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ABSTRACT

The purpose of intensive forest practices is 
to improve the growth and future yield of young, 
primarily conifer stands in Maine (Maine Forest 
Service 2001a). Specifi c practices employed in Maine 
include plantation establishment, site preparation, 
vegetation control with herbicides, and precom-
mercial thinning. Related to these practices is the 
use of clearcutting, a practice that went from 44% 
of the harvest in 1989 to 3.5% in 1999 (Maine For-
est Service 2001a). The combined use of planting, 
precommercial thinning, and herbicide release of 
softwood regeneration from competition has occurred 
on about 4.7% (786,000 acres) of the timberlands 
through 1999 (Maine Forest Service 2001a).

The effects of intensive forest management on 
forest structure and plant community composition 
are not well documented, particularly with respect 
to the forests in the Northeast. Relevant studies 
from other regions do not indicate that clearcut 
harvests and other intensive forestry practices 
currently implemented in Maine have caused the 
complete loss of any plant species or communities 
from the forests in the region. Plantation forestry 
alters plant communities signifi cantly, sometimes 
requiring several decades for understory species to 
recover. However, the impact of such changes at the 
landscape scale in Maine and the Northeast may not 
be important because plantations are not common in 
the region. Changes do, though, occur in forest veg-
etation communities in response to other intensive 
forestry practices used in Maine, and the increased 
fragmentation of habitat at the landscape scale by 
forestry practices has impacted certain plant spe-
cies in other regions. Increases in species diversity 
and shifts in the relative abundance and species 
composition of overstory tree, understory herb, and 
shrub communities are the most common effects of 
intensive forestry practices. Often these changes 
are short-term; that is, the plant communities shift 
back toward their pre-treatment character within 10 
years. Sometimes the changes in the various com-
ponents of forest plant communities are long-term. 
For example, a clearcut harvest in spruce-fi r and 
mixedwood stands can result in either no softwood re-
generation or regeneration suppressed by hardwood 
sprouts unless the clearcut is followed by herbicide 
application or pre-commercial thinning. Amounts of 
coarse woody debris and moribund trees are typi-
cally reduced by intensive forest practices. Changes 
in some non-vascular plant populations appear to 
correspond to similar changes in vascular plant 
components of the plant community, but some bryo-
phyte and lichen species are dependent on the woody 

debris and moribund trees associated with specifi c 
stages of forest development, and therefore, may be 
more sensitive to intensive forestry practices. These 
structural features can also require several decades 
to recover, unless the woody debris is intentionally 
left. The changes in plant communities created by 
intensive forestry practices have resulted in vari-
able responses from tree pests. The greatest risk for 
increased pest problems is associated with planted 
species but not with the surrounding forest. 

This review of the literature revealed the follow-
ing list of gaps in the understanding of the effects of 
intensive forestry practices. 

• The majority of the research on the effects of 
intensive forest management on plant communi-
ties, as well as on soils, water quality, and forest 
vertebrates and invertebrates, reports the results 
of short-term studies. Even in areas of North 
America where intensive forestry is widespread, 
sites that have undergone multiple rotations of 
management are rare. Therefore, the cumulative 
long-term impact of these practices on native 
plant communities and other components of 
forest ecosystems may only be speculated based 
on the currently limited information. 

• More information is needed on the function of 
understory vascular and non-vascular plants in 
ecosystem processes and the impacts of intensive 
forestry on individual species and functional 
groups. However, studies about the effects of 
management practices on some uncommon or 
rare species may prove problematic. The abun-
dance of many taxa is so low that measures of 
their response cannot be statistically analyzed, 
and few appropriate late-successional sites exist 
in Maine for comparison.

• With respect to coarse woody debris and mori-
bund trees, it is unclear as to how much of each 
structural feature is necessary to maintain vul-
nerable species and important processes. It is also 
not known whether it is necessary to maintain 
these features in every stand or if representation 
at the landscape level is suffi cient. 

• There is little information to indicate the amount, 
the patch size, and the spatial pattern of mature 
forest that is required to maintain populations of 
plants at the landscape scale to span the range 
of forest succession types.
While intensive forestry practices have the po-

tential to affect forest structure and plant commu-
nity composition, many of the effects of the methods 
used in high-yield silviculture can be intentionally 
mitigated through additional forestry practices not 
addressed in this review. 
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INTRODUCTION

Maine’s forests have been harvested for a variety 
of reasons since the time of European settlement 
(Smith 1972; Wood 1971; Coolidge 1963), and presum-
ably to some extent before that by Native Americans 
(Bonnicksen 2000). The methods and scale of har-
vesting and the application of different management 
practices have varied considerably because of changes 
in technology, markets, and the forests themselves. 
Starting in the 1970s, for example, clearcutting be-
came more widespread in the state (Seymour 1992) 
due to an extensive spruce budworm outbreak, 
increased sawmill capacity (Canada), new markets 
for small trees (e.g., biomass), and improvements in 
mechanized harvesting equipment. Although the rate 
of clearcutting declined from 44% in 1989 to 3.5% in 
1999 of all lands harvested annually (Maine Forest 
Service 2001a), the public has become increasingly 
involved in debates over what constitutes desirable 
forestry practices.

Some of the key issues of these debates are ques-
tions concerning the rate at which Maine’s forestland 
is being harvested relative to the overall growth rate 
of the timber supply and the environmental effects 
of different harvesting and management techniques. 
During the last decade, the area of forestland harvest-
ed annually has increased from 325,000 to 532,000 
acres (Maine Forest Service 2001a). Under current 
management techniques, the rate of harvest could 
exceed that of growth during the next 50 years, as 
demonstrated by two separate analyses that project 
shortfalls in the spruce-fi r wood supply for the early 
21st century (Gadzik et al. 1998; Seymour 1985). 
Several recent reports suggest that increasing the 
area of Maine’s forestland under intensive forest 
management could improve long-term forest sustain-
ability and continue to meet timber demands (e.g., 
Maine Forest Service 2001a; Gadzik et al. 1998). 
Additionally, applying intensive forest practices to 
more acres in Maine could potentially increase the 
amount of land available for conservation efforts 
(Seymour and Hunter 1992). 

In general, the purpose of intensive forest prac-
tices is to improve the growth and future yield of 
young, primarily conifer stands in Maine (Maine 
Forest Service 2001a). However, the environmen-
tal effects of intensive forest management are not 
well documented, particularly with respect to the 
Northeast. In the context of the following review, 
intensive forest management refers to those prac-
tices considered high-yield silviculture. Specifi c 
practices employed in Maine include plantation 
establishment, site preparation, vegetation control 
with herbicides, and precommercial thinning with 
the objective of increasing softwood fi ber production 

and value. Few in the preceding list of practices are 
currently applied to the management of hardwood 
forest types in Maine. Because clearcutting is the 
harvesting method commonly associated with use of 
high-yield practices, it is included. Lastly, the rate 
and pattern of land area harvested are addressed 
in this review, as the potential expansion in the use 
of intensive management techniques in Maine may 
also infl uence the landscape-scale characteristics of 
the environment. 

Intensive forestry practices vary in the relative 
frequency of their use in the 17 million acres of 
Maine’s commercial forest. Clearcutting as a har-
vesting method was a widespread practice during 
salvage operations associated with the spruce bud-
worm outbreak of the 1970s and 1980s and peaked 
at 44% of the harvested land in 1989 (Maine Forest 
Service 2001a). By a decade later, clearcutting was 
signifi cantly reduced to approximately 10% of the 
lands harvested annually (Maine Forest Service 
2001a). Planting, precommercial thinning, and 
herbicide release of softwood regeneration from 
competition have only been applied in Maine since 
the late 1970s (Maine Forest Service 1999). These 
combined practices have been applied to about 4.7% 
(786,000 acres) of the state’s timberlands through 
1999 (Maine Forest Service 2001a). 

Questions arise about how these practices af-
fect the compositional, structural, and functional 
attributes of plant communities, soils, water qual-
ity, and native vertebrate and invertebrate species 
at both the stand and landscape scales. While the 
effects of intensive forestry practices are being in-
vestigated, the fi ndings are not readily accessible to 
those discussing and making decisions about forest 
management policy. Moreover, information about 
these topics is incomplete with respect to Maine’s 
forests. The geographical focus of this review is Maine 
and the Acadian forest region, a mixture of northern 
hardwoods, red spruce, and boreal forest conifers that 
extends across the Northeast into Atlantic Canada. 
However, research on the ecological implications of 
intensive forest management is more common from 
other areas of North America, Scandinavia, and 
northern Europe, where intensive forest manage-
ment is generally applied to larger areas and has a 
longer history of use. Thus, this review is dominated 
by information from these sources. 

Literature on the impacts of intensive forestry 
practices is more extensive for some aspects of the 
ecosystem than others, and literature reviews and 
comprehensive studies of a few of the topics already 
exist (Table 1) and are not all addressed in this 
paper. Our paper focuses on the effects of intensive 
forestry practices on the structure and composition 
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of vegetation, a broad topic area that has not been 
specifi cally reviewed for the forest types in the North-
east. In addition, a summary of the effects of forest 
management on dead organic matter from a review 
by Freedman et al. (1996) and other recent papers 
(e.g., Hagan and Grove 1999) is also included. 

While not addressed in our review, forest man-
agement also needs to consider the temporal and 
spatial habitat requirements of other components 
important to ecosystem functioning, such as verte-
brates, invertebrates, fungi, and bacteria, as well 
as soil nutrient dynamics. However, living plants 
in all structural layers are critical components of 
forest ecosystems due to their functions as primary 
producers and habitat for many organisms. Woody 
debris and other elements of dead organic matter are 

also important as habitat and function in numerous 
ecosystem processes.

Therefore, we address the following questions 
relevant to increasing fi ber production primarily 
of conifers: 
1)  How will intensive forest management likely 

affect native plant communities, their species 
composition, and function at the scale of the 
stand? 

2)  What changes can occur in the quality and quan-
tity of the components of dead organic matter 
(snags, coarse woody debris, and the forest fl oor) 
within intensive forest management areas? 

3)  How could changes in structure and composition 
of forest vegetation caused by intensive manage-
ment affect tree pests?  

4)  What are the likely impacts on plant composition 
and structural diversity at the landscape level, 
if the area under intensive forest management 
increases?

Much of the research relevant to the effects of 
intensive forestry has examined changes in overstory 
tree and understory plant communities (diversity 
indices, species composition, and richness) and in 
the horizontal and vertical structure of vegetation. 
The majority of the studies report on vegetation 
development at the stand level. Because intensive 
forest management has only become extensively used 
in the United States within the last 50 years, the 
temporal scale of these studies is short, commonly 
covering the fi rst 10 to 30 years after treatment. 
Although the responses of vegetation to clearcutting 
and herbicide applications dominate the literature, 
there are also reports on changes due to mechanical 
site preparation, planting, and thinning.

This review presents a six-part synthesis of the 
literature. The fi rst section considers the effects of 
intensive forestry practices within the context of 
naturally regenerated stands. The second section 
reviews the changes associated with the planting of 
conifers in softwood sites, as well as those previously 
occupied by hardwood and mixed-wood stands. The 
third examines the impacts of intensive management 
specifi cally on bryophytes and lichens. The fourth 
section discusses changes in dead organic matter 
components of the stand and the fi fth with the impact 
on tree pests. The fi nal section views the effects of 
intensive forestry from the landscape-scale perspec-
tive and is followed by summary and conclusions. 
While this paper provides a summary of scientifi c 
information, it does not recommend policy or propose 
how the forest should be managed. 

Table 1.  Existing literature reviews, annotated 
bibliographies, and comprehensive studies 
that address the effects of forest management 
on various ecosystem components. 

    
Topic Reference 

general biodiversity Freedman et al. 1994 
 Bunnell and Huggard 1999 
    
wildlife/vertebrates Harlow et al. 1997 
 deMaynadier and Hunter 1995 

 Lautenschlager 1993 
 Sweeney et al. 1993 

invertebrates and Freedman et al. 1994 
aquatic organisms Pierce et al. 1993 
 Adamus et al. 1986 
    
water quality Kahl 1996 
 Stafford et al. 1996 
 Binkley and Brown 1993 
 Hornbeck et al. 1993 
 Sidle and Hornbeck 1991 
 Martin et al. 1984 
dead organic matter Freedman et al. 1996 
    
soils and nutrient Briggs et al. 2000 
dynamics Vejre 1999 
   Worell and Hampson 1995 
   Pierce et al. 1993 
   Hornbeck et al. 1990 
   Federer et al. 1989 
   Mann et al. 1988 
   Smith et al. 1986 
     Jurgensen et al. 1986 
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METHODS

Peer-reviewed journals (i.e., scientifi c journals 
in which two to three specialists in the topic area 
anonymously review each of the articles and recom-
mend whether they merit publication) were the main 
sources of the literature cited in the text. Information 
from Forest Service reports, symposia proceedings, 
and chapters from edited volumes were also incor-
porated. Literature relevant to the chosen topics 
was primarily sought by means of the AGRICOLA 
database. We also used the FORESTRY ABSTRACTS 
database to a limited extent. The articles listed in the 
output of “subject” searches were initially scanned 
for content in the library. Those papers that we 
thought to be relevant were photocopied. Each of 
the articles, research reports, and reviews was read 
by one of the authors. Reference sections were then 
examined for additional sources. As a result of this, 
we read some, but not all, of the studies cited in the 
review papers. 

The information presented in this literature re-
view is based on the results of the research reported 
in the papers. Where trends in the literature are 
reported for a specifi c topic, these represent the re-
sults of two or more works. Sometimes the reported 
trends are based, in part, on information documented 
in cited reviews, and, therefore, the conclusions pre-
sented are not drawn entirely from empirical data. 
Confl icting results among studies are presented if 
they occur. While this review of the literature is fairly 
comprehensive, it is not exhaustive, particularly for 
the coarse woody debris, bryophyte and lichen, and 
landscape sections. The review does provide, at least, 
an introduction to the issues and concerns relevant 
in each topical section. Literature published after 
2001 is not included. 

NATURAL REGENERATION FOLLOWING 
CLEARCUT HARVESTING

Response of Tree Species 
In the following studies, the stands were clearcut 

and allowed to regenerate naturally. No additional 
treatments were applied between the harvest and 
the vegetation surveys. Few studies of this nature 
have been conducted in the Acadian forest region, 
and they are not common for any one area. Therefore, 
results are reported from several different locations 
and forest ecosystem types. The studies are quite 
variable with respect to the method of clearcut 
harvest (conventional or whole-tree, silvicultural 
or “commercial”), the season of harvest, and the 

vegetation characteristics recorded. The basis for 
determining vegetation changes also differed. Some 
studies compared the vegetation characteristics of 
the harvested stands to the pre-harvest vegetation 
(untreated), while others examined vegetation differ-
ences between harvested areas and mature, second 
growth stands or old-growth stands in the same 
forest ecosystem types. Most of the research reports 
the effects of harvesting on the woody species. The 
harvest may remove the entire canopy or only the 
merchantable stems. The latter treatment is termed 
a “commercial” clearcut where overstory trees and 
sub-canopy, small diameter trees of poor form and 
for which there are no markets remain to become 
part of the regenerating stand. Table 2 summarizes 
the studies of tree species responses to clearcuts and 
some of their results.

In general, established tree species and shrubs 
create a canopy of lower stature a few years after 
a clearcut. For fi ve to 20 years, the canopy of the 
developing stand remains fairly uniform until spe-
cifi c differences in height growth rates begin to be 
expressed (Wang and Nyland 1996; Radosevich and 
Osteryoung 1987). In the Northeast, raspberries 
and the sprouts of hardwood species, such as pin 
cherry, red maple, beech, and aspen can dominate 
sites from 10 to 25 years following the removal of the 
overstory in softwood and hardwood stands (Pierce 
et al. 1993; Newton et al. 1987). The density of tree 
and woody shrub species is much greater than that 
of a mature stand during this period, and basal area 
is distributed among the numerous stems of smaller 
diameter (e.g., Norland and Hix 1996; Gilliam et al. 
1995; Leopold et al. 1985). The composition of the 
stand may be altered as more light-tolerant species 
colonize and/or increase in their abundance through 
vegetative reproduction. The effects of clearcutting 
on plant diversity were measured for trees, as well 
as woody shrubs, in all of the reviewed studies and 
reported in terms of species composition, species 
richness, and sometimes with diversity indices. In 
most, changes in vegetation were recorded for less 
than 30 years of post-harvest development. In most 
of the studies for which diversity measures were 
presented, tree and woody shrub diversity increased 
during the earliest stages of stand development 
after clearcutting (Elliott et al. 1997; Norland and 
Hix 1996; Elliott and Swank 1994; McMinn and 
Nutter 1988; Hix and Barnes 1984). Tree species 
losses were rarely reported. Like many types of 
forest disturbances, clearcutting often altered the 
relative abundance (measured as percent cover or 
importance values) of species in all vegetation layers 
(see Tables 2 and 3).
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Table 2.  Summary of the impact of clearcutting on tree species comparing the overstory species to regenerating species 
in naturally regenerated forest types. Note that species composition and species relative abundance are 
represented by different columns. (a) Precanopy closure, that is, less than approximately 20 years after harvest. 
(b) Post-canopy closure, that is, more than 20 years after harvest. 

     Change?
  Forest Years  Species Composition Relat. Control
  Cover Post- Species Diversity Over- Shrub/ Abund. Stand
Location Reference Type Harvest Richnessa Changesb story Regen. Change? Age 

(a)
New Brunswick Roberts et al.  northern  1 and 2 > ooo ooo (+) y pc

1988 hardwoods              
Quebec Archambault et al.  balsam fir and 5, 10 and 20  nc ooo (-) (+) y m

1998 yellow birch          
Quebec Harvey and Bergeron  balsam fir-white  7 > ooo nc nc y m

1989 birch-spruce
New York Walters and Nyland  northern 13 nc ooo nc ooo y pc 

1989 hardwoods
Upper Michigan Albert and Barnes  sugar maple 6 > ooo (+) ooo y ud 

1987              
Ohio Norland and Hix  mixed hardwoods 8 ooo ooo (+) (+) y m 

1996
Ontario Brumelis and Carleton  black spruce 1 to 20 > ooo (+) ooo y ud/m 

1988
Montana Muir 1993 lodgepole pine 10 to 20 nc nc nc ooo y m
West Virginia Gilliam et al. 1995 mixed hardwoods 20 > nc(s-w)  nc (+) y m
North Carolina  Elliot and Swank  cove hardwoods 8 and 13 nc > (s-w) nc ooo y pc 

1994 (ws)  with pine-oak (1st cut) 
North Carolina  Elliot and Swank cove hardwoods 7 (2nd cut) nc > (s-w) nc nc y pc

1994 (ws) with pine-oak
North Carolina  Elliot and Swank cove hardwoods 14 (2nd cut) < nc nc (-) y pc 

1994 (ws) with pine-oak  
North Carolina  Elliot et al. 1997 (ws) cove hardwoods 3,5,10,19 < < nc (+) y pc 

 mixed oak 3,5,10,19 < < nc (+) y pc
  oak-pine 3,5,10,19 < < nc (+) y pc

Georgia McMinn 1992;  Oak-pine 10 > ooo (+) (+) y *** 
McMinn and Nutter 
1988 

(b)
Upper Michigan Albert and Barnes  sugar maple 50 > ncns nc (-) y ud

1987
Upper Michigan Hix and Barnes 1984 hemlock 36-59  > > (+)/(-) (+) y ud
Ohio Norland and Hix  mixed 26 ooo ooo (+)/(-) ooo y m

1996 hardwoods
Ontario Brumelis and Carleton black spruce >40 nc ooo nc ooo y ud/m

1988
Ontario Groot and Horton black spruce 50 to 70 nc ooo nc ooo y ud

1994
Ontario Carleton and black spruce <55 nc ooo nc ooo y m

MacLellan 1994
Montana Lesica et al. 1991 grand fir-pine 70 > ooo (+) ooo y ud
North Carolina  Elliot and Swank  cove hardwoods 29 nc < (s-w) nc nc y pc

1994 (ws) with pine-oak
North Carolina  Leopold et al.  cove hardwoods 23 (1st cut) nc > nc ooo y pc|

1985 (ws) with pine-oak
    cove hardwoods 21(2nd cut) ooo ooo (-) (+) y pc  

  with pine-oak              

aincludes species of all vegetation layers recorded
bS-W and S indicate Shannon-Weiner and Simpson’s diversity indices
Key: (+) = added species nc = no change ws = data collected in entire watershed   
 (-) = loss of species pc = pre-treatment condition >/< = either species added/lost or increase/decrease in 

diversity indices
 m = mature second growth stands ud = undisturbed/old growth stands ooo = not reported   
      bold number was age used for changes recorded in table
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Table 3.  Summary of the impact of clearcutting on the understory vegetation of naturally regenerated stands. (a) 
Precanopy closure, that is, less than approximately 20 years after harvest. (b) Post-canopy closure, that is, 
more than 20 years after harvest.

Location Reference
Forest
Cover Type

Years
Post-
Harvest

Species
Rich-
nessa

Diversity
Changesb

Change? 
Species Composition Change?

Relat. 
Abund.

Control 
Stand
AgeShrub Herb

Bryophytes/
Lichens

(a)

Nova Scotia Crowell and 
Freedman 1994

mixed hardwoods 1,2,6 > > (s-w) (+) (+) (-) y m

Quebec Archambault et 
al. 1998

balsam fir and 
yellow birch

5,10,20 nc ooo (+) (+) ooo y m

Quebec Harvey and 
Bergeron 1989

balsam fir- white 
birch-spruce

7 nc ooo nc ooo ooo y pc

Ontario Brumelis and 
Carleton 1989

black spruce 
(nutrient poor) 

<20 > ooo (+) (+) (+) y ud/m

black spruce 
(nutrient rich) 

<20 > ooo (+) (+) (+) y ud/m

Upper 
Michigan

Albert and Barnes 
1987

maple 6 > ooo ooo (+) ooo y ud

Michigan Roberts and 
Gilliam 1995a

big tooth aspen 
(dry) 

<15 nc nc (s-w) nc nc ooo y m

big tooth aspen 
(mesic) 

<15 > > (s-w) (+) (+) ooo y m

West Virginia Gilliam et al. 
1995

mixed hardwoods 20 > nc (s-w) (+) ncns ooo y m

North 
Carolina 

Elliot et al. 1997 
(ws)

cove hardwoods 3,5,10,19 < < (s-w) (+) (-) ooo y pc

mixed oak 3,5,10,19 < < (s-w) (+) (-) ooo y pc
oak-pine 3,5,10,19 < < (s-w) (+) (-) ooo y pc

Sweden Hannerz and 
Hanell 1997

Norway spruce 8 < < (s) ooo (-) (-) y pc

Estonia Zobel 1993 Scots pine (dry 
acidic)

5 ncns ncns (H’) ooo ooo ooo y pc

Scots pine 
(paludifying acidic)

5 ncns ncns (H’) ooo ooo ooo y pc

Scots pine (moist 
acidic)

5 > > (H’) ooo ooo ooo y pc

Scots pine (dry 
neutral)

2 ncns ncns (H’) ooo ooo ooo y pc

Scots pine (dry 
calcareous)

2 ncns ncns (H’) ooo ooo ooo y pc

(b)
Upper 
Michigan

Albert and Barnes 
1987

maple 50 ncns ooo nc nc nc y ud

Upper 
Michigan

Hix and Barnes 
1984

hemlock 36–59 > > (+) (+) ooo y ud

Oregon (ws) Halpern and 
Spies 1995 

Douglas fir-
hemlock

40 nc ooo (-) (-) ooo y ud/pc

Montana Lesica et al. 1991 grand fir-pine 70 > > (s-w) (+) (+) (+)/(-) y ud

aincludes species of all vegetation layers recorded
bS-W, S, and H’ indicate Shannon-Weiner, Simpson’s, and Shannon’s diversity indices
Key: (+) = added species (-) = loss of species
 m = mature second growth stands nc = no change (nsdifferences not statistically significant)
 pc = pre-treatment condition ud = undisturbed/old growth stands
 ws = data collected in entire watershed >/< = either species added/lost or increase/decrease in diversity index  
 ooo = not reported bold number was age used for changes recorded in table
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The early shifts in the relative abundance of 
tree species following a clearcut were not always a 
temporary stage in stand development. We noted 
that conifer forests and certain types of site condi-
tions appeared to be more susceptible to long-term 
changes in species composition than other types. In 
some cases, changes persisted into older post-cut 
stands (i.e., stages after canopy closure/30 to 60 
years after cutting) when compared to mature and 
uncut stands of the same forest type (Carleton and 
MacLellan 1994; Newton et al. 1987; Albert and 
Barnes 1987; Hix and Barnes 1984). Fifty years after 
commercial clearcuts in two forest types in Upper 
Michigan, the tree-species composition in hemlock-
dominated stands differed from that in stands in 
adjacent, uncut forests of the same type, while species 
composition in the maple-dominated stand remained 
unchanged (Albert and Barnes 1987; Hix and Barnes 
1984). Clearcutting the stand originally dominated 
by hemlock resulted in the virtual elimination of 
hemlock from the overstory and understory (Hix and 
Barnes 1984). In boreal forests, mesic and nutrient-
rich sites appear to be more susceptible than poor 
quality sites to shifts from predominantly softwood 
in mature stands to post-harvest stands of mixed-
wood composition (Groot and Horton 1994; Brumelis 
and Carleton 1988; Newton et al. 1987). 

One cause of long-term changes in tree species 
composition is the effect on regeneration of forest 
fl oor disturbance resulting from harvesting activities. 
Regeneration mechanisms and competitive ability 
of different species respond differently to varying 
types of disturbance (Carleton and MacLellan 1994; 
McMinn 1992; White 1991; Brumelis and Carleton 
1988; Roberts et al. 1998; McCormack 1984; Frisque 
et al. 1978). There are several tree species in the 
Northeast that reoccupy harvested sites primarily 
through advance regeneration (e.g., large seedlings 
and saplings of shade-tolerant spruce, fi r, and sugar 
maple established prior to a cut). It has long been 
acknowledged that preserving advance regeneration 
is important in maintaining spruce and fi r in post-
harvest forests of this type and others in northern 
New England (e.g., Seymour 1985; Hix and Barnes 
1984; McCormack 1984; Westveld 1953). If advance 
regeneration is lacking or destroyed during harvest-
ing, then hardwoods generally have the advantage 
over conifers in openings created by clearcutting. 
Hardwood species tend to produce abundant seed 
at more frequent intervals, exhibit rapid juvenile 
growth as seedlings or sprouts, and germinate read-
ily in hardwood or softwood litter and the mineral 
soil exposed by harvesting operations (Newton et al. 
1987). The season during which harvesting occurs 
and the type of harvesting equipment used strongly 

infl uence the degree of soil disturbance. Frozen 
ground mitigates forest fl oor disturbance, regard-
less of the harvest system, and snow cover protects 
advance regeneration from damage (Brumelis and 
Carleton 1988; McCormack 1984; Frisque et al. 
1978). In Maine, spruce, fi r, and sugar maple rely 
primarily on advance regeneration (and probably 
most woody and herbaceous species in the forest 
fl oor stratum, see Ruben et al. [1999]). These spe-
cies benefi t from winter harvesting operations and 
relatively low-impact harvesting systems (for some 
system comparisons see Seymour [1985]). 

There are several examples in which clearcutting 
shifted softwood stands to mixed wood or hardwood-
dominated stands as a result of severe disturbance to 
the forest fl oor (e.g., Archambault et al. 1998; Gadzik 
et al. 1998; Hughes and Bechtel 1997; McMinn 1992; 
Harvey and Bergeron 1989; Newton et al. 1987; Hix 
and Barnes 1984). The long-term shifts in species 
composition at all of the sites were attributed to one 
or more of the following causes: destruction of the 
existing advance regeneration, harvesting prior to 
the establishment of advance regeneration of the 
overstory species, and aggressive competition from 
hardwood species. In many situations, clearcutting 
can alter the competitive balance between conifer 
species and shift the composition of the forest to 
deciduous hardwoods and shrubs. Although shifts in 
species composition are associated with most ecologi-
cal disturbances, some changes are more permanent 
than others are. Based on surveys conducted prior to 
and seven years after clearcutting in northwestern 
Quebec, Harvey and Bergeron (1989) concluded that 
the balsam fi r dominating the post-harvest stand 
had permanently replaced much of the black and 
white spruce, major components of the forest prior 
to the cut. Changes like this alter the canopy archi-
tecture/structure, infl uence susceptibility to certain 
forest pests, and can affect the next generation of 
understory vegetation through differences in light 
transmittance (Freedman et al. 1994; discussed in 
future sections). 

Reports of the effects of successive clearcuts on 
the same site do not exist for the conifer and mixed 
wood forests of Maine and the surrounding region. 
In one of the few reported studies in an experimental 
watershed in North Carolina, vegetation inventories 
were conducted prior to the fi rst harvest in 1939. 
Inventories were continued during the 22 years be-
fore the second cut in 1962 and during the 29 years 
after that harvest (Elliott and Swank 1994; Leopold 
et al. 1985). Composition and relative importance 
(abundance) of tree species underwent major changes 
from 1939 to 1991. With the exception of chestnut 
lost to the blight, species composition of the forest 
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following the fi rst cut was comparable to that of the 
early inventory (Leopold et al. 1985). However, the 
23 years between harvests were not enough time for 
red and white oak to establish advance regenera-
tion. These two oak species and pitch pine, present 
in the original stand, declined signifi cantly after 
1962. Structural differences between the stands 
established after the successive clear-cuts also oc-
curred. There were more stems in the larger diameter 
classes 21 years after the 1962 cut than 23 years after 
the 1939 cut. Leopold et al. (1985) attributed this 
to the greater sprouting ability and growth rate of 
the young hardwood stumps remnant of the second 
harvest. Similarly, Albert and Barnes (1987) noted 
that, although maple still dominated the overstory 
50 years after harvest in Michigan, a successive 
clearcut would create a stand of different composi-
tion. The authors suggested that the dense overstory 
of maple that had developed since the harvest was 
inhibiting the establishment of suffi cient amounts 
of maple advance regeneration in this site. 

In summary, the responses to clearcut harvest 
described above are relevant to the mixed conifer and 
mature hardwood stands in Maine. If the composi-
tion of subsequent stands is dependent on natural 
regeneration alone, the following scenarios are 
possible in some forest types in Maine. Hardwoods 
only temporally dominate spruce-fi r and other mixed 
conifer types if advance regeneration of these conifer 
species is preserved in an overstory removal type of 
clearcut. Conifer sites are subject to long-term shifts 
to hardwoods if there is no advance regeneration pres-
ent and softwood species do not become established 
following the harvest or if advance regeneration does 
not persist under the hardwoods (McCormack 1985). 
In similar situations hardwood stands dominated by 
shade-tolerant species like sugar maple may become 
composed of hardwood species that are established 
by sprouting and less shade-tolerant species if no 
advance regeneration is present. 

Response of Herbaceous and Shrub Species
The removal of the canopy in clearcut harvesting 

causes signifi cant changes to the understory plant 
community primarily due to greatly increased light 
levels and reduced competition for other resources. 
Forest fl oor disturbance from harvesting equipment 
exposes mineral soil habitats for the establishment 
of ruderal herbaceous and shrub species. Residual 
shrubs also increase in abundance or dominance. 
Initially, this causes a shift in the distribution of 
biomass to the lower strata. The density of vegeta-
tion increases substantially from the predominantly 
woody species in the canopy to an understory mixture 
of herbaceous and woody taxa (e.g., Elliott et al. 

1997; Crowell and Freedman 1994). The increased 
density of the understory is a signifi cant, but usually 
temporary, alteration to stand structure. 

Most of the research addressing the effects of 
forestry practices on understory vegetation has 
been conducted outside the Northeast (Elliott et al. 
1997; Hannerz and Hanell 1997; Gilliam et al. 1995; 
Roberts and Gilliam 1995a; Duffy and Meier 1992; 
Brumelis and Carelton 1989; Albert and Barnes 
1987; Hix and Barnes 1984). In many of the stud-
ies, the species richness of stands within 10 years 
of harvest was usually equal to or greater than the 
species richness of unharvested sites (see Table 3). 
Freedman et al. (1994) noted that the species rich-
ness of the vascular-plant communities in Maritime 
Canada was generally greater for approximately one 
to six years after the harvesting of predominantly 
softwood stands when compared with the richness 
of mature/older stands of similar forest types. Ferns, 
monocots such as sedges and grasses, dicotyledon-
ous herbs (particularly species of the Asteraceae 
family), raspberries, blackberries, birch, red maple, 
and pin cherry commonly dominated the early suc-
cessional communities of these stands in Canada. 
Most herbaceous species that had constituted the 
plant communities prior to harvest recovered their 
pre-cut abundances a few years after the harvest 
(Freedman et al. 1994). In other areas, species 
composition was the characteristic more likely to 
change. For example, several of the less common 
species recorded in a 1952 inventory of a hardwood-
dominated watershed in North Carolina were not 
found 17 years after a clearcut. Moreover, other 
more common but late-successional plants had not 
recolonized the inventoried sites in the three forest 
types studied (Elliott et al. 1997). The composition of 
many of the stands >30 years old at the time of the 
vegetation survey differed from that of the mature 
secondary or old-growth stands used for comparison. 
In contrast with this result, a study conducted in 
Northeast hardwoods found that most herbaceous 
species had recovered in old clearcut forests. Ruben 
et al. (1999) compared the composition and density of 
understory species in 25- and 60-year-old clearcuts 
in northern hardwood stands to those of adjacent 
stands of secondary forest. Using indices based on 
densities of the herbaceous plants across the bound-
aries of the stands of different age, the responses of 
the species to clearcutting were classifi ed as “sensi-
tive,” “insensitive,” “enhanced,” or “edge-enhanced.” 
Short-term reductions in density identifi ed species 
as sensitive to the harvesting practice. Six of the 23 
most common understory species in the 25-year-old 
stands were classifi ed as sensitive, and only one of 
these six (Medeola virginiana or Indian cucumber 
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root) remained signifi cantly less dense 60 years after 
the cut. However, the authors could not determine 
whether this result was due to differences in log-
ging methods dating to the two periods or recovery 
time since the harvest. We found that the most 
consistent impact on understory vegetation in the 
studies reviewed for both softwood and hardwood 
forest types was change in the relative abundance 
of species (see Table 3). 

Many of the herbaceous species in Maine are 
fairly common, with extensive geographic ranges 
throughout the state. Sixty-three percent of the 
state’s vascular-plant species are considered wide-
spread or ubiquitous (Gawler et al. 1996). However, 
many other vascular plants in Maine’s forests are 
considered rare, threatened, or endangered at the 
state or regional level. Many of these species are 
those that are growing at the northern or southern 
limit of their range in Maine’s transition between 
the boreal and northern hardwood forests. While 
forest-dwelling species make up the largest propor-
tion of the rare, threatened, or endangered plants, 
the sporadic inventories conducted to date indicate 
that most of Maine’s forests do not contain rare fl ora 
(Gawler et al. 1996). There is much uncertainty about 
the effects of intensive forestry practices on many 
of the less common species; however, it is diffi cult 
to experimentally determine the effects on such 
species because they are not common. A report on 
the biological diversity in Maine states that some 
herbaceous species in the state’s forests appear to 
be sensitive to harvesting (i.e., local populations do 
not survive or readily reestablish following heavy 
overstory removals; Gawler et al. [1996]). Giant 
rattlesnake plantain, wild leek, blunt-lobed woodsia, 
and American ginseng are some examples of such 
species. In general, the habitat requirements and 
response to harvesting of most herbaceous species 
are yet unknown.

It is diffi cult to generalize about the effects of 
clearcutting on the understory vegetation. The re-
sults of three studies conducted in forests outside 
of the Northeast demonstrate that the response of 
understory species can vary according to differences 
in overstory cover type and site type. Changes in 
the understory species richness and composition of 
two forest types in Upper Michigan were assessed 
by comparing stands clearcut 50 years earlier with 
those in undisturbed areas (Albert and Barnes 1987; 
Hix and Barnes 1984). The species composition in 
harvested hemlock stands differed from that in the 
undisturbed forests. Three species recorded in the 
uncut stands were absent from the harvested sites, 
and 18 new species became established in the cut 

areas and persisted throughout the 50 years since 
harvest. In contrast, clearcutting the maple stands 
did not signifi cantly affect the understory veg-
etation. The same herbaceous species groups were 
represented in cut and uncut maple forests (Albert 
and Barnes 1987). Roberts and Gilliam (1995a) com-
pared the effects of clearcutting on stands having 
the same overstory cover type but growing in mesic 
and dry-mesic site conditions. While understory 
diversity and species richness differed between 
mature and cut stands in mesic sites, clearcutting 
caused little change in the understory of stands in 
the dry-mesic sites. Similarly, a study conducted in 
Estonia examined the response of the vegetation 
communities of Scotch pine stands growing along soil 
moisture and pH gradients (Zobel 1993). Changes in 
the early-successional communities recorded two to 
fi ve years after clearcutting were site dependent. In 
some site types (e.g., moist acidic sites) the differ-
ence between the communities in mature and cut 
sites was signifi cant, while in others little change 
was noted (e.g., dry calcareous sites).

Response of Vegetation to Herbicide Release 
Herbicide application and thinning are two 

management treatments that are commonly associ-
ated with clearcut harvesting. Although these two 
treatments are applied during different stages of 
stand development and target different components 
of the plant community, both practices reduce the 
amount of vegetation competing with the crop spe-
cies for resources. This reduction accelerates growth 
rates and provides merchantable-sized trees within 
a shorter period of time. These treatments alter veg-
etation structure, but are not intended and generally 
do not eliminate plant taxa (Freedman et al. 1994). 
There are a few studies addressing the effects of 
these stand treatments on the non-crop vegetation 
in naturally regenerated stands. Their results are 
summarized in Table 4. 

Early in post-harvest stand development, ag-
gressive deciduous trees and shrubs suppress the 
growth of conifer crop species, particularly in highly 
disturbed and better-quality sites in the Acadian 
forest region (Seymour 1992; Newton et al. 1987; 
McCormack 1984). Herbicides applied from the air 
and ground are currently used in Maine to release 
conifers from this source of competition in both 
naturally regenerated and planted sites (Gadzik 
et al. 1998; Newton et al 1992). Currently, though, 
the area of forest treated with herbicides in Maine, 
New Brunswick, and Ontario has been declining fol-
lowing a peak in 1989 (McCormack 1994). Applied 
within two to 10 years (typically two to three years) 
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of harvest, the primary effect of herbicide release in 
the Northeast is a change in the relative abundance 
of hardwoods and softwoods (Freedman et al. 1993; 
Newton et al. 1992, 1989; Schaertl 1991). 

Hardwood species show differential susceptibili-
ties to the various herbicides and varying rates of 
recovery. Because many of the commonly applied her-
bicides (e.g., glyphosate) are not completely effective 
on all non-coniferous plants, and the tree-shrub layer 
often physically shields ground layer vegetation (e.g., 
bunchberry, twinfl ower, Canada mayfl ower, violet 
species, and forbs of the Composite family), mixed 
communities of plants often develop after silvicul-
tural herbicide treatments (Freedman et al. 1994). 
The soil seed bank, seed rain from off-site sources 
(depending on the size of the treated area), and the 
sprouting abilities of different species all contribute 
to shorten the duration of the changes caused by her-
bicide application (Freedman et al. 1994). Two and 
nine years after application to spruce-fi r forests in 
Maine, species of deciduous trees and shrubs present 
before treatment continued to be represented in the 
stands but with reduced abundance (Newton et al. 
1992). At the time of the vegetation survey, vertical 
heterogeneity was greater in the treated stands than 
in the untreated stand. The herbaceous cover was 
greatest in the treated stands and scattered canopy 
hardwoods and shrub patches survived amidst the 
dominant softwoods, whereas the untreated stands 
were in the stem exclusion stage with little cover in 
the herbaceous layer. 

Th inning
Thinning also manipulates plant community 

structure in treated stands. Thinning is conducted 
after canopy closure and is sometimes used to alter 
tree species composition (e.g., pre-commercial thin-
nings in which spruce is favored over fi r or unwanted 
hardwood species). Results from a study conducted 
in spruce-fi r stands showed that the response of fi r 
to pre-commercial thinning was greater than that 
of red spruce (Frank 1985 in Seymour 1992). Due to 
its vigorous growth rate, the conditions created by 
thinning may favor balsam fi r and allow it to domi-
nate the overstory of stands harvested on rotations 
of a length that does not allow red spruce to mature 
(Seymour 1994). There are some examples of popula-
tions of herbaceous species that grow beneath forest 
canopies in Maine but expand in thinned stands in 
response to increased light levels in the understory 
(Gawler et al. 1996). Commercial thinning in regions 
outside of the Northeast has been shown to hasten 
the development of multi-storied stands from a single-
storied state, as well as increase the mean diameter 
of individuals in the residual overstory (Bailey and 
Tappeiner 1998; Yanai et al. 1998; Alaback and 
Herman 1988; Table 4). Species composition of the 
understory changes as shrubs and tree seedlings 
become established. Initial increases in the richness 
and composition of ground vegetation can result. 
In some northern forest types high thinning levels 
allow for the dominance of the understory by a few 
favored species (Sean et al. 1999). However, 15 to 20 

Table 4. Summary of the response of non-crop vegetation to competition control treatments in naturally regenerated 
stands. 

Location Reference
Forest
Cover Type

Stand
Age Treatment

Yrs. 
Since
Treat-
ment

Change? Species 
Composition

Species 
Richnessa

Control 
Stand
Age

Change?
Rel. 

Abund.Overstory
Shrub/

Seedling
Herb-

aceous+

Oregon Alaback and 
Herman1988

spruce 33 thinning 17 ooo c nc > m/pc y
hemlock 33 thinning 17 ooo c c nc m/pc y

Oregon Halpern and 
Spies 1995

Doug. fir-
hemlock

40 5,10,
20,40

nc c c nc ud/pc y

Oregon Bailey and 
Tappeiner 1998

Douglas fir 40–
100

thinning 10–25 ooo c nc ooo ud y

Pennsylvania Yanai et al. 
1998

central 
hardwoods

50–55 thinning 15 ooo c ooo > m/pc y

Maine Newton et al. 
1992

spruce-fir 16 herbicide 
release

9 ooo nc c >(herb) pc y

aincludes species of all vegetation layers unless noted        
Key:  c = change in species composition herbaceous+ = includes ferns
 m = mature second growth stands nc = no change (ns not statistically significant)
 pc = pre-treatment condition  ud = undistrubed/old growth stands     
y = shift in relative abundance (% cover) of one or more species     ooo = not reported 
 bold number was age used for changes recorded in table       
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years after treatment, these changes may no longer 
be apparent due to the development of a dense shrub 
cover or canopy closure. Although thinning enhances 
the vertical heterogeneity of the stand, the spatial 
distribution of stems in treated multi-story stands 
is more uniform than that observed in multi-story 
old-growth forests (Bailey and Tappeiner 1998). 

PLANTATIONS

Site Conversion 
Conversion of a site from naturally regenerated 

forest to a plantation of tree species not native to the 
site is the management practice with the greatest 
potential to alter the forest. Due to the success of 
natural regeneration in the Northeast, plantations 
are not as common in this region as they are in the 
northern boreal forest of Canada and Scandinavia 
and forests in southeastern and western regions of the 
United States. Currently plantations are established 
on a small fraction of the industrial forest in Maine 
each year (Seymour 1992). Planted species include 
local and genetically improved seedlings of native 
conifer species, often black and white spruce. The 
total number of acres planted in Maine over the last 25 
years represents about 1.2% of the forestland (Maine 
Forest Service 2001a). However, the use of planting 
may expand in the future (Gadzik et al. 1998). The 
impact of plantation establishment on the vegetation 
at a site varies with the age and composition of the 
replaced stand (Freedman et al. 1994), in addition to 
other factors related to site conditions, whether tree 
species native to the region or exotics (not common 
in Maine) are planted, and the silvicultural practices 
employed. Changes to the plant community can be 
signifi cant when a hardwood or mixed-wood stand 
in the later stages of succession is converted to a 
conifer plantation. Although the changes were not 
apparent during the early stages of stand develop-
ment, the understory plant community of a mature 
plantation forest in New Brunswick, Canada, differed 
signifi cantly from that of the natural forest (Freed-
man et al. 1994). Freedman et al. (1994) attributed 
the differences to changes caused by the physical 
structure of conifer canopy and chemical infl uences 
of its litter. In several sites in southern England, 
differences in the mix of planted species, soil types, 
and subsequent tending practices all played roles 
in the effects of plantation establishment on the 
understory vegetation (Kirby 1988). The understory 
fl ora in stands planted in mixtures and pure stands 
of beech, pine, spruce, and oak was compared with 
that of secondary, mixed hardwood forests of ap-
proximately the same ages. Kirby (1988) noted that 
the ground fl ora in dense stands of planted conifers 

and stands of planted beech were composed of many 
fewer species when compared with that of the natural 
mixed-oak woodlands. Understory species were more 
likely to survive through the dense stem-exclusion 
stage in mixed plantations of oak and spruce than 
in sites where pure stands of pine or spruce were 
planted. Thinning in the planted sites during this 
stage of development improved light conditions in the 
understory, which allowed also for the persistence 
of some species associated with the original stands 
and the recolonization of others. Changing the over-
story tree species in base-rich soil types appeared to 
alter the composition of the understory fl ora more 
than planting on sites with predominantly acid 
soils (Kirby 1988). In Maine, stands with productive 
soils and occupied by low-quality hardwoods with a 
history of high-grading have usually been selected 
as sites for softwood plantations (Seymour 1992), 
but no research into the effects on ground fl ora has 
been conducted. 

Site Preparation
Although it is also used with natural regeneration 

processes, site preparation is commonly associated 
with plantation establishment. Machinery (mechani-
cal), herbicide applications, and prescribed burning 
are all used to manage residual vegetation and har-
vesting debris to prepare the site for planting. No 
published research on the effects of these practices 
in Maine was found, probably largely due to the fact 
that site preparation is not often practiced in Maine. 
Table 5 summarizes the results of studies from the 
southeastern and northwestern states and areas 
in western Canada covering all three kinds of site 
preparation techniques. Because sites are prepared 
early in succession, the setback in stand development 
is not great. The impact appears to depend on the 
technique and the intensity of its application. How-
ever, intense site preparation also impacts residual 
plant species by delaying their recovery in the stand 
(Schoonmaker and McKee 1988). The greatest im-
pact of site preparation may be on the dead organic 
matter component (Freedman et al. 1996, 1994); this 
will be addressed in a later section. 

In all cases, site preparation initially increased 
herbaceous species cover at the expense of the 
recovering shrub layer (Harper et al. 1997; Loca-
sio et al. 1991; Swindel et al. 1989; Schoonmaker 
and Mckee 1988; Stransky et al. 1986). The use of 
multiple methods of site preparation or those types 
that cause the severe soil disturbance promoted the 
early dominance of a few invading herbaceous spe-
cies, particularly grasses and sedges (Schoonmaker 
and McKee 1988; Stransky et al. 1986; Abrams and 
Dickmann 1982). For example, Scherer et al. (2000) 
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compared the response of understory vegetation 
among several different residue treatments, not-
ing little difference between most treatments and 
the controls. The dominance of one or two species 
in the understory only occurred in sites where the 
broadcast burning and chopping treatments were 
applied. Research conducted by Harper et al. (1997) 
showed that chemical applications primarily reduced 
the tall shrub layer, while mechanical methods 
and burning altered all layers indiscriminately. 
Regardless of site preparation method, differences 
in plant community characteristics between treated 
and control plots had generally diminished within 
10 years. Forty years after forests in Oregon were 
broadcast burned and planted with Douglas fi r, plant 
inventories were conducted in the treated sites and 
natural forests of the same ecosystem type. All but 
two species (mycotrophs) found in natural stands 
were present in the managed stands (Schoonmaker 
and McKee 1988). 

Herbicide Release
Herbicide treatments in Maine and other regions 

are typically applied to softwood plantations within 
fi ve years of the previous harvest. The release of the 
planted conifers from the hardwood competition 
that naturally regenerates on the site reduces the 
biomass of competing deciduous trees and shrubs. 
True to the objective of herbicide application, the 
relative abundance of conifers increased in all of 

the studies that we reviewed (Miller et al. 1999; 
Lautenschlager et al. 1998; Sullivan et al. 1996; 
Boyd et al. 1995; Freedman et al. 1993; May et al. 
1982; Table 6). The studies documented changes in 
the vegetation over the 8 years or less following the 
herbicide applications. The results generally showed 
that the species present in the plant communities of 
the untreated controls were little different from those 
in the treated stands (Lautenschlager et al. 1998; 
Sullivan et al. 1996; Boyd et al. 1995; Freedman et 
al. 1994; May et al. 1982). While conifers dominated 
the upper layers of the canopy, the relative abun-
dance of the herbaceous species and deciduous tree 
and shrub taxa in treated stands remained below 
untreated levels. 

In one operational-scale study conducted in 
northwestern Ontario, the effects on the vegetation 
by four methods of competition control were compared 
in northern mixed-wood forest that had been clearcut 
and planted with spruce four to seven years prior to 
study (Lautenschlager et al. 1998; see also Bell et al. 
1997). Vegetation response to two mechanical meth-
ods (brushsaws and Silvana Selective cutting head) 
and two commonly used herbicides (glyphosate and 
triclopyr) was compared with untreated blocks and 
plots in the adjacent, unharvested forest. Reported 
comparisons were made through measures of rela-
tive percent cover in eight vegetation groups three 
years after the treatments. While plant diversity 
indices indicated little difference among the release 

 Table 5.  Summary of the response of vegetation to site preparation in planted stands. 

Location  Reference
Forest
Cover Type Treatment

Years 
Since

Treatment

Change? 
Species

Composition
Species 

Richnessa Diversityb

Change?
Relative 
Abund.

Age of 
Control 
Stand

British 
Columbia

Harper et al. 
1997

spruce herbicide glyphosate 12 c <(herb) < (S) y pc

herbicide hexazinone 12 c nc nc (S) y pc

Oregon Schoonmaker 
and McKee 
1988

Douglas 
fir-hemlock

burning 5,10,20, 
and 40

c < < (S-W) y ud

Georgia Locasio et al. 
1991

loblolly 
pine

mechanical 6 c nc > (SH) y m

Texas Stransky et al. 
1986

loblolly 
pine

mechanical and 
burning

1, 8, and 
10

nc nc *** y pc/m

Texas Swindel et al. 
1989

loblolly-
slash pine

mechanical and 
chemical

5 <(severe) <(SW 
and S)

y pc

aincludes species of shrub and herb vegetation layers     
bS-W, SH, and S indicate Shannon-Weiner, Shannon, and Simpson’s diversity indices    
Key:  c = change in species composition m = mature second growth stands 
 nc = no change (ns not statistically significant) pc = pre-treatment condition   
 ud = undistrubed/old growth stands y = shift in relative abundance (% cover) of one or more species
 ooo = not reported bold number was age used for changes recorded in table  
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alternatives, the herbicide blocks had the highest 
species richness of the treated blocks and the greatest 
reduction in the shrub and fern vegetation groups. 
The same vegetation groups were represented in 
unharvested forest and planted areas; however, the 
plantation generally had less moss cover and more 
herb, grass, and sedge species than the unharvested 
forest. Only the cover of the deciduous tree group in 
the herbicide-treated blocks was statistically lower 
than its cover in the untreated blocks.

BRYOPHYTES AND LICHENS 

Both as ground cover and epiphytic inhabitants 
of the trunks of trees, bryophytes and lichens are 
ubiquitous structural components of forests of many 
types and ages. Bryophytes, particularly those grow-
ing on rotting logs, create moist microclimates that 
support the establishment of the seedlings of trees 
and herbs (Gawler et al. 1996), but little else is cur-
rently known about the importance these organisms 
to ecosystem function. Because we encountered few 
studies that addressed the effects of intensive forest 
management on bryophytes and lichens, responses 
to all treatments are discussed in this section and 

Table 6.  Summary of the response of vegetation (all but deciduous trees and shrubs) to herbicide release 
treatments in planted sites. 

Location Reference
Forest
Cover Type Treatment

Years 
Since

Treatment

Change? 
Species

Composition
Species 

Richnessa
Species 
Diversity

Change?
Relative 
Abund.

Age of 
Control
Stand

British 
Columbia

Sullivan et al. 
1996

sub-boreal 
spruce

herbicide 5 ooo nc herb/
<shrub

nc y pc

Nova 
Scotia

Freedman et 
al. 1993

mixed-wood herbicide 1,2,4 
and 6

nc nc nc y pc

Ontario Lautenschlager 
et al. 1998

mixed-wood to 
spruce

herbicide
glyphosate

3 ooo ncns ooo y 
(>grasses)

pc

mixed-wood to 
spruce

herbicide 
triclopyr

3 ooo ncns ooo y (<ferns) pc

mixed-wood to 
spruce

brushsaw 3 ooo ncns ooo y pc

mixed-wood to 
spruce

Silvana 3 ooo ncns ooo y pc

Georgia Miller et al. 
1999

mixed pine-
hardwood

herbicide 11 nc ncns ncns y pc

Georgia Boyd et al. 
1995

loblolly pine herbicide 7 nc nc ncns y pc

Texas Swindel et al. 
1989

loblolly-slash 
pine

herbicide 5 c c < y pc

aincludes species of shrub and herb vegetation layers      
Key: c = change in species composition m = mature second growth stands  
 nc = no change (ns not statistically significant) pc = pre-treatment condition   
 ud = undistrubed/old growth stands y = shift in relative abundance (% cover) of one or more species    
 ooo = not reported bold number was age used for changes recorded in table  

summarized in Table 7. The responses of bryophyte 
and lichen communities to disturbance by manage-
ment practices were quite variable and forest-type 
dependent. These organisms typically declined in 
response to management activities, and common 
species, at least, appeared to increase to pre-treat-
ment levels as the forest recovered (Newmaster et 
al. 1999; Hannerz and Hanell 1997; Freedman et al. 
1994). Clearcutting generally altered the abundance 
of bryophytes and lichens more than vascular plants 
(Hannerz and Hanell 1997; Nieppola 1992; Lesica 
et al. 1991; Brumelis and Carleton 1989). However, 
one study comparing conventional clearcutting to 
whole-tree with slash removal documented no change 
and concluded that bryophytes were indifferent to 
logging residue treatments (Olsson and Staaf 1995). 
Changes in species composition appeared to relate to 
the effect of the disturbance on specifi c microenviron-
ment conditions or habitat structure. In northwestern 
Ontario, herbicide treatment reduced the abundance 
and species richness of bryophytes and lichens for at 
least two years following the application. Only the 
group of species considered “common” in the study 
appeared to recover toward pretreatment levels 
(Newmaster et al. 1999). Two papers reported the 
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effects of the thinning of mature stands. A thinning 
study conducted in Finland observed no change in 
the )bryophyte and lichen communities (Nieppola 
1992). Seventeen years after treatment in Oregon, 
groundcover mosses had increased in abundance in 
the plots thinned in a spruce-hemlock forest (Alaback 
and Hermon 1988). The increase was attributed to 
the shady conditions created by a corresponding 
increase in hemlock seedling establishment. 

A moderate amount of information is available 
about the mosses and lichens of Maine (Gawler et al. 
1996). No studies have directly examined the impact 
of forest practices on these species in the Northeast. 
However, there are several species of lichen that 
appear to be largely restricted to old-growth forests 
in Maine (Selva 1994). Additionally, three species 
of moss considered “of special interest” grow at the 
northern edge of their distributions in Maine (Allen 
1996). These species all require tree trunks and rock 
in woodlands as habitat and are included in a list 
of species that are declining in Maine as a result of 
habitat destruction, the causes of which were not 
specifi ed (Allen 1996). 

Some mosses and lichens in other regions are also 
associated with specifi c stages of forest development 
as a result of their habitat requirements. Research 

conducted in Montana, Ontario, the Pacifi c North-
west, and Sweden demonstrated such associations 
(Halpern and Spies 1995; Lesica et al. 1991; Brumelis 
and Carleton 1988; Soderstrom 1988). Several moss 
and lichen species are epiphytic (growing on tree 
trunks and/or branches) or epixylics (inhabiting 
substrates other than the ground surface or living 
trees, commonly woody litter). A few of these species 
rely on the presence and distribution of particular 
structural features, like coarse woody debris and 
moribund trees that develop as the stand matures. 
The results of three studies reported moss and lichen 
species restricted to undisturbed stands (old-growth) 
in which the woody litter and trees of advanced age 
were abundant and well distributed throughout the 
stand (Halpern and Spies 1995; Lesica et al. 1991; 
Soderstrom 1988). In these same studies, there were 
also species found in second-growth stands that were 
not present in the old-growth sites. 

The reviewed studies suggest that mosses and 
lichens are potentially more sensitive to the effects 
of intensive forest practices than vascular plants. 
While many species are able to recover to pre-treat-
ment levels, several bryophyte and lichen species 
possess habitat requirements that are dependent 
on structural elements and micro-site conditions 

Table 7.  Summary of the effects of forest management on the bryophyte and lichen communities. 

Location Reference
Forest
Cover Type

Mean 
Stand
Age Treatment

Years 
Since 

Treatment

Change? Understory
Change? Bryophyte/

Lichen Age of 
Control 
StandComposition

Relative 
Abund. Composition

Relative 
Abund.

Ontario Brumelis and 
Carleton 1989

black 
spruce

5 through 
30

clear-cut 5 through 
30

c y c y ud/m

Montana Lesica et al. 
1991

fir-pine ooo clear-cut 70 c y c y ud

Oregon Alaback and 
Herman 1988

spruce-
hemlock

variable thinning 17 nc nc c y pc

Finland Nieppola 1992 scotch pine 15 clear-cut <20 c y c y pc
149 thinned <30 nc y nc y pc

Sweden Hannerz and 
Hannell 1997

Norway 
spruce

8 clear-cut 8 c y c y pc

Sweden Olsson and 
Staff 1995

spruce-pine ooo cut and 
slash 
removal 

8 and 16 c y nc nc pc

Ontario Newmaster et 
al. 1999

aspen-
spruce

4 herbicide 1 and 2 ooo ooo ooo y pc

Sweden Soderstrom 
1988

spruce-pine ooo clearcut 
and 
thinning

50 ooo ooo c y ud

Key:  c = change in species composition  m = mature second growth stands   
 nc = no change pc = pre-treatment condition
 ud = undistrubed/old growth stands  y = shift in relative abundance (% cover) of one or more species  
 ooo = not reported bold number was age used for changes recorded in table   
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associated with specifi c stages of forest development. 
Maintaining the moribund trees and woody debris 
and other structural elements would likely offset 
the reduction of sensitive species.

(Note: Eve Schulter recently studied the effects of 
intensive forestry practices on bryophytes in Maine. 
Publication forthcoming.)

DEAD ORGANIC MATTER

Another consideration at the stand-scale is 
the loss of structural heterogeneity resulting from 
the reduction of dead organic matter associated 
with intensive forestry practices. Freedman et al. 
(1996) reviewed this topic thoroughly with respect 
to its implications for ecosystem-wide biodiverstiy. 
Because of the infl uence of dead organic matter on 
stand structure and function, we will summarize 
the fi ndings of this report, reiterate some important 
points, and further support them with the results 
of recent research.

Dead organic matter is comprised of cavity trees, 
snags, coarse woody debris, and the organic horizon 
of the forest fl oor. The aboveground structural ele-
ments of dead organic matter provide habitat for 
vertebrate and invertebrate species, as well as for 
vascular plants, bryophytes, lichens, and fungi. Stud-
ies have demonstrated the importance of the spatial 
distribution and decay stage of dead organic matter 
as preferred habitat for bryophyte, lichen, and sap-
rophytic and mycorrhizal fungal species that have 
roles in nutrient cycling and plant nutrition (Hagan 
and Grove 1999; Freedman et al. 1996; Berg et al. 
1994; Lesica et al. 1991; Soderstrom 1988). Coarse 
woody debris can also be an important substrate 
for seedling establishment and, thereby, infl uence 
the tree species composition of stands (McGee and 
Birmingham 1997; Szewczyk and Szwagrzk 1996). 
In addition, “dead shade” created by slash left on 
clearcut spruce-fi r sites protects the smaller advance 
regeneration from the extensive mortality that often 
results from exposure (Seymour 1986). The organic 
horizon of the forest fl oor functions to infl uence site 
quality by storing quantities of organically bound 
nutrients; playing an important role in anion and 
cation exchange capacity, water-holding capacity, 
and carbon storage; and by affecting soil properties 
like acidity (Freedman et al. 1996; Jurgensen et 
al. 1986). The decline in the quality, quantity, and 
spatial distribution of the different components of 
dead organic matter, as well as the loss of species 
associated with these habitats, can alter stand func-
tion and various ecosystem processes (Freedman et 
al. 1996).

The short-term effects of intensive forestry 
practices on the components of dead organic mat-
ter depend on the nature of the preharvest stand, 
the method used to harvest the stand, the manage-
ment techniques applied during post-harvest stand 
development, and the length of the rotation. The 
temporal pattern of the changes in dead organic 
matter quantity and quality following clearcutting 
without additional treatments has been reported for 
both northern hardwood and spruce-fi r stands in the 
Northeast (Sturtevant et al. 1997; McCarthy and 
Bailey 1994; Gore and Patterson 1986). While the 
temporal dynamics differ slightly, the general pattern 
of change in the abundance of dead organic matter 
in both forest types follows a bimodal distribution. 
Amounts of woody debris are greatest during the 
early and late stages of stand development, as long 
as small diameter slash and residual trees are left 
on site after a cut. The quantity of dead organic mat-
ter in the young stand reaches its lowest level after 
30 to 50 years when harvest slash and other debris 
have decomposed and entered soil pools. Approxi-
mately 50 to 80 years after the harvest, the mature 
canopy begins to break up, contributing woody debris 
and enhancing the structural heterogeneity of the 
stand. Although the time sequence differs from that 
documented for the Northeast, a similar pattern of 
development also occurs in the Pacifi c Northwest 
where the abundance of coarse woody debris peaks 
immediately after a harvest and again in the ma-
ture/old-growth stages (Spies et al. 1988) 

Numerous studies have indicated that mature, 
managed stands of both hardwoods and softwoods 
do not have snags, cavity trees, and coarse woody 
debris in the overall volumes that are found in old-
growth stands. Moreover, the proportion of these 
structural components in large-diameter classes 
or in later stages of decay is also less than that 
documented in old-growth forests (Duvall and Gri-
gal 1999; Linder and Ostland 1998; Goodburn and 
Lorimer 1998; Shifl ey et al. 1997; Sturtevant et al. 
1997; Freedman et al. 1996; Tyrell and Crow 1994; 
Lesica et al. 1991; Soderstrom 1988). Intensive 
forest management practices appear to exacerbate 
the differences between managed and unmanaged 
stands with respect to volume and quality of coarse 
woody debris. Usually few snags or residual trees 
remain when site preparation follows conventional 
clearcutting or whole-tree harvesting. Mechanical 
site preparations (e.g., crushing) and burning rap-
idly reduce the size and, thus, the volume of coarse 
woody debris derived from the harvesting residues 
(slash). The coarse component of dead organic mat-
ter is immediately added to the soil pool, removing 
habitat and hastening the rate of decomposition and 
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nutrient release (Freedman et al. 1996). The open 
conditions after clearcutting and characteristic of 
young plantations further enhance decomposition 
rates of the woody debris and further diminish the 
coarser components of dead organic matter. Also, 
during these early stages of succession, inputs from 
plant litter are low. The effects of whole-tree harvest-
ing are greater because this practice removes the 
treetops and limbs that create slash (woody debris) 
from the site. In a review of soil organic matter losses 
for eastern forests, Jurgensen et al. (1986) found 
that logging slash is a major contributor to soil or-
ganic matter. While woody residues and soil organic 
matter have been shown to be an important factor 
in soil water and nutrient availability in forests in 
North America and Europe, the long-term impacts 
of residue removal on nutrient availability and site 
productivity are uncertain (Hagan and Grove 1999; 
Vejre 1999; Fay and Leak 1997; Worrell and Hamson 
1995; Jurgensen et al. 1986). 

High-yield plantations tend to be spatially uni-
form and fast growing. Because such plantations are 
often managed to maximize timber production on 
shortened rotations, few moribund trees develop and 
little woody debris accumulates during the intervals 
between harvests (Freedman et al. 1996; Hansen 
et al. 1991; Gore and Patterson 1986). Thinning, 
maintaining reserve trees, and leaving some coarse 
woody debris in plantations are three practices ap-
plied under this system that can potentially offset 
the trend toward reduced volume of woody debris, 
snags, and cavity trees (Duvall and Grigal 1999; 
Hagan and Grove 1999; Berg et al. 1994). While 
thinning creates some small-diameter coarse woody 
debris, McCarthy and Bailey (1994) point out that it 
could also limit contributions of large-diameter debris 
during later stages of stand development. 

All components of dead organic matter are im-
portant contributors to the structure and function 
of forest ecosystems as habitats and as elements of 
nutrient cycling and plant nutrition. Unless residual 
coarse woody material and moribund trees are left 
after a harvest, the studies indicate that intensive 
silviculture reduces large diameter classes of dead 
organic matter and late stages of wood decay. Expo-
sure of the ground surface following heavy overstory 
removals can also increase the decomposition rate of 
the debris left on site, which may, in turn, affect the 
nutrient dynamics of the soil and possibly understory 
and overstory species composition of the regenerating 
stand. The effects of intensive forestry practices on 
coarse woody debris appear to be consistent across 
the studies reviewed from various regions, with no 
apparent difference between hardwood and conifer 
stand types. Therefore, the implications of the results 

of the reviewed studies should be considered in the 
management of Maine’s forestlands. 

IMPACT OF INTENSIVE FORESTRY ON 
TREE PESTS

Changes in structure and composition of forest 
vegetation will affect the dynamics of tree pests. 
This review is limited to pest complexes that are 
commonly associated with the intensive forestry 
in Maine including spruce budworm, beech bark 
disease, pests of spruce plantations, and decay as-
sociated with thinning spruce/fi r stands. 

Spruce Budworm
As mentioned earlier, much of the clearcutting 

in Maine was a response in large part to the spruce 
budworm (Choristoneura fumiferana) outbreaks 
causing defoliation and mortality on more than 7 
million acres in the1970s and 1980s (Livingston 
1998; Witter et al. 1984). As the following discussion 
indicates, future outbreaks will be affected by how 
the newly developing forests are managed. 

Larvae of the spruce budworm moth can defoli-
ate conifers over a period of years causing especially 
high mortality in balsam fi r (Kucera and Orr 1981). 
Outbreaks occurred in Maine from 1972 to 1986, 1913 
to 1919, and possible in the early 1800s (Seymour 
1992). Another outbreak from 1949 to 1959 caused 
defoliation of trees but low mortality (Irland et al. 
1988). 

The natural composition of Maine’s spruce-fi r 
forest was infl uenced by spruce budworm defoliation 
even before the 20th century, and this disturbance 
regime favored mixed, multiaged forests consisting 
predominately of young fi r and older spruce (Seymour 
1992). This was the case in Maine after the last spruce 
budworm outbreak on uncut sites (Livingston 1998). 
However, heavy cutting in response to widespread 
fi r mortality during the last outbreak removed the 
spruce overstory on those sites (Livingston 1998). The 
species composition of the sites subjected to overstory 
removal shifted to dominance by hardwood sprouts 
and fi r regeneration. The advanced conifer regenera-
tion will presumably replace the hardwood sprouts, 
and Gadzik et al. (1998) project that the spruce-fi r 
forest will increase in merchantable growth. These 
forests are likely to be dominated by balsam fi r be-
cause most of the mature spruce has been removed 
from these stands while the seedlings and saplings 
are dominated by balsam fi r (Livingston 1998). 

Stand susceptibility to mortality due to spruce 
budworm defoliation in Maine will increase with 
the increased proportion of balsam fi r in the stand 
(MacLean 1980; Diamond et al. 1984; Witter et al. 
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1984). Based on inventory data (Livingston 1998), 
average balsam fi r mortality (>8 in dbh) between 
1982 and 1995 inventory periods went from 39% to 
49% as percent basal area in balsam fi r increased 
from 1% to 15% to 45% to 100%. Presumably, this 
mortality is mostly the result of the 1972-1986 
outbreak. The inventory data also indicated high 
mortality in young balsam fi r (5–8 in dbh) with 
mortality averages of 23% to 32% as the proportion 
of balsam fi r increased. MacLean (1996) and Su et 
al (1996) found that defoliation of balsam fi r in New 
Brunswick increased from 30% or less to more than 
60% if hardwoods were less than 40% of the stand’s 
basal area. Needham et al. (1999) analyzed stand 
data from the last spruce budworm outbreak and 
found a similar result in that balsam fi r mortality 
increased if the hardwood proportion in a stand was 
less than 50%. 

The trends in Maine are similar to those re-
ported in New Brunswick in that stands with a 
lower percentage of spruce-fi r had less mortality and 
presumably less defoliation during the outbreak. In 
addition, the Maine data confi rm the expectation of 
red spruce being less susceptible to damage by spruce 
budworm (Diamond et al. 1984; Witter et al. 1984). 
Red spruce mortality averaged 10%–18% for large 
and small trees during the last outbreak (Livingston 
1998). Therefore, an increasing proportion of balsam 
fi r in Maine’s forest will result in an increase in 
future vulnerability to widespread mortality during 
spruce budworm outbreaks. 

Due to the high density of balsam fi r regeneration 
on clearcut sites, pre-commercial thinning of these 
stands is viewed as key to improving their produc-
tivity (Gadzik et al. 1998). Thinning to increase the 
spacing between trees also affects balsam fi r suscep-
tibility to defoliation and mortality caused by spruce 
budworm. Bauce (1996) suggested that thinning 
conducted two years prior to budworm outbreak could 
reduce susceptibility because of increased foliage 
production. However, thinning during an outbreak 
could increase vulnerability because the chemical 
changes in needles after thinning favor larval feed-
ing. Pothier (1998) reported no survival of balsam 
fi r in stands that had up to 30% of the basal area 
removed 10 years prior to the outbreak in Quebec. 
Dobesberger (1998) used a simulation model to pre-
dict that thinned, open grown balsam fi r could have 
compensatory growth after defoliation. However, 
MacLean and Piene (1995) suggest another scenario 
after examining data from Nova Scotia stands that 
were thinned at ca. 15 years old in 1971. After the 
last outbreak, mortality reached 94%–100% in the 
severely defoliated thinned stands. In contrast, 
unthinned stands had pockets of fi r that survived. 

The authors strongly recommend that crop trees of 
balsam fi r on thinned sites, even young trees, will 
need protection during future outbreaks of severe 
defoliation by the spruce budworm.

Intensive forestry practices can increase the 
future vulnerability of Maine’s spruce-fi r forest 
to spruce budworm defoliation. Clearcutting has 
removed the more resistant red spruce from the 
overstory and reduced its presence in the forest. 
Herbicide treatments decrease hardwood composi-
tion and increase the proportion of susceptible balsam 
fi r. Precommercial thinning can increase balsam 
fi r susceptibility to defoliation. Another possible 
adverse consequence of the increasing proportion 
of balsam fi r in Maine forests is an increase in fre-
quency and severity of spruce budworm epidemics 
(Blais 1985). 

Blum and MacLean (1984) describe ways in which 
intensive forestry also has the potential to reduce risk 
to future budworm outbreaks if it can reduce the bal-
sam fi r component, increase red spruce and non-host 
species in the spruce-fi r stands, and maintain host 
vigor. At a regional scale, between-stand diversity 
in species composition and age structure is an addi-
tional key goal. The authors indicate clearcutting can 
increase stand diversity, but the practice can create 
problems as outlined earlier. Stand conversion to 
black spruce plantations is another recommendation 
because of this species’ high resistance to budworm 
defoliation. Shelterwood systems combined with 
thinning are additional recommendations that have 
proven effective in reducing the amount of balsam 
fi r in a stand. Two-and three-stage shelterwood 
treatments combined with thinning-out the fi r has 
increased red spruce growing stock from 11%–25% 
to 41%–55% in 17 years (Frank 1985). Red spruce 
regeneration also increased from 2%–7% to 40%–75% 
of the stems in 16 to 29 years. 

In conclusion, the future application of intensive 
forestry practices will have a major infl uence on the 
vulnerability of Maine’s spruce fi r forests to mortality 
resulting from spruce budworm outbreaks. 

Beech Bark Disease
Beech bark disease (Houston 1994; Houston and 

O’Brien 1983) is caused by a disease complex. A scale 
insect (Cryptococcus fagisuga) feeds on the bark of 
living beech and weakens the phloem cells in the 
area of the feeding. Once weakened, a pathogenic 
fungus (Nectria coccinea var. faginata) can enter the 
tissue and kill patches of bark. The disease complex 
was introduced into Nova Scotia from Europe around 
1890, and American beech has little resistance to 
this combination of pests. Stands of large beech were 
killed by the complex in Maine during the 1930s and 
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40s. However, the roots were not killed, and dense 
stands of beech sprouts have replaced the original 
overstory. The disease complex does not kill the 
smaller trees, but does cause extensive cankers on 
the stem surface resulting in disfi guration, reduced 
growth, and reduced mast production. Only a few 
trees per acre show an ability to completely resist 
the scale insect.

Presumably due to heavy harvesting in response 
to the spruce budworm outbreak, the number of 
beech stems in Maine forests increased from 88.6 
million in the 1982 inventory (Powell and Dickson 
1984) to 169 million in 1995 (Griffi th and Alerich 
1996). Therefore, the amount of beech bark disease 
in the state is increasing substantially because the 
sprouts will retain the parent tree’s susceptibility 
to the disease. As with the vulnerability of spruce-
fi r forests to spruce budworm defoliation, intensive 
forestry offers increased risks and opportunities in 
dealing with beech bark disease. While clearcut-
ting favors regeneration of beech sprouts, herbicide 
spraying is a practical way to remove the susceptible 
beech component from the existing forest (Burns and 
Houston 1987; Kelty and Nyland 1986; Ostrofsky and 
McCormack 1986). Understory herbicide applications 
can target the diseased beech stems but leave resis-
tant beech and other species to grow on the site. If 
there is no intervention, eastern hemlock can slowly 
replace beech in the overstory in some stands over 
time (Runkle 1990; Twery and Patterson 1984). 

In conclusion, beech bark disease will have an 
increasingly adverse impact on Maine’s managed 
forests unless actions are taken to reduce the number 
of beech sprouts.

Plantation Pests
Monocultures of trees are more susceptible to pest 

outbreaks (Cowling 1978). Little acreage is planted in 
Maine, just over 10,000 acres per year (Maine Forest 
Service 2001b) yielding a total acreage of ca. 200,000 
acres in the state (Maine Forest Service 2001a). The 
predominant species being planted is spruce, mostly 
black spruce and some white spruce. In Maine, the 
primary pests identifi ed in spruce plantations are 
Armillaria root disease (Livingston 1990) and the 
yellow-headed spruce sawfl y (Pikonema alaskensis) 
(Maine Forest Service 1998).

Armillaria root disease is a common problem in 
forest plantations because the ubiquitous fungus 
can survive in cut stumps from which it can infect 
planted seedlings (Hood et al. 1991). On eastern co-
nifers, the primary species killing planted seedlings 
is Armillaria ostoyae (Gerlach et al. 1997; Wiensczyk 
et al. 1997; Livingston 1990). Infection level in spruce 
plantations are 1%–32% in Ontario (Wiensczyk 

1996) and accumulated mortality could exceed 10% 
(Whitney 1988). In Maine, Armillaria root disease 
is found in most spruce plantations, but less than 
1% of the trees (<11 years old) in the stands were 
recently killed (Livingston 1990). The low mortal-
ity levels indicate that Armillaria infection is not a 
problem for Maine’s spruce plantations.

An estimated 3,500 acres of black spruce planta-
tions have suffered from defoliating outbreaks of the 
yellow-headed spruce sawfl y (Pikonema alaskensis) 
(Maine Forest Service 1998). To combat the out-
breaks, carbaryl (Sevintm XLR Plus) was applied to 
1,098 acres in 1997. Carbaryl has a very low toxic-
ity to mammals and other vertebrates (Kuhr and 
Dorough 1976). However, it is highly toxic to several 
insect groups, the best-known being honeybees (Kuhr 
and Dorough 1976). Some aquatic invertebrates are 
also sensitive to carbaryl toxicity (Courtemaunch 
and Gibbs 1980; Gibbs et al. 1984). Carbaryl breaks 
down rapidly in plants and soil and will typically 
completely degrade within a couple of months (Kuhr 
and Dorough 1976). However, carbaryl residues can 
be detected in contaminated ponds over a year beyond 
the treatment year (Gibbs et al. 1984). 

Pest problems in spruce plantations have affected 
very few trees in Maine, and there is no indication 
that they will cause major problems in the future.

Decay and Precommercial Th inning
Pre-commercial thinning of dense, regenerating 

spruce-fi r stands is viewed as key to improving their 
productivity (Gadzik et al. 1998). A risk associated 
with thinning is increased incidence of wood decay. 
Cruickshank et al. (1997) found Armillaria ostoyae
capable of colonizing 12% to 52% of residual stumps 
after precommercial thinning of Douglas-fi r planta-
tions resulting in an increased threat of infection for 
crop trees. However, Entry et al. (1991) did not fi nd 
increases in Armillaria infections of Douglas-fi r after 
thinning, but Armillaria infections did increase if 
thinned sites were fertilized. Fertilization decreased 
defensive compounds in the tree bark and increased 
the food in bark tissue that the fungus needs dur-
ing infection (Entry et al. 1991). Whitney (1993) 
found a decrease in incidence of Tomentosus root 
rot (Inonotus tomentosus) in thinned white spruce 
plantations. On balsam fi r in Maine, incidence of 
decay at stump height tended to be lower for pre-
commercially thinned stands (36%) than unthinned 
stands (55%) 10 to 24 years after treatment (Tian 
2002). Red spruce decay incidence was much lower 
(5%–7%) and was unaffected by treatments. Based 
on existing reports, thinning of spruce-fi r stands is 
not expected to adversely impact incidence of decay 
in Maine.
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MANAGEMENT IMPACTS FROM THE 
LANDSCAPE-SCALE PERSPECTIVE

Overview
Forest-management activities infl uence the char-

acteristics of forest stands with respect to changes in 
plants and woody debris. The stand-scale impact of 
intensive forestry practices can appear signifi cant, 
particularly its effects on dead organic matter and 
overall structural complexity of stands in the absence 
of the mitigating practices. However, it is important 
to assess the impact of forest practices from the 
landscape perspective, that is, the regional pattern 
of forest patches. Each managed stand and residual 
forest represent a patch in the landscape mosaic. 
Therefore, the basis for the evaluation of impacts at 
this spatial scale is the distribution and proportion of 
area under different combinations of forest manage-
ment practices (Hepinstall et al. 1999; Freedman et 
al. 1996; McComb et al. 1993; Hansen et al. 1991). 
This perspective is relevant for understanding the 
interaction between and infl uence of areas subject 
to intensive management practices with the species 
inhabiting the adjacent forest patches. Several au-
thors suggest that landscape-scale patterns should 
be the basis for the forest management designs in the 
future (e.g., Crow and Gustafson 1997; Diaz and Bell 
1997; Hunter 1990). This section examines some of 
the changes in the forested landscape resulting from 
management activities and the potential effects of 
the landscape changes on plant communities. 

Landscape-scale patterns are dependent on natu-
ral and man-made disturbances. Forestry, agricul-
ture, and other land management and development 
activities impose an anthropogenic patch dynamic 
on the landscape. This landscape pattern differs 
in many ways from the mosaic created by natural 
disturbances. Studies of the spatial patterns in the 
forested landscapes of Michigan and the Pacifi c 
Northwest characterized some of these differences 
(Spies et al. 1994; Mladenoff et al. 1993; Ripple et 
al. 1991). In these regions, managed landscapes 
generally differed from natural landscapes (i.e., 
those subject to natural disturbance agents only) in 
the predominance of small forest patches in second 
growth, the presence of fewer patches of unmanaged 
forest, simpler patch shapes (e.g., straight edges), and 
low continuity between forest patches (high-contrast 
edges). Increase in abundance of edge environment, 
decrease in the availability of interior habitat, and 
isolation of remnant patches in a matrix of managed 
forest have caused habitat fragmentation for a variety 
of organisms in areas outside the Northeast (Jules 
1998; Spies et al. 1994; Mladenoff et al. 1993; Ripple 
et al. 1991). The differences between managed and 

natural landscapes have additional consequences for 
biological diversity due to changes in attributes such 
as structural complexity of vegetation and species 
composition within and between stands. Several 
authors believe that these changes might, in turn, 
have implications for ecosystem function (Crow and 
Gustafson 1997; Halpern and Spies 1995; Freedman 
et al. 1994; Matlack 1994; Mladenoff et al. 1993; 
McComb et al. 1993; Hansen et al. 1991). 

Three primary concerns arise from an examina-
tion of the potential effects of changes in the pattern of 
the forested landscapes on plant communities. These 
three concerns include (i) increases in the proportion 
of early successional species, (ii) the implications 
of habitat fragmentation and associated changes 
in forest edge characteristics on the resistance and 
recovery of non-tree plant species to disturbances 
caused by forest management activities, and (iii) the 
large-scale reduction in the structural complexity of 
forest stands, on which other forest organism and 
ecological processes may be dependent.

All of these issues, changes in forest cover types, 
habitat fragmentation, and related issues are rel-
evant to the forests of Maine. Based on 1993 satellite 
images, an estimated 11% of the state’s land area 
was in clearcut, early regeneration, or late regenera-
tion (Hepinstall et al. 1999). Based on state records, 
the Maine Forest Service (2001a) estimates that in 
1999 the cumulative use of plantations, pre-com-
mercial thinning, and herbicide application occurred 
on approximately 4.7% of the state’s timberlands. 
Clearcutting has been reduced from 44% of the har-
vest in 1989 to 3.5% in 1999 (Maine Forest Service 
2001a). Although the rate at which sites are repeat-
edly subject to clearcut harvesting (rotation length) 
varies greatly, Seymour and Hunter (1992) point 
out that extensive clearcutting and the associated 
road systems have created a fragmented landscape 
in some regions of Maine. The effects of this type of 
fragmentation, that is, the break up of continuous 
tracts of forest, on understory plant species have not 
been studied in Maine and are just beginning to be 
documented in other areas (e.g., Jules 1998). 

If intensive forest management practices are 
applied extensively and harvest rotations are short-
ened relative to the rotation of natural disturbances 
associated with the forest type, the cumulative ef-
fects of the harvesting rates can cause a signifi cant 
proportion of the landscape to be dominated by early 
successional forest. The expansion of early succes-
sional forest types increases the density of the seed 
rain from the associated species and augments their 
establishment in patches produced by anthropogenic 
and natural disturbances (Spies et al. 1994). As a 
result, early successional species become increas-
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ingly common in the landscape. Concomitantly, the 
return intervals introduced by harvest rotations in 
some areas limit the development of late-successional 
forests, which also affects the species and ecologi-
cal processes dependent on them. Landscape-level 
changes in species proportions have been observed 
in Ontario (Carelton and MacLellan 1994). A similar 
situation also developed in parts of the boreal forest 
in central Sweden from the 1920s to 1950s as a result 
of the introduction of clearcutting on a large scale 
(Linder and Ostland 1998). During the 1960s and 
1970s efforts were directed toward diminishing the 
high proportion of early successional deciduous trees 
that had become established in favor of the conifers 
that had previously dominated the region. One result 
of this management action was a drastic reduction 
in numbers of older deciduous trees, an important 
habitat for some species whose populations had 
expanded following the extensive clearcutting. The 
landowners in this region of Sweden continue their 
attempts to identify and re-establish the “natural” 
balance between coniferous and deciduous species 
in these forests.

Although not extensively documented for vascu-
lar and non-vascular plants, landscape-scale frag-
mentation caused by forest practices is potentially 
problematic for species that are habitat-specialists 
or edge sensitive, are represented at low population 
densities, or possess poor colonizing abilities (Bru-
net and Von Oheimb 1998; Matlack 1994; Probst 
and Crow 1991). The results of demographic plant 
research conducted in a watershed in Oregon illus-
trate possible effects of habitat alteration and frag-
mentation caused by forest management activities. 
Jules (1998) examined the demography of a common 
understory herb of western forests, Trillium ovatum, 
with respect to spatial and temporal patterns of for-
estry-related disturbance. The mortality of trillium 
was almost complete in parts of the watershed that 
had been clearcut and planted with conifers. New 
individuals had not been recruited into stands that 
were cut as many as 30 years before the survey. Ad-
ditionally, forest edge populations of Trillium, those 
growing within 65 m of a clearcut edge, had nearly 
no recruitment during the 30 years since adjacent 
sites were harvested. In contrast, populations in 
forest interiors showed continuous levels of Trillium 
recruitment. The change in the Trillium population 
was attributed to three possible, harvest-related 
causes: the limitations imposed by ant-mediated 
seed dispersal, changes in microclimate at clear-cut 
edges relative to the interior forest, and/or increased 
seed predation at clear-cut edges resulting from 
changes in the small mammal populations associated 
with harvesting. This research indicates that some 

species do require certain types of habitat and that 
the fragmentation of habitat can signifi cantly affect 
common plant species, not just rare ones. 

The colonization rates of woodland plant spe-
cies were studied in Sweden in 30- to 75-year-old 
deciduous tree plantations that had been established 
on abandoned agricultural fi elds (Brunet and Von 
Oheimb 1998). All of the plantations were adjacent 
to undisturbed deciduous woodlands. The authors’ 
objective was to determine the time required for 
species that had become locally extirpated through 
clearcut harvests and planting to recover to former 
population levels. After 70 years, the richness of 
woodland species in the plantation was the same 
as that in the undisturbed forest only within 30 to 
35 m of undisturbed forest edge. Moreover, some 
of the forest species not adapted to long-distance 
dispersal had not become established in all of the 
sampled transects. 

 Conclusions about the importance of landscape 
level patterns and the need for additional research 
have been made for the state by the Maine Biodi-
versity Project (Gawler et al., 1996). As noted in 
an earlier section, there are few species in Maine 
about which habitat requirements and response to 
harvesting are well known. To date, relevant studies 
from areas outside of Maine  and works examined by 
the Maine Biodiversity Project (Gawler et al. 1996) 
indicate an increase in species richness and no loss 
of common plants in response to intensive silvicul-
tural practices. Gawler et al. (1996) noted that these 
few studies compared plant species composition and 
structure in forests managed intensively or at short 
rotations to that in forests in late successional stages 
of development. In most cases, the characteristics of 
the pre-harvest forest were used to detect responses 
in vegetation. This type of study design is necessary 
because much of the forestland in Maine has already 
been altered by management practices. While this 
leaves few natural forest sites (defi ned as maintaining 
the integrity and continuity of natural processes) for 
controls, there are some forested stands that have 
been less impacted by management than others. The 
availability for future studies of late successional 
stages in Maine’s forests is becoming limited because 
of a large increase in the acreage of seedling/sapling 
stands and early successional forest types in Maine 
(Gadzik et al. 1998). In addition, the quality and 
quantity of natural forests are not representative 
of all the recognized forest types in Maine (Gawler 
et al. 1996). The results of the Maine Biodiversity 
Project demonstrate the importance of determining 
the effects of forest management practices on native 
plants at the stand and landscape scales in Maine, 
but careful design will be needed to ensure proper 
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comparisons are made between the range of possible 
forest types in the region.

Management at the Landscape Scale: Examples
While some investigators have compared and 

documented differences in the characteristics of 
managed and natural forestlands at the landscape 
scale and examined their effects on individual spe-
cies, other managers and scientists have attempted 
to design management plans for forested landscapes 
using the results and recommendations of such stud-
ies. The work of Hann et al. (1998) indicates that 
large landscape may offer a buffering capacity to 
broad-scale trends in changes in characteristics like 
vegetation composition and structure, demonstrating 
the importance of landscape-scale considerations 
in management. The following section summarizes 
the key recommendations and points to a few ex-
amples where the concepts and ideas have been 
implemented.

Several authors suggested that management 
designs for forests at the landscape scale incorpo-
rate considerations of stand size, connectedness, 
and age-structure through time as well as in space 
(Fries et al. 1998; Halpern and Spies 1995; Roberts 
and Gilliam 1995b; Freedman et al. 1994;McComb 
et al. 1993; Hansen et al. 1991; Probst and Crow 
1991). Many further noted that knowledge of how 
plant populations respond to the temporal scale, 
as well as spatial patterning of forest management 
activities is needed to create management designs 
that maintain a range of habitat and species integrity 
supporting biodiversity in forested regions (Jules 
1998; Diaz and Bell 1997; Halpern and Spies 1995; 
Roberts and Gilliam 1995b; Matlack 1994; McComb 
et al. 1993). 

As one step in the process of designing and re-
fi ning landscape-scale management plans, Roberts 
and Gilliam (1995b), Niemela (1999), and others 
proposed that the entire sequence of succession fol-
lowing natural disturbances be used as the standard 
for comparing the effects of management activities 
on plant and other community characteristics. An 
example of this approach occurred in part of the 
Willamette National Forest in Oregon where forest 
management activities were based on natural dis-
turbance regimes reconstructed from various lines of 
evidence for the range of past ecosystem conditions 
(Swanson et al. 1997). This information was used 
to implement fl exible management practices that 
allowed for variable rotation lengths, varying levels 
of tree removal at each cutting, and cutting units 
of sizes and spatial patterns as defi ned by natural 
patterns. Diaz and Bell (1997) and Hann et al. (1998) 
likewise recognized that baseline information about 

ecosystem processes was needed to create manage-
ment strategies that will ultimately maintain sus-
tainable conditions at the landscape scale in British 
Columbia. Similar approaches to forest management 
have been undertaken in Sweden where timber 
production and maintaining biodiversity are goals 
of equal importance for the landscape-scale design 
(Fries et al. 1998). 

Understanding the complex interactions of land-
scape-scale patterns and processes and implementing 
them into management designs for large forested 
areas are challenges. While this section offers only 
a brief introduction to the topic, the information 
provided points out the importance of considering 
the forested context of the stands to which high-yield 
silvicultural practices (as well as other management 
activities) are applied. Landscape-scale management 
designs have the potential to modify the impact of 
intensive practices through the thoughtful incorpora-
tion of the management of the surrounding forest. 
Many aspects of forest ecosystems in Maine and 
other regions require additional research to better 
understand the interaction of structure and function 
at the scale of landscapes. Rather than wait for the 
results of such research, management designs should 
use the information currently available but remain 
dynamic so that new information can be readily 
incorporated (Niemela 1999). 

CONCLUSIONS

Intensive forestry practices are silvicultural 
methods that are applied to forest stands with a 
variety of objectives. The effects of the methods on 
forest vegetation depend on the management objec-
tives. In Maine these methods are typically used to 
manage extensive areas of spruce-fi r stands and 
limited areas of softwood plantations established on 
sites with productive soils but previously occupied by 
low-quality hardwoods. Although management goals 
in Maine’s forests continue to undergo changes as 
the timber land base is increasingly separated from 
paper mills and as technology utilizing hardwood 
pulp is incorporated by industry, a major manage-
ment objective for part of Maine’s forests is still to 
increase softwood fi ber production by minimizing 
competition from non-crop vegetation through the 
planting of softwoods, herbicide applications, and 
precommercial thinning. 

Although it may have an “intensive” impact, 
a clearcut harvest is not truly intensive forestry if 
it is not associated with one or more of the other 
practices mentioned above. Clearcutting of spruce-
fi r and mixedwood stands without intensive forestry 
practices often results in either no softwood regen-
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eration or regeneration suppressed by hardwood 
sprouts which reduce fi ber production. 

With these distinctions in mind, studies to date 
do not indicate that clearcut harvests and the in-
tensive forestry practices currently implemented in 
Maine have caused the loss of any plant species or 
communities from the forests in the region. However, 
changes do occur in forest communities in response 
to these practices. This review of data from the 
Northeast and other regions indicate some general 
trends as well as knowledge gaps of how intensive 
forest management potentially affects plant com-
munities and coarse woody debris in Maine and the 
Acadian forests. While the following list summarizes 
the responses of forest vegetation to the previously 
defi ned set of intensive forestry practices, many of 
the effects of high-yield silviculture can be intention-
ally mitigated through additional forestry practices 
not addressed in this review. 
1. The response of tree species to intensive forest 

practices is relatively well understood at the 
stand scale. Clearcut harvests, planting, herbi-
cide applications and thinning often increase spe-
cies diversity. Species composition and relative 
abundance of the overstory tree species are also 
usually altered, as these are the intended objec-
tives of most of these management practices. 

2. In contrast, the effects of harvesting and inten-
sive practices on most understory vascular and 
non-vascular plants were not considered until 
very recently. As with overstory species, studies 
indicate that the use of intensive forestry prac-
tices typically increases the species diversity of 
understory herbs and shrubs. Shifts in species 
composition and relative abundance in under-
story plant communities are usually temporary. 
Occasionally these changes appear to be long-
term.

3.  The response of non-vascular plant species to 
intensive forestry practices is similar to that of 
other understory plants. However, some species 
of bryophytes and lichens may be more strongly 
dependent on structural features (e.g., moribund 
trees and woody debris) associated with specifi c 
stages of forest development and, therefore, 
may be more sensitive than vascular plants to 
intensive forestry practices that remove such 
substrate materials. 

4. Plantation forestry signifi cantly alters plant com-
munities. Research in Scandinavia has shown 
that it may take a century or more for locally 
extirpated woodland species to recover in inten-
sively managed sites even if there is an adjacent 
source of propagules. However, relevant studies 

in Maine and the Northeast are few, and the 
impact of these changes at the landscape level 
may not be important because of the infrequent 
use of plantation forestry in the state.

5. Amounts of coarse woody debris and moribund 
trees are typically reduced by intensive forest 
practices, unless such structural features are 
intentionally left. The reduction of debris and 
removal of snags and large diameter trees af-
fects the natural structural complexity of stands, 
which in turn, alters the availability of habitat 
and nutrients in the stand. 

6. Responses of tree pests to intensive forestry 
are variable. Risk to spruce budworm could be 
reduced or increased depending on whether 
forest practices reduce or increase the amount 
of balsam fi r in a stand. Reducing the beech 
component of a stand could reduce beech bark 
disease. Plantation forestry will likely increase 
pest problems for the planted species but not for 
the surrounding forest. 

7. Increases in the fragmentation of mature, second 
growth and unmanaged forest patches have oc-
curred. There is also evidence from some regions 
that the fragmentation of habitat by forestry 
practices has impacted certain plant species. 

Knowledge gaps:
1. The majority of the research on the effects of 

intensive forest management on plant communi-
ties, as well as on soils, water quality, and forest 
vertebrates and invertebrates, reports the results 
of short-term studies. Even in areas of North 
America where intensive forestry is widespread, 
sites that have undergone multiple rotations of 
management are rare. Therefore, the cumulative 
long-term impact of these practices on native 
plant communities and other components of 
forest ecosystems may only be speculated based 
on the currently limited information. 

2. More information is needed on the function of 
understory vascular and non-vascular plants in 
ecosystem processes and the impacts of intensive 
forestry on individual species and functional 
groups. However, studies about the effects of 
management practices on some uncommon or 
rare species may prove problematic. The abun-
dance of many taxa is so low that measures of 
their response cannot be statistically analyzed, 
and few appropriate late-successional sites exist 
in Maine for comparison. 

3. With respect to coarse woody debris and mori-
bund trees, it is unclear how much of each of 
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the structural features is necessary to maintain 
vulnerable species and important processes. 
It is also not known whether it is necessary to 
maintain these features in every stand or if rep-
resentation at the landscape level is suffi cient. 

4. There is little information to indicate the amount, 
the patch size, and the spatial pattern of mature 
forest that is required to maintain populations of 
plants at the landscape scale to span the range 
of forest succession types. 
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