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I. INTRODUCTION 

In this bulletin, we analyze price series for stumpage in Maine. For 
each available species and product group (sawlogs, pulpwood), we test for 
stationarity and fit autoregressive integrated moving average (ARIMA) 
models to the data based on preliminary diagnostics. We then perform 
in-sample and out-of-sample price forecasts. The central objective of this 
work is to characterize the processes for Maine stumpage prices in order 
to identify opportunities for using reservation price policies to increase 
timber and land values. These results are of particular value to non-
industrial timber growers for use in scheduling harvests. The price fore­
casts are also of interest to stumpage buyers and industrial timber 
growers, though as with any forecasts they are subject to qualifications 
and must be interpreted carefully. 

The solution to the optimal deterministic rotation problem is well 
known: harvest when the rate of change in the value of the stand equals 
the opportunity cost of the timber and bare land. Recently, research in 
forest economics has concentrated on the harvesting problem under the 
realistic condition that future stand values are uncertain (Norstrom 
1975; Brazee and Mendelsohn 1988; Lohmander 1988; Clarke and Reed 
1989; Morck et al. 1989; Haight and Holmes 1991; Thomson 1992; Reed 
1993; Plantinga in press). A central finding of these studies is that the 
deterministic solution no longer applies, even if timber managers are 
risk neutral and concerned only with expected stand values. More for­
mally, the optimal solution to the rotation problem under uncertainty 
and risk neutrality is not equivalent to the deterministic solution in 
which known stand values are replaced with expected stand values. 

Rather, the optimal solution involves the use of a reservation price 
policy." The reservation price is the lowest price at which an optimally 
managed stand should be harvested. Accordingly, when stumpage prices 
are above the reservation price, the stand is harvested, and otherwise, 
the harvest is delayed. Reservation prices are found by solving the rota­
tion problem with stochastic dynamic programming techniques (see 
Plantinga 1996 for details). An important feature of the stochastic 
dynamic programming solution, in contrast to the deterministic solution 
with expected prices, is that it anticipates the arrival of new information 

1 The solution to the deterministic problem is widely reproduced (e.g., Johansson 
and Lofgren 1985; Bowes and Krutilla 1989). The optimal rotation age is the solution 
to V\t) = r[V(t) + A ] where VU) is the value of the stand at age t, V U) = dV(t)ldt,r 
is the interest rate, and A is the maximized bare land value. 

2 Hereafter, we will assume that future stand volumes are known and that uncer­
tainty about future stand values is attributable to uncertainty about future 
prices. The focus on price uncertainty is reasonable given the availability of yield 
curves for most timber species. See Reed (1984) for an analysis of the rotation 
problem when future timber volumes are uncertain due to fire risk. 
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on prices. Reservation prices are typically above expected prices, so the 
expected value of the timber and land is greater under a reservation 
price policy than with the deterministic solution. Furthermore, the rota­
tion is longer on average with a reservation price policy, though harvest­
ing may occur before the deterministic rotation if a sufficiently high price 
is received. 

These results assume a known distribution for the price process, and 
three types of price distributions have been examined: random draw in 
Brazee and Mendelsohn (1988), autoregressive in Norstrom (1975) and 
Haight and Holmes (1991), and random walk in Clarke and Reed (1989), 
Morck et al. (1989), Thomson (1992), and Reed (1993). Plantinga (in 
press) shows that optimal harvesting decisions will vary considerably 
depending on the nature of the stochastic process. For the timber species 
considered, optimal harvests are delayed longer on average when prices 
are stationary than non-stationary and, for autoregressive prices, when 
prices exhibit stronger mean reversion. Accordingly, reservation price 
policies are more effective at increasing expected timber and land values 
when prices are stationary and mean reverting. 

This bulletin presents the full set of results of our analysis in a rel­
atively technical manner. A companion publication is forthcoming, which 
presents the key findings in a non-technical fashion. In section II, the 
ARIMA method of time-series analysis is reviewed, and the use of 
ARIMA models for determining optimal rotation ages is described. 
Section III contains the analysis of Maine stumpage prices. Section TV 
presents analysis and conclusions. 

II. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE 
MODELS AND OPTIMAL HARVESTING DECISIONS 

One approach to developing price forecasts is to specify and estimate 
the underlying structural equations of a demand and supply system and 
then condition forecasts of prices on particular values of exogenous vari­
ables. Adams and Haynes (1980) employ this method to generate timber 
price forecasts used in Resource Planning Act (RPA) assessments con­
ducted by the U.S. Forest Service (e.g., USDA Forest Service 1990). In 
contrast, the ARIMA model is a non-structural method that relies only on 
historical observations of prices. Models are fitted to price series and 
used to make forecasts of future prices. Finally, transfer function models 
combine structural estimation and ARIMA methods. In this approach, 
ARIMA methods are used to model the variation in prices unexplained 
by structural equations. 

' Stationarity means that the parameters of the price distribution (e.g., mean, 
variance) remain constant over time. The random draw and autoregressive 
processes are stationary while the random walk process is non-stationary. 
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In this study, we model prices using ARIMA methods alone. The chief 
advantage of this approach is its simplicity. In contrast to structural 
methods, the only data needed are stumpage price series, and estimation 
is straightforward. Moreover, ARIMA methods may provide more accu­
rate forecasts than structural models (Bessler and Brandt 1983). As dis­
cussed in this section, the ARIMA method involves identifying the 
appropriate model specification, estimating the model parameters, and 
then using the fitted model to generate forecasts of future prices. 
Following an overview of ARIMA methods, we discuss the use of ARIMA 
models for determining optimal rotation ages. 

I. Overview of ARIMA methods 

ARIMA methods are presented in general form in many economet­
rics textbooks. Rather than repeat this material, we discuss the partic­
ular ARIMA models used in this study and highlight the features of these 
models relevant to the optimal harvesting decision. The ARIMA method 
is based on the assumption that price realizations are random variables 
from a known joint distribution.5 ARIMA models are linear approxima­
tions of the underlying distribution designed to represent the random­
ness in a data series. 

A simple ARIMA model is the MA(1) or moving average model of 
order 1. It takes the form 

PM = f* + £<+i - 9i£t (1) 

where pt is the price in time t, fi and fy are model parameters, and e( is a 
normally distributed random variable with zero mean, variance c\, and 
covariance Ei ete,.k) = 0 for all k * t. If the current period is t, the expected 
value of next period's price p , t l is ji - 6^; however, the realization of p (+1 

is subject to shocks reflected in the random variable e,+1. Moreover, price 
shocks have "memory" since the period t+1 price depends on the period t 
price shock through the term diet. 

Future prices may depend on past prices rather than past price 
shocks. The simple case in which only the current price exerts influence 
is the AR(1) or autoregressive model of order 1 

P , . l = <l>lP, + S+EM ( 2 ) 

4 A particularly well-written and accessible treatment is found in Pindyck and 
Rubinfeld (1981). Refer to this or other econometrics textbooks for more details 
on the material presented in this subsection. 
5 The observed price series pvp2,...,pT are jointly distributed random variables if 
there exists some probability function f(pi,p-i,---,pT) that assigns probabilities to 
all possible combinations of values of pvp2,...,pT. 
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where <j)l and 8 are model parameters, and £, has the same properties 
specified above. For prices following an AR(1), the expected value of the 
period /+1 price is <j)lpl + 5 and, thus, the next period's price depends on 
the current price. More generally, prices may be influenced by past prices 
and shocks. The autoregressive moving average model ARMA(1,1) has 
the form 

P,+1 = 01P, + «5+f,+1-01f/ (3) 

where all terms are defined as above. 
The models presented above describe stationary processes, which 

implies the mean, variance, and covariance of the joint distribution 
underlying the process are invariant with respect to time. To illustrate, 
the mean of the MAI 1) process is /u since the expected value of the error 
terms is zero. Since fu is invariant with respect to time, in particular it is 
not indexed by t, the mean of the MAI 1) is stationary. The other models 
can be shown to exhibit similar properties. An important step in fitting 
ARIMA models to data series is determining if the series appears to be 
generated from a stationary process. If the series exhibits a clear upward 
or downward trend, for instance, then it is likely that the data are gen­
erated from a non-stationary process. More formally, sample autocorre­
lation functions can be examined to determine if a series is stationary. 

A non-stationary series can often be transformed into the stationary 
series through differencing. For instance, first-differencing will remove a 
linear trend from a data series. A first-differenced series is defined as 
w2,w3,...,wT where wt =pt -ptv The stationary differenced series can then 
be modeled as above. For instance, the autoregressive integrated model 
ARK 1,1) has the form 

wui = <t>iw, + S+£
l,i

 (4) 

The integrated moving average model IMA(1,1) and autoregressive 
integrated moving average model ARIMAI 1,1,1) are defined in similar 
fashion. 

The procedure for fitting ARIMA models to a data series is, first, to 
determine if the series is stationary and, if necessary, difference the 
series until it exhibits stationarity. The next step is to determine the 
appropriate model specification. The sample autocorrelation function is 
used to determine the order of the moving average component (i.e., the 
number of lagged error terms) and the sample partial autocorrelation 

6 It is important to distinguish between the properties of the distribution and the 
properties of a particular data series assumed to be drawn from the distribution. 
While the mean of the MA(1) process is n, the expected value of the price p(+1 

drawn from the distribution conditional on an observed sequence of prices is /I -
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function identifies the order of the autoregressive component (i.e., the 
number of lagged price terms). Once a specification is chosen, the mod­
els are estimated using in most cases a nonlinear estimation algorithm. 
Most econometrics software packages provide routines for estimating 
ARIMA models. 

Once the model parameters are recovered, forecasting is straightfor­
ward. Suppose that an AR( 1) model is estimated and the last price in the 
series is pT. Then the forecast of p r + 1 or its expected value conditional on 
pT is 

Pr+i = 0iPr + <5 ( 5 ) 

A forecast interval can be calculated from the estimated variance of the 
residuals. Prices beyond T+1 can be forecast conditional on forecasted 
prices. For instance, the period T+2 forecast is 

PTV2 = ^IPTVI + S ( 6 ) 

In this case, the forecast interval measures the error in forecasting one 
period ahead in addition to the error associated with the T+1 forecast. 

II. The use of ARIMA models to determine optimal t imber rotations 

As discussed above, a reservation price policy is superior to using 
expected prices to determine a timber rotation. To illustrate, suppose 
prices follow the AR(1) process in equation (2), that the current price is 
pT= Si (1 - fa), which is also the mean of the AR(1) process, and further 
that \fa\ < 1, which guarantees the process has a finite mean. Inserting pT 

= Si (1 - Oi) into (5) yieldsp^j = 5/ (1- fa) and insertingp r + 1 into (6) gives 
PT*2 = S / (1 - fa). In words, forecasts of period T+1 and T+2 prices equal 
the current price. Next, suppose that a timber stand is growing at the 
rate of interest. Formally, QT = Q r+1(l + r) '=Q r + 2(l + r)'2 where Q, is the 
timber volume in time t and r is the interest rate. It follows that 

VT=VTtl(l +r)"1=V r + 2( l + rf (7) 

where V, = p,Qr Equation (7) implies the stand is financially mature 
(for a single rotation) according to the deterministic rotation rule. 

Equation (7) would seem to imply that the stand should be harvested 
in period T or, at least, the timber grower should be indifferent to har­
vesting and delaying the harvest to either period T+1 or T+2. In fact, the 
timber grower should unequivocably delay the harvest beyond period T. 
The reason is that the timber grower receives new information about 
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future prices that can be used to optimally time harvests. Specifically, 
the period T+l price is observed which indicates that 

> > 
VT+1 =VT,, (1 + r)"1 as P r + 1 = 5 / ( 1 - 0 ! ) (8) 

< < 

The AR(1) process is mean-reverting so if the observed period T+l price 
exceeds 5 / ( 1 - 0 , ) , the expected or forecasted period T+2 price will be less 
than pT+v This implies that VT+1 >VTvz (1 + r)"1 or, in words, the stand 
should be harvested in period T+l . The opposite is true whenpT + 1 is less 
than 5 / ( 1 - 0 ! ) : the harvest should be delayed to period T+2 since the 
price is expected to increase. 

Plantinga (1996) outlines a general methodology for determining 
optimal rotations when price follows an ARIMA process and shows that 
expected timber values are higher with this approach than with the 
deterministic rotation. This result is apparent from the example given 
above. The stand is harvested in period T+l only if the price is above the 
mean. If p r + 1 is below the mean, the harvest is delayed to period T+2; 
however, since the price process is mean-reverting, pTt2 is expected to be 
larger than p r + r On average, harvesting takes place when the price is 
above the mean and the stand value is increased. 

This approach is equivalent to using a reservation price policy to 
time harvests (see Brazee and Mendelsohn [1988] and Plantinga [in 
press]). In terms of the present example, the period T reservation price 
is the period T price at which the timber grower is indifferent to har­
vesting and delaying the harvest to either period T+l or T+2. Since it is 
optimal to delay the period T harvest, the current price pT = 5 / ( 1 - 0J 
must be below the reservation price. For harvesting to be optimal, pT 

would have to exceed 5 / ( 1 - 0 ! ) , implying timber growers receive more 
than the expected price by following a reservation price policy. 

III. TIME-SERIES ANALYSIS OF MAINE 
STUMPAGE PRICES 

ARIMA methods are applied to data series on Maine stumpage 
prices. State-level average annual prices by species and product group 
(sawlogs, pulpwood) for the period 1961 to 1995 are constructed from 
published Maine Forest Service reports. Nominal prices in dollars per 
thousand board feet (sawlogs) and dollars per cord (pulpwood) are con­
verted to real prices (1982=100) using the United States producer price 
index for all commodities. Sample autocorrelation and partial autocorre­
lation statistics are examined to determine model specification7 and 
Shazam software (White 1978) is used to estimate the selected models. 

'These statistics are reported in Lindahl (19971 
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The results for sawlogs and pulpwood prices are presented in Tables 
1 and 2, respectively.8 The second column in the tables indicates the 
observations used to estimate the models. In some cases, prices at the 
beginning or end of a series are inconsistent with the dominant pattern 
for a series and, thus, are dropped from the model. We discuss this prob­
lem in more detail below. The third column indicates the number of times 
the series is differenced and the remaining columns report estimated 
parameters and related statistics. 

Table 1. ARIMA estimates for sawlog stumpage prices in Maine. 

Species Obs. Diff. Mean Variance 
Param 

(.ior8 
eter estim 

8, 

ates 

4> , adjR2 

White Birch 1-35 1 0.659 62.44 0.729s 

(0.29) 
0.779a 

(0.11) 
0.285 

Yellow Birch 1-35 1 0.520 58.60 0.593a 

(0.29) 
0.752ab 

(0.12) 
0.375 

Hard Maple 1-35 1 1.035 53.41 0.947 
(0.54) 

0.567ab 

(0.18) 
0.130 

Soft Maple 1-35 0 37.01 28.89 15.08a 

(5.42) 
0.597ab 

(0.15) 
0.306 

Aspen 1-32 1 -0.233 15.08 -0.297 
(0.25) 

0.656ab 

(0.16) 
0.124 

Spruce 1-33 0 51.18 23.01 31.17a 

(9.28) 
-0.925ab 

(0.06) 
0.394ab 

(0.18) 
0.623 

White pine 1-35 1 1.151 18.52 0.6123 

(0.20) 
0.964a 

(0.03) 
0.533ab 

(0.15) 
0.177 

Note: Observations (Obs.) 1-35 correspond to the years 1961-1995 respectively. 
Standard errors are in parenthesis. a indicates the parameter estimate is significantly dif­
ferent from zero at the 95% confidence level. b indicates the parameter estimate is signifi­
cantly different from the one at the 95% confidence level. 

The results in Tables 1 and 2 indicate that ARIMA processes are an 
appropriate representation of sawlog and pulpwood stumpage prices. In 
the MA(1) model, if p and 6^ are not significantly different from zero, we 
fail to reject the hypothesis that prices follow the non-stationary white 
noise process p (+1 = £(+1. Likewise, we cannot reject the random draw 
model p (+1 = p + £ ( t l if 61 is not significantly different from zero. With the 
AR( 1) model, we cannot reject the white noise process if 0; and 5 are not 
significantly different from zero, and the random walk model p,+1 = pt + 
£ , is not rejected if <pi and 5 are not significantly different from one and 
zero, respectively. However, the results do not support any of these alter­
native specifications, or in other words, we fail to reject the ARIMA spec­
ifications. 

8 No results are reported for red pine sawlogs and spruce/fir pulpwood because of 
' " '• " " T ' ' \l (1997) for details. 
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Table 2. ARIMA estimates for pulpwood stumpage prices in Maine. 

Parameter estimates 
Species Obs. Diff. Mean Variance | io r5 « i 0, adjR2 

White pine 5-35 1 0.030 0.258 0.039 
(0.02) 

0.778" 
(0.12) 

0.34 

Red pine 1-35 1 5.17 1.04 0.245 
(0.20) 

0.390ab 

(0.19) 
0.955a 

(0.04) 
0.56 

Hemlock 1-33 1 -0.315 0.325 -0.039 
(0.08) 

-0.677ab 

(0.13) 
0.41 

Aspen 4-35 0 5.71 0.315 5.71a 

(0.13) 
-0.523ab 

(0.15) 
0.24 

Hardwood 1-35 
(except aspen) 

0 6.52 0.482 3.03a 

(0.93) 
0.535ab 

(0.14) 
0.24 

Note: Observations (Obs.) 1-35 correspond to the years 1961-1995 respectively. 
Standard errors are in parenthesis. a indicates the parameter estimate is significantly dif­
ferent from zero at the 95% confidence level, "indicates the parameter estimate is signifi­
cantly different from the one at the 95% confidence level. 

In-sample forecasting gives an indication of how well the estimated 
model fits the data. In Figures 1 through 12, we plot the actual price 
series (circles) along with forecasts based on previous prices (diamonds). 
For instance, in Figure 1 the forecast for 1966 is made using the obser­
vations for 1964 and 1965. In all cases, the estimated models track the 
general trend in the data well; however, some models are more success­
ful than others in predicting year-to-year variation in the data. For 
example, the model for white birch sawlogs (Figure 1) does not predict 
the large price swings in the 1970s. The white pine sawlog model (Figure 
7) tracks prices closely. 

Out-of-sample forecasts for the years 1996 to 2000 are also shown in 
Figures 1 to 12. In addition, 66% and 95% forecast intervals are 
depicted. Prices for white birch sawlogs, for instance, are expected to 
continue a general upward trend (Figure 1). In contrast, recent prices for 
soft maple sawlogs have been above historical prices and are predicted to 
decline in the coming years (Figure 4). For many species, prices have 
increased in the 1990s. In some cases, these increases have been so dra­
matic as to suggest a "structural" shift in the underlying distributions. 
In particular, recent prices for aspen and spruce sawlogs and hemlock 
pulpwood do not follow historical patterns (Figures 5, 6, and 10). As men­
tioned above, ARIMA models were estimated without these observations 
(excluded observations are indicated by open circles). 

The results for aspen and spruce sawlogs and hemlock pulpwood 
underscore the need to interpret and use forecasts carefully. The fore-

9 In repeated sampling, the forecasted prices can be expected to fall within the 
forecast intervals 66% and 95% of the time. 
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Figure 1. Actual and forecasted real white birch sawlog prices (1982=100) 
in Maine. 

Figure 2. Actual and forecasted real yellow birch sawlog prices (1982=100) 
in Maine. 
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Figure 3. Actual and forecasted real hard maple sawlog prices (1982=100) 
in Maine. 

Figure 4. Actual and forecasted real soft maple sawlog prices (1982=100) 
in Maine. 
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Figure 5. Actual and forecasted real aspen sawlog prices (1982=100) in 
Maine. 

Figure 6. Actual and forecasted real spruce sawlog prices (1982=100) in 
Maine. 
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casted prices and associated confidence intervals are valid insofar as the 
correct AEIMA model has been fitted to historical observations and the 
model continues to provide an adequate description of the process gener­
ating future prices. Had we done this study several years ago before 
prices for 1994 and 1995 were available, we might have predicted with 
some confidence that spruce sawlog prices would decline during 1994 
and 1995 given the accuracy with which our model tracks historical 
prices. In fact, recent prices appear to have departed radically from his­
torical trends to the extent that these prices lie far outside the 95%- fore­
cast intervals. 

As a final test of the accuracy of our methods, we reestimate the 
models excluding the observations for the last three years (1993 to 1995) 
and use the fitted models to forecast prices for the omitted years. The 
parameter estimates are similar to the full sample estimates. We com­
pare the forecasted prices to the actual values using two measures, the 
mean absolute percentage deviation (MAPE) and mean absolute devia­
tion (MAE), defined as 

MAPE = ~>fJ ^ ^ (9) 
3 /=1993 Pt 

-1 1995 

MAE = -JJ \p,-Pt\ (10) 
O (=1993 

MAPE and MAE measures give an indication of how accurately ARIMA 
models can predict future prices. MAPE is the average percentage devi­
ation of the forecasted prices from the actual prices, and MAE is the 
average absolute deviation. 

MAPE and MAE values are calculated for all species and product 
groups (Tables 3 and 4). According to the MAPE values, our projections 
are most accurate for white birch and white pine sawlogs and hardwood 
pulpwood prices. On average, deviations from the actual prices are 6.6%, 
3.4%, and 4.8%, respectively. Not surprisingly, our projections are the 
least accurate for species exhibiting recent price increases. MAPE values 
for aspen and spruce sawlogs and red pine and hemlock pulpwood are 
23.9%, 23.7%, 16.7%, and 13.8%, respectively. MAE values show similar 
patterns. On average, our forecasts of white pine and white birch 
sawlogs are off by $5.17 and $3.15 (1982 dollars). Forecasts of spruce 
sawlogs depart from actual prices by $18.32 on average. 
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Table 3. Mean absolute percentage error and mean absolute error for 
ARIMA forecasts of sawlog and pulpwood stumpage prices in Maine. 

Species Observations MAPE 

Sawlogs 

White Birch 1-32 0.066 

MAE 

5.17 

Yellow Birch 1-32 0.100 7.80 

Hard Maple 1-32 0.191 16.53 

Soft Maple 1-32 0.144 6.31 

Aspen 1-32 0.239 8.14 

Spruce 1-32 0.237 18.32 

White pine 1-32 0.034 3.15 

Pulpwood 
White pine 5-32 0.097 0.50 

Red pine 1-32 0.167 1.26 

Hemlock 1-32 0.138 1.17 

Aspen 4-32 0.088 0.58 

Hardwood 1-32 0.048 
(except aspen) 

0.33 

Note Observations 1-35 correspond to the years 1961-1995 respectively. 

IV. ANALYSIS AND CONCLUSIONS 

The results of this analysis suggest that many opportunities exist for 
timber growers in Maine to use price forecasting models to optimally 
schedule harvests and, thereby, increase expected timber and land val­
ues. For the 12 sawlog and pulpwood price series analyzed, ARIMA 
model specifications cannot be rejected. Accordingly, non-stationary 
white noise and random walk processes are rejected. Plantinga (in press) 
finds no gains to using reservation price policies with non-stationary 
processes. However, for three series, recent prices depart considerably 
from historical trends; in these cases accurate forecasts cannot be 
obtained using ARIMA methods. 

Many of the stumpage prices exhibit moderately strong mean rever­
sion, which, as Plantinga (in press) shows, tends to increase the expected 
gains from a reservation price policy. For example, for hard maple 
sawlogs the moving average coefficient 6X is 0.567 compared to 0.752 for 
yellow birch sawlogs. This indicates that, all else equal, shocks to maple 
prices are less persistent than those to birch prices, or in other words, 
maple prices have a greater tendency to move back to the mean price. 
Prices for soft maple sawlogs, white pine sawlogs, red pine pulpwood, 
aspen pulpwood, and hardwood pulpwood exhibit similar characteristics. 
As with yellow birch prices, mean reversion is less pronounced in prices 
for white birch sawlogs and white pine pulpwood. 
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Figure 7. Actual and forecasted real white pine sawlog prices (1982=100) in 
Maine. 

Figure 8. Actual and forecasted real white pine pulpwood prices 
(1982=100) in Maine. 
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Figure 9. Actual and forecasted real red pine pulpwood prices (1982=100) 
in Maine. 

Figure 10. Actual and forecasted real hemlock pulpwood prices (1982=100) 
in Maine. 
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Figure 11. Actual and forecasted real aspen pulpwood prices (1982=100) in 
Maine. 

Figure 12. Actual and forecasted real hardwood (except aspen) pulpwood 
prices (1982=100) in Maine. 
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The methodology proposed by Plantinga (1996) for determining opti­
mal rotations when prices follow an ARIMA process involves solving a 
stochastic dynamic programming problem. Since most timber growers 
are unlikely to invest the time and effort to develop similar techniques, 
the results presented here are most useful for identifying "rules of 
thumb" guidelines for making harvesting decisions.10 To illustrate, con­
sider the white pine sawlog and aspen pulpwood price forecasts in 
Figures 7 and 11. A timber grower with a financially ' 'mature" white pine 
stand may decide that prices are increasing sufficiently to justify delay­
ing harvest in anticipation of a price jump. On the other hand, the aspen 
pulpwood grower may conclude that prices are likely to decline substan­
tially and that harvesting now is prudent. To the extent that more cur­
rent information is available than reported in this volume, the models in 
Tables 1 and 2 can be used to update forecasts. 

In conclusion, price forecasting models can provide valuable infor­
mation to timber growers as well as timber resource users. However, as 
stressed in Section III, price forecasts are subject to qualifications and 
should be weighed along with other evidence in making decisions, par­
ticularly irreversible decisions such as timber harvesting. The ARIMA 
models presented in this study assume that prices are generated from a 
stationary distribution. As seen, this assumption does not appear to hold 
for some stumpage prices in Maine. Nevertheless, price forecasting mod­
els can be used effectively if appropriate recognition is given to their 
shortcomings. Compared to structural forecasting models, such as the 
Timber Assessment Market Model by Adams and Haynes [1980], ARIMA 
models are much easier to develop and, in many instances, more accu­
rate (Bessler and Brandt 1983). 

10 There is some evidence that people behave in a manner consistent with the 
solutions to stochastic dynamic programming problems (Rust 1987; Provencher 
1995). As the pool player need not understand Newtonian physics to make a bank 
shot, a timber grower does not have to explicitly solve stochastic dynamming pro­
gramming problems in order to make optimal harvesting decisions. Rules of 
thumb may approximate the solution to more complicated decision analyses. 
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