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Worked for more than 160 Hours: Yes
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Worked for more than 160 Hours: No

Contribution to Project: 
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Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree                         

Fiscal year(s) REU Participant supported:   2007    

REU Funding: No Info

Organizational Partners

Other Collaborators or Contacts
Peter M. Smith, Associate Dean (Academic)
Faculty of Engineering
McMaster University.

Prof. Dr.-techn. Leonhard M. Reindl
Albert-Ludwig-University of Freiburg
Department of Microsystems Engineering
Laboratory for Electrical Testing 

Prof. Donald C. Malocha
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Orlando, Fl

Activities and Findings

Research and Education Activities:
The research and education activities under this project embrace:
- Graduate student research and training, which include several technical paper presentations by the students in major conferences in the field,
namely IEEE International Ultrasonics Symposium, IEEE International Frequency Control Symposium, and IEEE International Sensors
Conference (conference papers listed in this report).
- Journal publications with the major findings (publications listed in this report).
- Undergraduate training with 15 NSF REU students being directly advised by the the PI. Ten of these 15 continued to do research with the PI
or colleagues, while still undergraduate students. In addition, seven out of those 15 went to graduate school.
- High school activities through GK-12 fellows (graduate students) who brought and included wireless and filtering topics in local high schools.
- Inclusion of proposal and project writing in senior undergraduate courses. The students were asked to write individual proposals for a course
project (ECE 466 Sensors and Instrumentation Laboratory). 
The proposals were defended to other students. After every student presented a proposal, the class voted the best proposals for group work and
implementation (the PI monitored the feasibility regarding the course timeframe).  
- Another educational initiative was incorporated in ECE 453 (Microwave Engineering), where students were asked to prepare lab manuals, and
execute the envisioned experiments, as if they were preparing classes and training other students. The activity helped prepare students to
convey information to others, write appropriate reports, and be initiated in the tasks of working in group on diverse lab experiments. In
addition, several of the prepared lab manuals were be used in following course session experiments.
   These hands-on learning experience showed very fruitful with very positive feedback from the students.
-  Interactions with other Universities, namely University of Central Florida, Magdenburg University (Germany), Albert-Ludwig-University of
Freiburg (Germany), on topics including acoustic wave modeling, wireless SAW devices, and wireless sensors and tags.
- Inclusion of high performance commercial Advanced Design System (ADS) software in the ECE 453 Microwave Engineering course taught
by the PI, including filter design, antenna design, devices' fabrication and test by undergraduate and graduate students.  

Findings:
Major scientific (research) findings include (technical details in the published papers listed in this report):
- Capability of identifying new High Velocity Pseudo Surface Acoustic Wave (HVPSAW), Pseudo Surface Acoustic Wave (PSAW), and Shear
Horizontal Surface Acoustic Wave (SH-SAW) orientations in regular (quartz, lithium tantalate, and lithium niobate) and new piezoelectric
crystals (potassium niobate, gallium orthophosphate, langasite family of crystal) for high frequency wireless applications and biosensor
applications. (technical details described in the listed published conference and peer reviewed papers)
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- Capability to model HVPSAW, and PSAW, and SH-SAW propagation and transduction properties, including the excitation, coupling and
radiation to spurious bulk acoustic wave modes.
- Capability to model acoustic wave transducer and periodic structures on piezoelectric crystals. The relevance of this modeling reflects on
enabling this technology and findings to be used in the design of higher frequency wireless filters and sensors for bio applications (liquid
environment). This work is under final stages of completion through two Ph.D. thesis by Tom Kenny and Tom Pollard under the PI's advisory.
- Investigation of computational methods including boundary element method and finite element methods for propagation and structure
modeling in finite and infinite structures for acoustic wave modal analysis and device applications.
- Investigation of stiffness variation of polymer film deposited on piezoelectric substrates using surface acoustic wave propagation. The target
of the research is to improve shear horizontal mode trapping and device design for biosensor and communication applications.
- Extraction of SAW network model parameters based on the above mentioned finite and boundary element method analyses. This technique
allows the necessary tools for fast and accurate design of SAW devices, based on a computation intensive technique.
- Design, fabrication, and implementation of a novel wireless tag sensor device and system using coded matched filters. The developed wireless
system employs passive, battery-free SAW devices as sensors. These SAW devices also allow for multisensor interrogation, permitting the
monitoring of several individual samples or diverse measurands. The device design and system implementation used the tools developed under
this project. 
 


Training and Development:
Research and teaching skills and experience:

- Team work with other graduates, technical staff, and faculty.
- Multidisciplinary approach to research and problem solving, involving expertise from other areas of knowledge (biotechniques, mechanical
engineering, chemical, information theory, signal processing, and mathematical techniques).
- Co-advisory of undergraduate students by graduate student (monitored by the PI) 
- Technical document writing and publication in peer reviewed journals by graduate and undergraduate students
- Paper presentations in conferences, both oral and poster by graduate and undergraduate students involved in the project
- Microwave equipment specification and purchase by graduate, undergraduate students, and staff.
- Computer network design and parallel operation
- Development of class material for GK-12 fellows for inclusion in local high school classes dealing with wireless and microwave techniques. 
- Teaching assistant experience in preparing lab., working with professional software, and teaching undergraduate courses.
- Training, operation, and design of clean room equipment and techniques required for microelectronics fabrication. These techniques are
necessary for the previously mentioned research activities involved in acoustic wave modeling, design, and experimental verification. 
- Wireless sensor interrogation system design, antenna integration and optimization, and wireless sensor system implementation. 

Outreach Activities:
Participation, seminar elaboration, and activities coordination in 
- Engineering week at the University of Maine
- Monitor GK-12 fellows and high school activities
- NSF REU through advisory, student competitions
- NSF RET and associated seminars
- Integrative Graduate Education and Research Traineeship (IGERT) programs
- Discussion with visiting parents and students about the importance of STEM research 
- Presentation and Laboratory visits to Elementary, Middle School, and High School students throughout the year
- Yearly Graduate and undergraduate EXPO seminars and poster presentations to the University community, visiting sponsors, parents, GK-12
schools, and overall community.

Journal Publications

T.D. Kenny, T.B. Pollard, E. Berkenpas, M. Pereira da Cunha, "FEM/BEM Impedance and Power Analysis for Measured LGS SH-SAW
Devices", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, p. 402-411, vol. 53, (2006). Published, 

T.B. Pollard, T.D. Kenny, J. F. Vetelino, M. Pereira da Cunha, "Pure SH-SAW Propagation, Transduction and Measurements on KNbO3",
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, p. 199-208, vol. 53, (2006). Published, 
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J. A. Thiele and M. Pereira da Cunha, "Platinum And Palladium High Temperature Transducers On Langasite", IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, p. 545-549, vol. 52, (2005). Published, 

B. J. Meulendyk, M. C. Wheeler and M. Pereira Da Cunha, "Analyses and Mitigation of Spurious Scattered Signals in Acoustic Wave
Reflection Measurements", Nondestructive Testing and Evaluation, p. 155-169, vol. 21, (2006). Published, 

E. Berkenpas, S. Bitla, P. Millard, and M. Pereira da Cunha, "Pure Shear Horizontal SAW Biosensor on Langasite", IEEE Trans. Ultrason.
Ferroelec. Freq. Contr., p. 1404-1411, vol. 51, (2004). Published, 

T. Beaucage, W. Porter, S. Speakman, A. Payzant, E. Beenfeldt, M. Pereira da Cunha, "Comparison Between Bulk and Crystal Lattice
Expansion Coefficients of LGT", IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, p. , vol. , (    ). Submitted, 

J.A. Thiele and M. Pereira da Cunha, "High Temperature LGS SAW Gas Sensor", Sensor and Actuators B: Chemical, p. 246-252, vol. 2005,
(113 ). Published, 

L.D. Doucette, M. Pereira da Cunha, R. J. Lad, "Precise Orientation if Single Crystals by a Simple X-Ray Diffraction Rocking Curve Method",
Rev. of Scientific Instruments, p. 36106, vol. 76, (2005). Published, 

M. Pereira da Cunha, D. C. Malocha, D. R. Puccio, J. Thiele, and T. B. Pollard, "LGX Pure Shear Horizontal SAW for Liquid Sensor
Applications", IEEE Sensors Journal, p. 554-561, vol. 03, (2003). Published, 

J. A. Thiele and M. Pereira da Cunha, "High Temperature Surface Acoustic Wave Devices: Fabrication And Characterization", Electronics
Letters, p. 818-819, vol. 39, (2003). Published, 

M. Pereira da Cunha, D.C. Malocha, E.L. Adler, K.J. Casey, "Surface and Pseudo Surface Acoustic Waves in Langatate: Predictions and
Measurements", IEEE Trans. Ultrason. Ferroelec. Freq. Contr., p. 1291-1299, vol. 49, (2002). Published, 

E. Dudzik, A. Abedi, D. Hummels, and Mauricio Pereira da Cunha, "Wireless multiple access surface acoustic wave coded sensor system",
Electronics Letters, p. 775, vol. 44, (2008). Published,  

Donald F. McCann, Jason M. McGann, Jesse M. Parks, David J. Frankel, Mauricio Pereira da Cunha, and John F. Vetelino, "A
Lateral-Field-Excited LiTaO3 High-Frequency Bulk Acoustic Wave Sensor", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, p. 779, vol. 56, (2009). Published,  

Blake T. Sturtevant, Peter M. Davulis, Mauricio Pereira da Cunha, "Pulse Echo and Combined Resonance Technicques: A Full Set of LGT
Acoustic Wave Constants and Temperature Coefficients", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, p. 788,
vol. 56, (2009). Published,  

Books or Other One-time Publications

T. D. Kenny and M. Pereira da Cunha, "Equivalent Circuit Model and Parameter Extraction for HVPSAW", (2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2006 International Ultrasonics Symposium 
Proceedings, Vancouver, Canada, Oct. 03-06, 2006, pp. 363-366.

T. B. Pollard and M. Pereira da Cunha, "Pure Shear Horizontal SAW Network Model for Periodic Structures Including Bulk Scattering",
(2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2006 International Ultrasonics Symposium Proceedings, Vancouver, Canada, Oct. 03-06, 2006, pp. 88-91.
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Timothy Beaucage, Larryl Matthews, Mauricio Pereira da Cunha, "Optical Differential Dilatometry for the Determination of the Coefficients of
Thermal Expansion of Single Crystal Solids", (2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers


Collection: IEEE 2006 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2006 International Ultrasonics Symposium Proceedings, Vancouver, Canada, Oct. 03-06, 2006, pp. 788-791.

B.T. Sturtevant, M. Pereira da Cunha, "BAW Phase Velocity Measurements by Conventional Pulse Echo Techniques with Correction for
Couplant Effect", (2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2006 International Ultrasonics Symposium Proceedings, Vancouver, Canada, Oct. 03-06, 2006, pp. 2261-2264.

T.R. Beaucage, E.P. Beenfeldt, S.A. Speakman, W.D. Porter, E.A. Payzant, and M. Pereira da Cunha, "Comparison of High Temperature
Crystal Lattice and Bulk Thermal Expansion Measurements of LGT Single Crystal", (2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 Frequency Control Symp. Proceedings
Bibliography: IEEE 2006 Frequency Control Symp. Proceedings, Miami, June 04-07, Miami, FL, USA, 2006, pp. 658-663. (PAPER WAS
AMONG THE 4 FINALISTS COMPETING FOR BEST STUDENT PAPER AWARD IN THE

P. Davulis, J. A. Kosinski, and M. Pereira da Cunha, "GaPO4 Stiffness and Piezoelectric Constants Measurements using the Combined
Thickness Excitation and Lateral Field Technique", (2006). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2006 Frequency Control Symp. Proceedings
Bibliography: IEEE 2006 Frequency Control Symp. Proceedings, Miami, June 04-07, FL, USA, 2006, pp. 664-669.

E. Berkenpas, P. Millard, M. Pereira da Cunha, "Novel O157:H7 E. coli Detector Utilizing a Langasite Surface Acoustic Wave Device",
(2005). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers


Collection: IEEE International Sensor 2005 Conference
Bibliography: IEEE International Sensor 2005 Conference, Irvine, CA, October 31 ? Nov. 03, 2005. (PAPER WAS AMONG THE 10
FINALISTS COMPETING FOR BEST STUDENT PAPER AWARD IN THE SYMPOSIUM).

Maurício Pereira da Cunha and Jared W. Jordan, "Improved Longitudinal EMAT Transducer for Elastic Constant Extraction", (2005).
Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: 2005 Joint IEEE International Frequency Control Symposium and Precise Time and Interval (PTTI) Systems and Applications
Meeting
Bibliography: 2005 Joint IEEE International Frequency Control Symposium and Precise Time and Interval (PTTI) Systems and Applications
Meeting, Vancouver, Ca, Aug. 29-31, 2005, pp. 426-432.

B. J. Meulendyk and M. Pereira da Cunha,, "Significance of Power Flow Angle Interference Due to Finite Sample Dimension in Reflection
Measurements", (2005). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers

Collection: 2005 Joint IEEE International Frequency Control Symposium and Precise Time and Interval (PTTI) Systems and Applications
Meeting
Bibliography: 2005 Joint IEEE International Frequency Control Symposium and Precise Time and Interval (PTTI) Systems and Applications
Meeting, Vancouver, Ca, Aug. 29-31, 2005, pp. 164-170.

T. D. Kenny and M. Pereira da Cunha, "Identification Of New LTO HVPSAW Orientations Considering Finite Thickness Electrodes", (2005).
Proceedings, Proceedings
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2005 International Ultrasonics Symposium Proceedings, Rotterdam, the Netherlands, Sept. 18-21, 2005,  pp. 2305-2308.
(THIS PAPER WAS AMONG THE 3 FINALISTS FOR BEST STUDENT PAP
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E. Berkenpas, P. Millard, M. Pereira da Cunha, "A Langasite SH SAW O157:H7 E. coli Sensor", (2005). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2005 International Ultrasonics Symposium Proceedings, Rotterdam, the Netherlands, Sept. 18-21, 2005,  pp. 54-57.

T. B. Pollard and M. Pereira da Cunha, "Improved Pure Shsaw Transduction Efficiency on LGS Using Finite Thickness Gratings", (2005).
Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2005 International Ultrasonics Symposium Proceedings, Rotterdam, the Netherlands, Sept. 18-21, 2005,  pp. 1048-1051.

N. Saldanha, D. Puccio, M. Pereira da Cunha*, and D.C. Malocha, "Experimental and Predicted TCD and SAW Parameters on LGT [0, 132,
&#936;] Substrates", (2005). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2005 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2005 International Ultrasonics Symposium Proceedings, Rotterdam, the Netherlands, Sept. 18-21, 2005,  pp. 918-921.

J. A. Thiele and M. Pereira da Cunha, "Dual Configuration High Temperature Hydrogen Sensor On LGS SAW Devices", (2004). Proceedings,
Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2004 International Ultrasonics Symposium Proceedings, Aug. 23-27, 2004, Montreal, CA, pp. 809-812. (THIS PAPER
RECEIVED THE BEST STUDENT PAPER AWARD FROM THE IEEE 2004 SYMPOSI

T. B. Pollard, Thomas D. Kenny, and M. Pereira da Cunha, "SH-SAW Transducer Analysis on Single Crystal KNbO3 for Liquid Sensors",
(2004). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2004 International Ultrasonics Symposium Proceedings, Aug. 23-27, 2004, Montreal, CA, pp. 390-395. (THIS PAPER
WAS AMONG THE 4 FINALISTS COMPETING FOR THE BEST STUDENT PAPER A

T.D. Kenny, T.B. Pollard, E. Berkenpas, M. Pereira da Cunha, "FEM/BEM Impedance And Power Analysis For Measured LGS SH-SAW
Devices", (2004). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2004 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2004 International Ultrasonics Symposium Proceedings, Aug. 23-27, 2004, Montreal, CA, pp. 1371-1374. (THIS PAPER
WAS ALSO AMONG THE 4 FINALISTS COMPETING FOR THE BEST STUDENT

E. Berkenpas, S. Bitla, P. Millard, and M. Pereira da Cunha, "Shear Horizontal SAW Biosensor on Langasite", (2003). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: Proceedings of the 2003 IEEE Sensors
Bibliography: Proceedings of the 2003 IEEE Sensors, Toronto, CA, Oct. 2003, pp. 661-664.

J. A. Thiele and M. Pereira da Cunha, "High Temperature SAW Gas Sensor on Langasite", (2003). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: Proceedings of the 2003 IEEE Sensors
Bibliography: Proceedings of the 2003 IEEE Sensors, Toronto, CA, Oct. 2003, pp. 769-772.

M. Pereira da Cunha, T.B. Pollard, H. Whitehouse, and P.M. Worsch, "GaPO4 SAW Devices: Measured and Predicted Propagation
Properties", (2003). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2003 International Ultrasonics Symposium Proceedings, October 5-8, Honolulu, Hawaii, 2003, pp. 110-113.
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T. B. Pollard, J. F. Vetelino, and M. Pereira da Cunha, "Pure SH SAW On Single Crystal Knbo3 For Liquid Sensor Applications", (2003).
Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2003 International Ultrasonics Symposium Proceedings, October 5-8, Honolulu, Hawaii, 2003, pp. 1125-1128.

E. Berkenpas, S. Bitla, P. Millard, and M. Pereira da Cunha, "LGS Shear Horizontal SAW Devices for Biosensor Applications", (2003).
Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2003 International Ultrasonics Symposium Proceedings, October 5-8, Honolulu, Hawaii, 2003, pp. 1404-1407.

J. A. Thiele and M. Pereira da Cunha, "High Temperature LGS SAW devices with Pt/WO3 and Pd Sensing Films", (2003). Proceedings,
Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 International Ultrasonics Symposium Proceedings
Bibliography: IEEE 2003 International Ultrasonics Symposium Proceedings, October 5-8, Honolulu, Hawaii, 2003, pp. 1750-1753.

J.A. Cowperthwaite and M. Pereira da Cunha, "Optimal Orientation Function For SAW Devices", (2003). Proceedings, Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2003 Frequency Control Symp. Proceedings
Bibliography: IEEE 2003 Frequency Control Symp. Proceedings, pp. 881-887, May 05-08, Tampa, FL, USA, 2003.

M. Pereira da Cunha, D. C. Malocha, R. Puccio, J. Thiele, and T. Pollard, "High Coupling, Zero TCD SH Wave on LGX", (2002). Proceedings,
Published
Editor(s): Institute of Electrical and Electronic Engineers
Collection: IEEE 2002 International Ultrasonics Symposium Proceedings
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FEM/BEM Impedance and Power Analysis for
Measured LGS SH-SAW Devices

Thomas D. Kenny, Student Member, IEEE, Thomas B. Pollard, Student Member, IEEE,
Eric Berkenpas, Student Member, IEEE, and Mauricio Pereira da Cunha, Senior Member, IEEE

Abstract—Pure shear horizontal piezoelectrically active
surface and bulk acoustic waves (SH-SAW and SH-BAW)
exist along rotated Y-cuts, Euler angles (0�, �, 90�), of trig-
onal class 32 group crystals, which include the LGX family
of crystals (langasite, langatate, and langanite). In this pa-
per both SH-SAW and SH-BAW generated by finite-length,
interdigital transducers (IDTs) on langasite, Euler angles
(0�, 22�, 90�), are simulated using combined finite- and
boundary-element methods (FEM/BEM). Aluminum and
gold IDT electrodes ranging in thickness from 600 Å to
2000 Å have been simulated, fabricated, and tested, with
both free and metalized surfaces outside the IDT regions
considered. Around the device’s operating frequency, the
percent difference between the calculated IDT impedance
magnitude using the FEM/BEM model and the measure-
ments is better than 5% for the different metal layers and
thicknesses considered. The proportioning of SH-SAW and
SH-BAW power is analyzed as a function of the number
of IDT electrodes; type of electrode metal; and relative
thickness of the electrode film, h��, where � is the SH-
SAW wavelength. Simulation results show that moderate
mechanical loading by gold electrodes increases the pro-
portion of input power converted to SH-SAW. For exam-
ple, with a split-electrode IDT, comprising 238 electrodes
with a relative thickness h�� = 0�63% and surrounded by
an infinitesimally thin conducting film, nearly 9% more in-
put power is radiated as SH-SAW when gold instead of
aluminum electrodes are used.

I. Introduction

The pure shear horizontal (SH) surface acoustic waves
(SAW) that occur on rotated Y-cuts, Euler angles (0◦,

θ, 90◦), of the LGX family of crystals (langasite, LGS;
langatate, LGT; and langanite, LGN) have been identified
as having several attractive features for SAW device ap-
plications [1]–[5]. High frequency filtering, biological sens-
ing, and liquid properties sensing are among these poten-
tial SAW applications along selected LGX substrate ori-
entations, due to properties such as: higher phase velocity
than the regular SAW or Rayleigh mode, which makes it
suited for higher frequency devices; reduced attenuation
compared to other SAW and PSAW modes when the sur-
face is immersed in liquid, which can be used for liquid
and biosensor applications; calculated and measured elec-
tromechanical coupling up to 0.8%; and slightly greater
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power penetration depth in comparison to the Rayleigh
SAW mode, when a grating or thin metallic film is used
for additional guidance of the SH-SAW at the surface.
This latter property, namely the use of a uniform metal-
lic film, is discussed and explored in this work to increase
the proportion of input power converted to SH-SAW by
the interdigital transducers (IDT) along LGS propagation
directions of interest. For liquid sensor applications, the
thin metallic film is used to isolate the device response
from variations in the electrical properties of the liquid
media [4].

Over the past three decades, boundary-element method
(BEM) and finite-element method (FEM) techniques have
been applied to the simulation of SAW devices. A rigorous
BEM analysis of acoustical and electrical fields generated
by IDTs was discussed in [6], which considered in partic-
ular the SH-SAW cut of PZT-4 Euler angles (0◦, 90◦, 0◦).
Finite-element techniques have been used more recently to
perform full IDT analysis [7] and to incorporate the effect
of mass loading due to the finite mass of the IDT elec-
trodes into the BEM analysis, in the generation of SAW,
pseudo-SAW [8]–[10], and SH-SAW [11]–[13].

Both finite structures [9], [10] and infinite periodic elec-
trode structures [8], [11], [13] have been considered. In
the case of infinite periodic electrode grating structures,
the calculated dispersion curves have been used to extract
modeling parameters, such as coupling of modes (COM)
parameters [8] and network parameters [7].

This work reports on numerical simulations, using com-
bined FEM/BEM techniques, and experimental results re-
garding the generation of SH-SAW and SH-BAW by finite-
length IDTs along rotated Y-cut langasite, Euler angles
(0◦, 22◦, 90◦). This work also investigates the effect of
mass loading by different metal types and thicknesses of
IDT electrodes on the percentage of input power converted
to SH-SAW, or the SH-SAW transduction efficiency. High
transduction efficiency is critical for high performance,
low-loss devices, with low spurious levels, and improved
signal-to-noise ratio in the case of liquid sensors. Alu-
minum and gold IDT electrodes ranging in thickness from
600 Å to 2000 Å have been simulated, fabricated, and
tested, with both free and metalized surfaces considered
outside the IDT regions. Around the device’s operating
frequency, the percent difference between calculated IDT
impedance using the FEM/BEM model and the measure-
ments is better than 5% for the different metal layers and
thicknesses considered. The simulations performed have
shown that, for the LGS propagation direction considered,

0885–3010/$20.00 c© 2006 IEEE
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Fig. 1. Structure considered and coordinate system adopted.

virtually all input power is converted to SH-BAW—and
thus none to SH-SAW—when regions outside of the IDT
are electrically free, regardless of the number of IDT elec-
trodes, electrode metal type, and electrode layer thickness.
In contrast, SH-SAW transduction efficiency of up to 72%
has been predicted when the IDTs are surrounded by an in-
finitesimally thin conducting film. The analysis performed
discusses the SH-BAW and SH-SAW power partition both
as a function of the wave propagation vector, or k-vector,
and as a function of the angle inside the substrate.

Section II describes the theoretical background of the
FEM/BEM IDT model implemented in this work. Sec-
tion III presents numerical and experimental results re-
garding the partitioning of input power between SH-SAW
and SH-BAW modes, the distribution of SH-BAW power
within the substrate, and the comparison between calcu-
lated and measured IDT responses. Section IV is devoted
to the conclusions.

II. Theoretical Background

The structure and coordinate system considered in this
analysis are illustrated in Fig. 1. The IDT is patterned on
the surface of a piezoelectric substrate that occupies the
half-space z < 0. Surface regions outside of the IDT are
considered free of mechanical stress, though they may be
covered with an infinitesimally thin conducting layer. The
fields associated with each surface or bulk wave mode are
assumed to follow F (x, z, t) = τ (kx, z)ej(ωt−kxx), where
ω is the angular frequency, kx is the wave-vector compo-
nent parallel to the surface, and the function τ (kx, z) is
the weighted sum of complex exponentials describing how
F varies with depth. Surface waves propagate along ±x
rotated directions. No field variation is assumed in the di-
rection normal to the sagittal plane (i.e., ∂/∂y = 0), and
the phasor notation will be adopted from this point for-
ward.

A. Spectrum of Waves

Applying a sinusoidal varying electric potential to IDT
structures in piezoelectric solids generate a combination of
surface and bulk acoustic waves, usually referred to as a
“spectrum of waves” [6]–[13]. The knowledge of how the
input electrical power distributes among the acoustical

modes allows a better understanding of the IDT perfor-
mance, which leads to improved modeling, and ultimately
to the design of efficient transducers for a particular mode.

The pure SH-SAW orientation considered in this paper
is a particular symmetry case, classified as symmetry Type
4 in [14], in which the sagittal mechanical particle displace-
ment components uncouple from the electrical field and the
shear horizontal mechanical particle displacement compo-
nent, leading to two separate solutions. One solution is a
purely mechanical sagittal wave, and the other solution
is the piezoelectrically stiffened pure SH wave [15]. The
fields used in the matrix method [16] to solve the acoustic
wave problems along symmetry Type 4 orientations are
the surface normal component of stress, T4; particle ve-
locity, ν2; surface normal component of electric displace-
ment, D3; and electric potential, φ, arranged in the vector
τ = [T4 D3 ν2 jωφ]T , where the superscript “T” indi-
cates transpose. The dependency of τ with z is given by
(∂τ/∂z) = jω[A]τ , where the system matrix [A], defined
in (1), is a function of slowness, sx = kx/ω, mass density, ρ,
and rotated stiffness, piezoelectric, and permittivity con-
stants, chijk, eijk, and εik, respectively [16]:

[A]=

[
sx

[
Γ 13] [X] [g0] − s2

x

{[
Γ 11] −

(
Γ 13) [X]

[
Γ 31]}

[X] sx[X]
[
Γ 31]

]
,

(1)

where, for the particular symmetry 4 case:

[
Γ ik

]
=

[
c2i2k ek2i

ei2k −εik

]
[X ] =

[
Γ 33]−1

[go] =
[
ρ 0
0 0

]
.
(2)

B. Partial Mode Selection

At any single angular frequency, ω, it is possible to ex-
press τ as a function of kx using normal-mode expansion
of the eigenvectors and eigenvalues of j[A] [16] as in:

τ (kx, z < 0) = [P ]
[
eωγ1z 0

0 eωγ2z

]
c, (3)

where [P ] is the 4 × 2 matrix containing 2 eigenvectors
of j[A], γ1 and γ2 are the corresponding eigenvalues, and
c is the 2 × 1 normal-mode weighting vector. Although
the matrix j[A] has four eigenvectors, only those par-
tial modes that decay with depth and those that radiate
power into the lower half space [17] occupied by the sub-
strate are selected to address any propagating mode, and
consequently, to build τ (kx). For the coordinate system
adopted, eigenvalues with positive real parts correspond
to partial modes that decay with depth, herein called de-
caying partial modes. Purely imaginary eigenvalues cor-
respond instead to radiating modes, or bulk waves. The
k-vector of the ith bulk wave, ki, is given by:

ki = kxx̂ + kz ẑ = ωsxx̂ + jωγiẑ, (4)
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where γi(sx) is the ith purely imaginary eigenvalue of j[A]
and x̂ and ẑ are unit vectors in the rotated coordinate
system. The Poynting vector [18] of each bulk wave is ex-
amined to determine the direction of power flow, and the
radiating modes that carry power downward toward the
bulk of the crystal are selected.

C. Spectral Domain Green’s Functions

In this section, surface normal stress, T4, and charge,
σ, are considered the source of all waves. The dependent
variables are represented by the particle displacement, u2,
and surface potential, φ. From an electrical standpoint,
the electrodes are considered infinitesimally thin sheets of
charge located at the surface of the substrate, and the sur-
face charge density, σ is equal to the divergence of the elec-
tric displacement evaluated at z = 0. Applying Laplace’s
equation in the vacuum region above the substrate and
calculating the divergence of D3, one obtains:

σ (kx, z = 0) = ε0ω
∣∣sx

∣∣φ (kx, z = 0) − D3
(
kx, z = 0−)

.
(5)

It is now possible to write the four-component vector
τσ = [T4 σ ν2 jωφ]T at the surface in terms of the modified
eigenvector matrix, [P σ]:

τσ (kx, z = 0) = [T4 σ ν2 jωφ]T = [P σ] c (kx) , (6)

where:

[P σ] =

⎡
⎣ [P (1, :)]
−jε0

∣∣sx

∣∣ [P (4, :)] − [P (2, :)]
[P (3 : 4, :)]

⎤
⎦ , (7)

with [P (1, :)], [P (4, :)], and [P (2, :)] indicating the ma-
trices containing the 1st, the 4th, and the 2nd rows of [P ],
respectively, and [P (3 : 4, :)] the matrix containing 3rd and
4th rows of [P ], a notation adopted from the MATLABTM

Software (The Mathworks, Inc., Natick, MA 01760). Ma-
nipulating (6), it is possible to express the surface potential
and particle displacement in terms of surface stress, charge
density, and the spectral domain Green’s functions as in:

u2 =
ΓuT

ω
T4 +

Γuσ

ω
σ, (8)

φ =
ΓφT

ω
T4 +

Γφσ

ω
σ, (9)

where: [
ΓuT Γuσ

ΓφT Γφσ

]
=

[P σ(3 : 4, :)] [P σ(1 : 2, :)]−1

j
.

(10)

Expressions (8) and (9) permit the calculation of the
SH wave particle displacement and potential as a func-
tion of the distributed electrical charges and mechanical
sources located at the surface. An additional equation re-
lating particle displacement and surface stress is obtained
next with the aid of FEM techniques, such that (8) and
(9) may be combined, yielding a single equation relating
electrical potential and surface charge density, including
the effect of mass loading.

D. Finite-Element Method

In this work, FEM was applied to relate traction forces
and particle displacements at the boundary between the
isotropic metallic electrodes and the piezoelectric sub-
strate. Each electrode was divided into discrete elements
using a mesh of several linear triangle finite elements.
All simulations presented in this work were carried out
using triangular elements no wider than 1/64th of the
SH-SAW wavelength and with a height-to-width ratio
of no greater than 8. Galerkin’s method [19] was ap-
plied to obtain a system of equations relating the reac-
tion forces, f , at each node of the finite-element mesh as
f =

(
[K] − ω2[M ]

)
u = [Z]u, where the matrices [K]

and [M ] embody the elastic and mass properties of the
metallic electrodes, respectively. There is no externally ap-
plied force at every node in the electrode finite-element
mesh, except at the electrode/substrate boundary. Thus,
it is possible to express the traction forces at the elec-
trode/substrate interface, fI , in terms of the nodal dis-
placements at the interface, uI , by:

f I = [ZS ]uI , (11)

where [ZS ] is the matrix that relates all nodal interface
traction forces to the respective SH particle displacements
at the electrode/substrate interface due to mass loading.
The determination of surface stress from these traction
forces is discussed in the next section, in which the FEM
and BEM techniques are combined.

E. Combining Finite- and Boundary-Element Methods

The surface stress vector is defined by T =[
T

(1)
4 T

(2)
4 . . . T

(N)
4

]T

, where T
(n)
4 is the complex coeffi-

cient of the rectangular stress pulse on the nth boundary
element, and N is the total number of boundary elements
for the entire IDT structure. The particle displacement
within each finite element is interpolated linearly, and from
Hooke’s Law, the stress within the isotropic element is
T4 = c44 (∂u2/∂z) and is considered constant throughout
each element. Thus, it is appropriate that the stress on
the boundary elements be approximated using rectangu-
lar pulses. Likewise, the surface charge density is approx-
imated using rectangular pulses and is represented by the
charge density vector, σ =

[
σ(1) σ(2) . . . σ(N)

]T
such that

σ(n) is the charge density on the nth boundary element.
The surface displacement vector u =

[
u2(∆x) u2(2∆x)

. . . u2(N∆x)
]T comprises the particle displacements at

the centers of the boundary elements. The displacement
at each node at the interface is equal to the mean of the
displacements found at the centers of the two adjacent
boundary elements. Thus, uI is linearly interpolated from
u by uI = [C]u, where the matrix [C] performs this aver-
aging, and from (11) the nodal traction forces at the inter-
face are related to u by f I = [ZS ] [C]u. The nodal forces
at the endpoints of each element are averaged, and the re-
sult is divided by the element width and the unit aperture
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to find T
(n)
4 [10]. Performing this operation on [ZS ] results

in the matrix [ZTS ] which relates element stress to nodal
displacements:

T = [ZTS ] [C]u. (12)

Using (8), (9), and (12) one now can describe the re-
lationship between surface charge density and potential,
including the source effect of mass loading. The derivation
is presented in Appendix A. The electrical potential on the
boundary elements is represented by the potential vector
φ =

[
φ(1) φ(2) . . . φ(N)

]T
where φ(n) is the voltage on the

nth boundary element. The convolution matrix [H], de-
rived in Appendix A and given by (A24), relates surface
potential to surface charge density, including the effect of
mass loading.

The electrical admittance of the IDT for any arbitrary
arrangement of electrode potentials is calculated by ap-
plying the following electrical boundary conditions: charge
density for boundary elements located in the gaps between
the electrodes is equal to zero, σgap = 0; the potential for
boundary elements located on positive and negative elec-
trodes, φpos and φneg, are +V/2 and −V/2, respectively,
where V is the peak-to-peak applied voltage between elec-
trodes; zero net charge on the transducer,

∑N
n=1 σ(n) = 0.

The unknown quantities are potential on the gap elements,
φgap, and charge density on the electrode elements, σelec,
which are found by way of constrained least-squares min-
imization. The total IDT current, IIDT , is given by:

IIDT = jω∆xW
M∑

m=1

σ(m)
pos (13)

where σ
(m)
pos is the mth complex charge density coefficient

taken only on positive voltage electrodes; W is the IDT
aperture; and M is the total number of boundary elements
associated with positive electrodes. The electrical admit-
tance is found by Ohm’s Law, Y (ω) = IIDT /V .

F. Power Partitioning

The total power transduced by the IDT, PTOT,IDT , may
be divided into SH-SAW and SH-BAW contributions, as
PTOT,IDT = PSH−SAW + PSH−BAW . Partitioning electri-
cal input power between SH-SAW and SH-BAW waves is
performed using both numerical and analytical means as
presented in [6] and [10]. At each frequency of interest, the
Fourier transform of the surface stress and charge density
distributions are computed for discrete values of kx in or-
der to determine the normal-mode weighting vector in (3).
The fields, and thus the power spectral density of the SH-
BAW mode, (dPSH−BAW /dkx), then may be calculated
for all values of kx. Because the SH-BAW exists over a fi-
nite interval of kx, the total SH-BAW power radiated may
be computed by numerical integration.

The power converted to SH-SAW is calculated using
residue theory and is given by [6]:

PSH−SAW = −π2ωWRe
(
Gsσ (ωso)σ (ωso)

∗) ,
(14)

where Gs is a coefficient used to approximate the simple
poles in the electrostatic Green’s function Γφσ (sx) used in
(10). These poles are located at the free-surface SH-SAW
slowness, ±so, and are approximated as [6]:

Γφσ(pole) (sx) =
Gs

sx − so
+

−Gs

sx + so
. (15)

III. Numerical and Experimental Results

A. Equipment Used

The numerical simulations reported in this work were
performed using MATLABTM Release 14 (The Math-
works, Inc., Natick, MA) on a DellTM 530 Precision Work-
station (Dell Inc., Round Rock, TX) operating Windows�

XP Professional (Microsoft Inc., Redmond, WA). The sys-
tem was configured with dual Intel Pentium 4 XeonTM

(Intel Inc., Santa Clara, CA) processors operating at
2.4 GHz and 4 Gb of system memory. The impedance
measurements presented used an Agilent c© 8753ES S-
Parameter Network Analyzer (Agilent Technologies Inc.,
Palo Alto, CA) and a vibration isolated CascadeTM Mi-
crotech probe station (Cascade Microtech Inc., Beaverton,
OR) with 150 µm pitch ground-signal-ground test probes.
The IDT electrode thickness was measured using a Ten-
cor Alphastep 500 surface profilometer (KLA Tencor, San
Jose, CA).

B. Radiation Plots and Power Partitioning on Langasite

There are BAW propagation directions in certain
anisotropic crystals for which the k-vector may be ori-
ented out of the substrate surface, whereas the power is
still radiated to the bulk of the crystal. Fig. 2 shows the
slowness surface of the SH-BAW in the sagittal plane of
LGS (0◦, 22◦, 90◦). The LGS constants used throughout
this section have been taken from [20]. The bold portion
of the curve indicates orientations for which the outward
normal of the slowness curve has a −z directed component.
Eigenvectors corresponding to bulk waves radiated along
these directions must be considered in the IDT power ra-
diation analysis because they carry power away from the
surface into the bulk of the crystal.

The distribution of bulk wave power with respect to the
direction of propagation is given by [6]:

dPSH−BAW

dθk
=

dPSH−BAW

dkx

dkx

dθk
, (16)

where θk = tan−1(kz/kx) is the k-vector direction with
kx and kz as defined in (4). Fig. 3 plots the normalized
BAW power distribution, (dPSH−BAW /dθk)/PSH−BAW ,
as a function of the wave vector direction for a split-finger
IDT along LGS (0◦, 22◦, 90◦), Ne = 78 IDT electrodes
with no guard electrodes, λ = 32 µm, mark-to-space ratio
1:1, and a uniform aperture W = 50λ. The region external
to the IDT is completely metalized with an infinitesimally
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Fig. 2. SH-BAW slowness surface [s/km] in the sagittal plane of lan-
gasite, Euler angles (0◦, 22◦, 90◦).

thin conducting film. Figs. 2 and 3 are very important in
determining the crystal anisotropy, identifying the limits
of integration in the calculation of total PSH−BAW , and
identifying which BAW modes and respective slowness val-
ues that contribute to the PSH−BAW irradiated.

The crystal anisotropy that can be observed from Figs. 2
and 3 does not allow a proper visualization of the SH-
BAW power radiation with depth. The SH-BAW radiation
pattern inside the substrate [10] is given by:

dPSH−BAW

dθA
=

dPSH−BAW

dkx

dkx

dθA
, (17)

where θA = tan−1(Sz,SH−BAW /Sx,SH−BAW ) is the ra-
diation angle with respect to the surface of the sub-
strate, and Sx,SH−BAW and Sz,SH−BAW are the x-
and z-directed components of the Poynting vector of
the SH-BAW traveling with the k-vector direction θk.
Fig. 4 plots the normalized BAW power radiation pat-
tern (dPSH−BAW /dθA)/PSH−BAW with respect to radi-
ation angle for the IDT referred to in Fig. 3.

The metalized boundary condition has three major ef-
fects in the SH-BAW behavior. The first effect under the
metalized substrate condition the SH-BAW tilts into the
substrate at a higher angle, with the peak of the main lobe
going from 1.9 degrees in the case of free substrate to 6.3
degrees in the case of metalized substrate. The second ef-
fect refers to the reduction of the IDT power converted
into SH-BAW, thus increasing the IDT power converted
to SH-SAW. In fact, the BEM analysis shows that, for the
metalized substrate case described by the IDT structure of
Figs. 3 and 4, 37% of total IDT power is converted into SH-
SAW, but in the case of free substrate only 0.96% of the

Fig. 3. SH-BAW power distribution normalized to total SH-BAW
power, (dPSH−BAW /dθk)/PSH−BAW , [1/degree], with respect to
k-vector direction in LGS (0◦, 22◦, 90◦), calculated at maximum
conductance frequency, 93.121 MHz; split-finger IDT, Ne = 78,
λ = 32 µm, W = 50λ, a = 4 µm, metalized case, (PSH−BAW =
0.303 mW; PTOT,IDT = 0.481 mW).

total IDT power is converted to SH-SAW. The calculations
performed in this work along LGS (0◦, 22◦, 90◦) verified
that, for the nonmetalized substrate case, more than 99%
of the input power is delivered to the SH-BAW regardless
of frequency, transducer length, or electrode thickness and
metal type, a similar result to that obtained for PZT-4
in [6], and verified by the numerical routines developed
in this work. The third effect of the metallization outside
the IDT is an increase of the asymmetry of the SH-BAW
main lobes, an effect that results from the crystal asym-
metry that can be observed from Fig. 2.

Fig. 5 shows the percentage of IDT power converted to
SH-SAW as a function of the number of IDT electrodes,
Ne, when the LGS substrate surface outside the IDT struc-
ture is metalized. All of the simulated IDTs were split-
electrode type, with 4 µm electrode width and mark-to-
space ratio 1:1. The ratio PSH−SAW /PIDT was calculated
at the frequency at which the peak SH-SAW conductance
occurred. The four mass-loading cases considered are: Case
1, massless electrodes; Case 2, 2000 Å aluminum (Al) elec-
trodes; Case 3, 1000 Å gold (Au) electrodes; Case 4, 2000 Å
Au electrodes. The material constants for the Al and Au
electrode layers used throughout this work have been taken
from [21].

As can be noticed from Fig. 5, the effect of mass loading
due to the finite IDT electrode mass must be considered
in the IDT analysis, due to the modest SH-SAW piezo-
electric coupling effect of the LGS orientation considered
when compared to PZT-4 used in [6]. Fig. 5 shows that
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Fig. 4. SH-BAW power radiation pattern, normalized to to-
tal SH-BAW power, with respect to angle into the substrate,
(dPSH−BAW /dθA)/PSH−BAW [1/degree] in LGS (0◦, 22◦, 90◦),
calculated at maximum conductance frequency, 93.121 MHz; split-
finger IDT, Ne = 78, λ = 32 µm, W = 50λ, a = 4 µm, metalized
case, (PSH−BAW = 0.303 mW; PTOT,IDT = 0.481 mW).

for Au electrodes of thickness h/λ = 0.00625 the ratio
PSH−SAW /PTOT,IDT increased based on type of electrode
material and thickness from 35% to 38.5% for Ne = 38;
and from 44.4% to 48.8% for Ne = 78; and from 55.2% to
62.9% for Ne = 158; from 61.8% to 71.7% for Ne = 238.
These results show that the metallic electrode film mate-
rial and thickness can be used to increase the SH-SAW
transduction efficiency, thus resulting in improved perfor-
mance, less device insertion loss, and higher sensitivity in
the case of a SH-SAW sensor.

C. Measured and Calculated IDT Admittance for
the SH-SAW on Langasite

The FEM/BEM calculations and the measured devices
reported in this section refer to the LGS propagation di-
rection Euler angles (0◦, 22◦, 90◦). The SH-SAW devices
have been fabricated and tested at the University of Maine
cleanroom and acoustic microwave laboratory facilities.
The first transducer consists of a split-finger IDT fabri-
cated on LGS (0◦, 22◦, 90◦) with Ne = 80, finger width,
a = 4 µm, uniform W = 50λ, and a mark-to-space ra-
tio of 1:1. Six dummy electrodes were patterned on each
side, and the regions outside of the IDT were mechani-
cally and electrically free. The electrodes were composed
of 1820 Å of radio frequency (RF) magnetron sputtered
aluminum on top of 100 Å electron beam (e-beam) evapo-
rated chromium (Cr) adhesion layer. Fig. 6 shows both cal-
culated and measured electrical admittance responses for

Fig. 5. Portion of input power delivered to SH-SAW versus number
of electrodes, Ne, for LGS (0◦, 22◦, 90◦); calculated at maximum
SH-SAW conductance frequency; split-electrode IDT, λ = 32 µm,
W = 50λ, a = 4 µm, metalized case.

this device. During all simulations considered here, ∆x did
not exceed 2.1% of the SH-SAW wavelength, and the ratio
of finite-element width to height did not exceed 8:1. Based
on the numerical predictions discussed in the previous sec-
tion, 99.1% of the IDT input power is delivered to the
SH-BAW for this combination of IDT structure and LGS
propagation direction. As can be observed from Fig. 6,
the percent difference between the FEM/BEM simulated
magnitude of the IDT admittance and the measurement
is better than 5%.

In order to verify the FEM/BEM model when a more
significant fraction of the total IDT power is converted to
SH-SAW, devices have been fabricated in which the regions
outside the IDT have been metalized. Two IDT structures
have been fabricated and tested. The first one consists of
a split-finger IDT fabricated on LGS (0◦, 22◦, 90◦) with
Ne = 80, finger width, a = 4 µm, uniform W = 25λ, and
a mark-to-space ratio of 1:1. For this first IDT structure,
a 720 Å Al film has been RF magnetron sputter deposited
on top of a 100 Å e-beam evaporated Cr adhesion layer.
For the second IDT structure, the same IDT dimensions
have been used, but Au electrodes were sputter deposited
to a thickness of 526 Å over 100 Å e-beam evaporated
Cr adhesion layer. Figs. 7 and 8 compare calculated and
measured results for these cases. The agreement between
calculated and measured results is better in the case of
Fig. 7, in which the Al film has been sputtered all over
the device, when compared to Fig. 8, in which a heavier
Au film has been sputtered all over the device, indicating
that the thickness and material of the film outside the IDT
(not considered in the calculations) significantly affects the
IDT impedance.

The results in this section show that the FEM/BEM
model implemented predicts IDT admittance to within 5%
of measured values along LGS symmetry Type 4 orienta-
tions, including the effect of different types of IDT elec-
trode metallization and thickness.
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Fig. 6. Calculated and measured IDT admittance on LGS (0◦, 22◦,
90◦); split-finger IDT, 1820 Å Al, 100 Å Cr, Ne = 80, λ = 32 µm,
W = 50λ, a = 4 µm, nonmetalized case.

Fig. 7. Calculated and measured IDT admittance on LGS (0◦, 22◦,
90◦); split-finger IDT, 720 Å Al, 100 Å Cr, Ne = 80, λ = 32 µm,
W = 25λ, a = 4 µm, metalized case.

IV. Conclusions

The combined FEM/BEM IDT model implemented in
this work has been used to calculate the IDT impedance
considering both SH-SAW and SH-BAW piezoelectric ac-
tive modes along the SH-cut LGS, Euler angles (0◦, 22◦,
90◦), and the results have been compared to measured IDT
impedances.

The effect of finite-thickness Al or Au electrodes and
the presence (metalized case) or absence (nonmetalized
case) of an infinitesimally thin metal guiding layer out-
side the IDT region have been included in the analysis.

Fig. 8. Calculated and measured IDT admittance on LGS (0◦, 22◦,
90◦); split-finger IDT, 526 Å Au, 100 Å Cr, Ne = 80, λ = 32 µm,
W = 25λ, a = 4 µm, metalized case.

Around the device’s operating frequency, the percent dif-
ference between calculated and measured magnitudes of
the IDT impedance is better than 5%, considering the ef-
fect of mass loading by Al and Au IDT electrodes and both
the metalized and nonmetalized cases.

Calculations of the IDT input power distribution be-
tween SH-SAW and SH-BAW, and therefore the calcula-
tion of the SH-SAW transduction efficiency, as a function
of film type, thickness, and presence or absence of guiding
films have been performed. It has been numerically verified
that, for the nonmetalized case, less than 1% of IDT in-
put power is converted to the SH-SAW mode, regardless of
frequency, transducer length, and electrode thickness and
metal type. That number increases to nearly 72% when a
Ne = 238 split-electrode IDT, h/λ = 0.63% Au electrodes
surrounded by an infinitesimally thin conducting film is
used, a 9.9% improvement over aluminum electrodes of
comparable thickness. This increase of nearly 10% in SH-
SAW transduction efficiency, which can be achieved when
heavier Au electrodes are used, directly reflects in lower
device losses, improved SH-SAW based sensor sensitivity,
and increase in the signal-to-noise ratio of the sensor.

Appendix A

The surface charge density was represented by the
charge density vector σ =

[
σ(1) σ(2) . . . σ(N)

]T
, where

σ(n) is the surface charge density on the nth boundary
element, and N is the total number of boundary elements.
The actual surface charge density, σ(x) may be expressed
as a continuous function of position in terms of σ by:

σ(x) = cvect(x) · σ, (A1)
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where:

cvect(x) =[
rect

(
x − ∆x

∆x

)
rect

(
x − 2∆x

∆x

)
· · · rect

(
x − N∆x

∆x

)]T

,

(A2)

and:

rect
(

x − m∆x

∆x

)
=

⎧⎨
⎩1 ⇒ −∆x

2
≤ x − m∆x ≤ ∆x

2
0 ⇒ otherwise

.
(A3)

For any position x, located on the mth boundary ele-
ment, the mth element of cvect(x) is equal to 1, and the
remaining elements are 0. Thus, at any location on the mth

boundary element, (A1) gives σ(x) = σ(m). Similarly, the
T4 surface stress component may be expressed in terms of
T by:

T4(x) = cvect(x) · T . (A4)

The forward and inverse Fourier transforms adopted in
this work are defined, respectively, as:

f̄ (kx) =
1
2π

∞∫
−∞

f(x)ejkxxdx, (A5)

f(x) =

∞∫
−∞

f̄ (kx) e−jkxxdkx. (A6)

Applying the Fourier transform (A5) to cvect(x) gives:

cvect (kx) =
∆x

2π
sinc

(
kx

∆x

2

)
cvect(x) ·[

ejkx∆x ejkx2∆x · · · ejkxN∆x
]
. (A7)

Because T and σ are independent of position, the
Fourier transform of charge and surface stress, respec-
tively, are given by:

σ (kx, z = 0) = cvect (kx) · σ, (A8)

T 4 (kx, z = 0) = cvect (kx) · T . (A9)

where the overbar denotes that the quantity is given in the
spectral domain, as indicated by (A5).

Combining (8), (9), (A8), and (A9), one obtains expres-
sions for the particle displacement and surface potential in
terms of T and σ:

u2 (kx) =
ΓuT

ω
cvect (kx) · T +

Γuσ

ω
cvect (kx) · σ,

(A10)

φ (kx) =
ΓφT

ω
cvect (kx) · T +

Γφσ

ω
cvect (kx) · σ.

(A11)

Applying the inverse transform given by (A6) to equa-
tion (A10), one obtains an integral expression for the real-
space particle displacement:

u2(x) =

∞∫
−∞

(
ΓuT cvect (ωsx) · T

+ Γuσcvect (ωsx) · σ
)
e−jωsxxdsx. (A12)

The particle displacement at the center on the mth

boundary element is equal to the mean displacement on
the element, which is computed by applying:

u(m) =
1

∆x

∞∫
−∞

u2(x)rect
(

x − m∆x

∆x

)
dx.

(A13)

Inserting (A12) into (A13) results in an expression re-
lating the displacement vector u to T and σ:

u = [Φ]T = [Λ]σ. (A14)

Combining (9), which relates the surface stress vector
T to u, and (A14), one obtains (A15), which gives the
displacement vector u in terms of charge density, including
the effect of mass loading by the IDT electrodes:

u = {[I] − [Φ][ZTS ][C]}−1 [Λ]σ, (A15)

where:

[I] = Identity matrix, (A16)

Λnm =
∆x

2π

∞∫
−∞

Γuσ (sx) sinc2(0.5ωsx∆x)

× exp(−jωsx(n − m)∆x)dsx,
(A17)

Φnm =
∆x

2π

∞∫
−∞

ΓuT (sx) sinc2(0.5ωsx∆x)

× exp(−jωsx(n − m)∆x)dsx.
(A18)

Applying the inverse transform to (A11), one obtains
an integral expression for the real-space surface potential,
φ(x), given by:

φ(x) =

∞∫
−∞

(
ΓφT cvect (ωsx) · T

+ Γφσcvect (ωsx) · σ
)
e−jωsxxdsx. (A19)

The potential is assumed uniform across each boundary
element, and the potential on the mth boundary element
is given by:

φ(m) =
1

∆x

∞∫
−∞

φ(x)rect
(

x − m∆x

∆x

)
dx.

(A20)
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The surface potential vector is given by:

φ = [Θ]T + [Ψ]σ (A21)

where:

Θnm =
∆x

2π

∞∫
−∞

ΓφT (sx) sinc2(0.5ωsx∆x)

× exp(−jωsx(n − m)∆x)dsx,
(A22)

Ψnm =
∆x

2π

∞∫
−∞

Γφσ (sx) sinc2(0.5ωsx∆x)

× exp(−jωsx(n − m)∆x)dsx.
(A23)

Inserting (12) into (A21), and substituting (A15) for
the displacement vector, one obtains (A24), in which the
N×N convolution matrix [H] gives the potential vector φ
resulting from distributed surface charge σ, including the
source effect of mass loading:

φ = [H]σ

=
(
[Θ][ZTS ][C] {[I] − [Φ][ZTS ][C]}−1 [Λ] + [Ψ]

)
σ.

(A24)

Thus, the potential on the mth boundary element re-
sulting from the charge distribution over the entire IDT is
given by φ(m) =

∑N
n=1 Hmnσ(n).

When regions outside of the IDT are metalized by an
infinitesimally thin conducting film, the source of waves
is instead surface normal stress, T4, and tangential elec-
tric field, E1. The resulting fields [6] are then particle dis-
placement, u2, and integrated charge, defined as Q(x) =∫ x

−∞ σ(x)dx. Spectral domain Green’s functions are calcu-
lated for the metalized case, and the remaining analysis is
unchanged with respect to the non-metalized case.
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