogen pathway supplied nitrogen to the hopper and 

was used to carry the biomass feedstock present in the hopper to the fluidized bed reactor 

through a stainless-steel tube. The second nitrogen pathway supplied nitrogen to the bottom of 

the fluidized bed reactor which was first heated by a tube heater and then used to provide a 

fluidization to the 40-60 mesh sand, which is used as a heat transfer medium in the reactor. The 

hopper is a cylindrical feed compartment that has a rotating spring that is used to facilitate the 

biomass feedstock flow rate into the reactor. The hopper also has a pressure gauge on its top that 

is used to monitor the pressure during the experiments.  



 
 

41 
 

The fluidized bed reactor is 1.75 in. in diameter and 12 in. in length, with a total volume 

of 0.473 L. The reactor temperature is measured using two K-type thermocouples located on the 

vertical axis measured 3.0 and 9.5 in. from the top of the reactor. One of these thermocouples is 

used to measure the temperature at the inlet of the biomass to the reactor, while the other is used 

to measure the temperature at the outlet of the products to the hot gas filter. The fluidized bed 

reactor is heated in a heating furnace consisting of three heating zones. The fluidized bed reactor 

is described in detail elsewhere (DeSisto et al. 2010). 

The char separator is 2.87 in. in diameter and 24 in. in length with a total volume of 2.54 

L. The filter element inside the char separator is made from stainless steel and is 6 in. long and 

1in. OD. The temperature of the char separator is measured by a K-type thermocouple inserted 

into the vessel and it is controlled by a variac and heating bands. The condenser is made from 

stainless steel and it is a tube and shell type heat exchanger. The water provided to the condenser 

is chilled using a Thermo Scientific RTE 740 chiller. 

In all experiments, the untreated and pretreated sawdust were pyrolyzed as follows: the 

pine/calcium formate mixture was metered through a screw feeder and pneumatically fed into the 

reactor using a total nitrogen flow rate of 6 L/min. The feed rate was approximately between 1.0-

2.5 g/min, and up to 1.25 kg of material could be processed in a run. The pyrolysis temperature 

was 500 °C. Immediately downstream of the reactor, char was separated using a hot gas filter 

(HGF) also maintained at 500 °C where the char is collected in the bottom of the housing vessel 

and the outside of the filter element.  The total vapor residence time in the fluidized bed reactor 

and the HGF was 10.5 sec, with about 84% of that time in the HGF.  After the vapor passed 

through the hot gas filter, the liquid water was collected in a condenser operated at 3 °C followed 

by an electrostatic precipitator (ESP) to collect aerosols by an electrical charge supplied by a 
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stainless-steel rod placed vertically inside the ESP. The pyrolysis exhaust gas was periodically 

measured using an SRI 8610C portable GC. The exhaust gas flow rate was measured using a dry 

gas meter. 

 

 

3.2.3 Bio-oil characterization 

 

The ESP oil shown in Figure 3.5 was then used for further hydrodeoxygenation in this 

work and will be discussed in Chapter 4. The moisture content in the FAsP oil was determined 

using Karl-Fisher titration (see Appendix D). Carbon, hydrogen, and nitrogen analysis of the 

FAsP oil was determined using a Thermo Scientific Model Flash 2000 elemental analyzer (see 

Appendix A) and oxygen content was calculated by difference. A Shimadzu Q2010 GC-MS was 

used to characterize the composition of the oils (see Appendix B). Gas products were analyzed 

using an SRI 8610C portable GC (see Appendix C). The yields of the bio-oil and aqueous 

fractions were calculated by subtracting the weights of the ESP and condenser before and after 

pyrolysis experiments, while the char yield was calculated by subtracting the mass of calcium 

carbonate produced from calcium formate from the weight of the total solid materials after 

pyrolysis. 
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Figure 3. 5 Bio-oil collected from the ESP after fast pyrolysis process. 

 

3.3 Results and discussion 

 

 run 1 run 2 

Residence time (s) 9.95 9.17 

ESP yield (wt.%) 9% 12% 

Char yield (wt.%) 15% 16% 

Gas yield (wt.%) 46% 41% 

Condenser yield (wt.%)* 30% 31% 

*Water phase only with negligible amount of oil 

Table 3. 2 Weight percent yields obtained from pyrolysis of 140 gm Ca(COOH)2 /100 gm of dry, 

ash-free pine sawdust. 

 

From the two runs shown in Table 3.2, the 100% calcium formate loading (140 gm 

Ca(COOH)2 /100 gm pine sawdust) produced mostly gases where the average gas yield for the 

two runs was 43%. The aqueous fraction collected from the condenser yielded the second-

highest percentage produced with an average of 31% for the two runs. The average bio-oil yield 
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was 10%. The char yield was the lowest yield achieved through this pyrolysis with an average 

yield of 16%. The total average residence time for these two runs was 9.56 seconds. 

 

 run 1  

Residence time (s) 10.43 

ESP yield (wt.%) 14% 

Char yield (wt.%) 12% 

Gas yield (wt.%) 42% 

Condenser yield (wt.%)* 32% 

*Water phase only with negligible amount of oil 

Table 3. 3 Weight percent yields obtained from pyrolysis of 122.5 gm Ca(COOH)2 /100 gm of 

dry, ash-free pine sawdust. 

 

From Table 3.3, the liquid phase yields obtained through the pyrolysis of the 87.5% 

calcium formate loading were 14% for the bio-oil collected from the ESP and 32% for the water 

collected from the condenser. The gas yield was the highest with 42% and the char yield was the 

lowest with 12%. The total residence time was 10.43 seconds. 

 

 run 1 run 2 

Residence time (s) 10.88 10.73 

ESP yield (wt.%) 15% 14% 

Char yield (wt.%) 8% 8% 

Gas yield (wt.%) 37% 44% 

Condenser yield (wt.%)* 39% 34% 

*Water phase only with negligible amount of oil 

Table 3. 4 Weight percent yields obtained from pyrolysis of 70 gm Ca(COOH)2 /100 gm of dry, 

ash-free pine sawdust. 

 

Table 3.4 shows the pyrolysis of 50% calcium formate loading (70 gm Ca(COOH)2 /100 

gm pine sawdust). The gas yield was still the highest yield obtained with an average of 41% for 

the two runs followed by the condenser yield with an average of 37% for the two runs. The 
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highest bio-oil yield produced through this loading was 15%. The char yield was the lowest yield 

achieved through this pyrolysis with an average yield of 8%. The total average residence time for 

these two runs was 10.81 seconds. 

 

 run 1 run 2 

Residence time (s) 11.43 10.73 

ESP yield (wt.%) 17% 16% 

Char yield (wt.%) 12% 13% 

Gas yield (wt.%) 46% 45% 

Condenser yield (wt.%)* 25% 25% 

*Water phase only with negligible amount of oil 

Table 3. 5 Weight percent yields obtained from pyrolysis of dry, ash-free pine sawdust without 

pretreatments. 

 

The yields shown in Table 3.5 are determined based on the pyrolysis of pine sawdust 

without pretreatments. The order of the yields for this pyrolysis was as follows: gas > condenser 

> ESP > char with average yields of 46%, 25%, 17% and 13% for the two runs, respectively. The 

highest bio-oil yield produced through this pyrolysis was 17%. The total average residence time 

for these two runs was 11.08 seconds. 

Based on the results listed in the tables above, the bio-oil yields increased as we reduced 

the calcium formate loading in the feedstock, with a maximum of 17% for the pyrolysis of pine 

sawdust without pretreatments. The gas yield was higher and approximately the same for the 

pyrolysis of 100% calcium formate loading and the pyrolysis of pine sawdust without 

pretreatments followed by the pyrolysis of 87.5% calcium formate loading and finally the 

pyrolysis of 50% calcium formate loading. The aqueous yield was approximately the same for 

the pyrolysis of 100% and 87.5% calcium formate loadings while it increased to 37% for the 

pyrolysis of 50% calcium formate loading and decreased to 25% for the pyrolysis of pine 
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sawdust without pretreatments. The lowest char yield obtained was for the pyrolysis of 50% 

calcium formate loading (70 gm Ca(COOH)2 /100 gm pine sawdust), which was 8%. More 

important, the bio-oil yield obtained through the pyrolysis of 100% calcium formate loading was 

lower than other bio-oil yields obtained through the pyrolysis of different biomass feedstocks; 

however, a trade-off of 50% reduction in O:C ratio was observed. 

 

  
Pine 

Feed 

Pine sawdust 

without 

pretreatments  

50% 

calcium 

formate 

loading 

87.5% 

calcium 

formate 

loading 

100% 

calcium 

formate 

loading 

C (wt.%) 45.10 64.26 65.89 71.51 74.96 

H (wt.%) 6.80 7.20 7.08 7.41 7.45 

N (wt.%) 0 1.22 0.52 0.11 0.81 

O (wt.%) (by difference) 48.10 27.31 26.51 20.97 16.78 

O:C 0.80 0.31 0.30 0.22 0.16 

H:C 1.80 1.34 1.29 1.24 1.19 

HHV (MJ/Kg)* 16.52 26.17 26.74 29.90 31.59 

*HHV calculated based on equation 3 from Demirbas et al. 2008 

 

Table 3. 6 Elemental analysis of the bio-oils obtained from calcium formate loadings as well as 

pine sawdust without pretreatments. 

 

The elemental analysis of the bio-oils obtained through the fast pyrolysis process was 

done using a Thermo Scientific Model Flash 2000 elemental analyzer and the oxygen was 

calculated by subtracting the carbon, hydrogen, and nitrogen from the total mass. From Table 

3.6, we can see that the carbon weight percent and the higher heating value are a function of the 

percentage of calcium formate in the biomass feedstock, where they decrease as the calcium 

formate loadings decrease in the feedstock. However, the oxygen contents increase as the 

calcium formate loadings decrease in the feedstock. The oxygen content of the bio-oil obtained 

through the pyrolysis of 100% calcium formate loading, 16 wt.%, is consistent with the oxygen 
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content obtained from a work done by Case et al. 2014a using the same biomass feedstock and 

operating conditions. The differences in the yields between this work and the work done by Case 

et al. 2014a can be attributed to the modifications in pyrolysis reactor system as well as the 

changes in the nitrogen flow rate, which lead to the change in the residence time.  

 

 Water content % 

100% calcium formate loading 2.2 

87.5% calcium formate loading 4.2 

50% calcium formate loading 4.4 

Pine sawdust without pretreatments 8.0 

Table 3. 7 Water percentages for the fractions of the bio-oils obtained from the pyrolysis of the 

four biomass feedstocks. 

 

The moisture content of the fast pyrolysis oils was performed using Karl-Fisher titration. 

From Table 3.7, the lowest water content was in the bio-oil obtained from the pyrolysis of 100% 

calcium formate loading. The water content was approximately the same in the bio-oils obtained 

from the pyrolysis of 87.5% and 50% calcium formate loadings; however, it doubled for the bio-

oil obtained from the pyrolysis of biomass feedstock done without calcium formate 

pretreatments.  In general, these water contents are lower compared to the water contents present 

in conventional pyrolysis oils which are between 15−25% (Bridgwater 2012). 

Gas products were analyzed using an SRI 8610C portable GC. The compositions of the 

gases produced (CO, CO2, CH4, and C2+) were higher and approximately the same for the 

pyrolysis of 100% calcium formate loading and the pyrolysis of pine sawdust without 

pretreatments followed by the pyrolysis of 87.5% calcium formate loading and finally the 

pyrolysis of 50% calcium formate loading. 
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The most abundant compounds present in the pyrolysis oils are shown in Table 3.8 below. 

 

Compound identified by GC-MS  100% 

calcium 

formate 

loading 

87.5% 

calcium 

formate 

loading 

50% 

calcium 

formate 

loading 

Pine sawdust 

without 

pretreatments 

cyclopentanone identified identified --- --- 

2- cyclopentanone -1-one identified --- --- --- 

2-methyl-2-cyclopentene-1-one identified identified identified identified 

3-methyl-2- cyclopentene -1-one identified identified identified --- 

phenol identified identified --- identified 

3-Ethylphenol identified identified identified identified 

2,6-Dimethylphenol identified identified identified identified 

2,3-Dimethylphenol identified --- identified identified 

3,4,5 trimethylphenol identified identified identified identified 

2-Methoxy-6-methylphenol identified identified --- --- 

Phenol, 2-methoxy-3-(2-propenyl) --- identified identified --- 

2-Methoxy-4-vinylphenol --- identified identified --- 

m-cresol identified --- --- --- 

O-cresol identified identified identified identified 

2-Methoxy-p-cresol --- identified identified identified 

Catechol identified identified identified identified 

4-Methylcatechol identified --- identified identified 

4-Ethylcatechol --- --- identified identified 

4-Propylcatechol --- identified identified identified 

4-methoxybenzyl - alcohol --- identified --- --- 

retene identified identified identified identified 

hyroxyacetone --- identified identified identified 

methylcyclopentene --- identified --- --- 

3-Methylcyclopentane-1,2-dione --- --- identified identified 

Guaiacol --- --- identified identified 

Furfural identified --- identified --- 

5-Methylfurfural ---  identified identified 

Acetic acid --- identified --- --- 

butyl ester --- identified --- --- 

Acetone identified identified --- --- 

1,3,5,7-Cyclooctatetraene --- --- --- identified 

ortho-Phthalaldehyde --- --- --- identified 

Benzene, 1,2-propadienyl --- --- --- identified 

Propionic acid --- --- --- identified 

1,4-Butanediol --- --- --- identified 

Oxiranemethanol Acetate --- --- --- identified 

Table 3. 8 Compounds identified by GC-MS (Shimadzu Q2010) in pyrolysis oils obtained from 

the fast pyrolysis of all biomass feedstocks. 

http://webbook.nist.gov/cgi/cbook.cgi?ID=C576261&Mask=200
http://webbook.nist.gov/cgi/cbook.cgi?ID=C576261&Mask=200
http://www.chemspider.com/Chemical-Structure.68657.html
http://www.chemicalbook.com/ChemicalProductProperty_EN_CB71449762.htm
https://pubchem.ncbi.nlm.nih.gov/compound/4-Methylcatechol
https://en.wikipedia.org/wiki/Hydroxyacetone
http://www.chemspider.com/Chemical-Structure.12222.html
http://webbook.nist.gov/cgi/cbook.cgi?ID=C620020&Mask=80
https://en.wikipedia.org/wiki/Acetone
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3.4 Conclusion 

 

Four biomass feedstocks were pyrolyzed successfully under the operating conditions of 1 

atm and 500 oC (reactor and hot gas filter) with a nitrogen flow rate of 6 L/min and a biomass 

flow rate between 1.0-2.5 gm/min. The order of the solid, gas, and liquid yields in all pyrolysis 

experiments were as follows: gas > water > oil > char. A significant yield of oil can be produced 

through a pyrolysis of feedstock with lower amounts of calcium formate or none. However, 

lower amounts of calcium formate present in the feedstock can lead to an increase in the oxygen 

content. The pyrolysis of 100% calcium formate loading (140 gm Ca(COOH)2 /100 gm pine 

sawdust) produces the lowest oxygen content with the most stable bio-oil in a single-step reactor. 

The bio-oil yield obtained through the 100% calcium formate loading was lower than other bio-

oils obtained from different biomass feedstocks; however, a trade-off of 50% reduction in O:C 

ratio was observed. The advantage of using the full amount of calcium formate (100% calcium 

formate loading) is not only attributed in the reduction in the oxygen content but also in an 

increase in the carbon yield and the higher heating value for the final bio-oil. Adding calcium 

formate to the pine sawdust by the manner described above reduces the oxygen content from 48 

to 16 wt.% and changes the physical and chemical properties of the bio-oil produced without the 

need to use expensive materials such as the hydrogen and catalysts. This loading produces low 

oxygen content bio-oil without the need to run at elevated pressures, which eliminates the need 

for an extra unit cost.  

Finally, the lower oxygen content oils obtained through the fast pyrolysis of the four 

biomass feedstocks cannot be used as transportation fuels due to the issues discussed in detail in 

section 1.5. As a result of that, an extra upgrading process is needed in order to improve their 

quality to that of conventional fuel. The upgrading process will be discussed in the next chapter. 
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CHAPTER 4: UPGRADING OF BIO-OILS INTO TRANSPORTATION FUELS 

 

This chapter describes the hydrotreating experiments along with the materials, methods, 

operating conditions and instruments used in this research study. 

 

4.1 Introduction  

 

The goal of this chapter is to investigate the upgrading of the pyrolysis oils with different 

oxygen contents to hydrocarbon fuels by catalytic hydrodeoxygenation (HDO) and examine the 

effect of feedstock chemical composition on catalyst lifetime, yields, oxygen removal, and 

hydrogen uptake during HDO. Hydrotreatment of bio-oil is very sensitive to oxygen content and 

chemical composition of the bio-oil. Bio-oils with different oxygen contents (16, 21, 26 and 27 

wt.%) were hydrotreated in a downflow trickle bed reactor. A commercial nickel on silica- 

alumina catalyst was tested with different pyrolysis generated bio-oil feedstocks. Hydrotreating 

experiments were conducted at temperatures between 300-400 ºC and reactor pressures between 

750-1400 psi with a hydrogen flow rate of 100 sccm over several days. The catalyst activity was 

tested during several experiments using different operating conditions. Experiments ran up to 

several days and would end due to reactor plugging or running out of feedstock. Data collected 

included liquid yields and CHNO (Thermo Scientific Model Flash 2000 elemental analyzer) 

quantities in the oil fraction of the liquid.  
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4.2 Material and methods 

 

4.2.1 Feedstock preparation 

 

Six bio-oil feedstocks were hydrotreated to remove the remaining oxygen content and 

enhance their final quality. The biomass feedstock, 100% calcium formate loading, was 

pyrolyzed twice to generate two bio-oil feedstocks. The first bio-oil feedstock was hydrotreated 

at a hydrogen pressure of 750 psi while the second was hydrotreated at a hydrogen pressure of 

1400 psi. The same was done for the two bio-oil feedstocks generated from the pyrolysis of 50% 

calcium formate loading biomass feedstock. The bio-oils generated from the pyrolysis of 87.5% 

calcium formate loading and the pyrolysis of pine sawdust only were hydrotreated at 1400 psi. 

The preparation of biomass feedstocks for fast pyrolysis process was described in section 3.2.1, 

and the generation of these bio-oils was described in section 3.2.2. 

 

4.2.2 Description of upgrading system 

 

Figure 4. 1 Schematic of upgrading process. 
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Figure 4.1 shows a simplified schematic of the hydroprocessing unit used in this thesis 

work. In this schematic, hydrogen is introduced concurrently with the liquid feed at the top of the 

trickle bed reactor. The hydrogen flow rate is controlled by a mass flow controller. The trickle 

bed reactor is a cylindrical vessel that is 12.7 mm in diameter and 457 mm in length with a total 

volume of 0.058 L. The temperature of the bed is monitored using a thermocouple that is inserted 

down in the center of the bed. The thermocouple is controlled by a variac, which is controlled by 

a temperature controller that is shown in Figure 4.2. The trickle bed reactor is heated by a 

heating tape wrapped around the reactor. The reactor has a pressure gauge on its top, which is 

used to monitor the pressure during the experiments. A back-pressure regulator is used to control 

the reactor pressure. 

 

Figure 4. 2 Temperature controller made by Solo company. 

 

The HPLC pump (High-Pressure Liquid Chromatography) shown in Figure 4.3 is used to 

facilitate the bio-oil flow rate into the reactor. It has four buttons named as mode, prime, up, and 

down. The mode button is used to switch between the high pressure, the low pressure, and the 

bio-oil flow rate. The prime button is used to pull all bubbles out of the lines by using a syringe. 
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The up and down buttons are used to increase or decrease the pump pressure or the bio-oil flow 

rate. The maximum pressure that the pump can reach is 6000 psi and the highest bio-oil flow rate 

is 10 ml/min. Isopropanol is used to lubricate the pump’s shift. 

 

Figure 4. 3 HPLC pump with a scale on its top. 

 

The HDO products (Liquid and gases) produced from the reactions occurred between the 

hydrogen and the bio-oil on the catalyst surface were allowed to pass through the reactor to the 

150 ml collection vessel where the liquid phase products were collected. The gas products then 

passed through a pressure regulator and rotameter located after the sample collection vessel to 

the gas chromatography for analysis or sent to the fume hood. 
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4.2.3 Hydrotreating 

 

Hydrotreatment of bio-oils was conducted using a 66% ± 5% nickel on silica-alumina 

(Ni/SiO2-Al2O3) catalyst (Alfa Aesar) powder loaded into a vertical downflow tubular reactor as 

illustrated in Figure 4.4 as described previously in Eaton et al. 2015. The reactor consisted of an 

electrically heated 12.7 mm ID x 457 mm long stainless-steel tube. Bio-oil and hydrogen were 

co-fed to the top of the reactor at 0.01 ml/min and 100 sccm, respectively. The bio-oil feed rate 

corresponded to a weight hourly space velocity of 0.06 hr-1. The reactor was operated between 

300-400 ºC and 750-1400 psi. Liquid phase products were collected in a sample collection vessel 

and gas products were vented through a pressure regulator followed by a rotameter. The catalyst 

was activated with a continuous flow of H2 at 100 sccm, 350 ºC (heating rate of 1.5 oC/min), and 

atmospheric pressure for at least 12 hours. Samples were collected every 12 hours for runs up to 

345 hours with up to 182.35 gm of material processed.  

 

Figure 4. 4 Reactor set-up. 
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4.2.4 Hydrotreated bio-oil characterization 

 

The moisture content in the hydrotreated liquid products was performed using Karl-

Fisher titration (see Appendix D). Carbon, hydrogen, and nitrogen analysis of the hydrotreated 

oil was done using a Thermo Scientific Model Flash 2000 elemental analyzer (see Appendix A) 

and oxygen was calculated by difference. A Shimadzu Q2010 GC-MS was used to characterize 

the composition of the hydrotreated oils (see Appendix B). Gas products were analyzed using an 

SRI 8610C portable GC. The liquid product yield was calculated by weighing the sampling 

bottles before and after. Some hydrotreated liquid products are shown in Figure 4.5.  

 

 

Figure 4. 5 Liquid products collected from the hydrotreating of 87.5% calcium formate loading. 

 

 

4.3 Results and discussion 

 

 Bio-oil feedstocks were hydrotreated over a commercially available Ni/silica-alumina 

catalyst in a trickle bed reactor for up to 345 hours, similar to previous work on hydrotreating 

bio-oils with this catalyst (Eaton et al. 2015). Liquid yields, carbon yields, final product oxygen 

content, and H:C ratio were determined as a function of time-on-stream.  
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4.3.1 FAsP oil with 16 wt.% oxygen as a feedstock hydrotreated at 750 psi 

 

During the hydrodeoxygenation, the feedstock could undergo several reactions. Ideally, 

the oxygenated oil would react to form a deoxygenated oil plus water as a by-product. However, 

cracking reactions could produce permanent gases. Also, coke could be formed as a solid by-

product that will plug the reactor and deactivate the catalyst. The hydrotreatment of this 

feedstock was done over the nickel/silica-alumina catalyst with operating conditions of 300 ºC 

reactor temperature, 750 psi reactor pressure, and 100 sccm of H2. At temperatures greater than 

300 ºC, the reactor was prone to plugging due to excessive coking. This coking could have 

occurred because of the feed polymerizing before hydrodeoxygenation could occur. 

Based on these initial results, an experiment of 300 hours was conducted under the 

conditions listed above.  A total of 152.67 gm of 16 wt.% oxygen FAsP oil was fed to the 

reactor. The liquid yield (oil plus water) was measured periodically by dividing the mass of 

liquid collected during a 12-24 hours interval by the mass of the amount fed during that same 

interval. The initial yield is low because the reactor is taking time to fill. In addition, we have 

observed that this catalyst has increased cracking activity during start-up, also observed in Eaton 

et al. 2015, possibly due to the reduction in acid sites on the alumina via mild coking. By 50 

hours, the reactor was at liquid yield greater than 70% and remained relatively constant through 

300 hours as shown in Figure 4.6. 
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Figure 4. 6 Total liquid yield as a function of reaction time for the hydrotreating of the 100% 

calcium formate loading at 750 psi. 

 

Figure 4.7 shows the change in oxygen content of the oil fraction of the liquid samples 

collected over the course of the experiment. It is clear that a slow, but steady, increase in oxygen 

content within the collected oil occurred. This increase was from approximately 0.5 to 4 wt.% 

over the course of 300 hours of run time. In addition to the oxygen increase, a slow but steady 

decrease in H:C ratio was measured. The H:C ratio decreased from approximately 2 to 1.5. The 

increase in oxygen and decrease in hydrogen contents are consistent with a slow and steady 

degradation of the HDO catalyst. The coloration of the collected oil samples was progressively 

darker with increased run time. The high H:C ratio was due to the high hydrogenation occurred 

during this experiment. 
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Figure 4. 7 Oxygen wt.% and H:C ratio as a function of reaction time for the hydrotreating of the 

100% calcium formate loading at 750 psi. 

 

 

Figure 4. 8 Liquid yield wt.%, Oxygen wt.% and H:C ratio as a function of reaction time for the 

hydrotreating of 100% calcium formate loading at 750 psi. 
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4.3.2 FAsP oil with 16 wt.% oxygen as a feedstock hydrotreated at 1400 psi 

 

A multi-day experiment was conducted revealing that good overall liquid yields of low 

oxygen content (oil plus water) could be achieved over the nickel/silica-alumina catalyst at 300 

ºC reactor temperature, 1400 psi reactor pressure, and 100 sccm of H2.  

An experiment of 345 hours was conducted under the conditions listed above.  A total of 

182.35 gm of 16 wt.% oxygen FAsP oil was fed to the reactor. The liquid yield (oil plus water) 

was measured in the same way described above. The initial yield is low also because the reactor 

is taking time to fill. By 120 hours the reactor was at a liquid yield of 100% and remained 

relatively constant through 345 hours as shown in Figure 4.9. In this experiment, most of the bio-

oil fed was converted to liquid product with less gas yield. A 153.36 gm was the liquid product 

collected from a total of 182.35 gm of bio-oil fed means that 84% of the bio-oil fed was retained 

in the liquid product and 16% was converted to gas or coke. 

 

Figure 4. 9 Total liquid yield as a function of reaction time for the hydrotreating of the 100% 

calcium formate loading at 1400 psi. 
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Figure 4.10 shows the change in oxygen content of the oil fraction of the liquid samples 

collected over the course of the experiment. An increase in the oxygen content within the 

collected oil was noticed. This increase was from approximately 0.55 to 6.20 wt.% and it was 

slow but steady over the course of 345 hours of run time. In addition to the oxygen increase, 

there was a slow decrease in the H:C ratio. This decrease was from approximately 1.91 to 1.59. 

The increase in oxygen and decrease in hydrogen contents are a clear evidence that the catalyst 

got a slow and partial deactivation with time. 

 

 
Figure 4. 10 Oxygen wt.% and H:C ratio as a function of reaction time for the hydrotreating of 

the 100% calcium formate loading at 1400 psi. 
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Figure 4. 11 Liquid yield wt.%, Oxygen wt.% and H:C ratio as a function of reaction time for the 

hydrotreating of the 100% calcium formate loading at 1400 psi 

 

 

4.3.3 FAsP oil with 21 wt.% oxygen as a feedstock 

 

An experiment of 336 hours was conducted under the conditions of 300 ºC reactor 

temperature, 1400 psi reactor pressure, and 100 sccm of H2.  A total of 178.87 gm of 21 wt.% 

oxygen FAsP oil was fed to the reactor. The liquid yield (oil plus water) was measured in the 

same way described above. By 60 hours the reactor was at a liquid yield of greater than 70% and 

increased to reach 93% through 336 hours as shown in Figure 4.12. The lowest liquid yield 

measured was during the first 48 hours on-stream where it was approximately 60%. This 

happened because the reactor is taking time to fill and due to the cracking activity during start-

up. A 142.23 gm was the liquid product collected from a total of 178.87 gm bio-oil fed. The 

remaining amount of bio-oil fed was probably converted to gas or coke. 
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Figure 4. 12 Total liquid yield as a function of reaction time for the hydrotreating of the 87.5% 

calcium formate loading. 

 

Figure 4.13 shows the change in oxygen content of the oil fraction of the liquid samples 

collected over the course of the experiment. There was a slow increase in the oxygen content and 

a slow decrease in the H:C ratio over the course of the 336 hours of run time. The oxygen 

content increased from approximately 0.28 to 5.51 wt.% while the H:C ratio decreased from 

approximately 1.98 to 1.58. The coloration of the collected oil samples was also progressively 

darker with increased run time.  By 146 hours, the oil fractions product got a slow increase in the 

oxygen content indicating that the catalyst started to get partial deactivation after this time-on-

stream. 
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Figure 4. 13 Oxygen wt.% and H:C ratio as a function of reaction time for the hydrotreating of 

the 87.5% calcium formate loading. 

 

 

Figure 4. 14 Liquid yield wt.%, Oxygen wt.% and H:C ratio as a function of reaction time for the 

hydrotreating of the 87.5% calcium formate loading. 
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4.3.4 FAsP oil with 26 wt.% oxygen as a feedstock hydrotreated at 750, 1400 psi 

 

Initial experiments attempting HDO of FAsP oil (26 wt.% oxygen) involved repeating the 

successful experiment with the 16 wt.% oxygen oils over the same nickel/silica-alumina catalyst 

run at 300 ºC and 750 psi. These experiments resulted in the catalyst bed and reactor being 

plugged with carbon/coke deposits within 70-80 hours of operation. Overall liquid yields with 

this feedstock under these conditions were consistently below 50% indicating that significant 

fractions of carbon in the feedstock were being converted either to permanent gas or char/coke.   

Increasing the reactor pressure to 1400 psi resulted in increasing the time to reactor 

plugging to 200 hours of operation with a total of 97.62 gm oil fed. In addition, the liquid yields 

were above 70% for a significant portion of the run, as shown in Figure 4.15. In this experiment, 

the liquid yield rose steadily from 35 to 60 wt.% over the first 120 hours of run time, and then 

increased to above 70 wt.% where it remained until flow stopped due to plugging at near 200 

hours of run time. The low liquid yield measured at the beginning of the hydrotreating was 

probably due to the cracking activity during start-up. 
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Figure 4. 15 Total liquid yield as a function of reaction time for the hydrotreating of the 50% 

calcium formate loading at 1400 psi. 

 

Figure 4.16 shows the change in oxygen content of the oil fraction of the liquid samples 

collected over the course of the experiment. The oxygen content remained quite low, below 1.5 

wt.% until 130 hours where the oil contained significantly more oxygen, between 5 and 14 wt.%. 

The H:C ratio remained fairly constant throughout the experiment. 
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Figure 4. 16 Oxygen wt.% and H:C ratio as a function of reaction time for the hydrotreating of 

the 50% calcium formate loading at 1400 psi. 

 

 

Figure 4. 17 Liquid yield wt.%, Oxygen wt.% and H:C ratio as a function of reaction time for the 

hydrotreating of the 50% calcium formate loading at 1400 psi. 
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4.3.5 FAsP oil with 27 wt.% oxygen as a feedstock  

 

Hydroprocessing of this feedstock under the operating condition of 300 oC reactor 

temperature, 1400 psi reactor pressure, 100 sccm hydrogen flow rate, and 0.01 ml/min feed flow 

rate over the same nickel/ silica-alumina catalyst resulted in a reactor blockage with carbon/coke 

deposits within 24-48 hours of operation. Overall liquid yields with this feedstock under these 

conditions were consistently below 22% indicating that significant fractions of carbon in the 

feedstock were being converted either to permanent gas or char/coke.  

 

4.3.6 Carbon and hydrogen balances 

 

The elemental analysis of the bio-oils obtained from the fast pyrolysis of the biomass 

feedstocks (100% calcium formate loading, 50% calcium formate loading, 87.5% calcium 

formate loading) was done using a Thermo Scientific Model Flash 2000 elemental analyzer, and 

the oxygen was calculated by subtracting the carbon, hydrogen, and nitrogen from the total mass. 

The balance calculations for the carbon and hydrogen were done on the hydrotreated oil and 

water layers as well as the dry bio-oils fed.  

The carbon and hydrogen mass yields in the bio-oil fed are calculated by multiplying the 

mass of the dry bio-oil fed by the carbon and hydrogen weight percentages present in the bio-oil 

fed. The carbon and hydrogen mass yields in the hydrotreated oil or water layers for a particular 

sample are calculated by multiplying the mass of the hydrotreated oil or water layers by the 

carbon and hydrogen weight percentages measured in the hydrotreated oil or water layers. The 

amount of hydrogen consumed (uptake from the cylinder) is calculated by multiplying the 

density of the hydrogen by the volume of the hydrogen consumed, which is calculated by 
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multiplying the volumetric flow rate of the hydrogen fed to the reactor by the time of taking a 

sample. 

The total carbon mass yield in a hydrotreated sample is calculated by adding the mass of 

the carbon measured in the oil layer to the mass of the carbon measured in the water layer. The 

total hydrogen mass yield is calculated in an analogous way to the total carbon mass yield 

described above. The total hydrogen fed to the reactor is calculated by adding the mass of the 

hydrogen in the bio-oil fed to the mass of the hydrogen taken from the cylinder, which is 

described in the previous paragraph. 

Gas products were analyzed using an SRI 8610C portable GC. For H2 converted to gas, 

we first multiply methane, ethane, propane, butane, pentane, and hexane mole flow rates by 2, 3, 

4, 5, 6 and 7 respectively to get the hydrogen mole flow rate in each one of them. This is done 

because we need 2 hydrogen molecules to produce methane, 3 hydrogen molecules to produce 

ethane, 4 hydrogen molecules to produce propane, 5 hydrogen molecules to produce butane, 6 

hydrogen molecules to produce pentane and 7 hydrogen molecules to produce hexane. Then, we 

multiply the hydrogen mole flow rate by its molecular weight to get the hydrogen mass flow rate 

in each one of them and finally we sum all of the hydrogen mass flow rates to know how much 

hydrogen ended up in the gas product. 

For carbon converted to gas, we first multiply methane, ethane, propane, butane, pentane, 

and hexane mole flow rates by 1, 2, 3, 4, 5 and 6, respectively to get the carbon mole flow rate in 

each one of them. This is done because we need 1 carbon molecule to produce methane, 2 carbon 

molecules to produce ethane, 3 carbon molecules to produce propane, 4 carbon molecules to 

produce butane, 5 carbon molecules to produce pentane and 6 carbon molecules to produce 

hexane. Then, we multiply the carbon mole flow rate by its molecular weight to get the carbon 
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mass flow rate in each one of them and finally we sum all of the carbon mass flow rates to know 

how much carbon ended up in the gas product. 

 

Bio-oil 

Feedstocks 
H2, psi 

Time-on-

stream 

(hour) 

Mass 

yield of 

product 

oil, wt.% 

Mass yield 

of aqueous 

fraction, 

wt.% 

Mass* 

yield of 

product 

gas, wt.% 

Mass 

Balance, %  

50% calcium 

formate loading 
1400 151-162 52.4% 21.6% 11.3% 85.3% 

87.5% calcium 

formate loading 
1400 255-266 66.5% 16.4% 5.3% 88.2% 

100% calcium 

formate loading 
750 240-264 66.8% 21.2% --------- 88.1% 

100% calcium 

formate loading 
1400 321-334 79.4% 15.9% 2.3% 97.5% 

Table 4. 1 Results for the hydrotreating of calcium formate pretreated pine sawdust feedstocks. 

* Yields of the main gaseous species 

 

Based on the amount of the bio-oil fed and the summary of the hydrotreating results 

shown in Table 4.1, the mass yield of the oil fraction collected from the hydrotreating of the 

100% calcium formate loading at 1400 psi was the highest mass yield measured, which was 79.4 

%. The lowest mass yield measured for the oil fraction was 52.4% resulted from the 

hydrotreating of the 50% calcium formate loading at 1400 psi. In contrast, the yields of the 

aqueous fraction and product gas were higher for the hydrotreating of the 50% calcium formate 

loading at 1400 psi (21.6% and 11.3%, respectively) and lower for the hydrotreating of the 100% 

calcium formate loading at 1400 psi (15.9% and 2.3%, respectively). In conclusion, the oil 

fraction yield increased as the oxygen content decreased in the oil feedstock whereas the aqueous 

and gas yields increased as the oxygen content increased in the feedstock. 
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Bio-oil Feedstocks H2, psi 

Time-on-

stream 

(hour) 

Carbon 

yield of 

product 

oil, % 

Carbon 

yield of 

aqueous 

fraction, % 

Carbon* 

yield of 

product 

gas, % 

Carbon 

Balance, 

%  

50% calcium 

formate loading 
1400 151-162 61.3% 0.1% 14.1% 75.5% 

87.5% calcium 

formate loading 
1400 255-266 82.4% 0.1% 6.0% 88.5% 

100% calcium 

formate loading 
750 240-264 79.4% 0.1% --------- 79.5% 

100% calcium 

formate loading 
1400 321-334 91.8% 0.2% 2.5% 94.5% 

Table 4. 2 Carbon balance for the hydrotreating of calcium formate pretreated pine sawdust 

feedstocks. 

* Carbon yields in the main gaseous species 

 

Based on Table 4.2, the carbon weight percentage was high in the oil fraction collected 

from the hydrotreating of the 100% calcium formate loading at 1400 psi (91.8%) and low in the 

oil fraction collected from the hydrotreating of the 50% calcium formate loading at 1400 psi 

(61.3%). The carbon weight percentage was approximately the same in the oil fractions collected 

from the hydrotreating of the 100% calcium formate loading at 750 psi and the 87.5% calcium 

formate loading at 1400 psi. The carbon weight percentages in the aqueous fractions were 

negligible (0.1-0.2%) and were approximately the same for all experiments. The carbon weight 

percentage was higher in the gases produced from the hydrotreating of the 50% calcium formate 

loading at 1400 psi (14.1%) and lower in the gases produced from the hydrotreating of the 100% 

calcium formate loading at 1400 psi (2.5%). Most of the bio-oil carbon ended up in the oil 

fraction product and increased as the oxygen content decreased in the oil feedstock whereas the 

carbon that ended up in the gas product increased as the oxygen content increased in the oil 

feedstock, which might be caused by the high oxygen content present in this feedstock that might 

reduce the catalyst activity. 
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Bio-oil 

Feedstocks 
H2, psi 

Time-on-

stream 

(hour) 

H2 Consumed, g 

of H2 in oil 

product per g of 

dry bio-oil fed 

H2 Consumed, g 

of H2 in aqueous 

fraction per g of 

dry bio-oil fed 

H2 Consumed, * 

g of H2 in gas 

product per g of 

dry bio-oil fed 

50% calcium 

formate loading 
1400 151-162 0.061 0.026 0.025 

87.5% calcium 

formate loading 
1400 255-266 0.079 0.020 0.012 

100% calcium 

formate loading 
750 240-264 0.077 0.025 ------- 

100% calcium 

formate loading 
1400 321-334 0.091 0.019 0.005 

Table 4. 3 Hydrogen consumption for the hydrotreating of calcium formate pretreated pine 

sawdust feedstocks. 

* Hydrogen yields in the main gaseous species 

 

Table 4.3 shows the amount of hydrogen consumed in the oil fraction, aqueous fraction, 

and gas product per 1 g of dry bio-oil fed. The amounts of hydrogen consumed in the aqueous 

fraction and gas product were higher for the hydrotreating of the 50% calcium formate loading at 

1400 psi (0.026 and 0.025 g respectively) and lower for the hydrotreating of the 100% calcium 

formate loading at 1400 psi (0.019 and 0.005 g respectively). On the other hand, the hydrogen 

consumption was higher in the oil fraction collected from the hydrotreating of the 100% calcium 

formate loading at 1400 psi (0.091 g) and lower in the oil fraction collected from the 

hydrotreating of the 50% calcium formate loading at 1400 psi (0.061 g).  

The gas analysis was conducted on the experiments done at 1400 psi as shown in Figures 

4.18, 4.19 and 4.20 below. The weight percentages of the carbon and hydrogen converted to gas 

were higher for the hydrotreating of the 50% calcium formate loading followed by the 87.5% 

calcium formate loading, while the lower weight percentages of carbon and hydrogen converted 

to gas were achieved for the hydrotreating of the 100% calcium formate loading. 
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We conclude that the decrease in the liquid yield at the beginning of the hydroprocessing 

in all hydrotreating experiments was due to the higher amounts of gases produced (cracking 

activity during start-up). The mass flow rates of the gases produced through all hydrotreating 

experiments were higher at the beginning especially for methane, which was the most abundant 

component, and decreased with increased the reaction time until reach almost zero flow rates for 

the 100, 87.5% calcium formate loadings and less than 0.4 (gm/sample time, hour) for the 50% 

calcium formate loading. The main gaseous species produced from all experiments were 

methane, ethane, propane, butane, pentane and hexane with trace amounts of CO and CO2. 

 

 

Figure 4. 18 Liquid yield wt.% and gases mass flow rates as a function of reaction time for the 

hydrotreating of the 100% calcium formate loading at 1400 psi. 
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Figure 4. 19 Liquid yield wt.% and gases mass flow rates as a function of reaction time for the 

hydrotreating of the 87.5% calcium formate loading at 1400 psi. 

 

 

Figure 4. 20 Liquid yield wt.% and gases mass flow rates as a function of reaction time for the 

hydrotreating of the 50% calcium formate loading at 1400 psi. 
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4.4 Summary 

 

For the 16 wt.% oxygen content bio-oil hydrotreated at 750 psi H2, the longest time 

onstream operation (300 hours) was achieved at an average bed temperature of 300 °C, reactor 

pressure of 750 psi, and 100 sccm H2. The highest carbon and hydrogen contents measured for 

the hydrotreated liquid products from this experiment were 86.0 wt.%, 14.2 wt.% and the lowest 

were 84.0 wt.%, 10.6 wt.% respectively. The oil phase collected within the first 24 hours of the 

experiment had an oxygen content of 0 wt.%, while the oil phase collected toward the end of the 

experiment had an oxygen content between 3-4 wt.%. For the 16 wt.% oxygen content bio-oil 

hydrotreated at 1400 psi H2 with same other operating conditions, the longest time onstream 

operation (345 hours) was achieved at an average bed temperature of 300 °C, reactor pressure of 

1400 psi, and 100 sccm H2. The highest carbon and hydrogen contents measured for the 

hydrotreated liquid products from this experiment were 86.0 wt.%, 13.6 wt.% and the lowest 

were 83.0 wt.%, 11.0 wt.% respectively. The oil phase collected within the first 24 hours of the 

experiment had an oxygen content between 0-0.5 wt.% while the oil phase collected toward the 

end of the experiment had an oxygen content between 5.2-6.2 wt.%.   

For the 21 wt.% oxygen content bio-oil, the longest time onstream operation (336 hours) 

was achieved at an average bed temperature of 300 °C, reactor pressure of 1400 psi, and 100 

sccm H2. The highest carbon and hydrogen contents measured for the hydrotreated liquid 

products from this experiment were 87.0 wt.%, 14.2 wt.% and the lowest were 83.0 wt.%, 11.0 

wt.% respectively. The oil phase collected within the first 24 hours of the experiment had an 

oxygen content of 0 wt.% while the oil phase collected toward the end of the experiment had an 

oxygen content between 4.5-5.5 wt.%.  For the 26 wt.% oxygen content bio-oil, the longest time 

onstream operation (200 hours) was achieved at an average bed temperature of 300 °C, reactor 
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pressure of 1400 psi, and 100 sccm H2. The highest carbon and hydrogen contents measured for 

the hydrotreated liquid products from this experiment were 87.0 wt.%, 14.0 wt.% and the lowest 

were 75.0 wt.%, 11.0 wt.% respectively. The oil phase collected within the first 24 hours of the 

experiment had an oxygen content of 0 wt.% while the oil phase collected toward the end of the 

experiment had an oxygen content between 10.9-14.0 wt.%.  

The hydrotreating experiments done using bio-oil feedstocks containing 16 and 21 wt.% 

oxygen had the highest times-on-stream (345 hours and 336 hours respectively) and stopped due 

to the running out of feedstocks and without any pressure buildup across the reactor. The 

hydrotreating experiments done using bio-oil feedstocks containing 26 and 27 wt.% oxygen had 

the lowest times-on-stream (200 hours and 48 hours respectively) and stopped due to reactor 

plugging. The major compounds identified by the GC-MS (Shimadzu Q2010) were alkylated 

cyclohexane whereas Alkanes were the minor components.  Only trace oxygenates were 

identified in the product such as cyclopentanone.  

In summary, partial deactivation of the catalyst over time was evident due to the quality 

of the oil product collected, which saw the density, oxygen content and viscosity increase and the 

H:C ratio and carbon content decrease. The partial deactivation of the catalyst might be caused 

by one of the reasons discussed in section 2.3, i.e. poisoning, coke deposition, metals present in 

the feed and changes in catalyst structure. The partial deactivation was more pronounced for 

higher oxygen-containing bio-oil feedstocks and for higher temperatures >300 oC.  
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4.5 Conclusion 

 

The results obtained from this work suggest that the bio-oils generated from the biomass 

feedstocks (calcium formate pretreated with pine sawdust) can be successfully upgraded into 

hydrocarbon fuels using experiments that ran up to 15 days without any problems and without 

the need for a stabilization step. Oils produced from the hydrotreating of the 100%, 87.5% and 

50% calcium mass loadings have physicochemical properties comparable to petroleum oil.  The 

low oxygen bio-oil feedstock, 16 wt.%, is able to be hydrotreated better than high oxygen bio-oil 

feedstock because it has less or none complex oxygenated compounds, less water content and 

more stable. 

A hydrogen pressure of 750 psi was not a suitable hydrotreating pressure to use for 

higher oxygen-containing bio-oil feedstocks. A reactor temperature of 350 oC was not the perfect 

hydrotreating temperature to use for all oxygen-containing bio-oil feedstocks. A hydrogen 

pressure of 750 psi and a temperature of 350 oC accelerated the polymerization reactions, which 

resulted in rapid plug formation. Instead, 1400 psi and 300 oC were the optimum operating 

conditions that prevented the occurrence of reactor plugging and pressure drop across the reactor. 

A 16 wt.% oxygen bio-oil operated at 1400 psi gave the highest oil and carbon yields with the 

lowest gas and aqueous yields.  

From this study, we learned that the oxygen content present in the bio-oils generated 

from the fast pyrolysis of the feedstocks described earlier had a huge effect on the upgrading 

process. As the oxygen content increased, the hydrotreating problems increased as well. We also 

learned that the changes in the temperature, pressure and the compositions of the bio-oils used as 

feedstocks can alter the physical and chemical properties of the products. The quality of the 

products achieved during all hydrotreating experiments was the highest using low oxygen bio-oil 
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feedstock with high hydrogen pressure (1400 psi) and intermediate bed temperature (300 oC). 

Finally, we learned that the cheap nickel on silica-alumina catalyst is an excellent HDO catalyst 

compared to other HDO catalysts mentioned in Chapter 2 because it showed the highest 

deoxygenation activity with less consumption of hydrogen. It did not require supplemental 

sulfur. It had the long lifetime because it stood actively for more than 15 days removing more 

than 10 wt.% oxygen and if the necessary feedstocks were available we would reach probably 

more than 30 days on-stream time. It yielded oils with higher carbon and hydrogen wt.% and 

none or lower oxygen content. High oil with low aqueous and gas yields could produce through 

it. Finally, it yielded higher H:C ratio which was between 2-1.6 and it is approximately within 

the range of the diesel (∼1.8) and kerosene (∼1.95) products. In future work, we are interested in 

improving the catalyst lifetime by studying the deactivation mechanisms, trying another catalyst, 

decreasing the hydrogen consumption, and enhancing the product quality. 
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APPENDIX A. ELEMENTAL ANALYSIS OF BIO-OILS 

The Flash 2000 Elemental Analyzer is used for the determination of carbon, hydrogen, 

nitrogen, sulfur and oxygen in liquids. Flash 2000 Elemental Analyzer with Mas 200R 

autosampler is shown in Figure A.1. 

Catalyst-packed quartz tubes should be cleaned every 50-80 analyses and must be 

replaced every 150-250 analyses. The moisture trap should be checked when the quartz 

tubes are replaced or cleaned. Manufacturer’s instrument manual (saved on Desktop > folder 

“CHNSO Documents > Flash 2000 Operating manual”) should be checked for more information 

regarding these components. 

1. Required PPE (goggles, gloves, lab coat) 

2. To open the software, go to: 

a. Desktop > Click on EagerXperience software > Open the CHNO analyzer 

3. To remove the standby, click on: 

a. Edit > Edit elemental analyzer parameters > Clear the standby box > Send 

b. This should set the appropriate flow rates and temperatures for the desired analysis 

4. To check the leak test, click on: 

a. View > View elemental analyzer status > Click on “special functions” tab > Leak test 

b. Start > yes to perform autozero > New window will pop-up 

c. The test should take 90 seconds and both flow rates should be less than 5 ml/min in 

order to complete your analysis 

d. Stop > Done 

5. To edit the sample table, click on: 

a. Edit > Sample table > Enter the names of your samples 
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b. Enter the weights for your samples by click on the green arrow in the weight cell to 

receive the weights from the balance 

6. To prepare the samples: 

a. Wipe and rinse the sample preparation surface, Spatula, Microbalance plate, Capsule 

sealing and Forceps using Acetone 

b. Standard checks should be run before running your samples: 

i. From sample type, chose unknown 

ii. For pyrolysis oils obtained from fast pyrolysis, BBOT standards should be 

used 

iii. For oils obtained from hydrotreating experiments, Lubricant oil standards 

should be used 

iv. The C, H, N contents of BBOT standards should come in the expected ranges 

as below: 

Carbon % 71.79-73.25% 

Hydrogen % 6.03-6.151% 

Nitrogen % 6.445-6.575% 

Table A. 1 C, H, N contents of BBOT standard. 

v. The C, H, N contents of lubricant oil standards should come in the expected 

ranges as below: 

Carbon % 81.25-82.9% 

Hydrogen % 13.48-13.76% 

Nitrogen % 1.079-1.101% 

Table A. 2 C, H, N contents of Lubricant standard. 
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c. Prepare bio-oil samples for analysis: 

i. Turn on the Helium gas flow to 50 ml/min 

ii. Place an empty capsule on the balance 

iii. Close the balance door by waving your hand on the right side of the balance 

display screen 

iv. Wait until the weight is stabilized by disappearing the black circle > Press –T– 

button to zero the capsule weight 

v. remove the capsule from the balance using forceps 

vi. In the capsule adds between 1-2 mg of each sample, using spatula for 

pyrolysis oils obtained from fast pyrolysis because they are too viscous  

vii. In the capsule adds between 1-2 mg of each sample, using syringes for oils 

obtained from hydrotreatments experiments because they are less viscous 

viii. Put the capsule back on the balance to make sure that it is in the target weight 

ix. Remove the capsule form the balance and put it in the capsule sealing device 

x. Allow sample to purge with helium inside capsule sealing device for 30-60 

seconds > Seal capsule using sealing device 

xi. Remove the capsule after sealing and put it back in the balance 

xii. Close the balance door  

xiii. wave your hand over the left side of the balance display screen, the weight of 

your sample after that will pop-up in the weight cell in the sample table 

xiv. The row that says “Act” in the sample table is the first sample that will be run 

in the sequence 
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xv. Insert a blank row into the sample table after the last sample in the sequence 

by hitting “shift” + “insert” at the same time 

i. Hold the capsule and put it in the first autosampler position available 

ii. Any capsule fall on the ground, throw it away in the trash 

iii. Click start to start run 

iv. Each bio-oil sample should be run in at least triplicate 

v. 360 seconds is the approximate time to analyze each sample of pyrolysis oils 

vi. 720 seconds is the approximate time to analyze each sample of hydrotreated 

oils 

vii. Results of the analysis can be viewed by clicking on the “summarize results” 

button 

 

Figure A. 1 Flash 2000 Elemental Analyzer with Mas 200R autosampler. 
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APPENDIX B. PREPARATION OF BIO-OIL SAMPLES FOR QUANTITATIVE 

GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) ANALYSIS 

This instrument is used to qualify and quantify the presence and concentration of 

compounds present in liquid bio-oils obtained from different techniques. Gas Chromatography-

Mass Spectrometry (GC-MS) is shown in Figure B.1 

Before starting: 

1. Required PPE (goggles, chemical resistance gloves, lab coat) 

2. Check the ethyl acetate solution that uses as a solvent. It is the first vail from the right of the 

auto-sampler 

3. Make sure that vail uses to receive discharged solutions is empty. It is the second vail from 

the right of the auto-sampler 

4. Materials should be prepared to start: 5 mLvials, compatible GC vials and caps, 

Micropipettes + pipette tips or wire trolls, spatula, Ethyl Acetate (solvent), Bio-oil samples 

 

Preparation of bio-oil samples: 

1. Add the following to a 2mL GC vial: 

2. 200 μL bio-oil solution 

3. 1.6 mL Ethyl Acetate 

4. Cap the vial and shake to mix well before placing vials on the auto-sampler for analysis 
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Procedure for analysis: 

1. Open the real time analysis window 

2. Go to File 

3. Open 

4. Method file 

5. Choose your method file  

6. Open 

7. Click on Acquisition that located on the main menu bar 

8. Download > Download initial parameters 

9. It takes 30 minutes to reach the desired temperature, 250 oC 

10. While waiting for the desired temperature, click on Batch processing button located on 

the left side of the instrument screen 

11. Fill your samples information in the table 

12. The sample name, sample ID, and Data file should be the same 

13. You have to change the method file and others into your desired information 

14. After filling the sample table, click on: 

a. File 

b. Save Batch file as 

c. Put your desired name and location 

15. Put your sample by order in the auto-sampler 

16. Click on set button on the instrument screen 

17. Click start on the left side of the instrument screen to start run 

18. The total run time for one sample is approximately 45 min 
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Display results: 

1. Go to Postrun analysis window 

2. File > Open data file 

3. Find your sample name > Open 

4. We can go through sample peaks and use the tools provide inside 

5. On results window, zoom in from plus sign located on the right of the results window 

6. Go back by right click inside the results window, then click undo zoom 

7. Right-click then click on initial zoom to go to the original zoom 

8. Double click in the center of the peak. Right-click and choose similarity search to show 

the compound name, Mw, formula and structure 

Compare between results: 

1. Go to Postrun analysis window 

2. Click on Data Comparison located on the left side of the instrument screen 

3. Click on File > Open data file 

4. Find your sample name > Open 

5. We can go through samples peaks and use the tools provide inside to compare 

6. On results window 

7. Zoom in from plus sign located on the right of the results window 

8. Go back by right click inside the results window, then click undo zoom 

9. Right-click then click on initial zoom to go to the original zoom 

10. Double click in the center of the peak. Right-click and choose similarity search to show 

the compound name, Mw, formula and structure 
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To get the peak area: 

1. Open Postrun analysis window 

2. Zoom in the peak and let the beginning and the end of the peak appear 

3. Click on the integrate icon from the special menu which is below the main menu bar 

4. Click on the beginning of the peak 

5. Continue placing the mouse without remove your hand until reaching the end of the peak, 

then click on the end of the peak 

6. Now you get two vertical lines, one on the beginning and the other on the end of the peak 

7. Go to the left side and click qualitative button 

8. The area will appear on the top of the peak in the results window 

 

Figure B. 1 Gas Chromatography-Mass Spectrometry (GC-MS). 
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APPENDIX C. GAS SAMPLE ANALYSIS USING SRI’S MULTIPLE GAS 

ANALYZER 

Gas analyzer is equipped with:  

1. TCD detector 

2. FID-Methanizer 

3. Two packed columns 

4. 10-port gas sampling valve and loop 

5. Air compressor 

6. 4 or 6 channel PeakSimple Data system 

7. Columns: a 2-meter Molecular Sieve 13X and a 2-meter Silica gel (HayeSep-D Column) 

Procedure: 

1. Turn the laptop on 

2. open Peak435-32bit program 

3. Turn on both carrier (He) and Hydrogen gas flow 

4. Helium and Hydrogen flow should be at pressure of 40 psi 

5. Turn the instrument on 

6. Insert the temperature into the program by Right click on channel 1 > Temperature > Add 

the numbers listed below > OK 

Initial Temp Hold Ramp Final Temp 

36 16 0 36 

Table C. 1 Temperature programming. 
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7. Insert the events into the program by Right click on channel 1 > Events > Add the 

numbers listed below > OK 

Time Event 

0.000 ZERO 

0.000 B ON () 

0.050 G ON () 

8.500 A ON () 

8.500 B OFF () 

Table C. 2 Events programming. 

 

8. If there is a water droplet coming out of the small tube on the side of the GC, FID-

Methanizer is working 

9. In the back of the GC, there are 6 lights that should be green. Carrier 1(helium 1), carrier 

2 (helium 2), hydrogen 1, hydrogen 2, air 1, air 2 

10. Wait for 30 min. for the instrument to come to steady temperature before injecting 

calibration gas samples 

11. The Standard Scott gas mixture used as calibration gas was purchased from Sigma 

Aldrich (Product #A0905360, Cat. No. 23462) 
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Scott gas mixtures 

Component 

Gas concentration in 

moles (%) 

 

Acetylene 1.01 

Carbon Dioxide 1.00 

Carbon monoxide 1.00 

Ethane 1.01 

Ethylene 1.01 

Methane 1.01 

Nitrogen 93.6 

Table C. 3 Concentrations of gases used as standards. 

A system overview of the Multiple gas analyzer is shown in Figure C.1 

 

Figure C. 1 SRI’s gas analyzer #1 system overview. 
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APPENDIX D. KARL-FISHER TITRATION FOR BIO-OILS FRACTIONS 

Before starting: 

1. Required PPE (goggles, chemical resistance gloves, lab coat) 

2. Make sure that all tubes are connected to the Composite (solvent) that you will use 

3. If your sample contains high water content, then use Composite 5 

4. If your sample contains low water content, then use Composite 2 

5. Clean the syringe very well 

6. Discharge the old solution from the waste bottle as follows: 

a. Click the stop icon on the top left of the instrument screen 

b. Discharge the old solution by press on the right button located below the glass vessel 

c. Fill the glass vessel with a new solution by press on the left button located below the 

glass vessel. Make sure that the added solution covers the magnetic stirrer 

7. Make sure also that you have enough Composite for whatever samples you use 

If you are using the Composite for the first time, then you must do standards as follows: 

1. Open the program icon which is tiamo 1.2 

2. Take a small tube of standard water > Fill the syringe with it and remove the air > Put the 

syringe on the scale 

3. Go to the left side of the instrument screen. Click Method – File – Open 

4. Select the method which is “KF Titer with water std 2” or “KF Titer with water std 5” 

based on the Composite used 

5. Go to program workplace fill > On the sample ID put determination 1 titer value > On 

certified water content put 10 > On sample size put 1.0 gm for both sides 

6. Click start and wait until conditioning be ok 



 
 

96 
 

7. Record the weight of the syringe first 

8. Click start again > Inject one ml of the water standard in the glass vessel quickly 

9. Put the syringe back on the weight > Record the new weight after injection 

10. Subtract the two weights and put the number in the square window that will appear after 

clicking the start icon > Click Enter from the keyboard 

11.  Wait until finishing the sequence and the conditioning be ok 

12. Before each injection, click start located in top left of the instrument screen 

13. Inject again and subtract the two weights “before and after the injection” 

14. Do it three times 

15. After the third time and when the conditioning be ok, click stop 

16. Check the results which should be all within the standard value 

Preparation and analysis of standard solution: 

1. Go to Method – File – Open > click on “KF Sample with composite 2” or “KF Sample 

with composite 5” based on the Composite used 

2. Go to program workplace fill > On sample ID put water standard 10mg/g (1%) 

3. On sample size put 1.0 g for both sides 

4. Take a small tube of standard water > Fill the syringe with it and remove the air 

5. Put the syringe on the scale 

6. Click start and wait until conditioning be ok > Record the weight of the syringe first 

7. Click start again > Inject one ml of the water standard in the glass vessel quickly 

8. Put the syringe back on the weight > Record the new weight after injection 

9. Subtract the two weights and put the number in the square window that will appear after 

clicking the start icon > Click Enter from the keyboard 
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10. Wait until finishing the sequence and the conditioning be ok 

11. Before each injection, click start located in top left of the instrument screen 

12. Inject again and subtract the two weights “before and after the injection” 

13. Do it three times 

14. After the third time and when the conditioning be ok, click stop > Check the results: 

a. Go to left side of the instrument screen and click on the Database icon 

b. The injections results should be all within the expected standard value 

Preparation and analysis of Bio-oil samples: 

1. Take a small amount of your sample and put it in the syringe to clean the syringe first, 

then discharge it, after that put 3 ml of your oil in the syringe for 3 injections 

2. For any sample (bio-oil for example) repeat the points from 1 to 14 above with replacing 

water with bio-oil 

 

Figure D. 1 Karl-Fisher Titration. 
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