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DECISI RES IN FORMAL 1C

H, P, Willians

Research Report 73 = 5
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The relationship-between deetsion procedures in formm@ logic and
algorithms for Linear Programming (LP) and Integer Programming (IP) are
discussed., A decision proeedure of Langford for-densely ordered sets
is described and shown to yield the Fourier-fotzkin-elimination method
for EP,~ A-decitsion procedure of Presburger for arithmetic without
multiplication is described and shown to yield an algorithm for IP
analogous to the Fourier-iiotzkin method for [P, Both algorithas are
applied to a2 small numerical example.



INTRODUCTI Ol

It is not widely known by Mathematicel FProgramumersz that
algorithms for Livear {LI') arnd Integer {JIF)} Programming arise
in the fieid of Formal Lovic. Cne of the wajor discoveries

in medern logic Y as beern 72t some matbhewatical (hecriea are
undecidable. py this it ig meant ttat there does not exist

an algoritim (ov deciding the truth or falsity of an arbitrary
preposition in such a theorv. One such undecidable theory is
the arithmetic of the natural numbers, including operations for
both addition and multiplication. Godel ( 7 )} has shown that
this theory is sufficiently "big" that it is impossible to have
a general finite computational procedure for deciding whether
apny statement is itrue or false. A much moere vigoerousm and full

explanation of such result= can be ohtained from texthbeooks in

dogic msuch as Mendelson ( 11 ).

Giver that mome mathematical theories are wrdecidable it is of
interest to try to find "smaller™ theories end see if tley are
decidable. Twn such theories are considered in this paper.

the first is Ve Theory of Densely (Ordered Sets, Tris theory
consists of tt e apparatus of formel Jogic known as the predicate
calculue togetter with +the relation " g ", and a dernsely ordered
met such ax the ratiosnal puchers, A proof of the decidability
of this theorv has been givan by Langford ( 10 ). Tris proof
is constructive and censist= of exhibitine & decision procedure
for ascertaininy the truth or falsit§ of mropositions made irn the
theory. The decigion procedure can very easily be adapted to
an algorithm foer solwving Linear Programming problems. this

algorithm turns out to be the Fourder - motzkin elimination method.
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A dagceription of the Fourier - Motvhkin methoed is pyiven ip

Dantziz ( 4 ). The second theorvy rovsidersad in thies prrer

is the aritbwetic of the natural punbers with wmultiplication

excluded, Tidse theorv has been shown to be decidable bv
Fresbhurgor { 1% ). Acain the proof involves exhibiting a

decisgion procedure for ascertaipning the truth or falsity of
propositions made in the theorwy, ‘this decision rrocedure

can be adapied to ar alycritbhm for sclving Integer Programming
rroblems. Az far sz the author is aware this does not
correspord to anv existing algerithm {or integer pregramming.
It car, however, be revarded as ar externs=ion of the Fourier =
Motzkin method to deal with integer variables, In fact the
two, decision procedures {Langford's and Preshurger'ﬂ) can
easilv Le conbined to give a gereral Mixed Integer Linear
Provramning algorithm. The extension of the Fourier - motzkin
method to deal with integer rrosramming problems has been
attempted before by Bradley ( 2 ) and, for the knapsack
problems, hv Cabot ( 3 }. Neither of these two extensions is,

however, *he same as that givep here,

The purpose of this paner is not to propote eitler of theése

algovrithms aes wethode faor solving real 1ife models. It is
rather to increase the awareress of mathematical vprogrammers

to fgome results in logic, Hopefully it will olsc lead to =&
greater understanding of the relationship of integer programming

te linear nprogramming and wby the former iz so much more difficult,

A small numerical exawnle is solved first as a lincar yprogramming
problem (Langford's procedure) and then as ar integer programming

problen (Freshurger's procedure),
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LOGICAL FUEMALTISATION GF_if AND IF ¥<OULEMS

ALl LF and 1F mnrobhlews car be setated in the form @

(1} Maximise ~
s = .
or minimice o= L G *y
) =

subject to the folloving consiraints
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It 18 convenient 1o treat 'Pe objective function by means of

the equality constraint:

o
R, L C,xy o~ 2 =0

y
5

The objective is then tc neximise or mirimis=se EE

The mrohblem can then be formally stated as

(2) Find the maximum {or minimum) &  such that

3)‘-\ j?&, - 4 Xw3£[Ru . Qi’Rx' o :)\V‘f‘»*’h}

A decision procedure involves a method of eliminating the
quantifiers "ti“ together with their as=sociated variables
XJ! + ) 1 only the guantifiers Nﬂ x3 and the associated

are eliminated the result is a proposition of thre form @

X

3!
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ipvolve at most the varieble .

It is sirgigh*forverd to find tte maximum (minipum) value

of 7 which makes the pronosition in brackets true. It vo
vaplue of 7 tiakes it troe the origiral problem (1) was
infeasihble, 17 values of 7 exist making it true but there

is 1o maxwiwum {minitmnw! {be problem (1) was unbounded,

If the XE variables are integer the elimination proces=z ia

!

different thap if they are continucus.

CONTINUOUS LINEAR PROGRAMMING (LP PROBLEMS)

Suppose tre variables ‘x;,'?; anpearing in the predicates

of (2) are teken from a densmelv ordered =2t with reitber a
first nor last element (such a set might be the rationral
numbers or the real numbers), Relations " ¢ " and " = " canp
be defived hetween elements of tte =2et together with axioms
for combirning such relaticns with the logical connectives,
Thie theory bas been shown to be decidable by Largford { 10 ),

A description of kia decision vrocedure is giver bv vendelson

(11) (pp. 4% - 95),

For the purrnose of (P it 12 more convenient to work with the
reiation " < LI The dJdecision rrocedure car e;silv be adapted
to involve onlv the arithmetic relations " £ " and » = ".

To aprly the procedure to ILP the arithmetic operationa of

addition and auvbtraction will also be added to the svstem.

The variables and constapts will be taken from the set of
rational numbers, It is also convenient to allow multiplication
and division by rational constants, This is rot necessarwy

- b o



but makess computation envioxr, The u=me of the symbol U 2 "
car be avoided bv multiniving by ~1 and making the

inequalities " o~ " i,e,

S~
.
. )
2 ; o -
atf_....._., {1‘)>“1 ”'\}l ’f{\,}
iz the sanme as
N
=Ty ' L . .
:‘.I.in._.. ("n- o ’\5 } 7(\ J\ + A - e L_/
a =l

Problem (3) camn then be ateted in the form:!

(4) Find the maximum {(minimun) 4 such that

e .

. :Sﬂiﬂx? Lo 5:}Km;j% LSO-SR=51”“SWn%n}

where :B_L are all equalities ( = ) or

less - thap - or - equal irequalities { < )

For simplicity in the rest of this section the quantifiers
in the above expressicn will be ignored and the variables

eliminated from the expressior in brackets.

Lengford's decigion procedure amovnts to performing the -

fellowing steps for each variable in turnp

Step 1. Choovse the next variable Xg&ddc% has noct been
eliminated.

Step 2. Consider those (indequalities xS; in which X
has a ron=zeroe coefficient.

Step 3. Divide through the (inecualities) by the absolute
value of the coefficient of Xii (This is not
strictlv necesmarv but is computationally more

convenient),



Step 4. 'ortition the finlegualitiss inte 3 croups (R},
(L) and (6G). Group {(E) cousists of the egualities,
cvour (L) of tlhe inequalities in which Xj bas

coefficient +1 and croup {G) of the inequalities in

which Xj has ceefficient -1,

Typical {in)equalities from each group are:

(¥) s 5¢\$ -+ .S = 4D
‘L) X, + kb =0
() - X, *+ W =0

s, t and u represant exvnressions involving thre

variables which bPave not been eliminated {(apart from

Xj) togethter with constarts,
Step 5. The following three possibilities must be distinguished.
) (a) Trere exists at least one equalitv irn (E).

(k) A1l (in)eonualities are of the form (L) or all

are cf tte form (G).
{c}) There do not exist anv equalities ir (E) and pot

alil the ineqgualities are of the same form. .

In case {(a) one of tte egualitiex is used to "suhstitute" for
X3j in the other (injequalities, rthis mubstitution can be
effected by adding or subtracting the equality from the other
(inJequalities to eliminate Xj.

In cagse (b) all (in)equalities in whrich Xj occurs are ignored.
In case (c) each inequalitv in (L) iz added to each inequality
in {G) to eliminate Xj i.e¢. all possible nairs of inequalities,

one from (L) and cre from (G) are combined,

- 6 -



Step 6. when 211 the voriables A3 Vave heen elinireted biv
tte above =teps only the variahle ¢ remaine.
The problew is pow in tle form 3

{%) ¥ipd the waximusn (minimumr) ¢t such tlat

-—/ . . P
where the 7| invelve at mest the variable t

Three cnses aurt be distirguished
(s} Some ’r; are of the form
E = 0 where Qz is repgative
tb) No “T. invelve 2 with a positive cosfficient
and case ta) doems not apply.

{c) Trere exist 'Tq involving & with a positive

coefficient.
If case {a)} occurs the origirnal problem (1, was infeasible
if came (b)) occcurs the original problem \1) was unbounded

1f case (¢} cccurs tle original problem (1) has a solution.

The maximum value of tle objective function is given by the

maximum value of ¢ satisfying (5). Values of the variahles
X} givineg rise to this mavimmm value of £ can be obtained

by "backtracking” in the following wav: Trace those original
(in)equalities \gﬂ'hx (4) which resulted in tre strictest of

03 - 3 ’/ > . x 3 -
the (inleaualities "\ irvolving % i.e. ilat wrich determined
the maximum £ Theses original (in)egualities carn be all
treated as equatione and then solved to give an onptimal solution

to the problem.

The above procedure was used by Fouriev |( 6 ) for solving LT

vroblems., 1t was also considered hv Motzkin ( 12 ),



Dantzie { 4 ) deecribe= the nmetbtod s rthe Fourier « Motrki:
method. A deteailed description of ite applicatior G'f the
method is wiven by Duffin ( 5 ). Computational refinevents
carr be mwade bv smelecting 1he variahles Xj to be eliminrnted

in an orcdsr w'iclk minimises tle numher of {(ipnlequalities
resulting from Ztage 5. fohler (4 ) has yreatly improved
the computeticoral afficiency of the method by excluding
cbviously redundant inequalities during the ccurse of solution.
In effect Ve explaoits the result that only vertex solutiors
need be considered. The possibility of applyving the method
to the dual prroblem hax been considered by Abadie ( 1 1},

In spite of these variations and refitnements the method is not
computationally e¢fficient for rractical problems. THis is

beceauze of the large build up in inequalities which can occur at

Step 5. Kohler gives sonme computational results eon this.
Nevertteless the method i= of interest. Duffin uses it to
rrove dualitv. For small problems =0lved bv band calculation

the method is essier and aquicker thon the sim=lex algorithm,

INTEGER PROGHAMMING (IP) [ POBLEMS.

Suprnose {(le variables Xj, anpearing in the predicates gzb

of (2 ) are taken from tle set ¢f natural] numbers, The relation
" = " oand tlre function " 4+ " are used. In fact the theory
amounts to arithmetic without multiplication. Presburger ( 13 )
vives a decision procedure for thie theory. He »nchieves this

by using tre relations " o " apd " = (Nhod(i) " where ﬁ is a
pogsitive interer. " = " can be defined using these relations.

A full descripticon of the method is giver by Vilbert and

Bernavs { 8 ).



No extra Aifficulty is involved in {te procedure by allowsag
pegative intecers and sublrection. Also 3t is copvenient (o
deal with tle relatione © < " and " = " instead of " £ " since

most mathewetical pragramming rroblens are conventionally stated

in this forwm, Tt ia now raosible to state the origiral {(intecer)
problem (1) in the form {4 where the (in)ecualities “b'i are

all either ecqualities or "less ~ than - or - egual tol

inequalities,

The steps cf Preshurger's decision nprocedure apvlied to 1F
problems will Dbe gone througk in an analo-ous fashion to those
for Langford'=, Hefore doire this, bowever, a subwsection will

be devoted to bhighlivhting the Adifference in tthe two procedures,

Elimipating integer variahles hetween inequalities

Many of the ateps of Presburger's procedure are the msame as those

for lLangford's. A major complication arimes, however, in stens
3 and 4, It is no lonver posgsible, in general, to divide

throughk {inlequalities bv the absolute value of the coefficient

of x3. For examrle congider the inequalities
2 - [ <
‘ i ) /2__. b S - ) ‘\j wd A4
4+ 7 . U
(ii) -3x kY \

It is not permissable tn convert (i) &(ii) to the inequalities (iii
and (iv).

. ER - 5 <
(iii) ) Y = =

i ‘ ")‘4’ \ -
(iv) — 7L ny /,‘a) i "’fg) % O

mince mon integral expressions might then arise,

Jr order to eliminate tle irteger variable X betweern (i) and
(ii) it dis counvenient to multiply (i) bv 3 and (ii) bv 2, to give

*

the inequalities {v) and {(vi)}.



(v) wr ‘?‘i B ’
(vi) I A S SO
e

Taken togetirer these two inequalities can be expressed as

(vii) Lou - 2.0 % ox oo T e
.

If x is taken from a denselv ordered set of pumbers (such as
tle rationals) no difficulty arises in eliminating x. The
expression (vii) is equiv-lent to the expression (viii)

(viii) Ly — 2. s

This clearly gives (ix)

(i) — 5y < 17
-~

Obvicously this inequality can be obtained mwore easily by

adding (iii) and (iv) together as in the Fourier - Motzkin method.

For the case considered here, however, x is an integer variable.
The import of (vii) is not simplv that a rational number lies
betweer. the left-tand-sicde and right-hand-sride expressions.

lt is that a wmultivrle of 6 lies between the two expressions.

We wish to be ahble to sav :

-

(x)

.
»
A' oo - - ! 3 .
-
. < ~ ! — )
¥ ! - -
L i
* i i > .
4 L s
¢ § o o -
v ( MM - . vl f .
-’ » -
.
etc.

If upper and lower (such as O) bounds are known for A then
(x) only involves a finite number of nossibilities and the
elimination of X would be straivhtforward. If no such bounds
are known then (x) would present an infinite Jisjunction of

inequalities.

- 10 -



boi - e ®) i : : asible
By introducing the relation o (med 2) it is possible

to express {x) in a finite manper as {%3)

{xi)

In {(x) and (xi) W is the conpective " or

+ i®= the connective ™ anpd M

The above statement can he written rather moie cownactly but

is easier to understand if written in the aliove form.

This use of the relation " ;?(mod(;) " is the crux of
Fresburger's yrocedure 3 it allows a finite computational
procedure to be aprlied 1o any integer prograwmming problem
(even if there zre an infirite rnumber of intener

points in the feasible region).

Cnce the relation " = (mod &‘! * has hLeer introduced into =a
problem by sliminating a varishle it wav be necessary to take
sccount of jt in eliminatin.: subsequent variables. The general
procedure {for eliwminating a variable Xj from a problem must
therefore suprose that the variakble is involied in =uch
corgruence relations as well as in (injequalityv relations.

The general metbod of eliminating é variable hetween all the

possible *inds of relations ig giver in tle next sub-section.

A detailed descrintion of tbe procedure is als=so giver in Hilbert
atd Bernavs { 8 ) but using onlv the relations " & " and

-
" = (mod fg } ",



Presburger's p ocedure opriied to IP pioblems

The original problem will be expressed in terms of the

. T - < N .
{in)equalities 50 , \5, v eeseee Sdaaana of (4) where Xj
and 2 will e consideresd as integer variables. The steps
of the procedure will be given aralorouslv to those for

Langford's procedure but will ke labellcd 11, 21 etc.

Step 11 thoose the mext variable Xj which has not been
eliminated,

Step 21 Consider those (in)equalities and congruences in
which XJj bhas a non-zero coefficient,

Step 3! oOmit

Step 41 Fartition the (in)equalities and corgrusnces into

‘ 4 groups (E), (L), (G) and (M), Group (E) consists

of the equalities, groun (L) of the inequalities in
which Aj has a positive coefficient, sroup (G) of the
inequalities in which Aj has a negative coefficient

and aroup (M) of the congruences.

Typical (in)equalities and congruences from each

sroup are

(£) Tpex, £ s =
(L) Po Xy + & fO
(G) - Pa XJ “+ L = Q
(M) x Py, Xy XV =0 (__w\c-c\. C{)

8y t, u aAand v represent exrressionsg involving the
variables which have not been eliminuted (apart from
Xxj) togetter with constants., Py. Pa, P3 and P4 are

vositive integers.

Step 51 The following three possibilities must be distinguished.



st

There eviasts ot teast one cqualitv ir (B}

<]

—~~

(bl A1l (inleouaiiitics are of the icrm (L) or all are
aof thte form (G} anad tlrere sre ro equalities. Az &
stnecial casme of this tiere wmay be ho inequaliiies
or equalities teplyv cunrruences)

(¢) There do mot exist any equalitiee in (E) and not

13 the inequalities rfre of the ssme form.

In case (a) one of the egualitins is used o substitute for Xi
in thre other (inlenqualities and the congruences. To do thia

it may be pecessary to mulitiply (irjegualities and congruences
by integer cuantities in order to give Xj the same coefficient

in each e.g, supprose the following equelity (i) dis being uzed to

substitute in the inequality (ii) and the congruence (iii)

) box, + 5 -0
(i1) by, + & =0

(i1 Py X5 + v =z QO (’\’v\(rf& (Q)

and py be {' SR LR O f"}

(i) 2nd (ii) becone

2 O Xy v Q5 =0
andc
tid)? Xy .t f0

Eliminating xj between (i) and (ii) gives (iv)

i

(iv) =9 S+ Qa t o0
v Bt
Let the LCM of py and B4 be Li= (= D0 o oy ]

vi) and (iii) become

1t . o
(i) b Xy + Qas = O

-



and

(1139 by, w9 v 20 (med &)
wliminating Xj between it ana (iiid!? cives (v)

e . Y -+ A/ o (o ( A L s ( \
{(v) s{ v S qi,‘{' T G RS 1? Q)

In case (b) all (indequalities in which XJ orccurs are removed.
1f Xj ocecurs in any congruszpce it st be eliminated between
each pair. sunrose A} vccurs ir the following pair of

congruences

(vi PQ Xy otV SN (ﬂhg$nQL)
ivii) PS X& 4w = C (Vnu& Q )

Let tte least common multinle { or anv multiple) of P4 and Ps

he a (= CL(«PH = CLS VS )

(vi) and (vii) then bhecome (viii) and (ix)}

(viii) oy xJ -+ OLQ vV 34 (wm\ - Q{)
( ix) o X ) -+ C;L s w/ooT o) ( \f‘n.(n{l\ Cz/ 5 E)

Eliminating Xj betvween these cungruences gives (x)
(x) C{‘t VvV - C( S\l\! = ) LY\'LO (x LX)

where 3 iz tte greantest commen divisor (GCD) of q(‘ﬁ. and

ﬁts C,

Frequently < will t rn out to be 1 stowing the congruence (x)

is vacuous and may be ivnocred,

Should Xj oni: occur ir orne congrusnce (vi) X; is eliminated

from it to c¢ive the congruence (xi)
(Xi) \/ = O (VV\M\ (5\
where -3 is tha GCD of %)3 omd GP

In case (c) it is necenmsarvy to take each triplet of an inequalitv

frem (L), an irequality from (G) and an concruence from (M) in

- 148 -



turn and slim ornata X3 bhetaoen them, A bwpical trinlet

is giver el

[ -
T . s 0
! A oy T
(a)
3 i A
i
It mav harwnen that there are noe congruences, In this case

- . a . v - s 03 ~
the climiantion i3 simplified, { ~ rcan thep be taken as 1.)
Such special cases are considered after deriving the general

elimination,

Let the LCMM of p, be P S o -y

Denote > U s Gy L s

and a .
b
"

If xj ig elimirvated from the above triplet of inequalities

and congruences (B) is obtained,

-‘Y\}w‘ -t h,._.,,.; i . Y"-Li -

(B)

(to save brackeis the connective " + " g regarded as more

binding trat the connective " V " 4ip the asbove expressiors),



Special cases
(i) No congruence involves Xji ((M) is empty). Irn this case

it is possible to regard E as 1, ¥y = 1 and V (= Vl) as O in (A).

P becomes the LCM of P,, P, and Qi] = F

(B) simplifies to (C)

LL\‘* L; £ O WL 0 (mcd P3)

Vo ou 44 49592 L 0 0 unod }’3)
(c) Vot 2294700 MU LEO0 (mod P)

v u¢+tﬁ«§a~ywifﬁn¢wkyg~% T57§'*”3??£
(C) can be written in anothker form (D) whrich will involve

a smaller disjunction if Pz o \)1

)

W+t c0. L s o (et o

\ N e D a0 Y 4
Voo SO ‘
AV VSRS 1’%‘(?1“%1?3~«»f7, R :v;,\:i‘” PR

(i1) In case (i) if [ (C) can be further simplified to (E)

L]
-

3
(E) baw <0

(iii) In case (i) if P2 = 1 (D) can be further simplified to (F)
(F) w o+ b N

(iv) Cases (ii) and (iii) cowbine if P_, = P_ = 1 to give (G)

(G) T < ¢

i.e., the two inenualitiesn

X. + t s 0
J
and - xj + u SN

are simplv added tcgether as in Langford's procedure (the

Fourier - motzkin method).

- 16 -



It is werth pointing out that for a uninmodular matrix the

congruerce relation vt {mod R ) " will pever enter the
calculations and tte coefficients b ard P, will alwavs be 1,
s Yy )

Fence all eliminations of a variable will 'e identical ip the

LF and 1P casesn,

Step 6 Wher all the voriables X3j bave heern eliminuated by

the atbove steps only the variable % remains,

the problem will now te in a form involving simple

fin)enualities and congruences containing at the

»

most the variable % These simple (injenualities

ard copgruences will be conrected by the connectives

" " and ™o+, It will be possible to state

thhis form of the nroblem in a number of wavs.
For =simplicity it will be stated in dis junctive

form as

(5) Find the maximum {minimum) such thrat
T . T 4 "r N ® nn." Fo s s . ¥ LI
(Tio Ty ip1) ¥ T Toy Cop2d VeV T Tag - Topa!

Three cases wust he distinguished.



{a) Ne 2 car La fouvd to ~ati=fy opv ot the above

coravrpet ions, -
{4} Sgwe £ gav be found satizafving some of the aliove

copjunctions and fhere is no vexiweum (mir e}
suct 7.

(¢) A finite owaxios  {mipimam) & can be found =atistying
some Gf the cop junc Lions.

I1f cose 1a) cccurs the ariginal rroilen wos ipfeacible

I cpse (1) cocurs the orizinal probles was unbounded

if care {c) occurs tte orizsival problem bas a xolntion.

.

The maxiaus {mininme! velue of {1Ye chiective fonclinn is

. . A
civer bv tha waviwne {wirimo) integer FAETX: isfving (7)

To ol tain itre values of a3 which give prise 1o this maxivmnn
(miniirum) value a "backtractirg” procedure can again be emplover,
Thies 18 not as straisrtforvard as in tte LI case g 'nce »hinding"
inequalities will not necessarily becoms equations, the easiest
procedure consists of evamining t!'ose (in)equalities and
cengruences prior to the elimination of the last Xj variable
which combined to give rise to the final (in)equality determining
the maximum (minimum) value of £ . Trese (in)equalities and
‘congruences will determine the value of the last Aj eliminated.

Froceeding in this nmanner the values of ithe Aj can be determined

in the reverse order to vhich trev were esliminated.

lhe numerical examwple given later shonld clarify the method.

- 18 -



5. A NUEBEHLTAT BXAMPLE

S = £l - o g B i PO

The following problem will he considered first as a coptivuovs

LP problew prd then a= an I rrobtlem,.

Minimize 2 = X * ) R

sub ject to X, -f K{\X.l AR o, 2 l::,

(d !)

e 7\5 i X “ -~ L--”

Since no extra difficultyvy is involved in solvipru the problem

for gereral rigtt-band-sides this will be doie,.

11 is convenient to gsubstiiuvte tor A, and consider the
2

, . . . , 1 >
problem in the following form with all constraints ' < b
rMinimiiwe €
- .
subiect to ~»5X2 - & < *---b., 71
— X, * ¥, = \:1 na
‘ ‘\
(" ¥
‘ X, 4+ Xy ~ 2¢O R
— % W R4
— X4 LN RS
5.1 The countivuocus LP problem
Eldminating 'Xl the fellovwing incqualities are mproduced
- . 3
'"A:"'\—l st E = - ““;J (\\
" » x, - 2% L G2, R7
\,_ > - . Q3 Q¢
. - -~ = {0 XD {\ (y
Y v o{ (AREN



Elimidins

(after

ting X,

o

dividing

thre {07

thyrous

!

Sodny dreouglitles wre produced

the ineaualities Rt by 3 arnd RZ, R3 by

oo T e R1, R2, K3
0 - . i : k1, R3, RY4
e ) z .
Lo i R?, R3, RS
) ' - ) ’ .
g : BT, KA, RS
These irequalities can he rewritter as
e T B e 21, R2, R3
S E A R1, K7, RA
<1,(5)
7 - ‘
= E R2, 3, -
a4 4 R3, R4, RS
To wive a sgspecific 13chlier the values of tzl&nﬂ v o, will be

trken a

This

R1, R?,

Since
to tlre
and R?2,

as

R2, 13

inequalities

givpﬂ

the

enuations

!
s L,

i e

R3.

mianima

B% in |

as

inegquality

valae

mipymoem

A )

to s ive
aArjeaes fron B2

equations

7

-

i

of

theae

value

=z obtained from

of = A (')/

, B2, 0% e (), ) wbtich gives rise
2 arises frow inequalities R1

latter dnequalities car he solved

- ie€,

A, = 3
3
2 /s
avd R3 an (1 ). Solving these

cives X1 = 3/5

)

-



Finally =sinne 2 = % " X o+ X

] 2 3
X = 0
3
5.2 The 1} frohblem
Eliminating Xl between R2 and R? gives
%
] - s - LS
L—de - .

L%
in

The Resultant problem after eliminating xl iz then

— 4N, TS T R1
P o R2, R3
Xy = % 2 R3, R

¥ R5

The elimination of X1 clearly involves special cases and

is no different from Fourier - Motzkin elimination.

Eliminating X, hetween R1 and R2, R3 gives

— T - . 0 (mod 2)
‘\f" — _") -2 <o o L L = 1 (mod 2)

Eliminating X, between R1 and R3, R4 gives

o]

- 4 =

-

Eliminating X, between R2, N3 and'RS gives

Eliminating A, between R3, R4 and RS pgivea



The inernualities and conpruences in the wwarlem car prw ke
written as | )
™
AY
70 4o f
. . . W yen @ Loy )
. . . j
Lor Ly - . . !.
L e | | ,/
Taking the specific values for L”v and . af ~ = R
!
and b, = O the above expressior gives (after eliminating
Lo
obvious redundancies)
ALY L s e T T Voo ‘ ) s
N S N~ g
The minimum value of 7. =atisfying this exnression is 2.

This arises from the exrression obtained after eliminating

X, bhetween R1 and R2, R3 in ( /< )
These inequalities give
- 3X, < -1
and 2&2 . 2
i.ﬂ. X,) = 1
' Considering R?, and R3 of 2 rives
- X o -1
1
X . !
1 i
i-(.?. x -
i i

The ovtimal integer soluticen

X1 = x;‘ - 1
giving 2 = 2
- 22 -

.

is theérefore



6. COMENTS ON THE ALCORITHMS

The computational difficnlties in solving an integer
rrogramming rrotlem bv the phove alvorithm will clearly
depend verv vritically or the sive of coefficients in
the problem. l'er large cosfficierts the number of
ineaqualities znd conurvences generaterd in (B) of Section
be2 conld be enrormous, it 1s conceivahble, however,
that the method rould prove practical for restricted

classes of il problem.

The algorithm can he used as a method of generating all
sointinnﬁ to an IF problemw, It cap ~lso be used to

obtain the =clution in terms of the ohjective or right-
hand-side coefficients in an analogrus fashion to tle

way the Fonricr - Motzkir method does this for LP rroblems,
Kehler describes how this mav te done bv Fourier -~ Motzkin

eliwination.
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»

-

-

»

Te losici nes Lle iprterest in bo!h &1 ceritbms lies in theidr

Demonstraiion of rthe Jdecidtability of the reoewmeotive or cal

theories. Po denongtrate ducidatiliirey it is ovly necessary
to stow the Tinittencss ot ti e procedure, Sieh treoretical
finiteress Ciwves no indiostioar of e ameoomt of compntation

"

which mav resalt iy praciice.,

It is werth poting, Yowevey, tiat many I¥F al oritbns Jdo not
themeelves devorstrots Cfoecictability, Threv somctimes demand

that sach integer variakble be viver firite viper ond lower

bounds, 1Tte lattice of intever moints then obviously

becones firite, The lativee of ?ntvrer points Rati%fﬂih?

the consbtraints of the rumerical exnople (.Aw ) ir Section 6

is infirite, sary TV aisovithus woald be incarable of solvinu

this croblom univses exivae corastraintes were added,

Firally Ll'e P al orithsy described lere mieht sugrest

nossitle broncthing stratesv that coulr he exnloiter o solve

Ty vrobl ewx, In generasl tlep a variohle 9= elliuinated a
digiunctiovn of statenents ja o tained, wach statenent iv

ttie disgjonction could form a possibhie Lrarcbin: directior.
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