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Findings

Each enumerated entry below is followed by a bulleted list of essential findings.  Immediately 
after that list, I have included the full text of manuscripts or draft manuscripts for each paper that 
has not yet been published. 

1. Comparison of nitric oxide synthase activities and expression levels of key genes in 
pathways of hypoxia sensitivity and angiogenesis between red- and white-blooded 
notothenioid fishes. See Beers et al. (2010).  Comparative Physiology and 
Biochemistry. Part A.  156: 422-429.  [.pdf of final publication sent to Program Officer] 

Chemical indices of the corporeal content of nitric oxide (NO) are greater in 
hemoglobinless icefishes than red-blooded relatives and proportional to 
circulating hemoglobin content of blood in the latter group. 
Inverse relationship between blood Hb concentration and NO concentration is 
driven predominantly by rate of Hb-mediated NO degradation and not by 
differences in capacity for synthesis of NO by nitric oxide synthase. 
Expression of hypoxia-sensitive and angiogenic genes is similar in adults of both 
red- and white-blooded notothenioids, indicating well oxygenated tissues in the 
fully developed animals. 

 
2. Effect of chemically-induced anemia upon expression of hypoxia-sensitive and 

angiogenic genes in the red-blooded notothenioid, Notothenia coriiceps.    
Chemically-induced anemia (phenylhydrazine) in a red-blooded notothenioid 
results in elevation of corporeal NO but does not affect the activity of nitric oxide 
synthase. 
Anemic fishes show elevation of expression of genes from pathways of hypoxia 
sensitivity and leading to angiogenesis, documenting the presence of an hypoxia-
inducible mechanism for promoting proliferation of vasculature in notothenioid 
fishes that appears to be mediated by NO. 

 
The following manuscript is in press in Journal of Experimental Biology: 

 

 1
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Symbols and abbreviations 

Hb:    Hemoglobin 

Hb-:     Hemoglobinless channichthyid icefishes  

Hb+:    Red-blooded notothenioid fishes 

 2



NSF ANT 0739637 
Annual Progress Report 
1 September 2009 – 31 August 2010 
 
Hct:    Hematocrit 

Mb:    Myoglobin 

NO:   Nitric oxide 

NO3
-:  Nitrate 

NO2
-:  Nitrite 

NOx:    Nitrate + nitrite 

NOS:   Nitric oxide synthase 

eNOS:   Endothelial nitric oxide synthase 

iNOS:    Inducible nitric oxide synthase 

nNOS:    Neuronal nitric oxide synthase 

PHZ:    Phenylhydrazine HCl 

L-NAME:   N- -nitro-L-arginine methyl ester hydrochloride 

QPCR:    Quantitative real-time PCR 

dpi:   days post injection 

HIF-1:    Hypoxia-inducible factor 1 

HRE:    Hypoxia-response element 

PHD2:    Prolyl hydroxylase domain containing protein 2 

VEGF:    Vascular endothelial growth factor 
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Summary 

Antarctic icefishes possess several cardiovascular characteristics that enable them to 

deliver oxygen adequately in the absence of hemoglobin (Hb).  To investigate the mechanism 

driving development of these cardiovascular characteristics of icefish, we chemically induced 

severe anemia in a red-blooded notothenioid, N. coriiceps.  After ten days of treatment with 

phenylhydrazine HCl, the hematocrit and Hb concentration of N. coriiceps decreased by >90% 

and >70%, respectively.  Anemic fish exhibited a significantly higher concentration of nitric 

oxide (NO) metabolites in their plasma compared to control animals, indicating that corporeal 

levels of NO are higher in anemic animals than control fish.  Activity of nitric oxide synthase 

(NOS) was measured in brain, retina, pectoral muscle, and ventricle of control and anemic 

animals.  With the exception of retina, no significant differences in NOS activities were 

observed, indicating that the increase in plasma NO metabolites is due to loss of Hb and not due 

to an overall increase in NO production.  To determine if loss of Hb can stimulate remodeling of 

the cardiovascular system, we measured expression of HIF-1 , PHD2, and VEGF mRNA in 

retinae of control and anemic fish.  Expression of all three genes was higher in anemic animals 

compared to control N. coriiceps, suggesting a causative relationship between loss of Hb and 

induction of angiogenesis that likely is mediated via nitric oxide signaling.   

  

Introduction 

 It was once believed that hemoglobin (Hb) expression was a distinguishing characteristic 

of vertebrates.  Antarctic icefishes (Suborder: Notothenioidei, Family: Channichthyidae) are the 

exception to this rule (Ruud, 1954).  Channichthyids lost the ability to express Hb through a gene 

deletion event that occurred when they diverged from red-blooded Antarctic notothenioids 

approximately 8.5 Ma (Cocca et al., 1995; Near, 2004).  In the absence of Hb, icefish blood 

carries oxygen in physical solution in plasma, resulting in an oxygen-carrying capacity that is 

less than 10% that of red-blooded notothenioids (Holeton, 1970).  Loss of Hb expression would 

be a lethal mutation in most environments.  However, in the Southern Ocean, low temperature 

results in high oxygen solubility that undoubtedly contributed to the survival of icefish.  While it 

has been hypothesized that decreased blood viscosity due to lack of red blood cells (RBCs) is 
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energetically favorable, icefishes have a higher cardiac output than red-blooded fish, resulting in 

an overall greater energetic cost of circulation (Wells, 1990; Sidell and O'Brien, 2006).  Thus, 

loss of Hb is an energetically disadvantageous trait.  Like all notothenioids, icefishes benefited 

from very low competition due to a crash in species diversity that occurred sometime after the 

mid-tertiary (Eastman, 1993).  With greatly relaxed competition, negative selection will not 

operate on sublethal disadvantageous traits within the population.  The combination of a cold, 

well oxygenated environment and low competition allowed early icefish to survive and persist 

even though they possessed a mutation that impaired their physiology (Sidell and O'Brien, 2006).   

 Today, 16 species of icefishes inhabit the Southern Ocean.  Modern icefishes are 

genetically very closely related to their red-blooded relatives; however, red- and white-blooded 

fish have notably different cardiovascular systems.  During the course of evolution, icefishes 

developed a unique cardiovascular system that appears to compensate for the loss of Hb.  

Channichthyids are characterized by increased blood volume, larger bore blood vessels, greater 

ventricular mass, higher cardiac output, denser vascularization, and increased ventricular 

mitochondrial densities compared to red-blooded Antarctic notothenioids (Eastman, 1993; 

O'Brien and Sidell, 2000; Wujcik et al., 2007).  Together, these cardiovascular characteristics 

facilitate delivery of oxygen throughout the body.  Although these characteristics have been well 

described, the underlying mechanisms responsible for driving them has not been elucidated.  In 

this paper, we describe how nitric oxide-mediated signaling pathways can be triggered by the 

loss of Hb to stimulate angiogenesis in a red-blooded Antarctic notothenioid.  Our observations 

provide insight into the evolutionary path that may have led to the cardiovascular characteristics 

of modern icefishes. 

 Nitric oxide (NO) is a pervasive signaling molecule produced from arginine and oxygen 

by nitric oxide synthases (NOS) (Alderton et al., 2001).  In most vertebrates, the half-life of this 

potent molecule is very short in vivo because it is broken down rapidly through reactions with 

oxygenated Hb or myoglobin (Mb), resulting in the formation of nitrate (Gow et al., 1999; Flogel 

et al., 2001).  NO degradation also occurs at a much slower rate through reactions with oxygen 

free radicals and thiols resulting in the formation of nitrate and nitrite (Kelm, 1999).   

 In the absence of Hb, we predicted that the steady-state levels of NO would be higher in 

icefish than red-blooded notothenioids due to loss of the primary breakdown pathway for NO 
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(Sidell and O'Brien, 2006).  In previous work, we measured the concentration of nitrate plus 

nitrite (NOx), in plasma of several species of notothenioids (Beers et al., submitted).  Due to 

technical difficulties surrounding accurately measuring NO directly, the aggregate concentration 

of NOx is often measured as a proxy for NO (Sun et al., 2003; Tsikas, 2005).  Consistent with 

our hypothesis, we found that icefish species generally had higher concentrations of NOx in their 

plasma than did red-blooded species (Beers et al., submitted).  When results are adjusted for the 

larger blood volume of fish lacking Hb expression, it is clear that corporeal levels of NO are 

higher in icefishes than red-blooded notothenioids.   

 NO stimulates angiogenesis and mitochondrial biogenesis in mammals.  Expression of 

genes in both signaling pathways increases in response to NO (Ziche and Morbidelli, 2000; 

Nisoli et al., 2003).  Tissues of hemoglobinless icefishes display both dramatically greater 

mitochondrial densities (O’Brien and Sidell, 2000) and vascular densities (Wujcik et al, 2006) 

than their red-blooded relatives.  Yet, despite the higher level of NO in icefish, there is no 

significant difference in expression of mitochondrial biogenesis genes in ventricles and 

angiogenesis genes in retinae between red- and white-blooded adult notothenioids (Beers et al., 

submitted; Urschel and O'Brien, 2008).  Feedback inhibition could be responsible for lack of 

upregulation in the genes, once stable well-oxygenated phenotypes are attained.  Indeed, NOS 

activity is lower in icefish than red-blooded species, indicating that feedback inhibition may 

account for a decrease in the rate of NO production in adult icefish (Beers et al., submitted). 

 Although not evident in adults, where the anatomy has stabilized, NO may play a role in 

remodeling the cardiovascular system early in the development of icefishes.  However, due to 

inability to capture or manipulate early life history stages of icefish, we cannot measure NO 

levels or gene expression in developing icefish.  To test our hypothesis, we produced an icefish 

model by treating adults of the red-blooded notothenioid, N. coriiceps, for 10 days with 

phenylhydrazine HCl (PHZ).  Phenylhydrazine is a hemolytic agent that lyses RBCs leading to 

the degradation and clearance of Hb and drastically reducing Hct and Hb concentration of fish 

injected with the compound (Smith et al., 1971; Gilmour and Perry, 1996; McClelland et al., 

2005).  We reasoned that treatment of a red-blooded notothenioid with PHZ would induce severe 

anemia that could provide insight into what happens when the primary breakdown pathway for 

NO is removed.     
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Materials and methods 

Animals 

Notothenia coriiceps Richardson 1844 were collected from Dallmann Bay in the 

Antarctic Peninsula region (64°08 S, 62°40 W) during the austral autumn of 2007 and 2009.  

Fish were caught from approximately 150 m depth using Otter trawls and baited traps deployed 

from the ARSV Laurence M. Gould.  Animals were held in flowing seawater tanks during transit 

to Palmer Station on Anvers Island.  Fish were transferred to the Palmer Station aquarium and 

held in covered flowing seawater tanks at 0±0.5°C.   

 

Experimentally induced anemia 

 Specimens of N. coriiceps, a red-blooded nototheniid with a normal hematocrit of 35-

40%, were made anemic by treatment with phenylhydrazine HCl (PHZ), a hemolytic agent.  

PHZ was administered by an initial intraperitoneal injection, followed by continuous delivery of 

the drug by a surgically implanted osmotic pump as described below.  Moderately sized animals 

(39-43 cm total length; 1000-1400 g wet weight) were used for experimental treatment.   

 Fish were anaesthetized prior to surgery using MS-222 (Finquel®, Argent Chemical 

Laboratories, Redmond, WA, USA) at a dosage of 1:7500 w/v.  Once unresponsive, animals 

were transferred to an inclined surgical table where their gills were irrigated continuously with 

chilled seawater containing anaesthetic at 1:12000 w/v throughout the surgical procedure.  A 

section of ventral abdominal surface, just anterior to the vent and lateral to the midline, was 

swabbed thoroughly with antiseptic (0.02% chlorhexidine) prior to making a 2 cm long incision 

through the abdominal wall.  An Alzet® 2ML1 osmotic pump (DURECT Corporation, 

Cupertino, CA, USA), containing 440 mM PHZ in notothenioid Ringer solution, was inserted 

into the peritoneal cavity through the incision.  Notothenioid Ringer solution was composed of:  

260 mM NaCl, 2.5 mM MgCl2, 5.0 mM KCl, 2.5 mM NaHCO3, 5.0 mM NaH2PO4, pH 8.0 at 1 

°C.  According to the algorithm provided by the manufacturer, this pump should deliver PHZ 

solution at a constant rate of ~4.5 L·hr-1 for the duration of the experiment under these 

conditions.  After implantation of the pump, the incision was closed by suturing with 4/0 

polypropylene monofilament.  Animals then were injected intraperitoneally with PHZ at 10 
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mg·kg-1 prior to initial transfer to a shallow holding tank for recovery.  During the recovery 

period, a hose delivering flowing seawater at ambient temperature was held in the animal’s 

buccal cavity to ensure irrigation of the gills until the fish was able to resume autonomous 

ventilation.  Animals then were transferred to circular 4000 L flowing seawater tanks where they 

were held for 10 days. 

 

Tissue preparation

All animals were anesthetized with MS-222 (1:7500 w/v).  Blood was drawn from the 

caudal vein and a small volume was drawn immediately into heparinized glass capillary tubes for 

hematocrit determination.  The remainder of the whole blood was mixed with a 3.2% sodium 

citrate solution (9 parts blood to 1 part sodium citrate) to prevent clotting.  Whole blood samples 

were stored for hemoglobin determination.  Plasma samples were obtained by centrifuging the 

blood at 5300 x g for 10 min at 4ºC; plasma was drawn off and frozen at -80ºC for later NOx 

determination. After drawing blood, anesthetized animals were killed by severing of the spinal 

cord followed by rapid excision of the brain.  All tissues collected for gene expression and 

enzyme activity measurements were flash-frozen with liquid nitrogen and stored at -80 C.   

 

Hemoglobin determination 

Hemoglobin concentration was determined using the cyanmethemoglobin method 

(Stadie, 1920).  Briefly, 20 l of whole blood containing sodium citrate was mixed with 5 ml of 

Drabkin’s Reagent (Sigma Aldrich, St. Louis, MO, USA) and then incubated for 30 min at room 

temperature before spectrophotometric measurement at 540 nm.  Total Hb concentration was 

calculated using a bovine Hb (Sigma Aldrich) standard curve.  All samples were performed in 

triplicate and mean values were computed for each individual.     

 

Plasma nitrate + nitrite (NOx) determination 

 Plasma was deproteinated using an acetonitrile/chloroform treatment based on a protocol 

from Romitelli et al. (2007).  Plasma was mixed 1:1 with acetonitrile, vortexed for 60 s and 

centrifuged at 21000 x g for 10 min at 4ºC.  The supernatant was transferred to a new tube, 

mixed with two volumes of chloroform and centrifuged at 12000 x g for 15 min at 4ºC.  The 

 8



NSF ANT 0739637 
Annual Progress Report 
1 September 2009 – 31 August 2010 
 
aqueous phase, containing the deproteinated plasma, was transferred to a new tube and frozen at 

-80ºC.   

 Differences in NO concentration between species were inferred by measuring combined 

break-down products, nitrate (NO3
-) plus nitrite (NO2

-), according to the Griess method, as 

described by Grisham et al. (1995).  First, NO3
- was converted to NO2

- by incubating 100 l of 

deproteinated plasma with 0.2 units/mL of nitrate reductase in 50 mM HEPES, 5 M FAD and 

0.1 mM NADPH, pH 7.4 (final volume 500 l) at 37ºC for 30 min.  To oxidize any remaining 

unreacted NADPH, 7.5 units of LDH and 50 l of 100 mM pyruvic acid were added next and 

incubated for an additional 10 min at 37 ºC.  Finally, 1 mL of Griess reagent (0.1% 

napthyleneethylenediamine, 1% sulfanilamide and 2.5% phosphoric acid) was added to each 

sample and then incubated at 25ºC for 10 min.  NO2
- concentration was determined by 

spectrophotometric measurement of diazonium salt formation at 543 nm.  Samples were run in 

duplicate and compared to a NO2
- standard curve to determine total concentration of NOx

 in the 

samples.  Corrections for plasma volumes were performed to account for the addition of sodium 

citrate to the blood.  Absorbance of PHZ-treated N. coriiceps plasma samples at 543 nm was 

measured before the addition of the Griess reagent.  This baseline reading then was subtracted 

from the final reading to correct for the presence of trace PHZ.   

 

Measurement of NOS activity  

NOS activity was measured in brain, retina, ventricle and pectoral muscle of control N. 

coriiceps, and PHZ-treated N. coriiceps by quantifying conversion of [14C]arginine to 

[14C]citrulline.  Crude extracts were prepared by homogenizing tissue in a 5% w/v ice-cold 

buffer solution (25 mM Tris-HCl, 1 mM EDTA, 1 mM EGTA; pH 7.4) with a ground-glass 

homogenizer.  Homogenates were centrifuged at 12000 x g for 5 min at 4°C to remove cellular 

debris.  Supernatants were drawn off, transferred to fresh tubes and kept on ice.     

 Tissue extracts (10 l per reaction) were incubated for 3 hr at 5°C in reaction medium 

containing 25 mM Tris-HCl, 3 M tetrahydrobiopterin, 1 M FAD, 1 M FMN, 10 mM 

NADPH, 6 mM CaCl2 and [14C]arginine (0.05 Ci per reaction)  (40 l final volume; pH 7.4).  

Reactions were terminated by adding to each tube 400 l of 50 mM HEPES stop buffer (pH 5.5) 

containing 5 mM EDTA.  [14C]citrulline was separated from unreacted [14C]arginine using batch 
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ion-exchange chromatography.  Briefly, 100 l of Dowex® 50WX8 resin (Na+ form) was added 

to each reaction and mixed thoroughly.  Samples then were transferred to 0.45 M cellulose 

acetate Spin-X® columns (Costar®, Corning Life Sciences, Lowell, MA, USA) and centrifuged at 

16000 x g for 30 s.  Finally, 450 l of filtrate, containing the [14C]citrulline, was transferred to a 

vial with 3 ml of scintillation cocktail and quantified by liquid scintillation spectrometry.  All 

reactions were run in triplicate and parallel controls were carried out by adding 5 l of the 

competitive NOS inhibitor, L-NAME (N- -nitro-L-arginine methyl ester hydrochloride; 1 M), 

to the reaction mix.  Enzyme activity is reported strictly as L-NAME-inhibitable activity. 

 

Measurement of VEGF, HIF-1  and PHD2 mRNA expression in the retina 

Total RNA was extracted from notothenioid retinae using an AllPrep™ 

DNA/RNA/Protein mini kit (QIAGEN Inc., Valencia, CA, USA) according to manufacturer’s 

instructions.  RNA concentration and purity were analyzed by spectral analysis with a Beckman 

DU540 spectrophotometer.  The RNA then was analyzed using an Agilent 2100 Bioanalyzer to 

ensure the samples were not degraded.  DNA contamination was removed from RNA samples 

using Turbo DNA-free™ (Applied Biosystems/Ambion, Austin, TX, USA).  First-strand cDNA 

was synthesized from total RNA using Superscript® III Reverse Transcriptase (Invitrogen Life 

Technologies, Carlsbad, CA, USA) and oligo(dt) primer.  DNAse-treated RNA was added to 

each reaction with a final concentration of 45 ng/μl.  

Sequencing of Antarctic notothenioid VEGF, HIF-1 , and PHD2 is described in Beers et 

a. (submitted).  QPCR primers (Table 1) were designed in regions of the genes conserved among 

Antarctic notothenioids using Primer3 (Rozen and Skaletsky, 2000).  All genes were amplified 

using Invitrogen’s SYBR® GreenER™ (1 cycle of 5 min at 50ºC, 1 cycle of 10 min at 95ºC, 40 

cycles of 15 s at 95ºC and 1 min at 60ºC).  QPCR reactions had a final volume of 30 μl with 2 μl 

of cDNA (diluted 1:10) and primer concentrations ranging from 20 to 40 nM, depending on the 

gene.  Each sample was run in triplicate.  QPCR products were subjected to a melt-curve analysis 

and sequenced to ensure primer specificity.

 Due to the complex nature of retinal tissue and differences in tissue composition, as 

demonstrated by the increased vascular endothelial tissue in icefish compared to red-blooded 

species (Wujcik et al., 2007), samples were normalized to total RNA.  This was completed by 

 10



NSF ANT 0739637 
Annual Progress Report 
1 September 2009 – 31 August 2010 
 
several rounds of careful quantification and dilution until all samples had the same RNA 

concentration.  cDNA synthesis of all samples was done simultaneously with the same master 

mix to ensure the same efficiency of the reverse transcription reaction between samples.  Finally, 

the same amount of cDNA was added to each QPCR reaction and all samples were run on the 

same plate for each primer set.  A standard curve of linearized plasmid containing the gene of 

interest spanning five logs was run on each qPCR plate. 

 

Statistical analyses 

Comparisons among species for differences in NOS activity were performed in 

SigmaStat (Version 3.1; Systat Software, Inc., Chicago, IL) using a Kruskal-Wallis One-Way 

ANOVA on Ranks for all tissue types assayed (p 0.05).  A one-way ANOVA followed by a 

post-hoc Tukey’s Honestly Significantly Different test was used to determine significant 

differences in gene expression and plasma NOx (p 0.05).  Hb concentration and Hct of treated 

and untreated N. coriiceps were analyzed using a two-sample T test.  Hct readings of <1% were 

conservatively considered 1% for statistical purposes.  With the exception of NOS activity data, 

all statistics were performed in SYSTAT (Version 12; Systat Software, Inc., Chicago, IL). 

Results

Phenylhydrazine treatment significantly reduces hematocrit and hemoglobin concentration 

Blood samples from N. coriiceps treated for ten days with PHZ were analyzed for Hct 

and Hb concentration.  Compared to control animals, the Hct and Hb concentration 

measurements were significantly lower in PHZ-treated animals (p<0.001; Fig. 1).  Hcts of PHZ-

treated fish ranged from 4.8% to less than 1% while the control fish had an average Hct of 36.1 ± 

1.5%.  These numbers represent a greater than 90% decrease in Hct in the PHZ-treated N. 

coriiceps.  The Hb concentration also was reduced dramatically in the PHZ-treated fish.   

Compared to the controls, Hb content of PHZ-treated animals was reduced by >70%.  Residual 

Hb in plasma of PHZ-treated animals is responsible for the less dramatic change seen in the 

concentration of Hb compared to the reduction in Hct (Fig. 2).  These results demonstrate that we 

have successfully induced severe anemia in a red-blooded Antarctic notothenioid. 
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Phenylhydrazine treatment significantly increases concentration of nitrate +  nitrite in the 

plasma of N. coriiceps 

The aggregate concentration of plasma NOx was measured in control and anemic (PHZ-

treated) N. coriiceps as a proxy for NO (Fig. 3).  Plasma concentration of NOx in N. coriiceps 

increased by 33% when animals were treated with PHZ (p  0.01).  While significantly different 

from untreated N. coriiceps, the concentration of plasma NOx in anemic N. coriiceps is not 

significantly different from that of C. aceratus (Hb-) reported in Beers et al. (submitted).  Thus, 

PHZ treatment results in a significant elevation in NO metabolites compared to control animals.   

 

NOS activity in N. coriiceps treated with phenylhydrazine 

Nitric oxide synthase (NOS) activity was determined in four different tissues of control 

and PHZ-treated N. coriiceps using a radiochemical method to measure the conversion of 

[14C]arginine to [14C]citrulline (Fig 4).  There is no significant difference in NOS activity in the 

brain, ventricle, and pectoral muscle between control and PHZ-treated animals.  However, PHZ-

treatment results in approximately a 2.5-fold increase in NOS activity in the retina compared to 

control animals (p<0.05).  For both treated- and untreated N. coriiceps, the highest NOS activity 

was observed in brain tissue [approximately 160 and 170 pmol (min·g wet wt.)-1, respectively].  

Brain NOS activity was more than 50-fold higher than activities measured in ventricle, retina and 

pectoral muscle of control and treated N. coriiceps.  Brain, retina, and ventricle NOS activity of 

treated and untreated N. coriiceps is consistently higher than observed for C. aceratus (Hb-) 

(Beers et al., submitted).     

 

PHZ-treatment increases mRNA expression of VEGF, PHD2 and HIF-1  

 Treatment of N. coriiceps with PHZ for 10 days resulted in an increase in retinal mRNA 

levels of PHD2, HIF-1 , and VEGF (Fig. 5).  Messenger RNA levels of PHD2, an oxygen-

dependent regulator of HIF-1 , were approximately 8-fold higher in animals treated with PHZ 

than control animals (p<0.001).  Expression of mRNA encoding HIF-1 , part of the HIF-1 

transcription factor, was approximately 4-fold higher in anemic than in control animals (p<0.01).  

VEGF, a growth factor regulated by HIF-1 that stimulates blood vessel growth, showed the 

largest increase in mRNA levels with PHZ treatment.   VEGF mRNA was approximately 30-fold 
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higher in PHZ-treated animals than in control N. coriiceps (p<0.001).  Increases in VEGF 

expression are an indication of ongoing angiogenesis.  Beers et al. (submitted) found the steady-

state mRNA expression of all three genes to be statistically the same in N. coriiceps (Hb+) and 

C. aceratus (Hb-).  Retinae of PHZ-treated fish have mRNA levels of PHD2, HIF-1  and PHD2 

that are significantly higher than levels measured in both control N. coriiceps and C. aceratus 

(Hb-) (Fig. 5).  These data indicate PHZ-treatment stimulates angiogenesis in the retina of N. 

coriiceps.   

 

Discussion

Our experiments were designed to provide insight into how icefishes have developed 

drastically different cardiovascular characteristics than red-blooded Antarctic notothenioids.  We 

induced severe anemia in a red-blooded notothenioid to model the conditions the icefish might 

experience early in development.  Using this experimental model, we investigated a possible 

mechanism that could be responsible for some of the alterations to the cardiovascular system of 

the Antarctic icefish.  We show that treatment with PHZ results in increased levels of NO and 

stimulates angiogenesis in red-blooded N. coriiceps.   

 

Phenylhydrazine treatment results in increased nitric oxide levels in a red-blooded Antarctic 

notothenioid 

Adult icefish have higher levels of NO metabolites than red-blooded Antarctic 

notothenioids (Beers et al., submitted). To confirm that loss of Hb can induce an increase in NO, 

red-blooded N. coriiceps were treated with PHZ for 10 days.  In previous studies that have 

utilized PHZ to induce anemia in salmonids, one intraperitoneal injection with PHZ (10 or 12.5 

g·g-1) was sufficient to dramatically and rapidly decrease the Hct (Smith et al., 1971; Gilmour 

and Perry, 1996; McClelland et al., 2005).  By 1 day post injection (dpi), the Hct was 

significantly lower than control animals and continued to decrease for several days before 

starting to recover 8-10 dpi.  Full recovery took  5 weeks depending on the species.  To ensure 

the Hct would not recover during the ten day treatment, we initially injected the animals with 10 

g PHZ per gram body mass and also surgically implanted an Alzet osmotic pump containing 

PHZ into the animal.  Osmotic pumps are preferable to repeated injections because the animal 
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receives a continual low dose of the chemical without the stress of repeated injections (Theeuwes 

and Yum, 1976).  The fish responded remarkably well to the PHZ-treatment. All animals 

survived the surgery, injection and ten day treatment.  Despite the fact that some animals had a 

Hct of <1% at the end of the treatment, there was no noticeable change in the health or behavior 

of the animals.  The survival rate of PHZ-treated animals documents that, in a cold and well 

oxygenated environment, the loss of Hb is nonlethal. 

PHZ-treated N. coriiceps have higher levels of NOx than control N. coriiceps.  In fact, the 

elevated concentration of NOx in the plasma of anemic N. coriiceps is not significantly different 

from icefish (Hb-).  Because the concentration of NOx is often measured as a proxy for NO, we 

can infer that the PHZ-treatment results in an increase in NO concentration in red-blooded 

notothenioids.  While our results strongly suggest that the increase in NO is due to the loss of 

Hb, they do not rule out a possible contribution of increased NO production.  To more closely 

examine whether the loss of Hb is solely responsible for the increase in NO, we measured 

catalytic capacity for NO production in several different tissues from control and PHZ-treated 

animals. 

 

Does loss of hemoglobin affect the rate of nitric oxide production? 

Nitric oxide is produced by NOS isoforms.  At least one isoform of NOS is present across 

the phylogenetic spectrum of animals from insects to mammals.  Mammals express three NOS 

isoforms.  Endothelial (eNOS), inducible (iNOS) and neuronal NOS (nNOS) differ in how they 

are regulated and tissues in which they are expressed (Alderton et al., 2001).  Less is known 

about NOS in lower vertebrates.  While mammals have three isoforms of NOS, the number of 

NOS isoforms in lower vertebrates is unresolved.  Genomes of zebrafish and pufferfish contain a 

gene for nNOS, and iNOS is present in the zebrafish genome (www.ensembl.org).  To date, 

eNOS has not been identified in a fish genome.  However, several labs have reported the 

presence of eNOS in different fish species based on cross-reactivity with mammalian antibodies 

(Fritsche et al., 2000; Ebbesson et al., 2005; Garofalo et al., 2009). 

We measured NOS activity in untreated and PHZ-treated N. coriiceps by measuring 

conversion of radioactively labeled arginine to citrulline.  This method does not discriminate 

among different NOS isoforms.  PHZ treatment resulted in an increase in NOS activity in retina, 
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but not in brain, pectoral muscle or kidney.  Measureable activity indicates that at least one 

isoform is expressed in each of the tissues analyzed for both control and anemic animals.  Lack 

of difference in NOS activity between PHZ-treated and control animals in three out of four 

tissues measured indicates NO production is generally not upregulated in anemic fish.  These 

results suggest that anemia-induced increase in NO is primarily due to loss of Hb and not due to 

a change in the rate of NO production.  Unlike adult icefish, capacity for NO production 

apparently is not downregulated in the PHZ-treated N. coriiceps.  Perhaps longer exposure to 

PHZ would decrease NOS activity to the level seen in icefishes.  PHZ-treated animals experience 

a low Hb, high NO environment for only 10 days whereas icefish are exposed to high NO levels 

for their entire life history. 

 

Phenylhydrazine-induced anemia triggers a hypoxic response 

We have focused on the role of Hb in NO metabolism; however, the primary role of fish 

Hb is to carry oxygen from the gills and deliver it throughout the body.  Loss of Hb in PHZ-

treated animals drastically reduces the oxygen-carrying capacity of blood.  Decreases in oxygen 

availability at the cellular level trigger hypoxic-signaling pathways regulated by transcription 

factor, HIF-1 (Ke and Costa, 2006).  Decreased oxygen results in a build up of HIF-1  protein, 

which binds to constitutively expressed HIF-1ß to form HIF-1.  This transcription factor then 

stimulates expression of genes containing a hypoxia-response element, HRE, in their promoters.  

Via the HRE, HIF-1 regulates expression of genes involved in erythropoiesis, angiogenesis, 

vascular tone, glucose metabolism, and cell survival. 

We know that HIF acts as a global regulator of hypoxia-responsive genes in all 

vertebrates.  While it is believed that regulation of HIF-1  by PHD2 is conserved throughout 

vertebrates, it has not been confirmed (Nikinmaa and Rees, 2005).  PHD2 (also known as HPH2, 

HIF prolyl hydroxylase 2, or EGLN1, egg laying abnormal nine homolog 1) regulates HIF-1  

protein expression in mammals.  In the presence of oxygen, PHD2 hydroxylates HIF-1  on two 

proline residues in the oxygen-dependent degradation domain, targeting the protein for 

proteosomal degradation (Berra et al., 2003; Berra et al., 2006).  Increased expression of PHD2 

mRNA during hypoxia primes the system so that when oxygen becomes available, PHD2 

degrades HIF-1  rapidly (Metzen et al., 2005).  Genes encoding PHD2 and other prolyl 
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hydroxylases have been located in the genomes of multiple fish species, and the HIF-1  oxygen 

dependent degradation domain is conserved in fish and mammals (Soitamo et al., 2001).  

However, other than our own recent results (Beers et al., submitted), we are unaware of any 

studies that have examined the expression of PHD2 in fish species.   

 Expression of PHD2 mRNA in retina is not significantly different between adult red- and 

white-blooded Antarctic notothenioids (Beers et al., submitted).  This suggests either that icefish 

are not hypoxic, or that the transcription of PHD2 is not responsive to hypoxia in fish.  Increased 

PHD2 mRNA expression in anemic N. coriiceps establishes that PHD2 is hypoxia-responsive in 

Antarctic notothenioids.  Demonstration that PHD2 is hypoxia-responsive in notothenioids, but 

not upregulated in adult icefish, indicates that the cardiovascular characteristics of adult icefishes 

ensure normoxia of tissues despite the absence of Hb.  These experiments also support that 

regulation of HIF-1  by PHD2 is conserved in vertebrates.  

In addition to PHD2, HIF-1  mRNA expression also was higher in retinae from PHZ-

treated animals compared to untreated N. coriiceps.  Expression of HIF-1  mRNA is often 

thought to be unaffected by hypoxia and solely regulated at the protein level by PHD2.  

However, changes in HIF-1  mRNA expression have been observed in hypoxic fish.  HIF-1  

mRNA expression in grass carp changes in response to length of hypoxia exposure and the tissue 

type and HIF-1  mRNA expression increases in zebrafish embryos exposed to hypoxic 

conditions (Ton et al., 2003; Law et al., 2006).  In the present paper, we have presented another 

example of hypoxia-induced HIF-1  mRNA expression.  Many studies have examined only 

expression of HIF-1  protein.  It is possible that regulation of HIF-1  expression at the mRNA 

level is more widespread than is currently appreciated. 

 

Hypoxia may induce angiogenesis via a nitric oxide-mediated pathway 

 We have shown that PHZ-treatment of red-blooded N. coriiceps results in both low 

oxygen levels and high NO levels.  These conditions may mimic those experienced by 

developing icefishes.  We hypothesize that this unique set of circumstances stimulates 

remodeling of the icefish cardiovascular system early in development by stimulating 

angiogenesis.  To test whether loss of Hb stimulates angiogenesis, we measured mRNA 

expression of the angiogenic growth factor VEGF, vascular endothelial growth factor.  
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Angiogenesis, the growth of new blood vessels from preexisting blood vessels, is stimulated by 

hypoxia and/or nitric oxide (Ziche and Morbidelli, 2000; Pugh and Ratcliffe, 2003).  During 

hypoxia, HIF-1  and HIF-1ß, binds in concert to an HRE in the promoter of VEGF, stimulating 

transcription.  NO also is known to stimulate transcription of VEGF via an increase in HIF-1  

protein expression.  NO can block ability of PHD2 to bind oxygen, inhibiting the enzyme from 

hydroxylating HIF-1 .  This inhibition of PHD2 by NO results in accumulation of HIF-1  

protein (Kimura et al., 2000; Kimura et al., 2001; Metzen et al., 2003).   

 What happens to HIF-1  protein levels, and thus the expression of genes downstream of 

HIF-1  in the angiogenic pathway (e.g. VEGF), when oxygen is low and NO is high is a matter 

of debate.  Conflicting evidence for the effect of NO upon PHD2 activity during hypoxia also 

has been reported.  Several studies have indicated that NO increases activity of PHD2 during 

hypoxia and that treatment of cultured cells with NO donors inhibits accumulation of HIF-1  

(Brune and Zhou, 2003).  Hagen et al. (2003) suggested that NO binds to cytochromes in the 

electron transport chain at low oxygen levels, making oxygen available to other oxygen-binding 

proteins, such as PHD2.   Such a mechanism would enable PHD2 to hydroxylate HIF-1 , thus 

targeting the protein for degradation, even when oxygen is in short supply.  This effect of NO 

upon PHD2 activity may, however, be dose-dependent with respect to NO.  Hypoxic HIF-1  

protein expression in human liver HepG2 cells is diminished by low levels of NO, but higher 

levels of NO stabilized hypoxic HIF-1  protein (Callapina et al., 2005).  High levels of NO 

during hypoxia inhibit PHD2 activity by blocking the ability of the protein to bind oxygen.  This 

results in the accumulation of HIF-1  stimulating the transcription of genes such as VEGF, 

downstream in the angiogenic pathway.  We believe this to be the situation observed during 

PHZ-induced anemia of N. coriiceps. 

 Retinae of PHZ-treated N. coriiceps experience both high levels of NO and low levels of 

oxygen.  Our data indicate that PHZ-induced anemia in these animals results in elevation of NO 

metabolites, presumably reflecting increased NO levels. Concomitant with these effects, we 

observe an increase in HIF-1  gene expression and an approximately 30-fold increase in 

expression of VEGF mRNA in PHZ-treated animals compared to untreated fish.  In the retina, 

we conclude that inhibition of PHD2 by the presence of NO and absence of oxygen results in 

accumulation of HIF -1  protein, stimulating angiogenesis.  This demonstrates a possible 
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mechanism that could be activated early in the development of icefish, resulting in the higher 

density of vasculature present in retinae of adult animals. 

 

Loss of Hb triggers endogenous signaling pathways 

 Since loss of Hb by their progenitor, the Family Channichthyidae has radiated to contain 

16 species of fish that have exploited different niches in the Southern Ocean.  While there 

certainly have been changes in the genome of icefishes as the family has evolved, we present a 

mechanism that may account for inception of their cardiovascular adaptations and may still 

contribute to ontogenetic development of these traits in modern species.  In this paper, we have 

demonstrated that removal of Hb stimulates the angiogenic pathway in an adult red-blooded 

Antarctic notothenioid.  Severe anemia in the adult fish resulted in high levels of NO and 

presumed hypoxia.  Presence of this homeostatic system would have helped early icefishes to 

compensate immediately for the lower oxygen-carrying capacity of blood due to loss of Hb 

expression.      
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Figure Legends 

Fig. 1.  Effect of phenylhydrazine treatment upon hematocrit (A) and hemoglobin (B) 

concentration in N. coriiceps.  N. coriiceps were treated for ten days with the hemolytic agent, 

phenylhydrazine (PHZ; see methods).  Asterisk denotes significance between control and PHZ-

treated N. coriiceps (p 0.05).  Values are means ± s.e.m; N=8 for both control and treatment 

groups.     

Fig. 2.  Reduction in hematocrit of N. coriiceps by treatment with phenylhydrazine.  Photographs 

of gills and Hct capillary tubes from control N. coriiceps (A) and N. coriiceps treated with 

phenylhydrazine (PHZ) for 10 days (B).  Plasma of PHZ-treated N. coriiceps is red-tinted due to 

the release of Hb when red blood cells are lysed by PHZ. 

 

Fig. 3. Plasma concentration of nitrate plus nitrite (NOx) is increased in N. coriiceps treated with 

phenylhydrazine.  N. coriiceps (Hb+) is an Antarctic notothenioid species that expresses 

hemoglobin (Hb) while C. aceratus is a species that lacks Hb.  N. coriiceps treated with 

phenylhydrazine, a hemolytic agent, are labeled ‘PHZ.’   Values are means ± s.e.m.; N=8 for 

each species.  Letters (a, b) signify the samples are significantly different from one another at 

p 0.05. C. aceratus data, as reported in Beers et al. (submitted), are illustrated for comparison.   

 

Fig. 4.  Nitric oxide synthase (NOS) activity in tissues of control and PHZ-treated N. coriiceps.  

N. coriiceps (Hb+) is an Antarctic notothenioid species that expresses hemoglobin (Hb) while C. 

aceratus is a species that lacks Hb (Hb-).  N. coriiceps treated with phenylhydrazine, a hemolytic 

agent, are labeled ‘PHZ.’  Values are means ± s.e.m. (N=4 per group).  Letters (a, b) signify the 

samples are significantly different from one another at p 0.05 within a tissue type.  C. aceratus 

data, as reported in Beers et al. (submitted), are illustrated for comparison.  NOS activity was not 

detected in C. aceratus retina.   

 

Fig. 5.  PHZ-treatment results in an increase in expression of genes associated with angiogenesis.  

N. coriiceps (Hb+) expresses hemoglobin (Hb) while C. aceratus lacks Hb (Hb-).  N. coriiceps 

treated with phenylhydrazine, a hemolytic agent, are labeled ‘PHZ.’  Expression was normalized 
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to total RNA and is expressed as relative to N. coriiceps.  Values are expressed as means ± s.e.m.  

(N= 4 per group).  Letters (a, b) signify the samples are significantly different from one another 

at p 0.05 within a gene.  C. aceratus data, as reported in Beers et al. (submitted), are illustrated 

for comparison.   

 

Table 1:  QPCR Primers 
Gene Forward Primer Reverse Primer 
VEGF 5’ CAAGGGAGCGGAGAAGAGTA 3’ 5’ CAAGGGAGCGGAGAAGAGTA 3’ 
HIF-1  5’ TCTCTACAACGATGTAATGCTTCC 3’ 5’ AATCTGATTTCATCTCCGAGTCC 3’ 
PHD2 5’ AAACGGGCAAGTTCACAGAC 3’ 5’ TCCCAATTTGCCGTTACAAT 3’ 

from Beers et al. (submitted) 

Figure 1
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Figure 2 
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Figure 4 
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3. Thermal tolerance and effect of thermal insult upon hypoxia-inducible genes in 
notothenioid fishes.  

Hemoglobinless icefishes are more susceptible to rapidly warming temperature than 
are closely related red-blooded notothenioid fishes. 
Among hemoglobin-expressing notothenioid species examined, thermal tolerance is 
directly positively correlated with blood hemoglobin concentration.  i.e. The higher 
the normal blood hemoglobin concentration, the greater the tolerance of the species to 
temperature elevation.  This strongly suggests that an oxygen limitation dictates 
thermal tolerance of these fish species. 
Within the very short duration (5-6 hr) of our modified Critical Thermal Maximum 
(CTmax) experimental design, there are few signs of elevation in expression of 
hypoxia-sensitive genes in any tissues other than heart ventricle.  More pronounced 
elevations in gene expression may be encountered over longer intervals of exposure 
and cardiac function may be particularly sensitive to thermal insult leading to 
insufficient supply of oxygen to the tissue. 

 
The following is a draft of a manuscript (Authorship:  Beers, J.M. and B.D. Sidell) to be 
submitted to a peer-reviewed journal (tentatively American Journal of Physiology) for 
publication by August 2010: 
 

INTRODUCTION 

The Antarctic Peninsula is recognized widely as one of the planet’s “hot spots” of rapid 

elevation in climatic temperature (Steig et al., 2009).  Effects on the terrestrial ecosystem have 

been extensive—collapse of ice shelves, glacier shrinkage and exposure of new habitat (Clarke et 

al., 2007; Schofield et al., 2010).  The bordering oceanic environment has been impacted as well.  

Surface waters near the West Antarctic Peninsula (WAP) have risen by ~1°C over the past 50 

years and are predicted to rise by another 2°C in the coming century (Meredith and King, 2005; 

Murphy and Mitchell, 2005).  Significant changes have been observed in sea ice coverage 

adjacent to the WAP (Jacobs and Comiso, 1993; King and Harangozo, 1998) and warming of the 

Upper Circumpolar Deep Water (UCDW) of the Antarctic Circumpolar Current has been 

documented (Levitus et al., 2000; Levitus et al., 2005).  Temperature elevation of the UCDW 
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may have a significant influence on marine fauna because it penetrates into WAP continental 

shelf waters, where a majority of marine life resides (Schofield et al., 2010). 

Cascading effects from rapid regional warming of the WAP already have become evident 

in the surrounding marine ecosystem.  Changes in species abundance and distribution have been 

documented for many species, consequences of which have been shifts in community structure 

and alterations in food web dynamics (McClintock et al., 2008; Aronson et al., 2009; Schofield 

et al., 2010).  Much focus has been aimed at broad scale ecological impacts of climate change, 

but there also has been considerable interest about the physiological effects of temperature 

elevation on individual species.  Evaluation of thermal tolerance limits is a key component of 

understanding species-specific responses to temperature change.  Delineation of an organism’s 

thermal ‘window’ (entire temperature range that permits survival) yields insight into 

physiological plasticity to adapt to alternate temperature regimes. 

Antarctic marine ectotherms live in the coldest, most thermally stable waters of any 

marine environment.  Consequently, many of these species have become highly stenothermal, 

meaning that they are specialized in their low and narrow temperature window (Somero and 

DeVries, 1967; Pörtner et al., 2007).  Some invertebrate species, such as the bivalve, Limopsis 

marionensis, and the scallop, Adamussium colbecki, have incredibly narrow thermal windows 

and are affected by thermal increases as small as 1-2°C above habitat temperature (Pörtner et al., 

2007).  Other species, like the limpet, Nacella concinna, and the predatory nemertean, 

Parborlasia corrugatus, can tolerate temperatures up to 10°C (Pörtner et al., 2007).  Thermal 

tolerance limits of Antarctic notothenioid fishes also have been investigated, although thermal 

sensitivities of the suborder’s most distinctive family member, white-blooded icefishes, have not 
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been assessed (Somero and DeVries, 1967; Hofmann et al., 2000; Mark et al., 2002; Podrabsky 

and Somero, 2006; Franklin et al., 2007).  

Antarctic icefishes (Family Channichthyidae) are one of eight families of the perciform 

suborder, Notothenioidei, which dominates the fish fauna surrounding Antarctica (Eastman, 

1993).  Icefishes are unique in being the only known vertebrate animals that completely lack the 

circulating oxygen-binding protein, hemoglobin (Hb), in their blood as adults (Ruud, 1954).  

Many species within the family also do not express the intracellular oxygen-binding protein, 

myoglobin (Mb) (Moylan and Sidell, 2000).  A suite of cardiovascular modifications appears to 

have compensated for loss of these important respiratory hemoproteins.  Icefishes have larger 

and more extensive vasculatures, greater blood volumes, larger hearts, and more numerous 

cardiac mitochondria compared to similar-sized red-blooded notothenioids (Hemmingsen and 

Douglas, 1970; Fitch et al., 1984; O'Brien and Sidell, 2000; Wujcik et al., 2007).  Combination 

of high throughput circulatory systems, low absolute metabolic rates and exceptionally well-

oxygenated waters of the Southern Ocean ultimately permit this group of animals to supply 

enough oxygen to their tissues and survive without Hb and/or Mb (Hemmingsen, 1991).     

Lack of expression of oxygen-binding proteins is not without costs.  Loss of Hb has led 

to greater energetic expense to the circulatory system and loss of Mb has resulted in decreased 

cardiac performance (Sidell and O'Brien, 2006).  Additionally, oxygen-carrying capacity of the 

blood in icefishes is reduced to less than 10% of that in red-blooded fishes (Holeton, 1970).  

Current environmental conditions of the Southern Ocean (i.e., cold, stable, well-oxygenated 

waters) have allowed icefishes to compensate for reduced cardiac efficiency and oxygen-

carrying capacities of the blood.  However, future climatic warming may exacerbate icefishes’ 

already difficult situation of maintaining oxygen homeostasis.  As warming occurs, oxygen 
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availability will decline due to inverse proportionality of oxygen solubility and temperature.  

Thus, we anticipate that icefishes might be more susceptible to thermal warming than red-

blooded fishes because of inability to supply adequate levels of oxygen to tissues.            

We evaluated thermal sensitivities of Antarctic notothenioid fishes, including two icefish 

species, using a modified CTmax (Critical Thermal Maximum) experimental design (Cowles and 

Bogert, 1944).    This design has benefits over other methods because of its ease of use, 

requirement for fewer animals and shorter experimental exposure times (Lutterschmidt and 

Hutchison, 1997).  The magnitude of thermal insult experienced by an organism is an integral of 

both exposure temperature and duration of exposure.  Consequently, the very short experimental 

duration of CTmax design inherently yields upper thermal limits that are much warmer than the 

physiological habitat range for an organism.  Likewise, use of criteria such as loss of righting 

response (LRR) to define CTmax produces a thermal limit higher than temperatures at which 

many physiological systems are impacted.  CTmax, nonetheless, provides a useful means of 

comparing relative thermal tolerances of organisms and reliably rank-ordering thermal 

sensitivities among species; it has been widely used for this purpose  (Lutterschmidt and 

Hutchison, 1997). Species that have a CTmax close to their normal habitat temperature, i.e. 

narrow thermal window, undoubtedly will be more vulnerable to rise in temperature than animals 

with a broader thermal window.  Objectives of our study were three-fold: 1) test the hypothesis 

that white-blooded icefishes are more susceptible to temperature elevation than red-blooded 

notothenioids, 2) evaluate the role of oxygen in setting thermal tolerance limits, and 3) assess the 

capacity of notothenioids to adjust for rise in temperature.   
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MATERIALS AND METHODS 

Animal collection 

 We collected five species of Antarctic notothenioid fishes from waters of the Antarctic 

Peninsula region during austral autumns (April-May) of 2007 and 2009.  Chaenocephalus 

aceratus (Lönnberg, 1906), Chionodraco rastrospinosus DeWitt and Hureau, 1979, Notothenia 

coriiceps Richardson, 1844 and Gobionotothen gibberifrons (Lönnberg, 1905) were caught with 

otter trawls deployed from the ARSV Laurence M. Gould at water depths of 75-150 m in 

Dallmann Bay (64°08 S, 62°40 W).  Bottom-time of each trawl was restricted to 20-30 minutes 

to minimize capture stress.  N. coriiceps, G. gibberifrons and Lepidonotothen kempi (Norman, 

1937) also were caught in baited traps set at 200-500 m depth in both Dallmann Bay and Palmer 

Basin (64°50 S, 64°04 W).  Upon capture, animals were held aboard the vessel in flowing 

seawater tanks until transfer to the aquarium facility at US Antarctic research base, Palmer 

Station, where they were maintained in covered, flowing-seawater aquaria at ambient water 

temperatures of 0±0.5°C.   Animals were maintained in aquaria for several days prior to 

experiments to enable recovery from capture-related stress.  Only fish that were in healthy 

condition were chosen for our study.   

Thermal tolerance experiments 

 We assessed thermal tolerance of Antarctic notothenioid species using a modified CTmax 

(critical thermal maximum) experimental design (Lutterschmidt and Hutchison, 1997).  Animals 

were transferred in groups of 2-3 to an 180 gallon insulated experimental tank at least 2 hr prior 

to the start of each experiment (Figure 1).  The aquarium room was kept dark during the time 
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course of each experiment to minimize stress to these relatively dark-adapted fishes; only red 

lights were used for monitoring animal behavior.  Temperature was elevated acutely from 

ambient at a constant rate of +3.6°C per hour and CTmax was defined as the temperature where 

animals lost righting response.   Seawater circulation in the experimental tank was maintained 

using a saltwater compatible pump that drew water from the tank and directed the flow through a 

3 kV titanium inline heater (AquaLogic, Inc., San Diego, CA).  Heated water then reentered the 

tank and mixed with incoming ambient seawater as it went through an air lift centered on the 

bottom of the tank.  Incoming ambient seawater flow was controlled by a flow meter mounted on 

the wall next to the tank; during experimental runs, this flow was stopped and only heated 

seawater was permitted to recirculate through the tank.  We were able to maintain constant rates 

of temperature change using this technique.  Time and temperature data were recorded 

throughout each experiment using a HOBO® Water Temp Pro V2 temperature logger (Figure 2). 

Raw data were imported into Microsoft Excel and linear regression analysis was used to compute 

CTmax endpoints and verify a constant rate of temperature change (Figure 3).  Upon reaching 

their CTmax, each animal was removed from the tank and then processed as described below.      
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Fig. 1.  Experimental tank design for assessing thermal tolerance of Antarctic notothenioid 
fishes. Animals were put into 180 gallon insulated tanks and subjected to continuous elevation 
of temperature following a modified CTmax method.  See text for description of seawater flow 
and adjustment.       
 
 

Fig. 2.  Representative temperature log from HOBO® Pro V2 temperature logger. Raw 
data from temperature traces were imported into Microsoft Excel and linear regression analysis 
was performed to calculate CTmax values.     
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Fig. 3.  Linear regression analysis using raw data from HOBO® Pro V2 temperature 
logger. Red circle denotes the time that animal lost its righting response.  CTmax temperature 
was computed by inserting ‘time’ into the linear regression equation.   A correlation coefficient 
(R2) value of one indicates a constant rate of temperature change.    

Tissue preparation 

 Animals were anesthetized in MS-222 (Finquel®, Argent Chemical Laboratories, 

Redmond, WA, USA) in seawater (1:7500 w/v) prior to blood collection and tissue harvest.  

Specimens were killed by severing the spinal cord, followed by rapid excision of the brain.  

Tissues collected for measurement of gene expression were excised quickly, frozen in liquid 

nitrogen and stored at -80°C.   

Measurement of plasma lactate concentration and hematocrit 

Samples were prepared for determination of plasma lactate concentration by first drawing 

blood from the caudal vein of anesthetized fish and mixing it with a 3.2% sodium citrate solution 
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to prevent clotting.  Red-blooded samples (N. coriiceps) were mixed at a 9:1 blood to sodium 

citrate ratio (volume:volume), while white-blooded samples (C. rastrospinosus) were prepared at 

4:1.  Whole blood samples were centrifuged at 5300 x g for 10 min at 4ºC; plasma was drawn off 

and frozen at -80ºC until later analyses.   

Plasma lactate was measured using a commercial lactate kit according to manufacturer’s 

instructions (BioVision Research Products, Mountain View, CA, USA).  Briefly, diluted samples 

(controls 1:10 and thermally-treated 1:200) were analyzed in a VERSAmax™ microplate reader 

at 450nm and then compared to a lactate standard curve.  All samples were measured in 

duplicate and mean values were computed for each individual.    For hematocrit (Hct) 

measurement, blood was drawn from anesthetized red-blooded fishes (G. gibberifrons, L. kempi 

and N. coriiceps) into heparinized capillary tubes and then centrifuged for 5 min in a hematocrit 

centrifuge.  The percentage of red blood cells in whole blood was calculated using digital 

calipers.  Hct measurements were performed in triplicate and mean values were calculated for 

each individual.   

Isolation of RNA 

Total RNA was extracted from brain, heart and pectoral muscle using an RNeasy® 

Fibrous Tissue Mini Kit according to manufacturer instructions (Qiagen, Valencia, CA, USA).  

RNA concentration and quality were assessed by spectral analysis using a Beckman DU®640 

spectrophotometer.  Only samples with an A260:A280 ratio of 1.8-2.1 and an A260:A230 ratio of 1.6-

2.0 were used for further analyses.  Samples were visualized on 1% agarose gels stained with 

ethidium bromide to evaluate RNA integrity.  RNA was stored at -80°C until later processing. 
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Quantitative real-time PCR of hypoxia-inducible genes 

Levels of mRNA abundance for two hypoxia-inducible genes, hypoxia-inducible factor-1 

alpha (HIF-1 ) and prolyl hydroxylase domain containing protein 2 (PHD2), were measured 

using quantitative real-time PCR (qRT-PCR).  Gene-specific primers (Table 1) were prepared 

previously and designed from conserved regions of cDNA sequence among notothenioid species 

of interest (Beers et al., 2010).  Quantitative RT-PCR was performed using qScript™ One-Step 

SYBR® Green qRT-PCR Kit, Low ROX™ (Quanta BioSciences, Gaithersburg, MD, USA) with a 

Stratagene MX4000™ set at the following cycling parameters:  1 cycle of 10 min at 50ºC, 1 cycle 

of 5 min at 95ºC, 40 cycles of 10 s at 95ºC and 30 s at 60ºC.  Final reaction volumes for HIF-1  

and PHD2 contained 2.5 ng· l-1 of total RNA.  Only 0.01 ng· l-1 of total RNA was used to 

measure expression level of the ‘housekeeping’ gene, 18S, to adjust for its greater cellular 

abundance compared to target genes.  Primer concentrations ranged from 100 nM for HIF-1  and 

18S to 200 nM for PHD2.  Reactions were run in triplicate and negative controls were included 

on each plate to ensure lack of amplification of genomic or contaminating DNA.  A melt-curve 

analysis was performed at the completion of every run to verify amplification of only a single 

product in each reaction.     

Standard curves of linearized plasmid were run on each experimental plate for both target 

and reference genes and copy number was computed for each sample.  We then normalized 

expression of each target gene to that of 18S rRNA.  Evaluation of 18S as a suitable 

housekeeping gene in tissues of notothenioids has been reported previously (Urschel and 

O'Brien, 2008).  LinRegPCR (Version 11.0) was used to evaluate PCR efficiencies for all 

reactions (Ramakers et al., 2003).             
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Table 1: Primers used for qRT-PCR of hypoxia-inducible and housekeeping genes 

Gene Forward Primer  5 3  Reverse Primer  5 3  

HIF-1  TCTCTACAACGATGTAATGCTTCC AATCTGATTTCATCTCCGAGTCC 

PHD2 AAACGGGCAAGTTCACAGAC TCCCAATTTGCCGTTACAAT 

18S ACCACATCCAAGGAAGGCAG CCGAGTCGGGAGTGGGTAAT 

* Primers from Beers et al., 2010 

Statistical analyses 

 Comparisons among species for differences in thermal tolerance (i.e., CTmax), lactate 

concentration and Hct level were performed in SigmaStat (Version 3.1; Systat Software, Inc.) 

using a one-way ANOVA with a post-hoc Student-Newman-Keuls test (P 0.05).  A student’s t-

test was used to determine significant differences in gene expression (P 0.05).  

 

RESULTS

Oxygen-carrying capacity of blood influences thermal tolerance 

Fishes that lack completely or have low levels of the oxygen-binding protein, hemoglobin 

(Hb), are sensitive to acute elevations in temperature.  Hemoglobinless icefishes, C. 

rastrospinosus and C. aceratus, displayed greatest thermal sensitivity with the lowest recorded 

CTmax values of 13.3±0.2°C and 13.9±0.4°C, respectively (Figure 1).  Hb-expressing L. kempi, a 

species with relatively low Hct compared to other red-blooded notothenioids, had a CTmax 

temperature (14.2±0.4°C) similar to those of icefishes.  However, this is where similarities end.  

Thermal tolerance data for red-blooded species, G. gibberifrons and N. coriiceps, showed 

significantly higher CTmax values, approximately 1.5-3.0°C higher than icefishes and L. kempi.  

Most impressively, the data illustrate a strong positive correlation between CTmax and oxygen-
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carrying capacity of the blood, i.e., Hct (Figure 2).  N. coriiceps, a species with a normal Hct of 

approximately 35%, had the greatest thermal tolerance to acute rise of water temperature 

(17.1±0.2°C).    

  To test whether Antarctic notothenioids have capacity to compensate for elevations in 

temperature, we subjected a group of N. coriiceps to one week of acclimation at 4°C prior to 

measurement of CTmax.  There was no change in CTmax (17.0±0.1°C) of N. coriiceps under these 

experimental conditions, indicating inability of previous thermal history to influence acute 

thermal tolerance.
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Fig. 1.  Thermal tolerance of Antarctic notothenioid fishes.  Critical thermal maximum 
(CTmax) differs among fishes lacking (white bars) and expressing (red bars) the oxygen-binding 
protein, hemoglobin (Hb).  Data are presented as means ± s.e.m.; N=8 for each species. 
Different lower case letters denote statistically significant differences between species 
(P 0.001).  
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Fig. 2.  Thermal tolerance correlates to oxygen-carrying capacity in Antarctic 
notothenioids fishes. There is a strong positive relationship (R2=0.8234) between CTmax 
temperature and hematocrit of both white- and red-blooded species (white- and red-filled circles, 
respectively), indicating that fishes with a relatively high oxygen-carrying capacity are less 
sensitive to elevation in temperature than species having a low capability to transport oxygen.  
Values are presented as means ± s.e.m.; N=8 for each species. 
 
 
 

Effect of acute temperature elevation on hematocrit and plasma lactate levels  

 Red-blooded notothenioids subjected to an acute elevation in temperature responded by 

increasing the number of red blood cells (i.e., Hct) in their circulation (Figure 3), a direct 

determinant of oxygen-carrying capacity.  G. gibberifrons and N. coriiceps showed the most 

significant increases in Hct upon reaching CTmax (approximately 24% and 16%, respectively), 

whereas L. kempi had only a modest 7% rise in Hct.   

We analyzed plasma lactate concentrations of the two species with minimum and 

maximum CTmax temperatures recorded in our study.  There were significant increases in plasma 

lactate concentrations in both C. rastrospinosus and N. coriiceps over those of control animals 

(Figure 4).  The approximate 10-fold treatment effect of C. rastrospinosus was double that of the 
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5-fold change seen in N. coriiceps; however, absolute lactate concentrations were greater in the 

red-blooded species.  Taken as a whole, this blood parameter indicates a stress response to 

elevation in temperature and an increase in anaerobic metabolism to compensate for an apparent 

shortfall in oxygen supply. 
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Fig. 3.  Hematocrits of three red-blooded Antarctic notothenioid fishes. Exposure to an 
acute rise in ambient temperature (CTmax) causes an increase in the number of red blood cells in 
circulation.  Data are presented as means ± s.e.m.; N 6.  Different lower case letters denote 
statistically significant differences among control species (P 0.001).  Asterisk denotes a 
significant difference between control and treated (CTmax) groups within each species (P 0.05). 

    Effect of acute temperature elevation on mRNA levels of hypoxia-inducible genes

We measured mRNA levels of two genes associated with an hypoxia-inducible response, 

HIF-1  and PHD2, in tissues of animals exposed to an acute elevation in temperature.  As with 

lactate measurements, we only performed experiments on two species having the lowest and 

highest recorded CTmax temperatures.  Although the duration of exposure to elevated temperature 

was relatively short for changes in mRNA expression to occur, we were able to detect some 

differences in levels between control and treated animals.  The most notable result was the 

increase in mRNA abundance of HIF-1  in cardiac tissue of N. coriiceps (Figure 5).   This 
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increase represented an approximate 1.6-fold change in relative mRNA copy number.  We did 

not detect a treatment effect on HIF-1  levels in either brain or pectoral muscle of N. coriiceps.  

The expression pattern of PHD2 in tissues of N. coriiceps was similar to that of HIF-1 ; the 

increase of mRNA abundance in heart, however, fell just short of statistical significance 

(P=0.06).   
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Fig. 4.  Lactate concentrations in blood plasma of a white- and red-blooded Antarctic 
notothenioid fish.  Plasma lactate levels are elevated in fishes subjected to an acute rise in 
temperature (CTmax).  Values are presented as means ± s.e.m.; N=6 for each group.  Single 
asterisk denotes statistical significance between control and treated groups of Hb-lacking C. 
rastrospinous and Hb-expressing N. coriiceps (P 0.001).  Double asterisk denotes a significant 
difference in lactate concentration between treated C. rastrospinosus and treated N. coriiceps 
(P 0.001). 
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Fig. 5.  Messenger RNA abundance of hypoxia-inducible genes in a red-blooded Antarctic 
notothenioid, N. coriiceps. Relative mRNA copy numbers were computed for HIF-1  (A) and 
PHD2 (B) using quantitative real-time PCR (qRT-PCR).  Expression of each target gene was 
normalized to 18S rRNA.  Values are presented as means ± s.e.m.; N 5 for each group.  Asterisk 
denotes treatment effect within that tissue (P 0.05). 
 
 

Examination of expression levels of the same genes in tissues of C. rastrospinosus 

revealed both parallels and differences to results from N. coriiceps (Figure 6).  Similar to N. 

coriiceps, there was an increase in mRNA abundance of HIF-1  in cardiac tissue of treated C. 

rastrospinosus; however, these data also fell short of statistical significance from one another 

(P 0.423) due to high variation in the data set.  An exception to results seen for N. coriiceps was 

a small, but significant (P=0.05), difference in levels of HIF-1  mRNA in pectoral muscle 

between control and CTmax animals of C. rastrospinosus. This represented the only significant 

decrease in HIF-1  mRNA level in response to an acute temperature elevation.  Overall, the 
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combination of results for both HIF-1  and PHD2 suggest a hypoxia-inducible response in 

hearts of thermally-treated N. coriiceps and a potential treatment effect in hearts of C. 

rastrospinosus; additional analyses are required for the latter group.       
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Fig. 6.  Messenger RNA abundance of hypoxia-inducible genes in a white-blooded 
Antarctic notothenioid, C. rastrospinosus. Relative mRNA copy numbers were computed for 
HIF-1  (A) and PHD2 (B) using quantitative real-time PCR (qRT-PCR).  Expression of each 
target gene was normalized to 18S rRNA.  Values are presented as means ± s.e.m.; N 4 for each 
group.   Asterisk denotes treatment effect within that tissue (P=0.05).   
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DISCUSSION 

 Waters surrounding the West Antarctic Peninsula are warming at a more rapid rate than 

other regions of the world’s oceans (Vaughan et al., 2003; Meredith and King, 2005).  Much 

research has focused on the influence of temperature elevation upon different species within the 

Southern Ocean ecosystem, including a handful of studies that have given attention to 

notothenioid fishes inhabiting these waters (Somero and DeVries, 1967; Hofmann et al., 2000; 

Mark et al., 2002; Podrabsky and Somero, 2006; Franklin et al., 2007).  None of these 

investigations, however, have assessed the temperature sensitivities of white-blooded 

notothenioids.  We believe this study to be the first to give insights into the thermal tolerance 

window of icefishes.     

 

Thermal tolerance correlates to oxygen-carrying capacity of notothenioids 

 We report a clear pattern of temperature sensitivities among notothenioid fishes that vary 

in their expression of the oxygen-binding protein, hemoglobin.  Results indicate that 

notothenioids that lack completely or have low levels of Hb have narrower thermal windows 

than species with comparatively high Hb levels.  These findings suggest that animals with low 

oxygen-carrying capacities, particularly icefishes, may be highly susceptible to effects of global 

warming.  The narrower thermal window of icefishes compared to closely-related red-blooded 

relatives is not a surprise, but the absolute CTmax temperatures of all species are higher than we 

might have anticipated.  Previous studies report lower thermal tolerance limits for notothenioid 

fishes than the findings we present here.  However, not all of these studies are directly 

comparable due to vastly different experimental designs.  The classic determination of Upper 
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Incipient Lethal Temperature (UILT) requires exposure of experimental animals to elevated 

temperatures for one week (Fry, 1971).  CTmax designs, on the other hand, expose fish to a 

continuously greater thermal shock over a period of only minutes or hours (Lutterschmidt and 

Hutchinson, 1997).  Because the magnitude of thermal insult is undoubtedly a product of time 

and temperature, for any given species, CTmax temperatures are invariably higher than UILT 

temperatures.  Comparisons of absolute thermal tolerance limits must be considered with this in 

mind. 

  The seminal study on temperature sensitivities of Antarctic fishes by Somero and 

DeVries documented an UILT of approximately 6°C for three red-blooded notothenioids of the 

genus Trematomus (Somero and DeVries, 1967).  Other reports since have used modified CTmax 

designs to show survival temperatures ranging from 9-13°C for the Antarctic eelpout, Pachycara 

brachycephalum, and 9-10°C for the red-blooded notothenioid, Lepidonotothen nudifrons 

(Hardewig et al., 1999; van Dijk et al., 1999; Mark et al., 2002).  In light of these results, the 

relatively high CTmax temperatures that we found for icefishes are somewhat surprising.  There 

are at least two possible explanations.   First, prior thermal history strongly influences CTmax and 

UILT (see section below); many of the animals from the above mentioned studies had different 

acclimation temperatures.  Second, as mentioned already, it is difficult to obtain data that 

compare exactly when using thermal tolerance protocols that deviate even slightly 

(Lutterschmidt and Hutchison, 1997).  What is clear, though, is that there are species-specific 

responses to temperature change and there is no ‘one size fits all’ model for Antarctic 

notothenioids.  To assess how climate change will affect the Southern Ocean ecosystem as a 

whole, it will be necessary to collect data on the effects of temperature upon many member 

species. 
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Oxygen limitation of thermal tolerance? 

An inadequate supply of oxygen to tissues as a result of increasing temperature is thought 

to be an early cause of functional limitation in marine ectotherms (Pörtner and Knust, 2007; 

Pörtner et al., 2007; Pörtner, 2010).  The concept of oxygen-limited thermal tolerance implies a 

hypoxic milieu within tissues.  Although results of our CTmax experiments point toward an 

oxygen deficiency setting thermal tolerance limits, we did not directly measure either ambient or 

intracellular oxygen concentrations and can only speculate as to what these levels may be within 

tissues.  Calculations of oxygen solubility in seawater indicate that animals should have been 

exposed to a 26-33% reduction in ambient oxygen concentration at their CTmax.   Oxygen 

demand by tissues simultaneously will increase as body temperature increases.  These two 

factors would translate to a much greater decrease in available oxygen at the tissue level.  Just as 

there are species-specific differences in thermal tolerance, the same is true for tolerance of 

hypoxia.  Cold-adapted species typically require high oxygen levels, while warmer water 

species, e.g. cyprinids, can survive from full anoxia to hyperoxia (Lushchak and Bagnyukova, 

2006).  A 26-33% reduction in oxygen concentration most likely causes a significant shortfall in 

oxygen supply at the tissue level in cold-adapted notothenioids.  Furthermore, this reduction in 

oxygen at the tissues will be particularly pronounced for icefishes that have blood with less than 

10% the oxygen-carrying capacity of red-blooded-fishes (Holeton, 1970).         

 Even without direct measurements to confirm an oxygen deficiency, our results provide 

convincing evidence for oxygen-limited thermal tolerance in notothenioid fishes. High 

correlation between CTmax and normal Hct, in combination with elevation of Hct and blood 

lactate concentration in CTmax animals, support that thermally-treated fish have experienced an 
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hypoxic insult.  Increased Hct often is a first response to low oxygen conditions as a means to 

elevate oxygen-carrying capacity.  While Hct in white-blooded animals is zero due to lack of red 

blood cells, we found that all experimental species of red-blooded notothenioids increased their 

Hcts in response to acutely elevated temperature.  Elevated Hct in CTmax animals not only 

verifies a stress response to experimental treatment, but also suggests a compensatory adjustment 

by red-blooded species to facilitate greater oxygen-delivery to their tissues.  Greater plasma 

lactate concentrations in thermally-treated animals compared to control animals indicate a shift 

from aerobic to anaerobic metabolism, which occurs during hypoxic conditions. 

 As a final means of probing an oxygen-limitation hypothesis, we analyzed mRNA 

expression levels of two genes that have key roles during hypoxic response, HIF-1  and PHD2.  

HIF-1  is one of two subunits that comprise the heterodimeric transcription factor, HIF-1.   HIF-

1 often is called the ‘master regulator’ for its role in inducing expression of many genes during 

hypoxia, including those involved in angiogenesis, glycolysis, and erythropoiesis (D'Angelo et 

al., 2003; Wenger et al., 2005).  Expression of HIF-1  is highly regulated, while HIF-1 , the 

other subunit of HIF-1, is expressed constitutively. During normoxia, PHD2 hydroxylates proline 

residues on HIF-1  targeting the protein for proteosomal degradation.  PHD2 is inactive without 

oxygen, thus blocking degradation of HIF-1  and allowing its accumulation, which stimulates 

transcription of downstream genes (Berra et al., 2003).  Upregulation of PHD2 during hypoxia 

acts as a feedback mechanism to prevent the continuation of a hypoxia-inducible response upon 

reoxygenation (D'Angelo et al., 2003).   

 The relatively short duration (~5 hours) of our modified CTmax design may not be a 

sufficiently long treatment period to observe major changes in gene expression.  It is not 

particularly remarkable that our results did not demonstrate a robust response in all tissues 
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assayed.  Despite this limitation, however, we did see a change in mRNA abundance of hypoxia-

inducible genes in heart of N. coriiceps.  An hypoxic response in cardiac tissue is not surprising 

given the circulatory anatomy of fish; because coronary vessels are absent, the heart is reliant 

upon lumenal venous blood from the systemic circulation and would be exposed to lower levels 

of oxygen than the other tissues that we sampled.  Cardiac function has been shown to decrease 

precipitously for a number of animals upon reaching acute thermal limits, thereby implicating it 

as “an obvious candidate for a cause of acute thermal death” (Somero, 2010).  Reports that CTmax 

of cardiac function is the same as the UILT of porcelain crabs provide strong support for a 

mechanistic connection between whole-animal thermal tolerance and collapse of a specific organ 

(Stillman and Somero, 1996; Stillman, 2002; Stillman, 2003).  However, intriguing as the results 

by Stillman and Somero are, we must consider that the mechanistic underpinnings of thermal 

tolerance in a vertebrate fish (myogenic heart) might be very unlike that in an invertebrate crab 

(neurogenic heart) due to differences in cardiovascular anatomy and regulation.   

 In light of the limitations described above, the lack of response observed in hearts of C. 

rastrospinosus is not entirely unanticipated.  It is possible that the duration of the treatment 

exposure for these animals was not long enough to induce changes in expression of mRNA or 

that HIF-1  and PHD2 were regulated by posttranslational modifications and not via 

transcription.  An additional explanation stems from the fact that changes in mRNA expression 

due to heat stress and/or hypoxia can be highly transient and tissue-specific (Buckley et al., 

2006; Law et al., 2006; Rissanen et al., 2006)  Tissue-specificity also would explain the small, 

but significant, change in level of HIF-1  in pectoral muscle of C. rastrospinosus.  Although not 

clear-cut, these data support the concept of oxygen-limited thermal tolerance.   
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Capacity of Antarctic fishes to modify thermal tolerance limits 

The degree to which animals are able to adjust their thermal sensitivity is an important 

consideration when assessing overall impact of climate change on species, populations, and 

ecosystems (Stillman, 2003; Pörtner et al., 2007; Somero, 2010).  Thermal history (i.e., 

acclimation or acclimatization) plays a key role in determining how an organism will respond to 

future environmental temperature change (Stillman, 2003).  Thus, the very cold, stable 

temperatures of Antarctic waters have resulted in a high degree of thermal specialization and 

extreme stenothermy of endemic species (Pörtner et al., 2007; Somero, 2010).   

There has been debate about the potential for highly stenothermal Antarctic species to 

adapt to rising temperature.  Thermal specialization has been thought to be accompanied by 

trade-offs that compromise ability to respond to changes in temperature (Pörtner et al., 2007; 

Somero, 2010).  The few investigations into this claim have yielded mixed results.  Studies by 

Franklin, Seebacher and colleagues have shown that a red-blooded notothenioid, Pagothenia 

borchgrevinki, has capacity to acclimate cardiac function to elevated temperatures (Seebacher et 

al., 2005; Franklin et al., 2007).  Podrabsky and Somero saw increased heat tolerance in two 

species of Trematomus (T. pennellii and T. bernacchii), but they did not see an increase in 

tolerance of P. borchgrevinki or in a deep-water zoarcid species, Lycodichthys dearborni 

(Podrabsky and Somero, 2006).  Their finding that P. borchgrevinki did not increase heat 

tolerance, thus, is in direct contrast to results of Franklin, Seebacher and colleagues.               

Our data indicate that the red-blooded notothenioid, N. coriiceps, is unable to increase its 

heat tolerance after acclimation to 4°C for one week.  Although, one week may not seem like a 

particularly long acclimation period, increases in thermal tolerance have been shown to develop 

within 1-2 days of acclimation to 4°C in T. bernacchii (Podrabsky and Somero, 2006).  Due to a 
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shortage of animals and time constraints in the field, we were unable to run the same acclimation 

experiment with an icefish species.  Based upon available information, we cannot assume that 

icefishes will respond in the same manner as N. coriiceps due to species-specific responses in 

capacity to compensate for elevated temperatures.  

 

 

Summary and conclusions 

Results from our study show that temperature sensitivity is highly dependent upon the 

oxygen-carrying capacity of the blood.  Thus, Antarctic notothenioids that completely lack or 

have low levels of the oxygen-binding protein, Hb, may be more susceptible to elevated 

temperatures that accompany climate change than species with comparatively high levels of Hb.  

Although we do not have a detailed understanding of the mechanism(s) setting thermal tolerance 

limits, our data give strong support to the concept of oxygen-limited thermal tolerance.  

Additional research to uncover the mechanistic underpinnings of thermal sensitivity at the 

cellular and molecular levels is needed.  The degree to which animals can adjust thermal 

tolerance also is an important consideration when assessing the impact of future climate change.  

Acclimation to 4°C for one week revealed that red-blooded, N. coriiceps, does not alter its 

thermal tolerance upon acute elevation of temperature.  Taken as a whole, our results suggest 

that Antarctic notothenioids, particularly icefishes, may be vulnerable to effects of global 

warming, which may have profound consequences in physiological performance, geographic 

distribution and species survival.   
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4. Molecular evolution of the myoglobin gene in Channichthyid Icefishes.    
We sequenced the myoglobin gene, including substantial sequence upstream of 
the core promoter, from genomic DNA of all 16 known species of Channichthyid 
icefishes. 
We unexpectedly found that a 15 bp insertion upstream of the core promoter, 
which includes duplication of the muscle-specific TATAAAA promoter element, 
was present in 14 species, including several that produce myoglobin protein.  This 
sequence previously had been attributed as being responsible for lack of Mb 
expression in Chenocephalus aceratus. 
Although the duplicated TATAAAA sequence does appear to be involved in 
preventing Mb expression in C. aceratus, the underlying mechanism is unresolved 
and appears to be more complex than previously believed, probably involving 
interaction with other sequences at locations remote from the Mb gene proper. 

 
 
The following is a draft of a manuscript (authorship:  Borley, K.A. and B.D. Sidell) that will 
be submitted to a peer-reviewed journal (Polar Biology) for publication during Summer 
2010:  

 

EVOLUTION OF THE MYOGLOBIN GENE IN

ANTARCTIC ICEFISHES (FAMILY: CHANNICHTHYIDAE) 

Abstract (150-250 words)

Antarctic icefishes (Family:  Channichthyidae) are the only adult vertebrate animals that 

do not express the circulatory oxygen-binding protein, hemoglobin.  Six species of icefishes also 

do not express myoglobin (Mb), an oxygen-binding protein found in ventricular tissue of 

Antarctic notothenioids.    Sequence of the Mb gene from the icefish, Dacodraco hunteri, 

contains a duplicated TATA box in the promoter that is absent from the promoter of 

Chionodraco rastrospinosus, an icefish species known to express Mb.  The 15 base pair insertion 

in D. hunteri is identical to the duplicated TATA box previously identified in C. aceratus, 

another icefish species that lacks Mb expression, and is thought to be directly responsible for 

 54



NSF ANT 0739637 
Annual Progress Report 
1 September 2009 – 31 August 2010 
 
inhibiting transcription of the Mb gene.  Sequencing of the Mb promoter from the remaining 

channichthyid species revealed the duplicated TATA box in 14 of 16 icefish species, including 8 

species known to express Mb.  Based on the presence of the duplicated TATA box in promoters 

of both Mb-expressing and Mb-lacking species, loss of Mb expression in D. hunteri and C. 

aceratus is either independent of the duplicated TATA box, or the duplicated TATA box 

requires presence or absence of a distant regulatory element to inhibit transcription.   

 

Keywords:  Antarctic Icefish, Myoglobin, Promoter Elements, Notothenioids 

 

 

 

Introduction

Antarctic icefishes are the only known adult vertebrates that do not express the 

circulating oxygen-binding protein, hemoglobin (Hb) (Ruud, 1954).  Lack of Hb expression in 

icefish has been traced to a gene deletion event that occurred approximately 8.5 Ma when 

icefishes diverged from red-blooded bathydraconids (Near, 2004).   

In an interesting twist in the story of icefish evolution, several channichthyid species also 

do not express myoglobin (Mb).  Myoglobin is an oxygen-binding protein that assists in the 

storage and delivery of oxygen in cardiac myocytes and oxidative skeletal muscle fibers 

(Ordway and Garry, 2004).  In red-blooded Antarctic notothenioids and Mb-expressing icefishes, 

Mb expression is restricted to heart ventricle (Sidell et al., 1997).  Six icefish species, in four 

genera, do not express Mb.  The location within the channichthyid phylogeny (Near et al., 2003) 
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of six species lacking Mb suggests Mb expression has been lost on four distinct occasions during 

the evolution of the family (Sidell et al., 1997; Moylan and Sidell, 2000; Grove et al., 2004).   

Several distinctly different mutations have led to loss of Mb expression within the icefish 

family.  In two genera that do not express Mb protein, Champsocephalus and Pagetopsis, the Mb 

gene is transcribed but not translated (Vayda et al., 1997; Grove et al., 2004).  Myoglobin 

expression was lost by a common ancestor to the congeners Champsocephalus esox and C. 

gunnari due to a 5-base pair (bp) frameshift duplication in exon 2 resulting in a premature stop 

codon (Grove et al., 2004).  The mechanism leading to loss of Mb protein expression in 

Pageotopsis species is distinct from that of the Champsocephalus species.  P. macropterus and 

P. macultus Mb gene sequences contain an aberrant polyadenylation sequence.  The aberrant 

poly-A signal may inhibit addition of a poly-A tail to the 3’ end of the mRNA, resulting in early 

degradation of the transcript (Vayda et al., 1997).  Transcription of the Mb gene followed by 

rapid degradation explains why low levels of transcript are produced in P. macropterus, while no 

protein has been detected in the heart ventricle.   

Two species of icefish, Chaenocephalus aceratus and Dacodraco hunteri, do not express 

myoglobin mRNA or protein (Moylan and Sidell, 2000).  In C. aceratus, a 15 bp insertion results 

in duplication of the TATA box sequence (TATAAAA), a promoter element typically located 30 

bp upstream of the transcription start site.  Binding of TATA binding protein, a subunit of 

transcription factor IID (TFIID), to the TATA box stimulates the formation of the RNA 

Polymerase II preinitiation complex (Burley and Roeder, 1996).  The duplicate TATA box in C. 

aceratus is located approximately 600 bp upstream of a correctly positioned TATA box.  A 

putative E-box, a promoter element that binds basic helix-loop-helix transcription factors, is 

located 10 bp upstream of the duplicated TATA box.  Close proximity of the duplicated TATA 
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box and putative E-box suggests that binding of RNA Polymerase II to the duplicated TATA box 

could block access to the E-box, inhibiting transcription of Mb (Small et al., 2003).  Although D. 

hunteri does not express Mb mRNA or protein, the mechanism resulting in the loss Mb 

transcription has yet to be elucidated.   

 In this paper, the genomic DNA (gDNA) sequence of D. hunteri is reported to include a 

15 bp insertion containing a duplicated TATA box that is identical in sequence and position to 

the insertion previously described in C. aceratus.  Although the consensus phylogeny of the 

icefish family does not group C. aceratus and D. hunteri together, the most parsimonious 

explanation for both species containing this 15 bp insertion is that the duplicated TATA box 

mutation occurred once in the family, suggesting that C. aceratus and D. hunteri may be sister 

species.  To test this hypothesis, we sequenced Mb genes from all 16 species of icefishes.  

Analyses of promoter sequences from these species revealed that the duplicated TATA box is not 

restricted to D. hunteri and C. aceratus.  In fact, the duplicated TATA box is present in 

promoters of species known to express Mb.  Based on these new data, we reject our initial 

hypothesis that C. aceratus and D. hunteri are sister species and consider possible roles of the 

duplicated TATA box in regulating myoglobin transcription. 

Methods

Preparation and Isolation of Myogobin Genomic DNA

D. hunteri ventricular tissue was collected by William Detrich on the 2003 AMLAR 

cruise (need more collection info).  DNA was extracted using the Qiagen DNEasy kit as 

described in the kit protocol.  gDNA samples for all other species were generously provided by 

Dr. Thomas Near of Yale University.   

 57



NSF ANT 0739637 
Annual Progress Report 
1 September 2009 – 31 August 2010 
 

Amplification and Sequencing of Myoglobin

The myoglobin gene was amplified from gDNA samples using primers shown in Table 1, 

Phusion® DNA polymerase (Finnzymes) and the following thermocycler conditions:  1 cycle of 

30 s at 98ºC, 35 cycles of 10 s at 98ºC, 30 s at 60ºC, 2 min at 72ºC, and 1 cycle of 5 min at 72ºC.  

PCR products were cloned for sequencing using either Invitrogen’s PCR4 vector and Top10 cells 

or Promega’s pGEM-Teasy and Invtrogen’s DH5-  cells.  Colonies were screened by PCR 

amplification, sequenced by the University of Maine DNA Sequencing Facility (Orono, ME), 

and then submitted to tblastn (http://blast.ncbi.nlm.nih.gov) to confirm gene identity.    

Table 1.  Nucleotide sequence of primers used to amplify the myoglobin gene.  Position refers to 
the location of the primer in the Chionodraco rastrospinosus myoglobin gene where zero is the 
putative transcription start site for the gene. 
Primer Name Nucleotide Sequence Position
Mb Upstream 5’-ACCATAGCGTGTACAGTTGTTC-3’ -1265  -1244 
Mb TATA1a 5’-CGATTTGAAGACGCTATTGGA-3’ -580  -557 
Mb TATA2a 5’-CCTGCAGAGTAGTAAAATGTCCTG-3’ +36  +59 
Mb Mid F 5’-AGCTGAGGTGATGAAGACGCCTCTTTC-3’ +312  +339 
Mb Mid R 5’-CAGCACTTCAGCACCATGTCAAAGTC-3’ +526  +551 
Mb Reva 5’-TAATTAGGCTTACAGAAAATCAGACC-3’ +1,649  +1,674 

Mb Coding Rev 5’- GGAGGACACAAAAAGTTGGAGGAAAGATC-3’ +1,367  +1,395 
a Primer sequences from Grove et al.  (2004) 

 

Sequence Analysis

Sequence chromatographs were analyzed using Chromas (Technelysium Pty Ltd) and 

aligned using Clustal W2 (Larkin et al., 2007).  Alignment was done with the following settings:  

Gap open 25, Gap Extension 0.5, Gap distance 1, and then manually checked.  Alignment 

(Supplementary Figure 1) is labeled with transcription start sites, introns, exons, and putative 

promoter elements that were identified in C. rastrospinosus and C. aceratus by Small et al. 
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(1998).  MEGA 4 (Tamura et al., 2007) was used to calculate percent similarity between 

different species. 

 

Results

Dacodraco hunteri Myoglobin Sequence

 D. hunteri Mb gDNA sequence was aligned with genomic sequences from C. aceratus 

(Genbank Accession Number:  U71153) and C. rastrospinosus (Genbank Accession Number:  

U71059) previously published in Small et al. (1998).  Sequence of D. hunteri contains a 

duplicated TATA Box 722 bp upstream of the putative transcription start site.  The duplicated 

TATA box is identical in both sequence and position to that previously identified by Small et al. 

(1998) in C. aceratus (Figure 1).  The putative E-box located upstream of the duplicated TATA 

Box is intact in D. hunteri Mb; however, an INDEL is present immediately upstream of the E-

box (Figure 1).   

-650 
                                                
C. rastro. (Mb +)  TACCACCGCTAAACAGCTGATGTAAAAC---------------AAATCTTAAAAC 
C. aceratus  (Mb -)  TACCACCGCTAAACAGCTGATGTAAAACCTATAAAACAAAAACAAATCTTAAAAC 
D. hunteri (Mb -)  TACC--------ACAGCTGATGTAAAACCTATAAAACAAAAACAAATCTTAAAAC 
 

                                 Putative       Duplicated 
                                  E Box          TATA Box 

 
Figure 1.  The promoter of D. hunteri contains a duplicated TATA box previously identified in 
the promoter of C. aceratus.  Species are labeled Mb+ or Mb- indicating if myoglobin protein is 
expressed.  C. rastrospinosus and C. aceratus sequences were reported in Small et al. (1998); 
Accession numbers:  U71153 and U71059, respectively.  Numbers above the sequence 
correspond to the position in the sequence in reference to the putative transcription start site for 
the reference C. rastrospinosus sequence.   
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Sequences of Myoglobin Genes from All Icefish Species

Supplementary Figure 1 contains alignment of the Mb gene for all 16 species of 

channichthyid icefishes.  With the exception of P. maculatus, each species’ sequence stretches 

from -1067 to +1366 compared to the reference C. rastrospinosus sequence.  These sequence 

data cover approximately 1067 bp of the promoter region upstream of the transcription start site 

through the first two exons and ending 54 bp into the third intron.  The P. maculatus sequence 

ends shortly after the start codon (C. rastrospinosus +550) due to inability to amplify the 3’ end 

with primers listed in Table 1.  For 15 icefish species that have been sequenced into the third 

intron, sequence length ranged from 2262 bp in C. esox to 4789 bp in P. macropterus due to 

presence of insertions and deletions.   

Compared to the 2425 nucleotides of the C. rastrospinosus reference sequence, 2343 of 

the nucleotides are conserved among species sequenced (with the exception of P. maculatus due 

to the incomplete sequence for this species).  Percentage similarity between species ranged from 

99.76% (Chionodraco rhinoceratus vs. Cryodraco antarcticus) to 97.62% (Champsocephalus 

esox vs. Chionodraco hamatus).   

P. macropterus (Mb-) contains a 2,293 nucleotide insertion located at +665 in the C. 

rastrospinosus reference sequence placing the insertion within the second intron.  Nucleotide and 

translated amino acid sequences were run against NCBI’s nucleotide and protein databases using 

blastn and blastx, respectively.  In both cases, the most significant hits were LIM domain 

containing sequences; however, when compared to the two databases, the nucleotide database 

produced the most significant hits.  The most significant blastn result (E value:  8e-26) was to a 
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D. rerio mRNA sequence predicted to be LIM domains containing protein 1 (GenBank 

Accession Number:  XM686167.3).  

 

15 bp INDEL Containing a Duplication of the TATAAAA Sequence is Not Unique to C.

aceratus and D. hunteri

 The 15 bp INDEL that encodes the duplicated ‘TATAAAA’ sequence of interest, that 

was thought to be responsible for loss of Mb expression in C. aceratus (Small et al., 2003) and 

presumed to be responsible for loss of Mb expression in D. hunteri, is located at -651 bp relative 

to the C. rastrospinosus sequence.  Interestingly, the 15 bp INDEL was found in 14 out of the 16 

icefish species sequenced (Figure 2).  Of the 14 species possessing the duplicated TATA box, 8 

species express Mb in ventricle.  The only two icefish species that do not contain the duplicated 

TATA box are C. rastrospinosus and C. hamatus, both of which express Mb.  C. gunnari (Mb-) 

contains an additional 5 bp ‘aatac’ in the middle of the 15 bp INDEL, that does not interrupt the 

‘TATAAAA’ sequence. 
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-650 
                                                 
C.rastrospinosus(Mb+) taccaccgctaaacagctgatgtaaaac--------------------aaatcttaaaac 
C.hamatus (Mb+) taccaccgctaaacagctgatgtaaaac--------------------aaatcttaaaac
C.antarcticus (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.dewitti (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
P.georgianus (Mb+) tagcaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.wilsoni (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.rhinoceratus (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.myersi (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac
N.ionah (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.atkininsoni (Mb+) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
P.macululatus (Mb-) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac
P.macropterus (Mb-) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac
D.hunteri (Mb-) tacc--------acagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac 
C.aceratus (Mb-) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac
C.gunnari (Mb-) taccaccgctaaacagctgatgtaaaacctataaaacaaatcaaaaacaaatcttaaaac
C.esox (Mb-) taccaccgctaaacagctgatgtaaaacctataaaaca-----aaaacaaatcttaaaac

  Putative       Duplicated  
   E Box          TATA Box 

 
Figure 2.  The Duplicated TATA Box is Present in the Myoglobin Sequence of Most Icefish 
Species.  Species are labeled Mb+ or Mb- indicating if myoglobin is expressed.  Numbers above 
the sequence correspond to the position in the sequence in reference to the putative transcription 
start site for the reference C. rastrospinosus sequence.   
 
 
Conservation of Putative Promoter Elements

Putative promoter elements identified by Small et al. (2003) are marked in the alignment 

in Supplemental Figure 1 and summarized in Table 2.  The TATA box (TATAAAA) is 

conserved in all 16 species at -25.  The TATAAAA element in mammalian Mb interacts 

synergistically with YTAAAATATAR elements.  The YTAAAATATAR element in human Mb 

binds transcription factors MEF-2 (myocytes enhancing factor-2) which is integral to myocyte 

development and the unknown factor ATF35 (A/T-binding factor 35 kDa) (Grayson et al., 1995).  

Small et al. (2003) identified two possible YTAAAATATAR sites (-457 and -347).  The first 

site is located 457 bp upstream of the C. rastrospinosus transcription start site.  At this site, none 

of the sequences match the consensus sequence perfectly.  C. hamatus (Mb+) and C. 

rastrospinosus (Mb+) have TTAAAATAA while all the other species have TTAAATAA.  At 
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347 bp upstream, most of the species encode TTAAAATAA at while C. gunnari (Mb-), C. esox 

(Mb-), and C. dewitti (Mb+) are missing the sequence.  Potential E-boxes, CACGTG at -575 and 

CAGCTG at -663, are 100% conserved in all 16 species, as are the two potential binding sites for 

a zinc-finger transcription factor  GATA-4, which is involved in embryogenesis and function and 

differentiation of myocardial cells (-261 and -478). 

Other landmarks previously identified within the C. rastrospinosus sequence are also 

conserved, including the transcription start site, Kozak consensus sequence, translation start 

codon, and intron/exon boundaries.   
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Myoglobin 
Expression 

Putative Promoter and Regulatory Elements 

mRNA Protein 
CANNTG1 

(-663) 

Duplicated 
TATA Box2 
(-651) 

CANNTG1 

(-575) 
WGATAMS3

(-478) 
YTAAAATATAR4

(-457) 
YTAAAATATAR4

(-347) 
WGATAMS3

(-261) 

TATA 
BOX2 

(-25) 
C.rastrospinosus + + cagctg ------- cacgtg agataac Ttaaaaataa ttaaaataa agataag tataaaa 

P.maculatus ? - cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
P.macropterus + - cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 

D.hunteri - - cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
C.antarcticus + + cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 

C.gunnari + - cagctg tataaaa cacgtg agataac Tttaaataa --------- agataag tataaaa 
C.esox ? - cagctg tataaaa cacgtg agataac Ttaaaataa --------- agataag tataaaa 

C.dewitti + + cagctg tataaaa cacgtg agataac Ttaaaataa --------- agataag tataaaa 
P.georgianus + + cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
C.aceratus - - cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
C.wilsoni + + cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 

C.rhinoceratus + + cagctg tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
C.hamatus + + cagctg ------- cacgtg agataac Ttaaaaataa ttaaaataa agataag tataaaa 
C.myersi + + cagctg Tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 
N.ionah + + cagctg Tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 

C.atkinsoni + + cagctg Tataaaa cacgtg agataac Ttaaaataa ttaaaataa agataag tataaaa 

Table 2.  Myoglobin Putative Promoter Elements.  Sequences from putative promoter elements originally identified in C. 
rastrospinosus by Small et al. (1998).  The distance from the promoter is relative to the C. rastrospinosus sequence.  Myoglobin 
mRNA and protein expression is indicated with a +, -, or ? for myoglobin expressing, not expression, or unknown expression 
respectively.   

ber 2009 – 31 August 2010 

 

1 Putative E-box, binding sites for basic helix-loop-helix transcription factors 
2 Putative binding sites for TATA-Binding Protein 
3 Putative binding sites for transcription factor GATA-4 

4 Putative binding sites for transcription factors MEF-2 (Myocyte Enhancing Factor 2) and ATF35 (A/T-binding factor 35 kDa)  
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Discussion

The Mb gene sequence of D. hunteri contains a 15 bp INDEL in the promoter 

region (Figure 1).  This 15 bp INDEL is identical to an INDEL containing a duplication 

of the TATA box (TATAAAA) that was found in C. aceratus (Small et al., 1998; Small 

et al., 2003).  Small et al. (2003) demonstrated that a 41 bp oligonucleotide containing 

this duplicated TATA box was capable of binding HeLa transcription factor IID (TFIID) 

or binding factors present in extracts from the nuclei of C. aceratus.  Using a transient 

transcription assay, they demonstrated that the promoter region of C. rastrospinosus is 

sufficient to stimulate transcription of a reporter gene, while the promoter region of C. 

aceratus is not, even though these promoters are 99% identical.  They proposed that the 

duplicated TATA box may result in loss of Mb transcription by binding TFIID, which 

could inhibit ability of basic helix-loop-helix (bHLH) transcription factors to bind at the 

putative E-box 10 bp upstream.  Presence of the same 15bp INDEL in D. hunteri 

suggested this mechanism might also be responsible for lack of Mb mRNA expression in 

D. hunteri.  Shared sequence and position of the 15 bp INDEL led to the hypothesis that 

these species may be sister species, although they are not grouped together in the most 

current phylogeny of the icefish family. 

Sequences of the Mb promoter from the remaining 15 icefish species, however, 

clearly show that presence of the duplicated TATA box alone cannot determine whether 

the Mb gene will be transcribed.  The 15 bp INDEL originally identified in C. aceratus is 

present in 14 of the 16 species sequenced (Figure 2).  Of the 14 species containing the 

duplicated TATA box, 8 species are icefishes known to express Mb.  These new data led 

us to two possible conclusions about loss of Mb expression in C. aceratus and D. hunteri.  
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Either loss of Mb expression in C. aceratus and D. hunteri is independent of TATA box 

duplication or the duplicated TATA box requires the appropriate context to inhibit 

transcription.  

To investigate the possibility that the loss of Mb expression in C. aceratus and D. 

hunteri may be due to a mechanism independent of the duplicated TATA box, Mb 

sequences of these species were compared to the sequences of species known to express 

Mb.  Promoter elements and the transcription start sites identified by Small et al. (1998) 

do not differ between species that do express Mb and those that do not.  The E-box, an 

element present in human Mb that binds bHLH transcription factors, is conserved in D. 

hunteri.  However, D. hunteri lacks eight nucleotides immediately upstream of the 

putative E-box, which may impede transcription factors from  binding to the E-box, 

resulting in loss of transcription of the Mb gene.  However, the importance of the E-box 

in regulating transcription of human Mb is uncertain.  Mutations to the two E-boxes in 

human Mb only had a minimal effect on transcription of the gene in skeletal and cardiac 

muscle (Bassel-Duby et al., 1992; Bassel-Duby et al., 1993).  C. aceratus and D. hunteri 

sequences also were checked for an early RNA cleavage site or an early translation stop 

codon, but neither was identified.  No definitive reason for lack of transcription of Mb in 

C. aceratus and D. hunteri can be identified based on sequence data. 

An unidentified promoter element or one or more distant regulatory element(s) 

could be responsible for lack of transcription of the Mb gene in D. hunteri and C. 

aceratus.  Enhancers, regions of DNA that activate transcription of a gene, can be located 

throughout a genome.  While enhancers can be located close to or within a gene, some 

enhancers are located many kb upstream or downstream of a gene (Kleinjan and van 
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Heyningen, 2005).  Chromatin looping brings distant regions of DNA into close 

proximity allowing distant regulatory elements to regulate transcription of a gene (Sexton 

et al., 2009).  Changes in a remote area of the C. aceratus and D. hunteri genomes 

potentially could inhibit transcription of the Mb gene. 

Despite the fact that promoters of C. aceratus and C. rastrospinosus are 99% 

conserved, they differ significantly in their ability to stimulate transcription.  

Transcription of the C. aceratus myoglobin reporter gene construct is approximately 7x 

lower than the C. rastrospinosus reporter gene construct.  These data indicate that a 

region of the C. aceratus sequence is sufficiently different from C. rastrospinosus to 

inhibit transcription of the reporter gene.   When compared to the Mb gene sequence of 

C. rastrospinosus, that of C. aceratus also contains 4 point mutations, 2 single nucleotide 

deletions and, the ‘ATCT’ repeat is longer by 9 units (Small et al., 1998).  Because our 

current information indicates that the duplicated TATA box may not be responsible for 

inhibiting transcription, loss of Mb may be due to a point mutation located in a yet 

unidentified promoter element.    

A second possibility is that the duplicated TATA box inhibits transcription of Mb, 

but only when the promoter is able to interact with other regions of the genome.  Reporter 

gene constructs allow us to study the transcriptional activity of a promoter with all of the 

necessary binding factors present.  However, this method simplifies transcription and 

does not take into consideration how distant regulatory elements can regulate the activity 

of a promoter.  Technologies such as the chromosome conformation capture (3C) 

technique have demonstrated how chromatin looping can bring genes into close 
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proximity of each other, allowing distant regions of the DNA to control transcription of 

unrelated genes (Sexton et al., 2009).  There are two possible mechanisms by which the 

duplicated TATA box may cause lack of Mb transcription in C. aceratus and D. hunteri.  

Genomes of C. aceratus and D. hunteri could contain a distant regulatory element that is 

absent from the genomes of other icefish species, enabling TFIID to bind to the 

duplicated TATA box, resulting in loss of transcription.  An alternative explanation is 

that the genomes of C. aceratus and D. hunteri may lack a distant regulatory element 

that, in other icefish species, blocks binding of TFIID to the duplicated TATA box and 

maintains transcription of Mb.   

 Presence of the identical 15 bp INDEL in both C. aceratus and D. hunteri led to 

an initial hypothesis that these species may be sister-species in the channichthyid family.  

Myoglobin gene sequences from other channichthyid species reveal that this INDEL is 

not unique to C. aceratus and D. hunteri.  Based on these observations, we conclude that 

placement of the species in the current phylogeny (Near et al., 2003) is accurate.  At this 

time, we are unable definitively to describe the mechanism(s) responsible for loss of Mb 

transcription in C. aceratus and D. hunteri.   
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1 

Activities 
 
During the past year, we: 
 

1. Completed analysis of data comparing nitric oxide synthase activities and 
expression levels of key genes in pathways of hypoxia sensitivity and 
angiogenesis between red- and white-blooded notothenioids.  (See Beers et al., 
Comparative Physiology and Biochemistry, Part A.  156:422-429, 2010). 

2. Completed analysis of data from organismal thermal tolerance experiments 
conducted during our 2009 Field Season. 

3. Completed experiments designed to evaluate possible upregulation of hypoxia-
inducible genes in tissues of thermally exposed animals from #1 above. 

 
(Results from #s 2,3 above form the basis for a manuscript currently in 
draft form that will be submitted for journal publication by August 2010 – 
see Beers and Sidell, 2011 in Publications section of the report.) 

 
4. Completed analyses of data from experiments designed to evaluate the effect of 

chemically induced anemia in the red-blooded notothenioid, Notothenia coriiceps, 
upon expression of key genes in hypoxia-sensitive and angiogenic pathways.  
(Results are presented in Borley et al., 2010 – in press in Journal of Expermental 
Biology). 

5. Completed sequencing of the myoglobin gene from genomic DNA of all sixteen 
known channichthyid icefish species.  Findings are currently in draft manuscript 
form and will be submitted for journal publication later this summer (see Borley 
and Sidell, 2011 – in Publications section of the report). 

6. Designed the system and specified components for the experimental system that 
will be used during the 2011 field season for examining the effect of hyperbaric 
oxygen concentration upon thermal tolerance of Antarctic fishes. 

 
In addition:  
 

7. K. A. Borley successfully defended her Ph.D. thesis Molecular Biology in April 
2010 and her doctoral degree was conferred in June 2010.  This thesis research 
was supported by the current award. 

8. J.M. Beers is scheduled to defend her Ph.D. thesis in Marine Biology on 13 July 
2010.  Assuming successful defense of thesis, her doctoral degree will be 
conferred in August 2010. 
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