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Preface
This publication describes the philosophy, history, methodology, and management applications of numeric 

biological criteria in water quality standards in Maine. The presentation describes the decision-making process used 
by the Maine Department of Environmental Protection (MDEP) for assessing attainment of aquatic life uses in 
water quality standards using benthic macroinvertebrates in Maine streams and rivers including eight case studies 
of management applications and the improved environmental outcomes that have resulted. The MDEP, University 
of Maine, and business and nonprofit stakeholders participated in the development and testing of Maine’s numeric 
biological criteria. This publication further discusses the broader relevance of numeric biological criteria in water 
quality management at both the state and federal levels and considers parallels and differences between Maine’s 
biological criteria and other biological assessment methods in the United States and the European Union. 
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Part 1:  Evolution of Biologically Based Water Management In Maine—
Merger of Policy and Scientific Needs

1.1  INTRODUCTION

1.1.1  Historical policy context
In 1990, the U.S. Environmental Protection Agency 

(USEPA) issued a guidance document entitled “Biological 
Criteria: National Program Guidance for Surface Waters” 
(USEPA 1990). This document urged the U.S. states to 
develop narrative biological criteria to assess the biologi-
cal integrity of aquatic communities, a goal of the federal 
Clean Water Act (CWA) not addressed by the physical and 
chemical water quality assessment approaches that had 
been practiced for decades (Yoder and Rankin 1998; Karr 
and Yoder 2004; Schleiger 2000; Adler 2003). With the 
release of four additional biological criteria documents 
the USEPA has further acknowledged the importance 
of biological information to assess attainment of the 
designated use “aquatic life support” (ALU)1, as required 
of states by the CWA (USEPA 2005, 2011, 2013, 2016). 

In the early 1980s, the state of Maine had already 
recognized the inadequacy of assessing stream and river 
quality based solely on chemical and physical criteria 
(Courtemanch et al. 1989; Davies et al. 1991). In 1986, 
Maine passed a revised water quality classification law 
(MRSA Title 38 Article 4-A § 464-466) emphasizing its 
objective, in keeping with that of the CWA, “to restore 
and maintain the chemical, physical and biological in-
tegrity of the State’s waters” and “to establish a water 
quality classification system which will allow the State 
to manage its surface waters so as to protect the quality 
of those waters.” The prevailing practice in most state 
water quality standards in the United States has been 
to establish a single, pass–fail boundary  for assessing 
attainment of ALU (Yoder and Barbour 2009; MBI 2011; 
USEPA 2011, 2013). Typically, the pass–fail boundary 
is associated with the CWA’s §101(a)(2) Interim Goal 
of “water quality which provides for the protection and 
propagation of fish, shellfish, and wildlife and provides 
for recreation in and on the water,” often referred to as 
the fishable–swimmable goal. In contrast, Maine’s 1986 
law established ALUs for four water quality classifica-
tions for rivers and streams (AA, A, B, and C) to articulate 
goals that span the range from Maine’s interpretation of 
the CWA Interim Goal (Class C) to the ultimate objec-
tive of the CWA “to restore and maintain the chemical, 

1 The CWA designated use of “aquatic life support” is commonly 
referred to as “aquatic life use” (ALU).

physical, and biological integrity” (Classes AA and A). 
The narrative criteria for Maine’s management classes 
and their associated aquatic life are further defined in 
ecological terms (Table 1 [narrative aquatic life and 
habitat criteria for Maine] and Table 2 [definitions 
of terms]). Maine’s higher classifications (AA, A, B) 
include aquatic life criteria more stringent than how 
states have typically implemented the CWA fishable–
swimmable Interim Goal. Maine’s water classification 
law also establishes one class for lakes and ponds (GPA) 
and three classes for marine waters (SA, SB, and SC) 
that are similar in construction, but are not discussed 
further in this publication. 

1.1.2  Maine’s water classification law and 
biological standards

The law assigns a class to every waterbody in the 
state2 (MRSA Title 38 Article 4-A § 467-469), which 
establishes the target goal for its water quality and 
establishes narrative criteria for attainment of ALUs 
(referred to in this publication as the statutory goal). 
Some large waterbodies, such as the Kennebec and 
Penobscot Rivers, are divided into segments that have 
different statutory goals. Following 1986 passage of 
the water classification law, the statutory goals were 
assigned by the state legislature through a public pro-
cess, balancing ecological, social, and economic needs 
and values. As illustrated in Case Studies 1 and 8, there 
is a public process to periodically revisit statutory goals 
and nominate waterbodies for change in their statutory 
goals, usually upgrades such as from Class C to Class B. 
For each water quality class, the law defines 

1. designated uses that articulate environmental 
and social expectations (e.g., water supply, 
recreation in and on the water, hydropower, 
agriculture and industrial supply, and habitat 
for fish and other aquatic life)

2 Waters of the state are defined in MRSA Title 38 Article 3 §361-A as 
“any and all surface and subsurface waters that are contained within, 
flow through, or under or border upon this State or any portion of the 
State, including the marginal and high seas, except such waters as are 
confined and retained completely upon the property of one person 
and do not drain into or connect with any other waters of the State, 
but not excluding waters susceptible to use in interstate or foreign 
commerce, or whose use, degradation or destruction would affect 
interstate or foreign commerce.”   
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2. narrative and numeric criteria (physical, chemi-
cal, and biological) used to determine if water-
bodies attain all their designated uses 

3. technical terms used in the law (Tables 1 and 2) 

For rivers, the classes range from Class AA with 
the highest expectations for water quality and great-
est restrictions on human activity to Class C (Maine’s 

interpretation of the CWA Interim Goal) having more 
opportunity for human activities (MDEP 2002). The state 
independently evaluates chemical, physical, and biologi-
cal criteria results (including independent assessment 
of the results from different assemblages, e.g., algae and 
macroinvertebrates) to determine overall attainment of 
assigned class (MRSA Title 38 Article 4-A § 464-470). This 
publication addresses assessing attainment of biological 

Table 1.  Maine’s tiered narrative aquatic life and habitat criteria and numeric dissolved oxygen and bacteria 
criteria for rivers and streams; current EPA adopted ambient water quality criteria for toxic substances 
apply to all classes. (MRSA Title 38 Article 4-A § 464-466)

Class Management Objectives Dissolved Oxygen
Bacteria 
(E. coli)

Biological Standards and 
Habitat Characteristics

AA* Highest-quality water, 
minimal human interference; 
No discharges allowed; No 
impoundment allowed

As naturally occurs As naturally occurs Habitat shall be characterized as 
free-flowing and natural; Aquatic 
life shall be as naturally occurs

A* High-quality water with limited 
human interference; Discharges 
limited to noncontact process 
water or highly treated 
wastewater of quality equal to, 
or better than, the receiving 
water; Impoundments allowed 
(see Management and Biological 
Standard)

7 ppm or 75% 
saturation

As naturally occurs Habitat shall be characterized as 
natural; Aquatic life shall be as 
naturally occurs

B Good-quality water; Discharge of 
well-treated effluent with ample 
dilution permitted; Impoundments 
allowed (see Management and 
Biological Standard)

7 ppm or 75% 
saturation

October 1–May 15: 
9.5 ppm

May 15 to 
September 30–
Geometric mean: 
64/100 ml 

Instantaneous 
(single sample): 
236/100 ml

Habitat shall be characterized 
as unimpaired; Discharges shall 
not cause adverse impacts to 
aquatic life; Receiving water 
shall be of sufficient quality 
to support all aquatic species 
indigenous to the receiving water 
without detrimental changes 
in the resident biological 
community

C Acceptable water quality, 
achieves the interim goals of 
the Clean Water Act (fishable–
swimmable); Discharge of 
well-treated effluent permitted; 
Impoundments allowed

5 ppm or 60% 
saturation; D.O 
sufficient to support 
salmonid spawning, 
incubation, 
and survival in 
identified areas

May 15 to 
September 30– 
Geometric mean: 
126/100 ml 

Instantaneous 
(single sample): 
236/100 ml

Habitat for fish and other aquatic 
life; Discharges may cause some 
changes to aquatic life provided 
that the receiving waters shall 
be of sufficient quality to support 
all species of fish indigenous to 
the receiving water and maintain 
the structure and function of the 
resident biological community

Impound-
ments in 
Classes A 
and B.

Riverine impoundments 
managed for hydropower 
generation and not classified as 
Great Ponds

Same as for the 
assigned class 
except where 
stratification occurs

Same as for the 
assigned class

Support all species of fish 
indigenous to those waters 
and maintain the structure and 
function of the resident biological 
community

*The narrative aquatic life standard is the same for Class AA and Class A. 
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criteria for macroinvertebrates only. Classes AA and 
A share the same narrative criteria for the support of 
aquatic life, but Class A allows more human activities 
(hereafter the biological criteria for Classes AA and A 
are referred to as A). If biological monitoring reveals 
that conditions in a waterbody are worse than the wa-
terbody’s assigned statutory goal (i.e., Class A, B, or C), 
it is deemed unacceptable and is reported as impaired 
as required by the CWA §303(d) (MDEP 2002, 2010, 
2012). If conditions are found to exceed the criteria of 
the assigned statutory goal, that waterbody must be 
considered a potential candidate for upgrade to the next 
higher classification to maintain the high-quality condi-
tion (MRSA Title 38 Article 4-A § 464.4). Case Study 
1 and its figures present a summary of water quality 
reclassification in Maine since implementation of the 
water classification law in 1985. Section 1.2.2 and the 
appendices provide methods and standard protocols.

Upon passage of the revised classification law, we 
set about to develop a system of numerical biological 
criteria (biocriteria) that could objectively assess biologi-
cal integrity, satisfying both the objective of the Clean 
Water Act and the narrative aquatic life goals of Maine’s 
Water Quality Classification Law. We substantially 
altered the traditional approach and means of assess-
ing water quality standards by establishing goals and 

narrative and numeric criteria for biological condition 
(Courtemanch and Davies 1988; Courtemanch et al. 
1989; Davies et al. 1991). Three management classes (i.e., 
A, B, C) delineate boundaries between levels of aquatic 
life condition (Courtemanch et al. 1989; Courtemanch 
1995; Shelton and Blocksom 2004; USEPA 2005; Davies 
and Jackson 2006). Each water quality classification 
is designed to protect a qualitatively different level of 
biological condition (further explained in Table 1 and 
Figure 1). Terms are defined in statute to enable con-
sistent ecological interpretation of current biological 
condition relative to statutory goal conditions assigned 
by the Maine Legislature (Table 2). 

Maine’s narrative aquatic life criteria boundaries 
are based on the theoretical subsidy–stress gradient 
model of Riebesell (1974), which was further developed 
by Odum et al. (1979) and Odum (1985). These authors 
provided a conceptual model of expected patterns of bio-
logical change in response to aquatic stressors (Figure 1). 
This model describes a parabolic response to increasing 
inputs of usable resources and a negative, step-change 
response to toxic conditions. Odum’s model uses the 
term subsidy to refer to the commonly observed phe-
nomenon of a positive response in biological attributes 
(e.g., higher density, richness, biomass) when a system 
is subjected to mild or moderate enrichment (e.g., 

Table 2.  Definitions of terms used in Maine’s narrative aquatic life criteria. (MRSA Title 38 Article 4-A § 464-466)

Term Definition

Aquatic life Any plants or animals that live at least part of their life cycle in fresh water

As naturally occurs  Conditions with essentially the same physical, chemical, and biological 
characteristics as found in situations with similar habitats, free of measurable 
effects of human activity

Community function Mechanisms of uptake storage and transfer of life-sustaining materials available 
to a biological community that determine the efficiency of use and the amount of 
export of the materials from the community

Community structure The organization of a biological community based on numbers of individuals within 
different taxonomic groups and the proportion each taxonomic group represents of 
the total community

Indigenous Supported in a reach of water or known to have been supported according to 
historical records compiled by state and federal agencies or published in scientific 
literature

Natural Living in, or as if in, a state of nature not measurably affected by human activity
Resident biological community Aquatic life expected to exist in a habitat that is free from the influence of the 

discharge of any pollutant, which shall be established by accepted biomonitoring 
techniques

Unimpaired Without a diminished capacity to support aquatic life
Without detrimental changes in the 
resident biological community 

No significant loss of species or excessive dominance by any species or group of 
species attributable to human activity



Maine Agricultural & Forest Experiment Station Technical Bulletin 2084

increased input of usable nutrients and organic matter). 
At some point, as inputs continue to increase, they begin 
to induce stress, resulting in a negative biological re-
sponse. The negative response (e.g., loss of sensitive taxa, 
loss of ecological function, hyper-dominance expressed 
as extreme densities of opportunist taxa [Rabeni et al. 
1985; Yoder and Rankin 1995b; Richardson et al. 2000]) 
is due to excessive accumulation of organic matter and 
consequent changes in the physio-chemical environment 
that increase stress on aquatic communities. Although 
Odum’s model may not be a good fit for highly produc-
tive, alkaline ecoregions, we found it provides a good 
basis to describe commonly observed stressor-response 
relationships in northern New England (Davies and 
Jackson 2006; Snook et al. 2007). Class AA and Class 
A represent Maine’s minimally disturbed streams and 
rivers that, with some exceptions, are naturally low 
in productivity, with low nutrient concentrations, ion 
concentrations, and acid-neutralizing capacity (Davis et 
al. 1978). Class B represents streams and rivers with low 
to moderate enrichment with attendant subsidy effects. 
Class C represents enrichment with some evidence of 
stress effects, but still meeting Maine’s interpretation 

of the CWA §101(a)(2) of fish-
able–swimmable conditions (38 
MRSA §465.4; §466). 

While natural and ecoregion-
al gradients influence biological 
communities in important ways, 
biological responses to human 
disturbance are frequently far 
more obvious and abrupt, often 
overwhelming ecological gradi-
ents (May 1977). Stress ecology 
emphasizes the recognition of 
biological changes that occur 
in response to human-caused 
disturbance (i.e., gradients of en-
vironmental quality), as distinct 
from biological responses to natu-
ral gradients such as elevation, 
climate, alkalinity, stream size, or 
geographic location. With this in 
mind, we further refined our ex-
pectations for stages of biological 
degradation by considering clas-
sical and applied studies in stress 
ecology (Margalef 1963, 1981; 
Gardner and Ashby 1970; May 
1973; Cairns 1974 1977 1981a, 

1981b; Karr 1981; Matthews et al. 1982; Minshall et al. 
1985; Odum 1985; Hughes and Gammon 1987; Hughes 
1994; Yoder and Rankin 1995b; Lorentz et al. 1997; 
Hughes et al. 1998). We concluded that the biological 
expectations described by these studies, especially the 
subsidy-stress gradient model, were a useful theoretical 
basis on which to set management boundaries for Maine 
stream biota. These broad categories of biological con-
dition also fit well with the state’s other tiered criteria 
for dissolved oxygen, bacteria, and habitat described in 
Maine’s Water Quality Classification Law. 

1.1.3 Biological assessment 
 The Maine Department of Environmental Protection 

(MDEP) uses biological assessments to determine if the 
conditions for aquatic life in rivers and streams attain the 
narrative and numeric criteria of their assigned statu-
tory goals. The USEPA has defined the term biological 
assessment (or bioassessment) to mean “an evaluation of 
the biological condition of a waterbody using biological 
surveys and other direct measurements of resident biota 
in surface waters” (USEPA 1990). The assessment may 
be performed on any of a number of components of the 

Subsidy

Natural

Stress

Replacement

Lethal

Relative
Variance

Usable Input

Paradox of Enrichment

Toxic Input

Increasing Perturbation

Figure 1. Odum subsidy–stress gradient provides the ecological theory basis 
for Maine’s aquatic life use descriptions (redrawn from Odum et al. 1979). 
Some disturbances have an enriching or subsidizing effect on biological 
assemblages because they provide more than normal usable resources 
(nutrients, organic matter). Inputs in excess of what can be processed by 
the resident community have a detrimental effect (increased biochemical 
oxygen demand, accumulation of unusable resources) and lead to negative 
community response. Toxic or poisonous inputs have a detrimental effect.
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overall biological community, for example, on diversity of 
a biological assemblage (i.e., a taxonomic or assemblage 
group such as algae, invertebrates, fish), on a hierarchical 
level (individual, population, community), or on a trophic 
or food-web level (primary producers, secondary produc-
ers, decomposers). For the most part, bioassessment in 
the United States  has focused on the fish community 
(Karr 1981; Karr et al. 1986; Halliwell et al. 1998; Meng 
et al. 2002), the benthic macroinvertebrate community 
(Hilsenhoff 1987; Rabeni et al. 1985; Lenat 1988; Heino 
et al. 2003), a combination of the two (Plafkin et al. 1989; 
Yoder and Rankin 1995a; Barbour et al. 1999; USEPA 
2013), or more recently the benthic algal community 
(Stevenson and Bahls 1999; Fore 2003; Stevenson et al. 
2008, Danielson et al. 2011, 2012). The chosen compo-
nent is then used as a surrogate indicator of the entire 
interacting community of aquatic life in the ecosystem, 
with conclusions regarding the well-being of the assessed 
component being generalized to conclusions about the 
health of the entire aquatic community. The work of many 
water pollution scientists worldwide, beginning in the 
early 1900s through present day, has contributed to the 
current sophistication with which different community 
components are understood (Hynes 1960; Cairns 1974; 
Karr et al. 1986; Cairns et al. 1993; Wright 1995; Yoder 
and Rankin 1995a; 1995b; Chessman 1999; Moss et al. 

1999; Barbour et al. 2000; Hawkins et al. 2000; Karr and 
Chu 2000; Llanso et al. 2002; Jenerette et al. 2002; Birk 
and Hering 2009; Birk et al. 2012). 

The subject of this publication is Maine’s promul-
gation in law of narrative aquatic life criteria and the 
development of a supporting numeric biocriteria rule, 
based on sample information and statistical analysis of 
the benthic macroinvertebrate community. Because of 
the importance and usefulness of assessing multiple 
assemblages, Maine has also established a statewide 
algal monitoring and assessment program (Danielson 
et al. 2011, 2012). Further, the Midwest Biodiversity 
Institute is developing indices of biotic integrity (IBI) 
for fish assemblages in large rivers in the major river 
catchments in Maine (Yoder et al. 2009). 

Table 3 presents the developmental chronology 
of narrative and numeric biological criteria to assess 
attainment of statutory goals for aquatic life in Maine. 
Maine’s numeric aquatic life criteria, the subject of this 
publication, were promulgated in 2003 (CMR 06-096, 
Chapter 579) and have been in continuous use since. Part 
2 and the appendices contain details regarding develop-
ment and validation of the statistical biocriteria model. 
Part 3 presents example applications of these numeric 
biocriteria, the management results, and the benefits 
derived from Maine’s biological approach to water quality 

Table 3.  Chronology of biocriteria program development.

Dates Major Activities

1983–1988 Standardization of field and lab methods for macroinvertebrates in 1987; collection of baseline dataset; 
methods subsequently refined as documented in Davies and Tsomides (1997, 2002) and MDEP (2014) 

1986 Passage of revised ALUs and narrative biocriteria in Maine water quality standards law
1989–1990 Exploratory data analysis; development of electronic database management system (FoxPro)

Formation of stakeholder technical advisory committee
1990–1992 Development and testing of macroinvertebrate Phase I linear discriminant model (LDM) using 145 sample 

dataset
1997–1998 Re-parameterization of Phase I LDM using 228 new samples (n=373) to create Phase II LDM
1999–2006 Standardization of stream algal and wetland macroinvertebrate and algal field methods and collection of 

baseline datasets
2000–2001 Macroinvertebrate database migration to Oracle and ArcInfo
2001–2007 Exploratory algal and wetland data analysis and database migration to Oracle and  ArcInfo
2003 Numeric biocriteria for river and stream macroinvertebrates adopted in rule by the Maine Board of 

Environmental Protection and approved by the Maine Legislature
2004–present Use of river and stream macroinvertebrate numeric biocriteria in regulatory decision making; development 

and testing of 3 new LDM’s for stream algae and wetland macroinvertebrates and algae.
2010–present Use of algal and wetland bioassessment in federal water quality reporting (§303d listing of impaired waters); 

Pending: adoption in rule of numeric biocriteria for algae and wetlands 
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decision-making, as recorded over the last 30 years. Part 
4 contains the summary and conclusions. 

1.2  BIOLOGICAL CRITERIA DEVELOPMENT 

1.2.1  Development of a scientifically and legally 
defensible tool

In developing numeric biological criteria, our ob-
jective was to produce a biological assessment protocol 
that would fulfill a variety of needs, with the goal of 
institutionalizing a water management approach that 
was highly responsive to protection, maintenance, and 
restoration of high-quality aquatic biological conditions. 
We required that it would be a scientifically, as well as 
legally, defensible tool for water quality management 
for Maine, hence, our objective included promulgation 
of numeric biocriteria and assessment protocols into 
the environmental regulations of the state of Maine. We 
also required a scientifically sound technical approach 
that would accurately rank the biological condition of 
unknown sites relative to biota collected from sites 
minimally disturbed by human activity (Stoddard et al. 
2006). As detailed in Part 2, the completed statistical 
assessment system uses a set of interrelated Gaussian 
linear discriminant models (Fisher 1936; Flury 1997) 
consisting of one four-way model to differentiate 
between four classification groups (A vs B vs C vs 
Nonattainment [NA]), followed by three additional 
two-way linear discriminant models for pairwise dif-
ferentiation to increase predictive success (A vs B-C-NA; 
A or B vs C-NA; A or B or C vs NA; [Figure 2]). 

1.2.2  Standard protocols
The MDEP uses standard sampling, quantitative 

analysis, and assessment protocols that are promul-
gated in state regulation (Appendices). The assessment 
procedure includes professional review of final results 
of the statistical model before issuance of final depart-
mental determinations of water quality standards class 
attainment (CMR 06-096, Chapter 579; Appendices 4, 
5, 6, and 7). The biocriteria rule (summarized in part in 
Appendix 7) specifies sample characteristics that are ap-
propriate for analysis by the model and gives procedures 
for evaluating atypical sampling situations. Standard 
field, laboratory, subsampling, and data management 
methods are detailed in Appendix 1. Sampling design 
considerations are provided in Section 2.1.1. 

1.2.3  Comparison of model outcome to statutory 
goal

The final step in Maine’s regulatory process is to 
compare a sample’s final determination (i.e., the assess-
ment outcome from the statistical model system and 
professional review of all results) to the statutory goal as-
signed by the Maine Legislature for the sampled stream 
site. If the final determination matches or exceeds the 
statutory goal (i.e., equal to or better than the statutory 
goal and applicable aquatic life criteria), then the wa-
terbody attains the aquatic life criteria of the statutory 
classification assignment. Statutory provisions require 
that waters confirmed to be attaining the standards of 
a higher classification (for example, due to strength 
of initial outcome and/or as confirmed by consistent 
attainment in repeated sampling) be considered for 
reclassification upgrade to the next higher class (MRSA 
Title 38 Article 4-A §464). If the final determination is 
of a lower water quality class, then the waterbody does 
not attain the aquatic life criteria of its statutory clas-
sification and the waterbody is considered either for 
restoration and inclusion on the Maine Impaired Waters 
list (U.S Clean Water Act §303(d)) or as a candidate for 
resampling to confirm nonattainment status. Procedural 
details are found in CMR 06-096 Chapter 579, MDEP 
2012, and Appendices 1, 6, and 7.

These criteria are unique because they are based on 
a probability of fit for each class. Other water quality 
criteria, such as dissolved oxygen concentrations, have 
traditionally been based on fixed threshold values with 
little heed paid to either environmental or sample vari-
ance in making an attainment decision. The statistical 
assessment system (linear discriminant models-[LDM]) 
that we developed provides probability outcomes that 
add valuable information on the level of confidence of 
the predicted classification. Appendix 8 shows a site 
data report with taxonomic data and LDM results; Case 
Study 7 provides a link on Google Earth to all MDEP 
quality-assured site-specific bioassessment data sum-
mary reports. 
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Part 2:  Model Building and Results

2.1  INTRODUCTION 
The development of a statistical model for predicting 

stream quality classification to be used as a regulatory 
tool was dependent upon several preexisting condi-
tions within the Maine DEP. The most fundamental 
prerequisite condition, as described in Part 1, was a legal 
framework for biologically based water classification, 
its interpretation, and the buy-in of stakeholders with 
the philosophy of statistical prediction of attainment 
of biological class. The second condition was specific 
biological measures and criteria that reflected actual 
stream quality. The selection and justification of benthic 
macroinvertebrates is discussed in detail in Appendix 
1, Section A1.1. The third condition was a representa-
tive and standardized sampling method for reliably 
estimating the benthic macroinvertebrate community. 
A standardized rock substrate sampler was developed, 
tested, and refined in Maine streams starting in the 
1970s (Rabeni and Gibbs 1977; Rabeni et al. 1985; 
Davies 1987; see Appendix 1 for details). The fourth 
condition was an a priori classification assignment of 
sampled streams in the model-building database, a clas-
sification that was integrally related to Maine’s water 
classification law (see Section 1.1.2). The last condition 
was a sampling design and a database that could be used 
for predictive model development (see Section 2.1.1). 

With these conditions in place, development of a 
statistical predictive model was initiated in 1989. A sum-
mary of the approach to the model development is out-
lined in this section. A more detailed presentation, along 
with the test statistics and model coefficients, is covered 
in Appendices 1 (data collection and management), 2 
(modeling approach and structure), 3 (assignment of 
biologists’ classification), 4 (calculation of indices), 5 
(use of professional judgment), and 6 (determination 
of class attainment). 

2.1.1  Sampling design for data used in model 
construction

Beginning in 1983, MDEP aquatic biologists 
collected benthic macroinvertebrate samples from 
upstream and downstream of most major wastewater 
discharges, from rivers and streams affected by urban 
or agricultural land use, from impounded rivers, and 
from a large number of minimally disturbed (i.e., ref-
erence quality) water bodies. The dataset included all 

geographic regions in Maine and stream sizes ranging 
from first to seventh order (see Appendix 1, Figure 
A1). The sampling locations were chosen to establish 
a baseline dataset that reflected a complete condition 
gradient representing the range of water quality in 
Maine. When evaluating the effects of a presumed 
disturbance, upstream samples provided information 
about the expected local biological conditions in the 
absence of the source of disturbance. Sampling to as-
sess disturbed locations was conducted in late summer 
to represent the typical warm, low-flow, low oxygen 
conditions that exist during times of maximal stress 
to aquatic macroinvertebrates. Typically, samples were 
collected from flowing areas such as riffles and runs 
with eroded substrates. Each sampler had a standard-
ized amount and type of gravel substrate providing 
comparable colonizing material regardless of the parent 
substrate on which it was placed. Detailed descriptions 
of specific sampling methods can be found in Appendix 
1, and Davies and Tsomides (2002, 2014). 

2.2  EXPLORATORY DATA ANALYSIS

2.2.1  Data reduction
The benthic macroinvertebrate community data 

collected for model development originally included 
145 stream samples (1983-1989, including multiple 
years at some sites); by the time the final model was 
constructed (1998), it included 373 samples. Benthic 
macroinvertebrates in the samples were identified to the 
lowest practical taxonomic level (genus (most), family, 
or class (Oligochaeta) (see taxonomic counting rules in 
Appendix 1, section A1.4 and Appendix 4). This com-
munity data resulted in more than 500 potential pre-
dictor variables when both individual taxon occurrence 
and abundance were considered along with calculated 
community variables such as diversity and richness 
indices, biological stress tolerance indices, functional 
feeding groups, food web guilds, and community met-
rics such as predator/herbivore ratios. Because of the 
large number of potential variables, various exploratory 
summaries and data-reduction techniques were used 
to determine variable intercorrelations /independence 
and those that explained high percentages of the total 
benthic community variance. Table 4 lists some of the 
statistical techniques employed during our early stages 
of data analysis. 
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We next applied a series of more rigorous explor-
atory multivariate analyses (Mosteller and Tukey 1977) 
to examine factors that might be useful in a natural 
classification (methods also listed in Table 4). These 
analyses were used to assess whether a stratified model-
ing approach might be necessary, i.e., whether separate 
models based on geographic location or stream order 
might be necessary. Overall, the analyses did not provide 
any evidence that a physically or geographically strati-
fied model was warranted. Factor analysis and cluster 
analysis were used to assess collinearity among variables 
as a means of reducing the large matrix of potential 
predictor variables to a smaller set of independent, 
orthogonal predictors. Final assessment of collinearity 
was performed during the linear discriminant modeling 
using backward variable selection (Flury 1997).

2.3  STATISTICAL PREDICTIVE MODELING

2.3.1  Selection of a predictive classification 
methodology

In developing a stream and river classification 
system for Maine, we decided that the policy require-
ment to categorize samples into one of four a priori 
water quality groups (A, B, C, and NA for nonattain-
ment if the community assemblage did not conform 
to the narrative criteria of any class) was compatible 
with empirical experience in Maine and with ecological 
theory (Section 1.1.2). Classes AA and A were grouped 
together because they share the same aquatic life goal 
of “as naturally occurs.” There are many approaches to 
predictive classification such as classification trees, logit 
and multinomial linear models, neural networks, fuzzy 
clustering, partial least squares regression, and classical 
discriminant function analysis (Anderson 1984; Greene 
1993; Härdle and Simar 2007; Garson 2008; Gerritsen 
2008; Abdi 2010). Most of the accessible multivariate 
methods that have been developed for classification 
require an a priori set of classes that represent distinct 
populations. This is especially true of those methods 
that provide a probabilistic estimate of class member-
ship, a requisite deemed important at the outset of our 
project. Given this constraint, early in the development 
of this project we reasoned that construction of a Maine 
biocriteria discriminant model could serve the state’s 
regulatory needs to predict probabilities of water qual-
ity class membership (i.e., classification attainment) 
for new samples. The results of the exploratory analysis 
indicated that a model-building approach based upon 
either linear (Lachenbruch and Goldstein 1979; Hand 
1981; Jobson 1992) or quadratic (James 1985) dis-
criminant analysis could be advantageous. Discriminant 
analysis is based upon well-tested statistical theory, 
uses multiple measures of the biological community, 
estimates model parameters for class prediction that 
have ecological meaning, and provides probabilistic 
outcomes for a given water body’s class membership, 
given that various distributional assumptions are met 
(Manly 1991; Jobson 1992). Discriminant analyses 
have been used successfully by investigators to classify 
natural aquatic communities relative to habitat or en-
vironmental variables (Hill 1977; Joy and Death 2001; 
Myers and Resh 2002; Llanso et al. 2002; Brodersen 
and Anderson 2002; Hoberg and Feder 2002; Jenerette 
et al. 2002; Jowett and Richardson 2003; Danielson et 
al. 2012) or to determine if environmental disturbance 
has affected water quality or the benthic community 

Table 4.  Statistical techniques used to establish 
subsets of potential predictor variables.

Exploratory Multivariate 
Analysis Performed Literature Source

Hierarchical cluster 
analysis

Romesburg 1984; Krzanowski 
and Marriott 1995; Myers and 
Resh 2002; Rawlings et al. 
2003

K-means cluster analysis Hand 1981; Kaufman and 
Rousseeuw 1990; Jenerette et 
al. 2002

Multidimensional scaling Schiffman 1981; Heino et al. 
2003; Roy et al. 2003

Principal coordinate 
analysis

Anderson and Willis 2003

Principal components 
analysis

Pielou 1984; Jolliffe 1986; 
Jenerette et al. 2002

Multiple regression 
analysis

Rawlings 1988; Chessman 
1999; Holtrop and Fischer 2002

Two-way indicator 
species analysis

Hill 1979; Wright et al. 1984; 
Gauch 1991; Joy and Death 
2001, 2003; Brodersen and 
Anderson 2002

Log linear modeling Agresti 1990
Logistic regression Emmons et al. 1999
Detrended 
correspondence analysis

Gauch 1991; Jongman et al. 
1995; Anchorena and Cingolani 
2002

Variance component 
analysis

Hoaglin et al. 1991
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(Moman and Zehr 1998; Moss et al. 1999; Pusey et al. 
2000). The experience of some researchers, though, in-
dicates that discriminant analysis does not always lead 
to a satisfactory community classification (Emmons et 
al. 1999; Olden and Jackson 2002; Wheeler and Allen 
2002; Rawlings et al. 2003) thus we were careful to 
assess the scientific validity of the final model for the 
state of Maine’s purposes. 

2.3.2  A priori classification of streams—The basis 
of prediction of class membership

Statistical classification of biological water classes 
was a challenge since the only a priori classes that ex-
isted initially in Maine were those defined in law by the 
legislature, i.e., the statutory classes assigned to rivers 
and streams in Maine’s water quality standards (see 
Section 1.1.1). Maine’s statutory classes are goal-based 
and thus did not always correspond to actual water 
quality or biological condition of streams in Maine. In 
addition, Maine’s classification system is dynamic and 
meant to change and evolve over time as stream condi-
tions improve. At first, we considered algorithmic-based 
approaches of defining a priori water quality groups 
(i.e., A, B, C, NA) based upon natural patterns in the 
data. We tested several alternative approaches using 
objective search algorithms based on combinations 
of macroinvertebrate community metrics. Objective 
search algorithms, such as ordination, have been suc-
cessful in many parts of the world for defining a priori 
water quality groups (Rabeni et al. 1985; Moman and 
Zehr 1998; Chessman 1999; Joy and Death 2001; 
Brodersen and Anderson 2002; Jenerette et al. 2002; 
Anderson and Willis 2003; Rawlings et al. 2003). 
Alternative approaches included K-means clustering, 
two-way indicator species analysis (TWINSPAN), and 
several multivariate ordination techniques such as 

CCA (canonical correspondence analysis) and NMDS 
(nonmetric multidimensional scaling) (Anderson 
1984; Pielou 1984; Manly 1991;). In general, we found 
the objective search methods unsatisfactory because 
clusters depended upon the algorithm used and did 
not reflect differences in water quality (see Appendix 
2, Figures A3 and A4)

As an alternative approach to objective statistical 
methods of defining stream classes, we used expert 
knowledge/prior experience to assign the samples to the 
four water quality groups, and we identified response 
signals (to different levels of human disturbance) for 
31 quantifiable measures of macroinvertebrate com-
munity structure (Appendix 3 and Tables 5 and 6). This 
classification process was then followed by validation 
using objective methods to confirm that the a priori 
groupings were, in fact, statistically distinguishable. 
This approach has been well developed (Press 1980). 
Discriminant analysis and function derivation do not 
have to rely on classes that only occur in nature. As long 
as classes are statistically distinct and their members 
possess a Gaussian distribution within a class, then most 
assumptions are met (Anderson 1984). To establish a 
priori groups, MDEP biologists initially evaluated ben-
thic macroinvertebrate community data for each stream 
sample (without knowing site locations) and assigned 
samples to an aquatic life condition category. The assign-
ment exercise was followed by independent biologists 
from the private stakeholder sector who also evaluated 
a subset of the data. The methodology was based on the 
degree to which each biologist found that the sampled 
community conformed to one of the narrative aquatic 
life criteria (Class A, B, C, or NA) as described in the 
statute and accompanying definitions (Tables 1 and 2) 
(Shelton and Blocksom 2004) and as further described 
by a table of expected metric response characteristics 
across the water quality gradient represented by the 

Table 5.  Relationship between narrative aquatic life criteria, ecological values, and quantifiable measures.

Narrative ALU Criteria Ecological Value Quantifiable Measures

Class A—as naturally occurs Taxonomic and numeric equality to natural, 
presence of indicator taxa

Similarity, richness, abundance, diversity, 
EPT, indicator taxa, biotic index

Class B—unimpaired, maintain 
indigenous taxa

Retention of taxa and numbers, absence 
of hyper-dominance, presence of sensitive 
taxa

Community loss, richness, abundance, 
diversity, equitability, evenness, EPT, 
indicator taxa, biotic index

Class C—maintain structure Resistance, redundancy, resilience, 
balanced distribution

Richness, diversity, equitability, evenness

Class C—maintain function Energy transfer, resource assimilation, 
reproduction

Trophic groups, richness, abundance, 
community loss, fecundity, colonization rate
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Table 6.  A priori expectations for variable responses across four biological stream condition classes (A, B, C, 
and NA).

Measure of Community Structure

Relative Findings

A B C NA

Total Abundance of Individuals Intermediate, 
sometimes low

High Variable  Variable: often very 
low or very high

Abundance of Ephemeroptera High High Low Low to zero
Abundance of Plecoptera Highest Intermediate Low to absent Zero
Proportion of Ephemeroptera Highest Intermediate to high* Low Very low to zero
Proportion of Plecoptera Highest Variable* Low Zero
Proportion of Hydropsychidae Intermediate Highest Variable Variable, often low
Proportion of Ephemeroptera & 
Plecoptera

Highest Variable Low Low to zero

Proportion of Glossosoma Highest Low to intermediate Very low to absent Zero
Proportion of Brachycentrus Highest Low to intermediate Very low to absent Zero
Proportion of Oligochaetes Low Low Low to intermediate Highest
Proportion of Hirudinea Low Variable Variable Variable to highest
Proportion of Gastropoda Low Low Variable Variable to highest
Proportion of Chironomidae Lowest Variable* Highest Variable 
Proportion of Conchapelopia & 
Thienemannimyia

Lowest Low Variable Variable to highest

Proportion of Tribelos Low to absent Low to absent Low to intermediate Variable to highest
Proportion of Chironomus Low to absent Low to absent Low to intermediate Variable to highest
Generic Richness Variable Highest Variable Lowest
Ephemeroptera Richness High High Low Very low to zero
Plecoptera Richness Highest High to intermediate Low to absent Zero
EPT Richness** High Highest Variable Low
Proportion Ephemeroptera Richness Highest High Low Low to zero
Proportion Plecoptera Richness Highest Variable Low Zero
Proportion Diptera Richness Low Variable Highest Variable to high
Proportion Ephemeroptera & 
Plecoptera Richness

Highest High Low to intermediate Low to zero

EPT Richness divided by  
Diptera Richness

High Highest Low to intermediate Lowest to zero

Proportion Non-EPT Richness Lowest Low Intermediate to high Highest
Percentage Predators Low Low High to intermediate Highest
Percentage Collector & Filterer-
Gatherers divided by Percentage 
Predators & Shredders

High Highest Intermediate to low Variable

Number of Functional Feeding Groups 
Represented

Variable High*** Variable Lowest

Shannon-Weiner Generic Diversity Low to intermediate Highest Intermediate Lowest
Hilsenhoff Biotic Index Lowest Low Intermediate Highest

*depending on dominance of other groups
**Ephemeroptera-Plecoptera-Trichoptera Richness
***often with all present
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water quality classes (Table 6). The panel of biologists 
received limited habitat data (e.g., depth, water velocity, 
substrate composition, temperature) in order to evalu-
ate the intrinsic biotic potential of the sampled habitat, 
but biologists had no knowledge of the site locations 
or degree of human disturbance. Three of the authors 
(DLC, SPD, LT) made the assignments independently 
(Appendix 3). A Delphi technique was employed to 
reconcile any disagreements among the classifications 
of the biologists and to accomplish a final consensus 
assignment of samples into a priori classes (Bakus et 
al. 1982; Courtemanch 1993; Davies et al. 1995; Walley 
and O’Connor 2001). The consensus assignments that 
we developed are referred to as the “biologist clas-
sifications.” A similar approach has since been widely 
employed by U.S. states and Native American tribes to 
calibrate local biological condition gradients (Davies 
and Jackson 2006; USEPA 2016).

Because of the importance of the a priori classes as 
the basis for creating a predictive discriminant model, 
we sought confirmation of the reproducibility of the 
biologist classifications from two additional experienced 
Maine macroinvertebrate biologists not affiliated with 
MDEP. Overall concurrence with the consensus assign-
ment we developed and then assessed by the indepen-
dent biologists was 83% for one biologist and 90% for the 
other biologist (Table 7). We decided to use the biologist 
classifications as the a priori groups, because the purely 
algorithmic approaches, such as the K-means clustering, 
did not distinguish differences in biological response to 
differing levels of human disturbance (see Appendix 2, 
Figure A3). That is to say, they did not produce groups 
of samples that were related to a water quality gradient 
as clearly as did the biologists classifications. 

2.3.3  Approach to the construction of a system of 
hierarchical discriminant models

We first attempted to build a single four-way linear 
discriminant model (LDM) based on the four a priori 
biologists’ water quality group assignments (A, B, C, 
and NA, see Appendix 2, section A2.4) to the sampled 
streams. We used the procedures of Wilkinson (1989), 
employing Fisher’s discriminant analysis (Fisher 1936; 
Hand 1981). We performed the initial modeling at-
tempt on 145 samples, and after five years of use and 
additional data collection, we performed the model 
reparameterization  on 373 samples (Table 3, “Phase I”). 
We used stepwise discriminant analysis (James 1985; 
Krzanowski and Marriott 1995; Horrocks and Ogden 
2003), and iterative backward selection (Flury 1997) 
to select variables based upon their ability to maximize 
distinctions  between water quality classes (Mahalanobis 
distance, Manly 1991). We applied multivariate analysis 
of variance (MANOVA) and univariate analysis of vari-
ance (ANOVA) to assess the significance of variables 
in detecting differences between the a priori biologist 
classifications (Appendix 2, section A2.4). ANOVA and 
MANOVA helped determine how significant a single 
variable was in discriminating at least one biological 
condition group from another. We used ANOVA only as 
an informal, subjective assessment since discriminant 
analysis is a multidimensional analysis that uses linear 
combinations of variables, not the individual variables 
acting independently (Kendall 1987). We eliminated 
highly correlated, redundant, or insignificant variables 
from consideration (Flury 1997). Thus, we caution that 
the exclusion of a variable does not mean that it is not 
an important predictor, but rather that it might be 
highly correlated with another variable that is also a 
good predictor. This iterative process included an ongo-
ing evaluation of interim results for consistency with 
ecological goals described in Maine’s narrative water 
quality standards. All of the stepwise approaches, param-
eter estimation, ANOVA and MANOVA analyses were 
performed in the statistical analysis package SYSTAT 
(Wilkinson 1989). 

Early on in the development of linear discriminant 
functions for the prediction of water quality class 
membership, one of us (FAD) investigated the use 
of probabilities derived from a Gaussian probability 
density function estimated by a linear discriminant 
function as a random variable input to subsequent lin-
ear discriminant functions. This practice had not been 
developed previously by statistical modelers, but was 
legitimately borne out by many theoretical treatments 

Table 7.  Summary of non-MDEP biologists’ 
percentage concurrence with MDEP 
biologists’ rankings of sites.

Class
Biologist 1  

(n=40)
Biologist 2  

(n=40)

-------------------------- %-------------------------
A(10) 80  90
B(10) 60  80
C(10) 90  90
NA(10) 100 100
Total   83  (33/40)   90  (36/40)
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regarding the Gaussian distribution (e.g., Lukacs and 
King 1954). As described later in this publication, we 
ultimately constructed a set of interrelated Gaussian 
linear discriminant models (Figure 2; Appendix 8) 
consisting of one model to differentiate between four 
classification groups (four-way model) and followed by 
three additional linear discriminant models that use 
results of the four-way model, but differentiate between 
only two groups at a time: “C or better,” “B or better,” 
and “A” (referred to as the two-way models). 

Unlike the four-way linear discriminant model that 
attempted to place samples into one of four classes, 
the two-way discriminant models considered only two 
classes to distinguish at a time (Figure 2). The C-or-
better model was designed to distinguish the NA group 
from an aggregate class formed by combining the A, B, 
and C classes. Thus, the C-or-better model determines 
whether a sample attains at least Class C aquatic life 
criteria. Similarly, the B-or-better model was designed 
to distinguish the A and B classes from the C and NA 
classes and determines if a sample attains at least Class 
B aquatic life criteria. Finally, the A model was designed 
to distinguish the A class from an aggregate class con-
sisting of the B, C, and NA classes.   

The three two-way predictive discriminant models 
include variables derived from the probabilities of group 
membership produced by the four-way model (pA1, 
pB1, pC1, and pNA1; see Appendix 2, section A2.5, 
and Appendices 4, 5, and 6). The MDEP biocriteria rule 
(CMR 06-096, Chapter 579) refers to the four-way 
discriminant model as the “first-stage” model since it is 
run first; the rule refers to the three two-way discrimi-
nant models as “second-stage” models. The C-or-better 
model includes a variable that is the sum of pA1, pB1, 
and pC1. Similarly, the B-or-better model includes a 
variable that is the sum of pA1 and pB1. Finally the A 
model includes pA1 as one of its variables. The use of 
a multivariate axis, such as a discriminant function or 
a principle component axis, as a predictor is not new 
(Hotelling 1957; Kendall 1966, 1987; Jolliffe 1986). 
The sums of normally distributed random variates are 
themselves normally distributed variates (Anderson 
1984; Allen 1990).

The likelihood (probability) of each of the four bi-
ologist class memberships in the first-stage model was 
used as one of several additional predictors in each of the 
two-way linear discriminant models as follows: first, the 
likelihood of biologist class membership was estimated 
by one of four linear axes, a linear combination of each 
of the nine predictor coefficients and an intercept, each 
of whose values were dependent upon the class being 

predicted (see Appendix 2, Table A5). To fit the Class A 
two-way model, the likelihood of Class A membership 
was used as an input or predictor variable for the two-
way model for Class A prediction compared to the other 
three classes (B, C, and nonattainment) (Figure 2) . 

Backward stepwise discriminant analysis was used 
to select the best additional predictor variables for the 
new two-way Class A model. An identical methodology 
was used to select predictor variables and fit the B-or-
better model and the C-or-better model. In these two 
models, the likelihood for B or better was derived by 
adding the probabilities estimated by the first-stage 
model for the A and B biologist class memberships, and 
the likelihood for C or better was derived by adding the 
probabilities estimated by the first-stage model for the 

Four-way model

A

NA

C

B

Two-way model

A B, C, NA

Class A model

A, B C, NA

Class B-or-better model

A, B, C NA

Class C-or-better model

Figure 2. Schematic of four-way and two-way model 
relationships.
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A, B, and C biologist class memberships (see Appendix 
2, section A2.5). When used in a hierarchical sequence, 
the first-stage and second-stage models increased the ac-
curacy of predicting the four biologist classes (Appendix 
2, Tables A12–A14).

We used the two-way model approach for two 
reasons. First, the MDEP is primarily interested in a 
one-tailed prediction of classification. The pertinent 
question, in terms of identifying a need to initiate 
management action, is whether or not a site is attaining 
at least its statutory goal. For example, a stream with 
the statutory goal of Class B would attain its goal if the 
model placed it in either the A or B class. The second 
reason that pair-wise models are used is that they al-
low for greater statistical discrimination than models, 
such as the four-way linear discriminant model, that 
attempt to isolate each class from every other class. This 
is particularly true because Class A sites often exhibit 
low macroinvertebrate densities and low richness due to 
the naturally oligotrophic conditions of Maine waters. 
Class A sites therefore may have similarities to some 
NA sites with low macroinvertebrate densities due to 
pollution or habitat stressors, as well as to some Class 
B sites. This confounding characteristic makes accurate 
prediction difficult and probability scores less confident.

2.4  RESULTS—HIERARCHICAL PREDICTIVE 
MODELS

2.4.1  The biologist classification system 
The prior experience of biologists (expert judgment) 

reflected in the biologist classifications and the results 
of statistical analysis were consistent with the charac-
teristic responses predicted by Odum’s subsidy-stress 
gradient model (Figure 1) and supported the biologists’ 
experience that structurally and functionally distinct 
biological groups exist across a gradient of water quality. 
We commonly observed the parabolic pattern of biologi-
cal change consistent with Odum’s enrichment hump 
(Figure 1). For example, increased densities of some 
macroinvertebrate taxa (e.g., Acroneuria spp., Stenonema 
spp., Maccaffertium spp.) and overall increased richness 
are commonly observed at sites enriched by elevated 
total phosphorus, relative to nonenriched sites (Figure 
3). Empirical data demonstrate the subsidy hump in 
Maine streams, shown in Figures 3 and 4 using con-
ductivity (ionic strength) as a generalized surrogate for 
enrichment. Further, known toxic locations commonly 
show precipitous linear declines in many biological 
response variables relative to undisturbed locations. 
Such observations are consistent with Odum’s predicted 

stress response to toxic conditions (Figure 1; Figure 4, 
Conductivity >200). 

2.4.2  The hierarchical predictive model system
The development of the hierarchical system of 

discriminant models is described in detail in Appendix 
2. The first-stage or four-way discriminant model con-
sisted of nine predictor variables (Appendix 2, Tables 
A5 and A6). Variable definitions and computational 
algorithms are shown in Appendix 4. The prediction 
accuracy (correct classification vs misclassification of 
biologist-classified streams) was highest for Class A sites 
(72.5% correct) and lowest for Class C sites (62.3%). 
All possible permutations of accuracy in predictions of 
classifications are shown in Table A7 in Appendix 2. A 
jackknife approach was used to determine if large varia-
tion in prediction occurred if subsets of the data were 
used to fit the model. This was not the case. The model 
coefficients were fairly invariant to variation in the data 
used for estimation of coefficients and prediction of the 
classification of the sample sites (Appendix 2, Table A8). 

However, because correct classification of the biolo-
gist stream class rankings ranged between 65.3% and 

Figure 3. Empirical evidence supporting Odum’s 
subsidy-stress gradient model: Response of 
summed abundance of Acroneuria, Stenonema, 
and Maccaffertium to increasing enrichment, as 
represented by different total phosphorus (TP) range 
(n=273). 
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72.5% in the four-way model (Table A7), a second tier 
of three independent two-way linear discriminant mod-
els was developed to be used in a hierarchical manner 
subsequent to the initial classification by the first-stage 
model (see Figure 2). 

The three, two-way models, Class A, Class B or bet-
ter, or Class C or better, were developed with 6, 7, and 
4 predictor variables, respectively (Appendix 2, Tables 
A9–A11). In Appendix 2, Figures A6–A8 show the dis-
tribution of each of the significant predictor variables 
measured in the 373 sampled streams. These graphs 
show the overlap of the metrics as they are portioned out 
among the biologist-assigned classes and demonstrate 
that the predictors with the higher levels of significance 
tend to have less overlap in their populations between 
predicted groups of classes. 

All of the metrics (n=23 total for first-stage and 
second-stage models) used in the hierarchical model 
system for prediction of the biologists’ water quality 
classes are listed in Appendix 4. Coefficients for the 
three, two-way models are listed in Appendix 2, Table 
A15. These coefficients are used to estimate the prob-
abilities of biologist class memberships that are used in 
the MDEP stream water quality regulation and licensing. 
Appendices 5 and 6 illustrate the hierarchical structure 
of the predictive models and the sequential process of 
estimating biologists’ class membership probabilities. 
Appendix 7 provides a detailed overview of how the 
model prediction probabilities are incorporated into 
an integrative professional judgment in making a final 
regulatory decision on class attainment. 

2.4.3  Accuracy in predictions of the hierarchical 
predictive model system

The accuracy of the final hierarchical system of 
predictive models was 90.0% for Class A (Appendix 2, 
Table A12), 96.5% for Class B or better (Appendix 2, 
Table A13), and 96.1% for Class C or better (Appendix 2,  
Table A14). These high levels of accuracy in classification 
were considered well suited for regulatory management 
decisions along with the use of professional judgment 
criteria (see Appendix 7), especially since the majority 
of model results had predictive probabilities >0.90, 
indicating a strong association to a particular class. 

2.4.4  Validation and robustness in predictions of 
the hierarchical predictive model system

Robustness and quasi-validation of the final hier-
archical model system was attempted by both jackknife 
analysis, and using an independent dataset, after the 
final first-stage model was built. The first method for 
validation of the discriminant functions was to perform 
a jackknife discriminant procedure (Jobson 1992: 278; 
Miller 1998: 220). This procedure iteratively estimates 
the discriminant function by using multiple subsets of 
the data (a small percentage of the data left out for each 
iteration). The jackknife procedure assesses the percent-
age correct classification of data not used to build the 
models and provides an estimate of sample error as it 
relates to coefficient estimates and misclassifications. 

The jackknife results are listed in Appendix 2, 
Table A16. The procedure demonstrated that the level 

Figure 4. Empirical evidence supporting Odum’s subsidy-stress gradient model: Response of taxonomic density 
and richness variables to increasing enrichment, as represented by different conductivity ranges in mmho/l, (n=285 
samples). 
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of correct classification was as high or higher with the 
subsets of original data as with construction of final 
discriminant models with the entire data set (n=373). 
This suggests that the hierarchical model system is 
robust to aberrations in the data and not sensitive to 
changes in the sample size of our model-building data 
set. This is important in two ways. First, it suggests that 
the sample size of the model-building data set is large 
enough for the development of a predictive regulatory 
model for Maine, and second, that the final model is 
probably robust enough to predict stream classification 
across the diversity of Maine’s streams. 

The independent validation was performed on a 
small data set of 34 streams (see Appendix 2, Table A17). 
The final first-stage model was used to predict the clas-
sification of 34 independent streams. It performed as 
well as for classification of the original model-building 
dataset, with an overall correct classification of  class 
A streams of 75%, class B streams of 100%, class C 
streams of 71%, and nonattainment streams of 100%. 
Therefore, the predictive model has generality beyond 
the model-building data set.

2.4.5  Comparison of hierarchical model results to 
Maine RIVPACS model

Following model building, further objective 
verification of the interpretive validity of the biologist 
classification was confirmed when the assignments 
of the final MDEP biocriteria model were compared 
to a RIVPACS (River Invertebrate Prediction and 
Classification System) model (Hawkins 2006) that was 
developed using Maine’s initial stream sample data set. 
Maine’s RIVPACS results indicate a biological gradi-
ent from high-quality to lower-quality condition and 
provides evidence to rebut criticism of circularity flaws 
in a model built from a priori biologist classification 
assignments (Figure 5). The distribution of observed/
expected (O/E) scores for samples assigned to aquatic 
life management classes by the discriminant models 
demonstrates a decline in expected taxa. This decline 
parallels the narrative standards and biological expec-
tations in the biological condition gradient defined 
by Maine’s aquatic life use standards and biocriteria. 
Both Class A and Class B distributions fall within the 
expectations for reference-quality streams, affirming 
the narrative criteria for Class A (“as naturally occurs”) 
and for Class B (“without detrimental changes to the 
biological community”) (Tables 1 and 2). Figure 5 also 
shows the 10th percentile of reference falling somewhat 

below the median for the Class C distribution, thus dem-
onstrating that most Class C streams are being managed 
to preserve the Class C narrative standards that require 
conditions that “maintain the structure and function 
of the resident biological community.” The distribution 
reflects that allowances have been made in statute for 
the inevitable changes in biological condition that may 
occur given the greater human disturbance associated 
with waterbodies assigned to Class C. The RIVPACS 
model also demonstrates that our model does not exhibit 
Type I error (false alarm) because nearly all NA samples 
fall below the 10th percentile of reference (Figure 5). 

Figure 5. Distribution of RIVPACS predictive model 
O/E values within and between the Maine LDM water 
quality classes. The horizontal dashed line represents 
the 10th percentile of reference site O/E values 
(Hawkins 2006).
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Part 3:  Management Applications of Numeric Biocriteria in Maine

3.1  INTRODUCTION AND 
HISTORY 

Since the 1960s, prior 
to adoption of the federal 
CWA, Maine water quality 
law has had a tiered structure 
with the intent to recognize 
the gradient of water quality 
conditions in the state and, 
through a planning approach, 
to optimize the condition of 
all waters (Courtemanch et 
al. 1989; Courtemanch 1993, 
1995). The inclusion of aquatic 
life criteria based on a clearly 
stated biological condition 
gradient offers many manage-
ment advantages (Davies and 
Jackson 2006; Hering et al. 
2010). Biological criteria can 
be beneficially applied through 
all the phases of water quality 
management depicted in the 
USEPA’s water quality-based 
approach (USEPA 2012 and 
Figure 6). Maine has adapted 
USEPA’s depiction of the wa-
ter quality-based approach 
by using information about 
biological condition and biological response to human 
disturbance, to optimize protection and restoration of 
aquatic life resources in the state (Figure 7 and Case 
Studies).

The following case studies are provided to demon-
strate how Maine has made use of biological criteria in 
the decision process of each step of the water-quality-
based approach to resource management. Important 
management benefits can be attributed to the potential 
for more precisely defined goals for aquatic life condition 
that provide more transparent and easily understood 
incremental management targets for the designated 
aquatic life use of each water quality class. Standards 
that are stated as precisely defined condition levels, 
combined with scientifically sound numeric biocriteria 
to assess those condition levels, offer a broader range 
of management options to ensure that resource goals 

and objectives are neither underprotective of existing 
high-quality resources, nor needlessly burdensome for 
waters that may be permissibly affected by pressures 
from allowed human activities. 

By designating biological condition categories for 
waterbodies in water quality standards, Maine has 
been able to document incremental improvements in 
biological condition and general water quality trends 
throughout the state over the decades since passage of 
the CWA (Rabeni and Gibbs 1977; Rabeni et al. 1985; 
Davies 1987; Davies et al. 1999). Standards that describe 
a water quality gradient anchored in natural conditions 
provide the mechanism to objectively and transparently 
assess the biological condition of a waterbody relative to 
naturally expected biological response and to measure, 
assess, and maintain incremental improvements (Davies 
and Jackson 2006; USEPA 2005, 2011, 2013, 2016).

3
Establish Priorities

Rank/Target Waterbodies

Figure 6. U.S. Environmental Protection Agency depiction of the water-
quality-based approach, in relation to water quality standards. This approach 
emphasizes the overall quality of a water body and provides a mechanism 
through which impact is controlled based on the intrinsic conditions of that body 
of water and the standards set to protect it (USEPA 2012).
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3.2  Case Studies—Use of Biological Criteria 
to Manage Maine’s Water Quality 

The following case studies describe the use of pre-
dictive biological models for management of Maine’s 
streams and rivers since 1987. They are arranged around 
the loop of the water-quality-based schematic shown in 
Figure 7. Each of the case studies illustrates a particular 
use of the predictive models and the integration of nu-
meric biological criteria into water quality management 
decisions.

List of case studies

1. Establish goals for protection of aquatic life: 
Goal-based management planning to optimize 
aquatic life conditions. 

2. Monitoring and assessment to determine 
existing condition relative to goal condition: 
Long-term point-source monitoring to document 
attainment of biological criteria on the Penobscot 
River, Maine.

3. Identify problems and set management priori-
ties: Detection and management of an emerging 
problem—urbanization and nonpoint source 
impacts. 

4. Define problem and allocate control responsi-
bilities: Alternative total maximum daily loads 
(TMDL) to manage impacts of high impervious 
cover on aquatic life. 

5. Establish source controls for point sources and 
nonpoint sources: Using biological information to 
set permit limits in the absence of ambient chemi-
cal criteria.

6. Monitor and enforce compliance through self-
monitoring or agency monitoring: Use of biologi-
cal criteria for enforcement actions. 

7. Report progress: Communicate bioassessment 
results through interactive maps and traditional 
reports.

8. Retention of water quality improvements: 
Protection of high-quality waters and implemen-
tation of restoration and protection strategies to 
optimize biological condition.

Figure 7. Maine revisions to U.S. Environmental Protection Agency water-quality-based approach as applied in 
Maine, using biological response information to optimize the condition of waterbodies. 
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Case Study 1. Establish Goals for Protection of Aquatic Life

Clear, technically rigorous goal statements are a necessary framework to improve biological condition of streams 
and rivers. Defining the water quality goals 
of different water quality classes is both a 
technical task and a public policy task. Most 
U.S. states have established a single pass–fail 
threshold, representing their interpretation 
of the federal CWA Interim Goal. In contrast, 
Maine has established four water quality clas-
sifications for rivers and streams (AA/A/B/C) 
that span the range from Maine’s interpreta-
tion of the CWA Interim Goal (Class C) to the 
ultimate CWA objective “to restore and main-
tain chemical, physical and biological integ-
rity” (Class AA). All rivers and streams in Maine are assigned to one of the four classifications in Maine’s water 
quality standards for planning and management purposes.

Goal-based management planning to optimize 
aquatic life conditions 

As previously described, the Maine Legislature 
passed a revised water quality standards and classifica-
tion law in 1986 (MRSA Title 38 Article 4-A §464–466) 
establishing narrative biological criteria for four aquatic 
life use classes for rivers and streams. This law set in 
motion a process involving the public, the state envi-
ronmental agency, and the Maine Legislature to assign 
all Maine waters to an appropriate classification goal. 
MDEP used all available monitoring data and informa-
tion about biological and/or water quality conditions 
to initially propose the statutory classes for stream 
and river segments in the 1986 law. Many waters that 
lacked current monitoring data retained their previous 
water quality goals (generally Class B, except for some 
urban or industrialized areas, which were Class C) until 
MDEP obtained monitoring data or other evidence to 

recommend a different class. Table 8 shows the change 
of classifications over time and unprecedented gain (by 
any state) in statutory protection for existing high-
quality waters. 

Maps spanning the period between 1987 and 2012 
(Figures 8 and 9) show the past and present-day distri-
bution of water quality classifications. These maps show 
that approximately 99% of Maine’s rivers and streams 
are currently managed at levels of protection higher 
than the commonly applied interpretation of the CWA 
Interim Goal (i.e., Class C). In the 25 years since 1987, 
the legislature has assigned 13,955 miles of waters to 
a Class A or Class AA management goal, an increase of 
25.5% (MDEP 2002, 2010, 2012). These classification 
upgrades have mostly been drawn from Class B and Class 
C waters where biological monitoring data demonstrated 
the ready potential for, or the actual achievement of, 
the standards of Class A or Class AA. Regarding “ready 

Table 8.  Change in legislative assignment of statutory classification of rivers and streams in Maine from 1987 to 
2012, reflecting a shift in miles of protected and improved water quality. 

Year
Class AA Class A Class B Class C

Total milesMiles % Miles % Miles % Miles %

1987 985 1.7 13,471 24.3 34,515 62.2 6,552 11.8 55,523 
2012 3,404 6.2 25,007 45.2 26,313 47.5 614 1.1 55,338
Change* +2,419 +4.5 +11,536 +21 -8,202 -14.7 -5,938 -10.7

*Differences shown in the total miles column (185 miles) are due to differences in precision and accuracy of mapping data between 1987 and 2012.
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potential,” for example, the Kennebec River was preemp-
tively upgraded when the decision to remove a major 
dam was finalized, but prior to dam removal. Without 
numeric biological criteria and a gradient of aquatic 
life management classes, high-quality waters often go 
unrecognized, undervalued, and unprotected (USEPA 
2005, 2013, 2016). The same is true when improvements 
in biological condition have occurred due to investment 
in remediation. The communication value of condition 
classes enhances public understanding of existing condi-
tions, problems, and restorable target conditions, and 

provides an important tool in building public support 
for the often substantial investment that is required 
to restore aquatic resources (Courtemanch et al. 1989; 
Davies and Jackson 2006; USEPA 2011). 

For further information:
Courtemanch, D.L. 1995. Merging the science of biological 

monitoring with water resource management policy: 
Criteria development. Biological Assessment and Criteria: 
Tools for Water Resource Planning and Decision Making, ed. 
W.S. Davis and T.P. Simon. CRC Press, Boca Raton, FL. pp 
315–326.

Figure 8. 1987 water quality classifications, prior to revisions to Maine’s water quality standards law. Colored 
histogram shows percentage distribution of the four classes.
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Courtemanch, D.L., and S.P. Davies. 1988. Implementation 
of biological standards and criteria in Maine’s Water 
Classification Law. Proceedings of Instream Biomonitoring 
and Biological Criteria Workshop. December 2–4, 1987, 
USEPA, Lincolnwood, IL.

Courtemanch, D.L., S.P. Davies, and E.B. Laverty. 1989. 
Incorporation of biological information in water quality 
planning. Environmental Management 13:35–41.

U.S. Environmental Protection Agency (USEPA). 1988. 
Water Quality Program highlights: Maine’s biologically 

based water quality standards. USEPA, Office of Water 
Regulation and Standards, Washington, DC. 

U.S. Environmental Protection Agency (USEPA). 2011. A 
primer on using biological assessments to support water 
quality management. Office of Water, Washington, DC. 
EPA 810-R-11-01. https://www.epa.gov/wqc 
/biological-assessment-case-studies 

Figure 9. 2012 distribution of water quality classifications in Maine, 25 years after implementation of biologically 
refined water quality standards. Colored histogram shows current percentage distribution of the four classes.
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Case Study 2. Monitoring and Assessment to Determine Existing Condition 
Relative to Goal Condition

Together, monitoring and assessment provide 
the information to achieve improved biologi-
cal condition of streams and rivers in Maine. 
Monitoring consists of regular collections of 
field data, using a temporally and spatially 
strategic sampling design. Assessment is the 
activity of comparing the observed biologi-
cal condition against the goal condition set 
for the waterbody by the state legislature, as 
defined in Maine’s water quality standards. 
Standardized monitoring, and clearly defined 
assessment protocols, applied over many years, 
provides important planning information to 
promote continual environmental and program improvement. 

Long-term point-source monitoring to 
document attainment of biological criteria on 
the Penobscot River, Maine

Data collected by the University of Maine, MDEP, and 
the Penobscot Indian Nation, over a period of nearly 40 
years has documented dramatic improvements in water 
quality in a segment of the Penobscot River affected by 
discharges from pulp and paper mills and domestic sew-
age. This river segment in 1974 was in poor condition 
and failed to attain minimum biological standards of a 
Class C river. Due to restoration activities, water quality 
improved to attain Class B biological criteria for most 
locations by the mid-1980s. Rabeni and Gibbs (1977) 
first collected benthic invertebrate datasets in 1974, prior 
to the implementation of secondary wastewater treat-
ment required by the CWA in 1972. Between 1974 and 
1981 an estimated 33 million dollars was spent by pulp 
and paper mills and publicly owned sewage treatment 
facilities between the towns of Millinocket and Costigan 
to meet CWA mandates. This effort resulted in an 80% 
reduction in pollution loads (Davies 1987). Continued 
monitoring of benthic invertebrates and water qual-
ity was conducted in 1981 to 1982, and the results 
demonstrated dramatic improvements in the biological 
condition of sites downstream of paper mills (Rabeni 
et al. 1985; Davies 1987). Because both Rabeni and the 
MDEP used the same sampling protocols, the biocriteria 
model could objectively document incremental progress 
prior to and after treatment, document attainment of 

Class C, and finally, at many sites, attainment of Class B 
criteria. At present the entire main stem of the Penobscot 
River downstream of the Mattawamkeag River has 
been upgraded by the Maine Legislature to maintain 
the Class B water quality standards that were achieved 
(Davies et al. 1999; MDEP 2012). Documentation of 
progress towards increasingly higher water quality, and 
subsequent protection of the improved conditions would 
not be possible without multiple, increasingly protective 
aquatic life use classes in water quality standards. This 
long-term data set provides a valuable example of the 
responsiveness of biota to improvements in water qual-
ity. It also highlights the value of biological monitoring 
to document the benefits of investment in responsible 
stewardship of aquatic resources. 

For further information: 
Davies, S.P., L. Tsomides, J. DiFranco, and D.L. Courtemanch. 

1999. Case study 4. Biomonitoring retrospective: Fifteen 
year summary for Maine rivers and streams. Maine 
Department of Environmental Protection, Augusta. 
DEPLW1999-26. http://www.maine.gov/dep/water/
monitoring/biomonitoring/biorep2000.htm

U.S. Environmental Protection Agency (USEPA). 2005. Case 
example 6-4. Use of biological information to better 
define  designated aquatic life uses in state and tribal 
water quality standards. Office of Water, Washington, DC. 
EPA-822-R-05-001.
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Case Study 3. Identify Problems and Set Management Priorities

Patterns of biological response provide crucial 
evidence to allow detection and diagnosis of 
water quality problems and to determine their 
severity and thus their priority for resolution. 
Formalized protocols for diagnosis of causes 
of biological impairment have been developed 
by the USEPA (e.g., Stressor Identification 
Guidance), but simply following good routine 
biological monitoring and assessment practices 
can detect impairments that would otherwise 
go unrecognized. 

Detection and management of an 
emerging problem—Urbanization and nonpoint 
source impacts 

When Maine’s Biomonitoring Program was initiated, 
a primary concern was management of point-source 
discharges. Implementation of best available technol-
ogy (BAT) eliminated many of these causes of biological 
impairment. More recently, biological assessment of 
smaller streams revealed previously undetected im-
pairment in urban areas caused by changes in physical 
stream conditions (e.g., increased impervious surfaces 

in the watershed, alteration of hydrologic conditions and 
stream channel shape). Chemical conditions are likewise 
affected by increased development, human activities, 
and impervious cover (e.g., increased nutrients and 
toxic constituent concentrations, salt runoff, increased 
temperature, and decreased dissolved oxygen). Figure 
10 shows predicted attainment of aquatic life use class 
(as determined by the Maine aquatic life biocriteria) in 
relation to a generalized stressor gradient of percentage 
of impervious surface in the upstream watershed. This 

Figure 10. Predictions of the Maine linear discriminant model (bioassessment result) to increasing percentage of 
impervious surfaces (%IC) in an upstream watershed. Stream reaches rarely attain Class A or Class B biological 
standards if percentage of impervious cover was greater than 4%, n=140 for macroinvertebrate result (a), n=90 for 
algae result (b).
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figure confirms the reliability of the statistical model 
to detect negative biological responses to increases in 
anthropogenic disturbance. The macroinvertebrate data 
indicate that it is unlikely under existing management 
practices for sites with greater than 2% to 4% impervi-
ous surfaces in the upstream watershed to attain Class 
A or Class AA aquatic life numeric biocriteria. Algal 
results demonstrate even greater sensitivity (1%–2%). 
Such information plays an important role in statewide 
planning related to the use designation process by 
helping inform the agency, urban planners, and public 
about setting realistic water quality attainment goals for 
streams in urbanizing areas, determining future allow-
able development, and understanding the expectations 
of urban stream restoration.

For further information:
Danielson, T.J., L. Tsomides, D. Suitor, J.L DiFranco, and B. 

Connors. 2016.  Effects of urbanization on aquatic life of 
Maine streams. MDEP, Augusta.
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Case Study 4. Define and Allocate Control Responsibilities

Developing the ability to recognize patterns 
of biological response to disturbance can help 
a management agency diagnose stressors and 
identify causes of impairment. Certain species 
of macroinvertebrates and algae are sensitive 
to environmental stressors, while others are 
tolerant. The lack of sensitive organisms, com-
bined with the predominance of tolerant organ-
isms, provides biological signatures of stressor 
and response. Biologists can use biological 
data from multiple community assemblages 
and trophic levels (e.g., macroinvertebrates, 
fish, algae) and multiple locations on a river or 
between rivers to identify patterns and sources 
of impairment and provide estimates of stressor reduction that will be required to achieve attainment standards. 
The CWA requires that a Total Maximum Daily Load (TMDL) analysis identifying necessary decreases in pollut-
ants must be provided for waters not attaining water quality standards.

Alternative TMDL to manage impacts of high 
impervious cover on aquatic life

In 2006, Maine and Connecticut became the first 
states to issue TMDL based on the percentage of stream 
watersheds consisting of impervious cover (IC) (Meidel 
and MDEP 2006a, 2006b). In 2012, MDEP completed 
a statewide percentage IC TMDL for urban impaired 
streams (MDEP 2012). The 2012 TMDL included res-
toration targets based on the relationship of percent-
age IC in stream watersheds and macroinvertebrate 
community condition. In 2015 MDEP revisited the 
concern with IC by conducting a fine-scale geo-spatial 
analysis of percentage IC in watersheds upstream of 
algal and macroinvertebrate biological assessment 
sites and attainment of tiered aquatic uses for each 
assemblage at those sites (Danielson et al. 2016). 
Watershed percentage IC estimates were computed in 
ArcMap with 1 m, high-resolution spatial data from 
2004 and 2007. MDEP found that watersheds with 
>4%3 IC were unlikely to support Class A macroinver-

3 MDEP previously developed IC TMDL targets for some urban 
streams. The IC ranges in the 2015 study are lower than the IC targets 
in the TMDLs because of more robust analysis and transition from IC 
spatial data with 5 m resolution to spatial data with 1 m resolution. 
The 5 m data overestimated the percentage IC in watersheds with 
more development when compared to the newer 1 m data, resulting in 
higher IC targets. It is not necessary to revise the TMDLs because the 
measurement of TMDL success is restoring water quality and aquatic 
life communities, not reaching a specific IC target.

tebrate communities. Similarly, watersheds with >9% 
and >17% IC were unlikely to support Class B and C 
macroinvertebrate communities (see Case Study 3). 
The biological assessment information was critical in 
establishing the restoration goals in the IC TMDL. The 
MDEP relies primarily on biological monitoring data 
and the assessment results to determine if urban im-
paired streams have been restored because restoration 
success using mitigation and management techniques 
is based on biological response and attainment of bio-
logical criteria and other water quality criteria, not on 
re-engineering impervious cover or reaching a particular 
percentage impervious cover target. 

For further information:
Danielson, T.J., L. Tsomides, D. Suitor, J.L DiFranco, and B. 

Connors. 2016. Effects of urbanization on aquatic life 
of Maine streams. Maine Department of Environmental 
Protection, Augusta.

Maine Department of Environmental Protection (MDEP). 
2012. Maine impervious cover total maximum daily 
load assessment (TMDL) for impaired streams. MDEP, 
Augusta. DEPLW-1239 http://www.maine.gov/dep/water 

/monitoring/tmdl/2012/IC%20TMDL_Sept_2012.pdf

Meidel, S., and M. Evers. 2007. Birch Stream total maximum 
daily load (TMDL). MDEP, Augusta. DEPLW0715.  
http://www.maine.gov/dep/water/monitoring/tmdl/2007 

/birch_stream_rep.pdf

Meidel, S., and Maine Department of Environmental 
Protection (MDEP). 2006a. Barberry Creek total 
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maximum daily load (TMDL). MDEP, Augusta. 
DEPLW0712. http://www.maine.gov/dep/water/
monitoring/tmdl/2007/barberry_ck_rep.pdf

  ———. 2006b. Trout Brook total maximum daily load 
(TMDL). MDEP, Augusta. DEPLW0714. http://www.
maine.gov 
/dep/water/monitoring/tmdl/2007/trout_brook_rep.pdf
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Case Study 5. Establish Source Controls for Point and Nonpoint Sources

Once responsible parties are accurately identi-
fied, MDEP permitting and TMDL programs 
must implement regulatory provisions to 
reduce or eliminate the causes of the biological 
impairment. Biological information has been 
an essential element in many TMDL designs to 
determine appropriate levels of load reductions 
that can be expected to result in attainment of 
biological criteria. 

Using biological information to set 
permit limits in the absence of ambient 
chemical criteria 

Assessments of aquatic life below a paper mill on 
the Androscoggin River (Class C) occurred in 1995, 
1996, 2000, 2002, and 2003 to determine the condi-
tion of the river, probable causes of impairment, and 
to set new limits on waste discharges. Class C aquatic 
life standards were not attained downstream of the 
discharge in 1995, a low-flow year, and were presumed 
to be caused by a heavy load of total suspended solids 
(TSS). The estimated TSS load (concentration times 
river flow) in 1995 was 18,051 lbs/day as a monthly 
average. The water above the discharge in 1995 met 
the Class C aquatic life standard. The estimated TSS 
load prorated to the flow above the discharge 1995 was 
6,976 lbs/day (there is another paper mill upriver). In 
1996 increased dilution of the discharge was gained 
from a wetter than normal summer, and the mill also 
experimented with polymer addition that resulted in a 
reduction of TSS discharge to a flow-prorated estimate 
of 3,706 lbs/day. Biological monitoring data collected in 
the summer of 1996 revealed a very positive response 
in the benthic macroinvertebrate community resulting 
in the attainment of aquatic life standards through-
out the study area. As compared to 1995, the total 
abundance of organisms, generic richness, proportion 
of insect taxa, and EPT (Ephemeroptera, Plecoptera, 
Trichoptera) taxa increased dramatically, notably filter-
feeding Trichoptera (caddisflies). Further confirmation 
of solids as the probable cause for nonattainment the 
previous year was made by scuba-diver observations of 
the accumulation of a flocculent deposit of solids on the 
sampler substrate during a low-flow/high-solids load 
year (1995) in the Androscoggin River impoundments. 

Solids did not accumulate in 1996 when discharge of 
TSS was reduced. 

In 2000, 2002, and 2003, the benthic macroin-
vertebrate communities in the impoundments were 
resampled to determine aquatic life attainment. In 2000 
the downstream flow-prorated TSS load was 6,698 lbs/
day per day, which was similar to the level of TSS in 
the upstream in 1995. All sites met at least the Class 
C aquatic life standard with some attaining the Class 
B aquatic life standard. The downstream site showed 
dramatic improvement from 1995. Generic richness 
increased from 11 to 40. EPT richness increased by three 
times, and mayfly abundance increased from 0 to 67 per 
sample. In 2002 the flow-prorated TSS load was 7,806 
lbs/day. All sites below the discharge met the Class C 
aquatic life standard except the downstream-most site. 
The downstream site exhibited a decrease in generic 
richness, EPT taxa, and mayfly abundance from the 
2000 sample. In 2003 the flow-prorated TSS discharge 
was 7,915 lbs/day. All samples met at least the Class C 
aquatic life standard. In general, generic richness, EPT 
taxa, and mayfly abundance increased as compared to 
the 2002 samples. The improvement of the benthic com-
munities in the impoundments below the discharge in 
2003 may be due to several high-flow flushing events 
that occurred during the sampling period. In the year 
2000, when the biological community closely resembled 
the 2003 data, there was also a high-flow event dur-
ing mid-July with steady flows most of the summer. 
Maine does not have ambient water quality criteria for 
TSS. The data suggested that a TSS level of <8,000 lbs/
day would be adequate for attainment of aquatic life 
standards during average rainfall years. New TSS limits 
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and a load allocation for the two mills were established 
through a TMDL process based on a 30 day/10 year low 
flow. The river has since attained Class C and has been 
removed from the state’s Section 303(d) impaired waters 
list for aquatic life. A similar analysis was used on the 
Presumpscot River to establish TSS permit limits (Davies 
et al. 1999; USEPA 2000) .

For further information:
Davies, S.P., L. Tsomides, J. DiFranco, and D.L. Courtemanch. 

1999. Biomonitoring retrospective: Fifteen year 
summary for Maine rivers and streams. MDEP, Augusta. 
DEPLW1999-26. http://www.maine.gov/dep/water/
monitoring 
/biomonitoring/biorep2000.htm

U.S. Environmental Protection Agency (USEPA). 2000. Chapter 
6. Stressor Identification Guidance Document. Office of 
Water, USEPA, Washington, DC. EPA/822/B-00/025.200.
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Case Study 6. Monitor and Enforce Compliance through Self-monitoring or 
Agency Monitoring

Numeric biological criteria in water quality 
standards provide a powerful action-forcing 
mechanism to achieve environmental improve-
ment. Detection of a violation of biological 
criteria sets in motion regulatory remedies to 
stop the detrimental activity and restore the 
waterbody. In some cases, responsible parties 
may be required to conduct monitoring to con-
firm compliance. In other cases, MDEP moni-
tors sites to amass sufficient information to 
implement the regulatory requirements needed 
to achieve restoration. Occasionally, MDEP 
enforcement actions have been necessary to 
ensure compliance with water quality standards. Results from biological assessments help ensure that remedia-
tion and restoration plans are fair and properly implemented and provide a final proof of attainment. 

Use of biological criteria for enforcement 
actions

In 2009 MDEP biologists testified in court for an 
enforcement case against a large composting facility in 
the headwaters of the Kennebunk River watershed in 
Lyman, Maine. Due to poor storm-water management, 
large quantities of organic waste intermittently washed 
into Lords Brook during storm events. While the events 
were difficult to detect and document, the biological 
effects were evident: sewage fungus was abundant in 
the stream, water quality was poor, and the macroin-
vertebrate community was severely degraded. Lords 
Brook has a statutory water quality goal of Class B, but 
it did not attain biological criteria for either Classes B 
or C. In comparison, nearby East Outlet Stream was 
not affected by the organic waste and attained Class 
A biological criteria. The MDEP prosecuted the case 
based on the nonattainment of the state’s biological 
standards. Biologists provided testimony about the 
impact to water quality and aquatic life based on 
monitoring and assessment using the Maine linear 
discriminant biocriteria models, linking the activities at 
the composting facility to the effects on the biota in the 
brook. The court agreed with the MDEP’s enforcement 
case because of the documented, detrimental impacts 
to water quality and aquatic life in Lords Brook (State 
of Maine, Department of Environmental Protection 
v. Winterwood Acres, Inc, Winterwood Farms, LLC 

[Maine Tenth District Court, Docket # CV-06-228]). 
This case was further upheld when appealed to the 
Maine Law Court.

For further information:
Kim, A. 2011. Contempt verdict upheld against Lyman 

compost business owner. Portland Press Herald (June 29). 
http://www.pressherald.com/2011/06/29 
/verdict-upheld-in-case-about-compost_2011-06-29/

Maine Department of Environmental Protection (MDEP). 
2012. Maine Department of Environmental Protection 
2012 integrated water quality monitoring and assessment 
(305b) report. MDEP, Augusta. http://www.maine.gov 
/dep/water/monitoring/305b/2012/report-final.pdf 

Quimby, B. 2010. Lyman composter gets 50 days in jail. 
Portland Press Herald (September 4). http://www.
pressherald.com/2010/09/04/lyman-composter 
-gets-50-days-in-jail_2010-09-04/
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Case Study 7. Report Progress

An agency’s ability to report monitoring and 
assessment results to decision makers and the 
public is a key step in improving and main-
taining water quality. Public awareness and 
understanding of the condition of aquatic 
resources is essential to well-informed and 
proactive public choices in stewardship of val-
ued aquatic life assets. In addition to regula-
tory requirements to report results, there are 
long-term benefits to making bioassessment 
results readily available to the public. 

Communicate bioassessment results through 
interactive maps and traditional reports

Perhaps the most effective way that the MDEP 
Biological Monitoring Program communicates its moni-
toring and assessment results to the public is through 
its Google Earth website (http://www.maine.gov/dep 
/gis/datamaps/index.html#blwq). The website provides 
an interactive map where one can view sampling loca-
tions, the state’s waters with their statutory goals, and 
biological assessment outcomes (Figure 11; Appendix 
8). Various spatial layers can be turned on or off to 
enhance navigation and interpretation of watershed 
features, such as roads, town lines, and aerial imagery 
of the landscape. Users can select sample stations to 
view their monitoring history including summaries of 
biomonitoring results, taxonomic data, model outcomes 
(probabilities of attainment for each class) and final 
determination of attainment status as determined by 
biocriteria. Images of the stream or wetland sample 
locations are also provided in most cases. Users also can 
download biological and water quality data and sum-
mary reports for individual sample events (Appendix 8). 

The Biological Monitoring Program also provides 
biological assessment results in state and federally re-
quired assessment reports. Sections 305(b) and 303(d) 
of the CWA require state water quality agencies to report 
on the condition of state waters. MDEP produces an 
Integrated Water Quality Monitoring and Assessment 
Report every two years that summarizes attainment of 
water quality standards. MDEP follows a public process 
to solicit and respond to comments and the reports are 
publicly available on the MDEP website. 

In the integrated report, waters are placed in one 
of the following categories:

• Category 1—Attaining all designated uses 
and water quality standards, and no use is 
threatened.

• Category 2—Attains some of the designated 
uses; no use is threatened; and insufficient 
data or no data and information is available to 
determine if the remaining uses are attained or 
threatened (with presumption that all uses are 
attained).

• Category 3—Insufficient or conflicting data 
and information to determine if designated 
uses are attained (with presumption that one 
or more uses may be impaired).

• Category 4—Impaired or threatened for one 
or more designated uses, where a TMDL has 
already been prepared or does not require de-
velopment of a TMDL.

• Category 5—Waters impaired or threatened for 
one or more designated uses by a pollutant(s) 
and a TMDL is required.

In addition to the federal reporting requirements, 
the Maine Legislature requires that the monitoring pro-
gram produces annual reports of results of the Maine’s 
Surface Water Ambient Toxics (SWAT). The SWAT moni-
toring program includes assessment for attainment of 
biocriteria for stream macroinvertebrate samples funded 
under the program. The Biological Monitoring Program 
also reports chemical and continuous temperature data 
associated with the biomonitoring samples. 
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For further information:
Biological Monitoring Program Google Earth website: 

http://www.maine.gov/dep/water/monitoring 
/biomonitoring/data.htm

Integrated Water Quality Monitoring and Assessment reports: 
http://www.maine.gov/dep/water/monitoring/305b 
/index.htm

Surface Water Ambient Toxics program reports: 
http://www.maine.gov/dep/water/monitoring/toxics 
/index.html

Figure 11. Screen shot of the Biological Monitoring Program’s Google Earth 
website. 
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Case Study 8. Retention of Water Quality Improvements

In addition to simply identifying waters that 
do not attain their standards, state waters 
can be objectively assessed along a gradient 
of biological condition to determine if restora-
tion is needed, if they attain standards and 
current management is successful, or if they 
exceed standards and additional protection 
strategies are desired to maintain that higher 
quality. Maine’s water quality classification 
law encourages agency, advocacy groups, and 
citizen proposals for water quality classifica-
tion upgrades as waterbodies improve to meet 
the standards of the next higher classification 
(Davies et al. 1999). 

The law requires the state to propose classification 
upgrades:  

When the actual quality of any classified 
water exceeds the minimum standards of the 
next highest classification, that higher water 
quality must be maintained and protected. 
The board shall recommend to the Legislature 
that that water be reclassified in the next 
higher classification. 38 MRSA §464.4.F(4)

This is an important benefit of having a tier-based 
approach to water quality management. It allows for 

formal recognition of incremental improvements, a 
feature that cannot be achieved via the simple single-
threshold approach used by many states and allowed 
by the USEPA. The upper right-hand box of the “water 
wheel”(Figure 7 “Identify high-quality waters”) depicts 
this important modification to the USEPA’s water-
quality-based approach. When high-quality waters are 
recognized through monitoring and are valued and 
championed by the public, new goals and standards of a 
higher classification tier can be assigned by the legisla-
ture. This protects not only the quality of the water, but 
the public or private investment that has been made 

toward improved wa-
ter quality. Maine 
law and the USEPA 
Triennial Review re-
quire an assessment 
of classifications ev-
ery three years when 
such upgrades are 
proposed (38 MRSA 
§464.3 and 38 MRSA 
§464.3.B). Though 
not all such waters are 
ultimately upgraded 
by the legislature, 
the state’s antideg-
radation policy (38 
MRSA §464.4.F) also 
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Figure 12. Increase in the number of miles of mainstem river reaches designated to 
maintain Class AA and Class A conditions in Maine since the adoption of tiered aquatic 
life use classes (1970 to 2004).
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functions to protect the higher water quality criteria 
that have been attained. 

Since 1987, over 1,440 mainstem river miles in 
Maine have been upgraded to a higher water quality 
management classification using biological assessment 
as a principle determinant (Figure 12; http://www 
.maine.gov/dep/water/wqs/docket/index.html; http: 
//www.epa.gov/wqs-tech/water-quality-standards-
regulations-maine). Over the last 25 years, the state 
has also upgraded 13,955 stream miles from Classes 
A, B, or C to a higher classification (Figures 8 and 9; 
see also Case Study 1). Currently 51% of all river and 
stream miles in Maine are assigned to Class A or Class 
AA (Class AA also affords CWA Tier 3 antidegradation 
protection as “Outstanding National Resource Waters,” 
38 MRSA §464.4.F[2]), with an additional 45% man-
aged to maintain Class B conditions (affording  anti-
degradation protections that are more stringent than 
CWA Tier 2, MDEP [2012]) (Table 8). During the same 
time period, only five miles have been downgraded 
(from Class B to Class C) through application of a use 
attainability analysis to document that a downgrade 
was required to meet important socioeconomic needs 
(http://www.maine.gov/dep/water/wqs/docket/index 
.html; http://www.epa.gov/wqs-tech/water-quality 
-standards-regulations-maine). Without refined aquatic 
life management categories and numeric biological cri-
teria, it is difficult to recognize and protect these water 
resource improvements. The communication value of 
biological goals enhances public understanding of ex-
isting conditions and restorable target conditions and 
provides an important tool in building public support 
for the often substantial investment that is required to 
restore aquatic resources (Davies and Jackson 2006).
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Part 4: SUMMARY, DISCUSSION, AND CONCLUSIONS

4.1  SUMMARY 

4.1.1  Policy summary
On April 17, 2003, the Maine Board of Environ-

mental Protection adopted numeric biological criteria 
for rivers and streams in rule, which were subsequently 
approved by the Maine Legislature. This publication 
describes the policy foundations and the statistical 
methods that culminated in passage of the rule. The 
2003 rule was promulgated in support of Maine’s 1986 
law that established and defined four aquatic life use 
classifications for rivers and streams (AA, A, B, and 
C) spanning a water quality gradient that ranges from 
Maine’s interpretation of the CWA Interim Goal (Class C) 
to the ultimate CWA objective “to restore and maintain 
chemical, physical and biological integrity” (Classes AA 
and A). The protocols described in rule include methods 
for biological sampling of benthic macroinvertebrates, 
laboratory analyses, statistical modeling, analysis of 
data, and selective use of expert judgment to reach a 
final determination of classification attainment. 

Passage of Maine’s biocriteria rule has fostered 
innovative and far-reaching applications of biological 
information that have helped optimize the biological 
condition of Maine’s rivers and streams. MDEP’s ability 
to detect, define, and remedy previously undetectable 
water quality problems was expanded and strengthened 
by implementation of these biological criteria. Equally 
important is management at the other end of the wa-
ter quality continuum. Maine is fortunate to retain 
extensive areas of intact forest with relatively low hu-
man impact and near-natural stream quality. Statewide 
biological monitoring and assessment, using the cri-
teria described in this publication, has helped MDEP 
to document, and the Maine public to recognize, that 
specific rivers and streams around the state currently 
support very high-quality aquatic life. In combination 
with Maine’s tiered classes in water quality standards, 
bioassessment information provides a mechanism for 
the public, and ultimately the Maine Legislature, to 
decide on preservation of these unique resources by 
upgrading assigned goals to maintain high-quality Class 
A standards.

4.1.2  Technical summary
To accomplish our goal to fully incorporate bio-

logical information in regulation and management of 
water quality, we developed and tested a statistical 

bioassessment system (Figure 2, Section 2.3.3), de-
signed to predict the probability of membership of a 
test sample within any of four statutorily defined water 
quality classes. Model predictions are derived from 
analysis of a total set of 25 different taxonomic and 
invertebrate assemblage variables. MDEP used a Delphi 
approach incorporating biologists’ prior experience 
(expert judgment) to define the a priori classes required 
for construction of linear discriminant models (Bakus 
et al. 1982). Biologists’ prior experience considered 
empirically observed changes in attributes of Maine 
macroinvertebrate assemblages in response to gradi-
ents of human disturbance (Davies et al. 1995; Davies 
and Jackson 2006). Biologists referred to narrative 
descriptions of condition goals in Maine’s narrative 
aquatic life criteria and their statutory definitions to 
assign samples to a priori classes. A technical advisory 
committee of nondepartmental participants regularly 
reviewed developmental progress in constructing the 
statistical bioassessment system (Table 3). As described 
in Section 2.3.3 and Appendix 2, the effort to construct 
the model resulted in an innovation that uses a nested 
set of linear discriminant functions to improve pre-
dictive success (Figure 2). The first-stage of analysis, 
termed the four-way discriminant model, uses nine 
variables to separate samples into one of four groups. 
Further refinement of predictions is accomplished by 
a second-stage analysis using 16 additional variables 
in three, two-way models having a predictive success 
ranging from 89% to 97% using a jackknife procedure 
(Section 2.4 and Appendix 2, Table A16). In no case 
did the combined model incorrectly classify a sample 
by more than one class. This high concordance and low 
error makes the models statistically strong and provides 
a consistent and objective analysis of the aquatic life 
standards, which reduces conflict over interpretation 
of the law. A second innovation is that boundaries 
denoting classification attainment are assigned in the 
rule as probability statements. Traditional water qual-
ity criteria are typically set as fixed threshold values; 
however, these biological criteria used to determine 
classification attainment are established as a best-fit 
using multiple variables. In summary, these statistical 
models, codified in the MDEP biocriteria rule, provide 
the objective, quantitative means for determining 
attainment of designated aquatic life use classes in 
Maine water quality standards. Site-specific results of 
the bioassessment system, as well as all pertinent facts 
concerning the sampling and analysis process (e.g., 
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excursions from standardized sampling parameters for 
habitat , loss or disturbance of replicates, sub-sampling 
protocol) are reviewed by biological staff in the final 
stage of decision making. The final result is an objec-
tive, step-wise decision-making protocol that is based 
on statistical strength of membership within classes.

4.1.3  Reception of the predictive model
Initial concerns about numeric biocriteria from 

regulated industrial and business interests stemmed 
from the untried nature of the use of biological informa-
tion in water resource management, from the complexity 
of the quantitative approach used to determine attain-
ment, and from the use of a probability of attainment 
approach. Each of these concerns was addressed during 
promulgation and implementation of the biocriteria 
rule. The response of aquatic life to wastewater treat-
ment was quickly observed as rivers came back to life 
following implementation of CWA primary and second-
ary treatment requirements in the 1970s and 1980s 
(Rabeni et al. 1985; Davies 1987). This was a tangible 
return on investment that could be witnessed by all 
parties. The complexity of quantifying the aquatic life 
response was further addressed when the results were 
shown to be consistent, well-correlated with objective 
measures of water quality, and highly reproducible. The 
use of probabilities was also accepted as a more candid 
representation of a water quality sample and provided 
a means where all parties could see the strength of any 
water quality attainment decision.

Regulated entities are most familiar with permit 
performance standards such as waste-load allocations 
and discharge limits for specific pollutants, or with physi-
cal/chemical ambient water quality criteria. But both 
permit performance standards and physical-chemical 
water quality criteria have many shortcomings that limit 
their application and usefulness to assess ecological 
status (Courtemanch et al. 1989; Courtemanch 1993). 
In contrast, monitoring of aquatic life provides for 
the direct assessment of ecological impacts caused by 
pollutants and habitat alteration. The MDEP has used 
the biological field and analytical methods described in 
this publication since about 1990, establishing a level 
of familiarity within the regulated public with the use 
of these environmental response standards (see Case 
Studies). Over that time, a substantial body of regulatory 
decisions have been based on these methods (Davies et 
al. 1999; Barbour et al. 2000; USEPA 2011). 

The eight case examples provided in Part 3 illustrate 
the range of successful and innovative water quality 

management applications that resulted from Maine’s 
biologically based approach. Biological assessment 
findings resulting from these methods withstood an 
aggressive legal challenge described in Case Study 
6. Decisions based on biocriteria results have driven 
significant changes in management actions taken by 
the MDEP (Case Study 1, 3, 4, and 5) and in discharge 
limits and operations of some regulated parties (Case 
Study 2 and 7). Finally, the advantages of a tier-based 
approach to water quality management and protection 
are shown in Maine’s revision of USEPA’s water-quality-
based approach to recognize and lock in incremental 
improvements in water quality (Case Study 8).

4.2  TRANSPARENT COMMUNICATION OF 
BIOLOGICAL CONDITION

4.2.1  Gradient models
Gradient models can help nonscientists to visual-

ize and interpret the relative implications of complex 
ecological data. Gradient models of four to six condition 
tiers are established as water quality law in the European 
Union, and in a few U.S. states including Maine. They 
have been shown to represent a reasonable number of 
management choices (European Commission 2000; 
USEPA 2011, 2016). These classes encompass a range 
of conditions from the minimum required to maintain 
a well-functioning aquatic community to high-quality 
conditions with little human perturbation, offering 
high conservation value, and serving as a reference 
standard against which the other condition tiers can 
be compared. As law, such aquatic life standards are 
distinguished by their ecologically detailed descrip-
tions of the class boundary conditions required to meet 
water quality goals (European Commission 2000, 2010; 
Ohio Water Quality Standards, Chapter 3745-1, Ohio 
Administrative Code; Maine Water Quality Standards, 
MRSA Title 38 Article 4-A §464-466). The narrative 
aquatic life criteria in Maine’s water classification law 
describe conditions across such a biological gradient 
and are supported by ecologically based definitions in 
the law (Table 2). 

4.2.2  Other transparency models—The EU Water 
Framework Directive and the biological 
condition gradient

Some policy and technical parallels exist between 
Maine’s approach and that of the European Union’s 
high, good, and moderate ecological status objectives 
described in the European Union Water Framework 
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Directive (WFD) (European Commission 2000; 
Reitberger et al. 2010; Poikane et al. 2014). The WFD 
states the objective for waters of the European Union 
to achieve at least good ecological status by 2015. In 
addition to high, good, and moderate ecological status 
objectives, the WFD further characterizes poor eco-
logical status categories, poor and bad. These condition 
categories are not defined in the WFD, and they are 
deemed to not attain the ecological status objectives of 
the WFD, but characterizing them enables documenta-
tion of incremental improvement of waters into higher 
attainment categories. The Maine biocriteria model was 
specifically designed to quantitatively assess attain-
ment of standards in the water quality classification 
law. Maine’s higher classifications (Classes AA, A, and 
B) introduce aquatic life criteria more stringent than 
the minimum fishable–swimmable CWA Interim Goal, 
while Maine deems that Class C is equivalent to at least 
the minimum Interim Goal condition. The statistical 
model described in Part 2 and appendices predicts 
site membership in groups having characteristics that 
correspond to the three statutory classification stan-
dards (Class A, B, and C) and associated definitions for 
biological assemblages. Maine’s statistical models also 
predict nonattainment (NA) sites that do not attain 
any of the statutory goal classes, (i.e., worse than the 
lowest allowed Class C condition). Determination of 

NA in Maine’s biocriteria can 
be interpreted as relatively 
equivalent to the status and 
purpose of poor and bad sta-
tus in the WFD (Reitberger et 
al. 2010).

The ecological character-
istics of each of Maine’s classi-
fications can also be accurately 
and transparently commu-
nicated to other scientists, 
the public, and policymakers 
via their correspondence to 
condition levels described in 
the national biological condi-
tion gradient (BCG) (Figure 
13; Davies and Jackson 2006; 
USEPA 2005, 2011, 2016). 
The BCG offers, in a simple 
stepped descriptive gradi-
ent, an ecological framework 
with the primary purpose to 
consistently and transpar-
ently communicate technical 

findings about changes in biological condition across 
a human disturbance gradient. The BCG uses detailed, 
ecologically descriptive condition tiers to express bio-
logical responses ranging from a natural state to severe 
alteration, in relation to a gradient of stress (Davies and 
Jackson 2006; USEPA 2011, 2016). 

With reference to the BCG, as shown in Figure 13, 
Class AA and A both correspond with BCG Tiers 1 and 
2. Classes B and C most closely correspond with BCG 
Tiers 3 and 4, respectively. The Nonattainment condi-
tion most closely corresponds with BCG Tiers 5 and 6. 

The BCG was developed by a national working group 
of bioassessment practitioners and scientists, sponsored 
by USEPA, as a crosswalk to facilitate comparison of 
bioassessment results among states using different 
assemblage groups and different field and analytical 
methods. The BCG initiative sought to better standard-
ize communication about the outcomes of biological 
assessment, and it is based in part on Maine’s tiered 
standards for aquatic life. The BCG model was published 
with an example that presents empirical data from 
Maine, to demonstrate the application of the ecological 
characteristics described in the generalized BCG model 
(see Digital Appendix A4 in Davies and Jackson 2006). 

The general BCG model described in Davies and 
Jackson (2006) does not require application of the 
same technical rigor and standardization as Maine’s 

Figure 13. Goal condition of Maine river and stream management classes 
relative to the biological condition gradient.
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quantitative predictive models do in order to have 
wider application, nor does bioassessment based 
simply on the BCG have the legal authority and 
leverage of Maine’s regulation. Still with local bio-
monitoring data and expert judgment, the general 
BCG model can be used to effectively communicate 
aquatic life conditions across larger geographic and 
geopolitical scales. This feature is useful to initial 
stages of water quality inventory and planning at 
regional and national scales. The BCG is also use-
ful for nongovernmental organizations seeking a 
compelling and transparent way to communicate 
important changes in biological condition to their 
water resource constituencies. 

The value of the BCG model to translate 
biological condition among differing assessment 
approaches was demonstrated in a New England 
regionwide bioassessment, using the BCG model 
as the common yardstick among states having 
differing sampling and assessment methodologies 
(Snook et al. 2007). Because it is a transparent and 
reproducible method, this approach provides a means to 
standardize communication about how much biologi-
cal change has occurred relative to state and federal 
management goals for waterbodies. 

4.3  CONCLUSIONS
Maine’s experience with designing a credible and 

robust scientific and legal framework for regulatory 
and management use of aquatic biological informa-
tion illustrates that the power and utility of biological 
criteria in water resource management increases with 
its increasing formalization in the regulatory setting 
(Figure 14). 

Most states and tribes in the United States con-
duct biological assessments, yet only a handful have 
promulgated quantitative biocriteria in water quality 
standards (Chris Yoder pers. comm.; USEPA 2013). 
While reporting on aquatic life status may be a neces-
sary task (for example to fulfill reporting requirements 
of the CWA §305b or §303d impaired waters list), much 
of the transformative potential of biological information 
to focus an agency’s attention on optimizing environ-
mental outcomes is lost if the effort stops there (Yoder 
and Barbour 2009; Courtemanch et al. 1989). For ex-
ample, biological monitoring downstream of permitted 
municipal or industrial wastewater discharges might 
provide invaluable documentation of poor biological 
conditions attributable to inadequate permit limits, 
yet without legally enforceable biological criteria, it 
may be impossible to intervene to remedy the problem. 

Many states employ simple pass–fail bioassessment 
triggers, specified in agency guidance or policy (Figure 
14). These triggers are used to list waters for aquatic 
life use impairment (e.g., §303d), but the technical 
program may have little ability to detect, document, 
and ultimately preserve incremental improvements 
in condition (USEPA 2013). At the other extreme, the 
agency may lack any regulatory mechanism to maintain 
waters found to be of exceptional quality due to bioas-
sessment action triggers that are well below current 
high conditions. The pass–fail management paradigm, 
used by so many states, deprives the public of the more 
precisely resolved gradient of classification options that 
would allow them meaningful participation in local and 
statewide water resource planning (Courtemanch et al. 
1989; Courtemanch 1993; Davies and Jackson 2006; 
USEPA 2016) .

Maine’s biocriteria program is based on an underly-
ing conceptual gradient of acceptable biological condi-
tion classes, codified in statute and executed in rule. 
The overall approach provides a range of management 
options to better meet the public’s interest in balancing 
Maine’s well-deserved reputation for environmental 
beauty and purity, with the need to accommodate 
important socioeconomic interests. While many state 
regulatory agencies rely solely on the antidegradation 
provisions in the CWA to prevent declines in water 
quality, Maine’s classes provide enhanced statutory 
protection so that all waters are either maintained at 
their currently attained goal conditions, or are made 
to improve to meet those statutory goals. The Maine 

Figure 14. Relative usefulness and scope of biological 
criteria to enhance water resource management is 
contingent upon how formally it is institutionalized.
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Legislature has designated 50% of the state’s river and 
stream miles to be managed as Class AA or Class A 
(equating to Tier 1 or 2 on the BCG) and thus directs 
these waters to be maintained in this very high condi-
tion (Figure 9; MDEP 2012). Waters that fail to attain 
the standards of their assigned classification have the 
weight of the classification law behind them to drive 
management intervention and remedial action. This 
important action-forcing mechanism applies to a Class 
AA or A waterbody that fails to attain the very high 
physical, chemical, and biological standards of those 
classes in just the same way that it applies to waters 
that have failed to attain a lower assigned class. All 
confirmed cases of waterbodies failing to attain their 
assigned classification standards are placed on the 
state’s impaired waters list, triggering action to address 
the impairment. The gradient of tiered classes in law 
(tiered aquatic life uses), combined with the legislature’s 
exercise of its option to designate a high percentage of 
river and stream miles into high-quality goal classes, 
helps to bend the state’s overall planning and manage-
ment paradigm towards prevention of problems and 
earlier intervention when at-risk streams are still in 
good condition, so problems are less obdurate, and 
solutions less expensive. 

As bioassessment progresses in an agency from 
nonregulatory guidance into full implementation in 
water quality standards and rule, increasingly compre-
hensive and influential applications become available to 
managers that improve management responsiveness to 
biologically detrimental influences and ultimately result 
in improved environmental outcomes (Courtemanch et 
al. 1989; Courtemanch 1995; USEPA 2013). Weaknesses 
in either articulation and codification of goals and man-
agement objectives or in implementation of a sound 
scientific framework to support environmental policies 
risks failure to optimally protect and preserve valued 
aquatic resources. Positive results depend upon both 
an intelligent and scientifically informed foundation 
in policy and law and implementation of a technical 
program that is strategically designed with the goals 
of the law firmly in mind. 
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APPENDIX 1. FIELD, LABORATORY, AND DATABASE MANAGEMENT 
METHODS

A1.1  SELECTION OF BENTHIC 
MACROINVERTEBRATES FOR CRITERIA 
DEVELOPMENT 

Maine’s choice of benthic macroinvertebrates as the 
primary community component to be used to assess 
the condition of river or stream life was based upon 
the following tenets: 

1. Benthic macroinvertebrates generally have less 
mobility than fish and are therefore less able to 
avoid exposure to pollutants (Rosenberg and 
Resh 1993). Fish, under the right conditions, 
may swim considerable distances to avoid pol-
lutants and so may not be as reliable an indica-
tor of local environmental conditions (Little 
2002). Some fish species also make extensive 
seasonal or life-stage migrations. Therefore, 
presence or absence of fish may be unrelated to 
water quality condition.

2. Within the macroinvertebrate group there is a 
wide range of pollution tolerance (Hilsenhoff 
1987; Merritt and Cummins 2008). Some 
sensitive species may be killed or excluded 
by very low levels of pollutants (species of 
Ephemeroptera and Trichoptera), while 
other taxa may actually thrive in large num-
bers only in the presence of certain types of 
pollution (e.g., some species of Syrphidae 
and Chironomidae [Diptera], annelids, and 
gastropods). 

3. Benthic macroinvertebrates are an extremely 
diverse group (Thorp and Covich 1991; Merritt 
and Cummins 2008), having a greater richness 
of taxa, diversity of life history strategies, and 
variety of feeding and energy use strategies. By 
comparison, Maine’s fish communities are rela-
tively low in taxonomic and functional diver-
sity (Halliwell et al. 1998). Assessment of the 
benthic macroinvertebrate community provides 
a great deal of information regarding energy 
use, tolerance to pollution, and functional well-
being of the entire aquatic system.

4. Benthic macroinvertebrates have longer, more 
complex life cycles than algae or bacteria—fre-
quently living one or more years in the aquatic 
environment—and can reflect the integration 

of water quality effects over time (Rosenberg 
and Resh 1993).

5. Many fish species that are valued state resourc-
es (particularly Salmonidae) are largely depen-
dent on the macroinvertebrate community as 
a food source during at least some life stages 
(Hartel et al. 2002). Since the range of pollu-
tion tolerance of insects and other invertebrate 
organisms is broadly comparable to that of fish 
(Barbour et al. 1999), assessment of macroin-
vertebrates is an indirect method of gaining in-
formation about risks to the fishery of an area 
without directly assessing the fish community. 

6. Some form of benthic macroinvertebrate life 
can be found in all but the most severely pol-
luted or disturbed habitats, unlike fish, which 
may be absent due to natural causes such as 
obstructions to passage. In addition, fish com-
munities are affected by fishery management 
and selective exploitation, which can lead to 
nonpollution-based declines.

7. Methods for collecting samples and analyz-
ing results are well established (USEPA 1973; 
Green 1979; Klemm 1990; Stribling et al. 1996; 
USEPA 1999, 2005). Since macroinvertebrates 
are widely available and easy to capture, they 
are a cost-effective group to sample, though 
a drawback at species-level analysis is the 
continually changing status of taxonomy and 
systematics within many groups of freshwater 
invertebrates and the expertise needed for 
species-level determinations. 

8. Early research in Maine waters established a 
base of knowledge about benthic macroinverte-
brate responses to differing water quality con-
ditions, applicable sampling methods for Maine 
waters, and expertise in analysis of biological 
information (Rabeni and Gibbs 1977; Rabeni et 
al. 1985; Davies 1987).

A1.2  STREAM-SAMPLING METHODOLOGY
Benthic macroinvertebrates were collected using 

rock filled substrate samplers of standard construction 
and deployment (MDEP 1987, 2009). Three types of 
samplers were used depending on the depth of water: 
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cylindrical baskets for wadeable streams (Rabeni and 
Gibbs 1977; Davies 1987; Klemm et al. 1990), cones 
for non-wadeable water bodies (Courtemanch 1984), 
and mesh bags for small flowing waters that are too 
shallow to fully immerse a basket sampler. Each sampler 
contained 7.25 kg (± 0.5 kg) of clean, bank-run cobble 
graded to a standardized diameter range of 3.8 cm to 
7.6 cm (1.5 in. to 3.0 in. commercially available as #2 
roofing stone).

At each sampling station, biologists deployed three 
replicate samplers based on earlier studies demonstrat-
ing that the standard error for three samplers (total 
community density) was within 20% of the mean (Rabeni 
and Gibbs 1977; Davies 1987). The standard sampling 
season was restricted to dates between 1 July and 30 
September, with a duration of 28 days ± 4 days. For 
impounded waters, a longer incubation period of 56 
days ± 4 days is allowed to accommodate the expected 
slower colonization period. Biologists used 600 µm dip 
nets during retrieval to minimize loss of organisms. The 
samplers were then transferred to a sieve bucket with 
600 µm mesh. Biologists removed and cleaned all the 
rocks from the sieve buckets, leaving behind sand, detri-
tus, and macroinvertebrates. The contents of the buckets 
were transferred to a jar and preserved with ethanol. 
Biologists processed and preserved each sampler sepa-
rately. Field staff collected data on water velocity, depth 
of the sampler, stream width, substrate composition, 
canopy cover, water temperature, dissolved oxygen, and 
specific conductance at the time of sampler deployment 
and again during retrieval. Sampling was conducted such 
that a representative coverage of streams and geographic 
regions was attained (Figure A1).

A1.3  LABORATORY PROCESSING PROCEDURES
After samples arrived at the laboratory, techni-

cians sorted samples by hand to remove macroin-
vertebrates from debris. Laboratory staff preserved 
benthic macroinvertebrate specimens in 70% ethanol 
and 5% glycerin, and samples were placed in glass vials 
for future reference. Subsampling was performed on 
samples if the mean number of organisms in the three 
samplers exceeded 500 and subsampling would yield at 
least 100 organisms per sampler. When subsampling 
was necessary, all samples in a reach were treated 
consistently. For example, if one site of a paired set 
of upstream-downstream sites was subsampled, the 
other site was also subsampled in the same way (as 
long as the resulting sample would yield the required 
minimum 100 organisms). This process was done to 

standardize the level of sampling effort. Subsampling 
was conducted using the method of Wrona et al. (1982), 
which is a proportional subsampling method (in contrast 
to fixed count subsampling), which can be factored up 
to standardized whole sample counts, enabling more 
accurate assessment of density differences between 
samples (Courtemanch 1996). Taxonomists identified 
organisms to species whenever possible. If keys were 
not available, or a specimen could not be identified to 
species, then it was identified to the lowest taxonomic 
level possible, usually genus. 

A1.4  DATABASE CONSTRUCTION
Between 1983 and 1989, we amassed a database of 

145 benthic macroinvertebrate samples from one pri-
mary habitat type: free-flowing, mid- to high gradient, 
erodible bottom streams with samples collected during 
a late summer index period.  Additional standard pro-
tocols were followed for sampling macroinvertebrates 
in impounded rivers. Data quality assurance protocols 
included (1) standardized and documented stream col-
lection procedures, performed under the direct supervi-
sion of an MDEP biologist; (2) supervised sample sorting 
with a proportion of each sorter’s samples resorted by 
another person to determine sorting efficiency; (3) 
consistent taxonomy (about 80% of samples identified 
by the same taxonomist); and (4) a special reference col-
lection of separate taxa to standardize taxonomy for the 
program (MDEP 2009). Quality assurance protocols for 
data entry and data editing were applied during transfer 
of raw data to the computerized database management 
system and are documented in the report by MDEP 
(2009). In 2000 the database was migrated to Oracle and 
ArcInfo . Geographic information system (GIS) technol-
ogy was interfaced with the stream macroinvertebrate 
database to facilitate future sampling and analysis of 
spatial dependencies (Dawson et al. 2002). 

We standardized all taxonomic identifications to the 
genus level prior to metric computation and statistical 
analysis. It is difficult or impossible to identify many 
groups of benthic macroinvertebrates to the species 
level due to subtle physical differences between closely 
related species within a genus, as well as the continuing 
discovery of new species. On the other hand, some taxa 
are easy to identify to species, thus it is quite common 
for data to be submitted with varying levels of taxonomic 
resolution. Varying levels of effort in identification to 
the species level risks instability in subsequently derived 
richness measures. This inconsistency is incompatible 
with the need to establish standardized attainment 
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Figure A1. Stream-sampling locations (n=224 stations) from which 373 samples were collected to build a statistical model 
to predict attainment of aquatic life criteria. Some locations were sampled more than once. (Northeastern Coastal Zone, 
n=28; Acadian Plains and Hills, n=147; Northeastern Highlands, n=49). 
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guidelines for aquatic life. For this reason, all organism 
counts recorded in taxonomic units other than genus 
are standardized to the genus level prior to computation 
of metrics or other quantitative analyses (Appendix 4). 

A1.5  MINIMUM PROVISIONS FOR SAMPLE DATA 
FOR ANALYSIS VIA THE STATISTICAL 
MODEL

Samples are first evaluated to determine if they 
are appropriate for analysis via the predictive models.  
Appendix 7 provides protocols concerning treatment 
of atypical sampling situations and decisions to reject 
unsuitable samples. Samples must have a mean total 
abundance of greater than 50 organisms per sampler and 
a total genus richness (from three samplers) of more than 
15 taxa. These minimum total abundance and richness 
provisions are derived from the minimum values found 
in reference-quality sites in the baseline data set. Sample 
data are examined for atypical findings or evidence of 
environmental or sampling conditions for which the 
model was not designed. Examples of conditions that 
could initiate adjustment of the model decision are 
unusual habitats (e.g., tidal flows, lack of flowing water, 
or sampler stranding), natural or humaninduced distur-
bance of the sample, or known or suspected problems 
with sample collection or analysis. For samples having 
any of these characteristics—indicating that they are 
not appropriate for analysis by the predictive models—
a professional judgment protocol (CMR Chapter 579, 
2003; Appendix 7) can be used to determine whether the 
data suggest actual nonattainment conditions, natural 
causes for the low richness and/or numbers obtained, 
or that resampling is required to establish sufficient 
confidence to make a final determination. 

Samples that are appropriate for the model predic-
tions are sequentially run through the first (four-way) 
and second stage (two-way) models to make final 
determinations (Part 2, Figure 2; Appendix 5). The 
second-stage two-way model prediction that produces 
the highest probability for a given class is determined 
to be the best classification fit (Figure 2; Appendix 8). 
Probability cutoffs used in discriminant analysis are 
arbitrary, but traditionally assign a probability margin-
ally greater than 0.50 to determine class membership. 
However, because we use these models for regulatory 
determination, which may have significant management 
consequences, we use a more conservative criterion of 
p > 0.60 for attainment of aquatic life criteria for a class 
(CMR Chapter 579, 2003; Appendices 5, 6, and 8). By the 

same reasoning, p < 0.40 means that a sample does not 
attain the aquatic life criteria of a class. For probabilities 
falling between 0.40 and 0.60, the result is indeterminate 
and may require further review or resampling. In actual 
application, the predictions of the two-way models are 
usually very decisive, with the majority of probability 
estimates to a given class exceeding p > 0.90 and nonat-
tainment of a given class of p < 0.10
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APPENDIX 2. MODEL-BUILDING METHODS

A2.1  UNIVARIATE ANALYSES—EXPLORATORY 
INVESTIGATIONS

We performed exploratory statistical analyses to ex-
amine univariate relationships between physical stream 
characteristics and biological responses. Univariate sta-
tistical approaches, especially graphical inspection and 
linear correlation analysis, were conducted to examine 
the distribution of what were hypothesized, based upon 
theory, to be significant descriptors of the benthic com-
munities sampled (Figure A2). For instance, Figure A2a 
shows that reference streams have higher EPT richness 
than nonreference streams (those streams that are more 
likely to be affected by pollutants). We also examined 
relationships between biological variables and physical 
stream covariates such as stream width, depth, veloc-
ity, substrate composition, conductivity, and stream 
temperature by graphically analyzing various subsets 
of data (Figure A2b). The data in Figure A2b show a 
negative relationship between turbidity (as measured 
by conductivity) and EPT richness. These are examples 
of relationships that guided our initial model building. 
In addition, our exploratory phase of analysis provided 
an assessment of the effects of geographic and climatic 
regions on biological response variables. The results 

from these preliminary analyses were used to develop 
an initial structure for predictive models. 

While there were a few significant relationships 
between physical stream characteristics (e.g., whether 
a stream is perceived to be reference quality or affected, 
or water conductivity, as in Figure A2a and b) and 
biological variables (such as EPT richness) in general, 
few significant relationships were found. The explora-
tion of relationships between biological variables and 
physical stream characteristics such as stream width, 
depth, velocity, substrate composition, and stream 
temperature are shown in Table A1. We did not find 
strong relationships between biological response vari-
ables and stream width, depth, or velocity. We also did 
not find strong relationships between physical stream 
characteristics and multivariate discriminant axes as 
depicted in Table A2. The exploratory phase of analysis 
also demonstrated only a minimal effect of geographic 
or climatic region (Figure A1) on biological response 
variables. We concluded from these analyses that most 
biological variables did not exhibit a linear relationship 
with natural physical streambed characteristics and geo-
graphic locations, indicating that a complex stratified or 
hierarchical model partitioned by stream type, stream 
order, or geographic locale in Maine was not necessary. 
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Figure A2. Exploratory plots for the richness of EPT with (A) comparison of samples from reference (Ref, n = 57) and 
nonreference (Nonref, n = 310) sites with significant difference of means of the two groups (Mann-Whitney U = 4645.5, 
p < 0.001), and (B) plot of EPT Richness vs conductivity (a surrogate for generalized human disturbance) with locally 
weighted (LOESS) regression line.
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A2.2  ASSESSMENT AND SELECTION OF MODEL 
PREDICTOR VARIABLES

Nearly 500 variables were available for developing 
a predictive model (Table A3). However, the stability 
of predictions based on linear discriminant functions 
depends upon the ability to precisely estimate linear 
coefficients or model parameters, which, in turn, are 
dependent upon a suitable number of degrees of free-
dom. In general, this requires that the ratio of cases to 
the number of variables should be in the range of 10 
to 30 for reliable estimation of coefficients (Wilkinson 
1989; Manly 1991). To select variables for the model, we 
applied data reduction techniques, in combination with 
biologists’ recommendations on retention of critical 

ecological attributes that contributed to defining the 
biological criteria classes. Because the model was to serve 
as numeric biological criteria to assess attainment of 
water quality goals for biological condition, defined by 
Maine’s classification standards, special emphasis was 
placed on including biological variables directly related 
to the aquatic life goals and definitions described in the 
statutory classification standards (see Part 1, Tables 
1, 2, and 5). We used various transformations, such 
as z-standardization, ordinal ranking, arcsin, square 
root, and logarithms, to normalize variance or achieve 
homoscedasticity (Elliot 1977) in individual predictor 
variables, based on the assumption that transforma-
tion of individual variables that appear to violate 

Table A1. Exploratory univariate data analysis: Pearson correlation of physical determinants with biological 
metrics and first-stage model results.

Biological Response Variable

Pearson Correlation Coefficients
Depth  

(n=604)
Width  

(n=571)
Velocity  
(n=470)

Temperature  
(n=585)

Total Abundance (TOTAB1) -0.150 -0.071 0.119 -0.040
Richness (GENRICH2) -0.194 -0.107 -0.065 -0.080
Hilsenhoff Biotic Index (HBI6) 0.327 0.030 -0.151 -0.006
Shannon-Weaver Diversity (SWDI5) -0.081 -0.106 -0.096 -0.007
p(Class A) First-Stage Model  (pA1) -0.204 -0.058 -0.031 -0.040
p(Class B) First-Stage Model (pA1+pB1) -0.117 0.052 0.025 -0.045
p(Class C) First-Stage Model (pA1+pB1+pC1) 0.096 0.001 0.045 0.003
p(Class NA) First-Stage Mdl 0.204 0.017 -0.032 0.071

Table A2.  Correlations (p-values) between physical stream characteristics and dependent canonical discriminant 
axes. 

Physical variable

Percentage of data set   
for which the  

parameter was collected

Correlations (p-values) between physical stream characteris-
tics and dependent canonical discriminant axes

A B C NA

Stream order 100 0.745 0.633 0.422 0.678
Temperature 87 0.345 0.677 0.344 0.213
Width 87 0.255 0.796 0.365 0.79
Depth 92 0.278 0.772 0.823 0.599
Velocity 69 0.603 0.722 0.645 0.505
Percentage Sand 92 0.444 0.763 0.805 0.657
Percentage Detritus 92 0.447 0.599 0.397 0.45
Percentage Silt 92 0.501 0.897 0.654 0.842
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assumptions of normality and heteroscedasticity can, 
in some cases, result in data that approximate a joint 
distribution that is multivariate normal (Lachenbruch 
et al. 1973; Manly 1991). We used varimax factor rota-
tion (Yates 1987; Reyment 1993) to identify suites of 
highly correlated variables. Once identified, the best 
discriminating variables from each suite were assessed, 
thus reducing variable redundancy and dimensionality. 

We did not find the abundance of individual genera 
or species to be good predictors of the biologist classi-
fications in the discriminant model, except in the case 
of specific Class A indicator taxa. This is not surprising 
since the abundance of individual species fluctuates 
dramatically from year to year and stream to stream 
within a particular water quality class, as found by Clarke 
et al (2002). Criteria for selecting the Class A indicator 
taxa required that at least 60% of the total abundance 
of the taxon collected in the entire data set occurs in a 
priori Class A samples. For a genus to be useful as an 
indicator across the full range of sampled conditions, 
we restricted indicator candidates to those genera that 
occur in more than 10% of the samples in the database. 
This restriction ensures a sufficiently high probability 
of capture within any of the four water quality groups 
to make a taxon a useful indicator. 

To maximize the ability to discriminate biological 
condition classes on the basis of ecological characteris-
tics, we considered various functional groups of aquatic 
invertebrates for analysis. We tested variables based on 
Cummins’s (1973) functional feeding groups that ag-
gregate taxa with similar feeding morphology. 

A2.3  INITIAL ASSESSMENT OF WATER QUALITY 
CLASSES BASED UPON DATA-STRUCTURED 
CLUSTERS

Natural or data-derived groupings from clustering 
and ordination approaches did not correlate well with 
water quality gradients known to occur in the data set. 
For example, the K-means approach identified four 
clusters comprised of 44, 5, 84, and 240 stream samples. 
Three of the clusters form an aggregated group leaving 
only two well-defined regions with the distinct cluster 
(cluster 2) consisting of only five samples (Figure A3a). In 
addition, the legislative stream classes used for K-means 
clustering were found comprise all cluster groups (Figure 
A3b) suggesting little potential for these overlapping 
clusters as regulatory guides. This led to the approach of 
using professional (aquatic biologist) expert judgment 
of water class assignment to the sampled streams in 
Maine. This approach is discussed in detail in Part 2, 
Sections 2.4.3, 2.4.4, and 2.4.5.

A2.4  FIRST-STAGE LINEAR DISCRIMINANT 
CLASSIFICATION MODEL

The initial predictive four-way discriminant model 
that we constructed was based on the original 145 
sample database, using the biologist classification. 
Developed in 1992, these first-cut algorithms resulted 
in a reasonable predictive model with correct prediction 
of the biologist classifications averaging about 70% 
(compared to an expected 25% classification under the 
null hypothesis). Because of the promising predictive 
capability, the four-way model was re-parameterized in 

Table A3. Variable types screened for use in linear discriminant models.

Variable Type Example
Number 

Evaluated
Number 
Selected

Generic Abundances Stenonema, Hydropsyche, Brachycentrus 300 12
Indicator Taxa Class A-Serratella, Brachycentrus, Leucrocuta, 

Glossosoma, Paragnetina, Euylophella, Psilotreta 
90 7

Measures of Richness Richness; EPT; EP 10 6
Taxa complexes (Acroneuria+Stenonema);  

(Cheumatopsyche+Cricotopus+Tanytarsus+ 
Ablabesmyia)

+/-50 genera 3

Family Functional Groups (112 genera) Perlidae; Tanypodinae, Chironominae 24 3
Habitat variables Temperature, depth, width, velocity, percentage 

substrate composition, stream order 
8 0

Functional Feeding Group Collector-filterer, predator, deposit-feeder 5 0
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1998 with a larger stream data set (n = 373 samples, 
inclusive of the initial 145 samples). ANOVA and 
MANOVA provided evidence that the linear 
discriminant model does separate the biolo-
gist classifications as significantly differenti-
ated populations (Table A4, MANOVA table). 
In addition, all of the predictor variables 
selected for the final model were highly 
significant in discriminating the biologist 
classifications (Table A4, ANOVA Table). 
Although the water quality class populations 
are significantly different as summarized 
by the univariate and multivariate ANOVA 
statistics in Table A4, this is not a necessary 
criterion for a highly predictive classification 
model. Table A5 lists variable transforma-
tions and the four-way discriminant model 
coefficients used to predict the probability 
of class membership for individual river and 
stream samples, and Table A6 lists popula-
tion and distributional summary statistics. 
Appendix 4 shows variable definitions and 
computational algorithms. Figure A4 shows 
an ordination of the first two canonical 
discriminant axes of the four water quality 
class populations of streams and rivers. The 
overlap of the four stream class populations 
as predicted by the model shows overlap, 

reflecting that each stream has a probability or likelihood 

Figure A3. Results of k-means clustering with four groups selected. Cluster centroids and 95% 
circles (a) and distribution of streams from the four water classes in each of the four clusters 
(b). 
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Table A4.  Univariate analyses of variance (ANOVA) and multiple analysis of variance (MANOVA) and for the four-
way linear discriminant model (n=373 sample sites).

ANOVA
Discriminant Variable SS df MS F value p-value

Log total abundance 74.8052 3 24.9351 22.9059 <0.0001
Residual error 401.6874 369 1.0886
Generic richness 11683.3281 3 3894.4427 35.1949 <0.0001
Residual error 40831.2349 369 110.6538

Log Ephemeroptera 3331.6033 3 1110.5344 172.9364 <0.0001
Residual error 2369.5837 369 6.4216

Log Plecoptera abundance 1749.4512 3 583.1504 143.4626 <0.0001
Residual error 1499.9208 369 4.0648

Biotic index 58.0507 3 19.3503 40.4781 <0.0001
Residual error 176.3975 369 0.4780

Species diversity 188.8227 3 62.9409 80.7877 <0.0001
Residual error 287.4842 369 0.7791

Log rel. Chironomidae 4.50879 3 1.5029 2.0114 0.0486
Residual error 275.7083 369 0.7472

Relative Diptera richness 0.1248 3 0.0416 2.9269 0.0337
Residual error 5.2424 369 0.0142

Hydropsyche abundance 2232441.2 3 744145.5 7.3803 <0.0001
Residual error 37205735.6 369 100828.2

MANOVA
Test Statistic df Test value Asymptotic F p-value

Wilkes Lambda 27,1054 0.1596 34.1634 <0.0001
Pillai Trace 27,1089 1.0956 23.2034 <0.0001
Hotelling – Lawley 27,1079 49.5773 49.5773 <0.0001

Table A5.  Four-way discriminant model variable transformations and coefficients used to predict the probability of 
class membership for individual stream samples. 

Discriminant Model Coefficients

Variable Name Transformation Class A Class B Class C
Nonattain-

ment

Constant -99.95508 -105.70948 -112.67581 -107.74283

1.Total Abundance (TOTAB1) nLog (value+0.001) 10.77061 11.46981 11.80888 11.26793
2. Generic Richness (GENRICH2) -0.038619 -0.43340 -0.50051 -0.48822
3. Plecoptera Abundance (PLECAB3) nLog (value+0.001) 0.23940 0.03946 -0.60923 -0.95480
4. Ephemeroptera Abundance (EPHAB4) nLog (value+0.001) -0.59970 0.55500 -0.67722 -1.79032
5. Shannon-Weiner Generic Diversity (SWDI5) 21.22732 20.91256 21.07602 19.46547
6. Hilsenhoff Biotic Index(0-10) (HBI6) 8.01620 9.12163 10.31492 10.72746
7. Relative Abundance Chironomidae (CHIRA7) nLog (value+0.001) -11.70298 -11.52650 -1149414 -11.66371
8. Relative Diptera Richness (DIPTRR8) 70.77937 71.09637 72.46514 70.22517

9. Hydropsyche Abundance (HYDRAB9) -0.00535 -0.00398 -0.00152 0.00007
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of class membership and also that predictions are not 
100% accurate. 

Tables A1 and A2 list p-values from linear correla-
tions between physical variables such as stream order, 
temperature or depth, and the water quality classes. The 
relationships between biological measures and physi-
cal stream characteristics such as stream width, depth, 
velocity, substrate composition, and stream temperature 
are shown in Table A1. We did not find strong relation-
ships between biological response variables and stream 
width, depth, or velocity. We also did not find strong re-
lationships between physical stream characteristics and 
multivariate discriminant axes as depicted in Table A2. 
We concluded from these analyses that most biological 
variables did not exhibit a linear relationship with natu-
ral physical streambed characteristics, nor a categorical 

relationship with geographic locations indicating that 
a complex stratified or hierarchical model partitioned 
by stream type, stream order, or geographic locale in 
Maine was not necessary. 

We also examined the values of the nine predic-
tor variables used in the first-stage four-way model to 
determine if there was a pattern with USEPA Level III 
ecoregions (Omernik 1987). The Acadian Plains and Hills 
(eastern ecoregion), Northeastern Highlands (western 
ecoregion), and Northeastern Coastal Zone (southern 
ecoregion) cover approximately 53%, 43%, and 4% of the 
state of Maine, respectively (Figure A1). Agricultural, 
rural, and urban land uses are not uniformly distrib-
uted throughout the state. The southern ecoregion 
has a disproportionately high amount of development 
compared to the other ecoregions. Because we were 

Table A6.  Summary statistics for linear discriminant model predictors (variables).

Statistics1

Variables
N of 

cases Minimum Maximum Range Mean
Standard 

Dev. Variance
C.V.  

Predictors

TOTAB1 366 9.33 9080 9070.67 707.46 950.61 903655.81 1.344
GENRICH2 366 4 72 68 34.22 12.21 149.17 0.36
PLECAB3 366 0 134.67 134.67 8.74 13.54 183.3 1.55
EPHAB4 366 0 668 668 95.85 114.66 13146.46 1.19
SWDI5 366 0.42 4.91 4.49 3.09 0.8 0.64 0.26
HBI6 366 1.81 8.49 6.69 4.6 1.13 1.28 0.25
CHIRA7 366 0 0.97 0.97 0.22 0.221 0.05 0.97
DIPTRR8 366 0 0.83 0.83 0.36 0.12 0.01 0.34
HYDRAB9 366 0 3306.59 3306.59 170.12 328.22 107727.66 1.93
CHEUMAB11 366 0 2028.31 2028.31 77.99 209.05 43700.28 2.68
EPT/DIPT12 366 0.1 8 7.9 1.45 0.94 0.89 0.65
OLIGRA13 366 0 0.95 0.95 0.03 0.12 0.01 4.15
PERLAB15 366 0 45 45 5.74 8.19 67.14 1.43
CHIMINI17 366 0 1116.8 1116.8 38.09 115.15 13259.72 3.02
EPHRA18 366 0 0.84 0.84 0.18 0.17 0.03 0.95
EPTR19 366 0 28 28 14.47 6.12 37.46 0.42
DMPHAB21 366 0 1789.47 1789.47 10.31 98.46 9694.65 9.55
PLECRR23 366 0 0.2 0.2 0.05 0.04 0.01 0.83
CCTAAB25 366 0 2050.11 2050.11 105.76 226.94 51500.48 2.15
ASAB26 366 0 361.33 361.33 31.37 46.08 2123.19 1.47
EPRATIO28 366 0 1.36 1.36 0.54 0.28 0.08 0.51
AIND30 366 0 0.86 0.86 0.19 0.19 0.04 1.02

1 Taxa descriptions for variables are listed in Appendix 4.       
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seeking to determine natural differences 
between ecoregions that might influence 
our water quality groups, in this analysis 
we did not want to identify differences 
based on land use disturbance. Thus, we 
restricted ANOVA analyses of the nine 
predictor variables to reference samples 
from low to very low landscape disturbance 
(biologist classifications of A). We found 
no significant differences (p > 0.05) related 
to ecoregions, indicating that predictive 
models would not have to be built for each 
ecoregion. 

We also found that most of the func-
tional feeding group variables were not 
significant predictors of the biologist clas-
sifications. As an alternative, we tested vari-
ables based on family functional groups. 
By using families as functional groups, sets 
of morphological and functional species 
traits, often related at the family level, (e.g., 
life history, reproduction, mobility, trophic 
level, as well as feeding morphology) can be aggregated 
as an expression of functional organization (Poff 1997). 
Importantly, these group functional traits may also 
include environmental tolerances, although they would 
be less precise than at the genus or species level. These 
family group traits can be used to assess the functional 
character of communities (Courtemanch 1993). In the 
test data set of more than 300 genera, fewer than 30 
genera occurred in at least 25% of the sites (Figure A5). 
At the genus level, only Stenonema, Cheumatopsyche, 
Hydropsyche, and Polypedilum were collected in more 
than 75% of the samples. The higher-level taxonomic 
groups (families, orders, and family functional groups) 
and aggregated indices (such as richness, diversity, and 
biotic index) performed best for a discriminant model 

approach to stream classification based upon the benthic 
community. The notable exception to the family func-
tional group concept is the Chironomidae. Formation 
of family functional groups for Chironomidae entailed 
reducing this large family of functionally diverse midge 
taxa into subfamily groups having more similar mor-
phological and functional characteristics.

The four-way discriminant model was used to esti-
mate the probability of a sample belonging to each of the 
water quality classes (A, B, C, and NA) and performance 
was evaluated against the biologist classifications. We 
assigned a sample to the classification with the largest 
probability of class membership (Ross 1989). The pre-
dicted class assignments correctly matched 72.5% of 
the biologist classifications of A (Table A7). The model 

Table A7. Classification of stream and river sites by Phase II (373 samples) four-way linear discriminant model. 
Numerical entries represent the percentage (number) of sites classified from a priori classes (row) into 
predicted classes (columns). Therefore, diagonals (bold) are percentage correct classification.

A priori class

Model Predicted Class

Class A Class B Class C NA

Class A 72.50% (87) 27.50% (33) 0.00% (0) 0.00% (0)
Class B 22.12% (25) 69.03% (78) 8.85% (10) 0.00%  (0)
Class C 2.78% (2) 27.78% (20) 65.28% (47) 4.17% (3)
NA 0.00% (0) 2.94% (2) 25.00% (17) 72.06% (49)

Taxa Occurence in Samples

>75% of 
samples

75%–51% of 
samples

50%–26% of 
samples

25%–11% of 
samples

10%–6% of 
samples

≤5% of 
samples

1%
2% 4%

12%

10%

71%

71% of the taxa occur in less 
than or equal to 5% of the 
samples

Figure A5. Frequency of taxa occurrence in samples. 
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correctly matched biologist classifications of B, C, and 
NA for 69%, 65%, and 72% of samples, respectively. 

We further tested the four-way model by performing 
a jackknife discriminant procedure. The results of jack-
knife randomization procedures confirmed the repeat-
ability and accuracy of the first-stage model to predict 
a priori classes. It also indicated that the estimation of 
the discriminant functions is not very sensitive to small 
changes in the data set, and that both coefficients and 
misclassification do not vary greatly between iterations 
(Table A8). This was encouraging because one problem 
that can arise from this modeling approach is that by 
mixing populations (A vs B, C, NA) one could end up 
with a population structure that results in uneven co-
variance between populations, a violation of one of the 
assumptions of linear discriminant analysis (Jobson 
1992). However, based upon the jackknife results this 
is not the case for our data set.

While the four-way model offered reasonably good 
predictive ability, there was clearly too much misclas-
sification for its effective use in a state regulatory pro-
gram, where such errors can be contentious and have 
costly management consequences (Courtemanch et al. 
1989). Therefore, we developed a series of hierarchical 
two-way discriminant models that used the predictive 
information from the four-way model to reduce the level 
of misclassification.

A2.5  HIERARCHICAL SYSTEM OF DISCRIMINANT 
MODELS 

We constructed three independent two-way models 
(Part 2, Figure 2) to predict streams as (1) A (Table A9), 
(2) B-or-better model (Table A10), and (3) C-or-better 
model (Table A11). The two-way models estimate prob-
abilities of belonging to the two aggregated classes as-
sociated with each model (i.e., prob(ABC) vs prob(NA) 

for the C-or-better model, prob(AB) vs prob(CNA) for 
the B-or-better model, and prob(A) vs prob(BCNA) for 
the A model). The percentage correct classification of 
the two-way LDMs (linear discriminant models) ranged 
from 90% to 97% (Tables A12–A14). Figure 11 shows 
the distribution of the variables used in the two-way 
LDMs. ANOVA and MANOVA statistics for the model 
variables are presented in Tables A9–A11. Table A15 
provides variable transformations and coefficients used 
to predict the probability of group (aggregated or single 
water quality classes) membership for individual stream 
samples in the two-way models. 

The results of jackknife randomization procedures 
for the completed two-way models, as in the four-way 
model, confirmed the repeatability and accuracy of the 
models to predict a priori water quality classes (Section 
A2.6 and Table A16). This can be seen by inspecting the 
standard errors of the coefficients, usually less than 10% 
of the mean of the coefficient (Table A15). These repeated 
jackknife fits also indicated that the estimation of the 
discriminant functions are not very sensitive to small 
changes in the data set and that both coefficients and 
misclassification do not vary greatly between iterations.

Validation tests of the four-way and two-way models 
also were performed using an independent data set of 34 
sample sites not used in building the models. Results of 
the validation test sites for the four-way model predic-
tions are summarized in Table A17. The prediction of 
the new test data resulted in excellent accuracy (100% 
correct classification) for the class B and NA sites. The 
class A and C predictions were less reliable at 75% and 
71% correct classification, respectively. In most cases 
where the model prediction differed from the biologist 
classifications, examination of the biologists’ sample 
evaluation notes indicated that a site was considered 
borderline between two classes, or at least one biologist 
had assigned the site to the same class that the model 

Table A8.  Jackknife estimates for the four-way linear discriminant model (n=373) using four-fifths of the 
data. Numerical entries represent the percentage of sites classified from a priori classes (row) into 
predicted classes (columns); therefore, diagonals are percentage correct classification. Standard 
error is in parentheses. 

A priori class

Model Predicted Class

Class A Class B Class C NA

Class A 74.6% (8.4) 28.5% (1.8) 0.7% (0.5) 0.0% (0)
Class B 22.3% (3.4) 69.0% (9.2) 9.8% (3.3) 2.3% (1.2)
Class C 1.4% (0.9) 28.9% (4.5) 63.3% (8.9) 5.3%  (1.0)
NA 0.0% (0) 2.1% (0.4) 24.8% (2.4) 75.6% (6.7)
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predicted. The results of validation by the test data set 
indicated that the model predictions are reflective of the 
biologist classification rankings and that the majority 
of incorrect predictions are with borderline cases (i.e., 
adjacent classes).

Plots of predictors in Figures A6, A7, and A8 depict 
the distribution and measure of central tendency (me-
dian). It can be seen that the overlap in distributions of 
each of the predictor variables measured in the sampled 
373 streams is less for predictors with higher levels of 
statistical significance. These plots show the overlap of 
the metrics as they are segregated among the biologist-
assigned classes.

A2.6   VALIDATION AND ROBUSTNESS OF THE 
HIERARCHICAL MODEL

The jackknife procedure was conducted with the 
data set of 373 samples that was randomly divided 
into five similarly sized subsets. Then a new linear dis-
criminant model was estimated using four-fifths of the 

data, leaving one of the subsets out for evaluation by 
the new model as to site membership. This procedure 
was repeated four times leaving a different subset of the 
data out each time. If the model-building data set (entire 
373 samples) was characterized by numerous outliers 
or multimodality, then the expectation was that model 
parameters estimated with differing subsets of the data 
would not be consistent over the iterations and would 
thus produce a poor classification.

The jackknife analysis did not demonstrate a large 
departure in correct classification compared to the 
classification relying upon the entire data set (n=373). 
Class A classification with a jackknife analysis did show 
a very minor decline in correct classification (89.4% vs 
90.0%), whereas B-or-better was almost the same (96.4% 
vs 96.5%) and C-or-better was more accurate (97.0% vs 
96.1%) (Table A16). This suggests that the hierarchical 
models are robust to small random changes in central 
tendency and distribution in the data and smaller sample 
sizes, suggesting that the final model selected should 
hold for the diversity of streams and rivers in Maine. 

Table A9. Univariate analyses of variance (ANOVA) and multiple analysis of variance (MANOVA) for two-way 
Class A vs Class B, C, and NA discriminant model (n=373 sample sites).

ANOVA

Discriminant Variable SS df MS F p-value

sin-1 (Prob(A))0.5 27.8311 1 27.8311 411.3409 <0.0001
Residual error 25.1016 371 0.0677
Relative Plecoptera richness 0.1260 1 0.1260 103.6233 <0.0001
Residual error 0.4511 371 0.0012
Relative EP generic richness 8.3857 1 8.3857 166.5738 <0.0001
Residual error 18.6771 371 0.0503

Class A indicator taxa 5.0102 1 5.0102 214.4091 <0.0001
Residual error 8.6693 371 0.0238
Log (Cheumatopsyche +
Cricotopus + Tanytarsus +
Ablabesmyia abundances)

109.0172 1 109.0172 22.9045 <0.0001

Residual error 1765.8313 371 4.7597

Log (Acroneuria + 
Stenonema abundances)

348.1900 1 348.1900 24.9462 <0.0001

Residual error 5178.2778 371 13.9576

MANOVA

Test Statistic df Test value Asymptotic F p-value

Wilkes Lambda 6, 366 0.3991 91.8426 <0.0001
Pillai Trace 6, 366 0.6001 91.8426 <0.0001
Hotelling-Lawley 6, 366 1.5056 91.8426 <0.0001
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Table A10. Univariate analyses of variance (ANOVA) and multiple analysis of variance (MANOVA) for two-way 
Class B or better vs Class C and NA discriminant model (n=373 sample sites).

ANOVA
Discriminant Variable SS df MS F p-value

sin-1 (Prob(A)+Prob(B))0.5 93.9467 1 93.9467 883.4044 <0.0001
Residual error 39.4544 371 0.1064
Log (Perlidae abundance) 2455.6353 1 2455.6353 214.4809 <0.0001
Residual error 4247.6530 371 11.4492
Log (Tanypodinae abundance) 140.0382 1 140.0382 12.9986 0.0004
Residual error 3996.9028 371 10.7733
Log (Chironomini abundance) 21.9188 1 21.9188 2.1778 0.1093
Residual error 3739.5093 371 10.0795
Relative abundance Ephemeroptera 3.1858 1 3.1858 151.3830 <0.0001
Residual error 7.8076 371 0.0210
EPT generic richness 7017.6934 1 7017.6934 398.4813 <0.0001
Residual error 6533.7168 371 17.6111

Log (Dicrotendipes + Micropsectra + 
Parachironomus +
Helobdella abundances)

388.6129 1 388.6129 25.7369 <0.0001

Residual error 5601.8998 371 15.0995

MANOVA
Test Statistic df Test value Asymptotic F p-value

Wilkes Lambda 7, 365 0.2609 147.7142 <0.0001
Pillai Trace 7, 365 0.7391 147.7142 <0.0001
Hotelling-Lawley 7, 365 2.8329 147.7142 <0.0001

Table A11.  Univariate analyses of variance (ANOVA) and multiple analysis of variance (MANOVA) for two-way 
Class C or better vs Class NA discriminant model (n=373 sample sites).

ANOVA
Discriminant Variable SS  df MS F p-value

sin-1 (Prob(A)+Prob(B) + Prob(C))0.5 73.4040 1 73.4040 1084.3244 <0.0001
Residual error 25.1153 371 0.0677
Log (Cheumatopsyche abundance) 1021.8266 1 1021.8266 75.1594 <0.0001
Residual error 5043.8810 371 13.5954
(EPT richness/Diptera richness)0.5 6.2952 1 6.2952
Residual error 50.43034 371 0.1356
Log (Rel. Oligochaete abundance) 134.4920 1 134.4920 58.6981
Residual error 850.0553 371 2.2913

MANOVA
Test Statistic df Test value Asymptotic F p-value

Wilkes Lambda 4, 368 0.2463 281.5361 <0.0001
Pillai Trace 4, 368 0.7537 281.5361 <0.0001
Hotelling-Lawley 4, 368 3.0602 281.5361 <0.0001
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Figure A6. The distribution of variables within and between biologist-classified streams in the two-way Class A vs B, C, 
and NA linear discriminant model. 
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Table A12.  Classification of stream and river sites by two-way linear discriminant model for the final A classification. 
Numerical entries represent the percentage (number) of sites classified from a priori or biologist classes 
(row) into predicted classes (columns). Therefore, diagonals are percentage correct classification (bold). 

Model Predicted Class

A priori class Class A Classes B,C, OR NA

Class A 90.00% (108) 10.00% (12)
Classes B,C,NA 10.28% (26) 89.72%  (227)

Table A13.  Classification of stream and river sites by two-way linear discriminant model for the final B-or-better model. 
Numerical entries represent the percentage (number) of sites classified from a priori or biologist classes 
(row) into predicted classes (columns). Therefore, diagonals are percentage correct classification (bold). 

Model Predicted Class

A priori class Class B Or Better Classes C, Or Na

Class B or Better 96.57% (225) 3.43% (8)
Classes C,NA 11.43% (16) 88.57% (124)
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Table A14.  Classification of stream and river sites by two-way linear discriminant model for the final C-or-better model. 
Numerical entries represent the percentage (number) of sites classified from a priori or biologist classes 
(row) into predicted classes (columns). Therefore, diagonals are percentage correct classification (bold). 

Model Predicted Class

A priori class Class C Or Better NA

Class C or Better 96.07% (293) 3.93% (12)
NA 14.71% (10) 85.29% (58)

Table A15.  Two-way discriminant model variable transformations and coefficients used to predict the probability 
of class membership for individual stream samples. 

a) Class A model variable transformations and coefficients

Variable number Transformation Class A
Class B-C 

nonattainment

Constant -9.59254 -4.08552
22 Prob(A) first-stage model (pA1) Arcsin 8.34341 1.52080
23 Relative Plecoptera richness (PLECRR23) 3.78999 4.27447
25 Sum abundances (Cheumatopsyche + Cricotopus + 
Tanytarsus + Ablabesmyia) (CCTAAB25)

nLog (value +0.001) 0.53110 0.77851

26 Sum abundances (Acroneuria + Stenonema) (ASAB26) nLog (value +0.001) -0.55838 -0.51448
28 Ratio EP generic richness (EPRATIO28) 12.32529 9.81592
30 Ratio A indicator taxa (AIND30) 6.94828 -0.67475 

b) Class B-or-better model variable transformations and coefficients

Variable number Transformation Class A-B
Class C 

nonattainment

Constant -17.81016 -6.93836
14 Prob(A+B) first-stage model (pA1+pB1) Arcsin 12.04826 3.63707
15 Perlidae mean abundance (FFG) (PERLAB15) nLog (value +0.001) -1.11091 -1.03934
16 Tanypodinae mean abundance (FFG) (TANYAB16) nLog (value +0.001) -0.10582 0.01978
17 Chironomini mean abundance (FFG) (CHIMINI17) nLog (value +0.001) 0.17813 0.10825
18 Relative Ephemeroptera abundance (EPHRA18) 4.03202 -1.14508
19 EPT richness (EPTR19) 0.87400 0.63310
21 Sum abundance (Dicrotendipes + Micropsectra + 
Parachironomus + Helobdella) (DMPHAB21)

nLog (value +0.001) -0.69360 -0.53194

c) Class C-or-better model variable transformations and coefficients

Variable number Transformation Class A-B-C Nonattainment

Constant -25.70020 -8.55844
10 Prob(A+B+C) first-stage model (pA1+pB1+pC1) Arcsin 19.98470 3.36032
11 Cheumatopsyche mean abundance (CHEUMAB11) nLog (value +0.001) -0.26001 -0.43781
12 Ratio EPT-Diptera (EPT/DIPT12) Sq. root 5.57672 5.92732
13 Rel. Oligochaete abundance (OLIGRA13) nLog (value +0.001) -2.33229 -1.89945
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A small data set of 34 new streams was indepen-
dently validated with the final first-stage model after 
it was parameterized. Table A17 shows that the final 
first-stage model accurately predicts the Class B streams 
and the nonattainment streams even better than with 
the original model-building data set (class B: 100% vs 
69.0%, and NA: 100% vs 72.1%). The Class A and Class 
C streams are correctly classified with moderate success, 
75% and 71%. This can be compared to a 25% correct 
classification by random chance. Though lower than for 
class B and NA, both the prediction for class A streams 
and for class C streams are close to the predictions of 
the model on the full data set (n=373) class A: 75% vs 

72.5% and class C: 71% vs 65.3%. Therefore, the inde-
pendent validation performed at least as well as the 
original model building data.

Table A16.  Jackknife estimates using four-fifths of the data for the Phase II (373 sample) two-way linear 
discriminant model for the A classification (a), the B-or-better classification (b), and the C-or-
better classification (b). Numerical entries represent the percentage of sites classified from a priori 
biologist classes (row) into predicted classes (columns), therefore, diagonals are percentge correct 
classification (bold). Standard error is in parentheses. 

a) Model Predicted Class

A Priori Biologist Class Class A Classes B,C, Or NA

Class A 89.4% (7.2) 8.2% (1.1)
Classes B,C, NA 8.6% (0.6) 91.4% (7.3)

b) Model Predicted Class

A Priori Biologist Class Class B Or Better Classes C, Or NA

Class B or Better 96.4% (8.6) 5.5% (0.4)
Classes C,NA 6.7% (0.9) 92.3% (12.3)

c) Model Predicted Class

A Priori Biologist Class Class C Or Better  NA

Class C or Better 97.0% (8.5) 2.9% (0.4)
NA 12.2% (2.6) 86.7% (12.0)

Table A17.  Validation data set: percentage correct four-way model predictions of classification for an independent 
34-sample set (A: n=16; B: n=8; C: C=7; NA: n=3). Diagonals in table are correct classification 
percentages (bold). 

Model Predicted Class

A Priori Biologist Class A B C NA

A 75% 19% 6% 0%

B 0% 100% 0% 0%

C 0% 29% 71% 0%
NA 0% 0% 0% 100%
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Figure A7. The distribution of variables within and between biologist-classified streams in the two-way Class B-or-better vs 
C, and NA linear discriminant model. 
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Figure A8. The distribution of variables within and between biologist-classified streams in the two-way Class C-or-better vs 
NA linear discriminant model. 
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APPENDIX 3. PROCESS AND CRITERIA FOR THE ASSIGNMENT OF 
BIOLOGISTS’ CLASSIFICATION

The biologists who initiated the process for a priori 
assignment of streams into water quality classes had 
training in aquatic entomology and were familiar with 
the macroinvertebrate communities in Maine. Their 
expertise and experience is summarized below.

Raters’ profile at the time of the original a priori 
assignment (1992)

David Courtemanch

• MS in aquatic entomology; PhD in environ-
mental science; employed as a biologist in the 
Division of Environmental Assessment (DEA) 
in the MDEP for 16 years; currently director, 
Division of Environmental Assessment.

Susan Davies

• MS aquatic entomology; employed as a biolo-
gist in the River and Stream Section of DEA 
for nine years, coordinating the Biological 
Monitoring Program.

Leon Tsomides

• MS aquatic entomology; employed as a biolo-
gist in the River and Stream Section of DEA 
for three years, working with the Biological 
Monitoring Program.

Ranking Process
Each biologist independently reviewed biologi-

cal information for each sampling event (Table A18) 
including identities and abundances of taxa occurring 
in the biological sample and computed index values 
for the biological data (e.g., total abundance, diversity, 
richness, and EPT). Selected natural factors that could 
have an effect on biotic potential were also reviewed 
including water depth, velocity, substrate composition, 
and canopy cover in order to evaluate the effects of vari-
ous natural habitat conditions on the structure of the 
macroinvertebrate community. Sample information was 
reviewed for the values of the given measures, relative 
to values for other samples in the data set. The actual 
classification assignment was determined by how closely 
the biological information conformed to the narrative 
aquatic life classification standards and definitions, 

correcting for habitat effects. Numerical ranges, per se, 
were not established, a priori, for each measure. Instead, 
the information was reviewed for its compatibility with 
the mosaic of findings expected for each class, listed 
in the decision rules (Part 2, Table 6). The biologists 
did not have any knowledge of the actual location of 
the sampled sites, nor did they have knowledge of any 
information about pollution or human disturbance influ-
ences. Following the independent assignment of classes 
the biologists established a consensus classification by 
discussing justifications for each biologist’s assignment 
(Bakus et al. 1982). 

Biologist’s Classification Criteria
Each biologist reviewed the sample data shown in 

Table A18 for the values of a list of measures of commu-
nity structure and function. Expected metric response 
trajectories used by biologists to evaluate each measure 
are listed in Part 2, Table 4.
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Table A18.  Community structure and function parameters reviewed by biologists. 

Community structure and function parameters

Total Abundance of Individuals
Total Abundance of Ephemeroptera
Total Abundance of Plecoptera
Abundance of Ephemeroptera/Total Abundance
Abundance of Plecoptera/Total Abundance
Abundance of Hydropsychidae/Total Abundance
Abundance of Ephemeroptera+Plecoptera/Total Abundance
Abundance of Glossosoma/Total Abundance
Abundance of Brachycentrus/Total Abundance
Abundance of Oligochaetes/Total Abundance
Abundance of Hirudinea/Total Abundance
Abundance of Gastropoda/Total Abundance
Abundance of Chironomidae/Total Abundance
Abundance Conchapelopia+Thiennemannymia/Total Abundance
Abundance of Tribelos/Total Abundance
Abundance of Chironomus/Total Abundance
Generic Richness
Ephemeroptera Richness
Plecoptera Richness
EPT Richness
Ephemeroptera Richness/Generic Richness
Plecoptera Richness/Generic Richness
Diptera Richness/Generic Richness
Ephemeroptera+Plecoptera Richness/Generic Richness
EPT Richness/Diptera Richness
Non-EPT or Chironomidae Richness/Generic Richness
Percentage Predators
%Collector Filterers+Gatherers/%Predators+Shredders
Number of Functional Feeding Groups Represented
Shannon-Weiner Generic Diversity
Hilsenhoff Biotic Index

In addition, in cases where a valid clean-water upstream reference station existed, the following 
comparative index data were also reviewed:

Jaccard Taxonomic Similarity
Taxonomic Similarity Of Dominant Taxa
Coefficient Of Community Loss
Percentage Similarity
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APPENDIX 4. METHODS FOR THE CALCULATION OF INDICES AND 
MEASURES OF COMMUNITY STRUCTURE USED IN THE LINEAR 
DISCRIMINANT MODELS

Many of the taxa counts were used to derive com-
plex variables (bioassessment metrics) representing 
higher-order ecological measures. These variables were 
only calculated from samples that were considered 
“complete”—i.e. where all counts were entered and 
verified using quality assurance (QA) protocols. The 
following procedures explicitly outline the methods for 
assembling the raw taxa data for statistical analysis.

A4.1  ASSEMBLING AND COLLAPSING TAXA 
COUNTS

Maine DEP taxonomists recorded counts for each 
taxon observed in each subsampled replicate. Stored 
within the database, these counts reference both the 
sample replicate within which they are identified and 
information about the taxon they represent. Each taxon 
within the database is associated with a unique 2- to 
14-digit phylogenetic code that indicates its taxonomic 
level and assignation within the phylogenetic hierarchy. 
Two or three digit pairings within the code represent dif-
ferent portions of the taxon’s phylogeny: digits one and 
two identify phylum; three and four identify class; five 
and six identify order; seven and eight identify family; 
nine, ten, and eleven identify genus; and eleven, twelve, 
and thirteen identify species. As such, a code of only 
two digits would be associated with a taxon at the phyla 
level, while a code of 14 digits would be associated with 
a species-level taxon. In addition, corollary information 
such as functional feeding preferences, tolerance values, 
and threatened or endangered status is stored for each 
taxon. Taxa are assigned a phylogenetic code number 
as shown in the following example:

In order to assemble the counts from the replicates 
and compensate for differences in subsampling, a mean 
count value is calculated for each taxon from the replicate 
counts and is then multiplied by the sample factor. So, 
for example, if a subsampling calls for sorting through 
only one-quarter of the sample, then after all taxonomic 
identification takes place, a mean count is calculated by 
multiplying the subsampled taxon count by the sample 
factor of four. Although pupae are recorded in the course 
of taxonomic identification, they are not used in the 
calculation of metrics and are therefore excluded from 
these processes.

Macroinvertebrate organisms are identified to 
genus whenever possible. If generic keys are not avail-
able or taxonomic expertise is lacking for a taxon, the 
macroinvertebrates should be identified to the lowest 
taxonomic level possible. Identification of organisms 
to species is highly recommended whenever possible, 
as these identifications are useful in the final stage of 
data analysis, the professional judgment evaluation of 
the model outcome. 

To compensate for different degrees of resolution in 
taxonomic identification, all taxon counts are adjusted 
to the generic level. As such, species-level identifications 
and counts are aggregated to the generic level. Samples 
with family-level identifications are evaluated to deter-
mine if any genera (either as genus-level identifications 
or as generic components of species-level identifications) 
for these families exist in the sample. If one or fewer 
genera are identified within a family, the family-level 
identification maintains its count and is included in 
generic richness counts. For family-level identifications 

code: 09 02 02 05 023 061 
phylum class order family genus  species subspecies
Arthropoda-  Insecta Plecoptera Pteronarcyidae Pteronarcys  biloba --
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where more than one genus is identified, the counts 
for that identification are proportionally distributed 
among the genera:

Where:

PC = Partitioned count component

FC = Count associated with family-level 
identification

GC = Count associated with genus-level identifica-
tion or 

Generic component of species-level identification 
within family

∑GC
 

= Sum of counts for genera within family

Family-level identifications where more than one 
genus is identified are not included in generic richness 
counts. Order-, class- and phylum-level identifications 
are only included in generic richness counts if they are 
the only representative. Counts at these taxonomic levels 
are not partitioned among lower-level identifications.

A4.2  CALCULATION OF INDICES AND MEASURES 
OF COMMUNITY STRUCTURE

The metrics that follow are calculated after the 
counts have been assembled and adjusted to genus. 
As such, all generic-richness counts follow the rules of 
recognition, as summarized in A4.3. Indices calculated 
on subsets of the macroinvertebrate community are 
identified by both name and by the portion of the phy-
logenetic code associated with that name. The numerical 
index indicates the location of the metric value within 
the database’s sample summary table (SAMPLE_REF). 

These variables include measures of both absolute 
(raw counts) and relative (percentage based) abundance 
and richness of the community as a whole and on sub-
sets based on groupings of taxonomic level, as well as 
other commonly used measures of community composi-
tion and health (Shannon-Weaver diversity index and 
Hilsenhoff’s index of biotic integrity). 

A4.3  METRICS REQUIRED AS MODEL INPUTS FOR 
STREAMS AND RIVERS

MDEP currently calculates 23 quantitative variables 
that summarize and describe the composition (iden-
tity and abundance) of the benthic macroinvertebrate 

community found in rivers or streams. Indices 1 through 
30 are used as inputs to MDEP’s linear discriminant 
model developed to classify the legislative use attain-
ment status of streams and rivers. In 1998 MDEP 
recalibrated their model (phase II, n=373 samples) and 
eliminated two poorly performing variables (the relative 
abundance of Brachycentrus individuals and the pres-
ence of Class A indicator taxa in the top five dominant 
taxa). To avoid confusion, the numbers used in earlier 
reports to reference these metrics, as well as those used 
to reference the probabilities generated by the models, 
have been retired (phase I models, n=145 samples).  

A.  Methods for the calculation of indices and 
measures used in the linear discriminant 
models variables (1) to (30) are as follows.

1. Total mean abundance (TOTAB1). Count all 
individuals in all replicate samplers from a site 
and divide by the number of replicates to yield 
the mean number of individuals per sampler.

2. Generic richness (GENRICH2). Count the 
number of different genera found in all repli-
cate samplers from one site. Counting rules for 
generic richness:
a. Species-level counts. All population counts 

at the species level are aggregated to the 
generic level.

b. Family-level counts, no more than one 
genus. A family-level identification that 
includes no more than one taxon identified 
to the generic level is counted as a separate 
taxon in generic richness counts.

c. Family-level counts, more than one genus. 
A family-level identification with more 
than one taxon identified to generic level 
is not counted toward generic richness. 
Counts are divided proportionately among 
the genera that are present.

d. Phylum, Class, or Order counts. A higher-
level taxonomic identification (Phylum, 
Class, Order) is not counted toward 
generic richness unless it is the only 
representative.

e. Pupae. Pupae are ignored in all calculations.

3. Plecoptera mean abundance (PLECAB3). Count 
all individuals from the order Plecoptera in all 
replicate samplers from one site and divide by 
the number of replicates to yield mean number 
of plecopteran individuals per sampler.

PC = FC *
 GC
 ∑GC
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4. Ephemeroptera mean abundance (EPHAB4). 
Count all individuals from the order 
Ephemeroptera in all replicate samplers from 
one site and divide by the number of replicates 
to yield the mean number of ephemeropteran 
individuals per sampler. 

5. ShannonWiener generic diversity (SWDI5). 
Shannon-Wiener generic diversity is computed 
after adjusting all counts to genus, as described 
under variable 2.

where:

 d = ShannonWiener Diversity

 c = 3.321928 (converts base 10 log to base 2)

 N = Total abundance of individuals

 ni = Total abundance of individuals in the ith 

taxon

6. Hilsenhoff Biotic Index (HBI6). HBI is calcu-
lated using all taxa in the sample that have 
assigned tolerance values. Tolerance values are 
provided in Hilsenhoff (1987). 

Where: 

 HBI = Hilsenhoff Biotic Index

 Ni = number of individuals in the ith taxon

 aI = tolerance value assigned to that taxon

 N = total number of individuals in sample with 
tolerance values

7. Relative Chironomidae abundance (CHIRA7). 
Calculate the mean number of individuals of 
the family Chironomidae, following the count-
ing rules in variable 4 and divide by total abun-
dance (variable 1). 

8. Relative Diptera richness (DIPTRR8). Count 
the number of genera of the Order Diptera, fol-
lowing counting rules in variable 2 and divide 
by generic richness (variable 2).

9. Hydropsyche abundance (HYDRAB9). Count all 
the individuals from the genus Hydropsyche in 
all replicate samplers from a site and divide by 

the number of replicates to yield mean number 
of Hydropsyche individuals per sampler.

10. Probability (A+B+C) from first-stage model 
(pA1+pB1+PC1). The sum of probabilities for 
Classes A, B, and C from first-stage model.

11.  Cheumatopsyche abundance (CHEUMAB11). 
Count all individuals from the genus 
Cheumatopsyche in all replicate samplers from 
one site and divide by the number of replicates 
to yield mean number of Cheumatopsyche indi-
viduals per sampler.

12. EPT-Diptera richness ratio (EPT/DIPT12). 
Divide EPT generic richness (Variable 19) by 
the number of genera from the order Diptera, 
following counting rules in variable 2. If the 
number of genera of Diptera in the sample is 0, 
a value of 1 is assigned to the denominator.

13. Relative Oligochaeta abundance (OLIGRA13). 
Calculate the mean number of individuals of 
the class Oligochaeta, following counting rules 
in variable 4, and divide by total abundance 
(variable 1). 

14. Probability (A+B) from first-stage model 
(pA1+pB1). The sum of probabilities for Classes 
A and B from first stage model.

15. Perlidae mean abundance (PERLAB15). Count 
all individuals from the family Perlidae A4.3C 
Family functional groups in all replicate sam-
plers from one site and divide by the number of 
replicates to yield mean number of Perlidae per 
sampler.

16. Tanypodinae mean abundance (TANYAB16). 
Count all individuals from the subfamily 
Tanypodinae A4.3C Family functional groups in 
all replicate samplers from one site and divide 
by the number of replicates to yield mean num-
ber of Tanypodinae per sampler.

17. Chironomini mean abundance (CHIMINI17). 
Count all individuals from the tribe 
Chironomini (A4.3C Family functional groups) 
in all replicate samplers from one site and di-
vide by the number of replicates to yield mean 
number of Chironomini per sampler.

18. Relative Ephemeroptera abundance 
(EPHRA18). Variable 4 divided by variable 1.

19. EPT generic richness (EPTR19). Count the 
number of different genera from the or-
der Ephemeroptera (E), Plecoptera (P), and 

d = (N log 10 – ∑ni log10 ni)
c
N

HBI = ∑ niai

N
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Trichoptera (T) in all replicate samplers, ac-
cording to counting rules in variable 2, generic 
richness.

20. Variable reserved.

21. Sum of mean abundance of Dicrotendipes and 
Micropsectra and Parachironomus and Helobdella 
(DMPHAB21). Sum the abundance of the four 
genera and divide by the number of replicates 
(as performed in variable 4).

22. Probability of Class A from first-stage model 
(pA1). 

23. Relative Plecoptera richness (PLECRR23). 
Count number of genera of Order Plecoptera, 
following counting rules in variable 2, and 
divide by generic richness (variable 2).

24. Variable reserved.

25. Sum of mean abundance of Cheumatopsyche 
and Cricotopus and Tanytarsus and Ablabesmyia 
(CCTAAB25). Sum the number of individuals in 
each genus in all replicate samplers and divide 
by the number of replicates (as performed in 
variable 4).

26. Sum of mean abundance of Acroneuria and 
Stenonema (ASAB26). Sum the number of indi-
viduals in each genus in all replicate samplers 
and divide by the number of replicates (as in 
variable 4). 

27. Variable reserved.

28. Ratio of EP generic richness (EPRATIO28). 
Count the number of different genera from the 
Orders Ephemeroptera (E), and Plecoptera (P) 
in all replicate samplers, following counting 
rules in variable 2, and divide by 14 (maximum 
expected for Class A).

29. Variable reserved.

30. Ratio of Class A indicator taxa (AIND30). 
Count the number of Class A indicator taxa as 
listed in A4.3B Indicator taxa for Class A that 
are present in the community and divide by 7 
(total possible number).

B. Indicator taxa for Class A
Brachycentrus (Trichoptera: Brachycentridae)
Serratella (Ephemeroptera: Ephemerellidae)
Leucrocuta (Ephemeroptera: Heptageniidae)
Glossosoma (Trichoptera: Glossosomatidae)
Paragnetina (Plecoptera: Perlidae)
Eurylophella (Ephemeroptera: Ephemerellidae)
Psilotreta (Trichoptera: Odontoceridae)

C. Family functional groups
PLECOPTERA
 Perlidae
 Acroneuria Agnetina 
 Attaneuria Beloneuria
 Eccoptura Neoperla
 Paragnetina Perlesta
 Perlinella 

CHIRONOMIDAE
 Tanypodinae
 Ablabesmyia Clinotanypus 
 Coelotanypus Conchapelopia 
 Djalmabatista Guttipelopia 
 Hudsonimyia Labrundinia  
 Larsia Meropelopia  
 Natarsia Nilotanypus  
 Paramerina Pentaneura  
 Procladius Psectrotanypus 
 Rheopelopia Tanypus   
 Telopelopia Thienemannimyia 
 Trissopelopia Zavrelimyia  
 Pseudochironomus 
 Chironomini
 Axarus   Xenochironomus
 Chironomus Cladopelma  
 Cryptochironomus Cryptotendipes 
 Demicryptochironomus Dicrotendipes 
 Einfeldia Endochironomus 
 Glyptotendipes Goeldichironomus
 Harnischia Kiefferulus  
 Lauterborniella Microchironomus 
 Microtendipes Nilothauma  
 Pagastiella Parachironomus 
 Paracladopelma Paralauterborniella
 Paratendipes Phaenopsectra 
 Polypedilum Robackia  
 Stelechomyia Stenochironomus 
 Stictochironomus Tribelos  
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APPENDIX 5. PREDICTIVE HIERARCHICAL MODEL STRUCTURE

Computer calculates model variables (Var1 – Var30) using 
taxa counts from a sample event. Procedures are described 
in Appendix I.

FIRST STAGE LINEAR DISCRIMINANT MODEL (LDM)
(4-way model: A vs. B vs. C vs. NA)

1. Model calculates Discriminant Score using Var1 – Var9.
2.  Model uses Discriminant Score to calculate probabilities.

Example Results:
probability Class A (pA1)  = 0.27
probability Class B (pB1)  = 0.70
probability Class C (pC1)  = 0.03
probability Non-Attainment (pNA1)  = 0.00

1 & 2 Computational algorithms and definitions of terms are found in rule: State of Maine 2003;  
http://www.maine.gov/sos/cec/rules/06/096/096c579.doc

SECOND STAGE LDM
(2-way model: C or better vs. NA)

1.  Model calculates Discriminant Score1 
using Var10 (pAl + pB1 + pC1) and 
Var11–Var13. 

2.  Model uses Discriminant Score to 
ca1culate probabilities.2

 Example Results:
 probability C or better (pABC) = 1.00 
 probability NA (pNA) = 0.00

SECOND STAGE LDM
(2-way model: B or better vs. C, NA)

1.  Model calculates Discriminant Score1 
using Var14 (pAl+pB1) and Var15–
Var21.

2.  Model uses Discriminant Score to 
ca1culate probabilities.2

 Example Results:
 probability B or better (pAB) = 1.00
 probability C or NA (pCNA) = 0.00

SECOND STAGE LDM
(2-way model: A vs. B, C, or NA)

1.  Model calculates Discriminant Score1 
using Var22 (pAI) and Var23–Var30.

 Model uses Discriminant Score to 
calculate probabilities.2

 Example Results:
 probability A (pA) = 0.07
 probability B, C, or NA (pBCNA) = 0.93
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Is the sample appropriate for LDM?

 Yes No

  BPJ (Appendix 3)

Is the sample Class C or better?

 pABC ≥ 0.6 0.4 ≤ pABC < 0.6 pABC < 0.4

 At least C At least C Indeterminate NA NA

Is the sample Class B or better?

 pAB ≥ 0.6 0.4 ≤ pAB < 0.6 pAB < 0.4

 At least B At least B Indeterminate C C

 Is the sample Class A?

 pA ≥ 0.6 0.4 ≤ pA < 0.6 pA < 0.4

 A A Indeterminate B B

APPENDIX 6. PROCESS FOR DETERMINING CLASS ATTAINMENT USING 
PROBABILITIES
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APPENDIX 7. RULES FOR USE OF PROFESSIONAL JUDGMENT
Maine Department of Environmental Protection Biological Monitoring Program

Use of professional judgment in the final determination of classification attainment

 Note: The following is an excerpted adaptation of the procedures and definitions of terms described in the 
MDEP Biocriteria rule, State of Maine 2003, which constitutes the official and complete MDEP Biocriteria 
Rule; http://www.maine.gov/sos/cec/rules/06/096/096c579.doc 

Professional judgment. Where there is documented evidence of conditions that could result in 
uncharacteristic findings, allowances may be made to account for those situations by adjusting the clas-
sification attainment decision through use of professional judgment, as provided in this section, para-
graphs 1 to 3. The department may make adjustments to the classification attainment decision based 
on analytical, biological and habitat information or may require that additional monitoring of affected 
waters be conducted prior to issuing a classification attainment decision.

(1)  Sampling procedures and minimum provisions conform but other confounding factors exist. 
When samples of test communities conform to criteria provided in “Methods for Biological Sam-
pling and Analysis of Maine’s Rivers and Streams” (Davies and Tsomides 1997 revised 2002; 
MDEP 2014) they are suitable to be analyzed by the linear discriminant models for classifica-
tion attainment evaluation. These models are not suitable for use in areas of impoundments that 
thermally stratify or in areas where there is a net annual deposition of fine sediment. Professional 
judgment may be utilized when conditions are found that are atypical to the derivation of the lin-
ear discriminant model that is described in the MDEP Biocriteria rule Section 3(B-F). Factors that 
may allow adjustments to the model outcome include but are not limited to: habitat factors, in-
cluding lake outlets from waters classified GPA, unusual naturally-caused substrate character, tidal 
effects, cataclysmic events, oligotrophic conditions; sampling factors, including disturbed samples, 
unusual taxa assemblages, and documented human error in sampling; and sample processing fac-
tors, including subsample vs. whole sample analysis and documented human error in processing. 
The following adjustments may be made to correct for these conditions:

Raise the finding. On the basis of documented evidence of specific conditions such as those defined 
above, the department may decide: 

(i)  To raise the classification attainment outcome predicted by the model from nonattainment of any 
class to indeterminate or to attainment of Class C; or

(ii)  To raise the classification attainment outcome predicted by the model from attainment in one 
class to attainment in the next higher class; or

(iii)  To determine that a sample with an indeterminate outcome for a given class attains that class.
(b)  Lower the finding. On the basis of documented, substantive evidence that the narrative 

aquatic life criteria for the assigned class are not met, the department may decide to lower 
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the classification attainment finding. 
(c)  Indeterminate. Where the department cannot make a finding as described in (a) or (b), ad-

ditional monitoring of the test community may be required before a determination of class 
attainment can be made. 

(2) Minimum provisions do not conform. For classification evaluation of test communities that do not 
conform to criteria provided in described in MDEP Biocriteria rule Section 3(A), minimum provi-
sions, professional judgment maybe used as follows:
(a) Determination of non-attainment. Those samples having any of the ecological attributes not 

attaining the minimum provisions (described in rule Section 3(A)), and where there is no 
evidence of confounding factors that could result in uncharacteristic findings as defined in 
(1) above, must be determined to be in non-attainment of the minimum provisions of the 
aquatic life criteria for any class.

(b)  Determination of attainment when minimum provisions are not met. Where there is evi-
dence of factors that could result in minimum provisions not being met, professional judg-
ment may be used to make a professional finding of attainment of the aquatic life criteria for 
any class. Such decisions will be provisional until appropriate resampling is carried out.

(3)  Standard sampling procedures are not feasible or appropriate. For classification attainment evalu-
ation of test communities that do not conform to criteria provided in “Methods for Biological Sam-
pling and Analysis of Maine’s Rivers and Streams” (Davies and Tsomides 2002), the department 
may make an assessment of classification attainment or aquatic life impact in accordance with the 
following procedures:
(a)  Approved assessment plan. A quantitative sampling and data analysis plan must be devel-

oped in accordance with methods established in the scientific literature on water pollution 
biology, and the department must approve the plan.

(b)  Determination of sampling methods. Sampling methods are determined on a site-specific 
basis, based on habitat conditions of the sampling site, and the season sampled;
(i)  The preferred method for sampling hard-bottomed substrates is the rock basket/cone/

bag method as described in Davies and Tsomides (2002). 
(ii)  Soft-bottomed substrates will, whenever ecologically appropriate and practical, be 

sampled by core or dredge of known dimension.
(c)  Other methods. Other methods may be used where ecologically appropriate and practical.
(d)  Classification attainment decisions. Classification attainment decisions may be based on a 

determination of the degree to which the sampled site conforms to the narrative aquatic 
life classification criteria provided in statutory standards for water quality classification. 
The decision is based on established principles of water pollution biology and must be fully 
documented.

(e)  Site specific impact decisions. Site-specific impact decisions may rely on established meth-
ods of analysis of comparative data between a test community and an approved reference 
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community.
(f)  Determination of detrimental impact. A determination of detrimental impact to aquatic life 

of a test community without an approved reference community may be made if it can be 
documented, based on established methods of the interpretation of macroinvertebrate data, 
and based on established principles of water pollution biology, that the community fails 
to demonstrate the ecological attributes of its designated class as defined by the narrative 
aquatic life standards in the water quality classification law.

4.  Determination of decision results. A waterbody’s attainment class is determined by following the 
process described below, and as shown in Appendices 4 and 5.
A.  Assess data appropriateness and minimum requirements. The first step is to determine if the 

sample meets minimum requirements (MDEP Biocriteria rule Section 3(A)) and is appropriate 
to run through the LDM. If the minimum provisions or sampling procedures are not appropri-
ate, then professional judgment may be used to determine the appropriate course of action 
(Sections (2) and (3) above). 

B.  Determine if sample attains at least Class C. The second step is to use the association value 
from the “C or better” LDM (pABC) to determine if the sample meets at least Class C or is in 
nonattainment of minimum aquatic life criteria. If the association value is equal to or greater 
than 0.6, the sample attains Class C. If the association value is less than 0.4, the sample does 
not attain Class C and is determined to be in nonattainment of any classification. If the associa-
tion value (pABC) is greater than 0.4 and less than 0.6, then professional judgment is used to 
determine if the sample is (1) Class C, (2) in nonattainment, or (3) indeterminate of Class C 
(see Section (1) above).

C.  Determine if the sample attains at least Class B. For those samples that attain at least Class C, 
the next step is to use the association value from the “B or better” LDM (pAB) to determine 
if the sample is (1) at least Class B with an association value equal to or greater than 0.6, (2) 
Class C with an association value less than 0.4, or (3) indeterminate of Class B with an associa-
tion value greater than 0.4 and less than 0.6 (Section (1) above). 

D.  Determine if the sample attains Class A. For those samples that are at least Class B, the final 
step is to use the association value from the “A” LDM (pA) to determine if the sample is: 
(1)  Class A with an association value equal to or greater than 0.6, 
(2)  Class B with an association value less than 0.4, or
(3) Indeterminate of Class A with an association value greater than 0.4 and less than 0.6 (Sec-

tion (1) above).
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APPENDIX 8. AQUATIC LIFE CLASSIFICATION ATTAINMENT REPORT

Station Number: S-74
Waterbody: 
Town: 
Directions:

Sheepscot River - Station 74 
Whitefield
ABOVE RT. 126 BRIDGE AT USGS 
GAGE

Log Number: 2252 Date Deployed: 7/8/2014 
Date Retrieved: 8/5/2014

Type of Sample: ROCK BASKET 
Replicates: 3

Statutory Class: AA
A

Final Determination: A 
Reason for Determination: Model 
Comments: 

Sample Information

Classification Attainment

Model Probabilities

Model Variables

Class A 0.75
Class B or C or Non-Attainment 0.25

1.00
0.00

1.00
0.00

Class A 0.28 
Class B 0.68

Class C 0.04
NA 0.00

B or Better Model 
Class A or B
Class C or Non-Attainment

A Model

921.33
31.00

9.33
85.33

2.75
3.96
0.18
0.19

09 218.62
11 2.70

3.67

9.33

0.00

9.33

0.09
22.00

0.06
2.70

26 Sum of Abundances: 12.13

0.71
0.43

Cricotopus, Tanytarsus, Ablabesmyia
Acroneuria, 

0.00
Five Most Dominant Taxa

Model Result with P≥0.6: 
Date Last Calculated: 11/6/2014

Date: 11/6/2014

River Basin: Maine Coastal HUC8 
Name: St. George-Sheepscot 
Latitude: 44 13 23.47 N Longitude: 
69 35 36.03 W Stream Order: 4

0.00

Subsample Factor: X4

18 Relative Abundance Ephemeroptera
19 EPT Generic Richness
21 Sum of Abundances: Dicrotendipes,

Micropsectra, Parachironomus, Helobdella 
23 Relative Generic Richness- Plecoptera
25 Sum of Abundances: Cheumatopsyche,

Total Mean Abundance
Generic Richness
Plecoptera Mean Abundance 
Ephemeroptera Mean Abundance 
Shannon-Wiener Generic Diversity 
Hilsenhoff Biotic Index
Relative Abundance - Chironomidae 
Relative Generic Richness Diptera 
Hydropsyche Abundance 
Cheumatopsyche Abundance
EPT Generic Richness/ Diptera 
Generic Richness
Relative Abundance - Oligochaeta 
Perlidae Mean Abundance 
(Family Functional Group) 
Tanypodinae Mean Abundance 
(Family Functional Group) 
Chironomini Abundance (Family 
Functional Group)

Station Information

01
02
03
04
05
06
07
08

12

13
15

16

17

First Stage Model C or Better Model 
Class A, B, or C
Non-Attainment

Maine Department of Environmental Protection 
Biological Monitoring Program

Aquatic Life Classification Attainment Report

Maccaffertium, Stenonema
28 EP Generic Richness/14
30 Presence of Class A Indicator Taxa/7

Rank Taxon Name Percent
Simulium 41.391
Hydropsyche 23.732
Rheotanytarsus 10.713
Tvetenia 5.504
Baetis 3.595

Report Printed: 11/6/2014 Page 1Contact: biome@maine.gov or (207)287-3901
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Town: Whitefield
Waterbody: Sheepscot River - Station 74

Station Number: S-74 
Log Number: 2252

Date Deployed: 7/8/2014 
Date Retrieved: 8/5/2014

Sample Collection and Processing Information

Waterbody Information - Deployment Waterbody Information - Retrieval

Sampling Organization: 
Taxonomist:

Sample Comments

Summary of Habitat Characteristics

Maine Department of Environmental Protection 
Biological Monitoring Program

Aquatic Life Classification Attainment Report

Terrain

Landcover Summary - 2004 Data

Water Chemistry - 8/5/2014

55 %
10 %

Substrate 
Boulder 
Gravel 
Rubble/Cobble 35 %

32
32

100

6.89

22.4
7.9

Temperature: 
Dissolved Oxygen: 
Specific Conductance: 
Velocity:
pH:
Wetted Width: 
Bankfull Width: 
Depth:

41

m
m
cm

deg C
mg/l
uS/cm

30
32
55

6.36

22.8

76

7.9
Temperature: 
Dissolved Oxygen: 
Specific Conductance: 
Velocity:
pH:
Wetted Width: 
Bankfull Width: 
Depth:

47

m
m
cm

deg C

cm/s

mg/l
uS/cm

BIOMONITORING UNIT 
MICHAEL WINNELL

7/8/14--WATER LEVEL IS AS HIGH AS LEON HAS EVER SEEN IT. QUESTIONABLE 
VELOCITY METER READING.

Canopy Cover 
Open

Landuse Name 
Cultivated Pasture
Swamp Hardwood 
Upland Hardwood
Potential Stressor 
Agricultural Runoff Location

Above Road Crossing 
Main Stem

Rolling

0.01 mg/l 0.02 mg/l
12 ug/l 0.3 mg/l
<2 mg/l 5 mg/l

Ammonia As Nitrogen 
Total Phosphorus Total 
Suspended Solids Total 
Dissolved Solids 52 mg/l

Nitrate+nitrite As N
Total Kjeldahl Nitrogen 
Dissolved Organic Carbon 
Orthophosphate As Phosphorus 2 ug/l

Total Area (ac) 89648 Water % 4.2

3.7

0.4
3.1

2.3
High Int. Dev. 

%Med Int. Dev. 
%Low Int. Dev. 
%Development 

%

0.2

Upland Woody % 76.1
Wetland % 8.7

0.3

11.8Natural % 84.0 Human Altered %
Impervious % 3.0

Non-vegetated %
Tilled Agriculture %

Grassland % 4.7

Report Printed: 11/6/2014 Page 2Contact: biome@maine.gov or (207)287-3901
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Taxon

Maine
Taxonomic
Code

Functional 
Feeding 
Group

Hilsenhoff
Biotic 
Index 

Count
(Mean of Samplers) 

Actual Adjusted

Relative
Abundance

Actual Adjusted

Maine Department of Environmental Protection 
Biological Monitoring Program

Aquatic Life Taxonomic Inventory Report
Waterbody: Sheepscot River - Station 74Station Number: S-74 

Log Number: 2252 Replicates: 3
Town: Whitefield 

Calculated: 11/6/2014Subsample Factor: X4

Acroneuria 0 PR2.67 8.00 0.3 0.9
Acroneuria abnormis 0 PR5.33 0.6
Perlesta 5 PR1.33 1.33 0.1 0.1
Boyeria 2 PR1.33 0.1
Boyeria vinosa --1.33 0.1
Baetidae --2.67 0.3
Baetis 4 CG4.00 33.12 0.4 3.6
Baetis flavistriga --1.33 0.1
Baetis intercalaris --18.67 2.0
Baetis pluto --6.67 0.7
Heterocloeon 2 SC2.67 2.88 0.3 0.3
Heptageniidae --1.33 0.1
Epeorus 0 SC21.33 28.93 2.3 3.1
Epeorus vitreus --6.67 0.7
Leucrocuta 1 SC8.00 8.27 0.9 0.9
Maccaffertium 4 SC4.00 4.13 0.4 0.4
Isonychia 2 CF2.67 2.67 0.3 0.3
Ephemerellidae --2.67 2.67 0.3 0.3
Serratella 2 CG2.67 0.3
Serratella serratoides --2.67 0.3
Chimarra 2 CF18.67 32.00 2.0 3.5
Chimarra obscura --9.33 1.0
Chimarra socia --4.00 0.4
Neureclipsis 7 CF1.33 1.33 0.1 0.1
Polycentropus 6 PR1.33 1.33 0.1 0.1
Hydropsychidae --2.67 0.3
Cheumatopsyche 5 CF2.67 2.70 0.3 0.3
Hydropsyche 4 CF45.33 218.62 4.9 23.7
Hydropsyche bronta --1.33 0.1
Hydropsyche morosa --68.00 7.4
Hydropsyche sparna --100.00 10.9
Hydropsyche depravata species 
group

CF1.33 0.1

Macrostemum 3 CF1.35 0.1
Macrostemum zebratum --1.33 0.1
Protoptila 1 SC1.33 1.33 0.1 0.1
Mayatrichia SC
Brachycentrus

09020209042 
09020209042121 
09020209046 
09020301004 
09020301004012 
09020401 
09020401001 
09020401001004 
09020401001008 
09020401001009 
09020401005 
09020402 
09020402009 
09020402009033 
09020402011 
09020402015 
09020404018 
09020410 
09020410037 
09020410037124 
09020601003 
09020601003003 
09020601003004 
09020603008 
09020603010 
09020604 
09020604015 
09020604016 
09020604016029 
09020604016030 
09020604016032 
09020604016041

09020604018 
09020604018054 
09020606022 
09020607033 
09020609043 0 CF9.33 1.0
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Taxon

Maine
Taxonomic
Code

Functional 
Feeding 
Group

Hilsenhoff
Biotic 
Index 

Count
(Mean of Samplers) 

Actual Adjusted

Relative
Abundance

Actual Adjusted

Maine Department of Environmental Protection 
Biological Monitoring Program

Aquatic Life Taxonomic Inventory Report
Waterbody: Sheepscot River - Station 74Station Number: S-74 

Log Number: 2252 Replicates: 3

Town: Whitefield 
Calculated: 11/6/2014Subsample Factor: X4

Brachycentrus appalachia --9.33 1.0
Micrasema 2 SH4.00 0.4
Micrasema wataga --4.00 0.4
Limnephilidae --1.33 1.33 0.1 0.1
Lepidostoma 1 SH2.67 2.67 0.3 0.3
Helicopsyche 3 SC1.33 0.1
Helicopsyche borealis --1.33 0.1
Cardiocladius 5 PR1.33 0.1
Cardiocladius obscurus --1.33 0.1
Nanocladius 3 CG1.33 0.1
Nanocladius downesi --1.33 0.1
Tvetenia 5 CG50.67 5.5
Tvetenia vitracies --48.00 5.2
Tvetenia paucunca --2.67 0.3
Rheotanytarsus 6 CF98.67 10.7
Rheotanytarsus exiguus CF54.67 5.9
Rheotanytarsus pellucidus CF44.00 4.8
Polypedilum 6 SH9.33 1.0
Polypedilum aviceps --8.00 0.9
Polypedilum flavum --1.33 0.1
Polypedilum ontario --
Simulium 4 CF52.00 381.33 5.6 41.4
Simulium fibrinflatum --20.00 2.2
Simulium jenningsi --17.33 1.9
Simulium tuberosum --1.33 0.1
Simulium jenningsi species group CF290.67 31.5
Hydrobiidae --2.67 2.67 0.3 0.3
Ferrissia SC2.67 0.3
Ferrissia rivularis

09020609043096 
09020609044 
09020609044101 
09020610 
09020611064 
09020616070 
09020616070137 
09021011034 
09021011034053 
09021011049 
09021011049092 
09021011065 
09021011065113 
09021011065114 
09021011072 
09021011072127 
09021011072128 
09021011102 
09021011102181 
09021011102182 
09021011102194 
09021012047 
09021012047059 
09021012047060 
09021012047067 
09021012047070 
10010104 
10010204035 
10010204035066 --2.67 0.3
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