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I. INTRODUCTION 

Benefit-cost analysis has long been a standard tool for assessing 
the value of investment projects. If the future stream of benefits and 
costs related to a project are known, benefit-cost analysis involves the 
calculation and evaluation of the project's net present value, equal to 
discounted benefits less discounted costs. If the net present value 
(NPV) is positive and costs do not exceed the available budget, the 
project is economical and should be undertaken unless another project 
yields a higher NPV. Of course, future benefits and costs are never 
known with certainty; rather, investors hold probabilistic beliefs 
about these values. Standard practice in this case has been to assume 
risk-neutrality, replace random variables with their expected values, 
and evaluate expected net present values (ENPV) in a manner 
identical to the deterministic case (e.g., Nickell 1978). As above, 
project i is worth undertaking if ENPV, > 0 and ENPV, > ENPV for all 
j does not equal i. 

Most investments are characterized, at least to some degree, by 
irreversibility. For instance, if a dam is built today, the decision 
cannot be reversed tomorrow, except at great expense. Recent re­
search on investment under uncertainty has shown that the ENPV 
criterion is invalid when irreversibilities are present (e.g., McDonald 
and Seigel 1986; Dixit and Pindyck 1994). Uncertainty and irrevers­
ibility give rise to a value to delay the investment decision in order to 
acquire new information about the project's profitability. This value, 
termed an option value1, lowers the expected value of investing today. 
Consequently, investments must meet a stricter standard than tradi­
tionally applied: ENPV must be greater than or equal to the option 
value. In general, option values are greater the larger is the variance 
in the value of the investment. 

Forestry investments are characterized, to a great extent, by 
irreversibilities and uncertainties. Since trees take decades to grow to 
maturity, harvesting a stand is, for practical purposes, irreversible. 
Uncertainty is an especially important consideration for forestry 
investments due to long growing cycles of trees and effects of weather, 
pests, and fire. In addition, prices for raw material inputs such as 
timber tend to be volatile due to linkages with end product markets. 

'There are two interpretations of the option value in the economics literature 
(Fisher and Hanemann 1986). In the first, the option value is the difference between 
a consumer's willingness to pay to preserve a future option (referred to as option 
price) and expected consumer surplus (Cicchetti and Freeman 1971; Bishop 1982). 
In the second, the option value is the difference between the expected value of an 
irreversible investment project that accounts for forthcoming information on the 
project's profitability and the value of the project when this information is ignored 
(Arrow and Fisher 1974; Dixit and Pindyck 1994). This bulletin is concerned with 
the second definition of option value 
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These features of forestry investments suggest that option values may 
be substantial and therefore an important consideration in the evalu­
ation of forestry projects. 

This bulletin considers option values related to a principal prob­
lem for forestry investors, the timing of harvests. The purpose is to 
present a general theory of the rotation problem under uncertainty 
and irreversibility (Section II) and provide a methodology for empiri­
cally estimating option values (Section III). Modifications of the 
framework for analyzing options values related to other aspects of 
forestry investments are also discussed (Section IV). 

The methodology presented in this bulletin may be applied to a 
number of problems with relevance for forest policy. The first relates 
to the behavior of nonindustrial private forest landowners (NIPFs). 
NIPFs own more than one-half of the forest land in the United States 
and therefore significantly influence forest products markets through 
their decisions to manage and sell timber. Public agencies in the 
business of selling timber have undertaken a substantial research 
effort towards understanding the management objectives of NIPFs 
(e.g., Royer and Risbrudt 1983). A common view is that NIPFs are 
reluctant to harvest timber and, in general, do not manage their lands 
according to economic criteria (USDA Forest Service 1990). The 
analysis presented in this bulletin suggests that the apparent unwill­
ingness of NIPFs to harvest timber may in fact indicate optimizing 
behavior. In the presence of irreversibilities and uncertainties, the 
harvesting decision involves a fundamentally different process com­
pared with traditional benefit-cost analyses. Investors monitor the 
value of their stand over time and harvest only when the value is 
sufficiently high.2 The benefits of harvesting must be greater than 
those required in standard deterministic models due to the value of 
postponing the irreversible harvesting decision. 

The investment model developed here also has implications for 
public purchases of, or acquisition of easements to, forest land for 
development, recreation, preservation, and other uses. In most cases, 
land acquisition will take place over a period of years as funds are 
allocated to the program. For instance, the Conservation Reserve 
Program, an agricultural land set-aside program, has been operating 
for the last ten years. When a public agency purchases forest land 
from a private interest, the sale is irreversible, implying that a private 
owner cannot buy back a parcel at a later date if, for instance, timber 

2Surveys of NIPFs often include questions like, "Do you plan to harvest timber in 
the next five years, the next five to ten years, etc.?" (e.g., Kingsley and Birch 1980; 
Kingsley 1976). Negative or uncertain responses are interpreted as a reluctance to 
harvest timber; however, such responses may be consistent with rotation decisions 
that take account of option values. 
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prices increase. In theory, the private owner must be compensated for 
foregoing the option to hold or sell the parcel in the future. This 
implies that the costs to a public agency of acquiring a given amount 
of land are likely to be higher than those suggested by standard 
benefit-cost calculations or sale prices in competitive land markets. In 
the latter case, land sales are not necessarily irreversible. 

II. THE OPTIMAL FOREST ROTATION AND OPTION 
VALUES: THEORY 

This section presents a general description of the harvesting 
problem and the option values related to delaying the irreversible 
harvesting decision. Several authors have considered the rotation 
problem in a stochastic environment (Reed 1993; Thomson 1992; 
Clarke and Reed 1989; Morck et al. 1989). In most studies, timber 
prices, or the value of the stand, are assumed to follow geometric 
Brownian motion (GBM). GBM provides a reasonable representation 
of historical price trends for some timber species and, in many cases, 
permits the derivation of tractable analytical models. However, GBM 
has a strong implication for option values associated with the harvest­
ing decision. Specifically, GBM prices imply that option values arise 
only from the possibility of suspending management and harvesting 
activities if prices fall too low. Realizations of prices above this 
minimum level contain no information that may potentially influence 
the harvesting decision. Thus, the stochastic prices do not introduce 
any asymmetries into the problem such that harvesting takes place 
for some price realizations but not for others. 

To illustrate this point, the rotation problem as posed in Thomson 
is considered. The current timber price is P In the next period, it 
increases to uP with probability p and declines to dP with probability 
1 - TT. The parameters are defined a s « = expiajAt), d = u\ and TT = 
[exp(uA£) -d]/(u -d). As A£ -• 0, the model, referred to as the two-state 
option pricing model, converges to GBM with drift rate |x and standard 
deviation a. With no management costs or alternative land uses, 
Thomson's equation for the value of the investment is 

V[P,Q] = 

where Q(a,) is the (deterministic) timber volume of a stand of age a, 
and subscripts denote the period. The first term in the braces is the 
value of the investment if harvesting takes place in period t where 
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V[ P, • 6(0)] is the value of bare land. The second term is the value of the 
investment if harvesting is delayed. 

In the last period T, the stand must be harvested. Thus, if the 
timber price increased between periods T-2 and T-l, equation (1) in 
period T-l is 

V[P,Q] = 

• n a x U MaT 0+
Pr^^+(X-n)ud] PT_lQ{aT_l+m^+ {l-,)ud^ 

l + r l + r 

and 

V[P,Q] = 

mJdPT 2Q(aT i)+Pr-IQWl^Hl-n)d^PT.tQlaT.l + l)[mulHl-n)d1]] ( g ) 

[ l + r l + r 

if the price declined. It can be shown that the solutions to the problems 
in (2) and (3) must be the same. That is, the optimal harvest period 
following an increase in price (equation 2) must be the optimal harvest 
period following a decrease in price (equation 3). This implies that 
from the standpoint of period T-2, delaying harvest to period T-l 
yields no information that influences the harvesting decision. In 
particular, the harvesting decision is not affected by the realization of 
the price in period T-l and the option value equals zero. This result 
may be extended to T-period and continuous-time models. 

If complications such as management costs and alternative land 
uses are included in models of form (1), there are non-zero option 
values related to the suspension of management activities or conver­
sion to another use if timber prices fall too low (Thomson 1992; Morck 
et al. 1989). The focus here is on option values that arise from 
movements in the timber price. Specifically, delaying the harvest 
allows new prices to be observed which may contain information about 
future price trends. As demonstrated above, GBM models do not 
capture these effects. For this reason, the approach here departs from 
option value models using GBM or related stochastic processes (see 
Dixit and Pindyck 1994). Instead, a model is developed along the lines 
of Fisher and Hanemann (1986, 1990). In Section III, an alternative 
stochastic process is considered, which models information arising 
from timber price movements. 

The decision for the investor is whether to harvest in the current 
period t, delay the harvest to a future period T > t, or never harvest.3 

'For simplicity, only a single rotation is considered. In most analyses of the rotation 
problem, additional rotations shorten the first rotation. 
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If the harvesting decision is made in the current period, or rather the 
investor ignores any information forthcoming in future periods (for 
instance, future price information), the maximization problem is 

W,1 = max{0,V„£,[V,+1](l + r)-',£,[V/+2](l + r)-2,...,£,[VrKl + r)-r} (4) 

where 0 indicates no harvest, v1 is the value of the timber in period i, 
£,[•] is the expectation with respect to information available in period 
i and r is the interest rate.4 Equation (4) is the investment problem 
consistent with the ENPV criterion. Risk-neutrality is assumed since 
it isolates the effects of irreversibility and uncertainty on the harvest­
ing decision and demonstrates that the existence of option values does 
not depend on particular risk preferences. If the investor recognizes 
the irreversibility of the harvesting decision and the possibility of 
acquiring new information in the future, the maximization problem is 

Wt = maxfOy^tmaxfV^Q + rY\ £ W [ W J ( 1 + r)2}]} (5) 

where Wt
2
+1 is the continuation value in period t+2.5 The investor takes 

into account the information gained by delaying to period £+1 and 
harvests in period £+1 if V,+1 > £,+,[W£2](l+ /-)"' and delays harvest to 
period t+2 if V/+l < E,+1[W£2](1+ /•)"' The option value in period t is 
defined as OV, =WI

2-W,' 
To aid in the elaboration of the option value OV, and to provide a 

clear contrast to the ENPV approach, it is assumed in what follows 
that V, >0 and V, = El[Vs](l+r)'(s"> for all t<s<T This restriction 
implies that the expected value of the stand is growing at the rate of 
interest and, according to the ENPV criterion, that the investor is 
indifferent to harvesting the stand in the current period and delaying 
the harvest to a future period. Below, conditions are derived for 

'The problem is formulated as an open-loop control problem. Fisher and Hanemann 
(1990) recognize another possibility, the open-loop feedback formulation. In the 
present context, equation (4) would remain the same, yet if the harvesting decision 
is delayed to period t+1, the maximization problem becomes 

W/+1 = max(0,\/,+l,£,+ l[V,+2](l+ /-)"',...,£,+1[V7.](l + r)-<7 '- | )) 

rather than 

< , = max(0,£,[V,+1],£,[V,+:,](l + '-^'..•••£,[V7.](l + r^ ( 7 - 1 , } 

Since it is assumed below that the stand is financially mature according to (4), this 
distinction is unimportant. 

6 The no-harvest choice (0) is reflected in Wl+2 • In all periods s < T, not harvesting 
is equivalent to delaying the harvest decision to the next period. Only in the final 
period is the decision made to harvest or never harvest (see Section III). 
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OV, > 0 and OV, > 0. In the second instance, it is optimal to delay the 
harvest past period t, implying harves t ing is optimal when the 
e x p e c t e d g r o w t h r a t e in t h e v a l u e of t h e s t a n d is s t r i c t l y 
less t h a n the interes t ra te . Thus, the presence of non-zero option 
values requires a depar ture from the s t andard F a u s t m a n n harves t ing 
rule (Faus tmann 1995). At the end of the subsection, OV, is deter­
mined under the less restrictive and more realistic assumption 
V, > £,[VJ(1 + ry(s-° for all / < s < T 

Case I. OV, > 0. 
Without imposing any restrictions on (5), it is possible to show 

that OV, > 0 . First, note t ha t E,[W,\2] = E,[EM[W,l2]] by the Total 
Probabili ty Theorem. It t hen follows from the convexity of the maxi­
m u m operator and Jensen ' s Inequali ty t ha t 

EJmax{V,+,(l + r)-\£,+,[Uf+2](l + r)-2}]> 

max(£,[V1+,](l + r)-',£,[£,+l[W;2
+2]](l + r r 2 } 

(6) 
F u r t h e r 

£,[£,+,W2
+2]]>max{£,[V,+2],£,[V,+3](l + 0-1,...,£,[Vr](l + r)-(r-2)} (7) 

since Ws
2 accounts for the possibility of acquiring new information 

whe rea s W* does not (Fisher and H a n e m a n n 1987). Together, (6) and 
(7) imply 

E,[max{V,+,(l + r)-',£,tl[W;2
2](l + r)"2)] > 

max{£,[V,+l](l +/-)-',£,[V,+2](l + r)-2 E,[VT](\ + r)"r} (8) 

Since the r ight -hand side (rhs) of (8) equals V, by assumption, it 
follows t h a t 

OV, = E,[m3x{V,+l0 + ry',E,+][W^](\ + rr2}]-V, > 0 (9) 

Now consider (5). Equat ion (9) indicates t h a t delaying the harves t to 
period t+1 m a y be optimal even though the s tand is financially ma tu re 
according to (4). 

Case II. OV, > 0. 
The period t option value is strictly positive wi th the follow­

ing r e s t r i c t i o n s on (5): V,+l > £,+,[lv;2
2Kl + r)"' for V,+1€£i,, 

V,+, < £,+1[^2
2](l + /•)-' for V, + I 6n 2 > and V,+l = £,+l[W£2](l + r)- ' for 

V)+1 e H3 , where O. is defined as the set of possible real izat ions of V ,, 
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fi, u Q 2 u Q , = Q., O, * 0 , and f l ,?s0 . As discussed in section III, 
these restrictions hold if timber prices are mean-reverting, indicating 
prices above (below) the historical average have a tendency to decline 
(increase) in subsequent periods. This implies that Vr+I € fi, corre­
sponds to large stand values associated with high timber prices and 
V,+1 e Q2 corresponds to small stand values associated with low timber 
prices. Timber prices may be realistically modeled as mean-reverting 
(Dixit and Pindyck 1994). In the short term, timber prices may 
fluctuate due to unanticipated shocks to forest products markets; 
however, in the long term the price may tend toward the long-run 
marginal cost of producing timber. 

Under the above restrictions, equation (8) becomes 

£,[V,+,IV,+, e Q,](l + r)-' + £,[£,+1[Wf+2]IV,+1 E Q2](l + r)"2 + 

£,[V,+,IV,+, eOjKl + r ) - > 

max{£,[V,+1](l + r)-,,£,[V,+2](l+r)-2,...,£,[V7](l + r)-r} (10) 

The strict inequality in (10) is established in two steps. First, 
assume that the rhs of (10) equals £,[V1+1](1+ /•)-' Then (10) can be 
rewritten as 

£,[£,•, W2
+2 WM e n j a + i - r 2 > £,[v,+1iv,+, e n2](i+!•)-' U D 

which holds by the above restrictions. Next, suppose that the rhs of 
(10) equals 

max{£,[V,+2](l + r)^,£,[V,t3](l + r)"3 £,[Vr](l + r)"7} <12) 

Then the strict inequality follows from (7) and the above restrictions. 
Now, equation (9) becomes 

OV, = £,[max{V,+l(l + r)-',£,+,[^2](l + /-)-2}]-V, >0 (13) 

indicating it is optimal to delay harvest in period t in order to receive 
period £+1 information about the value of the stand. 

Cases I and II establish the conditions for OV, > 0 and OV, > 0. 
However, the resu l t s rely on the strong assumption tha t 
V, = £,[VJ(1 + r)~"~" for all t < s < T While it is convenient to assume 
the stand is financially mature by (4), it is more realistic to 
assume that V, > £,[VJ(1 + r)"(I~" for all t < s < T, thereby allowing the 
present value of the stand to decline after it has reached the "optimal" 
rotation age. The adoption of this assumption introduces the possibil-
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ity that V, is greater than or equal to the left-hand sides of (8) and (10) 
which by (5) indicates OV: = 0. Thus, there is a value to delaying the 
harvest to period £+1, but it is outweighed by the value of harvesting 
in the current period. If V, is less than the left-hand sides of (8) and 
(10), the above results carry through. Note that the option value 
cannot be less than zero (Fisher and Hanemann 1987). This is an 
implication of (7): additional information can only increase the ex­
pected value of the stand. 

III. THE OPTIMAL FOREST ROTATION AND OPTION 
VALUES: ESTIMATION 

The above analysis indicates that option values are strictly 
positive when delaying the harvest yields information that asym­
metrically influences harvesting decisions. In case II, the realization 
of V,+] indicates whether harvesting or delaying is optimal in period 
t+1. The ARIMA is a stochastic process consistent with the restric­
tions in case II.6 In what follows, the net value of the timber stand in 
period t is assumed to be V, = P,Q(a,) where Q(at) is the deterministic 
volume dependent on stand age a, and the stumpage (standing 
volume) price P, follows the ARIMA(p,d,q) process 

w, =<t>,>V,+"--K^,_/,+e,-eie,_,-...-eo£,_<)+5 (14) 

where w, = Ad Pt, d indicates the number of times the price is differenced, 
the (j), are the autoregressive parameters, the 6, are the moving 
average parameters, 5 is a constant, and e, is a normal random 
variable with E[z,] = 0, £[e,2] = o 2 , and £[£,£,] = 0, i*j? 

ARIMA processes are mean-reverting in the limit. Thus, if cur­
rent and past values of w, are above (below) the mean, long-term 
declines (increases) are expected. The exact pattern of expected price 
movements depends on the order of the process (i.e., the value ofp, d, 
and q) and the levels of current and past prices. For simple processes 
the patterns are readily determined. For instance, consider the AR(1) 
process given by 

^ = ^ _ , + 5 + e , (15) 

6See Pindyck and Rubinfeld (1981) for an introduction to time-series modeling using 
the ARIMA. 

'An investor can observe a cross-section of similar stands and thereby make an 
accurate assessment of stand volume changes over time. Prices, in contrast, are the 
outcome of complex market interactions and therefore, are modeled as random 
variables from the perspective of the investor. 
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The process has mean 8/(l-<))) and is stationary or mean-revert­
ing if |<J>| < 1. Assuming the current price P, =5 /(l -<)>), 
Q(a,) = G(a,+1 )(1 + r)-' = Q(a,+2 )(1 + rf, and T = t+2, it follows that 

V, =£,[V,+,](l + r)-1 =£,(V,t!](l + r r (16) 

and 

> > 

K+,=£,*.[VI+2](1 + '•)"' as /J+1=8/(l-4>) (17) 
< < 

(17) satisfies the conditions stated in Case II above and therefore, 
OV: > 0. Qualitatively similar results may be obtained for different 
values of P„ Q(as), and T. 

More complicated ARIMA processes are difficult to analyze in 
general terms; however, with appropriate data it is possible to 
estimate OVt for specific cases. A time series on stumpage prices and 
timber yield data for the corresponding species are required. The first 
step is to solve the problem in (4), thereby satisfying the condition 
V, > E,[V,](l + r)~l'~° for all t < s < T and establishing the current age of 
the stand, a,, as the "optimal" rotation age. The ARIMA model is 
estimated on the stumpage price data and future prices are forecast 
from the last observations of the series (P, ,f)_,,...). This yields the 
forecasts wt(t + 1), w((£ + 2),..., w((T) where t indicates the period from 
which the forecast is made and Tis the last period of the analysis. The 
expected value of the stand in period t+i, i = 1,2,..., 7 -t, conditional on 
period t information, is then Pt{t + i)Q(aM) where Q(a(+i) is derived 
from the yield data. The age of the stand in period £ can be varied until 
the value of the stand is just growing at the rate of interest r, 
indicating the stand is financially mature in period t according to (4). 

The next step is to determine the value of the program under (5) 
and the associated option value. The solution is found by constructing 
a tree of future stand values and associated probabilities and then 
solving the problem recursively. The error term e,+l is normally 
distributed so the probability of reaching the price Pt(t + 1) + e(+1 is 
given by /le,+1) = 6"1(2-n-)iy2 exp(e2

(+1/2a2) where a2 is the variance 
estimate from the ARIMA estimation. To be operative, the normal 
distribution is partitioned and probabilities are assigned to iV prices, 
denoted P'(t + 1) =P,(t + 1) + e'(tl, i = 1,2 N . If the normal distribu­
tion is truncated at three standard deviations below and above the 
mean, then the width of each partition is given by M=6/N. The value 
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of P\t +1) is the mean of first partition equal toPt(t + 1) - (3 + Mil) a. 
The probability of reaching the first price, Pr(l), is approximated by 
the area under the normal distribution from -3<J to -(3 - Af)6\ 
Likewise, the probability,P(2), of reaching the second price is the area 
under the normal distribution from -(3 - M)u to -(3 - 2M)6\ The 
prices Pl(t + l),P2(t+l),...,PN(t + l) and the associated probabilities 
provide the first stage of the price tree (Figure 1). 

From each of the N nodes, a forecast of the mean price in period 
t+2 is made. The mean forecast from the ith node, P'ul{t + 2), is based 
on the values f'(f + l),/^,^_,,.... As indicated by the subscript on 
P'l+i(t + 2), the forecast takes into account period t+1 information, 
namely the value of P' (t +1). The forecast is then used to determine 
the prices PlKt + 2) = P't+1(t + 2) + &u2, j= 1,2,...,N, with associated 
probabilities, as above (Figure 1). There are N2 prices or nodes for 
stage two, and Nk prices or nodes for stage k. The price tree is 
completed when prices are determined for all T-t stages. Prices are 
then multiplied by the volumes Q(a,+t) where k indicates the &th 

Figure 1. Construction of the price tree. 
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stage or the kth period past t. The volumes are the same as those used 
to determine the solution to (4) above. The result is a tree of stand 
values consisting of T-t stages. 

The problem may now be solved recursively beginning in stage 
T-t-1. At each of the NT~"' nodes, it must be determined whether 
harvesting in period T-l or delaying harvest to period T is optimal. 
That is, Wf_, =max(V7._1,£7._,[max{0,V7.(l + rr1}]} must be found at 
each node. From the standpoint of period T-l, the investor considers 
the expectation only over positive values of the stand in period T since, 
if period T is reached, the investor can elect to never harvest if the 
stand value is negative. The expected value of the stand in period T 
is an average of the positive values that may be reached from 
a par t icular period T-l node, with the weights given by 
Pr(l),Pr(2),...,Pr(N). The procedure is then repeated from period T-2: 
WT\, = max{VT_2,ET_2[WT

2_i](\ + r)-'} is determined for each of the NT—2 

period T-2 nodes where ET_2[W2_l] is a weighted average of the N 
values of W2_x that may be reached from a particular node. A value for 
W* is determined after T-t-1 iterations and the option value is 
calculated as OV, = W2 - W,' 

Table 1 presents estimates of the option value for two forest 
species. ARIMA models are estimated using times series data on 
average real prices of southern pine and oak stumpage sold from 
private lands in Louisiana (Ulrich 1988). Per-acre yields are derived 
from U.S. Forest Service inventories of private timberlands (Birdsey 
1992). An interest rate of 5% and a planning horizon of 7W+8 is 
assumed.8 Option values increase the present values of pine and oak 
stands $107 and $6, respectively, and imply that harvesting should be 
delayed beyond the standard Faustmann rotation. The higher option 
value for pine is due to greater price variance (a2) which increases 
potential gains from new information. The solution algorithms can be 
used to determine the probability that harvesting takes place in 
periods £+1 £+8 or never (Figure 2). For both species, there is a 
considerable probability that harvesting will be delayed many years 
past the standard financial rotation. For instance, the probability of 
harvesting does not reach 50% until period t+3 for pine and period £+5 
for oak. The large probability masses in periods^+5 and^+6 reflect the 
influence of the end of the planning horizon. Harvesting is delayed in 
expectation of higher prices; however, harvesting eventually occurs to 
avoid the possibility of never harvesting. Extending the planning 
horizion redistributes these probability masses across future periods. 

"The length of the planning horizon is determined by computational limitations. 
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Table 1. Estimates of option values for Southern pine and oak. 

Figure 2. The probability of harvest. 
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IV EXTENSIONS OF THE MODELING FRAMEWORK 

Option values are likely to arise in connection to other aspects of 
forestry investments. The framework in section III can be modified to 
estimate option values associated with forest land development and 
sales. The analysis presented above considers a single rotation and a 
finite planning horizon. The decision to develop or to sell forest land 
requires an assessment of a parcel's value and therefore consideration 
of multiple rotations over an infinite horizon. Multiple rotations are 
incorporated by allowing stands to be harvested, yielding P,Q(a,), and 
then regrown, yielding W,2 as a function of P, and 2(0). The model in 
(1) allows for multiple rotations. Modeling an infinite time horizon is 
more problematic. Infinite-horizon dynamic programming problems 
can only be solved if they are autonomous; that is, the optimal value 
of the program is independent of time. However, option values arise 
in the model presented here precisely because of this dependence. In 
particular, asymmetries in harvesting behavior are explicitly linked 
to the past pattern of prices. An alternative approach is to approxi­
mate the infinite stream of benefits with a finite stream. The finite 
stream must be long enough so that benefits from additional periods 
are small due to discounting. The length of the stream is likely to be 
determined by computational limitations. 

The modified procedure gives the value of the land in forestry, W,2. 
If development of a parcel is a possible choice, the problems in (4) and 
(5) are modified to include a development value. An option value is 
then associated with delaying the irreversible development to gain 
information about the value of the land in forestry. Development in 
the current period may be optimal according to the ENPV criterion yet 
suboptimal when option values are considered (Fisher and Hanemann 
1986). The private landowner may also have the opportunity to sell 
forest land to the government for conservation purposes. As with the 
development problem, a sale value is included in (4) and (5). The sale 
value is incorporated for the periods in which the acquisition program 
is in effect. In this case, the option value is related to information the 
landowner gains about the value of the timber by delaying the sale. 
The landowner may need to be compensated for this option value, 
implying higher program costs for the agency than indicated by the 
ENPV criterion or by competitive market prices for forest land. 

An extension of the modeling framework involves incorporating 
the value of the standing forest. Hartman (1976) examines how the 
optimal timber rotation changes when non-timber amenities from the 
standing forest are valued. If the non-timber amenities increase 
monotonically with the age of the stand, then the rotation is always 
longer than the timber only rotation. If timber prices and the value of 
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non-timber amenities are stochastic, option values will arise from 
forthcoming information on both random variables (Reed 1993). In 
addition, the two effects will interact according to the correlation 
between timber prices and non-timber benefits. The stochastic pro­
cess governing the benefits from non-timber amenities might be 
estimated from repeated sampling of forest plots. The Forest Ecosys­
tem Research Program at the University of Maine is presently 
collecting plot-level information on ecosystem attributes, including 
plant species richness and diversity and abundance of terrestrial 
birds. 

V. SUMMARY AND CONCLUSIONS 

Forestry investments are characterized by irreversibilities and 
uncertainties due in large part to the length of time required to grow 
trees. The traditional benefit-cost method of analyzing these invest­
ments may give misleading results due to a failure to account for 
information gained by delaying irreversible actions. This bulletin 
details an approach to evaluating forestry investments under irre­
versibility and uncertainty. The theoretical analysis in Section II 
reveals that option values arise under general conditions. Specifi­
cally, the result OVt > 0 is derived with no restrictions on (5). This 
result is analyzed further by exploring the implications of restrictions 
on (5). The restrictions imposed in case II indicate that realizations of 
V/+i provide information on the relative magnitude of V/+l and 
£/+l[W^2](l + r)~' As a result, option values are strictly positive. The 
case II restrictions are consistent with a mean-reverting process for 
timber prices, implying that prices may flucuate in the short term due 
to unanticipated shocks, but in the long term may tend toward the 
marginal cost of producing timber. The ARIMA process embodies the 
mean-reverting property and therefore, is generally consistent with 
non-zero option values. This bulletin demonstrates how ARIMA 
models can be combined with dynamic programming techniques to 
estimate option values related to timber harvesting and other aspects 
of forestry investments. 

Strictly positive option values are found for southern pine and oak 
through empirical simulations. The expected present values of pine 
and oak stands increase by approximately 6% and 1%, respectively, 
when option values are included. The higher stand values reflect the 
value of forthcoming information on prices and the possibility of 
avoiding unprofitable harvests. The higher option value for pine is 
due to the greater price variance, which increases potential gains from 
new information. Even though the option values are small relative to 
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the timber value, there is a high probability that harvests will be 
delayed a number of years past the standard financial rotation. For 
instance, there is a greater than 60% probability that oak harvests will 
be delayed five or more years, even though the option value is a small 
fraction of the stand value. 

The analysis presented here has practical applications to the 
evaluation of forestry investments as well as to the understanding of 
investment behavior. In the latter case, the model developed in this 
study yields insights into optimal harvesting decisions of private 
investors. It suggests that investors monitor the values of uncertain 
variables and harvest only when thresholds for these variables are 
reached. For instance, in the simple model presented in (15)-(17), the 
stand is harvested only when P, is above the threshold 8 / (1 -<])). In 
contrast, models implied by traditional benefit-cost analysis suggest 
that investors plan harvests from the current period. The behavior of 
private investors has implications for timber management on public 
lands and the design of forest land acquisition programs. Thus, an 
important area of future research will be to determine if investors take 
option values into account. This study provides the theoretical and 
methodological foundation needed to explore this issue further. 
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