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Figure 1: Single Nail Connection Test Set-up 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Failed Control Specimen in Shear Wall Test Rig – Note Edge Tear of Nails 
 



 
 
 
 
 
 

 
 

Figure 3: Single Nail Connection Load-Displacement Results 
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ABSTRACT 

The resistance of conventionally constructed wood-framed structures to extreme 

events such as earthquakes and hurricanes depends in large part on the strength and 

energy absorption characteristics of the shear walls. These shear walls are often sheathed 

with oriented strand board (OSB) panels, and their performance is primarily a function of 

the nailed sheathing-to-framing connections at the panel edges. A new sheathing panel 

called Advanced OSB (AOSB) has been developed at the University of Maine’s 

Advanced Engineered Wood Composites Center.  The AOSB panel integrates glass fiber-

reinforced polymer (GFRP) reinforcing into regions of the OSB panel that have been 

observed to fail under hurricane or earthquake loading.  Structural testing of both single 

nail connections and full scale shear walls have shown that AOSB has great potential for 

increasing the energy dissipation capacity and lateral load resistance of wood-framed 

structures subjected to extreme wind and seismic events. 

The GFRP reinforcement increases the lateral resistance of conventional wood-

framed shear walls by improving the strength and ductility of the sheathing-to-framing 

nail connections.  AOSB changes the primary failure mode of the sheathing-to-framing 

nails from a shear out type failure where the nail tears through the edge of OSB to a more  

ductile and energy absorbent failure mode where the nails exhibit double curvature and 

are withdrawn from the framing.   

The results of monotonic tests on single-nail connections show that  the strength 

of an individual nailed connection can be increased by about 39% and the energy 

dissipation capacity can be more than quadrupled through the use of AOSB.  Results of 



  

cyclic connection tests with AOSB compared to those of plain OSB specimens indicate 

that the AOSB panels are less sensitive to damage accumulation from repeated load 

cycling. 

Standard size (8ftx8ft) shear wall specimens sheathed with AOSB panels tested in 

accordance with ASTM E564 were able to maintain at least 80% of their peak load up to 

a drift of approximately 5.5 in. compared to approximately 4.0 in. for walls sheathed with 

conventional OSB.  When tested cyclically, the conventional OSB sheathing panels were 

extensively damaged due to edge tear of nails, however very little damage of the AOSB 

panels was observed.   This, coupled with the fact that failure of the AOSB walls was 

driven primarily by nail fatigue and nail pullout, indicates that AOSB sheathing panels 

provide as much capacity as the framing and the nails will allow.   

A finite element model of two panel AOSB shear walls was developed using the 

commercial software ANSYS.  The primary goal of this model was to capture the 

complex load sharing behavior of the AOSB shear wall system to aid future design 

improvements of AOSB shear wall systems.  The model results are in good agreement 

with the results of the static wall tests.    

AOSB panels appear to have great potential for increasing the energy dissipation 

capacity and lateral load resistance of wood-framed structures subjected to extreme wind 

and seismic events. Ongoing research efforts at the University of Maine will help to 

further refine and optimize the AOSB technology. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

According to recent United States Census Bureau data, the in-place value of 

housing constructed during 1998 was $189 billion, which represents 28% of the total 

value of all 1998 building construction (http://www.census.gov/pub/const).  The vast 

majority of new homes are built using conventional, stick-built lumber construction 

(AF&PA 1995).  In recent years, the U.S. has sustained many expensive weather-related 

disasters, totaling $90 billion in damages between August 1992 and May 1997 

(http://www.fema.gov).  As such, increasing the disaster resistance of wood-framed 

residential construction is a critical research need. 

A sufficiently strong, ductile and energy-dissipating lateral force-resisting system 

(LFRS) is crucial for adequate building performance in extreme wind or seismic events.  

In housing construction, the LFRS typically consists of interconnected vertical and 

horizontal diaphragms.  In stick-built construction, these diaphragms are generally 

fabricated from Oriented-Strand Board (OSB) or plywood sheathing panels, which are 

nailed to lumber framing.  OSB use continues to increase at the expense of plywood, and 

today OSB has taken a significant portion of the plywood market for sheathing and 

flooring applications. 

When built properly, wood buildings generally perform well in earthquakes and 

hurricanes.  However, connection failures and noncompliance with good construction 
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practices or building codes have generally been responsible for most structural failures 

(Yancey et al. 1998). Inadequate nailing of plywood or OSB sheathing reduces the 

building’s resistance to lateral load and often results in shear wall failure. When adequate 

nailing is provided no failures are typically observed. 

1.2 Research Objective 

The objective of this study was to develop an optimized synthetic fiber-reinforced 

OSB panel, which significantly improves the disaster resistance and lowers ownership 

cost of conventional wood-frame construction.  It is well known that the performance of 

wood-framed shear walls (vertical diaphragms) with panelized sheathing is highly 

dependent on the nail spacing at the panel edges.  This thesis details research efforts into 

the development and structural testing of an Advanced OSB (AOSB) panel that have 

been conducted over the past two years.  The AOSB panel is selectively reinforced with 

fiber-reinforced polymer composites (FRPs) at the panel edges to increase the lateral 

resistance of conventional wood-framed shear walls by improving the strength and 

ductility of the sheathing-to-framing nail connections. The AOSB panel is a sandwich 

panel consisting of thin outer sheets (1/4” thick) of OSB with an FRP composite 

sandwiched between OSB panels at the edges.  The reinforcement has been designed 

specifically to (see Figure 1.1): 

1) Reduce  nail  edge-tear failures around the sheathing panel perimeter.  Shear wall 

failures are often precipitated by inadequate panel perimeter nail edge distance or 

a larger than allowed perimeter nail spacing.  This leads to edge splitting of the 
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sheathing panel around the nails, or “edge tear”, preventing the full shear capacity 

of the panel from being developed. 

2) Reduce nail-head pull-through failures.   Nail heads pulling through the sheathing 

panels has been observed in laterally loaded shear walls as well as roof 

diaphragms subject to negative pressure from high wind loading. 

3) Improve energy dissipation capacity under load cycling.  The tests of Shenton et 

al. (1997) showed that enlarging of nail holes due to localized crushing of panel 

fibers reduces the energy dissipation capabilities of shear walls after the initial 

load cycle. 

4) Meet or exceed the weather exposure requirements of conventional OSB.   

Sheathing panels used in shear wall and horizontal diaphragm applications are not 

typically classified as exterior exposure, however they may be exposed to 

inclement weather during construction.  Specific attention has been paid to the 

strength and water resistance of the adhesive bond between the OSB and FRP, to 

ensure this bond performs as well or better than the internal flake-to-flake bond of 

the OSB itself.   
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Loaded Shear Wall   Edge Tear   Nail - Head  Pull - Through   
 

Figure 1.1 Deformed Shear Wall and Critical Failure Modes. 

 

5) Look the same and install the same.  Attempts to market products that require 

specialized construction techniques are typically met with considerable resistance 

from the construction community. AOSB has been designed so that it can be 

installed using standard construction practices. 

1.3  Research Approach 

The research program was divided into the tasks shown below. 

1) Screening and Selection of Reinforcing Materials 

2) Connection Tests 

a. Monotonic tests of single nail connections 

b. Cyclic tests of single nail connections 
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c. Nail head pull-through tests 

3) Shear Wall Tests 

a. Static Shear Wall Tests 

b. Cyclic Shear Wall Tests 

4) Computer Modeling of Shear Walls 

  This thesis has been organized according to the tasks listed above, the order of 

which coincides with the order that the research was performed. To provide adequate 

background information on each task, a literature review covering each topic is provided 

in Chapter 2.  Discussion of the experimental work performed in this study begins with 

Chapter 3, with methodology and results of connection level testing of AOSB specimens.  

Three types of connections tests were performed: monotonic tests of nailed connections, 

cyclic tests of nailed connections and nail head pull-through tests.  Control specimens 

built with 7/16 in. thick OSB were also tested to provide a baseline for comparison. The 

methodology and test results used for screening and selection of reinforcing materials for 

AOSB is documented seperately in Cassidy et al. (2002).  Structural testing of shear 

walls is the topic of Chapter 4.  Similarly to the connection tests, both control and AOSB 

walls were tested to allow for comparison and quantification of the benefits of AOSB 

sheathing panels.  Both static and cyclic shear wall tests were performed. 

Chapter 5 describes the development of a two-dimensional finite element model of 

two panel AOSB shear walls with 4 in. perimeter nail spacing.  The model was developed 



 6

using the computer program ANSYS 5.7 (ANSYS 2000). The model has 15,749 degrees 

of freedom and employs a small displacement nonlinear analysis to model the monotonic 

load-deflection response of the shear wall test specimens discussed in Chapter 4.  The 

computer results correlate reasonably well with the experimental data from the static wall 

tests.  Chapter 6 presents a summary of the research conducted in this study, and gives 

conclusions and recommendation for further research. 
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Chapter 2  

REVIEW OF RELEVANT LITERATURE 

  Plywood panels with fiberglass skins have been used for many years for 

numerous applications including truck, trailer and van bodies, intermodal and reusable 

shipping containers, concrete forming, sewage treatment tanks, walk-in coolers, railcar 

linings and siding panels (APA 1972, 1992, 1998).  However, the use of wood-based 

structural panels that are selectively reinforced with FRP in shear wall and horizontal 

diaphragm applications is a relatively new idea.  To the best of the authors knowledge the 

University of Maine is one of only two Universities performing research in this area.  The 

other is Brigham Young University in Provo, Utah.   The research at Brigham Young has 

been and continues to be performed under the direction of Fernando S. Fonseca, PhD, 

P.E.  Fonseca and his graduate research staff have published results of two pilot studies.  

Since these studies are highly relevant to the development of AOSB and disaster resistant 

construction in general, a detailed discussion of the methods and results of these studies 

is provided in this chapter. 

Published literature pertaining to testing and modeling of full-scale shear walls 

and intra-component connections has become quite prevalent in recent years.  Much of 

this literature was reviewed in the process of developing and testing AOSB.  The purpose 

of the literature review was to ensure that pertinent issues were being addressed in the 

design of AOSB and that the testing facilities and procedures used were representative of 

the current standards and trends of the progressively evolving field of wood-frame shear 
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wall research.  The literature survey provided guidance in the design of the experimental 

testing program as well as valuable insight used in the development of a finite element 

model of two panel AOSB shear walls described in Chapter 5.  The topics of the 

literature reviewed include monotonic and cyclic testing of both nailed connections and 

full-scale shear walls, as well as computer modeling of shear walls.   

2.1 GFRP and Reinforced Plywood Panels 

The methods and results of the two studies performed at Brigham Young 

University are presented in this section.  The first study investigated the advantages of 

hybrid diaphragms consisting of both plywood panels and glass fiber reinforced polymer 

(GFRP) panels.  The second study addressed the behavior of plywood shear walls with 

fiberglass edge reinforcement.   

2.1.1 Hybrid Diaphragms 

Judd and Fonseca (2002) investigated the advantages of diaphragms using 

plywood and GFRP sheathing (hybrid diaphragms).  Both coupon tests and full-scale 

diaphragm tests were performed.  The sheathing materials used included 3/8 in. plywood 

and 1/4 in. retail GFRP sheathing panels.  The GFRP panels had a uni-directional fiber 

orientation and were manufactured by Strongwell Inc.  These panels consist of a 

combination of glass fiber and isophthalic resin (EXTREN Series 500).  The mechanical 

properties of the GFRP panels are published by the manufacturer in the EXTREN Design 

Manual (1998).  The modulus of elasticity parallel to the fiber direction is 2,601,977 psi, 

the shear modulus is 425,251 psi and the material has a Poisson’s ratio of 0.33.  Nominal 
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2x4 Douglas Fir-Larch No.2 framing members were used for both the connection and 

full-scale diaphragm tests. 

 

2.1.1.1 Connection Tests 

Both monotonic and cyclic connection tests were performed.  The monotonic 

loading was similar to the ISO Standard 6891-1983, where a ramp load is applied at a 

rate of 0.1 in. per minute until failure (ISO 1983).  The cyclic loading was a modified 

form of the proposed ISO (1997) lateral loading procedure.  This loading consists of a 

series of quasi-static fully reversed cycles. Multiple blocks of three fully reversed cycles 

at constant displacement amplitude are performed followed by three cycles of increased 

amplitude.  This pattern continues until failure. 

Three sizes of common nails were considered in the connection tests: 8d, 10d and 

16d.   Preliminary tests of connections with 12d common nails were also performed.  The 

reason for the preliminary study was to investigate the effect of nail length; as the only 

difference between 10d and 12d common nails is the length.  Three tests were performed 

and no significant differences between 10d and 12d nails were observed, so no further 

investigation of 12d nails was performed.    

The GFRP panels were oriented with the fibers parallel to the studs and 

perpendicular to the applied load.  The grain of the framing members was also oriented 

perpendicular to the applied load.  The most commonly observed failure modes were nail 

withdrawal and splitting of the framing (see Table 2.1). Withdrawal was most common 

for GFRP connection specimens fabricated with 8d nails, however splitting of the wood 

became the most common failure when larger diameter nails (10d and 16d) were used.  
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No tests of connections with plywood sheathing were performed in this study.  The 

GFRP connection test results were compared to the results of previous tests performed by 

Dugan (1995) using a similar specimen configuration and loading protocols.  The 

specimens tested by Dugan consisted of 3/8 in. CDX structural grade plywood and 8d 

common nails.  The failure mode of all plywood specimens was in the form of the nails 

tearing through the sheathing edges.   

Table 2.1 Monotonic Connection Response (after Judd & Fonseca 2002). 

Primary Failure Mechanism (as a Percent of Total Specimens) Connection 

Type Nail Withdrawal Nail Fatigue Sheathing Failure Wood Splitting 

PLY-8d --- --- 100 --- 

GFRP-8d 56 --- --- 44 

GFRP-10d 17 --- --- 83 

GFRP-16d 11 --- --- 89 

 

The most common failure mechanism observed in the cyclic tests for 8d and 10d 

nailed connections was nail fatigue (See Table 2.2).  All of the GFRP-8d specimens and 

62% of the 10d specimens exhibited nail fatigue failure.  Splitting of the framing was the 

second most common failure mode for GFRP-10d specimens.  No nail fatigue failures 

occurred for specimens connected with 16d nails.  Wood splitting was the most common 

failure mode followed by nail withdrawal for the 16d nail connections.  Half of the 

plywood specimens tested by Dugan failed by nail fatigue while the other half exhibited 

sheathing failure.  
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For comparison of the results, the monotonic load-displacement curves and cyclic 

envelope curves were idealized with a mathematical equation originally developed to 

model the response of reinforcing steel in concrete beams (Menegotto and Pinto 1973; 

Stanton and McNiven 1979).  The nonlinear equation, which consists of an initial 

asymptotic line or initial stiffness joined to a second asymptotic line (secondary stiffness) 

using a varying transition curvature, was said to provide an accurate description of 

monotonic and cyclic envelope load-displacement curves characteristic of sheathing to 

framing connections (Judd & Fonseca 2002; Fonseca 1997). 

Table 2.2 Cyclic Connection Response (Judd & Fonseca 2001). 

Primary Failure Mechanism (as a Percent of Total Specimens) Connection 

Type Nail Withdrawal Nail Fatigue Sheathing Failure Wood Splitting 

PLY-8dc --- 50 50 --- 

GFRP-8dc --- 100 --- --- 

GFRP-10dc 8 62 --- 30 

GFRP-16dc 25 --- 17 58 

 

Respective monotonic strength increases of 47%, 81% and 125% over Dugan’s 

plywood specimens were produced with GFRP connections using 8d, 10d and 16d 

common nails.  Cyclic strengths were increased by 53% for 8d connections and 115% for 

10d and 16d nailed connections.  Strength and stiffness degradation of GFRP connections 

was found to be less than that of plywood connections.    
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GFRP connections using 8d nails were found to be approximately twice as stiff 

under monotonic loading as 8d nailed plywood connections.  The energy absorption of 

each connection type was calculated as the area underneath the idealized load-

displacement curves up to the maximum displacement.  Plywood connections absorbed  

between 50 and 100% less energy than GFRP connections.   

The connection test results were compared to the theoretical strengths calculated 

using general dowel equations (American Wood Council 1999).  On average the 

theoretical strengths were found to be 93% of the measured strength for GFRP 

connections.  Given this result it was concluded that dowel equations may be used to 

evaluate connections using different sheathing materials, thicknesses, mechanical 

fasteners and wood framing.   

 

2.1.1.2 Diaphragm Tests 

Two tests of 24 x 12 ft. diaphragms were performed.  First a conventional 

diaphragm with 3/8 in. structural grade A-C exterior plywood sheathing, 8d common 

nails and 2x4 joists spaced at 24 in. o.c. was tested.  The nailing schedule included nails 

spaced at 4 in. o.c. along the diaphragm boundary and along continuous panel edges, 6 in. 

o.c. along non-continuous panel edges and a 12 in. nail spacing in the field.  After testing 

the conventional diaphragm, the hybrid diaphragm was assembled by replacing the 

damaged corner plywood panels of the previously tested conventional diaphragm with 

GFRP sheathing panels.   

Damage of the conventional diaphragm was concentrated in the corner plywood 

sheathing panels. Sheathing failure was caused by nails tearing through the edges of the 
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sheathing along the diaphragm perimeter.  The nails remained essentially undeformed 

suggesting to the authors that the nails remained largely in the linear elastic range and 

were not loaded to capacity.  This being the case, the plywood sheathing limited the 

strength of the diaphragm.   

The plywood sheathing sustained most of the damage in the hybrid diaphragm. 

The nails tore through the edges of the plywood panels, similar to the test of the 

conventional diaphragm.  The GFRP panels in the diaphragm corners were undamaged.   

The hybrid diaphragm exhibited a 34% strength increase over the conventional 

diaphragm.  The hybrid diaphragm also showed a 25% increase in initial stiffness and 

absorbed 46% more energy than the conventional diaphragm.  The authors suggested that 

the strength increase may represent a lower-bound on the capacity of a hybrid diaphragm 

since the plywood panels used were already damaged from the previous test. 

The results of the diaphragm tests were compared to the strength predicted by 

summing the contributions from individual sheathing-to-framing connections resisting 

the load-namely the perimeter connections transverse to the applied load.  The actual 

diaphragm unit shear was compared to the unit shear predicted by this approximation.  

The measured diaphragm unit shear was consistently 83% of the predicted value for both 

conventional and hybrid diaphragms.   

2.1.2 Plywood Shear Walls with Fiberglass Edge Reinforcement 

Six 8x8 ft. shear walls with the sheathing panels oriented vertically were tested in 

this study.  All but one wall was tested cyclically following the Sequential Phase 

Displacement Loading Protocol (SPD) developed by the Structural Engineers Association 
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of Southern California (SEAOSC) Ad Hoc Committee.  The other wall was tested 

statically according to ASTM 564 (ASTM 1998a).   

The wall specimens consisted of nominal 2x4 framing with two 4x8 ft. plywood 

sheathing panels.  The framing material was No. 2 Douglas Fir-Larch.  Both the top and 

bottom plates of the wall were doubled to provide enough clearance so that the sheathing 

panels could rotate freely without bearing on the testing machine.  The wall frame was 

assembled with gun driven 10d nails manufactured by Halsteel.  The nails were 3 inches 

long and 0.131inch diameter.  The plywood panels were three-ply A-C Group 1 exterior 

grade with a thickness of 11/32 in..  The sheathing was attached to the framing with hand 

driven 8d common nails.  Nail spacing around the perimeter of the panels was 6 in. and a 

12 in. spacing was used in the field.  Advanced Connector Systems AHD15A hold-downs 

were connected to the end studs in both bottom corners of the walls.   

Woven fiberglass tape was used as panel edge reinforcement.  The tape was a 

plain weave (0/90) fabric weighing 9-ounces per square yard.  The reinforcing strips were 

1-1/2 in. wide and 0.012 in. thick.  The glass tape was bonded to the plywood panels with 

an isophthalic polyester resin.  The application of the reinforcing was performed with a 

wet lay up procedure, meaning that the fabric was set in place and saturated with resin.  

The reinforcement was allowed to cure under pressure at room temperature for 24 hours 

before constructing the walls. 

One conventional (unreinforced) wall was tested monotonically under 

displacement control.  This wall exhibited failures typical of conventional shear walls. 

Nails tearing through the edge of the sheathing and nail heads pulling through the 
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sheathing were the primary failure mechanisms.  A rapid progression of these failures 

was observed along the left edge of the left panel.  This failure progression is commonly 

referred to as “unzipping” meaning that the panel separates from the framing due to 

sheathing failures localized at the nail locations. 

Similar failure modes were observed in the three conventional walls that were 

tested cyclically.  Nail fatigue failures were also prevalent in the walls tested cyclically.  

The nail fatigue failures are likely a result of the SPD loading protocol.  The SPD loading 

has since been criticized because nail fatigue failures are not typically observed in 

earthquake reconnaissance studies.  However, at the time of this study, SPD was the most 

widely accepted cyclic loading protocol.   

Two reinforced walls were tested cyclically.  The wall behavior was improved by 

the addition of the fiberglass edge reinforcement.  Edge tear failures were eliminated 

entirely and the occurrence of nail-head pull-through was reduced.  The authors note that 

the fiberglass reinforcement may increase shear wall capacity more than the test results 

indicate.  Their rationale for this conclusion centers on the numerous occurrences of nail 

fatigue failures observed in the tests of both conventional and reinforced walls.  Once the 

nails have sheared, the reinforcement becomes useless.  Since sheared nails are rarely 

observed during earthquakes, the test results may not be indicative of the true benefit 

provided by the reinforcing (Fonseca et al. 2001). 

2.2 Sheathing-to-Framing Connections 

Intra-component connections such as sheathing-to-stud connections, subfloor-to-

joist connections, etc. provide the bulk of the energy dissipation within a lateral-force-
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resisting-system. Salenikovich (2000) states that “It is well known that yielding of nails 

between sheathing and framing is the main source of ductility in typical shear walls.  

When other means of connection are used, such as screws and/or adhesive, the ductility 

and the failure mode can change significantly.”  They also play a critical role in 

developing maximum shear wall capacity, since shear wall failures are often governed by 

connection strength.  A number of tests have been conducted over the years to determine 

the static strength of individual fasteners; generally these tests follow the criteria outlined 

in ASTM D1761 (ASTM 1998b).   

In the past, investigation of nailed connections has been focused on monotonic 

racking performance because the design codes of North America are based on the 

monotonic performance of shear walls (Dolan & Madsen 1992a).  Recognizing the need 

for better models, capable of predicting the response of timber structures to dynamic 

loads, researchers began to study the cyclic response of shear walls and nailed 

connections in the mid 1980s.  Unfortunately no standard test method exists for cyclic 

testing of timber joints or cyclic testing of shear walls for that matter.  Despite the 

recognized need for standardization to facilitate comparison of results, cyclic connections 

test results provide a good indication of the energy dissipating capability as well as 

strength and stiffness degradation properties of individual sheathing-to-framing 

connections.  While reversing cyclic loads are not representative of the random loads 

experienced during an earthquake they provide an adequate means of quantifying the 

hysteretic behavior of sheathing-to-framing connections (Dolan & Madsen 1992b). 
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Published studies of the monotonic and cyclic behavior of nail connections are 

reviewed in this section.  Most of the experimental studies in the literature have been 

performed with either plywood or waferboard sheathing. The dissertation of Salenikovich 

(2000) is the only publication that the author is aware of where OSB was used as the 

sheathing material.  

2.2.1 Numerical Modeling of Nonlinear Load-Slip Relationship 

Most often, the primary motivation for experimental testing of nailed sheathing-

to-framing connections has been to quantify the “average” load-slip relationship for 

inclusion in computer models of larger shear wall systems.  For this reason it is desirable 

to approximate the load-displacement curve with a mathematical function, which allows 

for closed-form mathematical solutions (Salenikovich 2000).  Several empirical models  

have been proposed to model the monotonic load-displacement relationship of nailed 

connections.  One of the earliest and most often cited models was originally developed by 

Foschi (1974).  Foschi studied the load-slip characteristics of nails, considering that the 

nail yields in bending and the wood under the nail fails in bearing. The model proposed 

by Foschi represents a nail on an elastic-plastic foundation and is expressed by Equation 

2.1. 
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 The meaning of the constants 0K , 1K  and 0P  are illustrated in Figure 2.1.  0K  is 

the initial stiffness, 1K  is the secondary stiffness and 0P  is the load-intercept of the 

secondary stiffness asymptote.  Dolan (1989) modified the Foschi equation to include a 

linear descent for excursions beyond peak load.   The modified equation is as follows: 
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In equation 2.2, K2 defines the slope for deformations greater than δpeak  as is shown in 

Figure 2.2. 

Chui and Ni (1997) proposed modifying the Foschi equation to take into account strength 

degradation effects.  A presentation of the proposed modifications is beyond the scope of 

this text. However, the basic premise consists of adding an additional term to the equation 

which subtracts from the nail force at displacements above δpeak . 

As stated previously several other empirical models have been developed to 

provide a closed form approximation of the monotonic load-slip relationship of nailed 

sheathing-to-framing connections.  The Foschi model is the only one presented here as it 

is the most often cited.  For more information on other models that have been proposed 

see Salenikovich 2000.    
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Figure 2.1 Foschi load-slip curve (Salenikovich 2000). 
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Figure 2.2 Dolan-Foschi load-slip curve (Salenikovich 2000). 
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The cyclic load-displacement response of nailed connections is typically modeled 

following the approach of Dolan and Madsen (1992b).  In this approach, the hysteresis 

loop is defined by four segments.  Four equations are used to define the four segments.  

Each segment is defined by four boundary conditions: 0K , 0P , 2K , 1P , 4K , where 0K , 

0P , 2K  are as defined previously in Figure 2.2.  4K  and 1P  describe the pinching portion 

of the loop where 4K  defines the stiffness and 1P  is the load intercept.  Variations of this 

approach, which requires fitting parameters to the experimental data, have been 

employed by several researchers (e.g. Chui and Ni 1997, Folz and Filliatrault 2001).  

More complex finite element models of individual connections which assume that the 

connection behaves essentially as an elastoplastic pile (steel nail) embedded in a layered 

nonlinear foundation (sheathing and framing material) have been developed by various 

researchers (e.g. Foschi, 1974, 2000; Chui et al. 1998). While these models are capable of 

capturing the detailed cyclic response, they are generally regarded as being too 

computationally demanding for inclusion in shear wall models (Folz and Fillitrault 2001). 

2.2.2 Experimental Studies 

Dolan and Madsen (1992a) performed monotonic and cyclic tests of both 

plywood and waferboard nail connections.  The tests were part of a larger study aimed at 

investigating the behavior of timber shear walls subjected to earthquakes.  The average 

nonlinear load-deflection curves were used with two finite element models to predict the 

behavior of full-size shear walls. 
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The monotonic test data were analyzed using a least squares regression method to 

fit the data to the  Foschi equation.  Since the shear wall specimens being modeled used a 

minimum of 100 nails, an average load-displacement curve  was considered a sufficient 

means of modeling the sheathing-to-framing connections.  “The wall specimen, as a 

whole, will experience the ‘average’ nail behavior.” (Dolan & Madsen 1992a). 

The materials used in this study included SPF framing, 3/8 in. three-ply Canadian 

softwood plywood and solid exterior grade waferboard.  The sheathing was attached to 

the framing with 8d common nails. 

In addition to modeling input, the connection test results were used to address 

four other issues: 

1. Comparison of the performance of plywood and waferboard sheathing in shear walls.   

2. Determine if the load-displacement curves were dependent on the grain orientation of 

either the sheathing or the framing materials. 

3. Investigate the effect of load rate on connection response. 

4. Confirm or deny the hypothesis that the hysteretic response of nailed connection is 

contained within an envelope defined by the monotonic load-displacement curve. 

Plywood connections were found to be less stiff and weaker than waferboard 

connections.  This was attributed to different failure modes of the two types of 

connections.  Plywood specimens were observed to fail by nail-head pull-through while 

the waferboard specimens usually failed by either the nail breaking or pulling out of the 

framing material. 
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For plywood specimens, the face grain orientation was found to affect the 

secondary stiffness of the connection load-displacement curve, however, initial 

investigation of this parameter using the numerical models developed in Dolan’s 1989 

dissertation showed no effect on the predicted behavior of the shear walls. (Dolan & 

Madsen 1992a)  Waferboard connections did not exhibit any dependency on the 

orientation of the sheathing.  This was presumed to be due to the homogeneous nature of 

waferboard as opposed to the orthotropic properties of plywood. Further, testing speed 

was found to have no significant impact on the connection response.  A similar 

conclusion that displacement rate does not affect the joint characteristics was made by 

Lhuede (1988).  

Dolan and Madsen concluded that the nail properties are the primary factor in 

determining the load-displacement behavior of sheathing-to-framing connections.  

Dependence of the connection response on sheathing and framing orientation was said to 

be negligible when being included in a model of a full-size shear wall. 

The test results confirmed the idea that the hysteresis response for nail 

connections is contained within an envelope defined by the monotonic load-displacement 

curve.  Although not discussed by Dolan & Madsen, in general the results of cyclic 

connection tests have shown that the monotonic envelope provides a good approximation 

of the cyclic response in the early cycles.  As cycling progresses and damage 

accumulates, the cyclic response deviates from the monotonic envelope.  At higher 

amplitude cycles the connection response is marked by a significant degradation of 

strength and stiffness.  The post peak cyclic response shows less ductility than the 
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monotonic curve, presumably due to the accumulation of damage incurred by repeated 

load cycling.  

  After several cycles the load displacement response is characterized by 

pronounced pinching of the hysteresis loops.  The reason for the so called “pinching” 

effect is perhaps best described by Chui and Ni (1997): 

“On the first loading the wood fibers around the fastener are compressed and 
crushed.  Upon displacement reversal (unloading), the fastener is initially still in contact 
with the wood.  This accounts for the high value of initial stiffness.  After a certain 
distance of travel, the fastener leaves the compressed wood behind and moves almost 
freely in the reversed direction until it contacts wood again on the opposite side.  This 
behavior explains the low unloading stiffness and near-zero load intercept of the loops…. 
The loading segment is the reverse phenomenon.  After a certain distance of free travel in 
the loading direction, the fastener bears on the wood again on the opposite side, which 
accounts for the sharp increase in stiffness.”  
 
 The study of the load-embedment response of timber to reversed cyclic load 

published by Chui and Ni  (1997) revealed that strength degradation occurs under both 

monotonic and cyclic loading for solid wood.  However, no strength degradation was 

observed in plywood under either monotonic or reversed cyclic load. The degree of 

strength degradation for solid wood was found to increase with any increase in loading 

rate, wood density, fastener diameter, and the presence of preloading history.  These 

results support the idea that a group of small diameter fasteners perform better than a 

group of large diameter fasteners under reversed cyclic loading conditions (Chui & Ni 

1997).  The results also present the possibility that the high density of Southern Pine 

lumber used predominantly in the Southeastern United States may have a negative impact 

of the performance of nailed timber joints. The strength degradation effects were thought 
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to be related to the onset of cracking.  The lack of strength degradation in plywood was 

attributed to the presence of glue planes making it less susceptible to cracking. 

Chou and Polensek (1987) investigated the effect of gaps developing between the 

contact surfaces of wood joints due to in-service drying of wood members.  This is often 

the case on the West Coast where Douglas-fir components are usually assembled into 

structures in green or semi-seasoned condition and then dry while in service (Chou & 

Polensek 1987). The effect of these gaps was evaluated through cyclic-load tests of single 

nail connections constructed with 2x4 Douglas-fir studs and 19/32 in. thick plywood 

sheathing, fastened together with 6d box nails.  The study focused on frictional damping 

along contact surfaces (slip damping).  The results showed that there is a reduction in the 

damping ratio of joints constructed with green lumber and then dried to the expected in-

service equilibrium moisture content (EMC).  Joints assembled and tested green had an 

average damping ratio of 0.28 while joints assembled green and dried to 12% moisture 

content had a damping ratio of approximately 0.15.  Based on these results the authors 

concluded that design values could be overestimated by a factor of two if this effect were 

not taken into account (Chou & Polensek 1987). 

2.2.3 Edge Distance Effects 

One important parameter affecting the performance of individual sheathing-to-

framing fasteners is the location of the nail relative to the edge of the sheathing (edge 

distance).  A study of nailed OSB connections performed by Salenikovich (2000) found 

that reduced edge distance effectively reduces the deformation capacity of the 

connections.  This indicates that the minimum allowable edge distance requirements 
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might not be sufficient to provide the desired ductile response of shear walls under 

racking loads (Salenikovich 2000). 

Salenikovich conducted three series of monotonic tests of nailed OSB connections 

with 10 replicate specimens in each series.  Each series of specimens was constructed 

with a different edge distance.  The three edge distances studied were 2 in., 3/4 in. and 

3/8 in. The materials used were 7/16 in. OSB, 2x4 SPF studs and 8d gun driven nails 

manufactured by SENKO®.  The effect of the framing grain orientation with respect to 

the applied load was also studied, however the framing orientation was found to have no 

significant effect on the results. 

Although the connection strength appeared to be unaffected by reductions in edge 

distance, Salenikovich (2000) showed that deformations at peak load and at failure were 

reduced more than 40% when the edge distance was reduced from 3/4 in. to 3/8 in and by 

100% when the edge distance was reduced from 2 in. to 3/8 in. 

The typical failure modes observed by Salenikovich (2000) are illustrated in 

Figure 2.3.  Nail heads pulling through the sheathing was characteristic of connections 

with 2 in. edge distance .  Connections with 3/8 in. failed predominately by nails tearing 

through the edge of the sheathing.  Connections with ¾ in. edge distance exhibited a 

combination of both failure modes (Salenikovich 2000). 
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Figure 2.3 Typical Failure Modes Observed by Salenikovich (2000): a) 2 in. edge 
distance,  b) 3/4 in.  edge distance, c) 3/8 in. edge distance (Salenikovich 2000). 

A study of edge distances for plywood shear walls was published by the Douglas 

Fir Plywood Association (1948).  The study consisted of 650 monotonic nailed 

connection tests.  Douglas Fir plywood was used as sheathing and Douglas Fir lumber for 

framing.  Test variables included nail size, panel thickness, wood moisture content, grain 

orientation, and edge distances relative to both the panel and the studs.  No consistent 

difference in strength was found for loads applied parallel, perpendicular, or at 45 

degrees to the face ply grain.  The strength of the connections was, however, found to 

decrease as edge distance was decreased.   

2.3 Shear Wall Testing 

Numerous experimental studies of timber shear walls have been published since 

panelized sheathing began to be used for shear walls in the late 1940s.  The majority of 

these studies have followed ASTM E72 (ASTM 1998c) which was developed in the early 

1940s to compare the performance of plywood sheathed walls with traditional board 

sheathed walls with “let in” corner or diagonal bracing. Tests of plywood sheathed walls 

a) b) c) 
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following ASTM E72 conducted by Tissel and Elliot (1986) and Adams (1987) were 

used as the basis for allowable shear capacities presented in the United States building 

codes.  Given the fact that ASTM E72 was never intended for investigation of overall 

shear wall behavior, ASTM E564 was adopted in 1976 (ASTM 1998a).  A comparative 

study using the procedures of both ASTM E72 and ASTM E564 was made by Griffiths 

(1984).  Griffiths found that ASTM E72 overestimated  stiffness and strength  due to the 

use of two steel rods at ends of the specimen.  During the past twenty years, most 

experimental studies have followed the procedures of ASTM E564.  This standard is 

more versatile and accommodates a wider range of test variables (e.g. size of specimen, 

type and location of anchorage, and wall openings).   

More recently, researchers have begun to investigate the response of timber shear 

walls to cyclic loads.  No standard cyclic loading protocol exists although several have 

been proposed and used in past studies by various researchers.  The Sequential Phased 

Displacement (SPD) loading protocol adopted by SEAOSC was originally thought by 

many to have the most potential for standardization and is still used frequently.  

However, this protocol and similar ones have been repeatedly criticized for inducing low 

cycle nail fatigue and nail fracture failures which are not commonly observed in post 

earthquake investigations.  A more recent protocol developed by the Consortium of 

Universities for Research in Earthquake Engineering (CUREE) appears to be gaining 

wide spread acceptance at this time (Krawinkler et al. 2000).  

A fairly comprehensive review of past and present shear wall testing programs is 

provided in Yancey et al. (1998).  Also an excellent summary of research conclusions 
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from years of shear wall research is published in the dissertation of Salenikovich (2000). 

Dolan and Madsen (1992b) recommend reading Peterson (1983), which provides an 

extensive bibliography on historical timber shear wall research.  The research 

observations and conclusions that are relevant to the development and testing of AOSB 

sheathing panels are discussed in this section.  Rather than extend the literature survey, 

the reader is referred to the three previously mentioned references for additional 

information.  

A summary of the observations and conclusions made by various researchers 

from past experimental studies of timber shear walls is presented in this section.  The 

discussion is broken down into sub-sections corresponding to the shear wall components 

of interest. 

2.3.1 Sheathing-to-Framing Connections 

Shear wall damage is typically concentrated at the sheathing-to-framing nails. 

Damage observed in static monotonic tests is typically characterized by the sheathing 

pulling away from the framing, localized sheathing failure at the location of the perimeter 

nails, extraction of the sheathing nails and splitting of the bottom plate at the nail line.  

Damage due to reversed cyclic loading is most often characterized by fatigue and 

shearing of the sheathing nails, however pull out of sheathing nails is also observed 

frequently.  Since nail failures are not consistent with the findings of earthquake 

reconnaissance observations they are thought by most researchers to be a result of the 

cyclic loading protocol used.   
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Numerous studies provide evidence indicating that sheathing-to-framing 

connections are the predominant parameter governing the overall shear wall behavior.  

Fasteners such as nails and staples provide high ductility and energy dissipation while 

screws and adhesives exhibit high stiffness and brittle failure (Salenikovich 2000).  It is 

generally accepted that the performance of sheathing connections is dependent on nail 

diameter, sheathing thickness and framing penetration.  

Dolan and Madsen (1992b) explained the difference in hysteretic behavior of 

individual nail connection and full size shear walls without considering any parameters 

other than the sheathing-to-framing connections.  It was shown by Dolan and Madsen 

(1992a) that the load intercept for a single connector remains constant during cyclic 

displacements.  Intuitively this leads to the expectation that shear walls should exhibit the 

same behavior.  However, this is not the case; the hysteretic response of walls typically 

shows an increase in the load intercept with  increased racking displacement.  This 

behavior can be explained by the shear wall deformation pattern and the resulting load 

distribution among the sheathing nails.  For small racking displacements the nails located 

near the panel corners are the only ones that are stressed enough to cause inelastic 

behavior.  As the wall racks further more nails will exhibit inelastic behavior.  This 

means that more nails will follow the hysteresis curves and will have a nonzero load 

intercept.  Dolan and Madsen (1992b) concluded that the load intercept of the wall should 

be equal to the sum of all individual load intercepts.  In the author’s opinion, these 

findings provide a very convincing argument that the sheathing-to-framing connections 
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are the primary factor governing the wall response and that these connections are 

therefore the most important connection in the shear wall system. 

2.3.2 Anchorage and Intercomponent Connections 

Engineered shear walls typically include the use of overturning restraints such as 

tension hold downs to provide a direct load path to transfer tension in the end stud to the 

foundation.  Although they are used less frequently, steel angles, straps or similar types 

of connections are used to reinforce stud-to-plate connections.  Various other connectors 

are used to connect different portions of wood-frame structures such as floors, roofs and 

foundations. Formerly, effects of intercomponent connections were underestimated or 

neglected.  Experimental studies and computer modeling results have shown that their 

effect is far from negligible. It is now acknowledged that these connections are one of the 

most important, and the least understood, links in the load path (Foliente 1995, 1997).  

Anchorage conditions strongly affect response of shear walls by providing higher 

strength and stiffness (Salenikovich 2000).  The strong influence of anchorage is easily 

illustrated by comparing the deformation patterns of fully-anchored walls to that of walls 

with shear anchorage only.  The test results of Dolan and Madsen (1992a) showed that 

overturning restraint and top corner framing connections were required to facilitate 

proper load transfer among shear wall components and to prevent the wall from rotating 

as a rigid body rather than in a panel racking fashion.  The sheathing nails do not provide 

an adequate means of load transfer between horizontal and vertical framing members.  

The lack of proper anchorage and intercomponent connections causes the most highly 
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loaded sheathing nails (in the panel corners) to fail at low loads, thus limiting the capacity 

and ductility of the wall.   

The effect of foundation anchorage on shear wall deformation is illustrated in 

Figure 2.4 and Figure 2.5. In actual wood-framed buildings, partitions, floors, roofs, and 

ceilings provide significant restraint.  Several researchers have expressed concerns that 

laboratory test set-ups may not provide an accurate reflection of these conditions, 

especially for isolated narrow walls. Damage or failure of wood-framed buildings during 

earthquakes and hurricanes is frequently due to failure of intercomponent connections 

(Yancey et al. 1998). Despite this fact, intercomponent connections have been the topic 

of only a very limited number of experimental and analytical studies. 
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Figure 2.4 Deformation of fully-anchored shear wall (Salenikovich 2000). 
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Figure 2.5 Deformation of non-anchored shear wall (Salenikovich 2000). 

2.3.3 Shear Wall Geometry 

It is accepted that the racking resistance and stiffness of timber shear walls under 

monotonic loading is proportional to wall length if the height-to-length aspect ratio is 2:1 

or less.  Bending of the vertical studs contributes to story drift (total lateral displacement 

for the building story of interest) for walls with larger aspect ratios.  The effect of wall 

openings for doors and windows is known to alter lateral load path and affect the 

strength, stiffness, ductility and failure mechanisms.  The effect is dependent on the size 

and configurations of the openings and is not well studied (Salenikovich 2000).  Design 

and analysis calculations are typically based on the nominal capacity of a fully sheathed 

wall multiplied by an empirical reduction factor.   
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He et al. (1999) investigated the effect of wall openings on walls sheathed with 

both standard and oversized OSB panels.  The results showed that both nail failure and 

panel failure contribute to the strength of walls with openings.  Buckling of panels was 

observed mainly in the corner regions of the openings due to large stress concentrations.  

Given this observation, further investigation of localized panel reinforcement for walls 

with openings was recommended. 

Simpson Strong-Tie introduced their Strong Wall™ series of nailed wood panel 

shear walls in June of 1998.  The walls are engineered to provide improved performance 

at high aspect ratios.  Strong Walls push the limits of what has been considered 

acceptable in maximum aspect ratio for wood-framed shear walls.  As required by the 

Acceptance Criteria for Prefabricated Wood Shear Panels (ICBO ES AC130), Strong 

Wall ratings are derived from static reversed cyclic testing in accordance with the SPD 

protocol.   Acknowledging that cyclic testing cannot predict dynamic response, dynamic 

testing and nonlinear dynamic analysis of high aspect ratio nailed wood shear walls is 

currently being conducted under the “Earthquake 99 Project”.  The Earthquake 99 Project 

has been designed and managed by TBG Seismic Consultants in collaboration with the 

University of British Columbia.  Although much of the development is proprietary - “in 

cooperation with the CUREE-Caltech Woodframe project, all data for nonproprietary 

systems collected in the Earthquake 99 Project will be released to further the 

understanding of the performance of light-framed structures subjected to seismic 

excitation.” (Pryor et al. 2000).  Preliminary shake table test results of full-scale 

structural systems indicate that the Strong-Wall system experienced substantially less 
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permanent drift than the traditional Code wall system.  The work of Simpson Strong-Tie 

and the research being performed under the Earthquake 99 Project suggest that 

prefabricated engineered high aspect ratio shear walls may provide a promising method 

of improving seismic performance of wood-framed buildings while reducing shear wall 

area at the same time. 

2.4 Finite Element Modeling of Shear Walls 

Several finite element models of shear walls have been developed over the past 25 

years by various researchers. Some of the models have been produced with commercial 

finite element programs such as NONSAP and ANSYS while others were developed with 

original computer code written by the researchers themselves.  A review of most of the 

finite element models that have been developed is provided in this section.  Discussion of 

the models focuses on the elements and numerical methods employed as well as the 

conclusions and recommendations of the developers. Many closed form analytical and 

empirical models have also been proposed. Since no analytical or empirical modeling of 

shear walls was performed in the development of AOSB, no literature review of this topic 

is provided here.   

Polensek (1976) presented a finite element model to predict the response of stud 

walls subjected to flexural and compressive loading.  I-beam-column elements were used 

to represent the framing and the sheathing was modeled with plate elements.  The 

stiffness of the fasteners was assumed to be distributed along the nail lines.  The model 

provided accurate predictions of deflections and stresses at both service and ultimate 
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loads. Polensek noted that the accuracy of his solution was highly dependent on the 

accuracy of the nail load-slip relationship and the material properties. 

Another model developed by Foschi (1977) consisted of two-dimensional linear 

orthotropic plane stress elements with twelve nodes to represent the sheathing, linear 

beam-column elements for framing members, and nonlinear springs for the sheathing-to-

framing connections.  The springs representing the sheathing-to-framing connections 

were grouped at the nail lines to reduce the computational complexity of the model.  The 

model results compared well with experimental results of a 20x26 ft. board sheathed wall 

with overlaid plywood tested at Oregon State University. 

Easley et al. (1982) developed a two-dimensional finite model of a three panel 

shear wall for the purpose of verifying proposed numerical formulas for wood-frame 

shear wall analysis.  The model was made using the program POLO-FINITE.  The 

sheathing panels were modeled with eight-node plane stress elements having a quadratic 

displacement field.  These elements were assumed to be isotropic and have a linear 

elastic stress-strain relationship. The framing elements were also modeled with the eight-

node element as linear and isotropic.  Stud to plate connections were pinned to release 

moment and allow shear and axial force transfer.  Two orthogonal springs (extending 

parallel and perpendicular to the axis of the framing members) were used to represent the 

sheathing nails.  The spring elements were of zero length in the undeformed position of 

the wall since they were connected to coincident nodes of the sheathing panels and 

framing members.  
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The boundary conditions applied in the model consisted of zero displacement at 

the framing nodes along the base of the wall and restriction of vertical displacement for 

all top plate nodes. The vertical restriction of the top plate was meant to approximate 

conditions in an actual building.  However, in preliminary analyses, allowing vertical 

displacements along the top plate was found to have a negligible effect on the nail forces 

and shear deformations.  To reduce computational complexity the model was 

substructured so that the linear panel elements were ignored during tangent stiffness 

updates.  The Newton-Raphson procedure was used for obtaining nonlinear solutions.  

The results compared well with experimental data and the results of the analytical 

formulas proposed by Easley et al. (1982).  

Another model that employed perpendicular spring pairs to connect the sheathing 

and framing nodes was developed by Itani and Cheung (1984).  Linear beam elements 

were used to model the framing and 4-node quadrilateral plane stress elements 

represented the sheathing.  The program NONSAP was modified by Itani and Cheung to 

incorporate the nonlinear spring pairs.  Reasonable agreement was found between the 

model predictions and experimental results of three-panel plywood  shear walls tested by 

Easley et al. (1982).  Itani and Cheung (1984) cited the properties of nailed joints as the 

main factor governing shear wall performance. 

Itani and Robledo (1984) incorporated a shear wall model into a computer 

program called PANFRA (Panel and Frame Analysis).  The model was similar to those 

developed by Easley et al. (1982) and Itani and Cheung (1984) except that constant strain 
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triangular elements were used to model the sheathing panels.  The model was said to 

provide accurate results for walls with and without openings. 

Gutkowski and Castillo (1988) incorporated compression only springs to model 

contact between sheathing panels.  The model was capable of providing good predictions 

for both single and double sheathed walls.  Falk and Itani (1989) simplified their previous 

model by developing a “transfer element” used to account for the stiffness of individual 

fasteners through the use of nonlinear spring pairs.  The number of degrees of freedom 

was reduced by 40% from their earlier model.  Parametric studies indicated that nail 

spacing had a greater effect than the nail load-slip relationship.  

Kasal (1992) and Kasal and Leichiti (1992) developed a detailed three 

dimensional model for walls subjected to flexural and compressive loading using the 

commercial software package ANSYS.  A simplified single degree of freedom version of 

the model was incorporated as a substructure element into a model of a complete 

building.  The detailed model consisted of two dimensional linear rectangular shell 

elements with six degrees of freedom per node to represent both the framing and 

sheathing.  A set of three one-dimensional springs were used to model each sheathing to 

framing fastener (one for out of plane withdrawal and two for in-plane shear resistance).  

Gap elements between sheathing panels were also included.   

Dolan and Foschi (1991) developed a finite element program called SHWALL  

that included bearing between panels and out-of-plane bending of the sheathing elements.  

Three independent one-dimensional springs were used to model the sheathing to framing 

connectors.  Similar to the model of Kasal (1992) one spring was used to resist out-of-
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plane withdrawal and two springs oriented perpendicular to each other were used to resist 

the components of the in-plane shear force.  The properties of the connector springs were 

developed from experimental nailed connection test data and fitted to the Dolan-Foschi 

load-slip model described in section 2.2.1. The sheathing element used was a three-

dimensional four-node plate element with a cubic displacement field in each direction.  

This sheathing element had 12 degrees of freedom at each node.  A bilinear spring was 

used to represent bearing of adjacent sheathing panels.  The stiffness of the spring was 

essentially infinite in compression and nearly zero in tension.  The element was used to 

prevent overlapping of the sheathing elements and did not provide any resistance to 

relative in-plane or out-of-plane movement perpendicular to the connector.   

SHWALL employed a direct stiffness approach to assemble the global stiffness 

matrix and used the iterative Newton-Raphson solution method. The ultimate load 

capacity of the wall was well predicted by the computer results.  However, the stiffness 

matrix would become ill-conditioned causing numerical singularities when modeling 

post-peak response (Dolan and Foschi 1991). 

White and Dolan (1995) developed a program entitled WALSEIZ by modifying 

the SHWALL and DYNWALL programs developed by Dolan (1989) and Dolan and 

Foschi (1991).  The modifications resulted in a reduction of degrees of freedom.  

WALSEIZ was capable of both monotonic and time dependant dynamic analysis. The 

sheathing-to-framing connectors were modeled with two one-dimensional independent 

nonlinear springs rather than three (out of plane withdrawal was not accounted for).  A 

two dimensional eight degree of freedom rectangular plane stress plate element was used 
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to model  the sheathing. The same sheathing-bearing element that was used in SHWALL 

was used for WALSEIZ.  Operation of the sheathing-bearing elements utilized a penalty 

parameter approach.  The displacement of adjacent sheathing panel nodes was checked 

within each equilibrium iteration.  The effect of bearing was included if the nodes 

overlapped and neglected otherwise.  The Newton-Raphson solution method was used for 

monotonic analysis and the Newmark-beta was used for dynamic analysis. 

More recently Folz and Filiatrault (2000,2001) developed a program called 

CASHEW (Cyclic Analysis of Shear Walls).  The model geometry is defined via an input 

file allowing for versatility in wall geometry.  The model predicts the load-displacement 

response and energy dissipating characteristics of wood shear walls under arbitrary (user 

defined) quasi-static cyclic loading.  Formulation of the model was based on a balance of 

model complexity and computational overhead (Folz and Filiatrault 2000).   

For simplification, the framing was modeled with rigid pin connected elements.  

The common method of using two independent mutually orthogonal springs to model the 

sheathing to framing nails was employed in the CASHEW program.  In the process of 

verifying the computer results, it was discovered that the use of two springs over 

predicted the amount of energy dissipated by the wall.  The connector spacing was 

adjusted so that the monotonic load-displacement response agreed, in terms of energy 

absorbed, with the model prediction based on using only one nonlinear spring to model 

each sheathing-to-framing connector (Folz and Filiatrault 2001).  This result raises a very 

important point as noted by Folz and Filiatrault (2000):  
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“ …the use of two orthogonal uncoupled springs is only structurally equivalent, in 
terms of resultant force and stiffness, to one spring if each spring is linear elastic with the 
same stiffness.”  

 
 Remarkably, given the numerous models that have used two uncoupled nonlinear springs 

to model each connector, this result has not been discussed previously in other research 

studies. 

Another unique feature of CASHEW is the displacement control solution strategy 

employed.  Similar to previous models, CASHEW uses the Newton-Raphson solution 

method.  However, as discussed previously, this method fails when the global tangent 

stiffness matrix is nonpositive definite.  To overcome this limitation Folz and Filiatrault 

introduced an artificial spring at the top of the wall.  The stiffness of the artificial spring 

was set equal to the initial stiffness of the wall.  The result is that the combined tangent 

stiffness matrix of the shear wall and the spring remains positive definite over the entire 

cyclic loading protocol.  The force developed in the spring is removed at the end of each 

load step to obtain the real force at the top of the shear wall. 

A summary of the finite element models of shear walls that have been developed 

over the years is given in Table 2.3.  It is important to point out that despite the 

recognized importance of tension hold-downs and other anchorage devices used to resist 

global overturning, the effect of such restraints has been neglected more often than not in 

past finite element models. 
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Table 2.3 Summary of Shear Wall Models (after Yancey et al. 1998). 

Reference Program 
Name 

Static Dynamic Comments 

Polensek (1976)  x  Walls were subjected 
to flexure and 
compression 

Foschi (1977)  x   
Easley et al. (1982) POLO-

FINITE* 
x   

Itani and Cheung 
(1984) 

NONSAP* x   

Itani and Robeldo 
(1984) 

PANFRA x   

Gutkowski and 
Castillo (1988) 

WANELS x  Gap elements used to 
model bearing 

between sheathing 
panels 

Falk and Itain (1989)  x   
Dolan (1989) SHWALL 

DYNWALL 
x x Model include 

sheathing bearing 
elements 

Kasal (1992) ANSYS* x  Detailed 3-D shear 
wall model 

Kasal (1992) ANSYS* x  Simplified model 
used for analysis of a 

complete structure 
White and Dolan 

(1995) 

WALSEIZ x x  

Folz and Filiatrault 
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Chapter 3  

CONNECTION TESTS 

Following a rigorous and highly iterative testing program consisting of monotonic 

tests of single-nail sheathing–to-framing connections per ASTM D1761 (ASTM 1998b) 

and compression shear tests of OSB panels with various types of FRP reinforcing 

following ASTM D1037 (ASTM 1998d), the best performing FRP was selected as the 

reinforcing for AOSB.  The material screening and selection process is documented 

separately in Cassidy et al. (2002).  The selected reinforcing materials and fabrication 

parameters are also described in detail in Cassidy et al. (2002).   

After selecting appropriate reinforcing materials and fabrication parameters, 

connection tests were conducted to quantify the benefits of AOSB on individual nail 

connections.  Three types of connection tests were performed: 1) monotonic tests of 

single nail connections according to ASTM D1761 (ASTM 1998b); 2) cyclic testing of 

single nail connections following the recommendations for the Cal-Tech Wood Frame 

housing project developed by CUREE (Krawinkler et al. 2000) and 3) nail head pull-

through tests following ASTM D1037 (ASTM 1998d).  The methods and results of these 

tests are discussed in this Chapter. 

3.1 Reinforced Panel Fabrication 

Based on the test results of the material screening and selection process 

documented in Cassidy et al. (2002), a panel consisting of two ¼” thick sheets of OSB 

sandwiching a narrow ( approximately 1/16 in. thick) internal layer of FRP was 
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determined to have the best combination of durability, ductility and strength  Details of 

the chosen FRP laminate and fabrication details are documented separately in Cassidy et 

al. (2002).  

A thermosetting resin that is typically slow cured under ambient conditions was 

selected for the fabrication of AOSB.  Since the resin is a thermoset, it was possible to 

accelerate the curing reaction with heat.  After testing several sets of process parameters 

(refer to Cassidy et al. (2002) for a complete listing of the parameters tested and the 

results of these tests), the fabrication procedure that produced the highest quality product 

with the shortest fabrication time was selected. 

Connection test specimens were cut from small, 2ftx2ft panels fabricated in a 

hydraulic hot press of the same size. The hot press fabrication process is illustrated in 

Figure 3.1 

 

Figure 3.1 Wet lay-up and hot-pressing of 2x2ft. AOSB panels. 

The panels were fabricated as shown Figure 3.1, with a strip of reinforcing placed 

in the center of the panel.  After fabrication the panels were cut in half along the 

centerline of the reinforcing strip.  Ten single nail connection specimens could be cut 
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from each half of the panel.  The cutting pattern is illustrated in Figure 3.2.  Only the 

reinforced portion of the panel was used for nail head pull through tests, and the 

remainder of the panel was discarded.  The width of the reinforcing strip varied 

depending on the width of the reinforcing fabric, which was purchased in both 6in. and 

8in. wide tapes.  The unreinforced portions of the panels were bonded with exterior 

exposure Liquid Nails purchased at a local hardware store. The decision to use Liquid 

Nails was made after initial attempts to bond the unreinforced portion of the panels 

with the same adhesive used for the FRP produced weak bonds prone to frequent 

delamination despite a relatively heavy adhesive spread rate of 50 pounds per thousand 

square feet of glue line (MSGL).  It is recognized that the use of Liquid Nails or a 

similar construction adhesive is not a feasible means of commercial fabrication of AOSB.  

However since this study was more of a pilot study to address the feasibility the AOSB 

technology this bonding method was considered acceptable for characterizing the 

structural performance of AOSB connections. 
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Figure 3.2 Cutting Pattern for Monotonic and Cyclic Connection Test Specimens. 

3.2 Monotonic Connection Tests 

Since shear wall performance is primarily driven by the sheathing-to-framing 

connections, quantifying the monotonic connection strength and failure modes of nailed 

connections was of significant importance.  Single nail connection specimens built with 

No. 2 southern pine framing were tested monotonically following the procedure of the 

lateral nail resistance test described in ASTM D1761 (ASTM 1998b).  The average load-

displacement curves from the monotonic tests were used as constitutive input for a finite 

element model of 8ft.x 8ft. shear walls, which is the topic of Chapter 5.  The methods and 

results of the monotonic connection tests are described in this section. 
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3.2.1 Experimental Methods 

To provide a means of comparison monotonic tests of both conventional and FRP 

reinforced OSB (AOSB), single nail connections were conducted.  A total of 15 control 

specimens were tested, however the sample size was reduced to 10 specimens for AOSB 

for the purpose of conserving material and expediting the testing program.  The control 

tests (conventional OSB) used 7/16” thick OSB sheathing manufactured by Louisiana 

Pacific.   The FRP reinforced specimens were manufactured at the University of Maine 

according to the fabrication parameters described in the previous section. 

  The connection specimens were made with a single nail driven flush at a 

distance of 3/8” from the edge of the sheathing coupon. This is the minimum edge 

distance allowed by most building codes (e.g., BSSC 1998). The nails were driven 

pneumatically with a Stanley Bostitch® Industrial Framing Nailer (Stick Nailer).  The 

nails were 8d smooth shank nails, also manufactured by Stanley Bostitch®.  The nails 

were 0.120 in. in diameter and 2 ½ in. long with 28o notched heads.   

The specimens were oriented so that the load was applied parallel to the grain of 

the framing member.  Both the National Design Specification for Wood Construction, 

NDS, (AF&PA 1997) and Salenikovich (2000), state that there is no appreciable 

difference in performance of nailed connections loaded parallel- and perpendicular- to-

grain.  Based on this, testing of connections specimens with other grain orientations was 

deemed unnecessary for the purpose of determining the lateral load-deformation response 

of sheathing-to-framing connections. 
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   The specimen dimensions were modified from those given in ASTM D1761 to 

accommodate the limited stroke of the servo-hydraulic actuator.  The actual specimen 

dimensions are shown in Figure 3.3. 
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Figure 3.3 Monotonic Connection Test Specimen Dimensions. 

To simulate shear wall boundary conditions, the sheathing was not restrained 

against out of plane movement.  A steel plate of roughly the same thickness as the OSB 

was connected to the framing member with two ½” diameter bolts (see Figure 3.4).  The 

reason for the thick steel plate was to simulate actual shear wall loading conditions by 

creating a concentric load path along the axis of the sheathing coupon. 
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Real-time load-displacement curves were obtained for each monotonic test.  Load 

and displacement readings were collected at a rate of 1 sample per second.  The data were 

collected and recorded via a PC based data acquisition system equipped with Lab View 

Software and a National Instruments data acquisition card (PCI-MIO-16XE-50).  Two 

direct current linear variable differential transducers (DCDTs) were used to measure slip 

at the nail.  One DCDT was mounted on each side of framing member (See Figure 3.4).  

The two DCDT readings were averaged to cancel out any in-plane rotation of sheathing 

relative to the framing. 

                         

Figure 3.4 Monotonic Connection Test Set-up. 

3.2.2 Reduction of Monotonic Connection Test Data 

To allow for a better comparison of the load-displacement response of 

conventional OSB and AOSB, all of the individual load-displacement curves from each 
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test set were compiled into one average load-displacement curve resulting in two average 

curves (one for conventional OSB and one for AOSB). 

The curves were averaged using a routine written in Matlab (Matlab 2000).  The 

computer program uses linear interpolation to find load values at identical discrete 

displacements for each test.  This results in a new array of load and displacement for each 

experimental data file.  Becasue these new arrays all have the same displacements, they 

can simply be averaged together to form a matrix corresponding to the average load-

displacement curve. 

The Matlab program can only perform the linear interpolation if the load-

displacement data is monotonic.  To overcome this problem, the curves were smoothed 

before linear interpolation by taking a moving average of the data.  The number of points 

required for the moving average varied depending on how monotonic the data were.  To 

provide the best representation of the data, the smallest moving average interval possible 

was used for each reinforcing system.  Finding the minimum moving average interval 

was an iterative process. Moving average intervals were increased by an interval of five 

points until the entire data set was monotonic.  If the moving average was too small, 

Matlab would return an error message stating that it could not perform linear 

interpolation because the data were not monotonic.  The same moving average interval 

was used for every replicate specimen in each test set.   

The experimental data files were modified slightly to account for the differences 

in the failure modes observed in individual connection tests.  There is a large increase in 

displacement if the specimen failure is controlled by the nail pulling out of the stud. Total 
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displacements are much less when the nails tear through the edge of the OSB.  AOSB 

exhibited a combination of the two failure modes.  This became problematic when trying 

to develop an average load-displacement plot, because the displacement range of the 

average plot is limited by the test with the smallest total displacement. To obtain a 

complete average load-displacement curve rather than a partial curve that stopped at the 

smallest maximum displacement observed in the experimental tests,  an extra line of data 

was added to each data file.  This line of data consisted of a zero load reading and the 

DCDT displacement readings of the specimen with the largest maximum displacement.  

This allowed for linear interpolation of each experimental load-displacement curve 

throughout the entire displacement range observed in the testing.  

Note that the experimental averages for peak load and displacement at peak differ 

slightly from values read off the average load displacement curves. This inconsistency is 

because of the computational method used to develop the average load-displacement 

curves.  Because the peak values occur at different locations (load or displacement) for 

each specimen tested and the Matlab routine uses linear interpolation to find average load 

values at given displacements, values determined from the average load-displacement 

curves are always less than the average experimental values. 

3.2.3 Monotonic Results 

Figure 3.5 shows the smoothed average connector load-displacement response of 

the AOSB specimens and the unreinforced control specimens. All of the experimental 

load-displacement curves are shown in Figure 3.6 and Figure 3.7 for control and AOSB 

specimens, respectively. Note that these curves have been smoothed with a moving 
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average for clarity of presentation.  The raw (not smoothed) load-displacement curves for 

each specimen tested are provided in Appendix A.  Results and failure modes of 

individual specimens are also provided in Appendix A.  The experimental averages (see 

Table 3.1) show a 39% increase in ultimate load, along with increased ductility and a 

351% increase in energy dissipation. The displacement at maximum load increased from 

an average value of 0.279” for conventional OSB to 0.505” for the AOSB specimens.  

 The conventional and AOSB connections exhibited very different failure modes.  

The failure mode of the conventional OSB specimens was characterized by the nails 

tearing through the edge of the sheathing.  The initial yield mode of the conventional 

OSB connections was characterized by rotation of the nail into the OSB and a plastic 

hinge forming in the nail at the interface of the sheathing and framing members. This 

corresponds to a Mode IIIs failure as defined by the 1997 NDS (AF&PA 1997).  
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Figure 3.5 Average Monotonic Load-Displacement Curves. 

 

Table 3.1 Average Experimental Results of Monotonic Connection Tests. 

Results Controls (7/16” OSB) AOSB 

Statistics 
Peak 
Load 
(lb) 

Displ. 
@ 
Peak 
Load 
(in) 

Total 
Displ. 
(in) 

Energy 
Absorbed 
(lb-in) 

Peak 
Load 
(lb) 

Displ. 
@ 
Peak 
Load 
(in) 

Total 
Displ. 
(in) 

Energy 
Absorbed 
(lb-in) 

Average 327.2 0.279 0.619 128 454.8 0.505 1.901 580.0 
St. Dev. 45.4 0.117 0.165 52.2 77.2 0.243 0.350 170.8 
COV(%) 14% 42% 27% 41% 17% 48% 18% 29% 
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Figure 3.6 Experimental Load-Displacement Curves for Control Specimens. 
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Figure 3.7 Experimental Load-Displacement Curves for AOSB Specimens. 
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Figure 3.8 Monotonic Connection Failure Modes.                                                

 For the AOSB specimens, the failure was typically in the form of the nail pulling 

out of the framing.  Nine out of the ten specimens tested exhibited nail pull-out failure.  

In the other one, the nail tore through the edge of the sheathing, but the failure exhibited 

increased load and occurred at a much larger displacement than was observed in any of 

the conventional OSB connection tests.  Initial yielding of the AOSB connections 

occurred as bending of the nail at the interface of the FRP and the OSB layer adjacent to 

the framing.   Further yielding occurred as local crushing of the stud around the nail 

followed by the formation of a second plastic hinge of the nail in the framing member.  

The formation of two plastic hinges in the nail is classified as a Mode IV failure by the 

NDS. All reinforced specimens exhibited a Mode IV failure.  In the case of nail pullout, 

the OSB layer adjacent to the framing coupon was damaged, but little or no visible 

damage to the FRP or the surface layer of OSB was observed.  The AOSB held the nails 

OSB; 
edge tear 

AOSB; 
nail pull-out 
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more rigidly, preventing the head of the nail from rotating into the sheathing and 

changing the location at which initial bending occurred in the nails. 

3.3 Cyclic Connection Tests 

Cyclic connection tests were performed with a slightly modified version of the 

same test rig used for the monotonic tests. Ten tests of both OSB and AOSB connections 

with No. 2 southern pine framing were conducted for a total of twenty tests. The loading 

protocol was developed using the recommendations of the CUREE wood-framed housing 

project for the control specimens. Both the conventional OSB and AOSB specimens were 

subjected to the same loading protocol to allow easy comparison of damage 

accumulation. The methods and results of these tests are discussed in this section. 

3.3.1 Experimental Methods 

The monotonic test jig was modified slightly for cyclic testing (See Figure 3.9).  

For monotonic testing the sheathing was connected to the top grip of the testing frame 

with two steel plates and a clevis pin.  The sheathing coupon was in effect pinned at both 

ends, which caused it to behave as a linkage when subjected to compressive loading.  To 

fix this problem, the two steel plates were extended further down along the sides of the 

sheathing to allow enough room for another bolt.  The two in-line bolts prevented 

rotation at the top, which eliminated the linkage action.  The bolts were tight fitting and 

were fully torqued to prevent slippage between the test jig and the connection specimen. 
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Figure 3.9 Cyclic Connection Test Rig. 

 

The connection specimens were loaded according to the Quasi-Static Deformation 

Controlled Cyclic Test Protocol developed by CUREE (Krawinkler et al. 2000). This 

protocol was developed by using time-history analysis of actual earthquake records in the 

Los Angeles area. The loading is intended to simulate ordinary ground motions in the Los 

Angeles area whose probability of exceedance in 50 years is 10% (475 yr. return period).  

The protocol consists of  43 total cycles of varying amplitude. 

At the time these tests were performed, the CUREE protocol was quite new and 

the Sequential Phased Displacement (SPD) test procedure developed by the Structural 

Engineers Association of Southern California (SEAOSC) was perhaps the most widely 
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accepted cyclic loading protocol found in the literature. The CUREE protocol was 

selected over SPD after noting the common occurrence of nail fatigue failures with SPD. 

Dinehart and Shenton (1998) and He et al. (1999) note that the nail fatigue failures are 

likely a result of the large number of high amplitude cycles imposed by the testing 

program and that the occurrence of nail fatigue is not consistent with the findings of 

damage surveys conducted following actual seismic events. Although the occurrence of 

nail fatigue failures is also possible with the CUREE loading procedure, it is less likely 

given that there are only 43 total cycles compared to the 72 cycles in the SEAOSC 

standard. Another reason for selecting the CUREE protocol over SPD was related to the 

definition of the reference deformation. The SPD uses the first major event (FME) or 

yield slip, while CUREE uses the ultimate slip.  It is difficult to reach agreement on the 

definition of the yield slip because of differences in national standards (ISO 1997).  In the 

CUREE publication, the investigators argue that the response of components of wood 

frame buildings rarely exhibit characteristics that can be associated with a yield point or 

any other break-point in the force-deformation response (Krawinkler et al. 2000).  

Conversely, the ultimate displacement is a property that is easily determined and which is 

defined with reasonable agreement throughout the world (ISO 1997). 
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Figure 3.10 Cyclic Connection Test Displacement History. 

A test speed of 0.25 Hz was chosen so that the speed for all cycles would fall 

within the range of  0.004 and 0.4 in/sec (0.1 to 10 mm/sec), which is the range 

recommended by the proposed ISO standard for cyclic testing of mechanically fastened 

timber joints , ISO/DIS 16670, and cited by CUREE. 

The reference deformation that the cyclic loading protocol was based on was 

obtained from the average load-displacement response of the conventional OSB 

connections in the monotonic tests.  CUREE recommends defining the reference 

deformation as a specific fraction of the monotonic deformation capacity (∆m), where  ∆m 

is defined as the point at which the applied load drops, for the first time, below 80% of 

the maximum load that was applied to the specimen (see Figure 3.11).  A value of  0.6 ∆m  
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is suggested by CUREE.  The 0.6 factor is intended to account for the difference in 

deformation capacity between monotonic and cyclic testing (Krawinkler et al., 2000).  
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Figure 3.11 Selection of Reference Deformation from Preliminary Test Data. 

Since the CUREE protocol is intended for shear wall testing, preliminary tests were 

performed to determine if the suggested reference deformation of 0.6 ∆m  was applicable 

to connections. Based on the results of these preliminary tests, a value of 0.75 ∆m  was 

found to more accurately account for the difference in deformation capacity between the 

monotonic and cyclic tests, and was chosen as the reference deformation for the cyclic 

connection tests (refer to Figure 3.11). 

The AOSB connection specimens were subjected to the same identical cyclic 

deformation history as the conventional OSB connections. The reason for doing this 
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rather than developing a separate deformation history based on the monotonic data for 

AOSB, was to provide a direct comparison between the performance of AOSB and OSB 

when subjected to the same loading.  Because the AOSB connections have a much larger 

ultimate displacement than the control specimens, they did not fail after being subjected 

to the same number of cycles that caused failure of the control specimens.  To quantify 

the remaining capacity of the AOSB connections, they were loaded monotonically to 

failure at a rate of  0.4 in/sec following completion of the CUREE protocol.  Data were 

recorded at a rate of 30 samples per second for all cyclic connection tests with the same 

PC based data acquisition system used for the monotonic tests.   

3.3.2 Cyclic Results 

The failure of all conventional OSB specimens subjected to cyclic loading was a 

Mode IIIs edge tear failure.   The most common failure mode (80%) of the AOSB 

specimens was a Mode IV nail withdrawal failure similar to the failure observed in the 

monotonic tests.  The failures of the other two AOSB specimens occurred as splitting of 

the framing and nail fatigue.   

 

 

Figure 3.12 Cyclic Connection Failure Modes. 

OSB; 
edge tear 

AOSB; 
nail pull-out 
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Figure 3.13 Typical Cyclic Load-Displacement Curve and Monotonic Envelope for 
Conventional OSB Connections. 
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Figure 3.14 Typical Cyclic Load-Displacement Curve and Monotonic Envelope for 
AOSB Connections. 
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For the control specimens, the monotonic curve accurately predicts the cyclic 

response for the first few small amplitude cycles, however after repeated cycling, 

continual stiffness reductions are observed (see Figure 3.13).  The cyclic response is also 

characterized by rapid strength degradation due to cumulative damage.  In the 

compressive direction, where the edge distance is effectively unlimited, the failure is a 

ductile bearing failure as opposed to the lower strength and more brittle edge tear failure 

mode observed when tensile loading is applied.  From the typical hysteretic curves shown 

in Figure 3.15 and the values given in Table 3.2, it can be seen that AOSB has not 

significantly changed the ultimate compressive loads or the displacement at which the 

maximum load occurs.  However, under tensile loading, where the edge distance is 

minimal (3/8 in.), AOSB provides a marked improvement in both strength and 

displacement capacity over conventional OSB connections.   

Dolan and Madsen (1992b) found that the cyclic response of nailed plywood 

connections is contained within an envelope defined by the monotonic load-displacement 

response.  AOSB connections were also found to follow this behavior (see Figure 3.14). 

Similar to the results for conventional OSB connections, the monotonic curve provides a 

good prediction of the cyclic response in the early cycles, but the monotonic and cyclic 

response are very different after continued load cycling.  The AOSB specimens show a 

less dramatic decrease in strength and stiffness in the latter cycles, indicating that the 

AOSB connections are more resistant to damage accumulation incurred by load cycling.   
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Figure 3.15 Typical Measured Hysteresis Curves. 

 

Table 3.2 Average Results of Cyclic Connection Tests. 

Results Controls (7/16” OSB) AOSB 

Statistics 
Max Load 

(lb) 

Disp @ 
Max Load 

(in) 

Energy 
Absorbed 

(lb-in) 

Max Load 
(lb) 

Disp @ 
Max Load 

(in) 

Energy 
Absorbed 

(lb-in) 
Average 261.9 0.192 584.3 312.9 0.334 1177.3 
St. Dev. 56.6 0.077 139.6 63.8 0.266 178.4 
COV (%) 22% 40% 24% 20% 80% 15% 

Note:  This data is based on the CUREE loading history only and does not include the 
residual capacity of the AOSB specimens during the monotonic drive to failure. 

 

When subjected to the same cyclic loading history, the reinforced specimens 

exhibited an average increase of 20% in maximum tensile load and a 74% increase in the 

displacement at maximum load.  The total energy dissipated was approximately twice 
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that of conventional OSB connections.  Tabulated results of and hysteresis plots for 

individual specimens are given in Appendix A.  

The AOSB specimens did not fail after being subjected to the same loading 

history that caused failure in all control specimens.  To quantify the residual capacity of 

the AOSB connections, the specimens were monotonically driven to failure, immediately 

following the completion of the CUREE loading protocol.   On average the reinforced 

specimens retained 45% of their ultimate load capacity and 60% of their monotonic 

energy dissipation capacity after cyclic testing.  After being subjected to all 43 load 

cycles, the reinforced specimens exhibited a residual energy absorption capacity which 

was more than three times that of the average monotonic energy absorption of the 

conventional OSB connections.  A comparison of the average residual load-displacement 

response of AOSB with the average monotonic curves of both conventional and 

reinforced OSB is shown in Figure 3.16.    
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Figure 3.16 Residual Capacity of AOSB Connections after Cyclic Loading vs. 
Monotonic Response of OSB and AOSB Connections. 

3.4 Nail Head Pull-Through Tests 

Nail-head pull-through tests were conducted on both AOSB and conventional 

OSB specimens.  The tests follow the procedures outline in ASTM D1037 (ASTM 

1998d).  Twenty specimens of each were tested; half of them were tested dry and the 

other half were soaked in water at approx 68 oF for 24 hours according to ASTM D1037 

prior to testing.  For the wet specimens the nails were driven prior to soaking specimens 

in the water.  The average results are listed in Table 3.3.  Detailed results of individual 

specimens are provided in Appendix A. 
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Table 3.3 Average Results of Nail Head Pull-Through Tests. 

OSB Type 
Ultimate Load 

(lbs) 

Initial Stiffness 

(bs/in) 

7/16” OSB Dry 297 2173 

AOSB  Dry 673 4666 

7/16” OSB Wet 208 938 

AOSB  Wet 541 2374 

 

As shown in Table 3.3, the ultimate load required to pull the head of the nail 

through the AOSB specimens was more than twice that of the conventional OSB 

specimens.  The initial stiffness was also increased significantly.    It is also important to 

note that the AOSB specimens that were soaked in water for 24 hours exhibited more 

strength and stiffness than the conventional OSB specimens that were tested dry. 

 

 

 

 

 

 

 

 



 67

Chapter 4  

SHEAR WALL TESTS 

For this initial study of AOSB, shear wall specimens with two vertical panels and 

no openings were tested.  Static and cyclic tests of both conventional OSB and AOSB 

shear walls built with southern pine framing were conducted.  The sheathing was attached 

to the framing with pneumatically driven 8d nails. Nail spacings of both 4 in. and 6 in. at 

the panel edges were investigated and all nails were driven at 3/8 in. from the panel edge.  

The methods and results of these tests are discussed in this Chapter. 

4.1 Fabrication of AOSB Sheathing Panels 

Full size (4x8ft.) AOSB sheathing panels were fabricated by sandwiching an 8 in. 

wide strip of FRP between two thin (1/4 in.) sheets of OSB at the panel edges.  The 8 in. 

width was used for ease of fabrication and because the reinforcing fabric had been 

purchased previously in 8 in. wide rolls.  Further research is needed to determine the 

optimal width of the reinforcing strip, however connection test results indicate that a 2 in. 

strip will provide equivalent structural performance. The same fabrication parameters 

described in Cassidy et al. (2002) for fabrication of AOSB connection test specimens 

were used to manufacture full size panels.   The fabrication process, which involved a 

wet lay-up of the FRP composite followed by hot pressing under a pressure of 10 psi 

(measured over a 4x8 ft. area) for 30 minutes is illustrated in Figure 4.1 through Figure 

4.3.  The finished product is shown in Figure 4.4.   The plies placed in contact with the  
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8 in. wide strip of 
FRP  placed 
around the panel 
perimeter. 

 

Figure 4.1 Fabrication Set-Up. 

OSB were highly absorbent, which promoted good bonding between the FRP and the 

OSB. The resin was applied to the fabric by hand with paint rollers.  Each of  ply of 

fabric was wetted individually to ensure complete fabric wet-out.  The wet-resin-to-fabric 

weight ratio was maintained at approximately 1:1. 

 During fabrication trials it was noted that the resin tended to squeeze out of the 

fiber glass and migrate toward the interior of the AOSB panels when pressure was 

applied, resulting in a poorly performing resin starved composite.  To prevent this a resin 

barrier was created by placing a double-sided sealant tape, used for SCRIMP and 

vacuum bagging applications, at the edge of the composite (see Figure 4.2).  The sealant 

tape prevented the resin from migrating into the interior of the panels resulting in higher 

quality FRP composite.  
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 Sealant tape prevents 
resin from migrating into 
the interior of the panel. 

 

Figure 4.2 Wet Lay-up of AOSB Panel.   

 

 

Figure 4.3 Hot Pressing of AOSB Panel.  
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Because of the relatively high cost and poor OSB-OSB bonding performance of 

the resin used to fabricate the FRP, the unreinforced, interior sections of the panels were 

bonded together with Liquid Nails, an exterior exposure construction adhesive.  As 

noted in Chapter 3, this is not considered a feasible means of commercial fabrication for 

this product, however for this pilot study the interior bond only had to be strong enough 

to prevent the two outer sheets of OSB from pulling away from each other and buckling 

individually.  For commercial fabrication it may be possible to introduce the FRP 

reinforcing within the OSB production line, which would eliminate the need for an 

additional adhesive to join the center of the panels as was necessary in the secondary 

fabrication technique used here. 

 

 

Figure 4.4 Finished Product in Action. 
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4.2 Shear Wall Test Rig 

The shear wall test rig consisted of a 55 kip servo-hydraulic actuator attached to a 

reinforced concrete reaction wall on one end and a steel load distribution beam on the 

other (see Figure 4.5).  The actuator was pin supported at both ends to avoid rotational 

and/or torsional restraint.  Although supported by the reaction wall on one end, only the 

loading beam resting on the top plate of the shear wall test specimen supported the other 

end of the actuator.  This allowed the end of the actuator to translate freely in the vertical 

direction with increased racking deflection of the shear wall specimen. Steel safety 

cables, which were slack during testing, attached the front of the actuator to the reaction 

wall.  The cables were only present to prevent the actuator from being damaged in the 

event that the test specimen collapsed.  A truss made of steel angle members was used to 

support the front of the actuator when no test specimen was in place or the load 

distribution beam had been detached. 
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Figure 4.5 Shear Wall Test Rig. 

The load distribution beam provided the load path from the actuator to the top 

plate of the wall.  The beam, which was constructed of welded plates and tube sections, 

weighed approximately 75 lb/ft and rested on four small steel tube sections that were 

placed along the top plate of the shear wall specimen.  The heavy weight of the beam was 

designed to produce dead load in the plane of the wall.  Four bolts measuring ¾ in.  in 

diameter and 8 in. in length secured the loading beam to the top plate of the wall.  Square 

steel plate washers measuring 3 in. on a side and ¼ in. thick were placed between the 

under side of the wall top plate and the nut. The bolts were tight fitting to minimize slip 

between the loading beam and the top plate of the wall.  
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Beam is bolted to the reaction 
floor with 3/4" dia. threaded 
rod (4 locations). 

TS 6x3x3/8 Base Beam 

Channel sections anchored to 
reaction floor prevent the base 
beam from sliding. 

Test specimen is bolted to the 
base beam with 3/4" dia. bolts 
(4 locations). 

Tension hold-downs anchored 
to base beam with 7/8" dia. 
bolts (2 locations). 

 

Figure 4.6 Close-Up View of Base Beam. 

 

The bottom plate of the shear wall test specimen rests on a steel base beam made 

from a 6x3x3/8 in. steel tube section.  The base beam was bolted through the 2½ ft. thick 

reaction floor with 1 in. diameter threaded rod in four locations. The test walls were 

attached to the top of the base beam with four ¾” diameter bolts.  The bolts were tight 

fitting in the holes to minimize slip between the bottom plate of the wall and the base 

beam.  Steel channel sections, anchored to the reaction floor, were placed at either end of 

the base beam to prevent the beam from sliding along the floor. 
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The load distribution beam was laterally braced by frames on each side (see 

Figure 4.5).  The bracing frames, which were constructed from steel angles joined by 

bolts, were attached to the reaction floor with ¾ in. diameter threaded rods.  Sections of 

wood blocking with an attached strip of high density polyethylene were used to guide the 

load distribution beam as the test walls were racked by the actuator.  The high density 

plastic strip was placed in contact with the steel beam to minimize the amount of 

frictional resistance while preventing out-of-plane movement of the beam and the top of 

the specimen. 

4.3 Instrumentation 

Load and displacement readings were recorded during the tests with a PC based 

data acquisition system.  Data were collected at a rate of 10 samples per second for the 

static wall tests and 50 samples per second for cyclic tests. 

The instrumentation plan is illustrated in Figure 4.7.  The applied load was 

recorded from the actuator load cell and displacements were measured with either 

DCDTs or string potentiometers powered by a +/-15 volt power supply.  DCDTs with a 

range of +/-2 in. were used to measure uplift and horizontal slip at the base of the wall.  

For the static wall tests, the translation at the top was measured with a +/-10 in. DCDT.  

A flexible rod connected to the DCDT core was attached to an angle bracket that was 

mounted to the double top plate of the walls with screws.  The hole in the bracket where 

the rod passed through was slotted vertically to prevent bending of the rod.  

Unfortunately, the slotted hole did not prevent the rod from bending.  Concerns that 

bending of the rod may produce inaccurate displacement readings and possibly damage 
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the DCDT prompted the replacement of this DCDT with a steel cable string 

potentiometer ( “string pot”).  The string pot, which had a 20 in. range, was used for all 

cyclic wall tests. 

 

Figure 4.7 Instrumentation of Shear Wall Test Specimen. 

(Note: This figure was adapted from Salenikovich 2000) 

4.4 Wall Construction 

Normal construction practices were followed, with No. 2 southern pine framing 

consisting of  nominal 2x4 studs spaced at 16 in. on center, a double top plate and a 

single sole plate. All nailing was done with a Stanley Bostitch® nail gun The studs were 

attached to the single bottom plate and the double top plate with two 16d (0.131in. φ x 

3.5in.) power driven nails at each end.  
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The sheathing panels were oriented vertically and unblocked.    A single layer of 

sheathing was attached to one side of the framing with power driven 8d smooth shank 

nails, measuring 0.120 in. in diameter and 2.5 in. in length.  Nails driven along the 

sheathing panel edges were driven at an edge distance of 3/8 in.  

 

2 x 4 SP studs @16 in. 
fastened by 16d nails 

Sheathing fastened 
by 8d nails 

@ 4in. or 6” ‘edge’ 
@12in. ‘field’ 

Simpson HD10A tie-
down fastened with 
7/8in. dia. bolts 

Double end studs fastened by two 10d nails 
spaced at either 6 or 12 in. depending on 

perimeter fastening of sheathing.  Nails were 
angled and driven from both sides in an 

Double top plate fastened 
by two 10d nails @ 16in. 

 

Figure 4.8 Shear Wall Assembly.  

(Note: This figure was adapted from Salenikovich 2000) 

 

End studs consisted of two 2x4s fastened by two 10d (0.120 in. φ ×3.0 in.) nails 

every 12 in. for walls with 6 in. perimeter nail spacing and every 6 in. for walls built with 

4 in. nail spacing at sheathing panel edges.  The nails were angled and driven in from 

either side in an alternating staggered pattern (see Figure 4.8).  These nail spacings were 
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chosen after conducting a preliminary static wall test with AOSB sheathing attached to 

the framing with a 4 in. perimeter nail spacing.  In this test, failure of the wall was 

controlled by buckling of the double 2x4 compression stud.  The two 2x4s that comprised 

the end stud, which were nailed together with two 10d nails spaced at 12 in. on center, 

pulled apart and appeared to be acting as two slender 2x4 columns rather than a single 

built up column.   

The theoretical Euler buckling load was calculated assuming that this built up 

column was fully composite and therefore behaved like a solid sawn piece of dimension 

lumber.  The Euler buckling load for a solid sawn column measuring 3in. x 3.5 in. with 

pinned ends and an unbraced length of 8 ft.  is approximately 15,200 lbs.  In the test wall, 

the stud buckled when the lateral load reached 9,339 lb.  Note that since the aspect ratio 

of the walls is 1:1, the force in the compression stud is approximately equal to the applied 

lateral load.  With an upper bound buckling load of 15,200 lbs, it was expected that 

buckling could be prevented by doubling the number of nails tying the two studs 

together.  The nail spacing was reduced to 6 in. for all walls tested with 4 in. perimeter 

nail spacing, and no more buckling failures were observed.  Buckling of the compression 

stud was not expected to occur in walls with 6 in. perimeter nail spacing since these walls 

have less strength capacity, so the nail spacing was kept at 12 in. for construction of the 

double end studs of these walls.  

 Prior to testing, the wall specimens were stored in the laboratory for at least two 

weeks to allow for wood relaxation around the nails, which better simulates as-built 

condition in actual light-frame wood structures. 
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4.5 Loading 

The static wall tests were conducted in load control following ASTM E-564 

(ASTM 1998a), while the cyclic tests were performed under displacement control 

following the CUREE protocol (Krawinkler et al. 2000).  Details of the loading protocols 

used for static and cyclic tests are discussed separately in this section. 

4.5.1 Static Loading 

Higher test loads than those recommended in ASTM E-564 were used (ASTM 

1998a).  The higher loads were necessary  to exceed the design allowable load of the wall 

before the third half cycle.  The use of higher loads is consistent with the test procedure 

used by the APA (Tissel 1993). These higher loads were also used by Dinehart and 

Shenton (1998) for tests of both plywood and OSB shear walls.   

The loading consisted of three half cycles.  In the first half cycle, the specimen 

was loaded at a rate of 20 lb/sec to a peak load approximately equal to the design load, 

and then unloaded to zero load at the same rate.  The second half cycle consists of 

loading the specimen to approximately two times its design load and then unloading to 

zero again.  Following the second unloading, the wall was loaded to failure.  

The design loads were calculated for conventional OSB shear walls from the load 

tables given in NER-272 (NES 1997), which list allowable shear loads in pounds per foot 

for wind or seismic loading of walls fabricated with pneumatically driven nails of the 

type and size that were used to construct the wall test specimens.  Values that were 

slightly higher than the calculated design values were used to be consistent with loads  
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used by other researchers for walls built with common nails (see for example: Dinehart 

and Shenton 1998).  The calculated allowable loads and the test loads used are listed in 

Table 4.1. 

Table 4.1 Static Loading vs. Allowable Design Loads. 

Nail Spacing 
at Panel 

Edges (in) 

Design 
Allowable (lbs) 

1st Cycle Peak 
Load (lb) 

2nd Cycle Peak 
Load 
(lb) 

3rd Cycle Peak 
Load 
(lb) 

6 
 

1760 2000 4000 load to failure 

4 
 

2600 3000 6000 load to failure 

 

Since the design loads as well as the ultimate loads were unknown for AOSB 

shear walls, these walls were subjected to same loading as the conventional OSB shear 

walls.  Using identical loading for static tests of both OSB and AOSB walls provided a 

direct means of comparing the performance of the two wall systems. 

4.5.2 Cyclic Loading 

The specimens were loaded according to the Quasi-Static Deformation Controlled 

Cyclic Test Protocol developed by CUREE at a rate of 0.4 in/sec, which is the highest 

loading rate recommended by CUREE (Krawinkler et al., 2000) . Refer to Figure 3.10 to 

see the shape of the CUREE waveform.   

  Since the monotonic displacement capacities of AOSB walls were significantly 

larger than that of conventional OSB walls (see Table 4.2), two separate loading histories 

were developed (one for OSB and one for AOSB).  This differs from the loading used for 
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Table 4.2 Monotonic Displacement Capacities. 

Control Specimens ∆m  (in) AOSB Specimens ∆m  (in) 

Static_4C_1 3.26 Static_4R_001 5.10 

Static_4C_2 4.78 Static_4R_002 6.08 

Static_4C_3 4.51 Static_4R_003 5.35 

Static_6C_1 3.9 Static_6R_001 5.45 

Static_6C_2 3.95 Static_6R_002 5.76 

Static_6C_3 3.62 Static_6R_003 5.35 

Average 4.01 Average 5.52 

∆ = 0.6 ∆m 2.40 ∆ = 0.6 ∆m 3.31 

 

the cyclic connection tests discussed in Chapter 3,  where the AOSB specimens were 

subjected to the same loading as the control connections. One reason for performing the 

connection tests in this manner stemmed from the fact that no wall tests had been 

performed at that time, which left some uncertainty as to whether or not the increased 

displacement capacity of the AOSB connections would correspond to an increased 

displacement capacity of shear walls built with AOSB.  Furthermore, it was not certain if 

the nails in the wall would undergo the same displacements as those imposed by the 

connection tests.  However, since the results of the static wall tests did show that AOSB 

walls had a larger displacement capacity than conventional OSB walls, which could 

change the wall response to seismic excitation, parameters for the load histories were 

developed separately for OSB and AOSB walls.  
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No significant difference could be found between the monotonic displacement 

capacity of walls built with 4 in. and 6 in. perimeter nail spacing for either OSB or 

AOSB.  Given this, data from the static tests of walls built with both perimeter spacings 

were used to develop parameters for the cyclic tests, and walls of both spacings were 

subjected to identical cyclic loading.   

CUREE recommends defining the reference deformation as a specific fraction of 

the monotonic deformation capacity (∆m), where  ∆m is defined as the point at which the 

applied load drops, for the first time, below 80% of the maximum load that was applied 

to the specimen.  In contrast to preliminary connection test results, a preliminary cyclic 

wall test indicated that the reference value of 0.6∆m  recommended by CUREE did 

provide an accurate description of the difference in ultimate displacement capacity 

between walls tested statically and cyclically.  Given this result, 0.6∆m  was used as the 

reference deformation (∆) for all cyclic wall tests. The monotonic displacement capacities 

computed from each static wall test and the resulting reference deformations (∆) for both 

control and AOSB specimens are listed in Table 4.2.  Note that AOSB walls exhibited an 

average increase in monotonic displacement capacity of 38% over the control walls.  

4.6 Static Shear Wall Test Results 

The test matrix consisted of walls with both 4 in. and 6 in. perimeter nail 

spacings.  Three specimens of each configuration were tested for a total of 12 static tests 

(see Table 4.3).   
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Table 4.3 Static Shear Wall Test Matrix. 

Specimen Type 4in. Nail Spacing 6in. Nail Spacing 

Control 3 3 

AOSB 3 3 

 

The overall load-displacement response of the AOSB specimens was 

characterized by a substantial increase in ductility over the control specimens. On 

average, walls built with AOSB panels were able to maintain at least 80% of their peak 

load up to a drift of nearly 5.5 in. compared to approximately 4.0 in. for the control walls.  

The AOSB walls with 4 in. perimeter nail spacing exhibited a 24% strength increase over 

the controls on average.  No statistically significant difference was found in the strength 

of AOSB and control walls with a 6 in. perimeter nail spacing.  The load-displacement 

curves for each wall configuration are shown in Figures 4.9 thru 4.12. Table 4.4 and 

Table 4.5 summarize average results for all tests. Tabulated results of all static wall tests 

are provided in the Appendix B.  Pictures illustrating typical failures are also provided in 

Appendix B. 

Moisture contents of the framing members were not recorded for the static wall 

tests.  The lumber arrived with moisture contents ranging from 9 to 12%, and remained  
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Figure 4.9 Load-Displacement Curves for Control Walls with 6 in. Perimeter Nail 
Spacing. 
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Figure 4.10 Load-Displacement Curves for AOSB Walls with 6 in. Perimeter Nail 
Spacing. 
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Figure 4.11 Load-Displacement Curves for Control Walls with 4 in. Perimeter Nail 
Spacing. 
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Figure 4.12 Load-Displacement Curves for AOSB Walls with 4in. Perimeter Nail 
Spacing. 
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Table 4.4 Average Test Results of Walls with 6 in. Perimeter Nail Spacing. 

Sheathing 

Type 

Peak Load  

(lb) 

Displ @ 

Peak Load  

(in.) 

%Nails 

Failed 

%Edge 

Tear 

%Pull 

Through 

%Pull Out 

Control  5908 3.09 56 43 54 3 

AOSB 5872 3.93 30 11 0 89 

 

 

 Table 4.5 Average Test Results of Walls with 4 in. Perimeter Nail Spacing. 

Sheathing 

Type 

Peak Load 

(lbs) 

Displ @ 

Peak Load  

(in.) 

%Nails 

Failed 

%Edge 

Tear 

%Pull 

Through 

%Pull Out 

Control 7317  3.30 40 41 53 6 

AOSB 9070 3.80 22 20 0 80 

 

essentially unchanged throughout the summer months that these walls were built and 

tested.  Since the moisture contents did not change very much due to the temperature and 

relative humidity at the time, shrinkage or expansion of the framing was expected to be 

minimal, which negated the need to document moisture contents at the time of building 

and testing.   

The tests were stopped when the actuator reached a preset displacement limit of 6 

in.  Note that two of the control walls with 6 in. perimeter nail spacing (see Figure 4.9) 

were stopped at a displacement of approximately 4 in.  The reason for stopping these tests 

prematurely was due to malfunctioning of the actuator.  The load control gain settings 

were too high, which caused the servo valve to become unstable once the walls reached 
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their strength capacity and the load could no longer be increased.  Once the servo valve 

became unstable, the actuator was uncontrollable and the hydraulics had to be shut off 

immediately for safety reasons.    The proportion, integral and differential gain settings 

were adjusted following these two tests.  The new settings, which allowed the actuator to 

move through the entire 6 in. without instability of the servo valve, were used for all 

subsequent tests. 

The predominant nail failure modes for all of the control walls were edge tear and 

nail-head pull-through.  In the AOSB walls, nail pullout was the most common failure 

mode, and no nail-head pull-through failures were observed.  A small percentage of edge 

tear failures were noted, however the nails were substantially withdrawn from the 

framing before tearing through the edge of the sheathing. 

4.7 Cyclic Shear Wall Test Results 

The test matrix of cyclic wall tests was identical to that of the static wall tests, i.e. 

three tests of each configuration for a total of 12 tests.   The hysteresis loops of the AOSB 

specimens exhibited significantly less pinching and loss of capacity relative to the 

monotonic response. Overall, the AOSB specimens exhibited less damage due to load 

cycling, and absorbed an average of 52% more energy than the control specimens with a 

6 in. nail spacing and 73% more energy with a 4 in. nail spacing. 

The average results of the cyclic wall tests are given for walls with 6 in. and 4 in. 

perimeter nail spacing in Table 4.6 and Table 4.7 respectively.  The last column in the 

tables labeled “strength loss” is a comparison of the average peak load of the cyclic tests 

compared to the average peak load observed in the static tests.  AOSB specimens were 
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observed to exhibit less strength and stiffness degradation than the control specimens 

when subject to cyclic loading.  AOSB walls of both perimeter nail spacings exhibited 

substantial increases in energy dissipation.   

Table 4.6 Cyclic Test Results of Walls with 6 in. Perimeter Nail Spacing. 

Sheathing 

Type 

Max Load  

(lbs) 

Energy  

 (lb-in) 

Strength Loss (%) 

Control  5184 89,043 12% 

AOSB  5676 135,815 3% 

 
  

Table 4.7 Cyclic Test Results of Walls with 4 in. Perimeter Nail Spacing. 

Sheathing 

Type 

Max Load  

 (lbs) 

Energy 

 (lb-in) 

Strength Loss (%) 

Control 7239 116,854 1% 

AOSB 8901 202,613 2% 

 

  Typical load-displacement plots for walls with 6 in. and 4 in. perimeter nail 

spacing are shown in Figure 4.13 and Figure 4.14 respectively.  Tabulated results and 

hysteresis plots for each test along with pictures illustrating typical failure modes are 

provided in Appendix B.  The walls were built late in the fall and stored in the  
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Figure 4.13 Typical Hysteretic Response of OSB and AOSB walls with 6 in. 
Perimeter Nail Spacing. 
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Figure 4.14 Typical Hysteretic Response of OSB and AOSB walls with 4 in. 
Perimeter Nail Spacing. 



 89

laboratory until mid winter.  Since the lab becomes very dry during the winter months, 

the moisture contents of the framing members were measured with an electrical 

resistance moisture meter when the walls were built and again when the walls were 

tested.  These values are also provided in Appendix B. 

Note that the positive portion of the curves in Figure 4.13 and Figure 4.14 

correspond to the wall being pulled back by the actuator, while the negative portion of the 

curves is the wall response as it is being pushed forward.  The curves are generally quite 

symmetrical with respect to loading direction, however the highest loads typically occur 

when the wall is being pulled backward (positive displacement).  This is thought to be 

because this is the initial loading direction.  Loading in the opposite direction (pushing 

forward) occurs after the wall has already undergone the same displacement in the 

positive direction.  Damage incurred from loading in the initial direction is thought to 

reduce the wall capacity upon load reversal.   

The ultimate failure of the AOSB walls with 4 in. perimeter nail spacing was 

often initiated by the top plate pulling off the double end post as the wall was pushed 

forward.   This indicates that the use of steel angles, straps or similar types of connectors 

to reinforce stud-to-plate connections at the top corners of the wall may increase the 

capacity of walls constructed with AOSB. 

Similar to the static tests, the predominant nail failure modes of the control walls, 

were edge tear and nail-head pull-through.  In the AOSB walls, nail pullout and nail 

fatigue were the most common failures.  No nail-head pull-through failures were 

observed.  Edge tear failures were observed but were not common.  The nails were 
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substantially withdrawn from the framing when edge tear failures occurred.  The 

frequency of each type of failure mode is listed in Table 4.8 and Table 4.9. 

Table 4.8 Cyclic Nail Failure Modes of Walls with 6 in. Perimeter Nail Spacing. 

 

Table 4.9 Cyclic Nail Failure Modes of Walls with 4 in. Perimeter Nail Spacing. 

While the sheathing panels of the control specimens were extensively damaged 

under cyclic loading due to edge tear of nails, very little damage of the AOSB panels was 

observed.   This, coupled with the fact that failure of the AOSB walls was driven 

primarily by nail fatigue and nail pullout, indicates that AOSB sheathing panels provide 

as much capacity as the framing and the nails will allow.  Further investigation of how to 

improve the AOSB shear wall system as a whole to utilize the full strength of AOSB is 

one of the primary focuses of current and future research efforts at the University of 

Maine. 

Sheathing 

Type 

%Nails Failed %Edge Tear %Pull Through %Nail Fatigue  %Pull Out 

Control 50 38 62 0 1 

AOSB 56 6 0 48 46 

 

Sheathing 

Type 

%Nails Failed %Edge Tear %Pull Through %Nail Fatigue %Pull Out 

Control 43 46 54 0 0 

AOSB 65 4 0 77 19 
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4.8 Design Loads for AOSB Shear Walls 

An alternative to marketing AOSB as a commodity product sold by the sheet 

would be to market prefabricated wood-frame shear walls constructed with AOSB 

sheathing.  With this alternative in mind, allowable stress design (ASD) loads were 

calculated from the first cycle envelope of the cyclic load displacement curves in 

accordance with the Acceptance Criteria for Prefabricated Wood Shear Panels (ICBO 

ES AC130).  For means of comparison, ASD loads were calculated from the data of both 

AOSB and conventional OSB walls. 

The first cycle envelope curves derived from the cyclic wall test data that were 

used to calculated the design values given in Table 4.10 are plotted in Appendix B.   Note 

that there are two sets of design values listed in Table 4.10, one set for Prefabricated 

Wood Shear Panels (PWSP) and the other for Wood-shear resisting Frames (WSRF).  

AC130 defines PWSPs as prefabricated assemblies (with sheathing) designed and 

constructed to resist in-plane shear in walls.  WSRFs are defined as an assembly of one or 

more PWSPs connected at the top by a horizontal beam of known length and stiffness. 

(ICBO ES AC130).  WSRFs have a minimum safety factor of 2.5, while PWSPs are only 

subject to a safety factor of 2.0.  This in combination with the fact that the allowable 

loads for PWSP were controlled by drift limits while allowable loads for WSRFs were 

controlled by ultimate load limits explains the difference in the two design values. 
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Table 4.10 ASD Loads Calculated from Cyclic Test Data. 

Wall Construction 
Methods 

Prefabricated Wood Shear Panels Wood Shear-resisting Frame 

Wall Type 

Nail 
Spacing 
at Panel 
Edges 
(in) 

Allowable Stress 
Design Load (lb) 

Drift at 
Allowable 
Load (in) 

Allowable 
Stress Design 

Load (lb) 

Drift at 
Allowable 
Load (in) 

OSB 4 3122 0.414 2891 0.366 

AOSB 4 3693 0.404 3549 0.380 

OSB 6 2379 0.389 2049 0.303 

AOSB 6 2649 0.346 2258 0.276 

 

AC130 defines the allowable stress design (ASD) load as the lesser of the two 

values determined by ultimate load or the load that satisfies drift limits according to UBC 

1630.9 (ICBO 1997). 

The ASD ultimate load is the mean ultimate load determined by cyclic testing 

(according to sec 5.1 of AC 130) divided by the appropriate safety factor (2.5 for WSRFs 

and 2 for PWSPs).  The drift limit load is the load corresponding to displacement ∆S on 

the first cycle backbone curve divided by 1.4.  RMS 7.0∆=∆   The R factor for bearing 

wall structures made of wood structural panel walls less than three stories high is 5.5 

(ICBO 1997).  ∆M is the lesser of the following: 

a) 2.4 in. = the inelastic drift limit according to UBC 1630.10.2 (ICBO 1997) for 

an 8 ft. high wall in a typical wood structure (∆M =0.025h, since the fundamental period 

is less than 0.7 seconds). 

b) ∆SLS = mean displacement at peak load determined from the first cycle 

envelope curves. 
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AOSB walls with 4 in. nail spacing at the panel edges showed increases of 18% 

and 23% in allowable load over the control walls for PWSPs and WSRFs respectively.  

AOSB walls with 6 in. nail spacing at panel edges showed increases of 11% for PWSPs 

and 10% for WSRFs. 

Consideration of the parameters controlling these design loads reveals some 

possible focus areas for continued research on AOSB shear wall systems.  Design loads 

are controlled by the lower of  the allowable stress level load at the drift limit or the 

ultimate load divided by the appropriate factor of safety.  To increase the design load of 

AOSB walls, stiffness and ultimate load will need to be increased simultaneously.  

Increasing either stiffness or ultimate load alone will not increase the design load since it 

is limited by the lower of these two properties.   The peak load of AOSB walls generally 

occurs at or above the maximum drift limit of 0.025h (2.4 in. for an 8 ft. wall) imposed 

by the Uniform Building Code (ICBO 1997).  This means that any further increase in 

displacement at peak load without simultaneous increases in stiffness and ultimate load 

will not translate into a higher design value.    

There are many possibilities for increasing both the stiffness and ultimate strength 

capacity of AOSB shear walls.  One is to investigate other sheathing-to-framing 

connectors, namely screws or deformed shank nails.  Using fasteners of this type which 

have a higher withdrawal capacity than smooth shank nails, may prevent the nails from 

pulling out of the framing and force an edge tear failure which would utilize the full 

strength of the AOSB and likely increase the ultimate load of the wall assembly. 
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Other modifications that are independent of AOSB sheathing panels may also 

substantially increase the initial stiffness of the walls.  Some modifications that have been 

employed by manufacturers of prefabricated wood shear wall systems currently on the 

market (i.e. Simpson Strong Tie, Trus Joist, Shear Transfer Systems, etc.) are listed 

below. 

• Have end posts bear directly on the foundation.  This prevents excessive deflection 

from perpendicular to grain crushing of the sole plate under the compression stud. 

• Investigate the use of other tension hold downs, namely Simpson HDQ8 or 

equivalent.  Tie downs that attach with screws rather than bolts prevent initial 

slippage of the tension post due to over-sizing of bolt holes. 

• Inset the edges of the sheathing into the framing.  This forces the panels to bear on the 

perimeter framing members as the wall racks providing displacement compatibility 

and increased racking resistance through bearing. 

Preliminary results found during the development of a finite element model of AOSB 

shear walls with 4 in. nail spacing at panels edges indicate that these modifications may 

be highly effective ways of increasing both initial stiffness and ultimate load of walls 

built with AOSB.  The development and results of this computer model are discussed in 

the following chapter. 
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Chapter 5  

COMPUTER MODELING OF SHEAR WALLS 

The objectives of the finite-element analysis described in this chapter were to gain 

a better understanding of the response of the shear walls tested in this study, and to form 

a basis for studies on the further refinement and optimization of wood-framed shear 

walls.  To achieve these objectives, a  two-dimensional finite element model of two panel 

AOSB shear walls with 4 in. perimeter nail spacing was developed using the computer 

program ANSYS 5.7 (ANSYS 2000).  The model has 15,749 degrees of freedom and 

employs a small displacement nonlinear analysis to model the monotonic load-deflection 

response of the shear wall test specimens discussed previously in Chapter 4. The 

development, results, and verification of the model are presented in this chapter.   

5.1 Overview of Model 

The model consists of 1) beam elements for framing, 2) 8 node quadrilateral plane 

stress elements for sheathing, 3) springs connecting framing members,  4) two uncoupled 

orthogonal nonlinear springs to represent each sheathing to framing nail, 5) frictional 

contact elements between sheathing panels,  and 6) linear springs to represent tension 

hold-down connectors and other base restraints.   

Each sheathing-to-framing connector was modeled with two independent one-

dimensional nonlinear springs oriented orthogonal to each other.  The properties of the 

connector springs were developed from experimental nailed connection test data as 

discussed in Chapters 3 and 4.  The use of perpendicular spring pairs to connect the 
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sheathing and framing nodes is a very common modeling approach found in the literature 

(e.g. Easley et al. 1982; Itani and Cheung 1984; Dolan and Foschi 1991; White and 

Dolan 1995; Folz and Filiatrault 2001). 

Springs to 
represent anchor 

bolts 

Load application 
points 

Compression Springs 

8 node plane-
stress sheathing 

elements 

Fixed Base Beam Nodes 

Tension 
Hold-Down 

Beam elements 
for framing 
members 

Nonlinear springs 
between sheathing 

and framing 

Frictional contact 
elements between 
sheathing panels 

 

Figure 5.1 Overview of Model. 

The use of compression only springs to model contact of adjacent sheathing 

panels is another common feature of many shear wall models.  Gutkowski and Castillo 

(1988) developed a shear wall model that incorporated elements of this type.  Similar 

elements have also been included in more recent computer models developed by Dolan 

and Foschi (1991) and White and Dolan (1995).  These elements are typically used to 

prevent the nodes of adjacent panels from overlapping and offer no resistance tangential 
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to the contact surface (panels sliding relative to each other).  Frictional sliding resistance 

was included in the model of AOSB walls for completeness and because it was simple to 

incorporate with the predefined element, CONTAC12, in ANSYS.  A more detailed 

discussion of this element is provided in section 5.2. 

One unique feature of the model is the inclusion of tension hold-down restraints 

and compressive deflection of the wall bottom plate.  Despite the recognized importance 

of tension hold-downs and other anchorage devices used to resist global overturning, the 

effect of such restraints has been neglected in past finite element models.  However, 

Simpson Strong-Tie Inc. has recently developed models for their proprietary “strong 

walls” which do include the effect of tension hold-downs. (Pryor & Murphy 2002).   

A detailed discussion of the model and its development is provided in the sections 

that follow.      

5.2 Basic Model Components 

    A brief description of each element type used in the model is provided in this 

section.  For more details about these elements see the ANSYS Element Reference which 

is provided with the ANSYS software (ANSYS 1999). 

The beam elements used to model the framing are predefined as BEAM3 in 

ANSYS.  BEAM3 is a common two dimensional line element with three degrees of 

freedom at each node, a linear displacement field in the axial direction and a cubic 

displacement field for deflections perpendicular to the beam.  Input values required for 

this element include nominal material and section properties.  The material properties 

required were modulus of elasticity, shear modulus and Poisson’s ratios for the three 
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principal directions.  These values were obtained from Chapter 4 of the Wood Handbook 

(Forest Products Laboratory 1999).   Although the framing material used in the 

experimental wall tests was Southern Yellow Pine, which encompasses several different 

species of pine, Loblolly pine at 12% moisture content was used as the reference species 

for the purposes of defining the model parameters.  The section properties (area and 

moment of inertia) of the framing members were input into the model as well.  For 

simplicity the double 2x4 end posts and double top plate were modeled as solid sawn 

sections. 

 The sheathing elements were modeled with the ANSYS element PLANE82. 

PLANE82 is a two-dimensional 8-node structural solid with two translational degrees of 

freedom at each node.  The material properties of the sheathing panels were defined as 

the minimum values required of conventional OSB by the Structural Board Association 

(http://www.sba-osb.com).  The Structural Board Association’s standard requires that 

panels have a modulus of elasticity (MOE) of 800,000 psi in the direction of the strong 

axis and a weak axis MOE of 225,000 psi (Schwentker 2001).     

 Contact between the adjacent vertical surfaces of the two sheathing panels was 

simulated by using point-to-point frictional contact elements called CONTAC12, which 

allow two surfaces to maintain or break physical contact and slide relative to each other.  

CONTAC12 is a compression-only element in the direction normal to the surfaces and 

provides Coulomb frictional resistance in the tangential direction.  Theoretically the 

contact stiffness is infinite and the panels deform at the interface due to their own 

inherent stiffness.  A contact stiffness of 900 k/in was found to be effective at preventing 
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the two panels from overlapping without causing numerical difficulties.  Since both of the 

two surfaces in contact are dry smooth wood, a static friction coefficient of 0.6 was used 

(Ritter 1990).  Rolling friction was not considered. 

Each sheathing-to-framing nail was represented by two uncoupled nonlinear 

springs.  Each of the two springs had only a single degree of freedom.  One spring was 

only allowed to translate in the x-direction and the other only in the y-direction.  The two 

springs were orthogonal to each other so that the resultant of the two spring forces acts 

along the axis of the nail.  The nonlinear spring element used to model the orthogonal 

springs is referred to as COMBIN39 in ANSYS.  The average load-displacement 

response, found in the monotonic connection tests, was used as constitutive input for the 

nonlinear spring connector elements as discussed in the section 5.4.1.   

5.3 Convergence Study 

Initially a simplified linear model was developed to study the effects of mesh 

refinement.  This simplified model consisted of pin connected framing members with 

pinned restraints along the sole plate at the bolt locations of the shear wall test rig.  Linear 

springs with a stiffness of 4000 lb/in. were used to model the sheathing-to-framing nails.  

This stiffness value is identical to the lower limit found by Salenikovich (2000) for OSB 

nailed connections.  Comparable initial stiffness values have also been used by Dolan and 

Foschi (1991) and White and Dolan (1995) to model shear walls sheathed with plywood 

or waferboard.   

Four different mesh sizes were considered: 16, 8, 4, and 2 inch element edge 

lengths.  In all four cases the framing and sheathing elements were meshed with elements 
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of equal edge length.  This was done so that the perimeter nodes of the sheathing panels 

would be in the same location as the framing nodes, allowing for proper definition of the 

sheathing-to-framing spring connectors. 

 

 

Pin connected 
framing members 

Linear springs 
between framing 

and OSB 

3 kip load distributed along top plate 

Pinned Base Restraints 
 

Figure 5.2 Simplified Linear Model. 

For the models with 2 in. and 4 in. element edge lengths, the springs representing 

the sheathing-to-framing nails were defined at the proper locations, i.e. every 4 in. around 

the perimeter of the panels and every 12 in. in the field.  In the case of the models with 8 

in. and 16 in. element edge lengths, where there are not enough nodes to define nail 

springs in their proper locations, the nails were grouped at the available nodes.  As shown 

in Figure 5.3, the solution converges with a 4 in. element edge length.  However, in an 

effort to make the model more versatile, the 2 in. edge length was chosen for further 
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development.  With a 2 in. edge length the model can be easily modified to model walls 

with 6 in. perimeter nail spacing, without having to group the nails at the nodes.  The cost 

of using this more refined mesh is increased computational time, but that was deemed of 

secondary importance for the development of this model.  The primary goal was to 

capture the complex load sharing behavior of the AOSB shear wall system to aid in 

future design improvements of AOSB shear wall systems.  
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Figure 5.3 Wall Displacement vs. Mesh Size. 
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5.4 Modeling Parameters 

A discussion of the modeling approach for individual components of the model 

along with a justification of the parameters used is provided in this section.  The model 

parameters/components discussed in this section include: sheathing-to-framing 

connectors, tension hold-downs, anchor bolts, compressive deflection of the sole plate 

and stud-to-plate connections. 

5.4.1 Sheathing-to-Framing Connectors 

The average load-displacement curve was used as input for the nonlinear 

sheathing-to-framing springs in the model.  A detailed discussion of the procedure used 

to develop the average curve is provided in Chapter 3.   

The initial stiffness of the average load-displacement curve for AOSB single nail 

connections was found to be approximately 5,169 lbs/in. in the monotonic connection 

tests.  As described in Chapter 4, these tests were performed according to ASTM D1761, 

which states that the specimens shall be tested as quickly as possible after assembly 

(ASTM 1998b).  However, the static wall specimens were allowed to condition in the 

laboratory for a minimum of two weeks prior to testing.  Nailed connections exhibit 

reduced stiffness over time due to shrinkage and relaxation of wood fibers around the 

nail.  This was accounted for in the model by adjusting the initial stiffness of the 

connectors to a value that produced results which were in good agreement with the 

experimental wall test data in the linear range.  The linear range was considered to end at 

approximately 3,000 lb, which corresponds to the peak load in the first half load cycle of 

the static shear wall tests. An initial stiffness of 4,000 lb/in was found to provide results 
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that agreed reasonably well with experimental data in the linear range.  To reduce the 

initial stiffness without changing subsequent stiffness values along the curve, a constant 

was added to the displacements defining the load-displacement curve.  As illustrated in 

Figure 5.4 this simply shifts the load-displacement curve to the right.  Since the origin of 

the curve remains at zero displacement, the initial stiffness is reduced however, all other 

tangential stiffness values remain unchanged since all other points defining the curve 

have been shifted to the right by the same amount. 
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Figure 5.4 Nonlinear Sheathing-to-Framing Connector Properties. 
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5.4.2 Tension Hold-Downs 

As described in Chapter 4, Simpson HD10A hold-down anchors were used at the 

bottom corners of all wall specimens.  Pictures of the hold-downs are provided in Figure 

5.5 courtesy of Simpson Strong-Tie (http://www.strongtie.com).  Simpson provides data 

relating to the allowable and ultimate tensile loads of the hold-downs.  This data is 

available online as well as in Simpson’s Wood Construction Connectors Catalog 

(Simpson Strong Tie 2002).  A copy of the hold-down data table provided on the 

Simpson Strong Tie web site is provided in Figure 5.5.  This table lists the hold-down 

dimensions along with allowable tension loads. 

 

Figure 5.5 Simpson HD10A Hold-Down Connectors (Simpson Strong Tie 2002). 
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Figure 5.5 lists an allowable tension load of 8,310 lbs. for a HD10A when the 

length of the bolts in the vertical stud is 3 in.  The corresponding deflection at the design 

allowable load is 0.269 in..  Dividing 8310 lbs by 0.269 in. produces a linear spring 

stiffness of 30,892 lb/in., which is the value that was used in the model.  Although the 

hold-down is a tension only restraint, it was necessary to model them as linear springs 

with equal resistance in both tension and compression to reach convergence at high loads, 

since modeling the hold-down as a tension only element produced oscillation in the 

residual force vector preventing convergence near peak load.  However, due to the 

geometry and loading direction of the model, the hold-down spring never goes into 

compression. 

The approach used to model the hold-down is illustrated in Figure 5.6.  Given the 

geometry of the hold-down anchor, the tension force in the vertical end post is 

transmitted to the base beam eccentrically.  This eccentricity was included in the model 

by defining a series of rigid links that extend horizontally from the nodes of the tension 

stud to the actual eccentricity as measured from the centerline of the tension stud to the 

centerline of the bolt hole in the base of the hold-down (See Figure 5.6).  The small frame 

created by the series of rigid links was connected to a fixed slave node representing the 

base beam of the shear wall test rig with a linear spring with a stiffness of 30,892 lb/in as 

discussed previously.  To allow for differential movement between the sole plate and the 

tension stud, the hold-down spring was not connected to the sole plate of the wall.  A 

separate spring was used to represent the lifting restraint imposed on the sole plate by the 

hold-down base bolt .  The stiffness of this spring is discussed separately in section 5.4.3. 
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To avoid large stress concentrations at the nodes of the tension stud, rigid links 

were created at every node along the 18 in. height of the hold-down.  In this way the 

hold-down tension force is distributed to the tension stud at a total of eight nodes (see 

Figure 5.6.) 

Tension Stud Nodes 
Rigid Links 

Hold-Down Spring 
k = 30,892 lb/in 

Wall Sole Plate 

Fixed Node Representing 
Base Beam 

 

Figure 5.6 Modeling of Tension Hold-Down Anchor. 

5.4.3 Anchor Bolts   

  The steel base beam was anchored to the 30 in. thick concrete reaction floor with 

1 in. diameter steel rod at four locations.  Given the high stiffness of this connection 

relative to all other connections in the shear wall system, the base beam was considered 

fixed and modeled as a series of fixed nodes below the sole plate.  In addition to the 
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tension hold-down bolts in the wall corners, the sole plates of the wall specimens were 

bolted to the top of the base beam in four locations for a total of six anchor bolts.  Each 

anchor bolt was modeled as a spring with its initial node being a fixed based beam node 

and its terminal node being the sole plate node directly above. The bolts provide tension 

resistance only, however to avoid convergence difficulties, a compressive stiffness of 

approximately 2% of the tensile stiffness was used.  The model results were checked to 

verify that the springs had not gone into compression.  The bolt springs were found to 

remain in tension at all times.  Furthermore, the results show that the two bolts nearest the 

tension corner of the wall carry the bulk of the uplift reaction, while the tensile load in the 

other bolts was found to be negligible. 

The tensile stiffness of the anchor bolt springs was taken as the stiffness of the 

wall sole plate under compressive loading perpendicular to grain.  As shown in Figure 

5.7, a 3 in. square steel plate was used to distribute the bolt force to the sole plate.  Since 

the sole plate was modeled with two dimensional line elements, the effective area of the 

sole plate in compression was approximated by projecting the area of the steel plate onto 

the mid-plane of the sole plate.  This was done by assuming a 45
°

load transmission 

angle (pyramid approximation).  The elastic modulus perpendicular to grain was taken as 

11.3% of the adjusted allowable modulus parallel to grain of No. 2 Southern Pine given 

in the NDS (AF&PA 1997), or 180,800 psi.  The 11.3% proportion was based on 

modular ratios given for Loblolly pine in Chapter 4 of the Wood Handbook (Forest 

Products Laboratory 1999).   
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Figure 5.7 Shear Wall Base Bolts. 

The spring stiffness (k) was then calculated as:  
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 where projA  is the projected area of the steel plate on the mid-plane of the sole plate 

based on the pyramid approximation and L is the thickness of the sole plate. 

Experimental measurements of horizontal slip of the sole plate showed an average 

slip of 0.044 in. at ultimate load.  Based on this finding the slip was considered negligible 

and the horizontal DOF of the sole plate was fixed at the nodal locations of the four 

interior anchor bolts.    The horizontal DOF of the sole plate was not constrained at the 
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location of the tension hold-down bolts. This was done to allow for localized axial 

deflection of the sole plate, since the bolt holes for the tension hold-downs were 

oversized by 
8

1
 in. for ease of fabrication. 

5.4.4 Compressive Deflection of Sole Plate 

During the development of the model, the sole plate node directly under the 

extreme compression stud was fixed in the vertical direction.  This result was that the 

model predicted a much stiffer response than was observed in the experimental tests.  

Upon review of the experimental data, it was noted that the maximum deflection of the 

sole plate under the compression stud ranged from 0.141 in. to 0.38 in..  This deflection 

was accounted for in the model by defining a linear spring from the sole plate to a fixed 

node representing the base beam.  Similarly to the tension hold-down spring it was 

necessary to give this spring equal stiffness in both compression and tension to avoid 

convergence difficulties.  In reality it is a compression-only restraint, but due to the 

geometry and loading direction of the model, this compression spring never goes into 

tension.   

Given the variability in the experimental measurements of sole plate deflection 

under the compression stud, a secant stiffness was fitted to the data rather than trying to 

model the actual nonlinear load-deflection response at this point.  Note that since the wall 

aspect ratio is 1:1, the lateral load is nearly equal to the compressive load in the end stud.  

Since the compressive deflection appeared consistent for both the control and reinforced 

walls, experimental data from both was used to develop this parameter.  The secant 
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stiffness from zero load to peak load varied from 21,820 to 104,244 lbs/in for the six 

walls tested with 4 in. perimeter nail spacing.  The average stiffness value was 

approximately 55,900 lb/in.  A spring stiffness of 41,000 lbs/in was found to provide a 

reasonable fit to the experimental data and produce an overall load-displacement 

response of the wall that was within range of the experimental tests results.  A plot 

comparing the secant stiffness used for the model to a typical experimental measurement 

is provided in Figure 5.8. 
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Figure 5.8 Compressive Deflection of Sole Plate Under Compression Stud. 

Since the sole plate of the wall rests on the base beam, the base beam provides 

compressive restraint all along the base of the wall.  However, the only locations where 

significant compression forces are applied to the sole plate is at the stud locations.  For 
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this reason, springs with the same properties as discussed above were defined under all 

interior studs.    

5.4.5 Stud-to-Plate Connections 

The studs were connected to the top and bottom plates with two single DOF 

springs: one with only a horizontal (Ux) DOF, and one allowed to translate only in the 

vertical direction (Uy).  The horizontal springs were given a stiffness 12,000 lb/in, which 

corresponds to results published by Dolan et al. (1995) for 2x4/2x4 connections made 

with 16d common nails.  This parameter was found to have very little effect on the 

overall load-displacement response of the wall.  It was included for completeness and to 

provide a better approximation of the complex load sharing behavior of the shear wall 

system.   

The vertical stud-to-plate connections were modeled with a bilinear spring having 

different stiffness in compression and tension.  In tension the spring is very weak to 

represent nail withdrawal from end grain.  The author is not aware of any published data 

on the stiffness for nail withdrawal from end grain.  This is a very variable and weak 

connection which is not allowed for use in design (AF&PA, 1997).  A stiffness of 100 

lb/in was used to model the withdrawal resistance.  This value was chosen as it was the 

lowest value that did not cause premature instability of the model.  The model results 

indicate that this is a very important parameter.  Modeling this connection with a stiff 

spring or with pin connections was found to increase the amount of force transferred 

between the studs and plates.  This increases the sheathing-to-framing connector forces 

and produces a much stiffer load-displacement response of the wall.  
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 In compression the stud-to-plate connections are controlled by compression 

perpendicular to grain of the plate.  The stiffness value of 41,000 lb/in developed to 

model compressive crushing of the sole plate was also used as the vertical compression 

stiffness for the stud-to-plate connections (See Figure 5.9). 
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Figure 5.9 Force-Deflection Relationship for Vertical Stud-to-Plate Connectors. 

5.5 Loading and Boundary Conditions 

The application of both gravity loads and lateral loads is discussed in this section.  

A detailed discussion of the development and application of the boundary conditions was 

provided in the previous section of this Chapter.  For clarity a sketch showing loads and 

boundary conditions applied to the model in its final form has been provided in this 

section. 
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5.5.1 Gravity Load 

The nominal self-weights of the studs and sheathing panels were included in the 

model.  The southern pine studs were assumed have a density of 50 pcf and a 

corresponding weight of 1.823 lb/ft.  The weight of the reinforced sheathing panels was 

approximated with a uniform density of 50 pcf and a panel thickness of  
16

9
 in. 

The superimposed dead load applied to the wall specimens included the weight of 

the loading beam and half of the weight of the actuator.  Although the intent of using a 

heavy loading beam was to distribute this dead weight evenly along the top plate of the 

wall, this was not the case.  The corner of the wall nearest the actuator (tension corner) 

appears to carry most of the weight since it supports half of the weight of the actuator in 

addition to the distributed weight of the loading beam.  

The idea that most of the weight is supported on this side is supported by the 

failure modes observed in the cyclic wall tests.  The top plate pulled off the stud on the 

side opposite the actuator in nearly every test, but pull off of the top plate in the corner 

near the actuator was not observed in any of the tests (static or cyclic).  Having more 

dead weight near the tension corner of the wall increases resistance to overturning and 

increases the initial stiffness of the wall.  To quantify this effect, a structural analysis of 

the load beam/actuator assembly was performed to find the reaction loads developed in 

the top plate of the shear wall specimen (see Figure 5.10).  The reaction loads shown in 

the figure were reversed in sign and applied to the top plate of the wall at the appropriate 

framing nodes. 
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Figure 5.10 Structural Analysis of Loading Beam / Actuator Assembly. 

5.5.2 Lateral Loading 

Initially, lateral forces were applied to the model to be consistent with the 

experimental testing which was conducted under load control.  Running the model in load 

control above the peak load capacity of the wall causes the stiffness matrix to become ill-

conditioned, resulting in numerical singularities.  Since one of the most notable benefits 

of using FRP reinforced OSB for shear wall construction is increased ductility, modeling 

the load-deflection of the wall beyond peak load was of interest.  It found that more of the 

load-displacement curve could be modeled by running the model in displacement control. 

Displacements were enforced at the four top plate nodes corresponding to the points 

where the loading beam is bolted to the top plate of the wall.  The corresponding lateral 

load was found from the computer results as the sum of the reactions at these four nodes.   
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The entire load displacement curve could not be modeled by applying 

displacements to the wall rather than loads, but it was possible to capture more points 

beyond peak load.  Computational time increased significantly for points beyond peak 

load.  Very small displacement increments were required to solve for these points.  If the 

displacement increment was too large, the computer results produced either an unrealistic 

load increment for a given displacement increment or small equation pivot terms 

developed and the solution would not converge.  This is consistent the findings of Dolan 

and Foschi (1991) in the development of their program SHWALL.  A sketch of the model 

in its final form is provided in Figure 5.11.  All of the applied loads and boundary 

conditions are labeled on the figure.   
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Figure 5.11 Loading and Boundary Conditions. 

5.6  Results and Modifications 

A discussion of the computer model results along with subsequent corrections and 

modifications is provided in this section.  The method of using two orthogonal springs to 

model sheathing-to-framing connectors is a very common approach found in the 

literature (see for example Dolan and Foschi (1991); Folz and Filiatrault (2001)).  There 

are however some inherent problems with this approach.  A discussion of these problems 

and the method employed to account for them is also provided here.    
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5.6.1 Initial Results      

A comparison of the model results to the experimental test results for AOSB walls 

with 4 in. perimeter nail spacing is shown in Figure 5.12.  The monotonic load-

displacement response predicted by the model agrees reasonably well with the 

experimental data in the linear range, however as the load-displacement response of the 

wall becomes increasingly nonlinear, the model results become less accurate.  The 

general shape of the load-displacement response in the non-linear range is comparable to 

the experimental results, however the model over predicts the ultimate load and stiffness.   

The primary reason for this over prediction is most likely due to the fact that the 

sheathing-to-framing nails have been modeled with two uncoupled orthogonal springs, 

while each nail should be represented by a single spring aligned in the direction of the 

nail force.  Since the sheathing and framing nodes are coincident in the undeformed 

position of the wall, it is not possible to define a single two-dimensional nonlinear spring 

without making some kinematic assumption of the initial direction of the spring force. 

Note that two orthogonal springs are only structurally equivalent to one aligned spring 

when the springs are linearly elastic. (Folz & Filiatrault, 2001).  In the nonlinear range 

two orthogonal springs will absorb more energy than a single spring aligned in the proper 

direction.   

Folz and Filiatrault (2001) accounted for this energy over-prediction by increasing 

the spacing of the sheathing-to-framing connectors.  This reasonable and simple approach 

is a convenient solution when one is writing his own code or has access to the source 

code of a program written by someone else.  However, it is not easily accomplished with  



 118

 

0 1 2 3 4 5 6 7 
0 

2000 

4000 

6000 

8000 

10000 

12000 

Horizontal Displacement (in) 

La
te

ra
l L

oa
d 

(lb
) 

AOSB4 S1 
AOSB4 S2 
AOSB4 S3 
Model Points 

 

Figure 5.12 Comparison of Initial Model Results to Experimental Data. 

commercial finite element code.  To the best of the author’s knowledge the only way to 

increase the connector spacing in ANSYS would be to redefine the nodes of both the 

framing and sheathing so that connectors could be placed at the desired locations.  This is 

a time consuming process and was not considered a feasible alternative.  Another 

alternative would be the approach used by Pryor and Murphy (2002).  This modeling 

approach uses a single aligned spring to represent each sheathing-to-framing nail. This 

approach eliminates the need for two orthogonal springs, providing a more accurate and 

theoretically correct representation of the actual wall response. The author learned of the 

modeling approach from telephone conversations and e-mail correspondence with Steve 
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Pryor, P.E., S.E. and Tim Murphy, P.E. from Simpson Strong-Tie Co. Inc.(Pryor & 

Murphy 2002)  Pryor and Murphy have developed a finite element model for Simpson’s 

high aspect ratio strong walls using a computer program called MSC Nastran for 

Windows.  The model uses pin connected framing members with the following 

exceptions.  The Uy degree of freedom was released for the stud-to-top plate connections 

at the top of the wall to capture the top plate lifting off the studs.  Similarly, the Uy degree 

of freedom was released at the bottom tension corner.   

The use of two orthogonal springs to represent the sheathing to framing nails was 

discussed over the phone.  They have moved away from the two orthogonal spring 

approach and seem convinced that the wall response cannot be modeled accurately this 

way.   Their solution was to use one two-dimensional spring to represent each sheathing-

to-framing nail.  Springs of this type cannot be created at coincident nodes because there 

is no initial length or orientation of the spring.  To overcome this problem, rigid 

cantilever beam elements were created from the framing nodes to nodes that were slightly 

offset.  The nodes were offset in the direction of the initial nail force.  For example if the 

lateral load on the wall is applied from left to right then along the left most vertical stud 

(tension stud) a node would be created just above the framing node of interest.  Then a 

rigid cantilever beam would be created from the actual framing node to the new offset 

node.  A single spring with two degrees of freedom (Ux, Uy) at each node can then be 

defined from the sheathing node to the offset node.  By running a large deformation 

analysis the local axis geometry of the springs is updated within each iteration.  With 

every iteration the spring will realign itself as the sheathing rotates away from the 
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framing and the actual orientation of the spring will be captured assuming that the initial 

directional of the nail forces is defined correctly.  

Given more time an approach similar to that used by Pryor and Murphy (2002) 

would have been implemented.  However, by the time the author learned of this approach 

the model was nearly complete and an alternative method of accounting for the energy 

over-prediction of two springs had already been developed.  The method used, was to 

develop a connector load reduction factor based on energy considerations.  Development 

of the connector load reduction factor is discussed in the following section.   

5.6.2 Energy Correction  

Quantification of the excess energy absorbed by two one-dimensional orthogonal 

springs is dependent on the true orientation of the nail force.  This makes it a difficult 

parameter to quantify since the nail forces act in many different directions in the wall, 

and these orientations change with increasing racking deflection of the wall.  Rather than 

try to quantify the energy reduction for each individual nail, a single energy reduction 

factor was calculated and used for all sheathing-to-framing connectors.  Two energy 

reduction factors were considered.  Using these two factors, two separate load-

displacement curves were produced with the model.  One represents a reasonable 

prediction of wall performance and the other provides a lower-bound solution. 

The energy over-prediction was quantified by defining a parameter, , which 

varies for different orientations of a single nonlinear spring.   is computed as the energy 
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absorbed by the nonlinear spring under a given displacement divided by the energy 

absorbed by two identical nonlinear springs subjected to x∆  and y∆ , where   

2.62
y

2 ∆∆∆ � x  

Note that  is dependent on the shape of the load-displacement curve, and for any 

value of ∆  there are an infinite number of values of  that correspond to different 

combinations of x∆  and y∆ .   A plot of the variation in alpha for AOSB nailed 

connections is shown in Figure 5.13. The eleven curves correspond to total displacements 

(displacement of a single aligned spring) of 0.3”, 0.5”, 0.7” … 2.3”.  The horizontal axis 

was taken as x∆ ; y∆ can be computed from the total displacement and  x∆  as: 

3.62
x

2
y ∆∆∆ �  

 where ∆  is the total displacement.  Note that when x∆∆  , 0y  ∆  and 1 .  Further, 

for all values of ∆ , there is a minimum value of  corresponding to a unique 

combination of x∆  and y∆ . 

The plot shows that the energy over prediction grows as the total displacement, 

∆ ,  increases, which is expected since the load-displacement curve becomes increasingly 

nonlinear with increasing displacement.  Another interesting result of  Figure 5.13 is that 

for any given displacement,  appears to reach a minimum at a spring orientation of 

approximately $45 .  Both the model results and the static wall test results indicate that 

the nails in the corners of the sheathing panels are the most highly loaded nails.  These 

are also the nails that will be oriented most closely to an angle of $45 .  This leads to the 
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logical conclusion that the most critical nails are also the ones that are subject to the most 

error when modeled with two uncoupled orthogonal springs.   
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Figure 5.13 Variation in Energy Reduction Factor for AOSB Nailed Connections. 

The minimum value for  was found to be about 0.55 when computed with ∆  

equal to the maximum displacement of the connector.  If  is based on ∆  at peak load 

the minimum value of  is 0.76.  These two values were used as reduction factors for the 

sheathing-to-framing connector load-displacement input.  The displacements were 

unchanged and all of the input loads were multiplied by .    A comparison of the 



 123

modified connector load-displacement curve to the original ANSYS input is provided in 

Figure 5.14. 

Adjusting the connector load displacement curve in this way reduces the tangent 

stiffness modulus along the nail load-displacement curve.  The result is a softening of the 

wall response in both the linear range and nonlinear range.  This is theoretically 

inaccurate, since two orthogonal springs are equivalent to one two dimensional spring as 

long as all the springs are linearly elastic.  In theory the wall response should be 

unchanged as long as all of the sheathing-to-framing connector springs are in the linear 

elastic range.  However, since the difference in the model results is small within the 

linear range and the results with the energy adjustment factors agree better with the 

experimental data in the nonlinear range, this error was considered to be acceptable.  As 

illustrated in Figure 5.15 the model results with the peak load  value of 76% provide a 

reasonable prediction of the experimental results, while the results with the minimum  

value of 55% provide a lower bound on the experimental data.  
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Figure 5.14 Modified Nonlinear Sheathing-to-Framing Connector Properties. 
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Figure 5.15 Model Results with Energy Correction Factor. 
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5.7 Verification 

As a form of independent verification, the average monotonic load-displacement 

curve for conventional OSB nailed connection specimens was input into the model and 

the computer results were compared to the static wall tests of conventional OSB walls 

with 4 in. perimeter nail spacing.  The minimum energy correction factor ( ) was found 

to be 0.53, and  at peak load was approximately 0.78 for conventional OSB nailed 

connections (See Figure 5.16).  Similarly to the AOSB model, three load-displacement 

curves were produced for conventional OSB shear walls. First the model was run without 

including the energy correction factor, and then model results were calculated after 

multiplying the input connector loads by the appropriate energy correction factor.  The 

results of all three modeling runs are shown in comparison to the experimental data in 

Figure 5.17. 
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Figure 5.16 Variation in Energy Reduction Factor for Conventional OSB Nailed 
Connections. 
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Conversely to the AOSB modeling results, the conventional OSB results show 

that the peak load of the wall is better predicted by the unmodified sheathing-to-framing 

connector properties.  Although the ultimate load is under predicted with the model when 

modified connector properties are used, the modified results follow the experimental 

load-displacement curves more closely.  It was not possible to model the post peak 

response for conventional OSB.  This is thought to be due to the sharp descent of the 

connector load-displacement response following peak load, which can cause solution 

instability. 
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Figure 5.17 Model Results for Conventional OSB Shear Walls. 

 The point at which the model results will no longer converge should not be 

considered as the failure point of the wall.  It is expected that the model would provide a 

reasonable fit to the experimental data, as was seen with the AOSB walls, if the solver 
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were capable of handling the numerical difficulties associated with the sharp descending 

branch of the load-displacement curve.  To illustrate this and to show that the early 

failure prediction is solely a function of the connector load-displacement curve, a model 

run was performed where the connector load-displacement curve was assumed to be 

perfectly plastic after reaching peak load.  The peak load  value of 78% was used for 

this model run as it provides the best fit to the experimental data.  The results are shown 

in Figure 5.18.  Although the individual sheathing-to-framing connectors are  
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Figure 5.18 Model Results with Perfectly-Plastic Sheathing-to-Framing Connectors.  

 

perfectly-plastic (no strain hardening), the predicted load-displacement response of the 

wall does exhibit strain hardening, indicating the wall still has capacity remaining beyond 
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the point at which numerical difficulties with the stiffness matrix develop and the 

solution will no longer converge. 

In its current form, the model is capable of providing a reasonable comparison of 

shear wall systems with different connector properties and is expected to be a very useful 

design aid for further development of AOSB shear wall systems, which was the primary 

goal of this study.  There are recognized problems with the approach of using two 

uncoupled springs to model each sheathing-to-framing connector. Other parameters may 

also require adjustment, however given that all parameters are justifiable, it is 

recommended that an approach similar the method used by Pryor and Murphy (2002) 

(see section 5.6.1) be implemented if further refinements of the model are considered.  

The use of two uncoupled orthogonal springs to model the sheathing-to-framing nails is 

thought to be the most significant deficiency in the model.  If this issue were resolved 

then it would become much easier to isolate any other parameters that may require 

adjustment.   
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Chapter 6  

CONCLUSIONS AND RECOMMENDATIONS 

A brief summary of the results of this research is provided in this Chapter.  

Conclusions drawn from these results and recommendations for future research are also 

discussed. 

6.1 Reinforcing Materials and Panel Fabrication 

A variety of fiber/resin combinations were studied with varying degrees of 

success.  Final selection was based on structural performance, economic considerations, 

and ease of fabrication (see Cassidy et al. 2002).  The final FRP reinforcing system 

selected for AOSB was bonded to the ¼” thick OSB cover sheets with a thermosetting 

resin.  

A thermosetting adhesive resin, which is typically slow cured under ambient 

conditions, was used for the fabrication of AOSB.  However, the curing reaction was 

accelerated with heat to reduce fabrication time.  After testing several sets of process 

parameters, the fabrication procedure that produced the highest quality product with the 

shortest fabrication time was selected (refer to Cassidy et al. 2002). 

6.2 Connection Tests 

The monotonic and cyclic behavior of AOSB nail connections with southern pine 

framing, 8d nails and the minimum recommended edge distance  of 3/8 in.  was 

quantified. The average monotonic load-deflection curve was incorporated into a finite 
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element model of an AOSB shear wall.  These connection tests results along with the 

results of the nail-head-pull-through tests indicate that timber shear walls constructed 

with AOSB may be better able to survive disastrous events such as earthquakes and 

hurricanes, through increased strength and energy dissipation of the sheathing-to-framing 

connectors.   

It has been demonstrated that nailed connections made with AOSB exhibit 

improved performance over conventional OSB connections.  The presence of the mid-

plane reinforcing changes the primary failure mode from a shear out type failure where 

the nail tears through the edge of OSB to a more a ductile failure mode where the nails 

exhibit double curvature and are withdrawn from the framing.  The monotonic tests show 

an average increase of 39% in ultimate load and an average energy dissipation capacity 

approximately 4 ½  times that of conventional OSB connections. The displacement at 

maximum load increased from an average value of 0.28 in. for  conventional OSB to 0.50 

in. for the AOSB specimens.  Initial stiffness appears to be unchanged.  

Comparison of the hysteresis curves of conventional and AOSB single nail 

connections shows that the reinforcing is less beneficial when loaded in the compressive 

direction, where the edge distance is essentially unlimited.  Under tensile loading 

however, where the edge distance is minimal (3/8 in.), AOSB provides a marked 

improvement in both strength and displacement capacity as well as improved resistance 

to damage accumulation when compared to conventional OSB connections.  After being 

subjected to the same cyclic deformation history that caused failure in all of the 

conventional OSB connection specimens, the AOSB specimens maintained 40% of their 
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monotonic load capacity and 60% of their monotonic energy dissipation capacity  (see 

Figure 3.15). 

The ultimate load required to pull the head of the nail through the AOSB 

specimens was more than twice that of the conventional OSB specimens.  The initial 

stiffness when loaded in this manner was also increased significantly.    Also, important 

to note is that the nail-head-pull-through specimens made of AOSB and soaked in water 

for 24 hours exhibited more strength and stiffness than the conventional OSB specimens 

that were tested dry (see Table 3.3).  This may prove to be a valuable property when 

considering the resistance of wood-frame buildings to hurricanes, where high wind 

pressures localized near the corners or eaves of the building can result in the loss of 

roofing and roof sheathing.  Maintaining structural integrity after being exposed to water 

is another important property of this product, since water damage from heavy rains 

accounts for much of the damage observed after hurricanes. 

6.3 Shear Wall Tests 

The overall load-displacement response of the AOSB shear walls tested according 

to ASTM E564 (ASTM 1998a) was characterized by a substantial increase in ductility 

over the control specimens. On average, walls built AOSB panels were able to maintain 

at least 80% of their peak load up to a drift of approximately 5.5 in. compared to 

approximately 4.0 in. for the control walls.  The AOSB walls with 4 in. perimeter nail 

spacing exhibited a 24% strength increase over the controls on average.  No statistically 

significant difference was found in the strength of AOSB and control walls with a 6 in. 

perimeter nail spacing.   
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The predominant nail failure modes for all of the control walls were edge tear and 

nail-head pull-through.  In the AOSB walls, nail pullout was the most common failure 

mode, and no nail-head pull-through failures were observed.  A small percentage of edge 

tear failures were noted, however the nails were substantially withdrawn from the 

framing before tearing through the edge of the sheathing. 

When tested cyclically, AOSB walls exhibited less strength and stiffness 

degradation than the control walls.  AOSB walls of both perimeter nail spacings (4 and 6 

inch) exhibited substantial increases in ductility and energy dissipation.  Similar to the 

static tests, the predominant nail failure modes of the control walls were edge tear and 

nail-head pull-through.  In the AOSB walls, nail pull-out and nail fatigue were the most 

common failures.  No nail-head pull-through failures were observed.  A very small 

percentage of edge tear failures were observed.    

While the sheathing panels of the control specimens were extensively damaged 

under cyclic loading due to edge tear of nails, very little damage of the AOSB panels was 

observed.   This coupled with the fact that failure of the AOSB walls was driven 

primarily by nail fatigue and nail pullout indicates that AOSB sheathing panels provide 

as much capacity as the framing and the nails will allow.   

An alternative to marketing AOSB as a commodity product sold by the sheet 

would be to market prefabricated wood-frame shear walls constructed with AOSB 

sheathing.  With this alternative in mind, allowable stress design loads were calculated 

from the first cycle envelopes of the cyclic load displacement data in accordance with the 

Acceptance Criteria for Prefabricated Wood Shear Panels (ICBO ES AC130). The 
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allowable stress design loads depend on whether the walls are used as Prefabricated 

Wood Shear Panels (PWSP) or Wood-shear resisting Frames (WSRF) as defined in 

AC130 (ICBO ES AC130).  AOSB walls with 4 in. nail spacing at the panel edges 

showed increases of 18% and 23% in allowable load over the control walls for PWSPs 

and WSRFs respectively.  AOSB walls with 6 in. nail spacing at panel edges showed 

increases of 11% for PWSPs and 10% for WSRFs. 

6.4 Computer Modeling 

A finite element model of two panel AOSB shear walls with 4 in. perimeter nail 

spacing has been developed using the computer program ANSYS.  The model consists of 

1) beam elements for framing, 2) 8 node quadrilateral plane stress elements for sheathing, 

3) springs connecting framing members,  4) two orthogonal nonlinear springs to represent 

the sheathing to framing nails, 5) compression only elements to capture contact between 

sheathing panels,  and 6) linear springs to represent tension hold-down connectors and 

other base restraints.     

The use of two nonlinear springs to represent each sheathing-to-framing 

connector is known to over-predict the ultimate load and stiffness.  Each nail should be 

represented by a single spring.  However, since the sheathing and framing nodes are 

coincident in the undeformed position of the wall, it is not possible to define a single 

nonlinear spring without making some kinematic assumption of the initial direction of the 

spring force.   Two orthogonal springs are only energy equivalent to one aligned spring 

within the linear elastic range. (Folz and Filiatrault, 2001).  To account for this over 
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prediction, a correction factor was developed using energy methods.  The model results 

with the correction factor are in good agreement with the experimental test results. 

6.5 Recommendations  

Based on the results of this study, AOSB panels appear to have great potential for 

increasing the energy dissipation capacity and lateral load resistance of wood-framed 

structures subjected to extreme wind and seismic events.  Research beyond that described 

here is ongoing at the University of Maine Advanced Engineered Wood Composites 

Center. This research will help further refine and optimize AOSB and AOSB shear wall 

systems. 

It is recommended that further research be focused in two areas.  One area, which 

is very important to the marketability and future success of this product, is the 

development of a faster, more efficient and less expensive fabrication process.  Fast 

drying adhesives mixed with chopped fibers that can be applied with a sprayer are one 

possibility.  The other recommended focus area, which is perhaps more important, at least 

from a structural engineering standpoint, is to increase the allowable design loads for 

prefabricated AOSB shear walls.  As discussed in Chapter 4, both stiffness and ultimate 

strength will need to be increased to increase the allowable stress design load.  The use of 

screws or deformed (ring or spiral) shank nails may prevent the nails from pulling out of 

the framing, forcing edge tear failures which would utilize the full strength of the AOSB 

and is likely to increase the ultimate load of the wall assembly.  

In its current form, the finite element model is capable of providing a reasonable 

comparison of shear wall systems with different connector properties and is expected to 
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be a very useful design aid for further development of AOSB shear wall systems.  There 

are recognized problems with the approach of using two uncoupled springs to model each 

sheathing-to-framing connector. It is recommended that an approach similar to the 

method used by Pryor and Murphy (2002) (see section 5.6) be used to resolve this issue if 

further refinement of the model is considered.   
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