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AN ALTERNATIVE FORM FOR THE VALUE FUNCTION OF AN INTEGER PROGRAMME

H.P. Williams

University of Southampton, U.K.

Abstract

The valﬁe function of an Integer Programme is the optimal
objective value expressed as a function of the right-hand-side
coefficients. A method of expressing the value function is described
which involves non-negative "correction terms" applied to the
right-hand-side coefficients, which must satisfy a series of linear
congruences and are restricted to a finite set of values.

A method of devising such a form of the value function is
given, based on the successive elimination of integer variables. The
method uses results from Elementary Number Theory such as the Generalised
Chinese Remainder Theorem.

Although the method solves an Integer Programme as a function
of the right-hand-side it could be specialised to specific

right-hand-sides giving a new integer programming algorithm.

Key words: Integer Programming, Linear Congruences, Chinese Remainder

Theorem, Duality, Sensitivity Analyses.



1. INTRODUCTION

We consider the Pure Integer Programming Model in the form

Minimise c X
Subject to: Ax 2z b (1.1)
Xx 2 0 and integer
We assume throughout that all coefficlents are integral unless stated

otherwise. The value function G(b) is the optimal value of the

objective as a function of the right-hand-side b .
It has been shown by Blair and Jeroslow {1] that there is a
function F(b) such that
(1) (1.1) is.feasible so long as F(b) s 0
(11) F and G are constructed from b by a finite number of
applications of the operations of taking non-negative linear

combinations of the bl , integer round-up, and maximum.

1.1 An Example

The value function of

Minimise 18x. -~ 3x
1 2
Subject to: 4x1 +tx, bl, (1.2)
9x - 2x.Zz2 Db
1 2 2

xl,x2 2 0 and integer

is

M 1 r My 11 A r 11
1 3 2 2 1
, 3 > + 17 (2b1+b2) (1.3)

NI W

22 2 9

where [ 1  represents the integer round-up operation. (1.2) is

feasible for all b1’ b2 hence in this case F(b) 1is vacuous.



It is straightforward to show that the "maximum" operations can
all be moved to the “"top level” as in (1.3.)

Functions of the form 1.3 are known as Gomory functions since
the fact that value functions take this form follows from applying
Gomory’s cutting planes algorithm (Gomory [3]). The expressions
resulting from excluding the maximum operation are known as Chvatal [2]
functions.

For a specific value of b one of the Chvatal functions within
the maximum expression will provide the optimal value of the integer
programme. This expression may also provide the optimal value within
some neighbourhood of b . We will ca;l this expression the perturbation
function corresponding to the solution.

For example if b1 = 25, b2 =20 (1.3) becomes
Max{30, 45,54} = 54.

M r 1"

The Chvatal function 3 23+ g %7(2b1+b2) also represents the

optimal value of (1.2) if, for b1 fixed at 25, b2 is altered in the
range -o to 63 or for b2 fixed at 20 b1 is altered in the range 18
to ® . Hence there is interest in studying value and perturbation
functions from the point of view of sensitivity analysis in integer
programming.

It is instructive to compare the value and function for an
integer programme with the well known form it takes in linear programming

derived from the dual.

1.2 The Value Function of a Linear Programme.

For a linear programme expressed in the form of the relaxation
(dropping the integrality stipulation) of (1.1) the value function G(b)

and feasibility function F(b) take the same form as that for the



integer case if the [ 1 operation is dropped. For example the value

function of
Minimise 18x1 - 3x2

Subject to: 4x1 tx = b1 (1.4)

9x1 - 2x2 3 b2

XX, 2 0
is
3b
9 30
Max{ —2-—, sz, ﬁ bl + 1—7 b2} (1.5)

The coefficients of b1 and b2 in each of the three expressions in
brackets arise from the vertices of the dual to 1.4. Should a
feasibility condition F(b) = 0 arise (which is not the case in this
example) then the corresponding coefficients of the b1 ‘arise from the

extreme rays of the dual polytope. The dual values (coefficients of

bz) in the expression corresponding to the optimum do, of course, give

shadow prices much used in sensitivity analysis so long as they apply

over a neighbourhood.

The value function of an integer programme provides the only
really satisfactory corresponding dual. Wolsey [6] surveys a number of
different structures it might take as well as proving the corresponding
duality results.

Blair and Jeroslow refer to the expressions obtained from
Gomory and Chvatal functions by dropping the “r1” operation as the
carriers of the corresponding functions. They show that the carrier of
the value function of an integer programme provides the value function of
its linear programming.relaxation as is instanced by examples (1.3) and

{1.5) above.



1.3 Alternative Forms for the Value Function of an Integer Programme

The Gomory function form of a value function is not a
particularly convenient one for sensitivity analyslis. One difficulty is
that it may be impossible to collect all the instances of a particular
coefficient bl in a Chvatal function together. Hence the effect of a
change in the value of bl may be obscured. It is also difficult to
establish a satisfactory "canonical form". 1In addition it is often
difficult to demonstrate the identity of two Gomory functions other than
by complete enumeration over a finite number of values of the bl. The
depth of nesting of the r” operation can be an exponential function
of the size of the coefficlents.

It is also difficult, systematically, to construct the value
function in this form.

We suggest an alternative form for the value function and, in

Section 3, give a procedure for obtaining this form.

The general form for model (1.1) is

k J

G(b) = Min M?x{ ) H”bj + );‘, c:c“(hk }
where
k

h €S = {0,1,...,n} forall keK (1.6)

and

)’j Aubj + Ej p&hk =20 (mod me) for all ¢

3 k

L(b) = Max { La,b, + Luh }

where the hk are those giving rise to G(b) above. naj eand o  are



non-negative rational coefficients and Atj'B&fllj and “ik are
non-negative integer coefficlients. Sk are finite sets of values for the

new integer varliables hk.

This apparently complicated form for the value function 1s best
demonstrated by an example. The hk can be regérded as "correction

terms" for the expressions under each [ 1 operation. These

correction terms enable us to remove the I 1 operation so long as

necessary congruence relations are introduced.

1
For example the term 23 becomes 23 +

b2 + hl = 0 (mod 2) and h1 e {0,1} .

o

so long as

N'.’J‘
-

Introducing correction terms hk for each of the expressions
under round up operations in (1.3) we obtain (after simplification) the

value function in the form

3 3 1 1
M%: Max { 3P, *tzh .20, +2h 4+ 2 hs’
9 30 9 3
7ottt h4 3 hs }
where h1 € {0,1}, h2 e {0,1,...,8} , h3 € {0,1}
h4 e {0,1,...,17} , h5 e {0,1} (1.7)
and b2 + h1 = 0 (mod 2)
b +h =0 (mod 9)
2 2
4b + h_ + 3h_ = 0 (mod 6)
2 2 3
2b1 + b2 + h4 = 0 {(mod 17)

+

6b + 20b, + 3h + 17h =0 (mod 34).
Note that if the congruences are ignored we can set each hk to O
giving the value function of the linear programming relaxation. For the

integer case, however, the hk are restricted to a finite set of values



(dependent on the b:) , within the lattice defined by the congruences.

For the numerical case of b1 = 25 and b2 = 20 it is easy to
see that h =0, h =7 h = i, h; = 15 and h_ = 1, giving the optimal
objective value of 54.

There are a number of alternative standard forms in which the
congruences could be expressed. This ls discussed in Section 2.2.

In Sections 3.1 and 3.2 we glve a systematic procedure for
constructing the value function of an integer programme in the form
above. This 1s illustrated by a numerical example in Section 4. It 1is
necessary, at varlous stages, to use a result from Elementary Number
Theory known as the Generalised Chinese Remainder Theorem. Since this

result is not widely described we do so in the next section.

2. THE GENERALIZED CHINESE REMAINDER THEOREM (GCRT)

Theorem: Given two congruences

x = £ (mod mll

(2.1)
and x = g (mod mzl

there exist multipliers Al and hz such that (2.1) is equivalent to

x=Af +Ag (modlml.mzl)

(2.2)
and 0= f - g (mod(ml,mz))

where [ml,mzl is the & c.m. of m and m, and (mi.mz) is the

g.c.d. of m and m_.
1 2

If (mi,mz) = 1 then the second congruence of (2.2) is vacuous
and we obtalin the more familiar Chinese Remainder Theorem demonstrating

that congruences to coprime modull may be aggregated into one congruence.



[m .m2] [mi.m ]
Proof: Since — and ———— are coprime, by the Euclidean

m
1 2

Algorithm, we can find H and M, such that

(m_,m_] (m,,m_]
1° 72 1’72
g, —= + p ——= = 1
1 m 2 m,
(m m_] (m ,m_]
_ 12 _ 1’2
We take Ax = n m ) Az = “z mz

Multiplying the two congruences in (2.1) by A1 and Az respectively

gives

Ax & Af (mod p [m ,m_1)
1 1 11’2 (2.3)

>

N
x
]

Azg (mod pzﬁml,mzl)

Adding gives

X = hlf + Azg (mod[m1,m2])

since Al + Az =1 and [mi,mzl is a common factor of the two modulil in

(2.3).

Subtracting the two congruences in (2.1) gives the second congruence in

(2.2) since (mi,mz) is a common factor of both.
Therefore (2.1) = (2.2)

In order to show that (2.2) =» (2.1) we can write the first congruence

of (2.2) as
x=f - Az(f-g) (mod[m1,m2])

since A1 + A =1



Since f-g 1is a multiple

Az(f—g) is a multiple of

Therefore x 2 f (mod

of

[ml.mzl m

m "2 (m .m25

1
2 1

(ml.mz) by the second congruence of (2.2)

1

m).

1

By a similar argument x = g (mod mz] demonstrating that

(2.2) = (2.1). o

If desired, non-negative values of Al and A

2

by replacing them by non-negative residues modulus [mlmzl

The GCRT is of use in eliminating a variable x

more than one congruence (2.1) from all but one congruence

2.1 An Example of Applying the GCRT

Suppose x = f (mod 12)
x = g (mod 30)
- _ {12,30] _ [12,30] _
f12,30] = 60, (12,30) = 6, = S, 55 = 2.

Since 1x5 - 2x2 =1 we take Al

congruences

X

0]

If desired we could replace the coefficients of f and g by

can be found

occurring in

as in (2.2).

(2.4)

= 5, Az = -4 giving the equivalent

5g - 4g (mod 60)

f -

g (mod 6)

non-negative (modular equivalent) coefficients to give

(2.5)



x = 5f + 56g (mod 60)

(2.6)
x= £+ 5g (mod 6)

Note that after applying to GCRT the second modulus will divide into the
first. Applying the GCRT theorem repeatedly to pairs in a set of
congruences we achleve the form in which such modulus divides the
previous one. This is, of course, the number theoretic equivalent of the
result that any finite-abelian group can be expressed as the direct sum

of cyclic groups. It is illustrated in Section 2.2.

2.2 Reexpressing Linear Congruences in Alternative Forms

The GCRT can also be used to reexpress a set of linear
congruences in a form where the modulus of each congruence divides that
of the last. This may be done by successlively considering each pair of
congruences. It may be illustrated by taking the congruences given with

the example in Section 1.3. These are

b2 + h1 = 0(mod 2) (2.7)

b2 + h2 = O(mod 9) (2.8)

4b2 + h2 + 3h3 = 0(mod 6) (2.9)

2b1 + b2 + h4 = O(mod 17) (2.10)

6b + 20b + 3h + 17h = O(mod 34) (2.11)
1 2 4 5

Combining (2.8) and (2.11) by the GCRT gives
108b1 + 190b2 + 136h2 + 207h4 + 153h5 = O(mod 306) (2.12)

Combining (2.9) and (2.10) gives

10



36b1 + 52b2 + 85h2 + Slh3 + 18h‘\! O(mod 102) (2.13)

These two congruences together with (2.7) gives this alterative
representation.

Another possible form is to reduce each congruence to a series
of congruences whose modull are primes or powers of primes. This gives

(after eliminating redundant congruences).

b.+h = O(mod 2)
h. + h. =2 O(mod 2)
h +h = 0(mod 2)
b_.+h = O0(mod 9)

2b1 + b2 +h = 0(mod 17)

3. THE ELIMINATION OF AN INTEGER VARIABLE BETWEEN LINEAR INEQUALITIES

AND CONGRUENCES

In order to construct the value function we successively
eliminate each variable between the inequalities of the integer program.
The result may be to create linear congruences as well as inequalities
involving the remaining variables. Subsequent eliminations may have to
take into account these congruences. Therefore the general elimination
step, considered here, will assume the integer variable to be eliminated
also occurs in a congruence. By means of the GCRT described in the last
section we can aggregate all congruences involving the variable into one
congruence. The variable will be absent from the other congruences
created.

Therefore there is no loss of generality in assuming the

variable to occur in, at most, one congruence.

11



It is also convenient to convert the congruence into a form
where the coefficient of the variable to be eliminated divides the

modulus of the congruence. This may always be done, for suppose

v = w(mod m) (3.1)

where v 1s a positive integer. By the Euclidean Algorithm we can find

g and 7 such that

MV + qm = (v,m)

Representing vx by y we have

y 2 w(mod m)

(3.2)
y = 0(mod v)
By the GCRT we have
v mv
y = p o w[mod TVTET)
(3.3)

0 = w(mod (v,m))
Hence from the first of the above congruences
(v,m)vx = puvw(mod mv)

Dividing through by v gives (together with the second congruence from

(3.3))
(v,m)x = pw(mod m)

(3.4)
0 = w(mod (v,m))

Clearly (v,m) divides m. Therefore there is no loss of generality in

assuming that in congruences of the form (3.1) v divides m .

12



3.1 The General Elimination Step

We will always express the inequalities in the "2" form.
Therefore, if x 1is the integer variable to be eliminated, we will
assume, in generél. that it occurs‘(with non-zero coefficient) in
relations of the following three types. (non-negativity conditions are

included if applicable).

(G) px 2 s
(L) I t (3.5)

(C) px = u(mod kp3J

pl,pz.pa,k are positive coefficients. s,t,u are expressions involving
the other variables and right-hand-side coefficients. Following the
discussion above we are assuming (C) has at most one member and that the
modulus in a multiple of P,

In eliminating x we must produce a system of inequalities and
congruences in the remaining variables with the same solution set as that
implied by.the original system. Geometrically we are projecting our
system down into a lower dimension.

There are two cases to consider, the first of which is
comparatively trivial. We deliberately leave out detailed proofs of the
equivalence of the systems before and after elimination. These are easy
to construct but cause a diversion from the main procedural explanation.
References are given in Section 6 from which such proofs could be

obtained.

Case (i) (G) or (L) (or both) empty.

The above relations reduce to
0 = u(mod pa)

If (C) is also empty the above relations reduce to nothing.

13



Case (i1) (G) and (L) both non-empty
Every palr of inequalities, one from (G) and one from (L) must
be considered together with the congruence from (C) if it exists. We
take the relations in (3.5) as typical instances. They can be rewritten
as |
P,py 8 % PPPX = -pp,t

P,p,px = PIPZU(mod kp1p2p3) (3.6)

Representing P,P_P X by y we have
p,p,s =y = -pp.t

y = pp,ulmod kp p_p.) (3.7)

y = O0(mod plpzpa)
The congruences can be rewritten, by the GCRT, as

y = plpzu(mod kplpzpa)

(3.8)
0 = u(mod pa)
Taking P,pu from both sides of the inequalitlies in (3.7) we have
pzpss - plpau < Multiple of kp1p2p3 = -pipat - plpzu
(3.9)

0 = u(mod p3)

The import of the inequalities in (3.9) is that a multiple of kplpzp3
lies between the outer two expressions. Therefore there exists a
"correction term" h’ , which can be subtracted from the right-hand-side

expression, to give the required multiple.

i.e
Pp,S -~ Ppu = - ppt-ppu-h
(3.10)
- plpat = p,pu - h’ = 0{mod kplpapa)
Moreover h’ «can be restricted to the values {0,1,..., kplpzp3 - 1}

14



Since all other terms in the congruence of (3.10) are multiples of P,

we may replacé h’ by plh with h suitably restricted.

Reexpressing (3.10) and including the second congruence of

(3.9) gives

0 = ps(pzs + pit) + plh
0 = p,t + pu + h(mod kpzpa)
0  u (mod p3)

h e {0,1,..., kpzp3 - 1)

(3.11)

as the full system resulting from the elimination of x between a set of

relations (3.5). Should (C) be empty in (3.5) then some simplification

is possible and the system reduces to

o = pzs + pit + plh
0 = t + h(mod pz)

h € {o,1,..., pz—l)

(3.12)

It should be reemphasised that the elimination of x must be

carried out between all pairs of inequalities from (G) and (L) together

with any congruence from (C). The resulting system (3.11) will therefore

contain a number of inequalities together with a congruence and

correction term corresponding to each member of (L)

3.2 Constructing the Value Function

We express our model (1.1) in the form

Minimise X, s. t. Xy~ ) c,X, 2 0
J
¥ a x, z b iel
]
xj 2 0 JelJ
X X, 0 X integer

15

(3.13)



vThe variables xl,xz. etc can then be eliminated in any order
using the procedure of Section (3.1). At each elimination the resultant
inequalities (3.11) arise from non-negative integral combinations of the
inequalities in (3.13) together with non-negative correction terms
(taking a finite number of possible values). The resultant congruences
also arise from non-negative combinations of the expressions in (3.13)
together with non-negative correction terms.

Hence the resultant system, after combining and transforming

congruences containing X takes the form

Py,X, % S, i e I1 (3.14)
0 = t1 ie I2 (3.15)
px, = u (mod kpa) i€ I3 (3.16)
0 = vi(mod pia) i e 14 (3.17)

where P,,'PP,, and k are positive integers and sl,tl,u and vy
are non-negative linear combinations of the original right-hand-sides and
the h..
k
In order to obtain the value function in the desired form we
carry out the following steps

(1) Replace a suitable multiple of x0 by y so as to express

(3.14) and (3.16) in the form

y = sl' 1 e I1 (3.18)
y = u (mod p’) ie 13 (3.19)
(i1) By adding a correction term hl we express (3.18) as
y-u =s’-u +'hl el (3.20)
where hi € {1,2,..., p’ -1}L.

16



Since the left-hand-side of (3.20) is a multiple of p’ we have

0 = sl’ -u o+ hl(mod p’) ie I1 (3.21)

These new congruences (3.21), together with those in (3.17), combined

with the inequalities (3.20) give the relations for X, in the following

form
X5 = L nlj J +L %k 1€ 11
3 Kk
where hk € Sk = {0,1....,nh} for all k € k
0 =1 ¥4° . ulkhk 1e Iz
3 Kk
0 = § lebj + E B!khk(mod ml) ie 13

The expression (1.6) for the value function follows. A numerical example

demonstrates the full procedure.

4. AN EXAMPLE
We construct the value function for the numerical example given
in Section 1.1 using the methods described in Sections 3.1 and 3.2.

The model is expressed in the form

Minimise x0

such that
X, - 18x1 + 3x2 2 0 (4.1)
4x1 + X, £ b1 (4.2)
9x1 - 2x2 2 b2 (4.3)
X, z 0 (4.4)
X, 2 0 (4.5)
xo, xl, x2 integer

17



The constraints involving X, can be expressed as

9(b1 - xz)
4(b2 - 2x2) < 36x1 s 2(xo + 3x2)
0]

Introducing a correction term 2h1 subtracted from the right-hand

expression of (4.6) allows us to eliminate X, by giving

9(b1 - xz)
4(b2 + 2x2) s 36x1 s 2(xo + 3x2) - Zh1
0
0 = x0 + 3x2 - hl(mod 18)
where h1 € {0,1,...,.17)}.

This reduces the original system to

2x_ + 15x_ = 9b_ + 2h
0 2 1 1

X - X 22b + h
0 2 2 1

X + 3x 2 h
(o] 2 1

x =z 0
2
X, + 3x2 = h1 (mod 18)
where h1 e {0,1,...,17}.

In order to eliminate X, this system can be expressed as

9b1 - 2xO + 2h1
5(-x0 + hl) = 15x2 = 15(-2b2 + Xy ~ hi)
0

3x_. = x_ + h (mod 18)
2 o 1
Representing 15x2 by y (4.15) can be written

5(-xo + hl)(mod 18)

<
1]

O0(mod 15)

<
1]

18

(4.6)

(4.7)

(4.8)

(4.9)
(4.10)
(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



which can be rewritten using the GCRT as

The inequalities (4.14)

9b -2x +2h - 35(-x_ + h)
1 () 1 () 1
5(- xo + hi) - 35(—xo + hl)

- 35(-x_ + h)

' (V) 1

= 35(—xo + hi)(mod 90)

X, * h1 (mod 3)

can now be written as

Multiple 15(-2b, + x - h )
s of s -35(-x+ h))
o 1

90

(4.18)

(4.19)

A correction term 5h2 is subtracted from the right-hand

expression in (4.20). The system can now be reduced, after some

simplification, to

17x 2 9b + 30b_ + 17h + 5h
() 1 2 1 2

4x zZ 6b_+ 4h + h
() 2 1 2

3x Z26b_ + 3h + h
() 2 1 2

10x = 6b_ + 10h. + h_(mod 18)
() 2 1 2

X, = hl(mod 3)

where h1’h2 e {0,1,...,17)}.

The congruences can be rearranged into the form

o
m

6b_+ h_+ h_(mod 9)
2 1 2

hz(mod 2)

If 204x0 1s represented by y we have

<
v

<
7

<
1]

12(9b, + 30b_ + 17h_ + 5h_)
1 2 1 2

51(6b_ + 4h + h)
2 1 2

68(6b + 3h + h)
2 1 2

204(6b, + hi + h,)(mod 1836)

O(mod 204)

19

(4.
(4.
(4.
(4.

(4.

(4.

(4.

(4.
(4.

(4.

(4.

(4.

(4.20)

21)
22)
23)
24)

25)

26)

27)

28)
29)

30)

31)

32)



Congruence (4.32) is redundant.

The inequalities can now be written as

12(9b1+30b2+17h1+5h2) - 204(6b2+h1+h2)
y - 204(6b2+h1+h2) z 51(6b2+4h1+h2) - 204(6b2+h1+h2) (4.33)
68(6b_+3h_+h_) - 204(6b_+h+h )
271 2 2 1 2

Since the left-hand-side is a multiple of 1836 we can add correction
terms of 12h3, 51h4, and 68h5 respectively to the three right-hand
expressions. After some simplification, and including congruence (4.27),

this gives the value function as

. 9 30 5 1
:lnMaX{ﬁbl+ﬁb2+ﬁh2"'1—h3,
Kk
3 1 1
7P, *gh*g h, >
1 1
2b, +3h, *+3h }
(4.34)
where hz.e {0,1,...,17} , h3 e {0,1,...,152} ,
h4 € {0,1,...,35} , h5 e {0,1,...,26}

and 9b + 81b_ + 141h_ + h_ = O(mod 153)
1 2 2 3

1]

33h + h O(mod 36)
2 4

1Sb_ + 25h_ + h
2 2

0(mod 27)

5
h2 = O(mod 2) .

Alternatively the congruences in (4.34) can be expressed in the

following form, with moduli dividing previous moduli.

756b1 + 276b2 + 1423h2 + 1104h3 + 663h4 + 1768h5 = O(mod 1836)

9h2 + 10h3 + 8h4 = 0(mod 18) (4.35)

3b +5h +7h +h + 8h = 0(mod 9)
2 2 3 4 5
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or expressing to prime and powers of prime moduli giving (after

eliminating redundant congruences)

h2 =2 0(mod 2)

h +h = O0(mod 4)
2 4

6h + h = O(mod 9)
2 3 -

6h +h = O(mod 9)
2 4

9, + 13b_+ Sh_+ h O0(mod 17)
1 2 2 3

15b_ + 25h + h. =& O(mod 27)
2 2 s ,

For the frial values b1 = 25, bz = 20 the optimal solution to

(4.34) is given when hz =6, h = 63, h‘ = 18 and h5

3 9 . This gives

the optimal objective value of 54.

Although this form of the value function is the same as that

given for the example in Section 1.3 there is no obvious canonical form

in which both can be expressed to demonstrate their identity.

5. FURTHER CONSIDERATIONS

The method used to construct the form of the value function of
an Integer Programme described here is a development of a method
described in Williams [S]. In that paper a disjunction of linear
programmes is created. Since each linear programme in the disjunction
has the samé structure it seems clearer to represent the parameters in
each clause of the disjunction as integer variables (hk). The result
is, of course, to create another integer programme. This integer
programme (1) restricts each of the integer variables hk to a finite
number of values and (}i) gives them all non-negative coefficlients.

While the method will not be computationally tractible, in

general, it could be applied in more speclalist forms e.g. fixing the bi
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at specific values or restricting the method to specialist models. 1In
such cases streamlining may be possible leading to, computationally
feasible integer programming algorithms. The major aim of this paper is,
however, to demonstrate the structure of the value function and dual of
an integer programme in a more transparent form.

It should be pointed out that the original method described

derives from that of Presburger [4] for Additive Arithmetic.
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