The University of Maine DigitalCommons@UMaine

Technical Bulletins

Maine Agricultural and Forest Experiment Station

8-1-1967

TB27: Fresh and Dry Weight, Nutrient Elements and Pulping Characteristics of Northern White Cedar, Thuja occidentalis

Richard F. Dyer

Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the <u>Wood Science and Pulp, Paper Technology Commons</u>

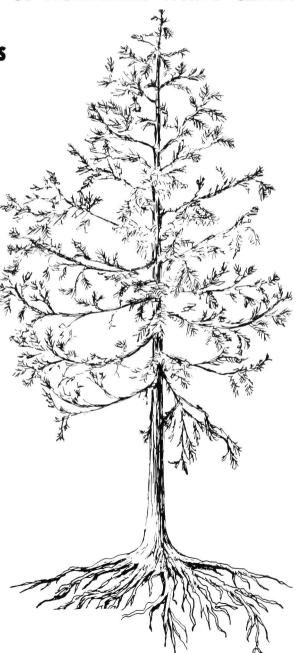
Recommended Citation

Dyer, R.F. 1967. Fresh and dry weight, nutrient elements and pulping characteristics of northern white cedar, Thuja occidentalis. Maine Agricultural Experiment Station Technical Bulletin 27.

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

RESH AND DRY WEIGHT, NUTRIENT ELEMENTS AND PULPING

CHARACTERISTICS OF NORTHERN WHITE CEDAR


lhuja occidentalis

ICHARD F. DYER

ECHNICAL BULLETIN 27

UGUST

1967

Acknowledgments

The author wishes to express thanks to Professor Harold E. Young, Mr. Roger Taylor, Mr. Paul Hughes, Mrs. Alice Ellis and Mrs. Ruth Burpee for their assistance in the weight and nutrient element phases, to Professor Andrew J. Chase for his assistance in the pulping phase of this study and to Mr. Jerry Dube of the University Computer Center for eliminating months of calculations which would have prolonged the preparation of this bulletin.

CONTENTS

	PAGE
Introduction	5
Fresh weight, dry weight and nutrient element studies	5
Complete tree weights	8
Total stem plus total branches	9
Total stem	10
Merchantable stem	11
Total branches	12
Branches smaller than 1 inch	13
Roots over 4 inches and aerial portion	14
Stump, large and medium roots	15
Large and medium roots	16
Roots less than 1 inch	17
Nitrogen	19
Calcium	20
Potassium	21
Magnesium	22
Phosphorus	23
Manganese	24
Iron	25
Aluminum	26
Molybdenum	27
Zinc .	28
Copper	29
Boron	30
Pulping studies	31
Forestry publications	39

FRESH AND DRY WEIGHT, NUTRIENT ELEMENTS AND PULPING CHARACTERISTICS OF NORTHERN WHITE CEDAR, THUJA OCCIDENTALIS

RICHARD F. DYER¹

Introduction

A series of complete tree studies of commercial size red spruce, balsam fir, white pine, eastern hemlock, white birch, red maple and aspen have been conducted in Maine. These culminated in fresh and dry weight tables (Tech. Bul. No. 12), nutrient element tables (Tech. Bul. No. 20) and pulping characteristics (Tech. Bul. No. 17) published by the Maine Agricultural Experiment Station.

There are more than 30 tree species in Maine of which only about one-third are of major commercial importance. Northern white cedar was selected as the eighth species for complete tree investigation of weight, nutrient elements and pulping characteristics because it comprises approximately 13% of the total softwood growing stock in Maine, but only amounts to about 2% of the total softwood timber cut for all purposes. It is hoped that the information in this bulletin will provide basic information permitting northern white cedar to become a more meaningful segment of the Maine forest economy.

All of the tables presented must be considered preliminary in nature because they are based on a limited amount of information from a restricted portion of the state. If properly used, they can provide first estimates as guides until more extensive data are available.

Fresh Weight, Dry Weight and Nutrient Elements Studies

These were accomplished in two phases based on tree size. Phase one consisted of 21 trees of commercial size (5.6 inches Dbh and larger) obtained on the University of Maine Forest, Stillwater, Maine. The field and laboratory procedures in the weight and nutrient element studies on these trees did not deviate from those previously reported on the first seven species. Phase two consisted of 36 trees of seedling and sapling size ranging from 1 to 35 feet in height above ground obtained on the same forest. In the second phase only four components were recognized: leaves or needles, branches, stem and stump and roots combined because of the comparatively small size of the trees. The field and laboratory procedures on the second phase were similar, ex-

¹This study was conducted while the author was a graduate assistant in the School of Forestry, University of Maine. He is now employed by the Northwest Paper Company. Cloquet. Minnecota

cept that shovels were used to remove the trees from the ground and the wood and bark were not separated in any component.

The composition of a typical commercial size northern white cedar is presented in table 1. The bole wood represents less than 40% of the complete tree, on a dry weight basis, and the branches and roots have a notably high percent of bark.

Regression equations relating fresh and dry weight separately to diameter and height for the trees of commercial size with their R^2 values appear in tables 2 and 3. The R^2 are similar to those reported for the first seven species. Tables based on these equations are presented and are limited to the range of diameters and heights of the basic data.

Component	Dry weight of wood as % of dry weight of complete tree	Dry weight of bark as % of dry weight of complete tree	Dry weight of bark as % of dry weight of component	
Merchantable stem	36.8	5.3	12.6	
Unmerchantable stem	5.0	1.1	18.5	
Stump	9.1	1.2	11.9	
Roots 4"+	3.5	0.6	14.8	
Roots 1-4"	3.4	0.6	14.3	
Branches 1"+	1.8	0.6	26.0	
Branches ¹ / ₄ -1"	11.2	3.8	25.6	
Branches less than				
1/4 11	3.	2		
Leaves	9.	5		
Roots ¹ / ₄ -1"	1.1	0.7	39.5	
Roots less than ¹ /4"	1.	5		
Total	10	0%		

Table 1 Dry weight of wood and bark of components as a percentage of dry weight of a complete cedar tree and bark as a percentage of dry weight of each component.*

*The data in this table is based on one cedar tree 8.4 inches in diameter and 37.3 feet in height.

WEIGHT AND PULPING CHARACTERISTICS OF NORTHERN WHITE CEDAR

Table 2	Regression	equations re	elating fresh	weight c	of components	of large
	cedar trees	to tree dim	ensions, in p	ounds.		

Component(s)	Equation		R ²
Complete tree	$\log Y = -2.07 + 1.59 \log$	$X_1 + 1.29 \log X_2$	90
Roots over 4 inches and period portion			
aerial portion Total stem plus	$\log Y = -2.04 + 1.62 \log$	$X_1 + 1.25 \log X_2$	91
total branches	$\log Y = -2.63 + 1.53 \log$	$X_1 + 1.41 \log X_2$	90
Total stem	$\log Y = -3.94 + 1.46 \log$	$X_1 + 1.71 \log X_3$	93
Merchantable		1 0	
stem	$\log Y = -5.44 + 1.56 \log$	$X_1 + 2.01 \log X_{}$	95
Stump, large and medium			
roots	$\log Y = -1.96 + 1.90 \log$	$X_1 + 0.61 \log X_2$	89
Large and			
medium roots	$\log Y = -4.39 + 1.78 \log$	$X_1 + 1.18 \log X_2$	7 7
Roots less than			
1 inch	$\log Y = -7.96 + 1.31 \log$	$X_1 + 2.06 \log X_2$	55

Where Y is the weight in pounds, X_1 the Dbh in inches, X_2 the height above ground in feet and R^2 the coefficient of determination.

R2 Component(s) Equation $\log Y = -3.29 + 1.53 \log X_1 + 1.40 \log X_2$ Complete tree 92 Roots over 4 inches and $\log Y = -3.30 + 1.53 \log X_1 + 1.39 \log X_2$ 93 aerial portion Total stem plus total branches $\log Y = -3.97 + 1.41 \log X_1 + 1.59 \log X_2$ 91 $\log Y = -4.62 + 1.29 \log X_1 + 1.79 \log X_2$ 92 Total stem Merchantable $\log Y = -6.02 + 1.39 \log X_1 + 2.06 \log X_2$ 95 stem Stump, large and medium $\log Y = -2.81 + 2.00 \log X_1 + 0.54 \log X_2$ 90 roots Large and $\log Y = -5.70 + 1.96 \log X_1 + 1.51 \log X_2$ 79 medium roots Roots less than $\log Y = -8.82 + 1.84 \log X_1 + 1.52 \log X_2$ 51 1 inch

Table 3 Regression equations relating dry weight of components of large cedar trees to tree dimensions, in pounds of dry wood.

Where Y is the weight in pounds, X_1 the Dbh in inches, X_2 the height above ground i fitted in 2° in containing on.

7

8

MAINE AGRICULTURAL EXPERIMENT STATION TECHNICAL BULLETIN 27

COMPLETE TREE

FRESH WEIGHT (POUNDS)

D.8.H.		TOT	AL HEIGHT		
(IN.)	30	40	50	60	70
6	175.	254 •			
7	224.	325•			
8		402.			
9		484.			
10		573.	764.		
11		667.	890.		
12		766•	1022.		
13					
14					
15					

NO. WHITE CEDAR

COMPLETE TREE

5 6 N			AL HEIGHT (FEET)		
D.B.H. (IN.)	30	40	50	60	70
6	67.	101.			
7	85.	127.			
8		156.			
9		187.			
10		220.	301.		
11		255•	349.		
12		291.	398.		
13					
14					
15					

TOTAL STEM PLUS TOTAL BRANCHES

FRESH WEIGHT (POUNDS)

D.B.H.			L HEIGHT FEET)		
(IN.)	30	40	50	60	70
6	137.	206.			
7	173.	261.			
8		320.			
9		383.			
10		451•	618.		
11		522.	715.		
12		596•	817.		
13					
14					
15					

NO. WHIV CEDAR

TOTAL STEM PLUS TOTAL BRANCHES

D.8.H.	TOTAL HEIGHT (FEET)							
(1N+)	30	40	50	60	70			
6	53.	84.						
7	66.	104.						
8		126.						
9		149.						
10		173.	247.					
11		198.	283.					
12		224 •	320.					
13								
14								
15								

TOTAL STEM

FRESH WEIGHT (POUNDS)

D.B.H.	TOTAL HEIGHT (FEET)						
(IN•)	30	40	50	60	70		
6	90.	147.					
7	113.	185.					
8		224 •					
9		267.					
10		311.	456.				
11		357.	524.				
12		406.	595.				
13							
14							
15							

NO. WHITE CEDAR

TOTAL STEM

D.B.H.	TOTAL HEIGHT (FEET)							
(IN+)	30	40	50	60	70			
6	43.	72.						
7	52.	88.						
8		105.						
9		122.						
10		140.	209.					
11		158.	236.					
12		177.	264.					
13								
14								
15								

MERCHANTABLE STEM

```
FRESH WEIGHT (POUNDS)
```

D.B.H.		тот	AL HEIGHT (FEET)		
(IN.)	30	40	50	60	70
6	66.	119.			
7	84.	151.			
8		186.			
9		224 •			
10		264.	415.		
11		307.	481.		
12		352.	552.		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE STEM

				TO		EIGHT		
D.B.H.					(FEE	T)		
(IN.)	:	30		40		50	60	70
6	:	32.		59.				
7		40.		73.				
8				88.				
9			1	104 •				
						100		
10				121•		192.		
				138.		219.		
11				130.		2170		
12				156.		247.		
12								
13								
15								
14								
15								

TOTAL BRANCHES

FRESH WEIGHT (POUNDS)

D.B.H.			L HEIGHT FEET)		
			50	60	70
tin.)	30	40	50	80	70
6	46•	55.			
7	61.	73.			
8		92•			
9		113.			
10		136 •	156.		
11		160.	184.		
12		187.	214.		
13					
14					
15					

NO. WHITE CEDAR

TOTAL BRANCHES

			AL HEIGHT		
D+B+H+			(FEET)		
(IN+)	30	40	50	60	70
6	9.	10.			
7	12.	14.			
8		19.			
9		25•			
10		31 (35.		
11		39•	43.		
12		47.	52.		
13					
14					
15					

BRANCHES SMALLER THAN ONE INCH

FRESH WEIGHT (POUNDS)

		TO	TAL HEIGHT		
D.B.H.			(FEET)		
(IN.)	30	40	50	60	70
6	46.	54.			
7	59.	69.			
8		86.			
9		105.			
			NO. 8. 201		
10		124 •	141.		
11		145.	164.		
		147	189.		
12		167•	107.		
13					
1.0					
14					
15					
15					

NO. WHITE CEDAR

BRANCHES SMALLER THAN ONE INCH

		101	FAL HEIGHT		
D.B.H.			(FEET)		
(IN.)	30	40	50	60	70
6	8.	10.			
7	11.	13.			
8		17.			
9		21•			
10		25.	28•		
11		30.	33.		
12		36•	39.		
13					
14					
15					

ROOTS OVER 4 INCHES AND AERIAL PORTION

FRESH WEIGHT (POUNDS)

D.B.H.			L HEIGHT FEET)		
(IN•)	30	40	50	60	70
6	164.	234.			
7	210.	301.			
8		374.			
9		452.			
10		536.	709.		
11		626•	827.		
12		721.	952.		
13					
14					
15					

NO. WHITE CEDAR

ROOTS OVER 4 INCHES AND AERIAL PORTION DRY WEIGHT (POUNDS)

D.B.H.			L HEIGHT FEET)		
(IN+)	30	40	50	60	70
6	64•	95.			
7	81.	121.			
8		148.			
9		178 *			
10		209.	285.		
11		242.	330.		
12		277.	377.		
13					
14					
15					

STUMP. LARGE AND MEDIUM ROOTS

FRESH WEIGHT (POUNDS)

D.8.H.			L HEIGHT FEET)		
(IN+)	30	40	50	60	70
6	33.	40.			
7	45.	53.			
8		69.			
9		86.			
10		105.	120.		
11		126.	144.		
12		149.	170.		
13					
14					
15					

15

NO. WHITE CEDAR

STUMP. LARGE AND MEDIUM ROOTS

D.8.H.		тот	AL HEIGHT (FEET)		
(1N+)	30	40	50	60	70
6	13.	15.			
7	18.	21.			
8		27.			
9		35.			
10		43.	49.		
11		52.	59.		
12		62.	70.		
13					
14					
15					

LARGE AND MEDIUM ROOTS FRESH WEIGHT (POUNDS) TOTAL HEIGHT D.B.H. (FEET) 30 60 (IN.) 40 50 70 6 16. 23. 7 21. 30. 8 38. 9 47. 10 57• 74. 11 67. 88. 12 79. 103. 13 14 15

NO. WHITE CEDAR

LARGE AND MEDIUM ROOTS

D.8.H.		то	TAL HEIGHT (FEET)		
(IN•)	30	40	50	60	70
6	5.	8.			
7	7.	10.			
8		14.			
9		17•			
10		21 •	26.		
11		26•	34.		
12		31.	40.		
13					
14					
15					

ROOTS LESS THAN ONE INCH

FRESH WEIGHT (POUNDS)

D.B.H.			L HEIGHT		
(IN.)	30	40	50	60	70
6	4.	7.			
7	4.	9 •			
8		10.			
9		12.			
10		14.	22.		
11		16.	25•		
12		18.	28.		
13					
14					
15					

NO. WHITE CEDAR

ROOTS LESS THAN ONE INCH

			LHEIGHT		
D.B.H. (IN.)	30	40	FEET) 50	60	70
(IN•)	50	40	50	00	
6	0.	1 •			
7	0.	1•			
8		1•			
9		2.			
10		2.	3.		
11		3.	4.		
12		3.	5.		
13					
14					
15					

Table 4 presents the parts per million of 12 nutrient elements in the large trees. Ca, N, K and Mg were present in much larger proportions than the other elements. By multiplying these by the dry weight of the merchantable bole and the complete tree, tables estimating the amount of these elements in grams were prepared.

Regression equations relating fresh and dry weight separately, of seedling and sapling size cedar trees, to height above ground for 36 trees obtained on the university Forest are shown in table 5. Their R^2 values are uniformly high for all components.

Fresh and dry weight for ten height classes are presented in tabular form. The values for the complete tree in the table are the values of the four components added together. The complete tree equation would have provided results slightly different due to the statistical methods used.

Table 6 shows the parts per million for each of the 12 nutrient elements in the seedling and sapling size trees for each of the four tree components. The leaves have the highest proportion of all elements except for Al and Cu which are highest in the roots. These percentages of the nutrient elements were multiplied by the dry weight of each of the four components for each of ten size classes as shown in the same table with the weight of the small trees.

Element	Tree component Merchantable bole Complete tre Parts per million		
Al	5	17	
Mn	3	14	
Мо	2	4	
Ca	4650	6010	
Р	34	150	
Mg	177	307	
Zn	4	8	
Cu	0.4	0.0	
Fe	34	49	
В	5	6	
K	146	375	
N			

Table 4 Estimated nutrient element content in large cedar trees based on data from 3 trees.

COMPLETE TREE

```
NITROGEN (GRAMS)
```

D. B. H.	TOTAL HEIGHT (FEET)						
D+B+H+ (IN+)	30	40	50	60	70		
6	48.	72.					
7	60.	91•					
8		111.					
9		133.					
10		156 •	214.				
11		181.	247.				
12		20 6 •	282•				
13							
14							

15

NO. WHITE CEDAR

MERCHANTABLE BOLE

NITROGEN (GRAMS)

			L HEIGHT FEET)		
D.B.H. (IN.)	30	40	50	60	70
6	11•	19.			
7	13.	24•			
8		29•			
9		34•			
10		39•	62.		
11		45•	71•		
12		51•	80.		
13					
14					
15					

COMPLETE	TREE				
CALCIUM (GRAMS)				
D+B+H+ (IN+)	30	то 40	TAL HEIGHT (FEET) 50	60	70
6	184•	276•			
7	233.	349.			
8		428.			
9		512.			
10		602.	823.		
11		696.	952.		
12		795.	1087.		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

CALCIUM (GRAMS)

D.B.H.	TOTAL HEIGHT (FEET)						
(IN.)	30	40	50	60	70		
6	69•	126.					
7	86•	156.					
8		187.					
9		221.					
10		255.	405.				
11		292.	462.				
12		329.	522.				
13							
14							
15							

COMPLETE TREE

POTASSIUM (GRAMS)

D.B.H.	TOTAL HEIGHT (FEET)						
(1N.)	30	40	50	60	70		
6	11.	17.					
7	15.	22.					
8		27.					
9		32.					
10		38.	51.				
11		43.	59•				
12		50.	68.				
13							
14							

15

NO. WHITE CEDAR

MERCHANTABLE BOLE

POTASSIUM (GRAMS)

			L HEIGHT		
D+B+H+ (IN+)	30	40	50	60	70
6	2.	4.			
7	3.	5.			
8		6.			
9		7.			
10		8.	13.		
11		9.	15.		
12		10.	16.		
13					
14					
15					

```
COMPLETE TREE
```

MAGNESIUM (GRAMS)

D.B.H.			L HEIGHT FEET)		
(IN+)	30	40	50	60	70
6	9.	14•			
7	12.	18•			
8		22•			
9		26.			
10		31.	42.		
11		36.	49.		
12		41.	56.		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

MAGNESIUM (GRAMS)

D.B.H.	TOTAL HEIGHT (FEET)							
(IN+)	30	40	50	60	70			
6	З.	5•						
7	3.	6.						
8		7.						
9		8.						
10		10.	15.					
11		11+	18.					
12		13.	20.					
13								
14								
15								

COMPLETE TREE

PHOSPHORUS (GRAMS)

D.B.H.			E HEIGHT		
(1N.)	30	40	50	60	70
6	4.6	6.9			
7	5.8	8.7			
8		10.7			
9		12.8			
10		15.0	20.5		
11		17.4	23.7		
12		19.8	27.1		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

PHOSPHORUS (GRAMS)

		TO	TAL HEIGHT		
D.B.H.			(FEET)		
(IN.)	30	40	50	60	70
6	•5	•9			
7	•6	1 • 1			
1	••				
8		1•4			
9		1.6			
10		1.9	2.9		
11		2.1	3.4		
12		2.4	3.8		
13					
14					
15					

```
COMPLETE TREE
```

MANGANESE (GRAMS)

D.B.H.	TOTAL HEIGHT (FEET)						
(IN.)	30	40	50	60	70		
6	•43	•65					
7	•55	.82					
8		1.00					
9		1.20					
10		1.41	1.93				
11		1.63	2.23				
12		1.86	2.55				
13							
14							
15							

NO. WHITE CEDAR

MERCHANTABLE BOLE

MANGANESE (GRAMS)

D.B.H. (IN.)	30		AL HEIGHT (FEET) 50	60	70
6	•04	•07			
7	•05	• 09			
8		• 10			
9		•12			
10		• 14	•23		
11		•16	•26		
12		• 18	• 29		
13					
14					
15					

```
COMPLETE TREE
IRON (GRAMS)
                                TOTAL HEIGHT
D.B.H.
                                    (FEET)
 (IN.)
                   30
                              40
                                         50
                                                   60
                                                               70
    6
                   1.5
                              2.2
    7
                   1.9
                              2.8
    8
                              3.5
    9
                              4.2
   10
                              4.9
                                         6.7
   11
                              5.7
                                         7.8
   12
                              6.5
                                         8.9
   13
   14
   15
NO. WHITE CEDAR
MERCHANTABLE BOLE
IRON (GRAMS)
                                TOTAL HEIGHT
                                   (FEET)
D.B.H.
                                                               70
                   30
                              40
                                         50
                                                    60
 (IN.)
                              .9
                    .5
    6
                              1 • 1
    7
                    •6
                              1.4
    8
                              1.6
    9
                                         3.0
                              1.9
   10
                              2.1
                                         3.4
   11
                              2.4
                                         3.8
   12
   13
   14
   15
```

COMPLETE TREE

ALUMINUM (GRAMS)

D.B.H.			L HEIGHT		
(IN.)	30	40	50	60	70
6	•5	•8			
7	• 7	1.0			
8		1.2			
9		1.5			
10		1•7	2.3		
11		2.0	2.7		
12		2.3	3.1		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

ALUMINUM (GRAMS)

D.B.H.	TOTAL HEIGHT (FEET)				
(IN•)	30	40	50	60	70
6	• 1	• 1			
7	•1	•2			
8		•2			
9		•2			
10		• 3	•4		
11		• 3	•5		
12		• 3	•5		
13					
14					
15					

COMPLETE TREE

MOLYBDENUM (GRAMS)

D.B.H.			AL HEIGHT (FEET)		
(IN.)	30	40	50	60	70
6	• 1 1	•17			
7	• 1 4	•21			
8		• 26			
9		• 31			
10		• 36	• 49		
11		•42	•57		
12		•48	•65		
13					
14					

15

NO. WHITE CEDAR

MERCHANTABLE BOLE

MOLYBDENUM (GRAMS)

			L HEIGHT FEET)		
D.B.H. (IN.)	30	40	50	60	70
6	•03	•06			
7	•04	.08			
8		•09			
9		• 1 1			
10		.13	•20		
11		• 1 4	•23		
12		• 16	•26		
13					
14					
15					

COMPLETE TREE	E				
ZINC (GRAMS)					
			HEIGHT		
D+B+H+ (IN+)	30	40 (F	50	60	70
6	•2	•3			
7	• 3	• 4			
8		•5			
9		•6			
10		•8	1.0		
1 1		•9	1.2		
12		1.0	1•4		
13					
14					
15					
NO. WHITE CE					
MERCHANTABLE	BOLE				
ZINC (GRAMS)					
D.B.H.		(F	HEIGHT		
(IN•)	30	40	50	60	70
6	• 1	• 1			
7	• 1	• 1			
8		• 1			
9		•2			
10		•2	• 3		
11		•2	• 4		
12		• 3	•4		
13					
14					
15					

COMPLETE TREE

COPPER (GRAMS)

D.B.H.			AL HEIGHT (FEET)		
(1N.)	30	40	50	60	70
6	•02	•02			
7	•02	•03			
8		•04			
9		•04			
10		•05	•07		
11		•06	•08		
12		•07	•09		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

COPPER (GRAMS)

D.B.H.			HEIGHT EET)		
(IN.)	30	40	50	60	70
6	• 0 1	• 0 1			
7	• 0 1	• 01			
8		.02			
9		•02			
10		• 02	•03		
11		.03	.04		
12		.03	•04		
13					
14					

15

COMPLETE TREE

BORON (GRAMS)

D.8.H.		TOTAL	HEIGHT		
(IN•)	30	40	50	60	70
6	•2	• 3			
7	•2	•3			
8		• 4			
9		•5			
10		•6	•8		
11		• 7	•9		
12		•8	1.0		
13					
14					
15					

NO. WHITE CEDAR

MERCHANTABLE BOLE

BORON (GRAMS)

		TO	TAL HEIGHT		
D.B.H. (IN.)	30	40	(FEET) 50	60	70
6	• 1	• 1			
7	• 1	•2			
8		•2			
9		•2			
10		•3	• 4		
1 1		•3	•5		
12		•3	•5		
13					
14					
15					

Component(s)	Equation	\mathbb{R}^2
Leaves:		
Fresh weight	$\log Y = 2.58 + 2.03 \log X$	94
Dry weight	$\log Y = 1.59 + 2.07 \log X$	94
Branches:		
Fresh weight	$\log Y = 1.20 + 2.40 \log X$	90
Dry weight	$\log Y = 0.59 + 2.37 \log X$	89
Stem:		
Fresh weight	$\log Y = 0.59 + 2.98 \log X$	97
Dry weight	$\log Y = -0.32 + 3.07 \log X$	95
Roots:		
Fresh weight	$\log Y = 1.31 + 2.46 \log X$	94
Dry weight	$\log Y = 0.60 + 2.40 \log X$	93
Complete tree:		
Fresh weight	$\log Y = 3.02 + 2.41 \log X$	96
Dry weight	$\log Y = 2.21 + 2.42 \log X$	96

Table 5 Regression equations relating fresh and dry weight of components of small cedar trees to tree height, in grams.

Where Y is the weight in grams, X the height above ground in feet and R^2 the coefficient of determination.

Table 6 Estimated nutrient element content in small tree components based on data from 5 tree size classes.

	Ti	ree component		
Element	Leaves	Branches	Stems	Roots
	Pa	rts per million		
A1	74	54	17	130
Mn	265	39	31	82
Мо	11	9	6	6
Ca	14,700	11,400	7,300	8,100
Р	890	250	120	290
Mg	1,070	450	280	360
Zn	44	23	10	14
Cu	2	2	3	5
Fe	134	92	44	168
В	13	7	6	7
K	2,100	470	210	550
N	8,300	2,400	1,500	1,700

Pulping Studies

To conform with the studies published in Technical Bulletin 17, pulp was made from the same tree components by the same pulping equipment and accepted laboratory practices and tests of the chemical engineering department of the University of Maine. In addition, a sample consisting of each of the tree components (except the leaves) in proportion to their percentage of the complete tree was pulped to simulate pulp that might be obtained from chips produced by a complete tree harvester, a machine that is still only an idea.

Inasmuch as northern white cedar is not being used commercially for pulp, certain aspects of its pulping should be mentioned. The sulfate liquor was prepared according to conditions used by Standard Packaging Corporation in some of their laboratory testing. This included a chemical to wood ratio of 0.3:1 (the chemical being expressed as equivalent Na,O and a 25% sulfidity). The liquor concentration

Table 7				
NORTHERN	WHITE CEDAR	(grams)		

							NORTH	ICKN WHI	TE CEDAR	(grams)						
Height	Component	Fresh Weight	Dry Weight	Al	Mn	Но	Ca	P	Mg	Zn	Cu	Fe_	В	ĸ		Component
feet)																
	Needles	13.2	4.9	0.000	0.001	0.000	0.072	0.004	0.005	0.000	0.000	0.001	0.000	0.010	0.041	Needles
	Branches Stem	33 1.8	1.8	.000	.000	.000	.021	.000	.001	.000	.000	.000	.000	.001	.004	Branches
	Roots	3.7	.7	.000	.000	.000	.005	.000	,000	.000	.000	.000	.000	.000	.001	Stem Roots
	Complete Tree	22.0	$\frac{1.9}{9.3}$	0.000	0.001	.000	.015 0.113	0,001	.001 0.007	000.000	000.0	.000 0.001	.000	.001 0.012	0.049	Complete Tree
	Needles	122.	48.	0.004	0.013	0.001	0.706	0.043	0.051	0.002	0.000	0.006	0.001	0,101	0.398	Needles
	Branches	47.	24.	.001	.001	.000	.278	.006	.011	.001	.000	,002	.000	.011	.058	Branches Stem
	Stem	48.	21.	.000	.001	.000	.155	.003	.006	.000	.000	.001	.000	.004	.032	Roots
	Roots Complete Tree	$\frac{55}{272}$	$\frac{26.}{119.}$	0.003	0.002	0.001	1.346	0.059	0.077	.000	0.000	0.013	0.001	0.130	0.531	Complete Tree
	Compiete free	212.	119.	0.008	0.017	0.001	1.340	0.039	0.077	0.003	0.000	0.015	0.001	0.150		
	Needles	344.	138.	0.010	0.037	0.001	2.034	0.123	0.148	0.006	0.000	0.019	0.002	0.291	1.149	Needles
	Branches	160.	82.	.004	.003	.001	.932	.020	.037	.002	.000	.008	.001	.038	.196	Branches
	Stem	221.	102.	.002	.003	.001	.746	.012	.029	.001	.000	.004	.001	.021	.153	Stem
	Roots	<u>193.</u>	87.	.011	.007	.001	.706	025	.031	.001	000	.015	0,001	0.398	.148	Roots Complete Tree
	Complete Tree	918.	409.	0.027	0.050	0.004	4,418	0.180	0.245	0.010	0.000	0.046				
	Needles	679.	278.	0.021	0.074	0,003	4.086	0.247	0.297	0.012	0.001	0.037	0.004	0.584	2.307	Needles
	Branches	359.	182.	.010	.007	.002	2.070	.045	.082	.004	.000	.017	.001	.085	.436	Branches Stem
	Stem Roots	605.	288.	.005	.009	.002	2.100	.035	.081	.003	.001	.013	.002	.060	.431	Roots
	Complete Tres	441.	$\frac{195}{943}$	61	0.106	.001	$\frac{1.583}{9.839}$.057 0.384	0,070	0.022	0.001	0.100	.001 0.008	0.837	3,506	Complete Tree
		1399.	582.	0.043	0.154	0.006	8.557	0.518	0.623	0.026	0.001	0.078	0.007	1.222	4.831	Needles Branches
10	Branches	845.	423.	.023	.017	.004	4.824	.106	.190	.010	.001	.039	.003	.199	1.292	Stem
	Stem Roots	1754.	861. 460.	.015	.027	.005	6.287 3.727	.103	.241	.009	.003	.038	.005	.181	.782	Roots
	Complete Tree		2326.	0.141	0.236	0.018	23.395	0.860	1,220	0.006	0.007	0.232	0.018	1,855	7.921	Complete Tree
								0.000	1.220							
	Needles	3182.	1349.	0.100	0.357	0.014	19.828	1.200	1.443	0.059	0.003	0.181	0.017	2,833	11.195	Needles
15	Branches	2240.	1107.	.060	.043	.010	12.618	.277	.498	.025	.003	. 102	.008	. 520	2.657	Branches
	Stem	5885.	2995.	.051	.093	.017	21.867	.359	.839	.030	.009	.132	.017	.629	4.493	Stem Roots
	Roots	2866.	1218.	.158	.100	.008	9.862	2,189	<u>,438</u> 3,218	.017	0.021	.205	.009	4.652	20.415	Complete Tre
	Complete Tree	41/3.	6669.	0.369	0.593	0.049	64.175	2.189	3.218	0.131	0.021	0.620	0.051	4.652		
	Needles	5701.	2448.	0.181	0,649	0,026	35.993	2.179	2.620	0.108	0.005	0.328	0.031	5.142	20.323	Needles
20		4472.	2190.	.116	.085	.020	24.963	.547	.985	.050	.005	.201	.015	1.029	5.225	Branches
		3892.	7254.	.123	.225	.041	52.952	.870	2.031	.073	.022	.319	.042	1.523	10.881	Stem
	Roots	5809.	2429.	316	.199	.015	19.671	.704	.874	.034	.012	.408	.017	1.336	4.129	Roots
	Complete Tree 2	9874.	14321.	0.738	1.158	2.102	133.579	4.300	6.510	0.265	0.044	1.256	0.105	9.030	40.558	Complete Tre
	Needles	8959.	3888.	0.288	1.030	0.041	57,158	3,461	4.161	0.171	0.005	0.521	0.050		32.273	Needles
25	Branches	7647.	3717.	.201	.145	.033	42.375	.929	1.673	.085	.009	.342	.026	8.165	8.921	Branches
		27046	14404 .	.245	.447	.081	105.151	1.729	4.033	.144	.045	.634	.026	3.025	21,606	Stem
	Roots	10048	4149.	. 539	. 340	.026	33.607	1.203	1.494	.058	.020	,697	.029	2.282	7.053	Roots
	Complete Tree	53700.	26158.	1.273	1.962	0.181	238.291	7.322	11.361	0.458	0.082	2.194	0.189	15.222	69.853	Complete Tre
															1	
30		2964.	5674. 5728.	0.420	1.504	0.060	83.405 65.296	5.050	6.071 2.577	0.250	0.011	0.760	0.073	11.915	47.093	Needles
30			5728. 25230.	. 309	.223	.052	65.296	3.028	2.5//	.132	.014	.527	.040	2.692	13.747	Branches Stem
		5722.	6426.	.835	.527	.040	58.057	1.864	2.314	.090	.031	1.080	.046	3.535	10.925	Roots
		37151.	43058	1.993	3.036		384, 437	11.374	18.026	0.724	0.134	3.477	0.305	23.440	109.610	Complete Tre
					2.070	0.083	112,801	6.951	0.357	0.34	0.016					-
35		L7717. L7168.	7810. 8255.	0.578	2.070	0.083	94.113	2.064	8.356	0.344	.020	1.046	0.100	16.400	64.820 19.813	Needles Branches
ود .		73858	40526.	.689	1.256	.227	295.838	4.863	11.347	.405	126	1.783	.235	8.510	60,789	Stem
	Roots	22955.	9304 .	1.210	.763	.058	75.363	2.698	3.349	.130	.045	1.363	.066	5.117	15.817	Roots
	Complete Treel	31698.	65895.	2.923	4.411	0.442	580.115	10.307	20.707	1.069	0.207	3.152	0.459	33.907	161.239	

could not be determined in advance because the amount of liquid necessary to cover the chips was not known. It was later found to be about 19.7 grams per liter with a liquor to wood ratio of 15:1. The chemicals, NaOH and Na₂S were dissolved in water. Either caustic or sulfide was added as necessary until the test showed 25% sulfidity (as Na₂O). The concentration of the liquor was also determined and the amount necessary to give a chemical to wood ratio of 0.3:1 was calculated. An estimated cooking time of 4.5 hours was used in the first trial. Inasmuch as this yielded the desired permanganate number of 18, it was used in each subsequent cook.

The permanganate numbers as shown in table 8 indicate that lignin is less easily removed from the branches and roots and that pulp from these components will require more bleaching than pulp from the bole. Pulps from the composite samples had permanganate numbers only slightly higher than those from the bole.

Component	Tree #1 6" Dbh	Tree #2 8" Dbh	Tree #3 12" Dbh
Unmerchantable			
bole	18.9	19.0	18.6
Merchantable			
bole	19.4		18.5
Branches	23.3	23.6	22.8
Roots	20.8	21.6	20.7
Composite	20.6	19.9	19.8
Table 9 Screened yield of	f cedar pulp as perce	ent of bone dry	chips charged
Component	Tree #1	Tree #2	
	1100 #1	11ee # 2	Tree #3
Unmerchantable		<u> </u>	Tree #3
	42.1	43.4	42.4
Unmerchantable		"	
Unmerchantable bole		"	
Unmerchantable bole Merchantable	42.1	"	42.4
Unmerchantable bole Merchantable bole	42.1 42.6	43.4	42.4

Table 8 Permanganate numbers in pulping study of northern white cedar.

The screened yields based on bone dry weight of wood charged are shown in table 9. The branches and roots had lower yields than the other components. Variation in tree size was not found to affect permanganate numbers or screened yields. So few rejects were found from all samples that they were considered to be insignificant.

All structural and strength data were plotted with respect to Canadian Standard Freeness instead of refining time because CSF is a better measure of the actual conditions of the fibers. This is true because all pulps do not react the same to refining. Strength curves are presented only for the 8.4 inch Dbh tree as there were no real differences between trees of different size and age. This fact would be significant in considering cedar for commercial pulping.

Figure 1 is a graph of the relationship between CSF and refining time. The pulps from all components reacted to refining at about the same rate. The branches were lower in freeness than the other components.

Bulk curves are shown in figure 2. The curves show that the branch pulps definitely have higher bulk than pulps from other components.

Graphs of the tear factors are shown in figure 3. In general the roots and branches are a little higher in tear strength than the other components.

Curves representing the burst factors are presented in figure 4. The branch and root pulps are inferior to the bole pulp in burst strength. Pulps from the composite samples are intermediate in burst strength between pulps from the bole and pulps from the roots and branches.

Tensile strength in terms of breaking length is plotted in figure 5 for each component and the composite. The branch and root pulps were inferior to the bole pulp.

Stretch as a percent is presented in figure 6. Pulp from the branches has superior stretching properties. Figure 7 shows bulk and strength curves for a typical sulfate spruce pulp and for pulp from the bole wood of cedar as a means of comparing a species that is commercially favored with cedar which is not used in the northeast at the present time. Table 10 shows fiber dimensions for pulps from four tree components.

Due to limited material and lack of confidence in the accuracy of the M.I.T. fold tester, this test was not performed. Recent informal discussions with Benjamin Hoos of the Brown Company brought new light on this characteristic of cedar pulp. Prior to World War II he was able to make extensive pulping studies of a number of species for which considerable material was on hand and there was a sizable staff to perform the standard tests. By making a large number of fold tests with the M.I.T. fold tester he was able to note distinct average differences between species native to the northeast. Northern white cedar shows a much greater fold test value than any other species. In fact, it was several times greater than that for spruce which, in turn, was larger than any other eastern species tested. For certain products some western pulp mills are now adding as much as 15-20% cedar to the furnish to increase the fold capacity of the final product. This possibility may become of industrial value in the northeast.

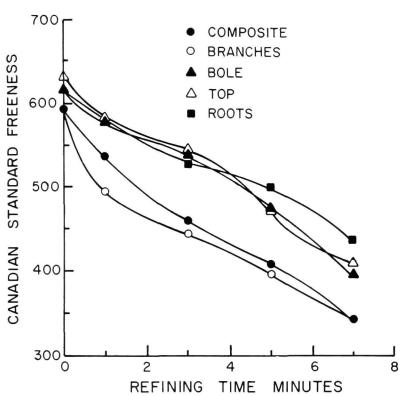
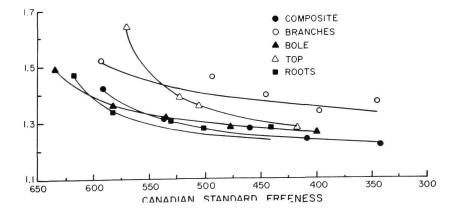



Figure 1. Relationship of freeness to refining time for pulps from tree #3.

Figure 2. Relationship of bulk to freeness for pulps from tree #3.

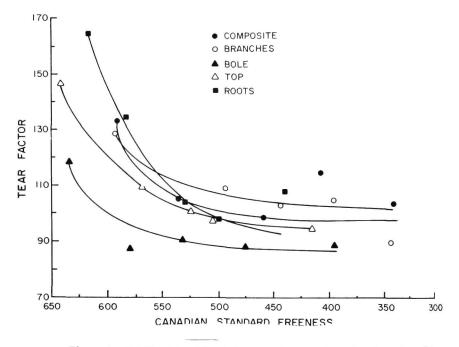
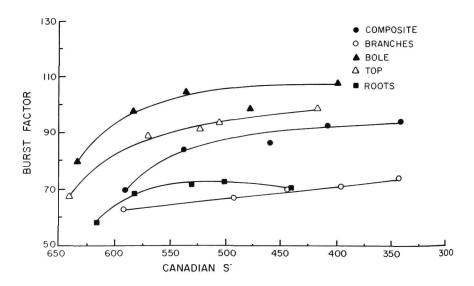
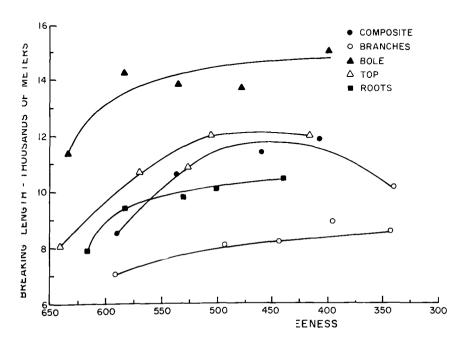



Figure 3. Relationship of tear factor to freeness for pulps from tree #3.

Figure 4. Relationship of burst factor to freeness for pulps from tree #3.



WEIGHT AND	PULPING	CHARACTERISTICS	OF	Northern	WHITE	CEDAR	37
------------	---------	-----------------	----	----------	-------	-------	----

Component	Tree #1	Tree #3
Unmerchantable top	0.02 mm	0.01 mm
Branches	0.01 mm	0.01 mm
Roots	0.02 mm	0.02 mm
Bole	0.02 mm	0.02 mm
Average fiber lengths: Component		
Unmerchantable top	2.55 mm	2.65 mm
Branches	1.81 mm	1.62 mm
Roots	2.26 mm	2.03 mm
Bole	2.56 mm	2.78 mm

Table 10Fiber dimensions for pulps from 4 tree components.Average fiber diameters:

Figure 5. Relationship of breaking length to freeness for pulps from tree #3.

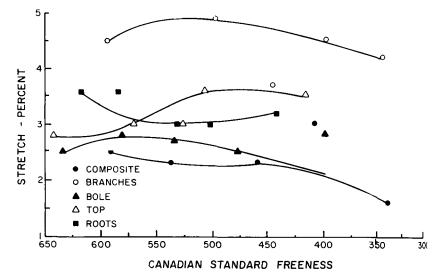
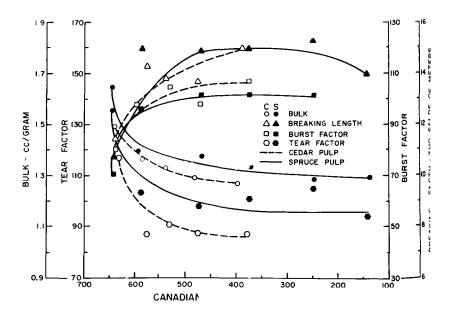



Figure 6. Relationship of stretch percent to freeness for pulps from tree #3.

Figure 7. Bulk and strength curves for a typical sulfate spruce pulp and for pulp from the bole wood of cedar.

LIST OF FORESTRY PUBLICATIONS

- Bulletin 554. Marketing forest products from small woodland areas in Maine. Gregory Baker and Frank Beyer. 1956.
- Misc. Pub. 651. How Maine sawmills market their lumber. Gregory Baker 1961
- Bulletin 601. Forest plantations in Maine. Robert I. Ashman. 1962
- Bulletin 614. A plan for the recreational development of the Machias Lakes region in Washington County, Maine. A. Temple Bowen, Jr. 1963
- Bulletin 616. The integration of year round recreation and timberland management of the Passadumkeag Mountain region of eastern Maine. Robert Greenleaf. 1963
- Bulletin 615. Marketing Maine lumber to the northeastern building construction industry. Samuel M. Brock. 1963 (available in libraries only)
- Bulletin 620. The relationship of maximum peat depth to some environmental factors in bogs and swamps in Maine. Richard A. Kennedy. 1963
- Bulletin 621. The market for lumber in Maine manufacturing industries. Samuel M. Brock. 1964
- Bulletin 627. The relation of tree and stand characteristics to basal area growth of red spruce trees in partially cut stands in eastern Maine. A. Temple Bowen. 1964
- Bulletin 628. Comparison of recreational development plans for a northern Maine wilderness tract. Edward I. Heath. 1965
- Bulletin 630. Distribution patterns of trucked pulpwood in eastern-central Maine. Daniel I. Schroeder and Thomas J. Corcoran.
- Bulletin 632. The effect of selected herbicides on young balsam fir. John M. Lane and Ralph R. Griffin. 1965
- Bulletin 640. An evaluation of the distribution of trucked pulpwood in eastcentral Maine — a linear programming application. T. J. Corcoran, D. I. Schroeder and D. B. Thompson. 1966
- Bulletin 643. Organizational and operational characteristics of independent pulpwood trucking firms in Maine. D. B. Thompson and T. J. Corcoran. 1966
- Misc. Pub. 658. Recreational use of private land in a portion of eastern Maine. Bruce E. Stewart. 1963
- Misc. Pub. 659. A plan for the recreational development of the University of Maine Forest. Bruce E. Stewart. 1964
- Misc. Pub. 663. A plan for the development of nature trails in the University of Maine Forest. Edward I. Heath. 1965
- Misc. Pub. 675. A prescribed burn following a clearcut in the spruce type. A. G. Rardell with

- 40 MAINE AGRICULTURAL EXPERIMENT STATION TECHNICAL BULLETIN 27
- Misc. Pub. 677. Spruce-fir, hemlock and northern hardwoods volume tables. H. E. Young and K. Y. Hodsdon. 1966
- Tech. Bul. T-7. Scheduling of pallet trucks in pulpwood operations. Thomas J. Corcoran. 1964
- Tech. Bul. T-10. A comparison of arch-yarding and ground-skidding of pine sawlogs on the University Forest. Thomas J. Corcoran. Henry A. Plummer and Roger F. Taylor.
- Tech. Bul. T-12. Preliminary fresh and dry weight tables for seven tree species in Maine. Harold E. Young, Lars Strand and Russell Altenberger. 1964
- Tech. Bul. T-13. The use of aerial photography in studies of marsh vegetation. David P. Olson. 1964
- Tech. Bul. T-14. Weight as a basis for the purchase of pulpwood in Maine. Steven S. Hardy and George W. Weiland III. 1964
- Tech. Bul. T-15. The standardization of symbols in forest mensuration. I.U.F.R.O. (Reprint)
- Tech. Bul. 18. Mensuration methods for site classification of shade tolerant tree species Leigh E. Hoar, Jr. and Harold E. Young. 1965
- Tech. Bul. 20. Preliminary tables of some chemical elements in seven tree species in Maine. Harold E. Young, Paul N. Carpenter and Russell A. Altenberger. 1965
- Tech. Bul. T-25. The effect of stand factors on the productivity of wheeled skidders in eastern Maine. E. B. Harvey and T. J. Corcoran. 1967