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SUMMARY

The purpose of this manual is to support use of 
satellite-based remote sensing for statewide lake water-
quality monitoring in Maine. We describe step-by-step 
methods that combine Landsat and MODIS satellite 
data with field-collected Secchi disk data for statewide 
assessment of lake water clarity. Landsat can be simul-
taneously used to assess Maine’s more than 1,000 lakes 
≥ 8 ha, whereas MODIS can be used to assess a maximum 
of 364 lakes ≥ 100 ha (250-m image resolution) or 83 
lakes ≥ 400 ha (500-m image resolution). It was our 
intention that the detailed instructions in this manual 
would assist and expedite implementation of our meth-
ods. The methods described here were developed in a 
master’s thesis resulting in several peer-reviewed journal 
manuscripts (McCullough et al. 2012a, b, in review a, 
b). We assumed readers had reasonable knowledge of 
lake ecology, statistics, and geographic information 
systems (GIS). Although our methods were specifically 
developed for Maine, other states or non-Maine agen-
cies may find these methods as useful starting points 
in developing their own protocols for regional remote 
lake monitoring. 

INTRODUCTION

Long-term maintenance or improvement of water 
quality is essential for the continuation of diverse recre-
ational, economic, and cultural activities associated with 
lakes. Increased lake water quality is positively correlated 
with lakefront property value in Maine (Michael et al. 
1996; Boyle et al. 1999) and New Hampshire (Gibbs et 
al. 2002) and enhances user perception of lake health 
in Minnesota (Heiskary and Walker 1988). Lakes also 
provide important habitat for a variety of plants and 
animals, including economically important fishes and 
waterfowl. 

Maine contains more than 5,500 lakes >1 ha in size 
and more inland surface waters than any state east of 
the Great Lakes (Davis et al. 1978). The sheer number 
of lakes in Maine is both a blessing and a burden. Maine 
is fortunate to hold so many of these natural resources, 
but monitoring and maintaining the health of thousands 
of lakes, many of which are remote and inaccessible, is 
a difficult and expensive task.

Water clarity (or transparency) is an ideal metric of 
regional lake-water quality. Often measured in terms 

of Secchi disk depth (SDD), water clarity is strongly 
correlated with other measurements of water quality 
including chlorophyll-a, total phosphorus, and trophic 
status (Carlson 1977). Unlike these variables, however, 
water clarity can be easily measured in the field with 
minimal equipment and no chemicals. Therefore, SDD is 
arguably the most efficient metric of water quality when 
attempting to assess a large area. Many of the water-
clarity data collected in Maine are gathered by lakeshore 
residents who volunteer with the Maine Volunteer Lake 
Monitoring Program (VLMP). Numerous other states 
have similar organizations, but Maine’s is the longest 
running in the United States. The Maine Department of 
Environmental Protection (MDEP) initiated statewide 
monitoring of water clarity in 1971 jointly with the 
VLMP. Maine continues to rely greatly on volunteers 
for monitoring water quality. These citizen scientists 
are not only capable of making substantial contribu-
tions to our knowledge of Maine’s lakes through the 
construction of long-term datasets, but they also are 
important stakeholders in the issue of lake-water qual-
ity. The continued involvement of these stakeholders in 
lake monitoring is an integral component of successful 
long-term management of lakes. 

Owing to the relative ease of gathering data on 
lake clarity, we have considerably more data covering a 
greater geographic extent on clarity than other water-
quality metrics. Average SDD in Maine has consistently 
remained 4 to 6 m since 1971, with a historical aver-
age of 5.28 m during the period from 1971 to 2011. 
Although Maine lakes are generally considered to be in 
good condition, there is concern that field sampling is 
spatially biased and may not constitute a representative 
sample of water quality statewide. Assessed lakes are 
concentrated in accessible areas (particularly in southern 
Maine) and near roads. Remote lakes are rarely or never 
sampled, and it is difficult to make definitive judgments 
about the water quality of Maine’s lakes with incomplete 
data. Probability-based, random field sampling is neces-
sary to avoid false conclusions derived from biased field 
sampling (Wagner et al. 2007). Remote sensing allows 
simultaneous assessment of hundreds of lakes and can 
greatly reduce costs associated with traditional field 
methods. By combining field data and satellite imagery 
to model the statistical relationship (e.g., regression) 
between water clarity and satellite-measured reflectance, 
we can then estimate SDD of unsampled lakes. These 
analyses can also be performed retrospectively with 
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archived satellite imagery and historical field data to 
assess statewide changes in water quality over time.

This manual describes methods for remote monitor-
ing of water clarity with Landsat Thematic Mapper (TM) 
and Moderate-Resolution Imaging Spectroradiometer 
(MODIS) satellite imagery. Both satellite platforms have 
advantages and disadvantages related to spatial resolu-
tion (pixel size), image-capture frequency, and amounts 
of image processing necessary; however, using both 
Landsat and MODIS data as part of a flexible program 
of remote monitoring provides benefits offered by both 
platforms and maximizes remote data collection. 

SATELLITE BACKGROUND

Landsat Thematic Mapper (TM)
The Landsat program spans seven U.S. satellites, the 

first of which was launched in 1972. The extensive image 
archive makes Landsat an important source of historical 
data in many areas of monitoring and research in addi-
tion to water quality. As of the date of this publication, 
two Landsat satellites are currently in orbit; however, 
the likelihood of either providing high-quality imagery 
in the future remains in doubt. Landsat 5, launched in 
1984, experienced an amplifier failure in November 
2011 and was suspended for 180 days in an attempt 
to restore operation. Although the Thematic Mapper 
(TM) sensor was not revived, the Multispectral Scanner 
(MSS; 57- m resolution), powered-down since 1995, was 
turned back on. Despite the revival of the MSS, Landsat 
5 has long exceeded its intended lifespan and is not a 
reliable source of future long-term data. Landsat 7 was 
launched in 1999 and continues to capture imagery, but 
image quality has been compromised since 2003 by the 
failure of the scan-line corrector (SLC), an instrument 
that corrects for the forward motion of the satellite. As 
a result, post-2002 Landsat 7 images (SLC-off) contain 
rows of null values, which complicate estimation of 
remote lake clarity. Despite these issues, SLC-off imag-
ery can still be used for monitoring remote lake clarity  
(Olmanson et al. 2008). The expected 2013 launch of 
the Landsat Data Continuity Mission (LDCM; Landsat 
8), if successful, ensures future availability of Landsat 
data for remote lake monitoring. Landsat 9 is in the 
preliminary planning stages as of this writing.

Landsat imagery can be freely downloaded from 
the USGS Global Visualization Viewer (glovis.usgs.
gov). Images are indexed by path and row. Path 11 
(rows 27–29) and path 12 (rows 27–30) capture most 
of Maine (Figure 1). Landsat images cover an extent 
approximately 185 km wide and have a 30-m resolution 
(Table 1), which is considered moderate among other 
satellites. Both Landsat satellites contain three visible 
and four infrared bands; Landsat 7 also includes a 15-m 
panchromatic band and an additional thermal infrared 
band. Landsat does not measure UV reflectance. Bands 
1 (visible blue) and 3 (visible red) are strongly correlated 
with lake water clarity (Kloiber et al. 2002; Chipman 
et al. 2004; Olmanson et al. 2008; McCullough et al. 
2012a). Images are captured every 16 days, and this rela-
tive infrequency of image capture is one of the greatest 
limitations of Landsat data when short windows of time 
(e.g., month of August) are of interest. Landsat images 
do not receive atmospheric precorrections, which must 
be performed by the user if desired.

Figure 1. Landsat TM paths 11 and 12 and 
individual scenes over Maine. Images are true 
color composite (RGB 3, 2, 1).
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Moderate-Resolution Imaging 
Spectroradiometer (MODIS)

Moderate-Resolution Imaging Spectroradiometer 
(MODIS) sits aboard two NASA satellites: Terra, 
launched in 1999, and Aqua, launched in 2002. Each 
satellite captures daily images of the entire Earth’s sur-
face, yielding two images of a specific location per day. 
MODIS images cover a large extent (approximately 2,300 
km wide); these images are often used by the weather 
media to illustrate the track of hurricanes and other 
weather patterns. MODIS contains 36 bands at various 
resolutions: bands 1–2 (250 m), bands 3–7 (500 m) and 
bands 8–36 (1,000 m) (Table 1). NASA creates numer-
ous products with MODIS-based images that are useful 
for a wide variety of applications. Level 1b daily surface 
reflectance 500-m data from either Aqua (MYD09GA) or 
Terra (MOD09GA) contain the spectral sensitivity best 
suited for remote lake monitoring. Although MODIS data 
are available at 250-m resolution, 250-m data do not 
contain the visible blue band. MODIS 250- and 500-m 
products contain a preconversion to surface reflectance, 
which theoretically precludes additional atmospheric 
corrections, but these corrections were designed for 
analysis of land, not aquatic features. Because images 
are captured twice a day, users have a greater number 
of images from which to select, increasing the chances 
of acquiring clear imagery. This high frequency of im-
age acquisition has the additional benefit of reducing 
image-processing requirements compared to those 
needed when using Landsat data. The twice-daily image 
capture is a major advantage of MODIS over Landsat. 
MODIS images also can be freely downloaded from the 
USGS Global Visualization Viewer (glovis.usgs.gov).

PART 1—APPLICATION OF 
LANDSAT TM DATA FOR REMOTE 
WATER-CLARIT Y MONITORING

Uncited methods, findings, and explanations in Part 
1 are based on McCullough et al. (2012a, in review a).

General Methods

How many lakes in Maine can be assessed?
Landsat TM allows remote monitoring of approxi-

mately 1,500 lakes > 8 ha in size. This lake size cutoff 
was selected based on methods used in a similar study 
of Minnesota lakes (Olmanson et al. 2008). For accurate 
remote monitoring, lakes must be sufficiently large to 
contain several water-only pixels in deep areas where 
SDD is measured in the field. Path 11 contains 1,121 lakes 
and path 12 contains 1,090 lakes > 8 ha that are eligible 
for remote monitoring; the path overlap region contains 
570 eligible lakes. Lists of eligible lakes can be found 
here under supplementary material (www.coopunits.
org/Maine/People/Cyndy_Loftin/Publications). Some 
lakes > 8 ha were eliminated owing to narrow, convoluted 
shorelines and insufficient quantity of water-only pixels. 

Selecting images of sufficient quality
All Landsat images can be previewed online prior to 

download. Images should be free of clouds or nearly so, 
but regular monitoring of lakes may necessitate using 
images with some clouds, as long as the clouds do not 
cover lakes of interest or ground control points used in 
radiometric normalization. The online interface (glovis.
usgs.gov) (hereafter referred to as GloVis) displays a 
percentage cloud cover value, but this number is rela-
tively unreliable because thin clouds are inadequately 
accounted for and clouds covering areas outside the 
area of interest are considered in this value. In general, 
images containing < 10% cloud cover are acceptable. 
We included some examples of images we have used 
in our analyses (Table 2). Preliminary data assessment 
includes addressing the following questions: 

1. Are there sufficient image data of suitable qual-
ity available to justify image processing and 
model construction? 

2.  Will clouds cause inaccurate predictions? 

Generally, cloudier images yield less lake data. Thick, 
plainly visible clouds are easily extracted and will not 

Table 1.  Comparison of Landsat and MODIS 
specifications

Specifications Landsat MODIS

Spectral resolution 7 bands 36 bands

Pixel size 30 m 250, 500 or 1000 m

Scene width 185 km 2330 km

Image frequency 16 days Twice daily

Corrections None Surface reflectance

Cost Free Free
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compromise model predictions, but they cast dark 
shadows, which may not be as easily identified or ex-
tracted, thereby influencing model results (see Technical 
Methods). Thin clouds and haze are more difficult to 
detect and do not necessarily obscure lakes completely. 
Thin clouds and haze cause atmospheric scattering and 
may make images appear brighter, yielding underesti-
mates of SDD.

What image dates are preferred?
The eventual goal of remote monitoring of lake water 

clarity is to detect changes in water clarity over space 
and time. Therefore, images used in successive analyses 
should have been captured at roughly the same time of 
year to avoid error associated with changing lake con-
ditions that reflect seasonal change (e.g., intra-annual 
algal community development or lake stratification). 
The late summer stable period of July 15 to September 
15, with preference for August, is the optimal window 
for monitoring remote lake clarity owing to seasonal 
lake stability and seasonally low clarity conditions 
(Stadelmann et al. 2001; Olmanson et al. 2008). The 
preference for August is strongly emphasized. Dimictic 
lakes in northern Maine may undergo fall turnover (verti-
cal mixing of the water column) as early as late August, 
though early to mid-September is more common (Davis 
et al. 1978). Subsequently, mid- to late August imagery 
(August 10–31) captures annual peaks in algal growth 
and therefore provides the most direct measurement of 
lake productivity, whereas July and September images 

may capture periods before and after this peak. Early 
September images should be used with caution. We 
found that images captured 9/8/1990, 9/6/1995, and 
9/14/2004, contained lakes that showed evidence of 
turnover, whereas an image captured 9/5/2009 did not 
indicate turnover. Turnover dates fluctuate annually, and 
September 5 is not an absolute cutoff, even though we 
used data captured on this date in 2009. Satellite-derived 
or field-collected SDD values that are considerably shal-
lower than in previous summers are strong evidence of 
lake turnover where algae have been mixed throughout 
the water column. Climate change may lengthen future 
growing seasons in lakes, though annual fluctuations in 
turnover dates likely will continue nonetheless.

Can images from different dates be 
combined and analyzed together?

Technically, this is possible, but it is impractical and 
computationally intensive. Combining images across 
multiple dates would require separate model calibrations 
for each date because lake and atmospheric conditions 
will likely vary by date. Availability of calibration data 
may be limited for individual Landsat scenes, especially 
north of row 29, owing to the remoteness of these 
areas. In addition, radiometric normalization (see Part 
1: Technical Methods) is difficult if images captured on 
different dates contain haze. An appealing advantage 
of using images from only a single date is the ability 
to capture a one-day snapshot of a large portion of 
Maine (path 11 or 12). This is only possible for a single 
Landsat path (11 or 12) because the paths are captured 
on separate dates. 

Radiometric normalization
Although clouds are relatively easy to identify and 

remove, haze presents a greater problem. Haze is difficult 
to identify systematically and generally is not uniform 
throughout a large geographic area. Haze particles in the 
atmosphere increase Rayleigh scattering (particularly 
at the shorter wavelengths of TM band 1), which can 
influence satellite radiometric responses. Radiometric 
normalization is a standard technique used to minimize 
haze interference. The idea is to designate a clear set of 
images as the reference or master images and to scale 
all other images radiometrically to the reference images. 
This can be done by selecting a group of large (bright 
and dark) ground features, known as pseudo-invariant 
ground targets, that are presumed to be unchanged 

Table 2.  Landsat imagery used for remote estimation 
of lake clarity

Patha Rows
Acquisition 

Date % Clouds Satellite

12 27–30 8/30/2010 0 Landsat 5

12 27–30 9/14/2004 0 Landsat 5

12 27–30 9/1/1999 0 Landsat 5

12 27–30 9/6/1995 0 Landsat 5

12 27–30 9/8/1990 0 Landsat 5

11 28–29 9/5/2009 6 Landsat 5

11 27–29 8/9/2005 8 Landsat 5

11 27–29 8/9/2002 0 Landsat 7 

11 27–29 8/14/1995 2 Landsat 5 

aPath 11, row 27 scene omitted due to cloud cover on 9/5/2009
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during the study period. If unchanged ground features 
appear different in two images, the difference is attrib-
uted to haze. Radiometric normalization corrects this 
difference. Selection of an adequate number of suffi-
ciently large ground features can be difficult in relatively 
remote areas that lack large developed features (e.g., 
airstrips, stadium roofs). We created a GIS points layer 
of ground targets that can be used for future normaliza-
tions; however, the point features identified by this layer 
require cross-referencing with recent, high-resolution 
aerial imagery (e.g., Google Maps, Bing) to ensure that 
they are unchanged from the reference images. We used 
a 9/1/1999 reference image for path 12 and a 8/14/1995 
image for path 11. Future analyses may wish to include 
more recent reference images.

The normalization processes described in this 
manual are orthogonal regression and principal com-
ponent analysis (PCA). Most regressions are ordinary 
least squares in which residuals are measured along the 
y-axis (dependent variable) from the regression line. In 
other words, only observation errors for the dependent 
variable are taken into account. Orthogonal regression 
(also known as perpendicular regression and total least 
squares) calculates observational errors along both the 
x and y axes (dependent and independent variables) 
and is more appropriate for our purposes because we 
manually select pseudo-invariant ground features. PCA 
involves orthogonal transformation and is appropriate 
for this analysis because analyses involving reference and 
non-reference images always contain two components 
and are therefore easily analyzed with PCA. 

In the unusual event that an image contains no haze, 
radiometric normalization is not technically necessary. 
Unfortunately, haze is difficult to detect visually. It is 
therefore important to compare pixel values between 
the reference and non-reference images for pseudo-
invariant ground features. This is especially important 
for TM band 1. If you encounter small or negligible 
differences in pixel values across the study area, then 
haze effects are minimal and not a concern; however, 
normalizing a haze-free or nearly haze-free image will 
not hurt model performance. 

Model calibration data
Model calibration requires the incorporation of field 

data collected near the date of satellite image capture. 
Ideally, calibration data should cover a spatially balanced 
geographic extent and encompass a wide range of SDD 

values (Nelson et al. 2003). Unfortunately, the lack of 
spatial balance in existing field monitoring is in part 
what prompted this initiative on remote monitoring in 
the first place. SDD data (collected on or near the date 
of satellite image capture) in conjunction with the lake 
pixels from the respective satellite image(s) are used 
to model the relationship between satellite-measured 
reflectance and water clarity. Generally, insufficient 
calibration (SDD) data are available on the same date 
as satellite image capture, and we are forced to use field 
data collected within a certain number of days from 
the satellite overpass. Advantages of creating remote 
SDD-estimation models based on mid- to late-summer 
imagery are that this is the time of year when field data 
are most abundant and when lake conditions are the 
most stable. Olmanson et al. (2008) reported that field 
data collected ±10 days from satellite image capture were 
usable in model calibration; however, time windows 
exceeding ±7 days are rarely, if ever, needed and ±7-day 
windows (or shorter) can be used to calibrate accurate 
models (Kloiber et al. 2002). Longer windows of time 
allow more data to be included in calibrations, but the 
likelihood increases that lake conditions may change 
from those captured by the satellite. In general, calibra-
tion datasets of ±1 to 3 days are suitable. The smallest 
calibration dataset we successfully used included 31 
data points, but using 50 to 60 points helps ensure 
wide geographic and numeric variability of SDD values. 

Why are average lake depth and watershed 
wetland area included in models?

Although there are advantages to relying solely 
on satellite data as the independent variable, adding 
ancillary variables that reflect conditions of the study 
landscape improves the accuracy of the model when 
they are available. We analyzed the effects of several 
lake and watershed variables on regional water clar-
ity and found average lake depth and the proportion 
of watersheds covered by wetlands to be consistently 
significant predictors of SDD. We also tested lake area, 
lake perimeter, area/perimeter ratio, watershed size, 
total watershed wetland area, elevation, and maximum 
lake depth and found these variables to be inconsis-
tently correlated with SDD or redundant with average 
depth and watershed wetland area. It is possible that 
some of these variables may be correlated with water 
clarity of lakes in areas other than Maine. In addition, 
Maine’s lakes are relatively clear and generate weaker 
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satellite reflectance values than more productive lakes 
(e.g., those in the Great Lakes Region); hence ancillary 
predictor variables are particularly useful in a clear 
lake dataset. We found that addition of ancillary data 
improved model R² by 0.03–0.07.

The effect of ancillary variables is subject to geo-
graphic variation. In Maine, the proportion of lake 
watersheds containing wetlands is a strong predictor 
of SDD in path 11 lakes, but not in path 12 lakes. The 
likely explanation for this is that the area encompassed 
by path 12 is relatively mountainous with fewer wet-
lands, whereas wetland coverage is reflective of eastern 
Maine geography. Wetlands are a source of dissolved 
organic carbon (DOC), which negatively affects water 
clarity (Detenbeck et al. 1993). Additional variables 
(e.g., portion of watershed devoted to agriculture) may 
drive regional SDD elsewhere, so including variables that 
describe local geography may improve the predictive 
capacity of water-clarity models in other regions. Asking 
the questions What landscape factors potentially influ-
ence water clarity? and How can they be incorporated 
in remote lake monitoring? will identify variables to 
include in the predictive models.

What software have we used?
All of the GIS analyses described in this report 

were designed for use in ArcGIS® version 10.0. ERDAS 
Imagine® is an alternative software package, but our 
specific directions would need some modification for 
use in ERDAS.

We used R version 2.12.0 for all statistical analyses, 
along with the user interface Rcmdr. Rcmdr provides 
some relief from the command-line interface of R. The 
instructions in this manual follow the use of R and 
Rcmdr, but other statistical software may be used if 
desired. R can be freely downloaded (cran.r-project.
org). R is particularly useful for the principal component 
analysis portion of radiometric normalization, but users 
may find that other software packages are easier to use 
for building regression models.

What projection is used?
GloVis provides Landsat images of Maine in a 

WGS1984 UTM Zone 19N projected coordinate system. 
All analyses in this manual, including analyses of MODIS 
imagery, were performed using this coordinate system. 
The data layers we reference are also in this projection. 

If you create any of your own layers, continue to use this 
projection to maintain spatial accuracy and consistency. 

Analysis of spatial and temporal patterns of 
water clarity

A frequent application of satellite-based remote 
sensing of water clarity is change detection over space 
and time. Analyses of detection of multiyear changes 
require the use of images captured at roughly the 
same time of year. Therefore, use of August and early 
September images is ideal, assuming that the intent is 
to characterize regional water clarity at the seasonal, 
late summer low just prior to fall turnover. Restricting 
analyses to August and early September unfortunately 
is problematic owing to the 16-day temporal resolution 
and because clear imagery is not reliably available. A 
maximum of three images for both paths 11 and 12 
would be available each year. Clear, usable imagery was 
available in August and early September in 2009, 2010, 
and 2011, but no clear imagery was available during this 
time of year from 1990 to 1994. Remote monitoring 
must be flexible and cannot adhere to a strict expecta-
tion of image availability every certain number of years. 
Some years will have multiple dates with clear imagery, 
whereas several years may pass without clear imagery 
during August and early September.

Analyzing path 11 in one year and path 12 in the 
next may lead to biased conclusions about statewide 
water clarity owing to geographic differences between 
the two paths. An alternative, practical approach is to 
focus analysis on the overlap region between paths 11 
and 12 (Figure 2). This area represents a belt transect, 
covers a strong north-south gradient, and contains 570 
lakes > 8 ha. The primary advantage of analyzing the 
overlap region is the ability to use images from either 
path for the purpose of detecting changes, essentially 
doubling the chances of obtaining a clear image in a 
given year. Another advantage is the ability to analyze 
the same lakes in successive years. Focusing study on the 
overlap region does not result in data loss; whereas only 
lakes in the overlap region would be used for detecting 
changes, data still could be collected for all other lakes 
> 8 ha in the originally analyzed path.

A useful method for detecting potential changes in 
water clarity across space and time is to divide Maine into 
regions. Peckham and Lillesand (2006) and Olmanson 
et al. (2008) used Landsat data to analyze changes in 
clarity of Wisconsin and Minnesota lakes, respectively, 
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using Omernik’s (1987) Level III ecoregions. Only two 
Level iii ecoregions cover substantial portions of Maine, 
rendering an ecoregion analysis no more effective than a 
comparison of Landsat paths 11 and 12 (which roughly 
correspond to the two ecoregion boundaries). The U.S. 
EPA currently recognizes Level iv ecoregions (19 in 
Maine), which could potentially be used in fine-scale 
analyses of estimated SDD. (This link provides maps 
and data specific to Maine [ftp://ftp.epa.gov/wed/
ecoregions/me/].) The most practical, simple way to 
divide Maine may be to use the three MDEP-recognized 
“modified ecoregions,” or lake regions, based on mor-
phometric and chemical lake variables: northeastern, 
south-central, and western (Bacon and Bouchard 1997) 
(Figure 2). All three lake regions are well represented 
in the overlap area, which includes 227, 256, and 162 
sample stations on lakes > 8 ha in each respective region 
(some lakes contain > 1 station). It is not practical to 
model each lake region separately because there are 

generally insufficient calibration data in the relatively 
remote northeastern and western lake regions. 

Technical Methods

Image preprocessing and cloud removal

1. create a working directory. Data orga-
nization is of critical importance, even for 
experienced GIS users. Create a folder such 
as P12_8.17.11 (which in this example is a 
placeholder for Landsat path 12 and the image 
acquisition date of 17 August 2011). You will 
later create a series of subfolders within this 
main folder. 

2. order and download images. Preview and 
select images (scenes) from GloVis. Inspect all 
scenes from the desired path (path 12: rows 
27–30; path 11: rows 27–29). Before using the 
service, you must create a free user account 
and provide some basic information. You may 
wish to refer to the user guide available on the 
GloVis website. Some images must be ordered 
and cannot be immediately downloaded, in 
which case you will receive an email when 
the download is ready (may take a few days). 
Download as GEOTIFF files if you are present-
ed with data format options. The image files 
will be provided in a *.tar.gz compressed for-
mat. You will need a program to unpack down-
loaded files. We used 7zip (www.7-zip.org), a 
free Windows-based application to uncompress 
image files. Create subfolders for each scene in 
your working directory and extract each image 
to its respective subfolder. Note: scene files are 
large and an analysis of a path may require 10 
GB. You can save disk space later by deleting 
unnecessary intermediate files you create dur-
ing analysis.

3. create composite images. Each scene has 
seven (eight for Landsat 7) band files ending in 
B10 for TM band 1, B20 for TM band 2. Band 
6 is split into two separate bands: B61 and B62 
(low and high gain, respectively) in Landsat 7 
images. Load all bands from a single scene (e.g., 
path 11, row 29) into a blank GIS map docu-
ment. Navigate to the Composite Bands tool 
(located under Data Management Tools, Raster, 

Figure 2. Map of lake regions of Maine and 
overlap region between Landsat TM paths 11 
and 12, containing 570 lakes > 8 ha. 
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Raster Processing). Add all bands to the input 
list and order them lowest to highest. Save the 
composite band file in the same folder as the 
other bands of the respective scene, naming 
it similarly (e.g., L71011029_0290120601_
Comp). Repeat this procedure for each scene 
in your analysis. Save the map document per 
example: P12_8.17.11 (path number, date) 
(the underscore is unnecessary, but it is a good 
file-naming habit when designating path names 
with anything GIS-related).

4. mosaic images. Add individual scene images 
(27–30 for path 12, 27–29 for path 11) from 
TM band 1 to the map. Create a subfolder 
“Mosaic” in your working directory. In the tool-
box, navigate to Data Management Tools, Raster, 
Raster Dataset and select Mosaic to New Raster. 
Add all TM1 images as Input Rasters. Specify 
the Mosaic folder as the Output Location. 
Under Raster Dataset Name with Extension, 
type “TM1_Mos” (if you do not specify a file 
extension, the program defaults to a GRID file 
format, which is fine). Enter 1 in the Number of 
Bands field (if mosaicking a composite image, 
enter 7 for Landsat 5 scenes or 9 for Landsat 7 
scenes; B61 and B62 are considered two bands.) 
Under Mosaic Operator, select MAXIMUM. The 
black areas have pixel values of 0, so when 
scenes overlap, the computer uses the non-zero 
pixel values to build the mosaic. Repeat these 
steps for the TM3 and composite images. 

 Note: The color scheme may automatically 
change after mosaicking or extracting; the soft-
ware automatically recolors images according to 
the range of values in the image (which you just 
manipulated by cropping out certain areas).

5. identify clouded areas. Add the mosa-
icked composite image to your map. The RGB 
combination 1, 6, 6 (visible blue and thermal 
infrared) allows easy visual interpretation 
of the extent of clouds and cloud shadows. 
Select Symbology from the composite image’s 
Properties. Under the drop down menus next 
to red, green, and blue, select bands 1, 6 and 6, 
respectively. Red and pink areas will indicate 
clouds. Another useful RGB combination is 

bands 3, 2, 1, which represent “true color” and 
may be a useful reference (Figure 3). (Note: if 
an image contains no clouds over Maine, ignore 
steps 6–8).

6. unsupervised classification. Add the 
mosaicked TM1 and TM3 to the map. Enable 
the Image Classification toolbar via the 
Customize, Toolbars pull-down menu. In the 
Image Classification toolbar, select Iso Cluster 
Unsupervised Classification. Add the TM1 mosa-
icked image to the Input raster bands list. Enter 
10 under Number of classes. Create a subfolder 
“Unsupervised” in your working directory and 
save the classification raster as “TM1_US” 
(there is a 13-character name limit if you save 
in GRID format). Repeat this process for TM3, 
naming the output “TM3_US.” It is not neces-
sary to classify the composite image.

7. reclassify cloud pixels as null. Zoom in 
on a particularly clouded area, using the RGB 1, 
6, 6 image as a reference. In the TM1_US and 
TM3_US raster layers, change the colors of the 
pixel classes that show up as clouds (by double 
clicking on the colored boxes in the table of 
contents) to a single color (e.g., black). Enable 
the Spatial Analyst extension under Customize 
(pull-down menu), Extensions, Spatial Analyst. 
Use the Reclassify tool (located under Spatial 
Analyst Tools, Reclass) to reclassify clouded pixel 
classes as null values. The input raster should 
be the unsupervised classification file (e.g., 
TM1_US). Reclass field should default to value 
(which is what you want). Enter “No Data” in 
respective boxes for pixel classes that represent 
clouds in the New Value column. Create a sub-
folder “Reclassified” in your working directory 
and save the reclassification as “TM1_RC” (RC 
= reclassified). Repeat this process for TM3.

8. eliminate cloud pixels. Use the Extract 
by Mask tool (under Spatial Analyst Tools, 
Extraction) to remove cloud pixels from further 
analysis. Select the original TM1_Mos file as 
the input raster. Select the respective band 
reclassification file (TM1_RC) as the feature 
mask data. Create a subfolder “Extraction” in 
your working directory and save your file as 
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“TM1_ebm” (ebm = extract by mask). Repeat 
this process for TM3. 

Radiometric normalization

1. identify a reference image. The reference 
image must have minimal haze and be as clear 
as possible. For paths 11 and 12, we used im-
ages captured on 8/14/1995 and 9/1/1999, 
respectively. For future analyses, though, it 
may be preferable to use more recent reference 
imagery. The likelihood of pseudo-invariant 
ground targets undergoing change increases 
with longer gaps between reference and 
non-reference images. Add TM band 1 and 
3 files from your reference image to the map 
document.

2. add normalization polygons. Pseudo-
invariant ground targets used for normaliza-
tion must be well distributed geographically 
throughout the study area and span dark and 

bright features. Add the buffered normaliza-
tion point file (polygon shapefile) for the 
appropriate path. The path 11 file contains 
more polygons because cloud obstruction is 
more prevalent in this path. Check to see if 
clouds or fog are obscuring any of your poly-
gons, and if so, select all unaffected points and 
export these as a new layer in a new subfolder 
“Normalization” (right-click on layer in table of 
contents, select Data, then Export Data). If no 
polygons are affected, simply export the whole 
layer anyway to the Normalization subfolder 
as “Normalization_Pts_8.17.11” (replace 
8.17.11 with your project folder date). Select 
Yes when asked to add the layer to the map. 
Path 12 features were buffered using a 50-m 
radius, but the path 11 features were buffered 
using only a 10-m radius because many of 
the target features are smaller. A 10-m buffer 
may or may not contain multiple pixels, but 
this is okay. Single pixels may also be used if 

Figure 3. (a) True color composite image (RGB 3, 2, 1) and (b) cloud indicator visible blue/
thermal infrared composite image (RGB 1, 6, 6) of path 11 Landsat TM image captured  
8-9-05. Images considerably cloudier than this image (8%) are not recommended for use.
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clouds are covering desired parts of features 
(we used this technique occasionally in path 11 
normalization). 

3. extract satellite data from ground 
targets. Use the Zonal Statistics as a Table tool 
(under Spatial Analyst Tools, Zonal) to calculate 
the mean pixel value in each buffered zone. 
Note that if you are using single pixels, you 
may choose to use the main identify tool (blue 
circle with an “i”) and manually enter values 
into a spreadsheet. In Zonal Statistics as a Table, 
set Feature zone data = buffered normalization 
points (e.g., Normalization_Pts_8.17.11), Zone 
field = Name, Input value raster = TM1_ebm 
(or TM1_Mos if no clouds). Save your table 
as “TM1_Norm” in the Normalization folder. 
Uncheck the box next to Ignore No Data (if any 
points were obscured by clouds and you did 
not delete them earlier, this will discard them 
automatically in the output table). Repeat this 
process for TM3 (TM3_ebm or TM3_Mos) and 
for the reference images for TM1 and TM3. 
Save the reference image tables as “TM1_Ref” 
and “TM3_Ref” in the Normalization folder. 

4. join tables together. Join the reference and 
non-reference tables together as one table. Use 
Name as the join attribute. Export the resulting 
table to the Normalization folder as a .csv file. 
Set Save as Type to Text File and type extension 
.csv after the table name (e.g., Norm_81711.
csv). Note: avoid periods or other punctuation 
marks when saving .csv files (other than in the 
file extension itself).

5. prepare table for analysis. Open the .csv 
file containing normalization data (created 
in Step 4) in Excel. Delete all columns except 
those containing the names of the ground 
features and the satellite data. Rename satel-
lite data columns as “TM1_Ref,” “TM1_(year),” 
“TM3_Ref,” and “TM3_(year).” Inspect all data 
columns. If numbers in non-reference columns 
are vastly different from reference columns, it 
is possible that specific ground features were 
affected by undetected clouds. Inspect non-ref-
erence images and eliminate features if neces-
sary. Permanent modifications may eliminate 

usefulness of a particular ground feature. It 
is also possible that temporary modifications 
(such as construction) may be responsible for 
pixel differences. In analysis of a 9-1-2008 
image, we found it necessary to eliminate 
the normalization polygon for the Portland 
International Jetport owing to temporary con-
struction. Resave the .csv file.

6. normalization analysis. Open R and 
load the Rcmdr package via the command  
library(Rcmdr). As with any R pack-
age, you may need to install Rcmdr if it is not 
currently on your system. Rcmdr is a useful 
package that provides a GUI (graphical user in-
terface) for R and its many functions. Rcmdr is 
useful in this step only to load the appropriate 
dataset (hereinafter referred to as “Dataset”). 
Load the dataset under Data (pull-down menu), 
Import data, from text file, clipboard or URL. 
Select Commas as the Field Separator. The R com-
mand princomp (stat.ethz.ch/R-manual/R-
patched/library/stats/html/princomp.html) 
will be used to conduct the PCA within the R 
console.

 Once the dataset is loaded into R, run the fol-
lowing command (note that the variable names 
TM3_2011 and TM3_Ref refer to the column 
names you defined in Step 5).

PC3=princomp(~TM3_2011+TM3_Ref, 
cor=FALSE,data=Dataset)

 The results of the PCA are stored in the variable 
PC3. In the next step, you will list the loadings 
and center parameters.

show(PC3$loadings) 
show(PC3$center)

 Your output for the loadings parameter might 
look something like this:

Loadings: 
 Comp.1  Comp.2 
TM3_2011 0.673 -0.739 
TM3_Ref 0.739  0.673
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 Your output for the center parameter might 
look something like this:

 TM3_2011    TM3_Ref  
    58.817     66.725

 Record the loadings and center values on a 
sheet of paper or an empty spreadsheet. For 
each variable (TM3_2011, TM3_Ref), you 
should have at least two components (Comp.1, 
Comp.2). Repeat the above steps for TM1.

7. construct the normalization equation. 
Use the second eigenvector (component 2 in 
the loadings parameter) of the PCA and the 
centers (means of the reference and non-refer-
ence data) to obtain the normalization equa-
tion in y = mx + b format (where m represents 
gain, b represents offset, x is the original pixel 
value, and y is the normalized pixel value). TM1 
and TM3 images must be normalized in sepa-
rate calculations. 

 Continuing with our example in Step 6, the 
equation for TM3 will take on the following 
form

 −0.739(x − 58.817) + 0.673 (y − 66.725) = 0

 Using basic algebra, we can solve for y to gener-
ate the equation’s final form

 y = 1.098x − 4.336 

 Repeat the same process for TM1, generating a 
separate equation.

 Note: a gain (coefficient m) value of < 1 repre-
sents a potential loss in radiometric resolution 
(shrinking of the range of pixel values in your 
data). To correct for this, multiply the equation 
by the inverse of the gain value (i.e., 1/m). If 
normalizing more than one set of images, mul-
tiply all equations by the inverse of the lowest 
gain value (K. Legaard, University of Maine, 
pers. comm.). Keep the reference image as is.

8. map algebra. Use the Raster calculator to nor-
malize the pixel values (under Spatial Analyst 
Tools, Map Algebra). Build the expression by 
typing directly into the expression box or by 
selecting and double-clicking items from map 
layers and variables and using the operations 
keypad. Following our sample equation for 

TM3, our expression for the normalization of 
TM3 imagery will be 

 (1.098 × TM3_ebm) − 4.336. 

 Save the output raster in the Normalization 
subfolder as “TM3_Norm.” Follow the same 
steps to normalize TM1 imagery (TM1_ebm) 
using the equation generated for TM1 in Step 
7. Once you have a normalized rasters, you are 
ready for model calibration.

 Note: an offset value that results in negative 
values (more likely to be a problem with TM3 
because we are interested in greater TM1 val-
ues that are less likely to approach zero) should 
receive an added constant (some number large 
enough to make all pixel values of interest > 0) 
(K. Legaard, pers. comm.). If normalizing more 
than one set of images, add the constant to all 
normalized images. Keep in mind that you are 
interested only in lake pixels, so it is possible 
to have negative values in your dataset that are 
not contained in lakes.

Model calibration and development

1. compile field data. Open the spreadsheet 
of field data for the year of interest. Sort all 
entries by date, oldest to newest. Select all field 
data collected ±3 days of image capture and 
copy to a new spreadsheet, along with the col-
umn headings. Re-sort this new spreadsheet by 
SECCBOT, A to Z, and remove all rows contain-
ing bottomed out Secchi data (indicated as “B”). 
Next, re-sort by MIDAS (Maine lake identifica-
tion number), smallest to greatest, and then by 
date, oldest to newest. Save the spreadsheet in 
your working directory as “SecchiData_8.17.11” 
(or the date pertaining to your project).

2. create new calibration points layer. In 
your working map document, add the Landsat 
remote sampling points layer (Landsat_
SamplingPts_75m). This layer contains circular 
(75-m radius) remote sampling stations used 
to extract satellite data from lakes. Attributes 
contain the name of each lake, sample sta-
tion number, MIDAS, unique remote sampling 
station identifier (IAN_ID) and various physi-
cal lake and watershed measurements. Add 
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the shapefile for either path 11 or 12 and use 
the Clip tool (under Analysis Tools, Extract) to 
remove points outside your path of interest. 
Save the data layer in a new folder “Remote_
Sampling” within your working directory as 
“Calibration_Pts_8.17.11.” Remove the original 
master points layer.

3. check for cloud shadows. Cloud shadows 
can make portions of images appear darker 
than they actually are, and in some cases, ap-
pear similar to lakes. Use the RGB 1, 6, 6 band 
combination to check for lakes potentially 
affected by cloud shadows and delete respective 
lake stations from the calibration points layer. 
The most efficient way to do this is to zoom in 
on clouded areas and inspect images visually. 
If you are spending an inordinate amount of 
time trying to avoid cloud shadows, your image 
might be too cloudy for analysis in the first 
place. 

4. check for fog. Unfortunately, the unsuper-
vised classification is insensitive to foggy areas, 
which tend to form over large lakes and the 
coast. Landsat captures imagery during mid-
morning when fog may not have completely 
dissipated. Fog causes some scattering and 
the automated classification may identify fog 
pixels simply as relatively bright lake pixels. 
Therefore, if fog is undetected, shallow Secchi 
values may be falsely predicted. Manually zoom 
in on large lakes throughout the state and 
inspect for fog. Remove suspect lake stations 
from the Calibration_Pts_8.17.11 layer.

5. enter field data into gis. Open the calibra-
tion point attribute table and sort entries by 
MIDAS, smallest to greatest. Make sure the 
Editor toolbar is checked on (under Customize, 
Toolbars). In the Editor toolbar, select Start 
Editing and the Calibration_Pts_8.17.11 as the 
layer to edit. Scroll through the spreadsheet of 
available field data and enter the Secchi disk 
depth (m) values in the Secchi column. Also in-
clude the date in the date column (enter as 8-17 
for August 17). If a lake station was sampled 
more than once during the 3-day window, use 
the data from the date closest to image capture. 
If choosing among data points an equal number 

of days from image capture, average the values 
(this also applies to multiple samples taken on 
the same day) and record either date. Pay atten-
tion to lakes with multiple sample stations and 
avoid substituting data from among different 
stations (e.g., do not use field data taken at a 
sample site #1 as calibration data for a sample 
site #2). Periodically save your edits as you add 
data to the table (under the Editor toolbar). 

6. extract satellite data. Use the Zonal 
Statistics as a Table tool (under Spatial Analyst 
Tools, Zonal) to extract the mean pixel value 
in each 75-m zone of the remote sampling 
sites. Use the Calibration_Pts_8.17.11 layer 
as the feature zone data. Select IAN_ID as the 
zone field. Select desired satellite band image 
(e.g., TM1_Norm) as the Input value raster. Be 
sure to use the normalized image file. Create 
a subfolder “Zonal” in your working directory 
and save the output table TM1_75m in this 
folder. Uncheck the box next to Ignore NoData. 
This ensures that any 75-m areas which in-
clude cloud pixels are removed from the zonal 
extraction. Select MEAN under Statistics type 
and click OK. Select Yes if prompted to add the 
output table to the map. Repeat for TM3.

7. add satellite data to calibration data 
layer. Right click on the calibration data layer, 
select Joins and Relates and then Join. Select the 
option to join attributes from a table (usually 
the default). Select TM1_75m as the table to 
join to this layer. Select IAN_ID as the base field 
in each drop down menu. Select Keep all records. 
If you make an error, keep in mind that joins 
are completely reversible. Repeat this process 
for TM3_75m. This will create a second join to 
the calibration data layer.

8. export joins to a permanent layer. Open 
the attribute table of the calibration data layer 
to inspect join results. A successful join should 
look like the original attribute table of the 
calibration data layer with extra columns from 
the TM1 and TM3 zonal statistics tables added 
to the right end of the table. Right click on the 
layer in the table of contents, select Export and 
resave the joined layer in the Remote_Sampling 
subfolder as SecchiTM_8.17.11 (the file name 
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indicates that this file contains Secchi and 
satellite data). Indicate Yes when asked whether 
to add this layer to the map, inspect that the 
export was successful, and remove the original 
calibration points layer from the table of con-
tents. At this point, you may wish to clean the 
new layer’s attribute table by removing redun-
dant or unnecessary attributes. Delete joined 
columns except for those containing the TM1 
and TM3 pixel values. You can temporarily rela-
bel column headings as aliases in the attribute 
table; however, you will have to do so again in 
Excel after exporting the table.

9. export spreadsheet of calibration data. 
Open the attribute table of SecchiTM_8.17.11 
and sort by date. Select all entries containing 
a date (some rows may contain no satellite 
data owing to cloud interference) and export 
(via the attribute table dropdown menu) the 
selection as .csv table to the Remote Sampling 
subfolder as “SecchiTM_81711_3d” (.csv does 
not support many character types, but under-
scores are okay). The “3d” designation indicates 
inclusion of field data captured ±3 days of the 
satellite overpass. You will have to type the ex-
tension .csv in the Output table name field box 
(in place of default .dbf).

10. organize calibration spreadsheets. Open 
SecchiTM_81711_3d in Excel. Create a new 
column “lnSecchi” and calculate the cell values 
using the natural log function 

 ln(Secchi column). 

 Sort rows by date if necessary. Save these 
changes. Select rows of data ±1 days from 
satellite overpass, copy to a new spread-
sheet and save as a new .csv file named 
“SecchiTM_081711_1d” in the Remote_
Sampling subfolder. 

11. model calibration in r. 

a. In Rcmdr, import your desired calibration 
dataset per instructions in Step 6. Retain 
the default name (Dataset), or rename your 
dataset as desired. Navigate to the Remote_
Sampling folder and select either the ±1- or 
3-day data file (depending on which one you 
want to try first). 

b. From the Rcmdr window, select Fit mod-
els, Linear model under the Statistics menu. 
lnSecchi is the response (dependent) 
variable. Select the variables TM1, TM3, 
AVGDEPTHFT (average lake depth in feet) 
and PctWet (percentage of wetland cover in 
a watershed) as the predictor (independent) 
variables. Click OK. 

 Note: PctWet is not a consistent, strong 
predictor of water clarity in path 12 models 
owing to the lack of large wetlands in west-
ern Maine. 

c. Figuring out the best model can be a multi-
step process. Nonsignificant variables can 
sometimes be eliminated, but keep in mind 
that path 11 and path 12 models generally 
adhere to the following:

 Path 11: lnSecchi = TM1 − TM3 +  
AvgDepth  −  PctWet + intercept

 Path 12: lnSecchi = TM1 − TM3 +  AvgDepth + 
intercept

 TM1 may contribute little to model per-
formance in turbid waters. The short wave-
lengths of TM1 do not penetrate these waters 
well, and this phenomenon may be reflected 
by its nonsignificance, provided the calibra-
tion data accurately represent the greater 
population of Maine lakes. Additionally, 
AvgDepth may contribute little to the model 
if fall turnover has occurred.

 R² is a good cursory measurement of model 
performance, but outliers may be affecting 
R². Under the Models menu, select Graphs and 
basic diagnostic plots. The top two graphs are 
particularly useful. The residuals vs fitted val-
ues plot indicates whether there are any data 
points with particularly large residuals. The 
normal Q–Q plot shows potential departures 
from assumed normality in error (as well as 
large residual values). 

 Steps d–f are best conducted together. 
Regression assumptions of normal error and 
constant variance should be verified in con-
junction with potential outlier removal.
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d. Use the Bonferonni outlier test to 
check for potential outliers. Type 
outlierTest(Model name) in the 
command prompt. Any data points with 
a Bonferonni p < 0.05 will be displayed. 
Attempt removal of each data point one by 
one and observe changes in R² (use the Edit 
data set button to remove data values; note 
that eliminating the lnSecchi value elimi-
nates the entire data entry from analysis). 
Reinspect diagnostic plots with each new 
model.

e. Verification of constant variance assump-
tion: Select Models, Numerical diagnostics 
and Breusch-Pagan test for heteroscedasticity. 
Default settings for this test are fine. A p 
value < 0.05 means the assumption of con-
stant variance likely has been violated. 

f. Use the Shapiro-Wilk normality test to verify 
the normal error assumption: Type: shap-
iro.test(rstudent(Model name)). 
A p value < 0.05 means the normality as-
sumption likely has been violated. If you are 
able to justify eliminating data points with 
large residuals, doing so can improve the 
Shapiro-Wilk p value. 

g. Note, or copy and paste all final model output 
information into a spreadsheet or word-
processing file. You may still wish to repeat 
these steps using calibration windows of 
different lengths to compare results, particu-
larly if calibration datasets contain < 30 data 
points. With smaller calibration datasets, 
there is some risk of fitting models that fit 
the calibration data but not actual conditions 
throughout the landscape. In summer, cali-
bration windows of ±3 days usually contain 
enough data if ±1 day windows do not. 

h. Add residuals and fitted values to the data 
table under Models, Add observation statistics 
to data. Make sure you have the correct model 
selected as the active model (beneath the 
toolbar).

i. Export resulting data table via Data, Active 
data set, Export active data set. Check write 
variable names and write row names. Select 

commas as the file-delimiter option. Click 
OK. Navigate to the Remote_Sampling folder 
and save as .csv as “Export_1d_81711” (if 
using a 1-day window). You can then use this 
spreadsheet to graph and calculate differenc-
es between observed and model-estimated 
SDD values.

j. Not all lakes have bathymetric data. 
Therefore, it is necessary to fit alterna-
tive models using the same methods de-
scribed above without depth as a variable, 
even though it is a significant predictor. 
Alternative models are used only to estimate 
clarity of lakes with unknown depth. Use the 
same calibration data, but record the alter-
nate model in your working spreadsheet or 
word processing document. A few lakes may 
also be missing wetland data, in which case 
you may need another alternate model (path 
11 only).

12. estimate regional water clarity. In your 
map document, export the attribute table of 
SecchiTM_81711 as “Remote_Secchi_81711.
csv.” This file already contains satellite data 
extracted from all eligible lakes > 8 ha in size in 
the path study area unaffected by clouds. Open 
the exported table in Excel and use the final cal-
ibrated model to estimate water clarity for the 
unsampled lakes in the path. Remember that 
the model estimates ln(Secchi), so the actual 
Secchi disk depth = 2.71828 ^ (model-
estimated lnSecchi). It is helpful to sort 
rows by average depth to make applying the 
alternate model in the absence of depth data 
more efficient.

13. analysis of trophic states. It is often useful 
to classify and analyze lakes by trophic status. 
SDD < 4 m = eutrophic, 4–7 m = mesotrophic 
and > 7 m = oligotrophic (Maine PEARL 2011).

Model validation
Model validation is necessary to determine if mod-

els suitably represent the greater population of lakes 
and not just the calibration data. Calibration datasets 
that are small or poorly distributed numerically or geo-
graphically are more likely to produce models that fail 
to pass validation. Model validation may not be strictly 
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necessary if the primary interests are the bottom-line 
SDD estimates (i.e., there are no plans to publish a sci-
entific paper); however, model validation provides an 
indication of the repeatability of the modeled results. 
If you are at all concerned that your model is a relic of 
your calibration dataset, validation can verify or refute 
this suspicion. It is the decision of the user whether to 
perform validation.

The models described in this manual were validated 
using calibration datasets of 31–119 data points. If 
the calibration dataset contains < 50 points, use leave-
one-out jackknifing. If it contains ≥ 50 points, use sub-
samples of a random 25% of the calibration dataset. If 
primary models (containing depth) have been validated, 
validation of alternative models is unnecessary because 
alternative models contain the same calibration data.

Leave-one-out jackknifing
This method involves running models using the same 

input parameters with calibration datasets consisting of 
all but one data point. The idea is to determine if single 
points have disproportionately large influences on the 
rest of the model. Outliers have already been removed, 
but influential data entries may still remain. Influential 
data entries are not necessarily bad; the purpose of jack-
knifing is not to suggest removal of certain data points, 
but rather to determine if the model was fit the way it 
was because of specific data points. To reiterate, you 
want a model that represents the greater population 
of lakes, and if certain models demonstrate consider-
able change in predictive capacity as a result of slight 
changes in the calibration dataset, you may not have a 
truly representative model.   

The easiest way to perform jackknifing is to reload 
the calibration dataset used in the final model in R. 
Delete the first data entry (i.e., the first record in the 
dataset) and run the model using the same variables 
defined in the original model. Create an Excel spread-
sheet to record the coefficients of all input variables, 
intercepts as well as R² (if desired for reference). Add the 
first data entry back into the dataset, delete the second 
entry and rerun the model. Add the second entry back 
into the dataset, delete the third entry and so on. Once 
all jackknifed models have been run, average the variable 
coefficients and intercepts and compare to those of the 
original model. If the numbers are all reasonably close, 
then the model has passed validation. “Reasonably close” 
is subjective, but if you are unsure what constitutes 

reasonably close, try applying the jackknifed model and 
the original model for SDD estimation and compare the 
results. If they are acceptably similar, validation has been 
successful. Save the spreadsheet of jackknifing results 
in a new folder “Validation” in your working directory. 
Use the original model for SDD estimation, not the 
jackknifed model (only used for validation purposes).

The following is the sole jackknifed model we used 
in our manuscript (we generally used > 50 data points 
in our model calibrations). The coefficients are more 
than reasonably close, and no single calibration point 
was particularly influential on the model.

Original model: -0.4270 (TM3) + 0.0045 (AvgDepth) + 6.202

Jackknifed model: -0.4274 (TM3) + 0.0045 (AvgDepth) 

+ 6.203

Subsampling
Subsampling is not practical with small calibration 

datasets because there are too few data. A cutoff of 50 
calibration points ensures adequately large subsampled 
datasets consisting of 25% of the original entries (W. 
Halteman, University of Maine, pers. comm.). The gen-
eral procedure for subsampling is to create 10 random 
subsets of 25% of the original calibration dataset, run 
the original model using these subsets and then compare 
the SSE (sum of squared error) to the PRESS (predicted 
residual sums of squares).

Ideally, we would resample field data or use sub-
samples of data not used in model calibration (reserve 
data). Because we are working with historical data and 
use all available calibration data within a specified time 
frame, neither of these options is practical.  

1. Excel can be used to select a random 25% of 
the calibration dataset. For example, a calibra-
tion dataset of 60 data points should produce 
random subsets of 15 data points each. Open 
the final calibration dataset in Excel. Insert two 
blank columns to the left of column A. Enter 
rand() in the top cell of the new column A 
and copy/drag into all data rows. Copy these 
cells and paste as values (right click on destina-
tion cells, then click on the 123 icon; use Paste 
Special in older versions of Excel) into column B.

2. Select all data in the spreadsheet and sort by 
column B, smallest to largest. Copy the desired 
number of rows to a new Excel spreadsheet. 
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Delete columns A and B. Save each spreadsheet 
as a .csv as “Subsample1_2011.” Repeat steps 1 
and 2 nine times to create 10 validation data-
sets. Save these subsets in a subfolder named 
“Validation” in your working directory.

3. Open R, Rcmdr and load Subsample1_2011 in 
R. Create a model using the same input vari-
ables as the original model. 

4. Create an Excel spreadsheet and save it as 
“Validation_08.17.2011.” Create columns to 
record SSE and PRESS statistics.

5. Retrieve SSE from the analysis of variance 
table associated with the linear model. Type 
anova(model name). The Sum Sq value next 
to residuals is SSE.

6. Get the PRESS statistic using the command
sum((model name$residuals/
(1-hatvalues(model name)))^2).

7. Repeat for the remaining nine subsamples. 
Compare PRESS statistics to respective SSE 
values for “reasonable closeness,” which is a 
subjective evaluation. Table 3 contains the 
results of a validation of a 1995 Landsat-based 
model in which differences between SSE and 
PRESS statistics were deemed reasonably close.

Mapping water clarity 
Creating a water-clarity map is quick and easy. Join 

a table of estimated SDD values to the lakes GIS layer, 
using MIDAS as the join attribute, keeping only matching 

values. Export the join as a new layer, if desired. You 
can edit the layer symbology to display lakes according 
to different categories of water clarity, such as trophic 
states. Be aware that a join will join based on the first 
match of MIDAS numbers in each table (i.e., if a lake 
has more than one sample station, the join will pick the 
first one listed in the table). You can always edit the new 
layer manually, if desired.

Analyzing spatial and temporal patterns of 
water clarity

In the final output spreadsheet containing SDD 
estimates, the Ecoreg attribute can be used to identify 
lake stations in each lake region and analyze regional 
lake clarity (e.g., 1 = northeastern, 2 = south-central, 
and 3 = western). Although some lakes occur in mul-
tiple regions, each 75-m sample station occurs in just 
one region. 

Basic statistics
Statistics are used to make inferences about larger 

populations based on sampling, so if we are comfortable 
assuming that the overlap region adequately represents 
Maine, then there is little need for statistics beyond 
basic comparisons of means, medians, ranges. These 
can easily be calculated in Excel.

Pairwise t-tests 
Pairwise t-tests allow determination of statisti-

cally significant differences between SDD means in two 
separate years. Pairwise t-tests do not require equal 
sample sizes, which you likely will not have owing to 
cloud cover (some lakes will inevitably be obscured by 
clouds). Excel does not compute t-tests with our desired 
requirements, but doing so with the command prompt 
in R is not difficult with the command pairwise.t.test 
(stat.ethz.ch/R-manual/R-devel/library/stats/html/
pairwise.t.test.html). This link explains the meaning 
of the various input parameters. 

1. Let data file = Dataset, with columns for 
SECCHI (estimated SDD) and Year (e.g., 2011)

2. Convert Year to factors rather than a continu-
ous variable. In Rcmdr, select Data, Manage 
variables in active data set and Convert numeric 
variables to factors. Next, select Year, use num-
bers and click OK. 

Table 3.  Example of model validation by subsampling.

Subsample n R² SSE PRESS

 1 30 0.8088 1.2170 2.0012

 2 30 0.7861 1.0840 1.8614

 3 30 0.8389 0.9224 1.4333

 4 30 0.7649 1.2628 2.6664

 5 30 0.8063 1.0603 1.4220

 6 30 0.8776 0.8424 1.3705

 7 30 0.7403 1.8045 2.5664

 8 30 0.8362 0.9939 2.0296

 9 30 0.8072 1.2922 1.6862

 10 30 0.8618 0.8699 1.2611
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3. Conduct pairwise t-tests using the R command 
prompt. Type: 

pairwise.t.test(Dataset$SECCHI, 
Dataset$Year,p.adjust.method="none" 
,pool.sd=FALSE,paired=FALSE,altern
ative="two.sided",var.equal=TRUE)   

4. Copy/paste or transcribe the p-values into 
another document. A p value < 0.05 indicates 
a statistically significant difference (0.05 is the 
standard cutoff in statistics and indicates a 5% 
chance that a detected difference is not really a 
difference and instead a result of chance).

Confidence intervals
Confidence intervals provide useful estimates of the 

true mean based on available data. For example, there 
is a 95% probability that the true population mean falls 
within the lower and upper limits of a 95% confidence 
interval (a 90% confidence interval would be narrower). 
Confidence intervals take into account error (standard 
deviation) and sample size and can be calculated in Excel. 

1. Open the exported table of Secchi estimates 
uniquely identified by IAN_ID in Excel. 

2. Calculate standard deviation using the com-
mand STDEV.P(Secchi value in all 
rows).

3. Use the command CONFIDENCE(alpha, 
standard deviation,n). Alpha = 0.05 
for a 95% confidence interval, standard de-
viation is the value in the cell just calculated 
with STDEV.P and n = number of rows with 
a Secchi value. The number produced by 
CONFIDENCE is the absolute value of the 
number to subtract/add to the overall mean to 
obtain the confidence interval.

PART 2—APPLICATION OF MODIS 
DATA FOR REMOTE WATER- 
CLARIT Y MONITORING 

Uncited methods, findings and explanations in Part 
2 are based on McCullough et al. (2012b, in review b). 

General Methods

What are the advantages of MODIS over 
Landsat?

Landsat is the primary data source for monitoring 
remote water clarity in Maine because more than 1,000 
lakes can be simultaneously assessed in either path 11 
or 12; however, clear Landsat imagery is available ir-
regularly. The twice-daily MODIS image capture is an 
advantage over Landsat, and MODIS 250- and 500-m 
imagery can be used to estimate water clarity of 364 
(≥100 ha) and 83 large lakes (≥400 ha), respectively 
in Maine (Figure 4). For purposes of estimating water 
clarity, the advantage of 500-m over 250-m data is that 
500-m imagery contains both the visible blue and red 
bands, whereas 250-m imagery contains only the red 
band. Although the large pixel size restricts analysis to 
large lakes, the frequent image capture allows monitoring 
to occur annually or intra-annually during spring and 
summer (May–September), whereas Landsat analyses 
are more sporadic. In May, however, adequate calibration 
data often are lacking and some lakes conceivably could 
still be frozen, so remote monitoring in May is relatively 
unreliable. It also is unlikely that sufficient calibration 
data would exist to create an October model; our three 
attempts were unsuccessful. 

Why consider 250-m instead of 500-m 
MODIS imagery?

Although MODIS 500-m imagery enables remote 
monitoring of 83 lakes during May through September, 
these 83 lakes represent a restricted sample of large 
lakes ≥ 400 ha. MODIS 250-m imagery permits remote 
monitoring of 364 lakes ≥ 100 ha (Figure 4), more than 
quadrupling the number of eligible lakes; however, 
250-m imagery does not contain the visible blue band, 
an important predictor of SDD. Without the blue band, 
accurate remote monitoring of lake clarity is unreliable 
during early to mid-summer or periods when algal com-
munities are not well developed. This is because the 
short wavelength of the visible blue band penetrates 
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only relatively clear water, conditions more likely to 
occur early in the growing season. Subsequently, during 
productive periods (e.g., late summer), the blue band is 
less useful than the red band in monitoring remote lakes 
and may even be expendable, enabling use of 250-m 
imagery during these periods. MODIS 250-m imagery 
also contains a near infrared band, but this band is not 
useful for remote sensing of lake clarity.

Lake eligibility requirements
Eligible lakes must be sufficiently large to contain 

three to five contiguous, water-only pixels. Some lakes 
as large as 500 ha with particularly jagged, convoluted 
shorelines are still unsuitable for remote monitoring 
with MODIS data owing to lack of water-only pixels. 
Of the 364 Maine lakes eligible for monitoring with 
250-m imagery, some lakes are as small as 100 ha, 
representing 73% of Maine lakes ≥ 100 ha. Olmanson 
et al. (2011) reported that 125 ha was the eligibility 
cutoff,  at which > 50% of Minnesota lakes were eligible 
for monitoring with 250-m data. The 83 lakes eligible 
for monitoring with 500-m imagery represent 49% of 
Maine lakes ≥ 400 ha.

Image selection
Level 1B Daily Surface Reflectance products (Aqua: 

MYD09; Terra: MOD09) are appropriate for this applica-
tion. Imagery can be freely downloaded from the USGS 
Global Visualization Viewer (glovis.usgs.gov). If using 
250-m imagery, select clear or mostly clear imagery of 
scenes captured during late summer (i.e., August to 
early September) owing to the absence of the blue band. 
This is the same time period targeted for Landsat-based 
change detection analyses (Part 1). Owing to loss of the 
blue band, lakes require well-developed algal communi-
ties that represent peaks or near-peaks of lake primary 
productivity prior to fall turnover. We previously used 
imagery captured during August 7 to September 1 for 
years 2000 to 2011. Imagery captured 8-1-2001 did 
not contain representative late summer lake condi-
tions, but future imagery captured on or around this 
date may not necessarily yield similar results. If using 
500-m imagery, images captured during May through 
September are usable, though May is less reliable owing 
to sparse calibration data.

Figure 4. (a) Map of Maine’s 83 lakes eligible for monitoring with MODIS 500-m imagery and (b) map of 
364 Maine lakes eligible for monitoring with MODIS 250-m imagery.
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Is MODIS a viable alternative to Landsat?
The inherent size differences between Landsat and 

MODIS-eligible lakes, the larger spatial scale of MODIS-
based analyses and the fact that there are at most 364 
MODIS-eligible lakes all render comparisons between 
MODIS and Landsat somewhat difficult (a Landsat 
path can assess more than 1,000 Maine lakes). MODIS 
models are calibrated for all of Maine, whereas Landsat 
models are calibrated only for Landsat path 11 or 12. 
When available, Landsat data are a considerably better 
data source than MODIS based on spatial resolution, 
but given limitations of Landsat image availability and 
uncertainty surrounding current and future Landsat 
satellites, successful development of an alternative, cost-
effective approach for regional remote lake monitoring is 
potentially significant. Because 364 Maine lakes can be 
assessed with 250-m imagery, this data source is likely 
a better alternative to Landsat than 500-m imagery.

We cannot consider MODIS 250-m data a practi-
cal alternative to Landsat unless both produce similar 
results. We compared SDD estimates derived from 
two sets of concurrent Landsat and MODIS imagery 
(8-26-2000, 8-17-2011). The Landsat image from 
8-17-2011 contained considerable fog and initially 
caused disagreement between Landsat and MODIS, but 
removal of foggy lakes established strong agreement 
(t = 0.6891, df = 209, p = 0.492). The Landsat image from 
8-26-2000 contained only minor fog, but we nonetheless 
encountered strong disagreement between MODIS- and 
Landsat-derived SDD estimates. We suspected that 
the coarse resolution of MODIS imagery was failing to 
detect small patches of algal growth, so we resampled 
the Landsat red band (30 m) to 250 m, after which we 
found strong agreement between MODIS and Landsat 
(t = -0.3696, df = 283, p = 0.713). To test this hypothesis 
further, we resampled the Landsat red band in the 2011 
image and also found strong agreement, even when 
including foggy lakes (t = 0.2074, df = 277, p = 0.837). 
Our findings of agreement in both years after upscaling 
suggest that relatively coarse MODIS 250-m data are 
less sensitive than Landsat data to localized areas of 
algal growth and fog. This reduced sensitivity results 
in deeper SDD predictions derived from MODIS than 
from Landsat. Average MODIS-estimated SDD exceeded 
Landsat-estimated SDD by 0.35 m (2000) and 0.49 m 
(2011) prior to resampling, whereas differences were 
0.02 m (2000) and 0.04 m (2011) afterward. 

MODIS 250-m imagery can be used for remote lake 
monitoring during late summer (or during times of algal 
abundance) with the caveat that MODIS-based estimates 
may potentially overpredict SDD. Furthermore, MODIS-
based analyses are inherently biased toward large lakes, 
so assessing statewide lake water quality with MODIS 
data alone requires caution. Random samples of lakes 
would include numerous lakes < 100 ha. A study of 
Wisconsin lakes concluded that assessments of regional 
water quality characteristics are influenced by inclusion 
of small lakes in samples (Hanson et al. 2007). 

Although we might expect similar disagreement 
with 500-m imagery, we actually found no statistically 
significant differences between Landsat and MODIS-
based SDD estimates derived from four sets of concur-
rent imagery. Although annual means in statewide 
clarity based on remote SDD estimates differed 0.01 to 
0.33 m, estimates on individual lakes were quite vari-
able. If common calibration datasets could be used for 
both Landsat and MODIS models, resulting models and 
respective estimates may be more consistently similar. 
The smaller sample size in these analyses could explain 
the inconsistencies between 250-m and 500-m imagery. 
Additionally, 500-m imagery fortunately contained no 
fog, another potential source of MODIS-Landsat dis-
agreement. Despite our findings of agreement, the fact 
that only 83 lakes can be assessed with MODIS 500-m 
imagery renders these data an impractical alternative 
to Landsat.

Methodological differences from Landsat
The methods used to calibrate remote SDD estima-

tion models with MODIS data are similar to Landsat 
methods, though with fewer steps. Steps that are largely 
the same are not repeated here and readers are referred 
to Part 1. Although MODIS imagery must be reprojected 
to WGS1984 UTM Zone 19N, the freely downloadable 
MODIS Reprojection Tool simplifies this step. The Level 
1B daily surface reflectance product that we use in this 
manual does not require atmospheric corrections (e.g., 
radiometric normalization), thus considerably decreas-
ing image processing time. The reduced processing 
time of MODIS data is another notable advantage over 
Landsat. Clouds can be removed by unsupervised clas-
sification as with Landsat imagery, but the twice-daily 
image capture allows users to be especially selective and 
choose completely or nearly cloud-free imagery. Models 
are calibrated in the same manner as Landsat models, 
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although time windows of ±3 days or more usually are 
necessary when using 500-m imagery, given that there 
are only 83 eligible calibration lakes and many of these 
rarely are assessed in the field. As a result, 500-m models 
are generally calibrated with relatively small calibra-
tion datasets and there is increased risk of over-fitting 
models. An over-fit model is a model that closely fits 
the calibration data, but not the overall population of 
lakes. The simplest way to determine if a model is over-
fit is to assess the feasibility of the SDD estimates it 
produces (ask the question: do they make sense?). The 
jackknifing validation procedure also guards against 
over-fit models. When using 250-m imagery, windows 
of ± 1 to 3 days are sufficient and there is relatively less 
risk of over-fitting.

Technical Methods

Initial steps

1. create a working directory. If analyzing 
multiple dates of imagery within a single year, 
create subfolders for each date. Save all files 
associated with each date in each respective 
subfolder. Create a separate map file for each 
date.

2. acquire imagery. Download desired Level 
1B daily surface reflectance imagery (Terra: 
MOD09GA or Aqua: MYD09GA) from the 
USGS Global Visualization Viewer (glovis.
usgs.gov). Scenes H/V 13-4 and 12-4 cover 
Maine. Because images from Aqua and Terra 
are captured on the same day, there is generally 
little difference between images from the same 
day. Aqua imagery, however, is captured during 
the afternoon, after which morning clouds/
fog may have dissipated. The twice-daily image 
capture frequency allows selection of cloud-free 
or nearly cloud-free imagery. You will receive 
an email when images are ready for download. 
Save images according to date in your working 
directory.

3. download and install the modis repro-
jection tool. (https://lpdaac.usgs.gov/tools/
modis_reprojection_tool).  

4. reproject imagery to wgs1984 utm zone 
19n. Open the MODIS Reprojection Tool. Use 
default settings other than those directed here 

(Figure 5). Click Open Input File and navigate to 
the downloaded image. All bands will be auto-
matically placed under Selected Bands; remove 
all except band 1 (sur_refl_b01_1; visible red). 
Click Specify Output File and create a folder in 
your working directory called “Reprojected.” 
Name the file B1_81711. Set Output File Type 
to GEOTIFF. Set Resampling Type to Nearest 
Neighbor. Set Output Projection Type to UTM. 
Click Edit Projection Parameters, select WGS84 
as the datum, type 19 in the UTM Zone box 
and click OK. By leaving Output Pixel Size blank, 
the reprojection will default to 500 m (there 
is no point in making a smaller pixel size; the 
resolution of the data will not change and you 
will only increase file size). Click Run to process 
the reprojection. If analyzing 500-m imagery, 
repeat this process for band 3 (sur_refl_b03_1; 
visible blue) and then for the other image of 
Maine, saving as slightly different file names.

Image processing

1. mosaic images. Complete for bands 1 and 3 
(1 only if using 250-m imagery). Follow step 4 
under “Part 1: Technical Methods: Image pre-
processing and cloud removal.”

2. clip out maine. Use the Extract by Mask tool 
(under Spatial Analyst Tools, Extraction) to 
remove areas outside Maine from analysis. Use 
the band 1 mosaicked surface reflectance image 
as the Input raster and the state shapefile of 
Maine as the mask. Create a subfolder “Cut,” 
and save extracted band 1 files as “B1_81711_
cut.” Repeat for band 3, if necessary.

3. cloud removal. Because we download only 
the best-quality MODIS imagery, cloud removal 
may not be necessary. If small clouds exist, 
they can be identified by using the Iso Cluster 
Unsupervised Classification tool, reclassified as 
null values (Reclassify tool) and removed from 
analysis using the Extract by Mask tool. Refer 
to steps 6-8 from “Part 1: Technical Methods: 
Image pre-processing and cloud removal” for 
greater detail. There is no thermal image (RGB 
1, 6, 6) as with Landsat in this case.
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4. atmospheric correction. Corrections are 
included in Level 1B daily surface reflectance 
products. 

Model development and execution

5. model calibration. Refer to “Part 1: 
Technical Methods: Model calibration and 
development” section. The only differ-
ence is to use the MODIS_500m_Lakes (or 
MODIS_250m_Lakes) and the MODIS_500m_
SamplingPts (or 250 m) layers in place of the 
Landsat layers. In the Landsat methods, we 
caution against substituting different sample 
stations within the same lake for each other in 
model calibration. With MODIS 500-m data, 
many existing sample stations are located 
too close to the shoreline for accurate remote 
sampling. Owing to the loss of sample sites and 

the coarseness of 500-m data, it is acceptable 
to cautiously substitute sample stations within 
lakes at this resolution if you are comfortable 
assuming that the bathymetry of substituted 
stations is roughly equal. When calculating 
zonal statistics, use MOD_ID as the Zone field. 
If using 250-m imagery, use IAN_ID as the 
Zone field. These IAN_ID values correspond to 
those in Landsat analyses.

6. estimate regional water clarity. Refer 
to step 12 of  the “Part 1: Technical Methods: 
Model calibration and development” section. 
Analyze by trophic states or lake regions if 
desired.

7. model validation. Model validation is impor-
tant for MODIS-based models owing to their 
relatively small calibration datasets. Refer to 
section of the same name in “Part 1: Technical 

Figure 5. Screenshot of MODIS Reprojection Tool being used to reproject the visible 
red band of a MODIS image to WGS 1984 UTM Zone 19N.
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Methods: Model validation.” Use leave-one-out 
jackknifing if your calibration dataset contains 
< 50 data points. 

QUALIT Y CONTROL MEASURES FOR 
SUCCESSFUL IMPLEMENTATION

1. Use both Landsat and MODIS, recognizing 
that each has separate applications in lake 
monitoring. Landsat can monitor more than 
1000 lakes simultaneously, making it the 
primary satellite data source given the small 
size of most lakes in Maine. Landsat imagery 
is acceptable through 2011 and the successful 
launch of the Landsat Data Continuity Mission 
(LDCM) in 2013 would ensure future avail-
ability of Landsat data with potentially few 
gaps. Landsat data generally are available at 
least every 3 to 4 years for both paths 11 and 
12, but the overlap region can be used if quality 
imagery from both paths is unavailable. MODIS 
500-m imagery is not really a substitute for 
Landsat imagery, given that only 83 lakes can 
be reliably monitored using MODIS 500-m 
imagery; however, MODIS data are useful for 
within-year, seasonal monitoring of clarity of 
large lakes throughout Maine. MODIS 250-m 
imagery is a better substitute when Landsat 
data are unavailable, but declines in SDD are 
more difficult to detect.

2. The Landsat Multispectral Scanner (MSS) was 
revived to serve as a stopgap until the launch 
of the LDCM. The MSS can be used for regional 
water quality monitoring (Lillesand et al. 
1983), but Landsat 5 is nearing the end of its 
life, LDCM is coming soon, and other alterna-
tives exist during the interim (e.g., Landsat 7 
and MODIS 250, 500-m imagery). The 57-m 
MSS resolution is coarser than that of Landsat 
5 or 7 and would reduce the number of lakes 
eligible for monitoring. Development of a 
monitoring protocol for remote lakes using 
MSS data is not a priority. 

3. Continue to publish a list of Landsat overpass 
dates for members of the VLMP and any others 
who collect water-clarity field data, empha-
sizing the importance of August and early 
September sampling. Target field-sampling 
dates as close as possible to the satellite over-
pass, though field sampling within 1 to 3 days 
of satellite overpass is acceptable.

4. Accurate models for estimating remote lake 
clarity require a numerically and geographi-
cally well-distributed set of calibration lakes. 
If possible, field sample lakes spanning a wide 
variety of SDD values over a large spatial extent 
in Maine.

5. If possible, survey more lakes for bathymetry. 
Depth is acceptably consistent year to year on 
a landscape scale such that future reassess-
ment is not necessary. Depth also is useful for 
interpreting predicted SDD. For example, a 
SDD estimate of 2 m has different implications 
in lakes with average depths of 3 and 10 m. 

6. Although remote analyses may be conducted 
months after actual image capture date, valu-
able information may be obtained from follow-
up field visits to lakes remotely identified as 
undergoing eutrophication. These occasional 
field trips could serve to validate model find-
ings and identify water-clarity drivers of 
individual lakes and watersheds missed by the 
coarse remote-sensing methods.

7. Beware of fog. Manually inspect images for 
foggy areas, which may not be eliminated by 
the unsupervised classification (cloud removal) 
procedure. Fog is more common over large 
lakes and along the coast. Undetected fog 
results in artificially shallow SDD estimates. Be 
especially careful when using Landsat 7 images 
because the scan lines may obscure fog.
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