The University of Maine DigitalCommons@UMaine

Technical Bulletins

Maine Agricultural and Forest Experiment Station

1-1-1994

TB155: Chemical and Physical Properties of the Chesuncook, Colonel, Dixfield, and Telos Soil Map Units

R. V. Rourke

Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the <u>Soil Science Commons</u>

Recommended Citation

Rourke, R.V. 1994. Chemical and physical properties of the Chesuncook, Colonel, Dixfield, and Telos soil map units. Maine Agricultural and Forest Experiment Station Technical Bulletin 155.

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Chemical and Physical Properties of the Chesuncook, Colonel, Dixfield, and Telos Soil Map Units

R.V. Rourke

Technical Bulletin 155

January 1994

MAINE AGRICULTURAL AND FOREST EXPERIMENT STATION sity of Maine

Chemical and Physical Properties of the Chesuncook, Colonel, Dixfield, and Telos Soil Map Units

R.V. Rourke Senior Soil Scientist

Department of Plant, Soil and Environmental Sciences College of Natural Resources, Forestry and Agriculture University of Maine Orono, Maine 04469

ACKNOWLEDGMENTS

The author wishes to recognize other who, by their efforts, contributed greatly to this study.

The selection and morphologic description of the various soil sites was accomplished with the aid of Mr. Jonathan W. Miller, Mr. Kenneth J. LaFlamme, Ms. Susan E. Lee, Ms. Lisa Krall, and Mr. David E. Wilkinson, soil scientists with the Soil Conservation Service, USDA.

Laboratory analysis of the samples was completed through the diligent efforts of Mr. Krzysztof Lesniewicz.

Ms. Mary Fernandez assisted greatly in preparing the manuscript and converting it to an acceptable word-processing program.

Constructive reviews and comments from Dr. Russell Briggs, Dr. Charles W. Honeycutt, and Mr. Kenneth J. LaFlamme are greatly appreciated.

This study was supported by Hatch funds and by the Soil Conservation Service, Orono, Maine.

SUMMARY

Changes in Soil Taxonomy in 1992 resulted in reclassification of the Chesuncook and Dixfield soils. Taxonomic placement of the Telos and Colonel soils was not changed. Soil morphology and laboratory analyses were completed for five replicates of each soil map unit. Weighted averages were developed from laboratory data to define the chemical and physical characteristics of each map unit. Data for individual sites and soils are presented.

Contents

INTRODUCTION	1
MATERIALS Field Procedure Laboratory Procedure	
RESULTS AND DISCUSSION Chesuncook Soil Map Unit Colonel Soil Map Unit Dixfield Soil Map Unit Telos Soil Map Unit	
CONCLUSIONS	11
LITERATURE CITED	
APPENDIX A	
APPENDIX B	

Tables

1.	Taxonomic classification of the soil series that form the basis of the soil map units in this study	. 3
2.	Taxonomic placement of the soil map units in this study	. 3

The soils reported in this bulletin have developed from till derived from two different sources of parent material. The Chesuncook and Telos soils are derived from till that had more than 10% but less than 18% clay as a weighted mean between 25 cm and the top of the root-restricting layer. The source of the till for these soils is slate as well as other dark-colored sedimentary and metamorphic rocks.

The parent material for the Colonel and Dixfield soils is till derived from lighter colored rock that contains considerable mica. The till had less than 10% clay as a weighted average in the zone from 25 cm to the top of the root-restricting layer.

The Chesuncook and Telos soils are mapped in large areas of north-central and northern Maine, ranging from the western border with New Hampshire to the Canadian border on the east and north. The somewhat lighter textured Colonel and Dixfield soils are usually in central and southern Maine. All of the soils are used extensively for forestry.

MATERIALS

The Chesuncook soil series is moderately well drained. It is very deep to bedrock and has a root-restricting layer beginning at the Cd horizon at depths ranging from 47 to 60 cm. These soils are in mid- to upper slope positions in the landscape where they are not as likely to receive excessive amounts of laterally flowing water moving across the top of the dense Cd horizon.

The Colonel soil series is somewhat poorly drained and very deep to bedrock. It is in lower slope positions and has a rootrestricting dense layer beginning at the Cd horizon at depths ranging from 47 to 60 cm. Their position in the landscape results in them being subject to periods of wetness resulting from laterally flowing waters from upper slope positions moving across either the soil surface or above the dense horizon.

The Dixfield soil series is very deep to bedrock, moderately well drained, and occupies mid- to upper slope positions in the landscape. It has a dense root-restricting layer in the Cd horizon at depths ranging from 49 to 63 cm. As a result of their higher position in the landscape they receive minimal amounts of laterally flowing water moving along the top of the dense layer following rain events or spring melt.

The Telos soil series is very deep to bedrock, somewhat poorly drained, and is in the lower and less sloping landscape positions. It has a dense root-restricting layer in the Cd horizon at depths ranging from 44 to 62 cm. These soils receive water from adjacent slopes that has moved surficially or along the top of the dense Cd horizon and as a result are wetter for longer periods of time than soils on higher or more sloping positions.

The Colonel and Dixfield soil series were included with the Peru soil series in earlier soil surveys in Maine (Arno et al. 1972; Faust and LaFlamme 1978; Flewelling and Lisante 1982; Hedstrom 1974, 1987; Hedstrom and Popp 1984). They have been separated to improve soil interpretation and use in more recent soil surveys. The Chesuncook and Telos soil series were included with the Plaisted and Howland soil series of earlier soil survey reports (Arno 1964a, 1964b; Goodman et al. 1963). They have been separated because their clay content can impact soil uses not noted in the silty Plaisted and Howland soil series.

These four map units form two sets of related soils on the landscape. The Dixfield and Colonel soils consititute the moderately well drained and somewhat poorly drained members of a catenary sequence. The Chesuncook and the Telos soils form a similar catenary sequence. These soil series are classified according to Soil Taxonomy (Soil Survey Staff 1992) in Table 1.

The classification presented in Table 1 reflects the changes in Soil Taxonomy presented in the 1992 keys. As seen in Table 2, no map unit was consistent at all five locations with the classification presented. Within the Chesuncook sampling sites, two locations did not meet the morphologic criteria for spodic materials and three sites did. Of the three locations of Chesuncook that met spodic criteria one had spodic horizons that were sufficiently thick to be Aquic, but two are Aquentic. In the Colonel, two locations did not have sufficient thickness of spodic materials to meet the definition of the Aquic subgroup criteria and would be placed as Aquentic, one is an Aquod with Andic properties; however, the average thickness of the spodic horizon at the five sites is sufficient to meet Aquic subgroup placement. The Dixfield locations met spodic materials criteria at three locations. The spodic horizon at one location, however, was too thin to be in the Aquic subgroup, and the other location was in a different suborder. The Telos sampling locations had two sites that did not meet spodic materials criteria, and three sites that were too thin to meet Aquic subgroup definitions. Classification of the Chesuncook, Dixfield, and Telos soil map units of this study reflects the weak spodic morphology within these map units.

Soil Series	Family Name
Chesuncook	coarse-loamy, mixed, frigid, Aquic Haplorthods
Colonel	coarse-loamy, mixed, frigid, Aquic Haplorthods
Dixfield	coarse-loamy, mixed, frigid, Aquic Haplorthods
Telos	coarse-loamy, mixed, frigid, Aquic Haplorthods

Table 1. Taxonomic classification of the soil series which form the basis of the soil map units in this study.

Table 2. Taxonomic placement of the soil map units in this study.

Soil Map Unit		Family Name
Chesuncook	130-188	coarse-loamy, mixed, frigid, Aquic Dystrochrepts
Chesuncook	130-288	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Chesuncook	130-388	coarse-loamy, mixed, frigid, Aquandic
		Dystrochrepts
Chesuncook	130-488	coarse-loamy, mixed, frigid, Aquic Haplorthods
Chesuncook	130-588	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Colonel	150-389	coarse-loamy, mixed, frigid, Aquic Haplorthods
Colonel	150-489	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Colonel	130-489	coarse-loamy, mixed, frigid, Aquic Haplorthods
Colonel	130-589	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Colonel	130-689	coarse-loamy, mixed, frigid, Andic Epiaquods
Dixfield	130-189	coarse-loamy, mixed, frigid, Aquandic
		Dystrochrepts
Dixfield	130-289	coarse-loamy, mixed, frigid, Aquic Haplorthods
Dixfield	130-389	coarse-loamy, mixed, frigid, Aquic Dystrochrepts
Dixfield	130-189	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Dixfield	130-289	coarse-loamy, mixed, frigid, Typic Haplohumods
Telos	130-688	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Telos	130-788	coarse-loamy, mixed, frigid, Aquic Dystrochrepts
Telos	130-888	coarse-loamy, mixed, frigid, Aquentic Haplorthods
Telos	130-988	coarse-loamy, mixed, frigid, Aquandic
		Dystrochrepts
Telos	131-088	coarse-loamy, mixed, frigid, Aquentic Haplorthods

Field Procedure

The location of each site was determined by a soil scientist from the USDA, Soil Conservation Service. A minimum of one mile separated each replication of a given soil map unit.

The soils were sampled by genetic horizon to a one-meter depth. Soil morphology and characteristics of the surrounding area were described using standard methods (Soil Survey Staff 1951, 1981). From each horizon, the entire horizon thickness in a 30x30cm-square area was sampled for stone volume and laboratory analyses. Core samples 2.5x4.4 cm in diameter were obtained in triplicate for bulk density and water retention determinations. Care was taken to remove the cores in as close to an undisturbed state as possible.

Laboratory Procedure

Rock fragment in the bulk field samples was determined volumetrically by sieving and water displacement techniques. Soil material smaller than 2 mm was mixed and subsampled for other analyses.

Soil cores were used to determine water retention at 0.06, 0.1, 0.33, 0.67, and 1.0 bars tension after the core had been trimmed following its equilibration at 0.33 bars. All tensions of 1 bar or less were determined by ceramic plate methods (Richards 1965). Soil volume and weight in the rings was corrected for coarse material > 2 mm. Bulk density at 0.33 bars soil moisture tension was determined using the < 2 mm fraction. The sieved soil was used to measure water retention at 2, 3, 5, and 15 bars pressure (Richards 1965). Water available for plant use was estimated as the difference in moisture content between 0.1 and 15 bar values and reported as cm of water retained per cm of stone-free soil.

Soil organic carbon content was measured using the Walkley-Black method with a factor of 1.3 (Nelson and Sommers 1982).

Pipet analysis techniques described by Day (1965) were used to measure silt and clay content. Sands were measured by dry sieving. Organic carbon was removed from the sample using hydrogen peroxide and heat treatment. The oxidized soil was dispersed by overnight shaking in a solution of sodium hexametaphosphate. Soil pH was measured in water, calcium chloride, and potassium chloride for each horizon. A soil:solution ratio of 1:1 was used with water and potassium chloride, but a 2:1 ratio of calcium chloride to soil was used (MacLean 1982). The soil solution mixes were allowed to equilibrate overnight before measurements were made. Neutral, one normal ammonium acetate (NH₄OAc) was used to extract calcium, magnesium, potassium, and sodium from the various soil horizons. The extracted solution was analyzed using atomic absorption (Rourke and Beek 1971). Exchange acidity was measured using a potassium chloride extract followed by titration, and extractable acidity was measured in a barium chloride triethanolamine extract by titration, with hydrochloric acid (Thomas 1982). Cation exchange capacity (CEC) was determined by the sum of extracted cations and extractable acidity. Effective cation exchange capacity (ECEC) was estimated by the sum of extracted cations and exchangeable acidity.

RESULTS AND DISCUSSION

Chesuncook Soil Map Unit

Data presented as weighted means of the five sites sampled are presented in Appendix A, Table 1. The average texture is a silt loam in all horizons. Fine silt is the major silt component. Only two horizons contain sufficient volume of coarse fragments to be considered as gravelly. Clay content is increased in the Bh horizon as compared to other higher and lower horizons as would be expected in soils developing through the eluviation and illuviation processes. There is sufficient clay increase in the Cd horizon for it to be considered as an argillic horizon. Lack of clay films in this horizon suggests a geologic rather than pedologic clay difference. It is possible that clay in upper horizons has been diluted by the addition of fine silt, either as the result of weathering of coarser particle sizes to finer sizes or as the result of aeolian depositions followed by mixing from tree throw and leaching.

Soil moisture retention in the mineral soil is highest in the upper and middle B horizons and decreases in the lower B, BC, and Cd horizons. The higher moisture retention of these horizons is a function of organic matter levels and soil structure. As organic matter decreases and as depth in the soil increases, there is less water retained by the soil. The volume of rock fragments is relatively constant; therefore, there is no large change in volume of water retained by each horizon. The E horizon is similar to lower horizons in water retention, but it is higher in organic matter. Soil structure in this horizon, however, does not create as many pores for water retention as in lower layers.

Bulk density is lowest in the surface organic horizon. The mineral soil horizons do not attain a density of 1 gm cm^3 until the lowest B horizon is reached. The bulk densities of these horizons are

6

less than the density of water. The low density values reflect the impact of organic additions upon the pore space and dilution of mineral materials in the upper B and E horizons. The bulk density of the Cd horizon is sufficient to restrict root penetration and to slow water movement. The Cd also has prismatic soil structure which allows water movement primarily along prism faces, reducing water and air entry into the bulk soil matrix.

Soil reaction is low in the surface organic and mineral horizons and slowly increases with depth. Extractable acidity is highest in the surface horizons and is the largest component of the CEC in all soil horizons. The ECEC of most soil horizons is composed primarily of exchange acidity except in the surface organic horizon, which has a strong calcium and magnesium component. Basic cation leaching is a significant process in the genesis of this soil. Most of the basic cations for plant nutrition are concentrated in the organic soil surface. The slight increase in basic cation content in the Cd horizon reflects the natural level of nutrients in the parent materials from which the upper horizons developed. The lack of a buildup of basic cations with depth in the soil may be the result of rapid nutrient recycling by native plants, which remove cations from the soil surface as they become available thus preventing them from being available for eluviation and later illuviation. Both CEC and ECEC are low in the BC and Cd horizons reflecting the lack of organic matter and weathering in these horizons.

Colonel Soil Map Unit

The weighted means for various physical and chemical soil horizons in this map unit are presented in Table 2 of Appendix A. The soil texture in this map unit averages a loam in all horizons except the BC which averages a fine sandy loam. Although individual soil profiles within the map unit may have horizons that are fine sandy loam or even silt loam, the weighted average of all soil horizons is a loam. The upper horizons tend to be finer. Physiographic location in Maine seems to be a contributing factor as finer soil textures are associated with the northwest portion of the sampling area. Although there are three gravelly horizons and one very stony horizon, there are not sufficient volumes of rock fragments present in the composite soil profile to have either a gravelly or cobbly modifier of the soil texture. Rock volume averages presented in Appendix A, Table 2 show a random distribution in the various horizons with no single size predominating. There is a steady increase of rock fragment volume in the smaller diameter sizes as depth in the soil increases. Fine silts predominate in the silt fraction of upper horizons as compared to coarse silts, but they are approximately equal in the Bs, BC, and Cd horizons. The slightly finer textures near the soil surface may reflect enhanced weathering, or the deposition of finer materials from aeolian or water transfer. Clay is lowest in the E horizon and highest in the Bh immediately below. The increase in the Bh is probably the result of leaching from the E and illuviation in the B. The clay increase in the upper B is not unusual for soils developing by the podzolization process.

Water retention in the soil is highest in the surface organic or A horizon. In the lower mineral soil horizons it is highest in the horizons having the highest organic carbon content. The modest increase or decrease of clay does not seem to have an important role in influencing water retention. This variation is most likely the result of changes of pore space related to structural changes in soil aggregates as judged from bulk density and to the presence of varying amounts of organic matter.

Bulk density of the various mineral soil horizons is lowest in the Bh and increases with depth to the Cd. The only horizons averaging less than 1.0 g cm³ are the O, A, and Bh. The density of the Cd horizon is sufficient to prevent root entrance and to greatly slow water and air entry. Organic carbon is highest in the surface organic horizon, and in the mineral soil, it peaks in the A or Bh horizon. It decreases in an orderly fashion below the Bh. The profile distribution of soil organic carbon is characteristic of podzolic soils developing in a single deposit.

Soil reaction is most acidic in the surface organic or A horizon and increases slowly with depth. Although it retains the highest amounts of basic cations, the surface horizon retains the highest level of acidity in both the extractable and the exchangeable forms. The Bh horizon retains an equal amount of exchange acidity, but only half the extractable acidity as compared to surface horizons. The BC horizon retains the least amount of basic cations, but has a higher acidity than the lower Cd. The Cd horizon increases slightly in basic cation content and decreases in acidity resulting in a lower CEC than the BC but a higher ECEC. The high exchange acidity (KCl exchangeable) in the Bh horizon may reflect increased aluminum in that horizon resulting from organic matter and aluminum illuviation through podzolization. The very low exchangeable acidity values in the BC and Cd horizons indicate low soluble aluminum at the higher pH values. 8

Dixfield Soil Map Unit

The average soil texture in this map unit is loam. The surface mineral horizon is a silt loam. Lower horizons are loam with the exception of the lowest horizon, which is a fine sandy loam. The division of silt shows that coarse silt predominates only in the surface horizon, with fine silt having a slight dominance in the lower horizons. Average clay content is highest in the Bh horizon and may reflect deposition of that particle size after leaching from the E horizon. The volume of rock fragments in the mineral soil horizons increases to the Bs horizon and then remains about the same. The reason for the increase is not clear since these soils have not been cleared for agriculture. There is a slight increase in rock fragment volume in the Oa, but it is not sufficient to compensate for lower rock fragment levels in the E and Bh. It is possible that rock fragment volume in the surface mineral horizons has been diluted by an increase in silts from aeolian sources that were deposited before a vegetative cover was established following deglaciation. The rock fragments in the Oa are probably the result of frost heaving from the mineral layers or from deposition following tree throw.

Soil moisture retention patterns are similar to those of the Colonel soil map unit. Average water retention is highest in the horizons that are highest in organic carbon. Water content between 0.06 and 1.0 bars for the Bh horizon is limited to four pedons because of the lack of sufficient thickness of this horizon at one location.

Bulk density averages in this soil are lowest in the Oa and Bh horizons with slightly higher levels in the Bs and E horizons. Bulk density of the soil in this map unit does not exceed 1.0 g cm³ until the BC and Cd horizons are reached. The bulk density of the Cd horizon is sufficient to limit air, root, and water entry. The bulk density of the Bh horizon is based upon four horizons from four pedons because of a lack of thickness of this horizon at one sampling location. Organic carbon decreases below the Bh horizon. The Bh has more organic carbon than the E horizon but less than the Oa. This pattern is typical for soils that have developed a podzolic profile. The organic carbon content of the Bh has increased as the result of leaching from the Oa through the E and deposition in the Bh as coatings on the mineral grains.

The average soil reaction is lowest in the surface organic or E horizon and increases with increasing depth below the these horizons. The pH remains acidic throughout the soil profile. The highest average base content in this soil is in the surface organic layer, and it decreases as depth in the soil increases. Although the amount of

bases present is greatest in the Oa, it should be remembered that the bulk weight of this horizon is low. Thus a large volume of this horizon is required to have the same amount of nutrients as in a mineral soil horizon. Both CEC and ECEC are highest in the Oa and Bh horizons and decrease in lower horizons. The E horizon has a lower exchange capacity than the deeper Bh horizon, again reflecting the difference in organic carbon in the two horizons. The ECECs of the two horizons are more similar than the CECs, possibly indicating the difference in exchangeable H ions determined by the BaCl₂ TEA extract as compared to that in the KCl extract. Average exchangeable bases reach a minimum in the BC horizon and increase slightly in the Cd horizon. This minimum level in the BC may result from the movement of cations in lateral flowing water across the top of the Cd rather than a buildup of cations in the Cd.

Telos Soil Map Unit

The average soil texture in this map unit, as seen in Appendix A, Table 4, is silt loam with only the Bs2 and BC horizons having a loam texture. Clay content averages close to the fine loamy particlesize break of 18% and exceeds that amount in the Cd horizon. If the Cd becomes part of the particle-size control section in future modifications of Soil Taxonomy, this soil will possibly have a fineloamy particle size class rather than the coarse-loamy designation it now has. The clay content is 2% to 3% higher in the mineral soil than it is in the closely related Chesuncook soil. Fine silt is the predominant silt faction in all horizons. The silt relationships mentioned appear to be inherited in large part from the parent material. The distribution of sand fractions in each horizon are only slightly different within sizes or between horizons. The least amount of sand is in the E and Bs1 horizon, and they also have the highest amount of silt. This relationship could indicate the addition of silt to this layer either as the result of deposition from aeolian materials, deposition as a result of erosion from higher positions, or as the result of greater weathering intensities in this horizon. Rock fragment volume averages higher in the E horizon, but is about the same as other horizons if the materials larger than 76 mm are discarded. Rock fragments are slightly larger in the E than in other horizons. The volume of rock fragments smaller than 76 mm is highest in the BC, being close to 3% more than in other horizons.

Soil water content averages are highest in horizons having the highest organic carbon content. This is a reflection of soil structure that has been improved by the addition of organic materials. These organic materials serve to hold the mineral soil particles in structural units that result in increased pore space. Comparison of water retention at 0.1 bars in the Bs1 to that in the Cd illustrates the impact of improved soil structure and increased pore space.

The average bulk density is lower than 1.0 g cm⁻³ in the Oa, A, Bs1 and Bs2 horizons. It increases rapidly in the BC and Cd horizons to reach levels in the latter that are very restrictive to entry. The E horizon has lower organic content than the Bs1 and Bs2 while its density is slightly higher than that of the B horizons.

The average organic carbon levels are highest in the Oa and A horizon followed by the Bs1 and Bs2 horizons. The pattern of the highest organic carbon content in the upper B horizons in mineral soils is common to soils developed as a result of the podzolization process. Once the peak organic carbon is reached in the Bs1 horizon, the levels decrease with increasing depth, suggesting that the soil has developed in a single pedogenic event.

The average soil reaction is lowest in either the Oa, A, or E horizon and increases steadily in horizons below. The highest pH is reached in the Cd regardless of the method of measurement.

Greatest concentration of exchangeable cations occur in the Oa or A horizon, but the very low bulk density of this horizon means that a large quantity of the organic material would be necessary to equal the amount of nutrients retained in some of the upper mineral horizons. Exchangeable cation concentrations decrease as depth of mineral horizons increases until the Cd horizon is reached. The Cd horizon increases in cations retained and, with the exception of calcium, equals or exceeds the cation content of the uppermost mineral layer. Base saturation of the Cd is 16% higher than that of the BC if the CEC is considered and 36% higher if ECEC is used. The low values in the BC indicate leaching from that horizon to either the Cd or laterally across the top of the dense layer, suggesting that the horizon could be considered as an E' Exchange acidity is highest in the Bs1 and E horizons because of the high organic and aluminum content of these horizons at their current pH. The high extractable acidity of the Oa, A, Bs1, and Bs2 is associated with accumulation of organic matter in these zones.

CONCLUSIONS

Three of the soils in this study lack sufficient soil development to meet the classical definition of well-developed spodosols. The placement in weaker subgroups is also a reflection of recent changes in the taxonomic system. As a result the only soil to be considered as strongly developed is the Colonel which demonstrates sufficient illuviation to meet the definition of a well-developed spodosol.

The Chesuncook and Telos have more fine material than the Dixfield and Colonel soils. Telos has more clay than the Chesuncook soils although they are considered to have developed in similar parent materials. The Colonel and Dixfield soils in northwestern Maine have slightly finer soil textures, as reflected in the silt and clay sizes, than those in eastern Maine.

Soil water retention, ECEC, and CEC increase with increasing organic matter levels in the soil map units. Soil reaction increases with increasing depth below the surface. Bulk density increases as the organic carbon content decreases and reaches a sufficient density to limit root, water, and air entry in the Cd horizon.

The highest concentration of exchangeable cations in these soils occur in the surface organic horizon. Basic cations increase in the Cd horizon as compared to the horizon above. The increase is thought to be a reflection of a lack of leaching and weathering in this horizon rather than as the result of illuviation.

Rock fragment volume smaller than 76 mm in these soils is usually below 15%. There are occasional horizons that have high volumes, but the soils do not reach rock volumes considered to be skeletal.

LITERATURE CITED

Arno, J.R. 1964a. Soil Survey of Aroostook County, Maine: Northeastern Part. Washington, DC: USDA-SCS, Supt. of Doc.

—. 1964b. Soil Survey of Aroostook County, Maine: Southern Part. Washington, DC: USDA-SCS, Supt. of Doc.

- Arno, J.R., R.B. Willey, W.H. Farley, R.A. Bither, and B.A. Whitney. 1972. Soil Survey of Somerset County, Maine: Southern Part. Washington, DC: USDA-SCS, Supt. of Doc.
- Day, P.R. 1965. Particle fractionation and particle size analysis. In Methods of Soil Analysis. Part 1. Agronomy 9, ed. C.A. Black, 545– 566. Madison, WI: Amer. Soc. Agron.
- Faust, A.P., and K.J. LaFlamme. 1978. Soil Survey of Kennebec County, Maine. Washington, DC: USDA-SCS, Supt. of Doc.
- Flewelling, L.R., and R.H. Lisante. 1982. Soil Survey of York County, Maine. Washington, DC: USDA-SCS, Supt. of Doc.
- Goodman, K.V., R.M. Riley, B.A. Whitney, J.R. Arno, K.J. LaFlamme, S. Von Day, and J.S. Hardesty. 1963. Soil Survey of Penobscot County, Maine. Washington, DC: USDA-SCS, Supt. of Doc.
- Hedstrom, G.T. 1974. Soil Survey of Cumberland County, Maine. Washington, DC: USDA-SCS, Supt. of Doc.

—. 1987. Soil Survey of Knox and Lincoln Counties, Maine. Washington, DC: USDA-SCS, Supt. of Doc.

- Hedstrom, G.T., and D.J. Popp. 1984. Soil Survey of Waldo County, Maine. Washington, DC: USDA-SCS, Supt. of Doc.
- MacLean, E.O. 1982. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2. Agronomy 9, ed. A.L. Page, 199–224. Madison, WI: Amer. Soc. Agron.
- Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In *Methods of Soil Analysis, Part 2. Agronomy* 9, ed. A.L. Page, 570-571. Madison, WI: Amer. Soc. Agron.
- Richards, L.A. 1965. Physical conditions of water in soil. In Methods of Soil Analysis, Part 1. Agronomy 9, ed. C.A. Black, 128–151. Madison, WI: Amer. Soc. Agron.
- Rourke, R.V., and C. Beek. 1971. Chemical and physical properties of the Allagash, Hermon, Howland, and Marlow soil mapping units. Maine Agricultural Experiment Station Technical Bulletin 34.

- Soil Survey Staff. 1951. Soil Survey Manual. Agric. Handbook No. 18. Washington, DC: USDA.
- ——. 1981. Chapter 4 Examination and description of soils in the field. SCS USDA Directive Issue 1, Washington, DC: USDA.
- ——. 1992. Keys to Soil Taxonomy. SMSS Technical Monograph No.
 19. Blacksburg, VA: Pocahontas Press, Inc.
- Thomas, G.W. 1982. Exchangeable cations. In Methods of Soil Analysis, Part 2. Agronomy 9, ed. A.L. Page, 159–165. Madison, WI: Amer. Soc. Agron.

APPENDIX A

	C	hesun	COOK	5011 1	мар	Unit.				
Hor- izon	Sand 2- 05	Silt 05- 002	Clay <.00	Co	arse		Med1um 0 5- 25	Fine 25- 1	Very Fine 1-05	Fine Silt 02- 002
						Pct of <	2mm			
Е	19.38				89	3.10	2.38	2.60	7 41	43 53
Bh	22 58				11	4 28	2 94	4 07		43 38
Bsl	22 98					4 01	3 02	4 4 5	5 50	46 31
Bs2	27 07	59.7	4 13.1	16 77	45	5 3 5	3 66	5 1 5	5.46	43.08
Bs3	29 64	56.6	8 136	78	58	6.42	4 1 1	5 07	5 46	40 09
BC	28 69	58 0	5 13 2	4 7 0 7	84	578	4 00	5 16	5.91	41.30
Cd	28 94	54 9	5 16.1	0 7	46	5 69	4 38	5.43	5 98	41.30 38.18
Hor-	Org	BD				Water Co	ntent (Ba	r Pressu		
izon	C		.06	01				20		50 15.0
	%	g/cc					%			
Oa	30 92			215 0	178			120 8		56 784
Е	3 26	087	44.1	40 9	35		29 5	24 9	182 1	34 119
Bh	5 08	0 60	87.7	79.8	64	0 594	56 9	40 0		30 206
Bsl	3 4 5	0.71	753	68.8	54			309		86 168
Bs2	2 63	081	582	532	42					4 9 13.2
Bs3	1 63	1 04	42 1	39.2	32		26 2			2.1 9.3
BC	1 26	1 20	371	354	30					0.5 7.8
Cd	0 34	1.56	20 9	20 1	18	3 169	156	13.4	113	8.6 47
Hor-	Soil	Reacti	on			ises		- Acidity		
izon	KCI (CaCl,	H ₂ O	Ca	Mg		К В - meq/100		CI CE	
Oa	3 04	3 61	3 93	9 39	2.24	0 08			.26 59 (
Е	2 76	3 2 3	3 85	0 91	0 36	0 02			.50 23	
Bh	3 4 9	3 81	4 39	0 68	0.24	0 02	0 1 2 3	195 8	96 33 (01 10.01
Bsl	3 77	4 06	4 54	0 2 2	010	0 02	0 1 0 2	6 95 6	02 27	39 646
Bs2	4 06	4 29	4 89	015	0 05	0 01	0 08 2	1 69 3	04 21.9	99 333
Bs3	4 19	4 38	4.97	0 14	0 04	0 01	0 08 1	4 99 2	25 15.2	26 2 52
BC	4 28	4 47	5 07	0 06	0 03	0 02	0 07 I	2.21 1	.67 12.4	40 186
Cd	4 21	4 54	5 43	0 26	016	0 02	0 09	5 4 4 1	.11 5.9	98 164
Hor izon				Percen		Volume R width in r	lock Fragr nm)	nents		
	>76	76-5	1 51	-38	38-25	25-19	19-13	13-6	6-2	Total
Oa	0 00	0 00	0	00	0 04	0 12	0 18	0.15	0 13	0 62
E	0 00	2 3 5		48	2 62	1 61	1.77	2 09	1 11	13 03
Bh	1 27	0 00		49	0 74	0 52	0 88	1 98	3.09	8 99
Bsl	0 00	0 00		62	0 90	0 48	0 69	1 50	2 40	6 59
	1 98	0 00	0	29	0 70	0 49	0 94	2 07	3 37	9 85
Bs2				~ 0	0 (0	0 (0	1.03	2.40	2 6 7	10 7/
Bs2 Bs3	180	0 00	0	68	0 60	0.60	1 03	2 48	3 57	10 76
	180 000 078	0 00 0 22 0 55	0	68 28	0 60	0.60	1 103	2 48 2 83	3 57 4.61	10 76

Appendix Table 1. Weighted means by horizon of soil data for the Chesuncook Soil Map Unit.

					-								
Hor- izon	Sand 2- 05	Silt 05- .002	Clay < 002	Coa			arse) 5		ledium 5-25	Fine 25- 1	F	ery ine - 05	Fine Silt 02- 002
						Pct	of <	2m	m				
Е	45 89	48 85			6		36		9 27	13 89		00	26.59
Bh	40 39					6	70		7 70	11.53	ç	74	27 14
Bs	47 06			61	6		2.71		8 84	13 84	10) 50	23 24
BC	52 71	40 68			1		27		0 06	16 24		71	20.15
Cd	48 07	43 29	8 63	6.7	5	7	.92		8.83	14 07	10) 50	24 16
Hor-	Org.	BD			[']	Wat	er Co	nte	nt (Bar	Pressi	ires).		
izon	C	00	06	01	0.3	3	0 67		10	2.0			15.0
	°.	g/cc							- %				
Oa or .	A 30 70	0 2 1	237 1	217 5	206	5.6	201 (0	194 9	101.0	83	6 64 4	4 59 3
E	1 32	1 18	32.9	31.4		74	23.5		21.2	11.5	8.		
Bh	3 29	0.83	57 5	538	47	13	44 9		42 9	19.1	16	1 13.2	2 12 0
Bs	184	1.03	419	38.7	32	21	29.0	0	26 1	13.5	11	69:	5 80
BC	0 63	1 41	267	25.1	20) 9	17 9	9	151	80	6	4 5	37
Cd	0 24	1 62	186	173	15	5.2	13 2	2	11.4	80	6	5 4 9	9 30
Hor-	Soil	Reactio	n		Ba	ises	; 			Acidit	y		
izon	KCL C	CaCl, H	H,O -	Ca	Mg		Na	K	СВа	aCl, F	CI	CEC	ECEC
			•					- m	eq/100g	m			
	A 309			771	22		0 02	0 0			5 01	72.38	15 63
E	3.22		4 52	0 26	0.1		0 01	0			53	11.70	4 92
Bh	3 75		4 75	0 75	0 18		0 01	0.0			5 01	31 73	6 02
Bs		4 66	5 47	0.81	0 12		0.01	0 (.05	19 70	2.03
BC	4 36		5 50	0 21	0 04		0 01	0 0).71	8 8 8	0 99
Cd	4 26	4 74	5 92	0.33	0 09) (0 01	0.0	03 4	494 ().58	5 40	1.03
Hor			F	Percent	by '	Voli	ume R	.ock	Fragm	ents			
ızon					(\	vidt	h in n	nm))				
	>76	76-5	1 51	-38	38-2	5	25-19	}	19-13	13-	6	6-2	Total
Oa or .	A 0.0	1 02	2 0	08	0.16	j	0 22		0 1 1	0.2	0	0 44	2 23
E	11 37	1 69		69	1 23		0 92		0.79	12		2 06	20 97
Bh	1 05	174		70	1 1 1		0 68		0.95	14		2 73	10 45
Bs	0 53	1.49		36	116		0 70		1.07	1.8		4 22	11.41
BC	0.51	0.14		58	0 5 5		0.54		0 79	2.1		4 27	9 50
Cd	0 81	0.56	5 0	33	1 23		0.91		1 33	2.8	6	5 20	13 22
							-						

Appendix	Table	2.	Weighte	d	means	by	horizon	of	soil	data	for	the
	Colone	l So	il Map U	Jn	nit.							

				<u> </u>					
Hor-	Sand	Silt	Clay	Very	Coarse	Medium	Fine	Very	Fine
izon	2-05	.05-	-	Coarse		0 525	25-	Fine	Silt
		.002	<.002	2-1			1	105	02-002
-					- Pct of <				
E	36.99		6.25	2 89	4 78		11.73		27.57
Bh	36 04		14 75	5.09	5.80	6 39	9 99		28.39
Bs	45.48		916	7.62	761	7 70			23.06
BC	51.93		7 30	9.58	918	9 23			21.25
Cd	52.55	39.94	7.49	9.01	9.09	9 70	14.45	10.29	21 54
Hor-	Org	BD			Water Co	ntent (Bar	Pressu	res)	
Izon	C				33 0.67		2.0		0 150
	%	g/cc							
0-		•							
Оа	42 19		247 0 21			194 9			4.0 826
E	2 29			318 26		21.3			95 76
Bh	5 90	0 67'		59.1 58		52.81			2.4 20.1
Bs	2 46			51.9 41	.5 37.6 2 20.5	30.0	15.9		2.7 10.8
BC	0 67					18.8	92	/ 8	63 44
Cđ	0 26	1.58	18.8	7.3 14	8 13.5	12.5	/9	6.6	5 3 3.2
Hor-	Soil	Reaction	n	B	ases		- Acidity	/	
ızon	KCL (CaCl, H	1,0 C	a Mg	Na	K B	aCl, K	CI CE	C ECEC
		-							
Оa	2.81	3.16 3	68 11	21 2 51	0.01	0 95 7	134 3	.81 86.0	03 18 50
Е	2.66	3.14 3	85 1	11 0 28	0 01	0 08 1	5 0 9 4	28 16.5	57 575
Bh	3.63	3 92 4	53 0	81 0.26	0 01	0 16 4	098 5	68 42.2	6.92
Bs	417	4 40 5	10 0	36 0 05	0 01	0 04 2	4 4 2 1	91 24.8	38 236
BC	4 3 1	471 5	.58 0.	17 0 04	0 01	0.01	978 0	93 10 (
Cd	4 4 4	4 91 5	. 93 0.	24 0.05	0.01	0.03	5630	60 5 9	
Hor			Pe		Volume R		ients		
izon				(width in r	nm)			
	>76	76-51	51-3	38-25	25-19	19-13	13-6	6-2	Total
Oa	9 40	0.0	0.09	0.08	0.08	0 05	0 04	0.12	9.85
Е	2 23	0 0	0.33			0 70	1 17	1 24	7.74
Bh	0.05	1 88	0.63			1.31	1 89	1.96	10 24
Bs	8 54	3 42	1.17			1.19	1 91	3 38	21 88
BC	8 04	1 06	1 03			1.42	2.93	4.67	22 11
Cd	3.30	2 63	1 72			1.38	2.74	5.21	19.88

Appendix Table 3. Weighted means by horizon of soil data for the Dixfield Soil Map Unit.

Based on four horizons from four pedons.

Hor- izon	Sand 2- 05	Silt 05- 002	Clay <.002		Coars 1-0 5		Med1um 0 5- 25	Fine 25-	Fine	Fine Silt 02- 002
					Pet of	· - 7	mm		1- 05	
E	28 01				4 73		3 89	6 30		
Bsl	27 93	55 22			5 13		4 04	616		
Bs2	34 07	48 91	-		6 27		6 76			38.03
BC	34 03	48.30		7 35	6.26		5.34	7.71		34.48
Cd	30.91	50 07	-	735 725	6 26 5 97			6.56		36 64
Hor-	Org.	BD			- Water	Con	tent (Ba	Pressu	res)	
izon	С		06	0 1 0			10	2.0		5.0 15.0
	° 0	g/cc					%			
On or	A 28 90	0.21	206.9	193 4 1	784 1	762	173 7	1474	102 5 0	1.5 83.0
E	1 50	1 10				28.5		16.9		91 6.4
Bsl	3 39	0 81	64 4			448		25.8		7 5 12.3
Bs2	2 48			53 4	43.8	180	36 2	21.0		45 12.3
	0 66		281	26.9	23.8	718	20 4			98 60
	0.25		17.0				14 3			97 57
Hor-	Soil	Reaction	n	F	Bases	•••••		- Acidity	y	
izon	KCI C	aCl, H	1,0 (Ca Mg	Na	L	К В	aCl, K	CI CE	C ECEC
						•••••	meq/100g	gm		
Oa or	A 298			9.08 2				2.62 4		93 16 60
E	2 92	3 50	4 23	0.87 0	24 0 02	2 (008 1	2176	6.49 13 3	39 770
	3.77				16 0.0				83 26.1	
Bs2	4 07	435	4.93	0 26 0.	07 0.03	2	0.10 2	0.25 3		
BC	4.16				07 0.03				73 88	
Cd	4 09	4 50	5 46	0.75 0	38 0.0	3	0.13	5 01 1	10 6 3	30 2 39
_			-							
Ног			P	ercent by			•	nents		
izon					(width i	n m	m)			
	>76	76-5	1 51	-38 38-	25 25	-19	19-13	13-6	6 6-2	Total
Oa or	A 374	9.00	0.	09 0.3	22 0	.06	0 07	0 14	4 0.14	4 46
E	16.30	1 41		07 1		49	116	2.36	6 317	28 29
Bs1	1.49	0.26	0	22 0	70 0	.50	097	1.82	2 3 5 3	9.50
Bs2	0 00	0 34		12 0	77 0	.35	086	2.04	4 4 7 4	9.21
BC	0 00	0 33	0	76 1	07 0	90	1 22	2 59	9 612	12 98
Cd	2 76	0 48		48 0 :	55 0	46	0 80	1 93	3 389	11 35

Appendix Table 4. Weighted means by horizon of soil data for the Telos Soil Map Unit.

Based on four horizons from four pedons

APPENDIX B

Soil Map Unit: Chesuncook Location: Brassua Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-188 Drainage Class: moderately well drained Date: 08/88

Oa-0 to 3 cm; brown to dark brown (10YR 4/3) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and few coarse roots throughout; abrupt wavy boundary.

E/B-3 to 6 cm; light brownish gray (10YR 6/2), and dark brown (10YR 3/3) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and few coarse roots throughout; abrupt wavy boundary.

Bs1-6 to 24 cm; yellowish brown (10YR 5/8) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and common coarse roots throughout; clear wavy boundary.

Bs2-24 to 42 cm; dark yellowish brown (10YR 4/6) silt loam; weak thick platy structure parting to weak fine granular; very friable; many very fine, fine, medium, and common coarse roots throughout; clear wavy boundary.

Bs3-42 to 49 cm; dark yellowish brown (10YR 4/6) silt loam; weak thin platy structure; friable; common very fine, fine, medium and coarse roots throughout; clear wavy boundary.

BC-49 to 60 cm; light olive brown (2.5Y 5/4) silt loam; common fine distinct light brownish gray (2.5Y 6/2), and prominent dark yellowish brown (10YR 4/6) mottles; strong very coarse prismatic structure parting to weak thin platy; friable; few very fine, fine, and medium roots between peds; prism faces light brownish gray (2.5Y 6/2) with dark yellowish brown (10YR 4/6) edges; clear wavy boundary.

Cd—60 to 100 cm; olive (5Y 5/4) silt loam; common fine distinct light olive gray (5Y 6/2), and prominent yellowish brown (10YR 5/4) mottles; strong very coarse prismatic structure; firm; prism faces light olive gray (5Y 6/2) with light olive brown (2.5Y 5/6) edges.

50IL-0	CHESUN	10001	Ś	S	OIL NO	os. −13	0188	LOCATION Brassua Twp., Maine									
Depth	Hør-	Sanc		ilt	Clay	Ve		Coarse	Medii		Fine	Very		Coar		F١	
cm	Izon	(2-		05-		Coa			(0 5-		0 25-	Fine		Sil		Sı	
		0.05		002)	(<0.002			(1-0.5)	0.25	· · · · · · · · · · · · · · · · · · ·	01)	(0 1-0 (,	(0.05-0		(0 02-	,
0-3	Oa							P	et of < 2	2 mm							
3-6	E/B	196	2 60	21	12 16	2 0	1	1.04	2 4 2		5 2 5	8 01		26 5	n	41	60
6-24	Bs1	19 8		57	913	3 5		1 94 2 52	2 4 2 2 3 1		4 50	6 40		20.5		41	
24 - 42	Bs2	25 4.		08	8 50	4 5		4 11	3 36		6 38	7 05		21.9		49	
42-49	Bs2 Bs3	23 4.												20.9		43	
	BC	23 7		58	6 68	46		3 69	2 82		5 33	7 22		26 3		44	
49-60 60-100	Cd	31.4		48	622 757	27		272 506	2 72 4 50		5 08 7 11	807 798		26.3		38	
00-100	Cu	514	4 00	, , ,	1 51	0 /	2	5 00	4 50	,	<i>i</i> 11.	/ 90		22.0	0	50	1.7
	Organic				¥va	ter Cont	ent (Ba	r Pressure	s)			Avail			p	н	
	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Ca	CI I	Н,О
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cn		(1.1)	(2		11)
3	20.65	0 61	60 7	56 5	45 6	430	418	0 0	0.0	0 0	413	0 09		3 35	3 (55	4 25
3-6	4 84	0 60	613	570	457	40 7	37 9	32 5	19.0	16 6	14 3	0 26		2 85	3 :	30	3 90
6-24	2 44	0 76	68 5	63 5	50 5	437	39 5	28 0	178	153	138	0 38		3 60	3 9	95	4 4 0
24-42	1 81	0 82	50 3	451	352	31 8	29 6	162	14 5	12 1	10 5	0 28		4 00	4 1	25	4 90
42-49	1 29	1 1 3	40 6	38 0	31 2	26 8	24 4	167	112	8 6	71	0 3 5		4 20	4	35	4 90
49-60	0 63	1 42	26 8	257	23 0	199	170	117	78	59	49	0 30		4 30	4 5	50	5 00
60-100	0.21	1 66	196	190	178	164	148	98	73	49	32	0 26		4 20	4 :	50	5 40
					Ext		KCI				Vo	lume—%	Rock	Fragn	nents		
Depth	C a	Mg	Na	K	Acid	CEC	Al+H	ECEC				(Wic	dth in	mm)			
c m				me/	100g				>76	76-5	1 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-3	6 07	1 88	0 06	1 29	39 20	48 50	3 65	12 95	0 00	0 0 0	0 0 0	0 00	0 00	0 1 0	0 30	0 20	0.60
3-6	0 53	0 29	0 04	0 1 1	29 20	30 17	14 50	15 47	0 00	0.00	0 0 0 0	0 0 0	0 20	0 60	0.90	0 90	2 60
6-24	0 14	0 07	0 02	0 0 9	25 20	25 52	735	7 67	0 00	0.00	0 60	1 00	0 50	0 60	1 10	1 50	5 30
24-42	0 10	0 0 5	0 01	0 09	19 30	19 55	2 85	3 10	5 60	0.0	0 0 0	0 40	0 30	0 60	1 20	1 90	10 00
42-49	0 03	0 03	0 01	0 06	14 70	14 83	2 35	2 48	0 00	0.0	0 0 0	0 60	0 40	0 60	1 50	2 20	5 30
49-60	0 00	0 0 5	0 02	0 07	8 60	8 7 4	1 4 5	1 59	0 00	0.00	0 60	0 90	0 60	1.10	2 20	3 20	8 60
60-100	0 09	0 06	0 01	0 06	4 80	5 0 2	0 80	1 02	1 70	0 4	0 80	1 00	1.00	1 40	2 40	3 40	12 10

Soil Map Unit: Chesuncook Location: Brassua Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-288 Drainage Class: moderately well drained Date: 08/88

Oa=0 to 9 cm; very dark brown (10YR 2/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

E-9 to 15 cm; light brownish gray (10YR 6/2) silt loam; weak thin platy structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

Bhs—15 to 22 cm; dark reddish brown (5YR 3/3) silt loam; weak fine granular structure; very friable; many very fine, fine, and common medium roots throughout; abrupt wavy boundary.

Bs1-22 to 27 cm; dark yellowish brown (10YR 4/6) silt loam; weak fine granular structure; very friable; common very fine, fine, and medium roots throughout; clear wavy boundary.

Bs2-27 to 34 cm; 50% yellowish brown (10YR 5/6), and 50% dark yellowish brown (10YR 3/6) silt loam; weak fine granular structure; very friable; few very fine, fine, and medium roots throughout; clear wavy boundary.

Bs3-34 to 46 cm; dark yellowish brown (10YR 4/6) silt loam; weak fine granular structure; very friable; few very fine roots throughout; clear wavy boundary.

BC-46 to 54 cm; olive brown (2.5Y 4/4) silt loam; few fine distinct light brownish gray (2.5Y 6/2) mottles; weak thick platy structure; friable; few very fine and fine roots throughout; clear wavy boundary.

Cd—54 to 100 cm; light olive brown (2.5Y 5/4) silt loam; strong very coarse prismatic structure; firm; prism faces pale olive (5Y 6/3).

soil—	CHESUI	1000	РК			SOIL	LOCATIONBrassua Twp, Maine										
Depth cm	Hor- izon	San (2- 0.05	- (0	05- 002)	Clay (0.002)	Ve Coa (2-	rse	Coarse (1-0-5)	Mediu (0 5- 0 25)		Fine 0 25- 0 1)	Very Fine (01-0(Coarse Silt (0.05-0.02)		F11 S1 (0 02-0	lt
0-9	Оa																
9-15	Е	22 (14 66	5 7 2	11 24	3.	51	2 54	2 2 2		5 07	8 70		23 2	0	43	52
15-22	Bhs	21 3	32 61	10	17 58	4	56	3 33	2 57		4 51	635		21 2	1	39	89
22-27	Bsl	26	70 59	47	13 83	7		5 1 7	3 57		4 80	5 67		197		39	
27-34	Bs2	27 3	70 59	9 83	12 47	7		5 40	3 91		5 2 5	5 50		20 3		39	
34-46	Bs3	27 8	83 56	5 03	16 14	7	33	5 4 4	4 04		5 32	5 70		17.4	8	38	55
46-54	BC	30	10 54	177	15 13	7	88	588	434		582	6 18		19.0	6	35	71
54-100	Cd	29		1 1 5	16 75	6		5 93	4 48		5 99	6 07		17 5		36	
	Organic				w	ater Con	tent (Bar	Pressures)			Avail			n l	н	
Depth	Carbon	ВD	06	1	33	67	1	2	3	5	15	Н,О		KCI	Ca		н,о
cm	°0	g/cc	%	°, o	%	%	%	%	%	%	%	cm/cn		(11)	(2)		11)
0-9	28 88	0 17	216-1	198 9	184 7	182 2	176 8	100 4	754	650	54 8	0 24		3 20	36	5 4	4 05
9-15	2 5 5	1 0 5	374	35 5	316	28 5	26 1	214	156	10 3	9 0	0 28		2 60	32	0 3	3 90
15-22	4 97	071	66 7	599	47 2	437	412	29 1	23 9	197	184	0 29		3 25	36	0 4	4 05
22-27	4 43	0 70	679	60 4	46 4	426	399	367	23 5	217	197	0 28		3 90	41	0 4	4 60
27-34	3 40	075	618	54 3	42 5	393	36 7	27 0	20 6	173	159	0 29		4 05	43	0 4	4 70
34-46	2 1 5	0 94	471	428	34 4	30 4	278	214	178	14 5	114	0 30		4 1 5	43	5 4	4.80
46-54	1 32	1 26	29 9	278	236	214	199	167	139	10 8	79	0 2 5		4 25	44	0 4	495
54-100	0 37	1.55	191	182	16 6	156	147	13 6	110	84	48	0 21		4 20	45	0 5	5 30
					Ext		KCI					lume—%		0			
Depth	Ca	Мg	Na	K	Acıd	CEC	Al+H	ECEC				(Wi					
cm	•			me/	100g				>76	76-5	51-38	38-25	25-19	19-13	13-6	6-2	Total
0-9	9 93	2 4 5	0 06	073	45 50	58 67	4 00	17 17	0 00	0 00	0 00	0 00	0.10	0 10	0 20	0 20	0 60
9-15	1 56	0 47	0 03	0 08	18 60	20 74	8 0 5	10 19	0 00	5 10	1 70	2 30	2 20	1 50		0 30	14 60
15-22	1 29	0 35	0 04	0 1 1	32 20	33 99	9 90	11 69	0 00	0 00	0 60	0 40	0 60		1 40	1 30	5 30
22-27	0.29	0 09	0 06	0 13	32 80	33 3 7	5.25	582	0 00	0 00	0 00	1 60	0 80	0 50	170	2 20	680
27-34	0 19	0 0 5	0 01	0 10	25 60	25 95	365	4 00	0 00	0 00	0 40	0 00	0 50	1 10	2 10	2 40	6 50
34-46	0.13	0 04	0 01	0 09	17 40	1767	2 60	287	4 20	0.00	0.90	0 30	0 80		2 60	3 90	13 70
46-54	0 09	0.03	0 01	0 08	12 10	12 31	165	186	0 00	0.00	0 0 0	1 00	0 50		3 00	4 10	9 50
54-100	013	0.07	0 01	0.08	6 20	6 4 9	1 1 5	1 4 4	1 70			1 00	1 00		2 20		12 30

Soil Map Unit: Chesuncook Location: Misery Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-388 Drainage Class: moderately well drained Date: 08/88

Oa-0 to 4 cm; black (10YR 2/1) sapric material; moderate fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-4 to 11 cm; light brownish gray (10YR 6/2) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

Bh-11 to 22 cm; dark yellowish brown (10YR 4/6) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bs1-22 to 30 cm; yellowish brown (10YR 5/8) silt loam; moderate medium subangular blocky structure; friable; many very fine, fine, and medium roots throughout; clear wavy boundary.

Bs2-30 to 41 cm; yellowish brown (10YR 5/6) gravelly silt loam; moderate fine and medium granular structure; friable; common very fine, fine, and medium roots throughout; clear smooth boundary.

BC-41 to 50 cm; light olive brown (2.5Y 5/4) silt loam; common medium prominent light olive gray (5Y 6'2) mottles; strong very coarse prismatic structure parting to moderate medium subangular blocky; firm; prism faces light gray (2.5Y 7/2) with light olive brown (2.5Y 5/6) edges; clear smooth boundary.

Cd—50 to 100 cm; olive (5Y 5/4) silt loam; few fine prominent light brownish gray (2.5Y 6/2), and light olive brown (2.5Y 5/6) mottles; strong very coarse prismatic structure parting to weak fine subangular blocky; firm; prism faces light gray (5Y 7/1) with light olive brown (2.5Y 5/6) edges.

son	CHESUN	1000	РК	130388	LOCATION- Misery Twp., Maine												
Depth cm	Hor- 120n	San (2- 0.0:	- (0	011t 05- 002)	Clay (<0.002		use	Coarse (1-0-5)	Mediu (0.5- 0.25)		Fine (0 25– 0 1)	Very Fine (0 1-0 0	5)	Coar Sil (0.05-0	t	F 1 S 1 (0 02-	ilt
					1. 11 11 12 12 12 12 12 12 12 12 12 12 12			P				68.00 ID 000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
0-4	Oa																
4-11	E	17	10 68	8 64	14 26	4	22	3.58	2 51		0 4 9	6 30		25 0	9	43	55
11-22	Bh	23 :	59 57	7 61	18.80	6	65	4 3 5	3 09		4 2 5	5 2 5		13 5	9	44	02
22-30	Bsl	25 (09 5-	4 5 3	20 38	8	98	4 78	3 1 4		3 92	4 27		7 1	2	47	41
30-41	Bs2	25	11 58	\$ 55	16 34	9	09	4 79	3 06		3 79	4 38		127	9	45	76
41-50	BC	35 :	51 50	82	13 67	13	42	7 40	4 57		5 1 4	4 98		10 8	9	39	93
50-100	Cd	28 -	42 53	3 79	17 79	7	57	5 3 5	4 06		5 56	588		15 8	0	37	99
	Organie				Wa	ter Con	tent (Ba	r Pressure	s)			Avail			p	н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Ca	CI I	H,O
c m	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cm		(1.1)	(2		(11)
0-4	28 32	0 16	227 8	210 1	197 9	195 0	1939	175 9	94 2	856	74 7	0 2 2		2 5 5	2	75	3 30
4-11	3 86	071	49 9	45 6	38 7	34 8	32 4	27 9	20 5	16 0	143	0 2 2		2 90	3 :	25	3.80
11-22	4 98	0 57	88 9	784	60 3	54 4	50 8	40 4	27 5	237	207	0 3 3		3 70	3 9	95	4 50
22-30	3 94	0 59	88 6	787	611	555	52 2	32 3	26 2	20 0	181	0 36		3 95	4 2	20	4 60
30-41	3 09	0 79	613	558	44 9	393	36 4	28 6	22 6	159	14 2	0 3 3		4.05	4 :	30 .	4 85
41-50	1 54	0 97	47 6	44 2	36 9	32.2	29 0	17 5	133	10.8	89	034		4 1 5	4	35	495
50-100	0 20	1 42	23 2	21 5	176	150	12 9	122	11 5	90	53	0 2 3		4 0 5	4	30	5 2 5
					Ext		KCI				Vol	ume—%	Rocl	k Fragr	nents		
Depth	Са	Mg	Na	K	Acid	CEC	Al+H	ECEC				(Wid	th in	mm)			
c m				me/	100g				>76	76-5	51 51-38	38-25 2	5-19	19-13	13-6	6-2	Total
0 - 4	4 58	1 82	0 07	1 2 1	49 50	57 18	1 70	9 38	0 00	0 0	0 0 00	0 30	0 50	0 80	0 30	0 20	2 10
4-11	0.36	0 26	0 0 2	0 13	24 40	25 17	10 75	11 52	0 0 0	0 0	0 1 30	2 90	1 10	2 00	2 60	1 80	0 11 70
11-22	0 1 3	0 1 2	0 02	0 1 3	32 40	32 80	7 3 5	775	0 00	0 0	0 0 40	0.60	0 50	0 80	1 50	1 80	5.60
22-30	0 1 2	0 08	0 01	0 1 0	28 00	28 31	4 25	4 56	0 00	0 0	0 0 40	0 30	0.40	1 10	2 10	2 50	6 80
30-41	0 08	0 04	0 02	0 07	23 40	23 61	3 30	3 51	0 00	0 0	0 0 40	1 10	0 80	1 1 0	2 50	2 50	8 40
41-50	0 06	0 03	0 02	0.05	14 60	14 76	2 20	2 36	0 00	0 0	0 0 30	1 00	1 40	2 10	5 10	5 90	15 80
50-100	0 1 2	0 09	0 02	0 10	6 1 0	6 4 3	175	2 08	0 00	0 2	0 0 1 0	0 40	0 40	0 90	2.00	3 70	7 70

Soil Map Unit: Chesuncook Location: Moose River Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-488 Drainage Class: moderately well drained Date: 08/88

Oa-0 to 12 cm: 50% strong brown (7.5YR 5/6), and 50% very dark brown (10YR 2/2) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E/B-12 to 17 cm; 50% pinkish gray (7.5YR 6/2), 25% dark reddish brown (5YR 2/2), and 25% dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

Bhs—17 to 25 cm; dark reddish brown (5YR 2/2) silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt broken boundary.

Bs1-25 to 30 cm; dark yellowish brown (10YR 4/6) silt loam; weak fine granular structure; very friable; common very fine, fine, and common medium roots throughout; abrupt wavy boundary.

Bs2-30 to 36 cm; dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; very friable; few very fine, fine, and common medium roots throughout; clear smooth boundary.

BC—36 to 47 cm; light olive brown (2.5Y 5/6) silt loam; few fine prominent light olive gray (5Y 6/2) mottles; weak fine granular structure; very friable; few very fine, fine, and medium roots throughout; abrupt wavy boundary.

Cd-47 to 100 cm; olive (5Y 5/3) silt loam; common fine distinct light brownish gray (2.5Y 6/2), and prominent yellowish brown (10YR 5/8) mottles; strong very coarse prismatic structure; firm; prism faces light olive gray (5Y 6/2) with light olive brown (2.5Y 5/6) edges.

SOILCHESUNCOOK SOIL Nos130488									LOCATION - Moose River Twp., Maine									
Depth	Hor-	San		ult	Clay	Ve		Coarse	Medi um		Fine	Very		Coarse		Fine		
c m	1200	(2		05	Coarse				(0.5-		(0 25	Fine		Silt			Silt	
		0.0	. ,	002)	(<0.002	, (-		(1-05)	0.25	,	0.1)	(0.1-0.0	· /	(0 05-0	,		-0 002)	
		•		•••••	•••••				Pet of <	2 mm	••••••							
0-12	Oa								•									
12-17	E/B	20.98 60.84			1818 461			3 4 5	2 44		4 1 2	6 36		18 29			42 55	
17-25	Bhs	20.0		9 42	23.08			4 17	2 60		3 23	4 40		14 31			42 61	
25-30	Bs1	24 (4 27	21.68	5 91		5 09	3 74		4 38	4 93		11 80			42 47	
30-36	Bs2	25 8		1 79	22 41	5 98		5 79	4 02		4 9 5	5 06		9 53			42 26	
36-47	BC	25 5		7 46	17 01	6 37		5 3 5	3.82		4 77	5 22		12 75			44 71	
47-100	Cd	29 71		4 4 8	15 81	9 0 3		678	487		3 68	5 3 5		1478		39 70		
	Organic				Water Content		lent (Ba	ar Pressures)			Avail			р Н		н		
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KC1	Ca		н,о	
cm	0.0	g/cc	%	0,0	%	%	%	%	%	%	%	cm/cm		(11)	(2		(11)	
0-12	38 11	0 20	320.0	299 6	217 5	216.6	215-1	198 3	177 5	1179	105.6	0 39		2 70	3 5	55	3 70	
12-17	3 4 1	1 02	40.9	395	36 4	347	33 5	28 0	21.1	173	120	0.28		2 55	3 1	5	3 80	
17-25	5 69	0 4 9	116 0	108 8	92.2	88 5	871	512	36 3	26-1	236	0.42		3 20	3 5	55	4 25	
25-30	5 69	0 59	99.2	919	754	718	70 5	39 5	278	259	238	0 40		375	3 9	€5	4 5 5	
30-36	4 1 1	072	823	787	67 5	62.6	60 0	32 5	238	199	176	0 4 4		4 10	4 2	25	485	
36-47	198	0 91	56 4	54.8	48 2	438	412	274	192	148	11.1	0.40		4 30	4 5	50	5 0 5	
47-100	0 54	159	24 6	24-1	227	214	20 2	160	127	94	51	030		4 35	46	50	5 3 5	
					Ext	Ext KC			Ve			olume% Rock Fragments						
Depth	Са	Mg	Na	K	Acid	CEC	Al+H	ECEC				•						
c m				me/100g			>76		6 76-3	51 51-38	8 38-25 25-19		19-13	13-6	6-2	Total		
0-12	10 13	2 1 9	0 09	1 03	53 10	66 54	610	19 54	0.0	0 00	0 0 00	0 00	0 1 0	0 10	0 00	0.00	0 20	
12-17	0 84	0.26	0 02	0 08	23 50	24 70	11 65	12 85	0.0	0 20	0 1 90	1 80	1 30	2 2 0	2 80	1 00	0 13 00	
17-25	0 56	0 29	0 02	0 09	35 60	36 56	12 75	13 71	0.0	0 0 0	0 0 0 0	0 00	0 1 0	0 60	1 50	3 3 (5 50	
25-30	0.20	017	0 03	0 1 1	32 70	33 21	7 2 5	776	0 0	0 00	0 0 0 0	0 30	0 40	0 60	1 90	5 00	8 20	
30-36	0 09	0 06	0 01	0 0 7	27 60	27 83	3 80	4 0 3	0.0	0 0 0	0 1 30	0 50	0 20	1 1 0	3 1 0	8 50	0 14 70	
36-47	0 07	0 03	0 02	0 07	17 10	17 29	2 0 5	2 24	0.0	0 0 0	0 0 0 0	0 10	0 2 0	0.50	2 00	5 7 (8 50	
47-100	0 04	0 02	0 01	0 07	7 20	734	1 00	1 1 4	0.0	0 0 0	0 0 50	0 40	0 30	0.90	2 40	5 3(980	

Soil Map Unit: Chesuncook Location: Thorndike Twp., Somerset County, Maine Described By: J.W. Miller and R.V Rourke Soil Survey # S88-ME-130-588 Drainage Class: moderately well drained Date: 09/88

Oa-0 to 5 cm; very dark brown (10YR 2/2) sapric material; weak fine granular structure; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

E/B—5 to 15 cm; 50% light brownish gray (10YR 6/2), and 50% dark reddish brown (5YR 3/3) gravelly silt loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bh-15 to 19 cm; brown to dark brown (7.5YR 4/4) silt loam; weak fine granular structure; very friable; many very fine, fine, and medium roots throughout; clear wavy boundary.

Bs1-19 to 23 cm; dark yellowish brown (10YR 4/6) silt loam; weak medium platy structure; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

Bs2-23 to 32 cm; dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; very friable; few very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

Bs3—32 to 41 cm; dark yellowish brown (10YR 4/4) loam; weak medium platy structure; very friable; few very fine, fine, and medium roots throughout; clear wavy boundary.

BC-41 to 49 cm; olive brown (2 5Y 4/4) silt loam; few fine distinct light brownish gray (2.5Y 6/2) mottles; weak medium platy structure; very friable; few very fine and fine roots throughout; abrupt smooth boundary.

Cd-49 to 100 cm; olive (5Y 5/3) silt loam; strong very coarse prismatic structure; firm.

SOIL -	CHESUN	1000	K			SOIL	Nos.—	130588		I	OCAT	ION ~	Thorn	dike	Twp.	, Mai	ne
Depth cm	Hor- rzon	San (2 0 0 5	(0	611t 05 - 002)	Clay (+ 0 002)		irse 1)	Coarse (1-0 5)	Mediu (0 5- 0 25)		Fine (0 25– 0 1)	Very Frnc (010	: 05)	Coar Silt (0 05-0	02)	Sr (0.02	0 002)
0-5	() a							1	Pet of < 2	mm							
5-15	E/B	26 9	98 54	5 87	17 15	9	37	4 83	3 07		4 31	5 40		127	3	43	īđ
15-19	Bh	27 1) 43	12 38	8		5 94	3 83		4 50	4 56		11 1		49	
19-23	Bsl	29 4		68	13 92	9		6 34	4 37		4 94	4 4 5		14 2		42	
23-32	Bs2	33 1		77	13 06	12		8 20	4 58		4 42	3 82		14 5		39	
32-41	Bs3	36 6		53	15 82	13		9 84	5 22		4 53	3 78		8 8 8		38	
41-49	BC	34 1) 47	15 39	10		8 66	5 02		5 16	4 68		13.2		37	
49-100	Cd	26 5		2 56	20 85	7		5 18	4 01		5 29	5 10		14 3		38	
	Organic				Wa	ater Con	tent (Ba	Pressures				Avai	í.		n	н	
Depth	Carbon	BD	06	I	33	67		2	3	5	15	H,O		KCI	Cat		н,о
cm	° 0	g/cc	0,0	%	0,0	%	%	0,0	0.6	%	%	cm/ci		(1:1)	(2		11)
0-5	25 61	0 23	144 4	140 4	136 9	135 8	133 1	0 0	0 0	96 8	80 9	0 14	ļ	3 7 5	4 3	5	4 60
5-15	3 93	0 68	47 0	44 8	39 0	36.4	34 7	32.9	21.9	194	16 0	0 20		3 3 5	4 (4 80
15-19	4 37	0 72	64 6	60 8	47 5	42 6	40 6	35 3	23 4	20 9	18 0	0 31		3 90	4 3	0	4 95
19-23	2 99	0 86	58 3	54 5	43 8	38 7	36 2	23 2	21 9	176	150	0 34		4.05	4 3		5 00
23-32	2 13	0 91	512	48 7	39 5	34 5	31 5	24 0	179	14.0	122	0 33		4 1 5	4 4	0	5 10
32 - 41	1 19	1 12	36 5	35 2	30 5	27 5	25 5	151	14 0	117	8 1	0 30)	4 25	4 4		5 2 5
41-49	0 74	1 52	20 4	199	18 4	170	15 5	137	12 4	10 4	60	0 21		4 40	4.6		5 4 5
49-100	0 37	1 62	17.6	171	16 3	15 5	14 8	14 5	13 2	10 3	5 0	0 20)	4 2 5	4 8		5 8 5
					Ext		KCI				Vo	olume—•	6 Rock	Fragm	ents		
Depth	Ca	Mg	Na	K	Acid	CEC	Al+H	ECEC									
c m				me/	100g				>76	76-5	1 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-5	12 48	2 55	0 08	1 11	37 00	53 22	2 70	18 92	0 00	0.0	0 0 0	0 00	0 00	0 10	0 20	0 20	0 50
5-15	3 84	0 63	0 0 2	0.11	23 50	28 10	6 55	11 15	6 50	1 4	0 0 0	1 70	1 80	1 90	3 80	3 10	20 20
15-19	1 33	0 26	0 02	0 14	23 00	24 75	4 15	5 90	0 00	0.0	0 0 00	0 00	0 10			2 10	
19-23	0 73	0 15	0 02	0 09	18 20	19 19	3 00	3 99	0 00	0.0		1 50	0 30			3 20	
23-32	0 34	0 08	0 01	0 08	17 40	17 91	2 10	2 61	0 00	0.0		1 50	0 70			4 70	
32-41	0 23	0 06	0 01	0 07	12 00	12 37	1 70	2 07	0 00	0.0		1 00	0 50		3 10	4 20	
41-49	0 12	0 03	0 02	0 07	7 90	8 1 4	0 90	1 14	0 00	1 3		0 90	0 60			4 10	
49-100	0 87	0 55	0 03	0 15	2 80	4 40	0 80	2 40	0 80	1 1		0 80	0.80		2 20	2 80	

Soil Map Unit: Colonel Location: No. 14 Plt., Washington County, Maine Described By: D.E. Wilkinson, K.J. LaFlamme, and R.V. Rourke Soil Survey # S89-ME-150-389 Drainage Class: somewhat poorly drained Date: 07/89

A-0 to 7 cm; black (5YR 2/1) sapric material; weak very fine granular structure; friable; common very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

E-7 to 20 cm; light gray to gray (10YR 6/1) gravelly fine sandy loam; weak medium platy structure; very friable; common very fine, fine, and few medium roots throughout; abrupt broken boundary.

Bh--20 to 33 cm; dark reddish brown (5YR 3/4) gravelly loam; weak fine and medium granular structure; very friable; common very fine, fine, and few medium roots throughout; clear wavy boundary.

Bs1-33 to 49 cm; yellowish brown (10YR 5/6) gravelly fine sandy loam; many coarse prominent light olive brown (2.5Y 5/4), common faint strong brown (7.5YR 5/6), and prominent light olive gray (5Y 6/2) mottles; weak medium platy structure; friable; few very fine and fine roots throughout; clear wavy boundary.

Bs2-49 to 57 cm; yellowish brown (10YR 5/6) gravelly fine sandy loam; common coarse prominent light olive gray (5Y 6/2), and many reddish brown (5YR 4/4) mottles; weak thick platy structure; friable; clear wavy boundary.

BC—57 to 67 cm; light olive brown (2.5Y 5/4) fine sandy loam; common medium distinct olive (5Y 5/3) mottles; weak thick platy structure; friable; few prominent yellowish red (5YR 4/6) discontinuous iron stains in root channels, and dark reddish brown (5YR 2/2) patchy oxide coats on upper surfaces of peds; gradual wavy boundary.

Cd—67 to 100 cm; olive brown (2.5Y 4/4) fine sandy loam; moderate very coarse prismatic structure parting to moderate medium and thick platy; firm; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/6) edges; few prominent black (5YR 2/1) discontinuous oxide coats on faces of peds.

SOIL-	COLONI	÷L				SOIL	Nos —	150389		I.	.OCATI	ION—N	lo. 1	4 Plt,	Maii	ne	
Depth cm	Hor- izon	San (2- 0.05	. (0	olt 05- 002)	Clay (>0.002	Ve Coa) (2-	irse	Coarse (1-0-5)	Mediu (0 5– 0 25)	• (Fine (0.25– (0.1)	Very Fine (0 1-0 (Coar: Silt (0 05-0		F 11 S1 (0 02-0	lt
								р	ot of < 2	mm							
0-7	А																
7-20	Е	49.4	2 47	09	3 49	6 -	41	7 94	8 8 8		13 56	12 63	3	24 5	9	22	50
20-33	Bh	477	0 4-	1 26	8 04	5	76	8 98	9 06		1283	11 07	7	20 9	8	23	28
33-49	Bsl	54.0	5 39	9 04	6 91	10	34	10 67	9 69		13 06	10 29)	199	5	19	09
49-57	Bs2	50 2	4 43	3 90	5 86	7 (02	9 1 9	917		1344	11.42	2	22 6	3	21	27
57-67	BC	47 2	22 48	3 20	4 58	8	12	8 36	768		11 32	11 74	1	237	6	24	44
67-100	Cd	44 5	56 50	82	4 62	7	27	731	6 6 1		10 89	12 48	3	26 6	8	24	14
	Organic				Wa	ter Cont	ient (Ba	r Pressure	s)			Avaıl			n l	4	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	CaC		4,0
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cn		(1.1)	(21		11)
0-7	15 66	0 34	133 5	130 5	122 5	118 8	117 5	44 3	36 3	286	24 0	0 36		3 20	35	5 4	1 10
7-20	0 84	1 39	293	289	26.1	21 2	185	91	66	46	43	034		3 3 5	37	5 4	4 80
20-33	2 57	0 94	50 8	482	414	393	36 9	158	14 0	112	99	036		3 90	42	0 9	5 00
33-49	168	115	331	317	257	22 0	195	118	10 5	85	68	0 29		4 3 5	46	0 5	5 50
49-57	143	1.13	39 0	377	316	294	254	110	94	77	65	0 35		4.50	47	0 5	5 50
57-67	0 56	142	289	284	24 9	20 8	161	73	56	41	32	036		4 40	47	5 5	5 5 5
67-100	019	173	169	161	14 4	121	95	61	46	32	23	0 24		4 40	48	5 5	580
					Ext		KC1					lume—%					
Depth	Ca	Mg	N a	ĸ	Acid	CEC	Al+H					(Wi					
c m				me/	100g				>76	76-5	1 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-7	3 60	1 00	0 01	0 20	46 30	51 11	515	9 96	0 00	510	0 40	0 80	0 80	040	0.90	1 90	10 30
7-20	040	0 1 0	0 01	0 01	8 90	942	3 5 5	4 07	3 30	170	2 2 0	1 60	0 70	1 00	1 90	3 60	16 00
20-33	0 40	0 1 0	0 01	0 01	26 70	27 22	3 10	3.62	3 30	170	2 20	1 60	0 70) 100	1.90	3 60	16 00
33-49	0 20	0 01	0 01	0 01	19 80	20 03	1 00	1 2 3	0 00	3 0	0 40	2 90	1 70	210	3 10	5 50	18 70
49-57	0 10	0 01	0 01	0 01	19 10	19 23	075	088	0 00	1 3	3 00	3 60	1 90	160	3 50	6.10	21 00
57-67	0 10	0 01	0 01	0 01	8 60	873	0 65	078	0 00	0.00	0 90	0 30	0 80	1 00	2 80	4 70	10 50
67-100	0 1 0	0 01	0 01	0 01	4 50	4 63	0 50	063	0 00	0.00	0 0 0	0 70	0 40	1 10	2 00	3 10	7 30

 $\frac{3}{3}$

Soil Map Unit: Colonel Location: Twp. 18, Washington County, Maine Described By: K.J. LaFlamme, S.E. Lee, D.E. Wilkinson, and R.V Rourke Soil Survey # S89-ME-150-489 Drainage Class: somewhat poorly drained Date: 09/89

Oa-0 to 6 cm; dark reddish brown (5YR 2/2) exterior, and black (5YR 2/1) crushed sapric material; moderate very fine granular structure; very friable; many very fine, fine, medium, and common coarse roots throughout; abrupt wavy boundary.

E-6 to 16 cm; gray (5YR 5/1) very stony fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, common medium, and few coarse roots throughout; abrupt broken boundary.

Bh—16 to 20 cm; reddish brown (5YR 4/4) gravelly fine sandy loam; moderate very fine and fine granular structure; very friable; common very fine, fine, and medium roots throughout; clear wavy boundary.

Bs1-20 to 30 cm; dark yellowish brown (10YR 4/6) gravelly fine sandy loam; weak fine granular structure; very friable; common very fine, fine, and medium roots throughout; clear smooth boundary.

Bs2-30 to 39 cm; 95% yellowish brown (10YR 5/6), and 5% grayish brown (10YR 5/2) sandy loam; common medium distinct grayish brown (10YR 5/2), and coarse prominent brown to dark brown (7.5YR 4/4) mottles; weak medium platy structure parting to weak very fine and fine granular; very friable; few very fine and fine roots throughout; abrupt smooth boundary.

BC-39 to 51 cm; light olive brown (2.5Y 5/6), fine sandy loam; common coarse prominent light brownish gray (2.5Y 6/2), and faint yellowish brown (10YR 5/6) mottles; weak very coarse prismatic structure parting to moderate thin and medium platy; friable; few very fine and fine roots throughout; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/6) edges; abrupt smooth boundary.

Cd—51 to 100 cm; olive (5Y 5/3), fine sandy loam; common coarse prominent yellowish red (5YR 4/6), and faint light olive gray (5Y 6/2) mottles; moderate very coarse prismatic structure parting to weak thin and medium platy; firm; prism faces grayish brown (2.5Y 5/2) with yellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) edges.

COLONI	SI.				SOIL	Nos.—	150489			LOCAT	ION—1	wp.	18, N	laine		
Hor-				Clay			Coarse			Fine						
120N																
									-	,			4 100 Lancester 100			,
() a	••••						<i>p</i> .	GUOI < .	2 mm							
	57 0		7 78	1 79	4	13	9.93	13.20	9	19.02	11.56	á	17.5	6	19	72
Cd				8 38			8 82			19 61						
0				Wa	tor Con	ant (Da	r Drangura				A.v.o.1					
								,								
						-										H ₂ O 11)
																3 80
																4 60
100 C																4 85
																5.15
																5 40
																5 50
0 14	1.69	170	15.8	136	121	10.6	93	12	54	51	0.21		4 70	4 8	50	610
				Ext		KC1							0			
			me/	100g				>76	76-:	51 51-38	38-25	25-19	19-13	13-6	6-2	Total
6 40	2 60	0 10	0 60	62 30	72 00	4 80	14 50	0 00	0 0 0	00 0 00	0 00	0 20	0 1 0	0.01	0 0 1	0 32
0 20	0 1 0	0 01	0 01	9 60	9 92	3 5 5	3 87	32 10) 32	20 1 00	1 20	1 20	0 60	0 60	1 00	40 90
0 20	0 01	0 01	0 1 0	20 90	21 22	3 1 5	3 47	0 00	92	0 0 00	3 10	3 30	2 2 0	3 80	6 50	28 10
0 01	0 01	0 01	0 10	16 00	16 13	1 00	1 1 3	2 60) 12	0 0 50	1 50	1 10	2 00	2 60	7 90	19 40
0 01	0 01	0 01	0 01	9 60	9 64	070	074	0 00	0 0 0	0 0 0 00	0 60	0 50	0.90	1 50	4 80	8 30
0 01	0 01	0 01	0 01	6 10	614	0.60	0 64	2 20	0 6	0 0 00	0 40	0 50	0.80	1 50	4 00	10 00
0 01	0 01	0 01	0 01	4 70	4 7 4	0 65	0 69	0 00	10	0 0 40	1.80	0 70	0 80	2 20		10 70
	000 E Bh Bs1 Bs2 BC Cd Organic Carbon % 30 87 1 08 2 04 1 45 0 71 0 31 0 14 Ca Ca 6 40 0 20 0 20 0 01 0 01 0 01	Izon (2- 0 0) Oa	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120n $(2 - 005)$ 0002) Oa E 57 93 37 28 Bh 51 43 36 85 Bs1 57 12 33 84 Bs2 63 56 29 58 BC 61 79 29 72 Cd 55 78 35 84 Organic	120n $(2 - 005 - 002)$ 0 05) 0 002) (<002)	1200 $(2 - (0.05 - 0.002) (< 0.002)$ Correspondence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120n $(2 - 005)$ (002) (< 002) $(2 - 1)$ Oa E 57 93 37 28 4 79 4 13 Bh 51 43 36 85 11 72 5 63 Bs1 57 12 33 84 9 04 5 35 Bs2 63 56 29 58 6 86 7 58 BC 61 79 29 72 8 49 6 35 Cd 55 78 35 84 8 38 6 28 Organic Water Content (Ba Carbon BD 06 1 33 67 1 % g/cc % % % % % 30 87 0 18 252 4 236 4 224 6 219 7 215 3 1 108 109 31 6 29 3 23 5 20 4 19 6 2 204 106 44 6 41 6 34 8 31 2 27 9 1 45 109 39 5 36 5 29 3 25 4 22 4 0 71 125 271 23 7 18 3<	1201 $(2 - 005 - 0002)$ (~ 0002) $(2 - 1)$ $(1 - 05)$ Oa Coarse Coarse Coarse Coarse Coarse Coarse Coarse Coarse Coarse Bs 57 93 37 28 4 79 4 13 9 93 Bh 51 43 36 85 11 72 5 63 8 96 Bs1 57 12 33 84 9 04 5 35 9 48 Bs2 63 56 29 58 6 86 7 58 11 54 BC 61 79 29 72 8 49 6 35 9 82 Cd 55 78 35 84 8 38 6 28 8 82 Organic Water Content (Bar Pressure: Carbon BD 06 1 33 67 1 2 $0 0 1$ 0 18 252 4 236 4 224 6 <t< td=""><td>1201 $(2 - (0.05 - (0.002) (-0.002) (2 - 1) (1 - 0.5) 0.025)$ $(-0.05) 0.002 (-0.002) (2 - 1) (1 - 0.5) 0.025$ Oa E 57.93 37.28 4.79 4.13 9.93 13.2 Bh 51.43 36.85 11.72 5.63 8.96 11.3 Bs1 57.12 33.84 9.04 5.35 9.48 13.4 Bs2 63.56 29.58 6.86 7.58 11.54 14.3 BC 61.79 29.72 8.49 6.35 9.82 13.7 Cd 55.78 35.84 8.38 6.28 8.82 10.8 Organic </td><td>Hor- izon Sand Silt Clay Very Coarse Medrum 005) 0002) (~ 0002) (~ 0002) ($2-1$) ($1-05$) 025) Pet of < 2 mm- Oa E 57 93 37 28 4 79 4 13 9 93 13 29 Bh 51 43 36 85 11 72 5 63 8 96 11 33 Bs1 57 12 33 84 9 04 5 35 9 48 13 41 Bs2 63 56 29 58 6 86 7 58 11 54 1 43 37 BC 61 79 29 72 8 49 6 35 9 82 13 78 Cd 55 78 35 84 8 38 6 28 8 82 10 85 Organic </td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	1201 $(2 - (0.05 - (0.002) (-0.002) (2 - 1) (1 - 0.5) 0.025)$ $(-0.05) 0.002 (-0.002) (2 - 1) (1 - 0.5) 0.025$ Oa E 57.93 37.28 4.79 4.13 9.93 13.2 Bh 51.43 36.85 11.72 5.63 8.96 11.3 Bs1 57.12 33.84 9.04 5.35 9.48 13.4 Bs2 63.56 29.58 6.86 7.58 11.54 14.3 BC 61.79 29.72 8.49 6.35 9.82 13.7 Cd 55.78 35.84 8.38 6.28 8.82 10.8 Organic	Hor- izon Sand Silt Clay Very Coarse Medrum 005) 0002) (~ 0002) (~ 0002) ($2-1$) ($1-05$) 025) Pet of < 2 mm- Oa E 57 93 37 28 4 79 4 13 9 93 13 29 Bh 51 43 36 85 11 72 5 63 8 96 11 33 Bs1 57 12 33 84 9 04 5 35 9 48 13 41 Bs2 63 56 29 58 6 86 7 58 11 54 1 43 37 BC 61 79 29 72 8 49 6 35 9 82 13 78 Cd 55 78 35 84 8 38 6 28 8 82 10 85 Organic	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Oa-0 to 10 cm; black (5YR 2/1) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-10 to 16 cm; light brownish gray (10YR 6/2) silt loam; weak thin platy structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

Bh—16 to 26 cm; brown to dark brown (7.5YR 4/4) silt loam; weak medium platy structure parting to weak medium granular; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

Bs—26 to 33 cm; dark yellowish brown (10YR 4/4) fine sandy loam; common fine prominent yellowish red (5YR 5/8), and distinct grayish brown (10YR 5/2) mottles; moderate medium platy structure; very friable; common very fine, fine, and many medium roots throughout; clear wavy boundary.

BC—33 to 44 cm; light olive brown (2.5Y 5/4) sandy loam; common medium distinct light olive brown (2.5Y 5/6), and olive gray (5Y 5/2) mottles; weak coarse prismatic structure; friable; few very fine and fine roots throughout; abrupt smooth boundary.

Cd—44 to 100 cm; olive (5Y 5/4) gravelly fine sandy loam; common medium prominent dark yellowish brown (10YR 4/6), and fine distinct light olive gray (5Y 6/2) mottles; moderate coarse prismatic structure; very firm; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/8) edges.

SOIL—	COLONI	31				SOIL	Nos —	130489			LOCAL	ION Pa	ırlin	Pd ′	ľwp.	Mai	ne
Depth	Hor- izon	San (2-		ult 05-	Clay	V. Co:		Coarse	Medu (0.5		Fine (0 25-	Very Fine		Coar			ne ilt
		0.05		002)	(<0.002) (2-	-1)	(1-05)	0 25)	01)	(0.1~0.05		0 05-0	02)		0 002)
									Pet of < 1	2 mm							
0-10	Oa																
10-16	E	16 8		3 94	9 21	1		2 40	3 21		4 80	5 1 8		257		48	
16 - 26	Bh	31-1		7 58	11 27	4		5.25	5.96		8.11	7 2 3		23 9		33	63
26-33	Bs	54 2		9 57	6 1 5	7		9 96	112		14 75	11 09		231		16	47
33-44	BC	59 4		7 21	3 30		82	10 64	12 0		16 42	11 57		232	6	13	95
44-100	Cd	51 8	40	0.81	7 34	9	80	10.88	10 6	4	12 50	8 0 3		16.6	0	24	21
	Organic				¥va	ter Con	tent (Ba	r Pressur	es)			Avail			n	н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Ca		H,O
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cm		$(1 \ 1)$	(2		(11)
0-10	40.49	0.12	286 0	270 1	255 7	245.9	234 6	136 3	1193	85 2	80 5	0 2 3		2 90	3	5	3 6 5
10-16	2 47	1 04	42 4	40 8	37 5	33 5	28 8	196	14 7	10 0	8 0	0 34		3 20	3 6	55	4 2 5
16-26	3 16	077	671	63 1	591	577	573	192	151	122	114	0 40		3 6 5	3 8		4 4 5
26-33	1 61	0 96	46 0	43 9	40.4	398	38 3	8 2	69	58	5 2	0 37		4 00	4	5	4 80
33-44	0 46	1 4 7	20 5	195	153	129	10 6	4 2	36	29	2 4	0.25		4.30	4 4	15	5.30
44-100	0 16	1 63	147	13 5	122	10 6	91	6 5	5 2	39	2 2	0 1 8		4 1 5	4 7	0	5 95
					Ext		KCI				Vo	lume—%	Rock	Fragn	nents		
Depth	Ca	Mg	Na	K	Acid	CEC	Al+H	ECEC				(Widt	h in	mm)			
c m				me/	100g	•••••			- >76	5 76-	51 51-38	38-25 2	5-19	19-13	13-6	6-2	Total
0-10	4 50	1 20	0 01	1 00	70 40	77 11	8 20	14 91	0 00	0 0 0	00 0 00	0 00	0 00	0 01	0.01	0.0	0.03
10-16	0 10	0.01	0 01	0 01	17 30	17 43	7 85		0 00				0 10		0.20	0 4 (
16-26	0 10	0 01	0 01	0 1 0	29 10	29 32	4 4 5	4 67	0 00	0 0 0	00 0 00		0 40		0.90	1 50	
26-33	0 10	0 01	0 01	0 01	18 70	18 83	1 95		3 80	0 0 0	00 0 00		0 60		1 60		
33-44	0 01	0 01	0 01	0 01	6 70	674	0 80	0 84	0.00	0 0 0	00 1 30	1 10	1 00	1 10	2 40	4 50	0 11 40
44-100	0.60	0 20	0 01	0 01	2 90	3 7 2	0 4 5	1 27	0 00	D 1 5	50 0 10	2 40	1 90	2 70	5 20	940	23 20

Soil Map Unit: Colonel Location: Hobbstown Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S89-ME-130-589 Drainage Class: somewhat poorly drained Date: 08/89

Oa-0 to 4 cm; black (10YR 2/1) sapric material; weak very fine and fine granular structure; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

E/B-4 to 9 cm; grayish brown (10YR 5/2), and dark reddish brown (5YR 3/4) silt loam; weak thin platy structure parting to weak very fine and fine granular; very friable; many very fine, fine, and medium roots throughout; abrupt smooth boundary.

Bh—9 to 14 cm; brown to dark brown (7.5YR 4/4) silt loam; weak very fine and fine granular structure; very friable; many very fine, fine, and many medium roots throughout; clear wavy boundary.

Bs1-14 to 26 cm; dark yellowish brown (10YR 4/4) silt loam; common fine prominent dark reddish brown (5YR 3/3), and light olive gray (5Y 6/2) mottles; weak fine granular structure; very friable; few very fine, fine, and many medium roots throughout; clear smooth boundary.

Bs2-26 to 48 cm; dark yellowish brown (10YR 4/4) silt loam; few medium distinct dark yellowish brown (10YR 4/6), common fine prominent light brownish gray (2.5Y 6/2), and many coarse faint pale brown (10YR 6/3) mottles; weak thin platy structure; very friable; few very fine, fine, and medium roots throughout; clear smooth boundary.

BC-48 to 56 cm; olive brown (2.5Y 4/4) loam; common fine and medium distinct light brownish gray (2.5Y 6/2), and medium prominent dark yellowish brown (10YR 4/6) mottles; moderate very coarse prismatic structure parting to moderate thin platy; friable; few very fine, fine, and medium roots between peds; olive (5Y5/3) prism face; abrupt smooth boundary.

Cd—56 to 100 cm; light olive brown (2.5Y 5/4) loam; common medium prominent light olive gray (5Y 6/2), and dark yellowish brown (10YR 4/6), mottles; moderate very coarse prismatic structure parting to moderate medium platy; friable; few fine roots between peds; grayish brown (2.5Y 5/2) prism faces with yellowish brown (10YR 5/8) edges.

SOIL—	COLONE	ΞL.				SOIL 1	Nos	130589		ļ	.OCA f	10N—1	lobbs	stown	Twp	., Ma	ine
Depth	Hor-	San		ilt	Clay	Ve		Coarse	Mediu		Fine	Very		Coar		Fi	
c m	izon	(2-		05-		Coa			(0 5-		(0 25-	Fine		Silt		Sı	
		0.05		002)	(<0.002)			(1-0.5)	0.25)		01)	(0]-0((0 05-0		(0 02-	
				•••••				þ	et of < 2	2 mm							
0-4	Oa			20			0	6.27			0.75	0.00		22.4	•		
4-9	E/B	32 2		28	11 50	41		5 27	4 21		9 75	8 89		22.6		33	
9-14	Bh	36 7) 66	12 57	49		5 8 5	6 26		10.66	9 02		21 3		29	
14-26	Bsl	31.8		5 1 1	13 06	4 1		4 42	4 93		9 25	9 07		23 6		31	
26-48	Bs2	37 :		0.11	12 67	4 3		4 80	5 86		11 59	10 61		22 4		27	
48-56	BC	40.8		1 95	11 23	2 5		4 17	6 46		14 82	12.85		23 1		24	
56-100	Cd	38 0	91 10	9 61	11 48	4 5	5.2	5 74	6 66		11 87	10 12	2	214	7	28	14
	Organic				Wa	er Cont	ent (Ba	r Pressure	s)			Avail			n	н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Cat		0,F
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cr		$(1 \ 1)$	(2		11)
0-4	21 76	0 36	112 9	107 3	105 1	103 9	953	55 8	50 7	44 8	40 2	0 24		4 20	4.4	15	4 85
4-9	4 46	0 86	50 0	457	40.4	371	333	217	17 5	14 5	126	0 28		4 00	4 5		5 20
9-14	3 26	0 86	56 3	52.4	43 4	38 8	36 3	22 2	16 4	133	120	0 3 5		4 20	47		5 5 5
14-26	2 1 1	0 95	511	47 6	39.1	34 1	32 0	178	14 0	107	93	0 36		4 35	4 8		5 80
26-48	1 4 5	1 04	40.9	38 1	32 5	29 5	25 9	12 9	110	8 5	72	0 32		4 40	4 9		5 00
48-56	0 69	1 4 3	278	26 8	23 5	21 8	21 0	101	86	67	46	0 32		4 4 5	4 9		6 1 5
56-100	0 31	1 63	21 5	20 3	18 0	167	151	98	8 5	64	37	0 27		4 3 5	4 8		6 30
					Ext		KCI				Vo	lume—%	Rock	Fragn	nents		
Depth	Са	Mg	Na	K	Acid	CEC	Al+H	ECEC				(W1	dth in	mm)			
c m				me/	100g				>76	76-	51 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-4	23.30	4 20	0 01	0 50	38 50	66 51	0 4 5	28 46	0 00	0 0	00 0 00	0 00	0 00	0 10	0 10	0 50	0 70
4-9	8 90	1 70		0 10	20 50	31 21	0 70	11.41	0 00	0.0	0 0 00	0 00	0 30		0 80		
9-14	4 60	0 80		0 10	25 10	30 61	1 00		0 00	0.0	0 0 00	0 00	0 00		1 30		
14-26	2 60	0 40	0 01	0 01	18 80	21 82	0 80		0 00				0 10		1 00		
26-48	2 00	0 30	0 01	0 10	14 20	16 61	0 65		0 00	3 5	0 0 00		0.20		1 40		
48-56	1 20	0.20	0 01	0 10	9 30	10 81	0 5 5		0 00				0 00		0 60		
56-100	0 90	0 20	0.01	0 10	6 00	7 21	0 45		2 00				0 40		1 10		
									E. Series								

Maine Agricultural and Forest Experiment Station Technical Bulletin 155

Soil Map Unit: ColonelSoil Survey # S89-ME-130-689Location: Carrying Place Twp., Somerset County, MaineDrainage Class: poorly drainedDescribed By: J.W. Miller, L. Krall, and R.V. RourkeDate: 08/89

Oa-0 to 8 cm; black (10YR 2/1) sapric material; weak very fine and fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-8 to 11 cm; light brownish gray (10YR 6/2) gravelly fine sandy loam; weak thin platy structure; very friable; many very fine, fine, and medium roots throughout; abrupt broken boundary.

Bh—11 to 20 cm; dark reddish brown (5YR 3/3) loam; weak very fine and fine granular structure; very friable; many very fine, fine, and medium roots throughout; abrupt irregular boundary.

Bs1-20 to 27 cm; yellowish red (5YR 5/6) loam; few fine prominent light brownish gray (2.5Y 6/2) mottles; weak fine granular structure; very friable; many very fine, fine, and medium roots throughout; abrupt irregular boundary.

Bs2-27 to 35 cm; brown to dark brown (7.5YR 4/4) fine sandy loam; common fine prominent light olive gray (5Y 6/2), and few yellowish brown (10YR 5/8) mottles; weak fine granular structure; very friable; many very fine and fine roots throughout; abrupt smooth boundary.

BC—35 to 46 cm; olive brown (2.5Y 4/4) fine sandy loam; common medium prominent light olive gray (5Y 6/2), and yellowish brown (10YR 5/8) mottles; weak fine and medium subangular blocky structure; friable; few very fine and fine roots throughout; clear smooth boundary.

Cd—46 to 100 cm; olive (5Y 4/3) loam; common medium faint olive (5Y 5/3), and prominent yellowish brown (10YR 5/8) mottles; moderate very coarse prismatic structure parting to weak medium and thick platy; firm; prism faces light brownish gray (2.5Y 6/2) with light olive brown (2.5Y 5/6) edges; few prominent dark reddish brown (5YR 3/4) discontinuous stains on faces of peds.

SOIL-	COLONI	EL				SOIL	Nos.—	130689		I	JOCATI	ON-C	Carryi	ing Pl	. Tw	р., М	aine
Depth cm	Hor- izon	Sar (2- 0 0:	- (0 5) 0	Gilt 05- 002)	Clay (<0 002)	Coa) (2-	2ry arse -1)	Coarse (1-0-5)	Mediu (0 5- 0 25)		Fine (0 25- 0 1)	Very Fine (0 1-0	: 05) (Coar Sil (0.05–0	t 0.02)	F 11 S 1 (0 02-	lt 0 002)
~ ^	0							P	Get of < 2	mm							*******
0-8	O a	40.	. .	4 91	6 4 0	2	44	6.17	971		16 48	13 8		20.0	-	24	~ .
8-11	E	48 0		* 91 8 30	648 1446		83	4 4 8	6 86		11 99	11 08		20 8 21 1		24 27	
11-20	Bh	42 0		7 62	9 72		36	6 4 5	7 14		12 61	11.10		23 8		23	
20-27 27-35	Bsl Bs2	42 0		7 11	6 58		01	5 91	8 37		15 08	12.94		23 8		25	-
35-46	BS2 BC	49 (4 00	633		35	713	8 81		15.64	12 74		21 7		23	-
46-100	Cd	49 (2 90	10 32		53	6 1 9	8 2 3		14 44	12 39		21 4		22	
	Organic				Wa	ter Con	tent (Ba	r Pressure	s)			Avai			p l	H	
Depth	Carbon	BD	06	1	33	67	1	2	-´3	5	15	н,о		KCI	Cat		4,0
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cr		(1 1)	(2)		1.1)
0-8	35 97	0 14	3174	269 1	256 3	2514	247.5	1198	98 9	84 6	763	0 27		285	32	0 3	3 70
8-11	1 92	0.91	34 1	31 0	25.9	23 5	22 5	122	96	6.7	61	0 23		245	29	0 3	3 5 5
11-20	5 04	0 61	628	578	50 3	483	458	23 2	21 1	176	166	0 2 5		3.30	35	5 4	25
20-27	5 01	0 58	715	62 1	524	515	478	22 6	20 8	186	178	0 26		4 1 5	42	5 4	75
27-35	2 37	096	417	36 9	28 1	23 3	198	138	124	103	89	0 27		4 3 5	45	5 5	5 10
35-46	1 16	1 10	373	336	272	224	180	91	7.2	62	51	0 31		4 30	46	0 3	5 20
46-100	0 37	148	227	20.8	180	14 5	12 9	8 1	66	53	35	0 26		4 2 5	45	5 5	5.50
					Ext		KC1					ume—%					
Depth cm	C a	Mg	N a	K me/	Acid	CEC	Al+H	ECEC	>76		51-38						
					-												
0-8	8 50	3 20		090	75 70	88 31	3 3 5	15 96	0.00	0.0		0.00	010		0 01	0 01	013
8-11	0 20	030		0 01	15 50	16.02	545	597	0.00	0 0	-	160	2 60		2 30	2 30	
11-20	0 1 0	0 20		010	45 80	46.21	11 45	-	0 00	14		0 50	0 20		0.60	1 50	
20-27	0 01	0 01	0 01	0 01	41 30	41 34	2 60		0 00	00		0 00	010		0 70	3 60	
27-35	0 01	0 01	0 01	0 01	22 40	22 44	1 2 5	1 29	0 00	0 0		070	0.10		1 30	4 70	
35-46	0 01	0.01	0 01	0 01	12 70	12.74	090		0 00	0 0		080	0.30		3 00	5 90	
46-100	0 01	0.01	0 01	0 01	670	674	0 80	084	1.90	0 0	0 80	0.50	0.80	1 30	3 00	6.40	14 70

Oa-0 to 4 cm; black (10YR 2/1) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E/B-4 to 6 cm; 50% brown (7.5YR 5/2), and 50% dark reddish brown (5YR 3/3) gravelly silt loam; weak thin platy structure parting to weak fine granular; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

Bh-6 to 8 cm; dark reddish brown (5YR 3/3) loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

Bs1-8 to 15 cm; dark yellowish brown (10YR 3/6) loam; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bs2—15 to 42 cm; dark yellowish brown (10YR 4/6) loam; weak fine granular structure; very friable; common very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

BC-42 to 56 cm; light olive brown (2.5Y 5/4) loam; common fine distinct light olive gray (5Y 6/2) mottles; moderate coarse prismatic structure parting to moderate medium platy; friable; few very fine, fine, and medium roots in prism faces; prism faces grayish brown (2.5Y 5/2); abrupt smooth boundary.

Cd—56 to 100 cm; olive (5Y 5/3) gravelly loam; common fine distinct light olive brown (2.5Y 5/6), and faint light olive gray (5Y 6/2) mottles; moderate coarse prismatic structure parting to moderate thick platy; firm; few very fine, fine, and medium roots in prism faces; prism faces olive gray (5Y 5/2) with olive (5Y 5/6) edges.

SOII —	DIXFIEI	.D				SOIL 1	Nos	130189			LOCAT	ION—P	arlın	Pond	Twp	., Ma	une
Depth	Hor-	San		ilt	Clay	Ve		Coarse	Medru		Eine	Very		Coars		Fii	
c m	1201	(2-		05-	0.003	Coa		11.00.2.	(0 5-		(0 25-	Fine		Silt		Si	
		0.05		002)	(~0.002			(1-0.5) Pi	0 25)		01)	(0 1-0 0		(0 05-0		(0 02-0	/
0-4	Oa							p4	a = a = 2								
4-6	F/B	39 7	71 50) 25	10.04	4 1	1 1	6 32	7 51		11 30	10 36		23.6	6	26	50
4-0 6-8	Bh	37.6		3 06	14 33	5 8		6 35	6 67		10 05	8 66		22 7		25	
8-15	Bst	42 (149	10 46	7		7 72	8 26		10 69	8 26		21 4		26	
15-42	Bs2	49 -		2.56	8 01	10		9 84	8 80		11 40	8 54		20 6		21	
42-56	BC	49 5		83	8 60	10		9 4 9	8.82		11 92	8 80		18 40		23	
56-100	Cd	45		1 04	10 60	10		9.80	7 84		9.83	7 39		18 4		25	
	0				Wa	tor Cont	ant (Ba	r Pressure				Avail			- 1	T	
D	Organic		06	1		67		2	3	5	15	H,O		KC1	CaC		
Depth	Carbon %	BD	%	1 %	33 %	%	%	2%	%	%	%	cm/cm		(11)	(2)		1,0
cm	%	g/cc	70	70	70									(1-1)	(2)) (11)
0-4	29 78	0 31	149 9	110 5	931	89 9	88 4	833	750	693	64 4	0 14		3 40	35	-	10
4-6	4 8 8	0 81	479	42 5	35 9	32 9	30 7	22 5	196	183	15 5	0 2 2		3 30	36		20
6-8	6 6 3	071	78 2	707	575	515	49 2	29 5	26 0	24 3	21 0	0 3 5		3 4 5	37		20
8-15	3 08	0 67	757	65 9	512	46 2	43.8	20 5	16 5	154	126	0 36		3 7 5	3.9		50
15-42	145	0 92	49 5	431	32 9	28 2	26 5	118	101	8 8	69	0 33		4 0 5	41	-	90
42-56	078	1 20	36 0	32 5	27 0	23 6	21.9	98	8 5	72	49	0 3 3		4 20	44	- C	5 20
56-100	0 37	1 53	194	18 0	16 2	151	143	93	78	65	4 0	0 21		4 30	46	5 5	5 50
					Ext		KCI					ume—%					
Depth	Ca	Mg	Na	K	Acid	CEC	Al+H										
c m		•••••		me/	100g				>76	76-:	51 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-4	1 60	0 50	0 01	0 90	58 10	61 11	6 4 5	9 46	0 00	0.0	00 0 00	0 00	0 00	0.01	0 01	0 01	0 03
4-6	0 20	0 10		0 10	22 60	23 01	7 85		0 00	13 1		0 00	0 00		0 80	0 80	
6-8	0.30	0 20		0 20	39 80	40 51	7 80		0 00			0 00	0 00		1 80	1 60	
8-15	0 10	0 01	0 01	0 10	26 90	27 12	4 1 5		0 00	0.0	00 0 00	0 90	0 20		1 20	2 30	
15-42	0 10	0 01	0 01	0 01	15 90	16 03	2 10	2 23	0.90	0.0	0 0 40	0 60	0 60		2 00	4 40	
42-56	0 10	0 01	0 01	0 01	10.70	10 83	1 35		0 00	0.0	0 1 20	1 00	0 60	1 00	2 60	2 70	
56-100	0 1 0	0.01	0 01	0 01	7 00	7 1 3	0 90	1 03	0 00	0 2	20 210	1 20	1 10		4 50	5 70	
an and the set of																	

Soil Map Unit: Dixfield Location: Hobbstown Twp., Somerset County, Maine Described By: J.W. Miller, R.V. Rourke Soil Survey # S89-ME-130-289 Drainage Class: moderately well drained Date: 08/89

Oa-0 to 7 cm; black (10YR 2/1) sapric material; weak very fine and fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-7 to 10 cm; light brownish gray (10YR 6/2) silt loam; weak thin platy structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

Bh—10 to 16 cm; dark reddish brown (5YR 3/4) loam; weak very fine and fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

Bs1—16 to 27 cm; brown to dark brown (7.5YR 4/4) gravelly loam; weak very fine and fine granular structure; very friable; many very fine, fine, and medium roots throughout; clear smooth boundary.

Bs2-27 to 40 cm; dark yellowish brown (10YR 4/4) gravelly silt loam; weak very fine and fine granular structure; very friable; few very fine, fine, and common medium roots throughout; clear wavy boundary.

BC-40 to 49 cm; light olive brown (2.5Y 5/4) very stony loam; moderate very coarse prismatic structure parting to moderate medium platy; friable; few very fine, fine, and medium roots throughout; prism faces olive 5Y 5/3; clear smooth boundary.

Cd—49 to 100 cm; olive brown (2.5Y 4/4) gravelly loam; common medium prominent dark yellowish brown (10YR 4/6), and light olive gray (5Y 6/2) mottles; moderate very coarse prismatic structure parting to moderate thick and very thick platy; very firm; prism faces olive (5Y 5/3) with yellowish brown (10YR 5/6) edges.

SOIL-	DIXFIEI	D				SOIL	Nos	130289		I	OCAT	ON - H	obbs	town	Twp.	, Ma	ine
Depth	Hor-	San		hlt	Clay	Ve		Coarse	Mediu		Fine	Very		Coars		F۱	
c m	izon	(2-		05-		Coa		0.0.5	(0 5-		(0 25-	Fine		Silt		SI	
		0.05		002)	(<0.002			(1-0.5)	0.25)		01)	(0 1-0.03		0 05-0	· · · ·	(0 02-	,
0.7	0.							}	$-60 = 01 \le 2$	mm							
0-7 7-10	O a E	40		3 1 5	6 11	4	77	6 94	774		11 83	9 46		25 4	7	27	20
		40		8 0 9	10 70	6		7 4 4	7 98		10 86	7 99		20 7		27	
10-16	Bh) 70	12 04	6		6 7 2	6 88		10 80	7 46		21 0		28	
16-27	Bsl	38 2		1 85	12.04	4		7 10	7 28		10 30	8 20		21 0		28	
27 - 40	Bs2	45		5 96	8.67	9		8 1 2	8 1 3		11 31	8 18		19.7		29	
40-49	BC	42.		1 05	9 02	9		9 4 4	983		12 89	8 4 2		17.9		20	
49-100	Cd	49 .	93 4	1 0 3	9.02	9	55	7 4 4	7 0 3		12 07	0 42		1/9	4	23	11
	Organic				Wa	ter Con	tent (Ba	r Pressure	·s)(2·			Avail			n l	н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Cat	2	H,O
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cm		$(1 \ 1)$	(21		1^{2} 1 1)
		U															
0-7	37 97	0 1 4	260 2	225 8	200 5	199 1	1974	138 8	105 7	94 1	89 2	0 1 9		3 00	33	-	3 80
7-10	1 63	1 06	331	30 4	27 1	24 8	234	13 3	10 5	86	63	0 26		2 80	34		4 3 5
10-16	2 76	0 79	49 4	44 8	392	357	336	186	156	14 1	123	0.26		3 3 5	38		4 5 5
16-27	2 4 5	0 94	49 6	45 4	36 8	314	28 9	172	14 9	14 3	124	0 31		3 80	4 1		5 0 5
27-40	1 62	0 92	554	50 9	412	358	337	156	119	10 4	84	0 39		4 0 5	44		5 30
40-49	071	1 30	317	30 3	26 4	237	22 5	10 5	8 5	70	47	0 3 3		4 20	4 5		5 7 5
49-100	0 30	1 66	189	180	16 2	147	139	89	74	60	35	0 24		4 2 5	4 8	0	5 10
					Ext		KCI					ume—%					
Depth	Са	Mg	Na	K	Acid	CEC	Al+H					(Widt					
cm				fme/	100g				- >76	76-	51 51-38	38-25 2	5-19	19-13	13-6	6-2	Total
0-7	16 80	3 40	0 01	1 20	72 30	93 71	1 95	23 36	0 00	0 0	0 0 00	0 40	0 00	0 10	0 10	0 10	0 70
7-10	1 90	0 40	0 01	0 01	11 50	13 82	3 50	5 82	0 00	0 0	0 1 20	0 80	1 50	0 70	3 20	3 10	10 50
10-16	2 20	0 40	0 01	0 10	26 40	29 11	4 70	7 41	0 00	0 0	0 1 1 0	0 60	0 70	0 60	1 30	1 70	6 00
16-27	1 60	0 30		0 1 0	25 60	27 61	2 90	4 91	8 70	2.6	0 1 70	1 20	0 80		1 20	1 60	18 80
27-40	1 30	0 20	0.01	0 10	17 40	19 01	1 70	3 31	3 20	5 C	0 1 20	0 30	0 90		1 80	4 10	18 10
40-49	0 80	0 20	0.01	0 01	9 90	10 92	1 05	2 07	38 90				0 80		2 60		51 30
49-100	0 80	0 20	0 01	0 10	5 60	671	0 65	1 76	4 00				0 90		2 20		15 40

Soil Map Unit: Dixfield Location: T3 R4 BKP-WKR, Somerset County, Maine Described By: J.W. Miller, L. Krall, and R.V. Rourke Soil Survey # S89-ME-130-389 Drainage Class: somewhat poorly drained Date: 08/89

Oa-0 to 19 cm; 10% dark reddish brown (5YR 3/4), and 90% very dark brown (10YR 2/2) stony sapric material; weak very fine and fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt irregular boundary.

E-19 to 24 cm; grayish brown (10YR 5/2) silt loam; massive; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

Bh—24 to 25 cm; dark reddish brown (5YR 3/4) loam; weak fine granular structure; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

Bs1-25 to 42 cm; dark yellowish brown (10YR 4/6) stony silt loam; weak fine granular structure; very friable; common very fine and fine roots throughout; clear smooth boundary.

Bs2-42 to 55 cm; yellowish brown (10YR 5/6) fine sandy loam; weak fine granular structure; very friable; common very fine and fine roots throughout; abrupt smooth boundary.

BC-55 to 63 cm; light olive brown (2.5Y 5/4) fine sandy loam; common medium distinct light brownish gray (2.5Y 6/2), and fine prominent dark yellowish brown (10YR 4/6) mottles; massive; friable; abrupt smooth boundary.

Cd—63 to 100 cm; olive (5Y 4/3) gravelly fine sandy loam; many coarse distinct grayish brown (2.5Y 5/2), and medium prominent dark yellowish brown (10YR 4/6) mottles; weak thin and medium platy structure; firm; abrupt smooth boundary.

soll—	DIXFIEI	D				SOIL	Nos	130389			LOCAT	ION —13	R4 BKI	P-WKR	, Ma	ine
Depth	Hor-	San		alt	Clay			Coarse	Medi		Fine	Very	Соаг		Fir	
c m	120N	(2-		05-			urse		(0.5		(0 25-	Fine	Sil		Sil	
		0.0		002)	(~0.002			(1-0.5)	0 25		01)	(0 1-0 05	1000		0 02-0	
0-19	0 a							••••••	~~ 01 ~	2 mm					•••••	
19-24	E E	30	10 6	3 5 5	6 16	1	65	2.98	5 2	3	10 07	10 36	33 7	a	293	U 1
24-25	Bh	31		3 64	19.60		97	3 51	54		10 00	9.81	27 8		20 1	
24-25	Bsl	40 4) 75	8 34		62	4 67	64		12 91	13 30	32 6		18 1	
42-55	Bs2	62 (2 5 2	5 41		70	7 48	10 2		21 46	17 17	22 2		10 2	
42=33	BC	54.2		8 59	7 18		77	6 86	10 2		17 87	12 64	20 3		18 2	
63-100	Cd	53 () 91	6 03		88	7.08	9.6		16 87	12 55	19 0		21 8	
0.5 100	C G									-					210	, ,
	Organic				₩a	ter Con	tent (Ba	r Pressure	es)			Avail		p H	[
Depth	Carbon	BD	06	. 1	33	67	1	2	3	5	15	H,O	KCI	CaC	I H	0,0
cm	%	g/cc	0 0	%	ů, o	%	%	%	%	%	%	cm/cm	(11)	(21)) (1	ÚD
0-19	51 76	0 13	286 3	260.8	235 8	234 0	232 4	163 2	122 8	114 4	973	0 21	2 60	3 00) 3	50
19-24	2 1 2	0 93	35 0	31 9	26 3	22 5	20 8	121	11.1	8 2	64	0 24	2 50	2.95		55
24-25	6 91							28 3	26 1	234	21 0		3 30	3 50		15
25-42	3 89	0.61	68 8	615	526	507	50 0	17 5	16 6	148	133	0.29	4 00	410		90
42-55	1 67	0 70	59 9	54.0	434	397	38 2	91	8 2	73	59	0 34	4 2 5	4 4 () 5	15
55-63	0 82	1 02	354	321	25 1	21.9	20 1	79	66	53	4 0	0 29	4 30	4 50) 5	40
63-100	0 29	1 62	16 5	154	133	12 5	118	72	59	46	29	0 20	4 4 5	4 80) 5	75
					Ext		KC1					lume—% F				
Depth	Ca	Mg	Na	ĸ	Acid	CEC	Al+H	ECEC				(Width				
c m				me/	100g				- >70	6 76-	51 51-38	38-25 25	-19 19-13	13-6	6-2	Total
0-19	13 40	2 90	0 01	1 00	78 50	95 81	3 65	20.96	183	0 0	00 0 00	0 0 0 0	0 10 0 01	0 01	0.01	18 43
19-24	1 00	0 20		0 10	15 20	16 51	4 10	5 41	4 9	0 0	00 0 00	1 10 (0 30	0.40	7 80
24-25	1 10	0 30		0 20	58 40	60 01	10 00	11 61	1 2	0 0	00 0 00	0 00 0		170	3 90	9 70
25-42	0 40	0 01	0 01	0 10	38 80	39 32	3 25	3 77	227	0 7	00 1 00	1 10 0	0 50 0 70	0 1 10		36 20
42-55	0.20	0 01	0 01	0 01	19 40	19.63	1 70	1 93	0.0	0 3.	20 0 40	1 40 (2 60		
55-63	0 10	0 01	0 01	0 01	11 70	11 83	1 10	1 2 3	3 4	0 1	00 1 80	0 70 (2 50		14 10
63-100	0 10	0 01	0 01	0 01	5 60	573	0 65	078	10 6	0 3	40 2 20	2 10		2 40		30 00

Soil Map Unit: Dixfield Location: Twp. 18 ED, Washington County, Maine Described By: D.E. Wilkinson, S.E. Lee, and R.V. Rourke

Soil Survey # S89-ME-150-189 Drainage Class: somewhat poorly drained Date: 09/89

Oa-0 to 3 cm; dark reddish brown (5YR 2/2) sapric material; weak very fine granular structure; very friable; many very fine, fine, medium, and common coarse roots throughout; abrupt wavy boundary.

E-3 to 6 cm; pinkish gray (5YR 6/2) fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, medium, and common coarse roots throughout; abrupt wavy boundary.

Bh—6 to 9 cm; dark reddish brown (5YR 3/3) gravelly loam; weak very fine granular structure; very friable; common very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

Bs1-9 to 23 cm; strong brown (7.5YR 5/6) gravelly loam; weak very fine granular structure; very friable; many very fine, fine, common medium, and few coarse roots throughout; clear smooth boundary.

Bs2-23 to 42 cm; yellowish brown (10YR 5/6) very stony fine sandy loam; weak very fine granular structure; very friable; many very fine, fine, common medium, and few coarse roots throughout; clear smooth boundary.

BC-42 to 56 cm; light olive brown (2.5Y 5/4) gravelly fine sandy loam; common medium distinct light brownish gray (2.5Y 6/2), and fine and medium prominent strong brown (7.5YR 5/6) mottles; massive; friable; few very fine and fine roots throughout; abrupt smooth boundary.

Cd—56 to 100 cm; olive (5Y 5/3) gravelly sandy loam; few fine and medium faint light olive gray (5Y 6/2) mottles; massive; firm.

SOIL	DIXFIEL	D				SOIL 1	Nos —	150189		L	OCATI	ON—I	wp.	18_EI	D, Ma	aine	
Depth cm	Hor- izon	San (2- 0 05	(0	05- 002)	Clay (<0.002)	Ve Coa (2-	rse	Coarse (1–0.5)	Mediu (0 5- 0 25)	- (Fine (0 25– 0 1)	Very Fine (01-01	:	Coar Sil (0 05–(t	S	ne 11t -0 002)
			,					(i=0.57) 			,						
0-3	Oa							-									
3-6	E	44 4	3 49	9.04	6 53	3 (8	5 64	741		14 40	13 90)	253	5	23	69
6-9	Bh	40 5	6 46	5 10	13 34	38	7	5 91	680		12 04	11.94	1	24 0	0	22	10
9-23	Bsl	49.9	1 39	9 56	10.53	7.9	6	8 1 9	8 2 4		13 44	12 08	3	224	3	17	13
23-42	Bs2	521	4 43	3 25	4 61	8 9	6	781	8 3 8		14 52	12 4	7	23 2	5	20	00
42-56	BC	53 9	8 30	9 70	6 32	7 5	55	9 06	9 91		1583	11.63	3	21.6	6	18	04
56-100	Cd	67 2	6 30	0 68	2 06	10	21	10 23	12 59	9	20 50	13 7	3	19 0	3	11	
	Organic				Wa	er Cont	ent (Ba	r Pressure	s)			Avai	1		р	н	
Depth	Carbon	BD	06	1	33	67	1	2	-´3	5	15	H,O		KCI	Ca		н,о
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/ci		(1.1)	(2		(1-1)
0-3	21 59	0 33	128 8	109 8	104 3	96-4	957	80 4	517	451	40 1	0 23		275	3 1	5	3.75
3-6	3 24	0 90	386	33 0	257	221	199	189	140	126	109	0 20	I	2 80	3 1	5	3.85
6-9	5 27	0 64	588	49 2	386	364	354	29 9	21.7	183	175	0 20	1	3 5 5	37	70	4 4 5
9-23	268	0.86	491	390	27 5	253	247	163	155	141	131	0 2 2	:	4 3 5	4 4	55	5 2 5
23-42	0 65	1 0 5	36 6	30 3	21 0	180	164	95	89	76	63	0 25		4 50	5 ()5	5 60
42-56	0 33	1 16	287	24 5	182	157	136	80	70	54	38	0 24		4 40	5 1	5	6 00
56-100	011	1 47	217	183	129	108	95	40	35	26	17	0 24		4 80	5 4	10	630
					Ext		KC1					ume—%					
Depth	Ca	Mg	Na	К	Acid	CEC	AI+H	ECEC									
c m				me/	100g				>76	76-5	1 51-38	38-25	25-19	19-13	13-6	6-2	Total
0-3	4 30	1 70	0 01	0 50	55 30	61 81	4 20	10 71	0 00			0 00	0 30	0 00	0.10	0 70	0 1 10
3-6	0.50	0 30	0 01	010	18.50	1941	535	6.26	0 00			2 20	0 60	070	0 60	0.8	0 490
6-9	0.30	0 20	0 01	0 1 0	42 40	43 01	740	8 01	0 00	6 80	0 110	7.70	1 90	2 70	3 50	2 30	0 26.00
9-23	0 1 0	0 01	0 0 1	0 01	26 00	26 13	095	1 08	7 50	1 90	1 30	1 20	140	1 40	2.00	2 70	0 19 40
23-42	0.10	0 01	0 01	0 01	9 50	9 63	0.45	0 58	27 60	2 60	070	2 20	070	1 00	1 90	3 20	3990
42-56	0 01	0 01	0.01	0 01	6 50	6 54	045	0 4 9	5 20	1 10	0 20	4 20	1 70	2 20	3 10	4 90	22.60
56-100	0 01	0 01	0 01	0 01	2 90	2 94	015	0 19	280	4 60	2 20	2 50	1 70	1 50	2 2 0	3 3 (20 80

Soil Map Unit: Dixfield Location: No. 14 Plt., Washington County, Maine Described By: D.E. Wilkinson, K.J. LaFlamme, and R.V Rourke Soil Survey # S89-ME-150-289 Drainage Class: moderately well drained Date: 09/89

Oa-0 to 4 cm; black (5YR 2/1) sapric material; weak very fine granular structure; very friable; many very fine, fine, medium, and common coarse roots throughout; abrupt wavy boundary.

E/B—4 to 10 cm: 50% reddish gray (5YR 5/2), 20% dark reddish brown (5YR 3/2), and 30% dark reddish brown (5YR 3/3) stony loam; weak thin and medium platy structure parting to moderate very fine granular; very friable; many very fine, fine, medium, and common coarse roots throughout; abrupt irregular boundary.

Bh—10 to 20 cm; 60% yellowish red (5YR 4/6), and 40% dark reddish brown (5YR 3/3) silt loam; moderate fine granular structure; friable; many very fine, fine, medium, and common coarse roots throughout; clear smooth boundary.

Bs1-20 to 30 cm; brown to dark brown (7.5YR 4/4) gravelly silt loam; moderate very fine and fine granular structure; friable; common very fine, fine, medium and coarse roots throughout; clear wavy boundary.

Bs2—30 to 47 cm; dark yellowish brown (10YR 4/4) gravelly loam; weak very fine granular structure; few very fine, fine, and medium roots throughout; abrupt wavy boundary.

BC-47 to 58 cm; light olive brown (2.5Y 5/4) gravelly sandy loam; few medium prominent yellowish red (5YR 5/6), common faint light yellowish brown (2.5Y 6/4), and prominent olive gray (5Y 5/2) mottles; weak very coarse prismatic structure parting to weak medium and thick platy; friable; few very fine and fine roots throughout; clear smooth boundary.

Cd—58 to 100 cm; olive (5Y 5/3) gravelly loam; common medium faint light olive gray (5Y 6^{\prime}), and prominent brown to dark brown (7.5YR 4/4) mottles; moderate very coarse prismatic structure parting to weak thick platy; firm; prism faces light olive gray (5Y 6^{\prime}) with olive (5Y 5/6) edges.

SOIL-	DIXFIEI	D				SOIL	Nos —	150289		I	,ΟСА Π	ON No	14 Plt,	Mair	ne	
Depth cm	Hor- izon	San (2- 0 05	() () 0 (ilt 05- 002)	Clay (+ 0 002		irse -1)	Coarse (1-0-5)	Mediu (0 5- 0 25)		Frne (0 25– 0 1)	Very Line (0 1-0 05)		02)	Fı Sı (0 02-	lt 0 002)
							•••••	ŀ	$ \psi = 0 + 2$	2 mm						
(0 - 4)	Oa															
4-10	E/B	434		26	8 30	4		5 48	7.00		13 39	13 03	22 5		25	
10 - 20	Bh	31.7		07	17 22	4 -		4 91	5 3 5		8 84	8 21	187		32	
20 - 30	Bsl	33.0		65	15 31	5		6 25	5 50		8.31	7 76	186		32	
30-47	Bs2	39 4		89	11.68		56	8 1 2	6 0 3		8 06	6 66	16 2		32	
47 - 58	BC	56 0		812	5 86	12		11 48	918		12 85	9 56	173		20	
58-100	Cd	474	14 43	19	9 37	7	65	8 52	8 46		12 76	10 05	176	9	25	50
	Organic				Wa	ter Con	tent (Ba	r Pressure	s)			Avail		p ł	1	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O	KCI	CaC		1,0
cm	°6	g/cc	%	0.0	%	%	%	%	%	%	%	cm/cm	$(1 \ 1)$	(21		11)
0-4	32 06	0 21	223 1	207.9	1973	195 7	194.0	104.2	72 0	58 0	518	0 33	2 95	32	5	8 8 5
4-10	3.78	1 11	36.9	34.9	30 7	27 0	25 1	20.6	163	127	10 6	0 27	3 10	3.4		10
10-20	7 7 3	0 60	951	894	76 9	72 0	70 3	35.8	31.1	28 1	25.4	0 38	3 90	4 1		1 65
20-30	6 59	0 49	125 5	117 5	99 2	93.6	921	32 6	314	28 4	258	0 4 5	4 2 5	43		1 90
30-47	3 03	0 83	54.3	50.4	427	38 6	36 5	20.4	184	15 5	130	0 31	4 40	46		5 1 5
47-58	0 81	1 45	24 5	23 3	20.9	190	173	10 1	8 2	6 5	4 6	0 27	4 4 5	48		5.50
58-100	0 22	1 63	171	163	14 9	14 1	12 9	97	8 1	65	4 0	0 20	4 4 5	49		5 95
Depth	Ca	Mg	Na	K	Ext Acid	CEC	KCI Al+H	ECEC				ume—% R (Width				
cm												38-25 25-				
0-4	5 90	1 70	0.01	0 70	60 90	69 21	4 90	13 21	0 00	0.0	0 0 80	0 00 0	00 0 20	0 10	0 40	1 50
4-10	0 40	0 20	0 01	0 01	22 00	22 62	6 8 5		16 00					1 20	1 80	
10-20	0 20	0 20	0 01	0 20	47 80	48 41	4 90		0 00					1 80	1 90	
20-30	0 10	0 01	0 01	0 01	49 00	49 13	2 20		0 00					2 10	4 20	
30 - 47	0 10	0 01	0 01	0 01	31 90	32 03	1 25		5 10					2 70	4 10	
47-58	0 01	0 01	0 01	0 01	11 30	11 34	0.80		0 00					3 70	8 60	
58-100	0 10	0 01	0 01	0 01	7 10	7 23	0 65		0 00					2 40		19 00
20 100	010	0 01	0 01	0 01		. 25	0.00				10			2.0	, 50	12.00

Soil Map Unit: Telos Location: The Forks Plt., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-688 Drainage Class: somewhat poorly drained Date: 07/88

Oa-0 to 4 cm; very dark brown (10YR 2/2) sapric material; weak very fine and fine granular structure; very friable; common very fine, fine, many medium, and common coarse roots throughout; abrupt wavy boundary.

E-4 to 6 cm; light brownish gray (10YR 6/2) silt loam; weak thin and medium platy structure; very friable; few very fine, fine, common medium, and many coarse roots throughout; abrupt irregular boundary.

Bhs—6 to 11 cm; 50% very dusky red (2.5YR 2/2), and 50% dark reddish brown (5YR 3/3) loam; weak medium platy structure; very friable; common very fine, fine, medium, and many coarse roots throughout; clear wavy boundary.

Bs1—11 to 20 cm; dark yellowish brown (10YR 4/6) loam; weak medium granular structure; very friable; common very fine, fine, many medium, and coarse roots throughout; abrupt wavy boundary.

Bs2-20 to 30 cm; dark yellowish brown (10YR 4/6) loam; few fine prominent light brownish gray (2.5Y 6/2) mottles; weak fine and medium granular structure; friable; common very fine, fine, few medium, and coarse roots throughout; abrupt smooth boundary.

BC1—30 to 35 cm; light olive brown (2.5Y 5/4) loam; common fine prominent light olive gray (5Y 6/2), and medium yellowish brown (10YR 5/6) mottles; weak medium platy structure; friable; few very fine, fine, medium and coarse roots throughout; abrupt irregular boundary.

BC2-35 to 62 cm; olive (5Y 5/3) loam; few medium faint light olive gray (5Y 6/2) mottles; strong very coarse prismatic structure parting to moderate medium platy; firm; abrupt smooth boundary.

Cd—62 to 100 cm; olive gray (5Y 5/2) loam; strong very coarse prismatic structure parting to weak thick platy; firm; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/6) edges.

SOIL-	TELOS					SOIL	Nos —	130688			LOCATI	ION- 1	The F	orks	Plt.,	Maine	2
Depth cm	Hor- izon	San (2- 0 05	. (0	oilt 05- 002)	Clay (+ 0 002)		irse 1)	Coarse (1-0.5)	Medi (0.5 0.25	-	Fine (0 25- 0 1)	Very Fine (0 1-0)	05)	Coar: Silt (0 05-0	02)	F I SI (0.02-	lt
	0								Pct_of ≤ :	2 mm			••••••				
0-4	O a	24.0		36	7 77	4	17	4 70	5 7 9	n	11 08	1113		19.4	0	26	07
46	E	36-8 31-7		75	18 52	3		4 70	5 19		9 16	8 94		19 4		35	
6-11	Bhs			16	15 48	4 :		473 597	64		10 15	9 20		18 1-		34	
11-20	Bsl	36 3			15 48	4		6 03	13.4		11 78	9 20 7 24		6 03		30	
20-30	Bs2	42.8		01	17 13	6		6 50	6.84		10 95	9 50		11 1		33	
30-35	BCI	40 3		: 08 5 95	18 23	6		5 87	594		9 42	8 34		14.8		31	
35-62	BC2	35 8			18 25	6		6 57	6 2		9 60	8 51				31	
62-100	Cd	37 :	21 4-	1 35	10 44	U I	20	0 57	02	<i>,</i>	9 00	0 11		11.6	0	32	09
	Organic				Wa	ater Con	tent (Bar	Pressures	5)			Avai	l		n	Н	
Depth	Carbon	BD	06	1	33	67	ì	2	3	5	15	н,о		KCI	Ca		н,о
cm	%	g/cc	•,,	0,0	%	%	%	%	%	%	%	cm/ci		(11)	(2)		11)
0-4	32 33	0 31	183 8	178 2	170 5	167.3	165 6	1591	121.3	103 0	87 5	0 28		3 1 5	35	0	3 90
4-6	2 28	1 23	29 0	28 0	25 5	23 4	210	177	128	10 3	60	0 27		2 80	3 3	5	3 85
6-11	4 92	0 75	74 4	712	57.8	50.3	459	29 5	24 9	216	172	0 41		3 2 5	36	0	4 05
11-20	3 14	0.91	56.9	54 4	428	357	317	256	23 2	197	15 2	0 36		3 95	4 1	5	4 40
20-30	2 17	0.98	46 1	434	34 6	298	26 8	213	17.3	127	116	0 31		4 1 5	43	5	4 65
30-35	1 03	1 37	28.5	270	23 0	20.5	181	11 5	10 8	97	64	0 28	:	4 30	45	5	4 95
35-62	0 24	1 69	173	166	154	14 6	13.8	126	11 2	97	57	0 18	:	4 20	44	0	5 2 5
62-100	0 21	1 69	176	169	157	151	138	126	11 6	98	56	0 19	I	4 05	43	0	5 20
					Ext		KCI				Vo	olume—9	6 Rock	Fragm	ents		
Depth cm	Са	Mg	Na	K me/	Acıd 100g	CEC	Al+H	ECEC	>76	5 76-:	51 51-38	(W 38-25	25-19	mm) 19-13	13-6	6-2	Total
0-4	8 6 5	2.03	0 07	0 91	36 80	48 46	4 20	15 86	0.00	0 0 0	0 0 90	0 00	0 00	0.00	0 20	0 20	1 30
4-6	1 30	0 28	0 03	0 27	12 70	14 58	4 90	6 78	0 00			1 90	1.60			2 20	
6-11	1 15	0 26	0 04	0.11	30 50	32 06	9 60	11 16	0 00			0 40	0 40		1 00	2 10	
11-20	0 30	0 0 7	0.02	0 13	26 20	26 72	4 55	5 07	3.80			0 60	0 60		1 80	3 60	
20-30	0 14	0 04	0.02	0 12	18 10	18 42	3 15	3 47	0.00			0 90	0 70		2 10	5 30	
30-35	0 07	0 04	0 02	0 0 9	9 80	9 99	1 60	1 79	0.00			2 40	1 60		3 30	8 70	
35-62	0 15	0 02	0 02	0 12	6 50	6 86	1 70	2.06	0 00			2 00	1 40			6 60	
62-100	0 23	0 11	0 02	0 1 2	5 70	6 21	1 75	2.00	3 70			1 20	0 50		2 40	6 00	
02-100	0 23	011	0.02	015	570	0 2 1	175	2 20	570	- 1.		1 20	0.10	110	2 40	0.00	17.90

Soil Survey # S88-ME-130-788 Drainage Class: somewhat poorly drained Date: 07/88

A-0 to 9 cm; black (10YR 2/1) stony sapric material; weak very fine and fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-9 to 16 cm; light brownish gray (10YR 6/2) silt loam; weak thin platy structure; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bs1-16 to 28 cm; dark yellowish brown (10YR 4/6) silt loam; weak thick platy structure parting to weak very fine and fine granular; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bs2—28 to 35 cm; light olive brown (2.5Y 5/4) loam; common medium distinct light brownish gray (2.5Y 6/2), and prominent yellowish brown (10YR 5/8) mottles; weak medium platy structure parting to weak fine granular; very friable; many very fine, fine, medium, and few coarse roots throughout; clear wavy boundary.

BC1—35 to 46 cm; olive (5Y 5/4) silt loam; common medium prominent light brownish gray (2.5Y 6/2), and yellowish brown (10YR 5/6) mottles; weak thick and very thick platy structure; friable; few very fine and fine roots throughout; clear wavy boundary.

BC2--46 to 54 cm; olive (5Y 5/4) silt loam; strong very coarse prismatic structure parting to moderate thick platy; firm; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/8) edges; clear wavy boundary.

Cd—54 to 100 cm; olive (5Y 4/3) silt loam; strong very coarse prismatic structure; firm; prism faces light olive gray (5Y 6/2) with yellowish brown (10YR 5/8) edges.

SOIL—	TELOS					SOIL 1	vos	130788		1	.OCATI	ON—Sq	uarctowr	n Twp	., Ma	ine
Depth cm	Hor- izon	Sanc (2-		ilt 05-	Clay	Ve Coa	1410	Coarse	Mediu (0.5-		Fine (0 25–	Very Fine	Coar Sil		F 11 S 1	
		0.05		(2)	(-0.002)			(1-0.5)	0.25)		01)	(0 1 -0 05)			0 02-	
								þ	of of < 2	mm						
0-9	A															
9-16	F	26.43	8 62	21	11 31	5 4	7	3 86	3 3 5		6 0 6	774	16 5	2	45	29
16-28	Bsl	26 80	0 56	56	16 64	6 2	2	5 1 8	377		5 46	6 1 7	124	2	44	14
28 - 35	Bs2	32 6.	4 47	49	19 37	6.6	51	6 40	4 79		8 4 4	6 40	75	4	40	45
35-46	BCI	29 2	8 52	12	18 60	6.6	52	5 27	4 4 4		6 27	6 6 8	14 6	60	37 52	
40-54	BC2	28 4	5 51	89	1966 66		.4	5 4 8	4 2 3		5 91 6 1 9		16 96		34 93	
54-100	Cd	27 0			22 88	8 6 6 1		5 02	4 09		5 70	5 60	114	6	38 64	
	()======					ter Cont	ent (Ba	r Pressure	s)			Avail		p ł	1	
Denth	Organic	BD	06	1	33	67		2	3	5	15	H,O	KC1	CaC		1,0
Depth cm	Carbon %	g/cc	%	%	%	%	%	%	%	%	%	cm/cm	$(1 \ 1)$	(2.1		$\frac{1}{2}$
CIII	. 0	Bree	70													, 1)
0-9	937	0 3 5	96 8	912	86 9	859	84 8	512	43 5	319	23 0	0 24	3 40	3 8		45
9-16	1 28	1 23	30 9	298	277	253	222	170	108	86	65	0 29	3 40	4 0		85
16-28	1 41	1 03	453	427	34 8	311	288	191	13.8	115	97	0 34	3 7 5	4.1	5 4	90
28-35	1 20	1 27	32 2	30 6	26 9	237	218	161	126	107	8 1	0 29	4 0 5	4 3		95
35-46	0 4 3	1 53	195	18 5	163	154	14 6	137	117	97	54	0 20	4 20	4 4	0 1	5 2 5
46-54	0 31	1 65	159	154	148	14 3	139	132	119	98	57	0 16	4 0 5	43		5 40
54-100	0 16	1 64	173	168	16 0	154	15 0	149	137	11 5	71	0 16	3 95	4 4	0 1	5 4 5
					Ext		KC1				Vol	ume—% F	lock Fragi	ments		
Depth	Ca	Mg	Na	K	Acid	CEC	AI+H	ECEC				(Width	in mm)			
cm				me/	100g				>76	76-5	51 51-38	38-25 25	-19 19-13	13-6	6-2	Total
0-9	3 86	0 96	0 07	0 39	21 20	26 48	5 40	10 68	16 60	0 0	0 0 00	1 0 0	20 0 30	0 30	0.40	18 80
9-16	0 66	0 24	0 02	0.05	10 80	11 77	7 40		0 00		0 0 90			2 80	3 70	
16-28	0 29	0 13	0 03	0 08	13 40	13 93	4 40		0 00					0 1 20	3 20	
28-35	0 20	0 09	0 02	0 09	11 30	11 70	2 30		0 00					0 1 20	5 20	
35-46	0.10	0 07	0 02	0 10	6 70	6 99	1 60		0 00					0 1 60	6 00	
46-54	0 22	0 1 2	0 0 2	0 1 1	6 1 0	6 58	1 65		0 00					0 1 20	5 10	
54-100	0 71	0 47	0 04	0 1 5	5 60	6 97	1 50		0 80					0 1 90	4 50	
54 100	071	0.17	0.04	0.0					2.50							2.10

Soil Map Unit: Telos Location: Caratunk, Somerset County, Maine Described By: J.W. Miller and R.V. Rourke

Soil Survey # S88-ME-130-888 Drainage Class: somewhat poorly drained Date: 07/88

Oa-0 to 11 cm; black (10YR 2/1); sapric material; weak fine granular structure; very friable; many very fine, fine, medium and coarse roots throughout; abrupt irregular boundary.

E-11 to 17 cm; gray (10YR 5/1) stony silt loam; massive; very friable; many very fine, fine, medium, and coarse roots throughout; clear wavy boundary.

Bh-17 to 23 cm; dark reddish brown (5YR 2/2) silt loam; weak very fine and fine granular structure; very friable; common very fine, fine, few medium, and coarse roots throughout; clear wavy boundary.

Bs1-23 to 29 cm; dark yellowish brown (10YR 3/4) loam; weak very fine and fine granular structure; very friable; common very fine and fine roots throughout; clear smooth boundary.

Bs2—29 to 38 cm; dark yellowish brown (10YR 4/4) loam; few fine prominent grayish brown (2.5Y 5/2) mottles; weak fine granular structure; very friable; few very fine and fine roots throughout; abrupt smooth boundary.

BC-38 to 50 cm; olive brown (2.5Y 4/4) loam; few fine distinct grayish brown (2.5Y 5/2) mottles; massive; friable; few fine roots throughout; abrupt smooth boundary.

Cd—50 to 100 cm; olive (5Y 4/3) loam; strong very coarse prismatic structure parting to weak thick and very thick platy; firm; prism faces olive gray (5Y 5/2) with dark yellowish brown (10YR 5/6) edges.

SOIL—	TELOS					SOIL	Nos.—1	30888		I	OCAH	ON-0	larat	unk,	Main	e	
Depth	Hor-	San		alt	Clay	Ve		Coarse	Medri		Fine	Very		Coars			ne
c m	IZON	(2-		05-		Coa		-	(0.5-		0 25-	Fine		Silt			lt
		0.05	,	002)	(<0.002			(1-0 5)	0 25	/	01)	(0 1-0 0		(0 05-0			0 002)
0-11	Oa							¥	et of < .	2 mm							
11 - 17	E	37 4	3 5	572	6 8 5	6	90	6.93	5 43	1	8 16	10 01	ř.	20 5	5	35	17
17-23	Bh	31.8		3 02	15 18	6.		6 41	4 62		6 56	7 87		21 5		31	
23-29	Bsl	35.1		4 70	20 16	8		7 61	5 4 2		6 82	6 81		16 1		28	
29-38	Bs2	34 2		5 78	19 99	8		7 1 1	5 40		6 58	6 91		9 4 5			
38-50	BC	40 9		2 36	16 70	10		9 36	6 30		7 40	7 36		12 7		36 33 29 63	
50-100	Cd	39 2		2 63	18 17	10		8 46	6 0 5		7 16	6 7 3		7 58		35 05	
					11/-	C	ant (Da	Dragoura				A					
10.00	Organic			Water Content (Bar Pressures)			15	Avail									
Depth	Carbon	BD	06	1	33	67	1	2	3	5		H ₂ O		KC1	Cat		H_2O
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cr	n	$(1 \ 1)$	(2	1) (11)
0-11	36 91	0 16	213 0	190 6	159 3	157 9	155 2	1514		109 7	102 8	0 14		2 60	2 8		3 65
11-17	1 54	1 24	294	28 1	25 9	22 4	181	11 9	8 0	64	54	0 28		295	3 3		3 95
17-23	3 1 2	071	82 2	774	637	56 2	534	24 5	185	169	153	0 44		3 5 5	37		4 3 5
23-29	4 06	0 66	80 8	747	60 2	530	49 5	27 1	21 8	20 4	190	0 37		4 00	4 2	20	4 80
29-38	2 84	077	68 5	637	52 4	454	42 1	23 3	179	16 0	131	0 39		4 20	4 3	35	4 90
38-50	1 59	1 07	45 9	438	37 4	327	30 3	164	131	118	84	0 38		4 30	4 4	15	5 1 5
50-100	0 3 3	1 66	178	172	161	153	14 4	12 5	10.7	89	53	0 20	E.	4 3 5	47	0	5 65
					Ext		KCI				Vol	ume—%	Rock	Fragm	nents		
Depth	Са	Mg	Na	K	Acid	CEC	Al+H	ECEC				(W1	dth in	mm)			
c m				me/	100g				>76	76-5	1 51-38	38-25	25-19	19-13	13-6	6-2	Tota
0-11	8 1 3	3 06	0 1 5	0 65	26 00	37 99	4 85	16 84	0 00	0 0 0	0 0 0	0.00	0 00	0 0 0	0 1 0	0 10	0 2
11-17	0 29	0 13	0 02	0 0 5	8 90	9 3 9	3 60	4 0 9	16 90	0 0 0	0 8 0	2 10	1 40	0 80	1 60	1 90	25 5
17-23	0 32	0 14	0 03		25 70	26 27	6 70	7 2 7	0 00	0 0 0	0.00	0.00	0 40	0 60	1 90	4 00	69
23-29	0 41	0 1 1	0 02		23 70	24 35	5 60	6 2 5	0.00	0 0 0	0 0 0	0 00	0 20		1.10		
29-38	0 38	0 08	0 02		22 00	22 61	2 70	3 31	0 00) 15	0.00	1 10	0 20		2 00		
38-50	0 25	0 05	0 02		15 30	15 73	1 90	2 3 3	0 00			0 80	1 30		3 90) 14 (
50-100	0 18	0 05	0 02		6 00	6 3 9	1 10	1 49	4 90			0 50	0 60		2 30) 142

Soil Map Unit: Telos Location: Brassua Twp., Somerset County, Maine Described By: J.W. Miller and R.V. Rourke Soil Survey # S88-ME-130-988 Drainage Class: somewhat poorly drained Date: 08/88

Oa-0 to 6 cm; black (10YR 2/1) sapric material; weak fine granular structure; very friable; common very fine, fine, many medium and coarse roots throughout; abrupt wavy boundary.

E-6 to 7 cm; light brownish gray (10YR 6/2) silt loam; massive; very friable; abrupt broken boundary.

Bhs—7 to 9 cm; very dark brown (10YR 2/2) silt loam; weak fine granular structure; very friable; abrupt broken boundary.

Bs1---6 to 20 cm; dark yellowish brown (10YR 4/4) silt loam; weak fine granular structure; very friable; common very fine, fine, many medium, and coarse roots throughout; abrupt wavy boundary.

Bs2-20 to 28 cm; dark yellowish brown (10YR 3/6) silt loam; weak fine granular structure; very friable; common very fine, fine, and common medium roots throughout; clear smooth boundary.

Bs3—28 to 36 cm; dark yellowish brown (10YR 4/4) silt loam; few fine distinct light brownish gray (10YR 6/2) mottles; weak fine and medium subangular blocky structure; friable; common very fine, fine, and medium roots throughout; clear smooth boundary.

BC—36 to 48 cm; light olive brown (2.5Y 5/4) silt loam; common fine prominent light brownish gray (10YR 6'2), and medium distinct light brownish gray (2.5Y 6/2) mottles; strong very coarse prismatic structure parting to weak medium platy parting to weak fine and medium subangular blocky; friable; prism faces olive gray (5Y 4/2) with yellowish brown (10YR 5/6) edges; clear wavy boundary.

Cd-48 to 100 cm; olive (5Y 5/3) silt loam; strong very coarse prismatic structure; firm; light olive gray (5Y 6/2) prism faces with yellowish brown (10YR 5/6) edges.

son —	FELOS			10200000000		SOII	Nos. –	130988			LOCAT	ION - B	rass	ua Iv	ур. I	Maine	
Depth Hor- em izon		(2- 0.05	Sand Silt (2- (0.05~ 0.05) 0.002)		Clay (+ 0.002		irse -1)	Coarse (1–0-5)	Med) (0.5 0.25	5- 5)	Fine (0 25– 0 1)	Very Fine (0 1-0 05)		Coarse Silt (0 05–0 02)		Fine Silt (0.02-0.002)	
									Pet of <	2 mm							
0-6	Oa	20.0		50	15 59	2	ē.1	2 2 2	2.6	2	6.04	7 33		1 9 0			30
6-20	Bsl	20.8	-	59	15 39	5		3 76	3 2		5 2 5	6 01		18.8			78
20 - 28	Bs2	24.2		39				4 80			5 8 4			20 2 13 1		43	
28-36	Bs3	27 1 29 8		51 60	16 38 6 72 15 51 6 31			4 94			691					43 38	
$\frac{36-48}{48-100}$	BC C d	27 8		21	12 93			4 35	3 99		6 6 9	7 26		$\begin{array}{c} 12 \ 61 \\ 18 \ 04 \end{array}$		41 99 41 17	
	Organic				Wa	ter Con	tent (Ba	ir Pressur	es)			Avail			D	н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Ca		H.O
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/cm		$(1 \ 1)$	(2		11)
0-6		0.14	281.0	265 6	256 0	251-4	248 4	231 1	1137	112 4	108 6	0 2 2		3 1 5	3 :	30	3 8 5
6-20	4 92	0 70	71 0	66 4	57 3	53 5	51.8	30 7	25 5	184	53	0.43		3 2 5	3 (55	4 30
20-28	4 26	0 64	88 5	83 2	674	62.2	60.0	25 6	22 9	20 2	171	0.42		3 90	4	15	4 70
28-30	3 51	0 84	621	59 6	50 9	45 0	42 5	23 1	199	177	143	0 38		4 1 5	4	35	4 95
36-48	0 80	1 04	46 4	44 8	39 2	35 9	336	133	10 5	84	54	0 41		4 20	4 :	50	5 30
48-100	0 2 3	171	158	152	14 5	141	13 5	12 4	96	74	43	0 1 9		4 0 5	4	75	5 80
					Ext		KCI				Vo	lume—³₀	Rock	Fragn	nents		
Depth	Са	Mg	Na	K	Acid	CEC	Al+H					(Width ir					
c m				me/	100g				- >7	6 76-	51 51-38	38-25 2	25-19	19-13	13-6	6-2	Total
0-6	11 89	3 2 2	0 08	0 96	44 60	60 75	3 1 5		0 0				0 10	0 00	0 00	0 0 0	0 1 0
6-20	0 63	0 24	0 02	0 09	34 00	34 98	14 10	15 08	33		00 040	0 70	0 20	1 00	1 40	1 40	9 40
20-28	0 20	0 08	0 0 2	0 08	31 90	32 28	5.85		0 0				0 40	0.60	1 40	1 90	6 0 0
28-36	0 17	0 0 5	0 0 2	0 1 0	26 10	26 44	3 7 5		0 0				0 90		2 40	4 20	10 20
36 - 48	0 1 5	0 0 5	0 01	0 08	9 1 0	9 3 9	1 8 5		0 0				0 40	1 1 0	2 60	4 40	9 50
48-100	1 31	0 42	0 02	0 10	3 70	5 5 5	0 65	2 50	47	0 0 0	00 0 40	0 60	0 60	0 70	1 40	2 10) 10 50

Oa-0 to 10 cm; black (5YR 2/1) sapric material; weak fine granular structure; very friable; many very fine, fine, medium, and coarse roots throughout; abrupt wavy boundary.

E-10 to 18 cm; light brownish gray (10YR 6/2) very stony silt loam; massive; very friable; many very fine, fine, and medium roots throughout; abrupt wavy boundary.

Bs1—18 to 31 cm; brown to dark brown (7.5YR 4/4) stony silt loam; weak fine granular structure; very friable; many very fine, fine, and medium roots throughout; clear smooth boundary.

Bs2—31 to 37 cm; dark yellowish brown (10YR 4/6) silt loam; common fine prominent olive gray (5Y 5/2) mottles; weak thin platy structure; friable; common very fine, fine, and many medium roots throughout; abrupt smooth boundary.

BC—37 to 44 cm; light olive brown (2.5Y 5/4) silt loam; common fine prominent olive gray (5Y 5/2) mottles; weak thin and medium platy structure; friable; few very fine, fine, and common medium roots throughout; abrupt smooth boundary.

Cd-44 to 100 cm; olive (5Y 5/3) silt loam; common fine faint light olive gray (5Y 6/2) mottles; strong very coarse prismatic structure; firm; prism faces light olive gray (5Y 6/2) with yellowish brown edges.

A. C. C. A.	TELOS					SOIL	Nos –	131088			LOCA	IONN	Aoosi	e Rive	er, M	ame	
Depth cm	Hor- izon	San (2-	(0)	ilt 05 -	Clay	Ve Co.	itse	Coarse	Med) (0.5	5-	Fine (0 25–	Very Fine		Coar Sili	t	Fi Si	lt
		0.05		002)	(< 0.002)	8 B B		(1.0.5)	0.2:		01)	(0 1-0		(0.05-0		(0 02-	0 002)
a 10	4.5								rel of <	2 mm-			•••••			•••••	
0-10	O a F	20.0	7 66	95	12.98	4	17	3 86	27	2	3 92	5 4 4		20.3	0	16	57
10-18		27.4		75	17.77	9		6 51	34		3 86	4 1 1		11.9		46	
18-31	BN1 BN2	34.0		122	15 78	11		8 62	4 6		4 60	4 11		12.4		42	
31-37 37-44	BS2 BC	31 8		77	17.41	10		6 98	4 4 5		4 99 4 9			10.9		37 75	
44-100	Cd	25.3		10			84			3 91		55 4 3 9		17 17		39 82 34 93	
	Organic				Wa	ter Con	lent (Ba	r Pressur	es)			Avai	l			н	
Depth	Carbon	BD	06	1	33	67	1	2	3	5	15	H,O		KCI	Cat		H,0
cm	%	g/cc	%	%	%	%	%	%	%	%	%	cm/ci		(1:1)	(2		11)
0-10	36 31	0 1 4	264-1	251 3	238 4	236 4	232 6	174 8	1276	107 9	98 0	0 21		2 85	3 2	20	370
10-18	1 47	0 84	433	42 0	393	372	353	20 4	154	113	71	0 29)	2 50	3 2	25 4	4 00
18-31	3 45	071	724	68 0	550	50 4	478	26 4	20 6	192	170	0 36		4 10	4 4	0	5 1 5
31-37	1 60	1 10	43 5	413	34 4	30 5	28 3	16 5	141	12 4	10.6	0 34	-	4 00	47	0	5 7 5
37-44	0 89	1 1 5	351	337	29 1	25 9	24 0	14 6	122	94	54	0 33		3 6 5	3 9	0 4	4 60
44-100	0 29	1 68	170	163	156	15.1	14 6	14 3	13 5	10 9	61	0 17		4 0 5	4 3	0	5 1 5
					Ext		KCI					olume—9					
Depth	Са	Mg	Na	К	Acid	CEC	Al+H	ECEC				(W1	dth in	mm)			
cm				me/	100g				>7	6 76	-51 51-3	8 38-25	25-19	19-13	13-6	6-2	Total
0-10	13 32	2 64	0 07	0 94	41 30	58 27	3 40	20 37			00 00	0 0 0	0 00	0 0 0	0 10	0 00	0 1 0
10-18	1 39	0 3 2	0 02	0 07	15 70	17 50	8 2 5	10 05	34 2	0 1	70 17	0 140	1 60	0 170	2 50	3 90	48 70
18-31	0 89	0 21	0 03	0 08	27 10	28 31	7 5 5	8 76	0 0	0 0	00 05	0 1 20	1 00	1 90	3 20	6 50	14 30
31-37	0 4 5	0 1 0	0 02	0 06	16 10	1673	2 7 5	3 38	0 0	0 0	00 00	0 30	0 20	0 1 50	3.80	8.00	13 80
37-44	0 31	0 0 9	0 02	0 07	8 30	8 7 9	1 70	2 1 9	0 0	0 0	00 06	0 50	0 90	1 00	2 90	7 50	13 40
44-100	1 12	0 77	0 03	0 1 2	4 40	644	075	2 79	0 0	0 0	00 01	0 40	0 30	0 60	1 80	3 80	7 00