
Brigham Young University Law School
BYU Law Digital Commons

Faculty Scholarship

2017

Software's Copyright Anticommons
Clark D. Asay
BYU Law, asayc@law.byu.edu

Follow this and additional works at: https://digitalcommons.law.byu.edu/faculty_scholarship

Part of the Intellectual Property Law Commons

This Article is brought to you for free and open access by BYU Law Digital Commons. It has been accepted for inclusion in Faculty Scholarship by an
authorized administrator of BYU Law Digital Commons. For more information, please contact hunterlawlibrary@byu.edu.

Recommended Citation
Clark D. Asay, ��������’� ��������� �����������, 66 Eᴍᴏʀʏ L.J. 265 (2017).

https://digitalcommons.law.byu.edu?utm_source=digitalcommons.law.byu.edu%2Ffaculty_scholarship%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.byu.edu/faculty_scholarship?utm_source=digitalcommons.law.byu.edu%2Ffaculty_scholarship%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.byu.edu/faculty_scholarship?utm_source=digitalcommons.law.byu.edu%2Ffaculty_scholarship%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=digitalcommons.law.byu.edu%2Ffaculty_scholarship%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hunterlawlibrary@byu.edu

SOFTWARE'S COPYRIGHT ANTICOMMONS

Clark D. Asay*

Scholars have long assessed "anticommons" problems in creative and
innovative environments. An anticommons develops when an asset has
numerous rights holders, each of which has a right to prevent use of the asset,
but none of which has a right to use the asset without authorization from the
other rights holders. Hence, when any one of those rights holders uses its
rights in ways that inhibit use of the common asset, an anticommons may
result.

In the software world, scholars have long argued that anticommons
problems arise, if at all, because of patent rights. Copyright, on the other
hand, has not been viewed as a significant source of anticommons problems.
But this Article argues that copyright is an increasingly significant cause of
anticommons concerns in the software context for at least two related reasons.
First, the increasingly collaborative nature of much modern software
innovation means that any given software resource is subject to dozens,
hundreds, or even thousands of distinct copyright interests, each of which can
ultimately hamper use of the software resource. While collaborative innovation
licensing models help reduce the threat of any given copyright holder
restricting use of the software resource, these licensing models do not
altogether eliminate such risks and, in fact, actually create risks of holdup and
underuse that have previously received less attention than they are due.
Second, interoperability needs in the growing "Internet of Things" and
"cloud" economies demand sharing and reuse of software for these
ecosystems to work. Yet because these technological ecosystems implicate
thousands of different parties with distinct copyright interests in their software,
the threat of any one of those parties ultimately using its rights in ways that
inhibit the successful development and use of the Internet of Things and cloud
economies looms large. In order to illustrate some of these anticommons

* Clark D. Asay. Associate Professor of Law, Brigham Young University Law School. Many thanks to
Stephanie Bair, Julie Cohen, David Fagundes, Janet Freilich, Robert Gomulkiewicz, Patrick Goold, Paul
Heald, Dmitry Karshtedt, Jake Linford, Jonathan Masur, Matthew Sag, Zahr Said, Andres Sawicki, Lisa Grow
Sun, and participants at the 2016 Works-in-Progress in Intellectual Property Colloquium at the University of
Washington, the 2016 Junior Scholars in Intellectual Property Workshop at Michigan State University, and a
paper workshop at BYU Law, for helpful feedback on earlier versions of this Article.

EMORY LAW JOURNAL

problems in practice, this Article examines a recent high-profile software
copyright dispute between Oracle and Google.

As a possible solution to these types of problems, this Article assesses the
merits of more explicitly adapting copyright's fair use defense to the
collaborative and interconnected nature of modern software innovation. The
Article concludes by arguing that copyright disputes in other fields of
creativity characterized by collaborative, interconnected development may
also merit such fair use adaptations. Otherwise, anticommons problems may
increasingly affect those fields as well.

INTRODUCTION

In 2012, Cindy Lee Garcia sued Google Inc. for copyright infringement.'
Her lawsuit was meant to force the company to remove from YouTube an anti-
Islamic film that included a five-second performance by her.2 Garcia claimed a
copyright interest in the performance and that YouTube, therefore, had no right
to host it without her permission.3 For $500, Garcia had agreed to the
performance with the understanding that it would be used in a film called
Desert Warrior.4 But when her performance was distorted and used in an anti-
Islamic film, Innocence ofMuslims, the consequences were severe.5 When the
film appeared on YouTube and elsewhere, Garcia received death threats.6

Some even suggested the attack on the U.S. embassy in Benghazi, Libya, was
in response to the film.7

After the district court held against Garcia, the Ninth Circuit Court of
Appeals initially ruled in her favor, holding that Garcia had likely met her
burden of demonstrating a copyright interest in her performance.' This was so
because, among other reasons, her performance included some amount of
creativity, even if it was only five seconds long and based on a script provided

1 Stefan Mentzer & Priya Srinivasan, The Garcia v. Google Controversy and What It Means for Content
Owners and Users, LEXOLOGY (Mar. 20, 2014), http://www.lexology.com/library/detail.aspx?g=3b6ffl40-
49al-4a85-9f90-b27d5987937a.

2 id.
3 id.

4 Garciav. Google, Inc., 766 F.3d 929, 932 (9th Cir. 2014).
5 Id.
6 id.

Scott Shane, Clearing the Record About Benghazi, N.Y. TIMES (Oct. 17, 2012), http://www.nytimes.
com/2012/10/18/us/politics/questions-and-answers-on-the-benghazi-attack.html (highlighting that Susan Rice,
then U.S. ambassador to the United Nations, suggested that the film helped cause the attacks).

8 Garcia, 766 F.3d at 935-38, 940.

[Vol. 66:265266

SOFTWARE'S COPYRIGHT ANTICOMMONS

to her.9 According to the court, that creativity may include her "body language,
facial expression and reactions to other actors and elements of a scene."'o But
in early 2015, a full panel of the Ninth Circuit reversed this earlier decision,
observing that "[t]reating every acting performance as an independent work
[subject to copyright] would not only be a logistical and financial nightmare, it
would turn [a] cast of thousands into a new mantra: copyright of thousands.""

Now fast forward to June 29, 2015. On that day, the U.S. Supreme Court
denied Google's petition for writ of certiorari requesting review of the Court of
Appeals for the Federal Circuit's decision in Oracle v. Google.12 As a result,
the Federal Circuit decision, which upheld copyright protection for certain
parts of Oracle's Java software technologies, was left intact.'3 In particular,
Google's use of thirty-seven of Oracle's Java "application programming
interfaces" (APIs) in its Android operating system may constitute copyright
infringement because, according to the decision, creation of the APIs required
some creativity. '4 And this was so despite the fact that the APIs were,
quantitatively, only a very small part of Android; Google engineers wrote
nearly all ten million lines of the software code for Android. " Although the
district court found on remand that Google's use of the APIs constituted fair
use, the Federal Circuit's decision regarding the copyrightability of the APIs
remained otherwise undisturbed.16

While these two cases have many obvious differences, they highlight a
similar potential copyright problem: what the Ninth Circuit in Garcia called
"copyright of thousands." More traditionally, this type of problem is referred to
as an "anticommons" problem, which is shorthand for underuse of a resource
because numerous parties have rights in the resource, and the presence of these

Id. at 935.
10 Id at 934.

1 Garciav. Google, Inc., 786 F.3d 733, 742-43 (9th Cir. 2015).
12 Lawrence Hurley & Dan Levine, U.S. Top Court Declines to Hear Google Appeal in Oracle Java

Fight, REUTERS (June 29, 2015, 11:49 AM), http://www.reuters.com/article/usa-court-google-idlNKCNOP910
S20150629.

13 Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1381 (Fed. Cir. 2014).

14 Id at 1347, 1356.
15 Id at 1351 ("It is undisputed, however, that Google wrote its own implementing code, except with

respect to: (1) the rangeCheck function, which consisted of nine lines of code; and (2) eight decompiled
security files."); Timothy B. Lee, Microsoft's Android Shakedown, FORBES (July 7, 2011, 8:00 AM),
http://www.foibes.com/sites/timothylee/2011/07/07/microsofts-android-shakedown/ (indicating that Android
includes nearly ten million lines of software code).

16 Mike Masnick, Big Win for Fair Use: Jury Says Google 's Use of Java APIs Was Fair Use... On to
the Appeal, TECHDIRT (May 26, 2016, 2:01 PM), https://www.techdirt.com/articles/20160526/13584834558/
big-win-fair-use-jury-says-googles-use-java-apis-was-fair-use-to-appeal. shtml.

2017] 267

EMORY LAW JOURNAL

multiple rights inhibits others from using that resource in socially beneficial
ways." Scholars often argue that anticommons result when any one of these
rights holders asserts its rights to prevent others from using the common
resource.'s But while rights assertions may be one common cause of
anticommons problems, this Article takes the position that anticommons can
also result when rights remain unasserted, or even, in some cases, when they
are licensed. In other words, a multiplicity of rights in a resource can still result
in underuse of that resource, even without formal bargaining breakdowns. This
Article focuses on potential anticommons problems in the software context and
argues that at least two significant and growing trends in modem software
innovation are leading to rising anticommons concerns.

First, because increasingly more software products are collaboratively built
by a variety of parties,19 any given software product may be subject to
hundreds, and sometimes even thousands, of copyright interests.20 And each of
these copyright holders may assert or use its rights in ways that make using the
collaboratively built resource more difficult. 21 This difficulty may thus result in
significant underuse of the software resource. The Oracle v. Google case,
where Oracle successfully created copyright infringement concerns about
Android on the basis of a copyright claim pertaining to a very small piece of
the overall Android system, provides one recent example of this type of holdup
problem. But even when the general intent of all parties involved in producing
some software good is one of openness, the presence of numerous copyrights

17 Michael A. Heller, The Tragedy of the Anticommons. Property in the Transition from Marx to

Markets, 11I HARV. L. REV. 621, 673-79 (1998); Michael A. Heller & Rebecca S. Eisenberg, Can Patents
Deter Innovation? TheAnticommons in Biomedical Research, 280 SCI. 698, 698 (1998).

18 Heller & Eisenberg, supra note 17.
19 Carliss Baldwin & Eric von Hippel, Modeling a Paradigm Shift: From Producer Innovation to User

and Open Collaborative Innovation, 22 ORG. SC. 1399, 1401 (2011) (arguing that collaborative models of
open innovation are increasingly displacing "producer" models of innovation, in software and elsewhere);
Charles C. Snow et al., Organizing Continuous Product Development and Commercialization. The
Collaborative Community of Firms Model, 28 J. PRODUCT INNOVATION MGMT. 3, 8 (2011) (noting that the
study of collaborative models of innovation has focused primarily on open source software communities, while
arguing that these innovation models are increasingly applicable elsewhere as well).

20 See, e.g., Torvalds/Linux, GITHUB, https://github.com/torvalds/linux (last visited Sept. 20, 2016)
(listing the number of contributors to Linux, the popular operating system, as the symbol for infinity).

21 See AXEL BRUNS, BLOGS, WIKPEDIA, SECOND LIFE, AND BEYOND: FROM PRODUCTION TO PRODUSAGE

(2008) (arguing that the presence of expansive copyright rights in a variety of source materials can lead to
"copyright thickets" that make use of such materials by follow-on creators more difficult, thereby resulting in
an anticommons). But see Dan L. Burk, The "Creating Around" Paradox, 128 HARV. L. REV. F. 118 (2015)
(noting the possibility of "copyright thickets" while doubting their actual existence).

[Vol. 66:2652689

SOFTWARE'S COPYRIGHT ANTICOMMONS

increases costs for those wishing to use the collaboratively built good.22 And
these costs may slow use of the resource in ways that inhibit software
innovation.23

Other scholars have assessed potential anticommons problems in the
software context.24 But they typically attribute any such problems to excessive
patent rights, not excessive copyright rights.25 Indeed, previous scholarship has
often argued that copyright law has built-in safeguards against anticommons
problems.26 Furthermore, previous scholars have typically argued that
collaborative innovation licensing models reduce, rather than produce,
anticommons problems.27 In fact, the primary issue scholars have assessed in
the software copyright context is the proper boundary between copyrightable
and non-copyrightable elements of software, a question that was very much at
issue in the Oracle v. Google case.28

22 See Clark D. Asay, A Case for the Public Domain, 74 OHIO ST. L.J. 753, 753 (2013) (arguing that open
innovation movements' reliance on copyright to promote their movements leads to unintended anticommons
problems).

23 See Heller, supra note 17, at 625.
24 See, e.g., F. Scott Kieff, IP Transactions. On the Theory & Practice of Commercializing Innovation,

42 Hous. L. REv. 727, 740-42 (2005) (questioning the logic of the anticommons narrative as applied to
software and other industries); Ronald J. Mann, Do Patents Facilitate Financing in the Software Industry?, 83
TEx. L. REv. 961, 999-1009 (2005) (arguing that patent rights do not lead to an anticommons in the software
industry); Mark Schankerman & Michael Noel, Strategic Patenting and Software Innovation, 61 J. INDUS.
ECON. 481, 514 (2013) (discussing the role of patent thickets in deterring innovation in the software industry);
James Bessen & Eric Maskin, Sequential Innovation, Patents, and Imitation 2 (M.I.T. Dep't of Econ.,
Working Paper No. 00-01, 2000) (arguing that strong and varied patent rights in the software industry hinder
sequential and complementary innovation); James Bessen, Patent Thickets. Strategic Patenting of Complex
Technologies (Bos. Univ. Sch. of Law, Working Paper, 2003), http://ssrn.com/abstmct=327760 (arguing that
patent thickets discourage innovation).

25 See, e.g., supra note 24.
26 See David Fagundes & Jonathan S. Masur, Costly Intellectual Property, 65 VAND. L. REV. 677, 718

(2012) (indicating that "for the most part, microworks do not present a significant risk of welfare-diminishing
holdouts. This is because the numerous limitations on owners' exclusive rights and opportunities for users to
work around those rights"); Michael A. Heller, The Boundaries ofPrivate Property, 108 YALE L.J. 1163, 1175
n.61 (1999) (arguing that copyright is less prone to cause anticommons concerns because of copyright law's
fair use doctrine).

27 See, e.g., Chase A. Marshall, A Comparative Analysis. Current Solutions to the Anticommons Threat,
12 J. HIGH TECH. L. 487, 503-04 (2012) (describing the open source software licensing model as a potential
cure to anticommons problems in the software industry); Mike Loukides, Avoiding the Tragedy of the
Anticommons, ORELLY RADAR (Oct. 23, 2014), http://mdar.oreilly.com/2014/10/avoiding-the-tragedy-of-the-
anticonunons.html (arguing that the sciences can avoid an anticommons by adopting a model of innovation
similar to the open source software licensing movement).

28 See, e.g., Anthony L. Clapes, Patrick Lynch & Mark R. Steinberg, Silicon Epics and Binary Bards.
Determining the Proper Scope of Copyright Protection for Computer Programs, 34 UCLA L. REV. 1493, 1501
(1987) (assessing the proper scope of copyright as applied to software); Peter S. Menell, An Analysis of the
Scope of Copyright Protection for Application Programs, 41 STAN. L. REv. 1045, 1050 (1989) (arguing that

2017] 269

EMORY LAW JOURNAL

This Article argues that one reason such line-drawing questions are
important is because a line that yields more copyrights will result in greater
anticommons problems in today's collaborative software world.29 In contrast to
previous scholarship, this Article thus argues that the collaborative nature of
modem software innovation may result in significant anticommons concerns
because that collaboration increases the number of copyrights in any given
software product. And decisions such as Oracle v. Google, which may expand
the reach of software copyright, will likely exacerbate these types of
anticommons problems.

A second, related trend that is likely to lead to growing anticommons
concerns in the software world is the interconnected nature of much modem
software innovation. Indeed, in today's world, a growing need exists for
software products to interoperate with each other, particularly as more and
more software moves into the "cloud" in order to facilitate the "Internet of
Things" economy. For instance, the growing Internet of Things requires that
more and more software products be hosted on the computers of companies
(i.e., in the cloud), rather than on those of users, to provide Internet access to
those services on a variety of interconnected products. Yet in order for these
heterogeneous products and services to successfully interoperate with each
other in exchanging information, they must also typically exchange software
interfaces. And in order for those exchanges to occur, parties must be willing
to make these software interfaces available for use by third parties. While in
many cases parties have incentives to do exactly that, in other cases they may
not. Indeed, Google incorporated the Java APIs into Android based in part on a
desire to facilitate interoperability in an interconnected world.30 And it did so
with the acquiescence of the Java APIs' owner at the time, Sun

the copyright idea/expression merger doctrine should allow unlicensed use of standardized interfaces and
diffusion of scientific ideas); A. Samuel Oddi, An Uneasier Case for Copyright than for Patent Protection of
Computer Programs, 72 NEB. L. REV. 351, 358 (1993) (arguing that patents are more appropriate for software
protection than is copyright); Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of
Computer Programs, 94 COLUM. L. REV. 2308, 2312-13 (1994) [hereinafter Manifesto] (proposing a sui
generis regime for software because of its unique characteristics).

29 Cf Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books, Photocopies, and
Computer Programs, 84 HARV. L. REV. 281, 346-47 (1970) (arguing that extension of copyright protection to
all computer programs may result in significant "transaction cost" problems because many computer users
copy small portions of programs for reuse and modification, and needing to obtain permission for such uses in
each case may become prohibitively expensive).

30 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 978 (N.D. Cal. 2012), aff'd in part, rev'd in
part, 750 F.3d 1339 (Fed. Cir. 2014).

[Vol. 66:265270

SOFTWARE'S COPYRIGHT ANTICOMMONS

Microsystems.31 It was only later that the subsequent owner of the APIs,
Oracle, objected to Google's use of the APIs.32

Hence, anticommons concerns increase in the interconnected world in part
because interoperability needs mean any given device or service will seek to
incorporate software from other parties in order to facilitate that
interoperability. These interconnected products and services, therefore, may
also become subject to the copyright interests of hundreds and thousands. And
when they do, similar holdup and transaction cost concerns result as described
above.

This Article thus argues that these two interrelated trends mean that
copyright and the theories behind it are increasingly ill-equipped to foster
software innovation in today's world. The majoritarian theory behind modem
copyright law, for instance, fails to fully account for the collaborative,
interconnected realities of much modem software development.33 Indeed,
today's software development norms conflict with the norms and operation of
copyright law, which emphasize the interests of copyright holders34 while
traditionally paying insufficient attention to the dynamics of incremental
software development among a variety of stakeholders.35 Copyright law's
majoritarian theory, which posits that software creators will not incur the costs
necessary to develop software without exclusive rights in that software,36 is
thus increasingly unpersuasive in the cloud and Internet of Things
economies,37 which rely on shared resources38 and interoperability between
heterogeneous computing devices and services.39

31 Dan Farber, Former Sun CEO Says Google s Android Didn't Need License for Java APIs, CNET
(Apr. 26, 2012, 11:38 AM), http://www.cnet.com/news/former-sun-ceo-says-googles-android-didnt-need-
license-for-java-apis/ (discussing Java adoption generally as one of the reasons that Sun, the previous owner,
may have given Google a free pass on using the company's APIs despite the lack of a license).

32 id.

33 See Shyamkrishna Balganesh, Foreseeability and Copyright Incentives, 122 HARV. L. REV. 1569,
1576-77 (2009) (describing the utilitarian majoritarian theory behind copyright law as providing creators with
the proper incentives to create original works of authorship); accord William M. Landes & Richard A. Posner,
An Economic Analysis of CopyrightLaw, 18 J. LEGAL STUD. 325, 326 (1989).

34 Balganesh, supra note 33; Landes & Posner, supra note 33.
35 Asay, supra note 22; see also Clark D. Asay, Enabling Patentless Innovation, 74 MD. L. REV. 431

(2015); Liza S. Vertinsky, Making Room for Cooperative Innovation, 41 FLA. ST. U. L. REV. 1067 (2014)
(making a similar argument with respect to patent law's failure to take into account the dynamics of
cooperative innovation).

36 Balganesh, supra note 33, at 1576-77.
37 Antonio Regalado, The Economics of the Internet of Things, MIT TECH. REV. (May 20, 2014), http://

www.technologyreview.com/news/527361/the-economics-of-the-internet-of-things/ (arguing that the Internet
of Things will largely be fueled by the proliferation of platforms).

2017] 271

EMORY LAW JOURNAL

What this Article does not suggest is that software innovation will grind to
a halt without radically changing copyright law as applied to software; parties
have plenty of other reasons to continue to pursue software innovation, and
those reasons will likely continue to result in software innovation.40 Indeed,
copyright law's traditional premises may still apply in many cases in
explaining the motivations of parties in pursuing software innovation.4' But in
many other cases the robustness of software innovation, and information
technology innovation more generally, is likely to decrease as parties seek to
navigate copyright "thickets" in pursuing collaborative software innovation in
an interconnected world.

This Article thus argues for better adapting copyright law to software
innovation's modem dynamics. While several possibilities exist for making
these adaptations, this Article assesses the merits of copyright's fair use
defense for this role. The Article focuses on fair use for several reasons. First,
fair use is copyright law's most important defense to copyright infringement.42

Fair use is thus at the center of many copyright controversies, and it is hoped
this Article's analysis proves useful in assessing fair use in current and future
copyright controversies involving software. Second, the flexible, broad nature
of the fair use inquiry lends itself to adaptation.43 For instance, fair use has
taken on new, important roles over time.44 And third, adapting fair use to better
take into account modem software innovation's collaborative, interconnected
realities arguably serves the primary purpose of the fair use doctrine, which is

38 Asay, supra note 22 (describing how copyright law may work to inhibit the use and development of
FOSS resources based on fears of copyright infringement).

39 Reuven Cohen, Cloud Interoperability and the Battle for the Open Cloud, FORBES (Apr. 26, 2013,
3:38 PM), http://www.forbes.com/sites/reuvencohen/2013/04/26/cloud-interopembility-and-the-battle-for-the-
open-cloud/2/ (discussing the need for greater openness and standardization in cloud technologies in order to
enable them to achieve greater interoperability and thereby achieve the cloud's potential).

40 See, e.g., Stuart J.H. Graham et al., High Technology Entrepreneurs and the Patent System. Results of
the 2008 Berkeley Patent Survey, 24 BERKELEY TECH. L.J. 1255, 1290 fig.1 (2009) (highlighting the
importance of "first-mover" advantages to many software innovators).

41 See, e.g., Pamela Samuelson, The Uneasy Case for Software Copyrights Revisited, 79 GEO. WASH. L.
REV. 1746 (2011) (describing the role copyright appears to have played and may continue to play in
encouraging software innovation, while also noting eight modern trends that may make software copyright less
relevant today).

42 Andrew Inesi, A Theory ofDe Minimis and a Proposal for Its Application in Copyright, 21 BERKELEY
TECH. L.J. 945, 983-84 (2006) (discussing case law articulating the purposes behind the fair use doctrine).

43 Michael W. Carroll, Fixing Fair Use, 85 N.C. L. REV. 1087, 1149 (2007) (recognizing that too certain
of rules in the fair use inquiry would hamper one of the doctrine's virtues, its flexibility); Ned Snow, Judges
Playing Jury. Constitutional Conflicts in Deciding Fair Use on Summary Judgment, 44 U.C. DAVIS L. REV.
483, 497-98 (2010) (indicating that fair use is a "flexible doctrine").

44 Rebecca Tushnet, Content, Purpose, or Both?, 90 WASH. L. REV. 869, 869-71 (2015).

[Vol. 66:265272

SOFTWARE'S COPYRIGHT ANTICOMMONS

to allow for uses that promise to boost, rather than diminish, creativity
overall.5 Other potential solutions, such as a compulsory licensing scheme, are
also briefly considered.

This Article has four parts. Part I reviews the traditional account of
copyright's role in fostering software innovation. Part II then challenges this
traditional account in light of the considerations briefly discussed above,
namely, the increasingly collaborative, interconnected nature of software
development, particularly as the cloud and Internet of Things economies grow.
It suggests these trends mean that copyright as applied to software is likely to
result in growing anticommons problems, and it examines the Oracle v.
Google case as an example of these problems in practice. Part III then proposes
and assesses changes to copyright law's fair use defense in light of these
developments and argues that such changes could help better promote of
software innovation in the future. Part IV briefly postulates that similar
adaptations may be warranted in other fields of creativity where collaborative,
interconnected development practices are increasingly common. The Article
then concludes.

I. WHY SOFTWARE COPYRIGHT?

This Part lays out the economic basics of how copyright law is meant to
encourage software innovation, and how software came to be subject to
copyright at all. It also briefly explores some of the main concerns that others
have raised over the years about copyright as applied to software.

A. The Early Days

Others have chronicled the history of how software came to be subject to
copyright protection.46 This section does not cover that history in full, but
instead provides a snapshot of it in order to set the stage for the rest of this
Article's analysis.

At first glance, it may seem strange that software is copyrightable subject
matter at all. Copyright, after all, is meant to protect and encourage expressive,
creative activities. 47 Expressive, creative activities are perhaps more readily

45 Inesi, supra note 42, at 983.
46 See, e.g., Pamela Samuelson, CONTURevisited: The Case Against Copyright Protection for Computer

Programs in Machine-Readable Form, 1984 DUKE L.J. 663 [hereinafter CONTURevisited].
47 See generally 17 U.S.C. § 106 (2012) (setting forth the basic rights of copyright holders in their

original expression of ideas).

2017] 273

EMORY LAW JOURNAL

seen in domains such as literature, music, and movies. And these types of
works differ from software in important respects, the most important of which
is that software is essentially functional in nature, while these other types of
works are not. For instance, software's general purpose is to enable a
computing device to perform some function as efficiently as possible, even if
the output of the software is some creative object. 4 Software's primary aim,
therefore, is to provide a utilitarian solution to some sort of computing
problem. Scholars have traditionally viewed patent law, as opposed to
copyright law, as the appropriate body of law for encouraging and protecting
these types of utilitarian solutions.49

Yet software does include expressive elements that in some ways are
similar to those found in literary, musical, and other creative works. For
instance, software engineers initially write most software programs in what is
called "source code."50 Source code is the human-readable version of software
programs.5 1 At least, it is readable by those familiar with the relevant
programming language in which the source code was written. This source code
is then translated by a compiler into computer-readable "object code."52 Once
this translation occurs, the computing device is able to understand the code's
instructions and perform whatever functions the code dictates.

Hence, source code is clearly expressive in the sense that computer
engineers utilize various computer programming languages to express a variety
of functional computer instructions. And the object code, which is simply a
translation of that source code into a version that a computer can execute,
contains essentially the same expression, just in a machine-readable form.

These and related considerations seem to have led the U.S. Copyright
Office to register some copyrights in software early on, before it was either
judicially or legislatively certain that software was subject to copyright.5 3 But

48 Robert Plotkin, Computer Programming and the Automation ofInvention: A Case for Software Patent
Reform, 7 UCLA J.L. & TECH., Fall 2003, at 1, 5-7 (providing an extensive definition and discussion of what
constitutes "software" and the purposes behind it).

49 Clark D. Asay, Intellectual Property Law Hybridization, 87 U. COLO. L. REV. 65, 68 (2016).
50 The Linux Information Project, Source Code Definition, LINFO, http://www.linfo.org/source_code.html

(last updated Feb. 14, 2006).
5 Id.
52 id.

53 Pamela Samuelson, Why Copyright Law Excludes Systems and Processes from the Scope of Its
Protection, 85 TEX. L. REV. 1921, 1947-48 (2007) (detailing how the Copyright Office registered some
copyrights in software before the 1976 Copyright Act despite doubting that computer programs were subject to
copyright protection at all).

[Vol. 66:265274

SOFTWARE'S COPYRIGHT ANTICOMMONS

passage of the Computer Software Copyright Act of 1980 dispelled any
uncertainty regarding whether copyright applied to software. This Act
amended the Copyright Act of 1976 to expressly include a definition of
"computer program" under the Copyright Act, in accordance with
recommendations from the National Commission on New Technological Uses
of Copyrighted Works (CONTU) Commission.54 The CONTU Commission
had been formed in the run-up to the 1976 Copyright Act to study what
changes to copyright law were necessary in light of advancements in computer
technologies.55 Its recommendations, which were made after the Copyright Act
of 1976 had already been enacted, came down strongly in favor of software
programs being subject to copyright,56 though the Commission left it up to
courts to work out the exact scope of that protection.5 7

In arguing in favor of copyright protection for software, the Commission
reasoned that "if the cost of duplicating information is small, then it is simple
for a less than scrupulous person to duplicate it."5' According to the
Commission, these economic realities meant that "legal as well as physical
protection" for software programs were necessary to incentivize parties to
create and disseminate them.59 The Commission backed up this economic
reasoning by pointing to two trends in the computer industry at the time. First,
parties were increasingly writing software programs to perform multiple
functions on a variety of computers, rather than writing more rudimentary
programs that performed a limited number of functions on only a specific
computer model.60 In other words, an independent mass-market for software
products had developed.

Second and importantly in the Commission's view, those writing these
software programs were increasingly different parties than those building the
actual computers running the software.61 When the same party built and sold
the hardware and software together, that party was able to recoup its software
development costs through hardware sales.62 But independent software

54 CONTURevisited, supra note 46, at 694.
55 Id at 694-95.
56 See NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL REPORT

9-10 (1978).
57 Id at 22-23.
58 Id at 10-11.
59 Id
60 id
61 Id at I.
62 id

2017] 275

EMORY LAW JOURNAL

developers must recoup their costs, if at all, through sale of the software.63 As
such, the growing software industry was unlikely to survive absent copyright
protection because "[t]he cost of developing computer programs is far greater
than the cost of their duplication."64 To encourage the creation and
dissemination of software programs, therefore, the Commission recommended
that copyright apply to software.65

According to some accounts, copyright protection for software has helped
spur significant innovation in the software industry. For instance, one study
notes that copyright played a "nontrivial" role in spurring innovation in the
software industry between 1970 and 2000, when the industry experienced
phenomenal growth.66 Copyright helped encourage software innovation during
this time period largely because of the reasons the CONTU Commission
highlighted: software programs had increasingly become divorced from
specific computer models or users and instead were mass-marketed to
heterogeneous parties for use in a variety of computing environments.67

Copyright thus helped this market flourish by providing developers with
exploitable economic rights in their software products.68

B. Dissenting Views

Despite this optimistic view of copyright's role in facilitating software
innovation, scholars have long worried that copyright's application to software
remains an odd fit. 69 The utilitarian nature of software is largely to blame for
these concerns, because the functional nature of software makes identifying the
proper scope of software copyright difficult. But properly delineating that
boundary is crucial to ensuring robust software innovation.70

63 id
64 id
65 Id at 11-12.
66 Samuelson, supra note 41, at 1757-65.
67 id
68 id
69 See, e.g., Stacey L. Dogan & Joseph P. Liu, Copyright Law and Subject Matter Specificity. The Case

ofComputer Software, 61 N.Y.U. ANN. SURV. AM. L. 203 (2005) (demonstrating that despite the general trend
among courts of significantly adapting copyright doctrines to deal with the special features of computer
software, a few courts and legislatures have adopted a more rigid approach, and contending that increased
flexibility and adaptation is critical in the software context).

70 See, e.g., Jacqueline D. Lipton, IP s Problem Child Shifting the Paradigms for Software Protection,
58 HASTINGS L.J. 205, 206, 240 (2006) ("[C]opyrights can serve to chill innovation unless clearer guidelines
about copyright limitations in the software context are developed.").

[Vol. 66:265276

SOFTWARE'S COPYRIGHT ANTICOMMONS

For instance, Pamela Samuelson has argued that the machine-readable form
of software does not merit copyright protection because, among other reasons,
machine-readable software is inherently utilitarian." Unlike instructions in a
book that inform the reader how to perform a task, the machine-readable
version of software actually performs the task.72 This type of intrinsic utility
thus differs from the types of utility that copyright is meant to cover, such as
conveying information or portraying an appearance.73 The functional nature of
software, therefore, demands specific copyright limitations when applied to
software-and perhaps a different legal regime altogether-in order to best
foster software innovation.74

Other scholars have proposed additional software copyright boundaries
with a view to better fostering software innovation. For instance, Peter Menell
has argued that copyright law's idea/expression dichotomy should be liberally
applied to software in order to eliminate copyright protection for software
interfaces and scientific ideas.7 5 The basic purpose behind copyright law's
idea/expression doctrine is to limit copyright protection to the expression of
ideas, while excluding the underlying ideas from the scope of copyright.76 For
instance, copyright may apply to an author's particular articulation of a system
of accounting as expressed in a book, but not to the ideas underlying the
accounting system.77 Hence, while copyright prohibits third parties from
copying the book, it does not prohibit those same third parties from practicing
the ideas behind the accounting system.78

According to Menell, applying this idea/expression dichotomy liberally so
that copyright does not extend to software interfaces and scientific principles
underlying software would better promote software innovation by ensuring the
development and diffusion of these interfaces and ideas.79 Dennis Karjala has

71 CONTURevisited, supra note 46, at 727-28.
72 Id at 727.
73 Id 727-28.
74 See id.
75 Menell, supra note 28, at 1047-50.
76 Ashton-Tate Corp. v. Ross, 728 F. Supp. 597, 601 (N.D. Cal. 1989), aff'd, 916 F.2d 516 (9th Cir.

1990) ("The foundation of federal copyright law is that only expressions of ideas, not the ideas themselves,
give rise to protected interests.").

7 Baker v. Selden, 101 U.S. 99. 104-05 (1879).
71 Id at 104, 107.
7 Menell, supra note 28, at 1047-50; see also Pamela Samuelson, Guest Post: Are APIs Patent or

Copyright Subject Matter?, PATENTLY-O (May 12, 2014), http://patentlyo.com/patent/2014/05/copyright-
subject-matter.html (reviewing some of the leading cases that seek to address these problems); Pamela
Samuelson, The Strange Odyssey of Software Interfaces and Intellectual Property Law (Berkeley Ctr. for Law

2017] 277

EMORY LAW JOURNAL

made similar suggestions in advocating scaling back copyright protection for
software in order to better promote software innovation.0 Others have pointed
to copyright's fair use defense as a largely untapped means of pushing back
against expansive software copyright by enabling greater reuse of otherwise
copyrighted software.8'

Some studies even go so far as to suggest that the proper boundary between
copyrightable expression and non-copyrightable ideas is impossible to
consistently identify in the software context. For instance, one prominent
proposal advocates a sui generis legal regime for software because of concerns
that copyright as applied to software leads to cycles of under- and over-

protection.82 Such cycles, according to these scholars, are largely the result of
judges struggling and ultimately failing to apply traditional copyright doctrines
to the functional world of software.8 3 And this failure is in some sense
inevitable because copyright simply cannot be adequately tailored to software
without morphing copyright law into something else entirely. 4 A different
legal regime is thus necessary given the distinct characteristics of software.85

Others have come to similar conclusions.86

Even more drastically, some within the software industry have argued
against applying copyright to software at all. For instance, some in the "Free
Software" and "Open Source Software" movements have expressed this
sentiment, though, ironically, these movements rely on copyright in pursuit of
their aims.8 7 In general, these movements are founded on the belief that
copyright grants to software copyright holders excessive control that hinders,

& Tech, Paper No. 59, 2008), http://papers.ssrn.com/sol3/papers.cfm?abstractid=1323818 (tracing the
evolution of intellectual property law protection for software application programming interfaces).

80 Dennis S. Karjala, Copyright, Computer Software, and the New Protectionism, 28 JURIMETRICS J. 33,
94-96 (1987) (arguing against what he views as courts' expansive interpretation of copyright as applied to
software and advocating curtailing software copyright based on a policy of anti-piracy).

81 Pamela Samuelson, Fair Use for Computer Programs and Other Copyrightable Works in Digital
Form: The Implications of Sony, Galoob and Sega, 1 J. INTELL. PROP. L. 49, 84-86 (1993).

82 Manifesto, supra note 28, at 2312, 2356-61.

83 Id at 2356-61.
84 id

85 Id at 2357.
86 See, e.g., Dennis S. Karjala, Protecting Innovation in Computer Software, Biotechnology, and

Nanotechnology, 16 VA. J.L. & TECH. 42, 47 (2011) (arguing that applying copyright directly to solve the
software misappropriation problem was a mistake, and that "[i]n retrospect, a sui generis statute that protected
only literal or near-literal copying of code, for a much shorter term, would have been preferable").

87 See Chris DiBona et al., Introduction to OPEN SOURCES: VOICES FROM THE OPEN SOURCE
REVOLUTION (Chris DiBona, Sam Ockman & Mark Stone eds., 1999) (providing a comprehensive history of
the beginnings of these movements).

[Vol. 66:2652789

SOFTWARE'S COPYRIGHT ANTICOMMONS

rather than promotes, software innovation." Most famously, Richard Stallman,
the founder of the Free Software movement, has argued that software should
not be subject to copyright ownership because software consists of utilitarian
ideas, and controlling ideas constitutes control over the lives of others.89 In
order to counteract the negative consequences of software copyright, leaders of
these movements have devised copyright licenses that are meant to free
software from the typical controls that copyright confers.90

Hence, though some may believe that the CONTU Commission largely got
it right,91 others, as discussed above, have articulated lingering concerns over
copyright being applied to software in ways that frustrate software innovation.
And these concerns typically focus on determining the proper boundary
between copyrightable expression and non-copyrightable ideas, which the
functional nature of software makes inherently difficult.

II. COPYRIGHT AND THE MODERN SOFTWARE INDUSTRY

The previous Part laid out the typical economic rationales in favor of
applying copyright protection to software, as well as some of the more
prominent critiques of doing so. Those critiques generally argue that the
utilitarian nature of software makes applying traditional copyright law
principles to software difficult, and they suggest a variety of legal reforms
aimed at better tailoring the law so that it takes into account software's unique
functional characteristics. In some cases, these proposals suggest a new legal
regime for software altogether.

This Part argues that at least two growing trends in modem software
development practices present a different, though related, copyright challenge
for software innovation. First, more and more software is collaboratively built,
which means that any given piece of software may include dozens, hundreds,
or even thousands of copyright holders. Second, in today's cloud and Internet
of Things economies, a growing need exists for heterogeneous products and
services to exchange software interfaces in order to interoperate and share data.

88 See, e.g., RICHARD M. STALLMAN, FREE SOFTWARE, FREE SOCIETY: SELECTED ESSAYS OF RICHARD M.

STALLMAN 40-41, 45-56 (2d ed. 2010) (arguing that software "freedom" enables developers to share their
improvements with each other more readily, which in turn leads to enhanced innovation).

89 Id. at 33-34.
90 Asay, supra note 22, at 759-62.
91 Arthur R. Miller, Copyright Protection for Computer Programs, Databases, and Computer-Generated

Works: Is Anything New Since CONTU?, 106 HARV. L. REv. 977, 982-83 (1993) (defending CONTU
recommendation that software should be copyrightable).

2017] 279

EMORY LAW JOURNAL

Satisfying this need thus also means that any given software product or service
is more likely to include copyrightable software from third parties because use
of third-party software interfaces is necessary to enable the desired
interoperability.

These trends together mean that anticommons issues are more likely to
arise simply because a prospective user of a collaboratively-built,
interconnected software resource must navigate more copyright interests
before she can use the resource. Though the liberal nature of the licensing
regimes that govern much collaboratively built software may help reduce these
concerns in many cases, they do not effectively eliminate them. Indeed, these
licensing regimes can themselves also result in underutilization of the software
resources, as described more fully below.

These anticommons concerns are thus crucially related to concerns over the
proper scope of software copyright as previously articulated by others. These
concerns are related because expanding the scope of software copyright also
increases anticommons problems by increasing the number of copyrights in
any given piece of software. Indeed, expanding the scope of software copyright
compounds possible anticommons concerns that the collaborative,
interconnected nature of modem software innovation leads to. The following
sections review these trends and then show how they create anticommons
concerns. And as will be discussed, collaborative licensing schemes do not
eliminate such concerns, but instead in some instances actually help create
them.

A. Software 's Collaborative Milieu

Over the years, software innovation has undergone a radical
transformation. As discussed above, early software development practices
provided less justification for subjecting software to copyright because
software developers generally had means by which to recoup their
development costs, such as through fees charged for customizing the software
or accompanying hardware sales.92 But as a mass-market for multi-functional,
independent software programs developed, software copyright arguably
became justified as a necessary means by which software vendors recouped
their costs of developing the software programs.93

92 Samuelson, supra note 41, at 1757-65.
93 id.

[Vol. 66:265280

SOFTWARE'S COPYRIGHT ANTICOMMONS

The software industry has once again changed, and dramatically so. One
key change was the development and widespread adoption of object-oriented
programming.94 To oversimplify, object-oriented programming is a "building-
block" approach to software development.95 In this approach, software is
written as a series of "objects." These objects are self-contained, meaning they
can function independently, and they are "modular," meaning that other
software objects can be created and used with them without having to
completely rewrite the preexisting software objects. 96 Hence, if a software
developer wants to write a new software program using object-oriented
programming, she can simply select a group of preexisting software objects
and combine them in a new way, add some new software objects for
interacting with them, or create a new set of software objects altogether.97

For purposes of this Article, several important implications arise from the
widespread adoption of object-oriented programming in the software world,
which adoption began in earnest in the 1980s.98 First, object-oriented
programming made collaborative software innovation more likely because
object-oriented programming's modularity and self-contained nature meant
that a variety of parties could create software objects capable of working
together, so long as the relevant software interfaces-which enable the
different software objects to interact-were made available.99 Second and
related, object-oriented programming made collaborative software innovation
more desirable because the modularity and self-contained nature of object-
oriented programs meant that collaboration could dramatically increase the
pace of software innovation. 00 For instance, software programmers need not
completely reprogram their own programs in order to build on the work of

94 See generally BERTRAND MEYER, OBJECT-ORIENTED SOFTWARE CONSTRUCTION (2d ed. 1997)

(describing the development and adoption of object-oriented progmnming).
95 Michael A. Dryja, Looking to the Changing Nature of Software for Clues to its Protection, 3 U. BALT.

INTELL. PROP. L.J. 109, 126 (1995).
96 Joshua A.T. Fairfield, BitProperty, 88 S. CAL. L. REV. 805, 852-53 (2015) (describing these

characteristics of object-oriented progmnuming); Henry E. Smith, Institutions and Indirectness in Intellectual
Property, 157 U. PA. L. REV. 2083, 2088, n.16 (2009) (describing the virtues of modularity).

9 Dryja, supra note 95.
98 Plotkin, supra note 48, at 34.
9 See generally Keith Stephens & John P. Sumner, Software Objects: A New Trend in Programming and

Sot ware Patents, 12 SANTA CLARA COMPUTER & HIGH TECH. L.J. 1, 4-12 (1996) (discussing some of these
benefits of object-oriented programming).

100 Lipton, supra note 70, at 227-28 (discussing copyright as a challenge to this mode of programming
given its focus on reusing software objects).

2017] 281

EMORY LAW JOURNAL

others, instead relying on interfaces to enable their works and those of others to
interoperate.'0'

Not coincidentally, the free and open source software (FOSS) movement
also began in earnest in the 1980S.102 The movement started as a reaction to
copyright holders exerting their rights in ways that prevented developers from
improving upon copyrighted software.103 Figures such as Richard Stallman, the
so-called "prophet" of the Free Software movement, responded by devising
copyright licensing schemes that inverted copyright.04 For instance, leaders of
the FOSS movement developed and released software to the public under
copyright licenses that enabled third parties to use the software in generally
liberal ways, so long as those parties complied with the software's license
conditions. 105

The most famous of these conditions, often called "copyleft," means that
subsequent users and distributors of the software must release any changes
they make to the software subject to the same terms that initially governed the
software.106 One of the primary purposes of copyleft licensing was thus to
ensure that FOSS remained subject to FOSS licensing terms, as well as
requiring users of the software resources to contribute software back to the
community under the same terms.07 These licensing mechanics therefore
helped spread the FOSS movement's norms of collaboration and software
freedom, which were in some ways a natural fit within a software industry
increasingly devoted to object-oriented programming and its building-block
approach to software development.

Of course, it should be made clear that the FOSS movement is by no means
a unitary one. Debates between different factions of the movement have raged
for some time as to what the movement's goals should be and how best to

101 Id
102 See generally ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR (rev. ed. 2001); Simon Phipps,

The Rise and Rise of Open Source, INFOWORLD (May 8, 2015), http://www.infoworld.com/article/2914643/
open-source-software/rise-and-rise-of-open-source.html ("The results from the annual Future Of Open Source
survey are in, and they confirm everything we already knew: Open source is now the default.").

103 See generally OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION, supra note 87 (providing

a comprehensive history of the beginnings of the free and open source software movement).
104 Id at 2-3.
105 Asay, supra note 22, at 759-62.

106 Id at 760.
107 Eben Moglen, Anarchism Triumphant: Free Software and the Death of Copyright, 4 FIRST MONDAY,

Aug. 2, 1999, at 1, 20-22, http://firstmonday.org/ojs/index.php/fm/article/view/684/594.

[Vol. 66:265282

SOFTWARE'S COPYRIGHT ANTICOMMONS

achieve those goals.'0o But importantly for purposes of this Article, at least one
common theme underlies the movement, regardless of faction: a collaborative
innovation model is superior to the siloed approaches that had frustrated so
many early FOSS developers. A famous refrain from one of the FOSS
movement's leaders makes the purported supremacy of this approach clear:
"[g]iven enough eyeballs, all [software] bugs are shallow." 09 The licensing
schemes that early leaders of the FOSS movement spearheaded were thus
meant to champion collaborative software innovation over a go-it-alone
approach. And importantly, that collaborative approach to software innovation
aligned well with the growing adoption of object-oriented software
programming more generally.

According to many accounts, this collaborative, object-oriented approach to
software innovation has largely prevailed."0 Indeed, though early on
entrenched players in the software industry were skeptical and sometimes even
hostile to the FOSS movement,"' the software industry has, by and large,
come to embrace a collaborative innovation model,"l2 with some now even
arguing that it is the software industry's default innovation paradigm. 113
Utilizing this paradigm, parties across the globe have collaboratively built
some of the most popular and important software technologies in the world,
including Linux, Android, Apache Web Server, Firefox, Netflix, Airbnb, and
many others that power much of the Internet and computing world." 4 Even

108 See, e.g., Clark D. Asay, The General Public License Version 3.0. Making or Breaking the FOSS
Movement?, 14 MICH. TELECOMM. & TECH. L. REV. 265, 267-71 (2008) (reviewing the differences between
some of the more important factions within the broader FOSS movement, while concluding that the factions
have more in common than often meets the eye).

109 ERIC STEVEN RAYMOND, Release Early, Release Often, in THE CATHEDRAL AND THE BAZAAR 38, 41
(2000), http://www.catb.org/~esr/ writings/cathedral-bazaar/cathedral-bazaar/ait01 s04.html.

110 Baldwin & von Hippel, supra note 19 (arguing that collaborative models of open innovation are
increasingly displacing "producer" models of innovation, in software and elsewhere); Phipps, supra note 102;
Snow et al., supra note 19, at 8 (noting that the study of collaborative models of innovation has focused
primarily on open source software communities, while arguing that these innovation models are increasingly
applicable elsewhere as well).

11 Thomas C. Greene, Ballmer. "Linuxls a Cancer", THE REGISTER (June 2, 2001, 6:19 PM), http://
www.theregister.co.uk/2001/06/02/ballmer-linux-is-a-cancer/ (referencing Steve Ballmer, then-CEO of
Microsoft, and his now infamous remark that FOSS is akin to cancer); Graham Lea, MS' Ballmer: Linux Is
Communism, THE REGISTER (Jul. 31, 2000, 10:10 PM), http://www.theregister.co.uk/2000/07/3 1/ms ballmer
linux is communism/ (referring to Ballmer and his likening Linux, the most successful FOSS project at the
time, to a form of communism).

112 Baldwin & von Hippel, supra note 19, at 1411-12; Snow et al., supra note 19, at 8.
113 Phipps, supra note 102.
114 Doug Dineley, The Greatest Open Source Software ofAll Time, INFOWORLD (Aug. 17, 2009), http://

www.infoworld.com/article/2631146/open-source-software/the-greatest-open-source-software-of-all-time.html

2017] 283

EMORY LAW JOURNAL

Microsoft, long perceived as the arch nemesis of the FOSS movement has
come to embrace certain collaborative development practices."5 In fact, FOSS
software options are increasingly displacing many previously dominant
proprietary software offerings.116 And many experts project that this trend will
only continue."7

These developments have dramatically altered the realities of copyright as
applied to software. For instance, before collaborative models of innovation
were widely used, a software product typically had one author: the party that
developed the software product. This was so even in corporate settings where
many employees of a corporation helped create the software product because
corporate employees typically, as part of their employment contracts, assign
any rights they have in the software to their employer."' Indeed, an important
function of copyright's "work-made-for-hire" doctrine is precisely to make it
simpler for employers to obtain the copyrights in the collective contributions of
their employees and independent contractors. Ll9 The typical result was a fairly
clean copyright story: a company, despite employing hundreds or even
thousands of software engineers, was the sole author of the copyrighted
software. Thus, to obtain access to that software, a third party need only
transact with that single company.

(listing some of the most famous FOSS technologies of all time, including Linux, and their important role in
powering much of the computing world).

ii5 See, e.g., Steven J. Vaughan-Nichols, Microsoft The Open-Source Company, ZDNET (Jan. 26, 2015,
7:04 PM), http://www.zdnet.com/article/microsoft-the-open-source-company/ (describing Microsoft's relative
embrace of free and open source software).

116 See, e.g., Kurt Marko, Red Hat's CEO Sees Open Source Cloud Domination, FORBES (June 8, 2014,
8:16 PM), http://www.foibes.com/sites/kurtmarko/2014/06/08/red-hat-ceo-open-source-clouds/ (noting that
"outside of Microsoft Azure, the underlying infrastructure of all the major public cloud services is built upon
open source software" in arguing that FOSS software will increasingly displace proprietary solutions in so-
called "Cloud Computing"); Katherine Noyes, How a Little Open Source Project Came to Dominate Big Data,
FORTUNE (June 30, 2014, 5:49 PM), http://fortune.com/2014/06/30/hadoop-how-open-source-project-
dominate-big-data/ (describing the rise of one such FOSS project, Hadoop, and how it has come to be the
industry standard for so-called "Big Data").

1 Marko, supra note 116; Noyes, supra note 116; see also Matthew N. Asay, Open Source and the
Commodity Urge. Disruptive Models for a Disruptive Development Process, in OPEN SOURCES 2.0: THE
CONTINUING EVOLUTION 103, 103-04 (Chris DiBona, Danese Cooper & Mark Stone eds., 2006) (noting that
FOSS solutions will continue to "commodify" technologies all along the software stack, while also indicating
that proprietary vendors will still be able to reap profits at the top of the software chain where solutions will
remain non-commodities).

ii8 See generally ORLY LOBEL, TALENT WANTS TO BE FREE (2013) (detailing the many ways in which
employers obtain rights to the intellectual contributions of their employees, including by way of typical
invention assignment agreements).

ii9 See Matthew Vincent H. Noller, Note, Darkness on the Edge of Town. How Entitlements Theory Can
Shine a Light on Termination of Transfers in Sound Recordings, 46 GA. L. REV. 763, 784 (2012).

[Vol. 66:265284

SOFTWARE'S COPYRIGHT ANTICOMMONS

Today's collaborative software world presents a much more complicated
copyright picture. For instance, rather than a software product having a single
author, software products today may include hundreds and even thousands of
copyright holders, each with a separate copyright interest. Object-oriented
programming makes this particularly likely since programs often depend on
and include a variety of software objects from third parties.120 To illustrate: the
Linux kernel, which provides the backbone for much modem-day computing,
includes thousands of distinct contributors, and each of those contributors may
possess a copyright interest in some portion of their contribution.121 Other
popular, collaboratively built software products include numerous copyright
holders as well.122 What is more, each of these projects may be and often is
combined with other software objects that similarly include dozens, hundreds,
or thousands of additional copyright interests.123 This reality also applies in
situations where a company produces and distributes proprietary software
products because even these products increasingly include collaboratively built
software.124

The result is that parties wishing to make use of modem software
technologies typically face a more complicated copyright situation than parties
in earlier eras. Rather than dealing with a single copyright holder, software's
modem collaborative milieu means that using today's software products
typically implicates multiple copyright interests. And the multiplicity of these
interests can lead to significant anticommons concerns, as described more fully
below in section C.

120 James Y. Song, Searching for a Link Between Software Patent and Object-Oriented Programming, 76
J. PAT. & TRADEMARK OFF. SoCY 687, 687-90 (1994) (discussing the concepts of "dependence" and
"inheritance" within object-oriented progmnuming).

121 Torvalds/Linux, supra note 20 (listing over 5500 distinct contributors to the project).
122 See, e.g., Apache/Hadoop, GITHUB, https://github.com/apache/hadoop (last visited Oct. 21, 2015)

(listing seventy-nine distinct contributors to the project); Mongodb/Mongo, GITHUB, https://
github.com/mongodb/mongo (last visited Oct. 21, 2015) (listing 264 distinct contributors to the project);
PHP/PHP-src, GITHUB, https://github.com/php/php-src (last visited Oct. 21, 2015) (listing 381 distinct
contributors to the project).

123 See, e.g, Jerry Hildenbrand, What Is Android?, ANDROIDCENTRAL (May 16, 2015, 4:36 PM), http://
www.androidcentml.com/what-android (laying out the basic architecture of Google's Android, which includes
numerous different FOSS projects that are ultimately combined into one to provide for Android's
functionalities).

124 See, e.g., Ben Kepes, Open Source Is Good and All, but Proprietary Is Still Winning, FORBES (Oct. 2,
2013, 2:41 PM), http://www.forbes.com/sites/benkepes/2013/10/02/open-source-is-good-and-all-but-
proprietary-is-still-winning/ (describing instances where Oracle has combined FOSS software with its own
proprietary technology to produce a commercial product).

2017] 285

EMORY LAW JOURNAL

Of course, copyright includes a number of doctrines meant to reduce the
number of potential claimants. The work-made-for-hire doctrine, as mentioned
above, is one such concept. Others may include the joint work doctrine, which
attempts to limit who can be an author of a work that includes more than one
contributor.125 Indeed, as the Ninth Circuit ultimately found in the Garcia
decision mentioned in the Introduction, not everyone that contributes some
creative expression to a larger work can claim a copyright interest in that
contribution.126

While these doctrines may help in some cases, they certainly do not make
the copyright messiness disappear. The work-made-for-hire doctrine, for
instance, is simply inapplicable to much collaborative innovation because that
collaboration occurs outside the employer-employee/independent contractor
context (and often outside of formal contracts). The joint work doctrine is also
less helpful than it could be in reducing the number of copyright claimants,
since object-oriented programming means that many of the software objects
included in a larger work are self-contained, modular, and thus clearly subject
to their own copyright. In sum, copyright's potentially simplifying doctrines
often fail to map onto the realities of collaborative innovation models. The
result is a myriad of copyright interests in any given software project.

B. Interoperability in the Software World

A related trend in software innovation that is increasingly leading to
anticommons concerns lies in the growing need and ability for heterogeneous
products and services to interoperate with one another.

Interoperability has long been an issue in the software world. Early on in
software's history, software programs were largely written for and confined to
specific hardware products.127 Little to no interoperability thus existed. But in
the decades that followed, an independent software industry developed as
software vendors began selling off-the-shelf software programs meant to
operate on a variety of hardware and software platforms.128 Providing for
greater interoperability among heterogeneous hardware and software products

125 See generally Mary LaFrance, Authorship, Dominance, and the Captive Collaborator: Preserving the

Rights ofJointAuthors, 50 EMoRY L.J. 193 (2001) (discussing judicial efforts to narrow the definition ofjoint
works).

126 Garciav. Google, Inc., 786 F.3d 733, 742-43 (9th Cir. 2015).
127 See supra notes 58-65 and accompanying text.
128 id

[Vol. 66:265286

SOFTWARE'S COPYRIGHT ANTICOMMONS

thus proved to be a key selling point in this phase of software's history.129 And,
as discussed above, copyright played an important role in helping the software
industry establish itself by providing a means by which software developers
could recoup their costs of developing software products.130

But interoperability needs in the software industry have accelerated and
changed, with implications for copyright's role for software more generally.
First, as discussed supra, object-oriented programming has come to dominate
the modem software industry. This model of programming stresses the
development of self-contained software objects capable of invoking
functionality and data from other software objects without a need for deeper
integration with them.131 Hence, while object-oriented programming does not
mandate greater interoperability between software programs, it certainly set the
stage for it.

Second, software has made its way into more and more everyday goods,
including cars, household appliances, televisions, watches, treadmills, phones,
security systems, cooling and heating systems, and more.132 Hence, in today's
world, software is not only for traditional computing devices, but instead has
transformed more and more everyday goods into computing devices.

Third and related, these modem-day computing devices increasingly rely
on this software to connect to other products and services. The growing
Internet of Things economy, where Intemet-enabled products harness Internet
connectivity to interconnect with a variety of other devices and services, is one
term commentators often use to refer to this trend.133 Analysts also often refer
to these Intemet-enabled goods as "smart" products.134

129 id
130 id
131 Smith, supra note 96, at 2088-89, 2088 n.16 (discussing this "modularity" as a key virtue of object-

oriented progmminung).
132 See, e.g., Marc Andreessen, Why Software Is Eating the World, WALL ST. J. (Aug. 20, 2011),

http://www.wsj.com/articles/SB 10001424053111903480904576512250915629460 (discussing software-
powered cars and the importance of software in the modern world more generally); Ry Crist, Best SmartHome
Devices of 2016, CNET (Aug. 18, 2016), http://www.cnet.com/topics/smart-home/best-smart-home-devices/
(discussing several of these "smart" devices).

133 John Thielens, Without API Management, the Internet of Things Is Just a Big Thing, WIRED
http://www.wired.com/insights/2013/07/without-api-management-the-internet-of-things-is-just-a-big-thing/
(last visited Oct. 17, 2016) (describing the Internet of Things generally).

134 See, e.g., David Einstein, Smart Devices Not a Smart Choice for Now, SF GATE (Nov. 8, 2015, 6:54
PM), http://www.sfgate.com/business/article/Snrt-devices-not-a-snrt-choice-for-now-6618701.php (discussing
"smart" devices generally while identifying possible problems with using such devices).

2017] 287

EMORY LAW JOURNAL

Fourth, this interconnected, smart world is facilitated through cloud
computing, which allows parties to provide access to products and services
through the Internet rather than solely through software installed on a user's
computer.135 For instance, in a cloud computing environment, a company hosts
the software products on its own servers, but provides access to many of the
benefits of that software through Internet connectivity and a web browser or, in
some cases, a software app installed on a device.136 Accessing Dropbox,
whether on a laptop or smartphone, is a simple example of this type of cloud-
based service. By many accounts, cloud computing is increasingly taking over
as businesses and consumers shift to using technologies hosted in the cloud.137

Hence, in addition to allowing consumers and businesses to transfer the costs
of technology ownership to a third party while still obtaining the benefits of
that technology, the growth of cloud computing has also made interconnecting
a wide variety of heterogeneous products and services possible.

Collectively, these trends point to a number of possible benefits. Many of
these benefits relate to automating aspects of everyday life, such as
automatically adjusting the thermostat's temperature in a home when a
homeowner unlocks her front door.138 Indeed, consumers increasingly expect
their goods and services to be capable of interfacing with each other in these
ways.139 But in order for this automation and interoperability to be possible,
parties must often share and copy software code from one another, in particular
software interfaces that allow for distinct programs to interoperate.140 Hence,
interoperability among the expanding universe of smart products is not

135 Eric Griffith, What Is Cloud Computing?, PCMAG (Apr. 17, 2015), http://www.pcmag.com/article2/

0,2817,2372163,00.asp (describing cloud computing generally).
136 id
137 See, e.g., Elaina Robbins, Top Seven Ways Cloud Computing Is Taking Over, REVUEZZLE,

http://revuezzle.com/cloud-backup/cloud-backup-articles/basics/top-seven-ways-cloud-computing-taking/ (last
visited Sept. 22, 2016) (summarizing a number of independent sources that point to a major shift from
traditional technologies to cloud-based ones).

138 EAston, The Internet of Things (loT). Challenges and Benefits, WT Vox (Feb. 16, 2015), https://
wtvox.com/internet-of-tings-iot/the-internet-of-things-iot-challenges-and-benefits/

139 Internet of Things. Consumer Expectations Increase with Each Smart Home Device Purchase, PARKS
ASSOCIATES (Sept. 22, 2014), https://www.parksassociates.com/blog/article/pr-sept2O14-iot-webcast (finding
that the importance of interoperability between products and services increases for consumers with each
additional smart home device purchased).

140 See Matt Schruers, Supreme Court Declines to Hear Oracle v. Google Case over Java Copyrights,
DisCo PROJECT (June 29, 2015), http://www.project-disco.org/intellectual-property/062915-supreme-court-
declines-to-hear-omcle-v-google-case-over-java-copyrights/ (arguing that the decision in Oracle v. Google
will harm software innovation because it will prevent interoperability, since parties will be barred from
copying Oracle's Java APIs for interoperability purposes).

[Vol. 66:2652889

SOFTWARE'S COPYRIGHT ANTICOMMONS

possible without each participating product making available to all others some
of the software technologies that power it.

An example helps illustrate these points. Amazon's "Echo" product is a
home device that responds to human voice instructions to accomplish a variety
of activities, including playing music, placing shopping orders, looking up
information on the Internet and reading it out loud, among other

possibilities.'4' The Echo thus relies on Internet connectivity to access Web-
based services such as Wikipedia, Pandora, and others in order to accomplish
many of its tasks. And to seamlessly interoperate with each of these third-party
services, the Echo must be able to access, copy, and use certain software
technologies-software interfaces-from those third parties.142 Hence,
Amazon necessarily incorporates software from those third parties within the
Echo itself to enable it to effectively "speak" to those third party services.

This and many similar examples thus highlight the need to incorporate
software from third parties into one's own products and services to allow the
same to interoperate with the third party products through the cloud (and
otherwise).143 Often parties enter into agreements that allow for uses of each
other's software technologies simply because each party sees the benefits in
allowing interoperability between its products.4 4 Indeed, many parties are
eager for third parties to incorporate their products within their own and may,
therefore, make the software necessary for interoperability readily available.45

141 See, e.g., Stacey Higginbotham, 5 Things You Can Now Do with Your Amazon Echo and 3 Things You

Can't, FORTUNE (Aug. 27, 2015, 11:36 AM), http://fortune.com/2015/08/27/amazon-echo-home-automation/.
142 See, e.g., James Kendrick, Amazon Echo Gets Native Pandora Support, Plus MLB and MLS

Information, ZDNET (Apr. 2, 2015, 10:58 AM), http://www.zdnet.com/article/anazon-echo-gets-native-

pandom-support-mlb-and-msl/ (describing the Echo device now featuring "native support" for several third-
party services, which generally means in this context that the device has incorporated software from those third
parties that enables the device to more seamlessly interoperate with those services).

143 Cade Metz, Nest Gets into the Smart-Lock Game by Going Old School, WIRED (Oct. 1, 2015, 9:00
AM), http://www.wired.com/2015/10/nest-enmbrces-good-ol-yale-locks-make-smat-homes-smater/ (discussing
Nest's development of an alternative to Internet connectivity for connecting devices).

144 Id. (discussing how "more than 11,000 device makers have signed up to build compatible devices"
with Nest, a company that develops smart thermostats, among other devices, meant to interoperate and
exchange information with third party products and services).

145 Gary Little, Why APIs Will Save Your Business from Getting "Uber-ed", FORTUNE (May 19, 2015,
12:48 PM), http://fortune.com/2015/05/19/why-apis-will-save-your-business-from-getting-uber-ed/ (discussing
how UPS, among other companies, has outpaced its competition by publishing to the world "an API-just a
few lines of code-which makes it easy for shopping sites to integrate shipping seamlessly into their online
check-out process").

2017] 2899

EMORY LAW JOURNAL

But in other cases this may not be so.'4 6 In fact, even in cases where a party
initially sees merit in making its software interfaces available for third party
use in enabling interoperability, the party may change course later. Twitter did
exactly that when it terminated a deal that had allowed LinkedIn to syndicate
users' tweets within LinkedIn's activity stream.147 Twitter cited a number of
business reasons for this change, including preserving an authentic Twitter
experience.148 But this turnabout nonetheless contrasts dramatically with its
earlier stance as to the availability of its software technologies that enabled
interoperability, which had largely allowed third parties to "do just about
anything they wanted in integrating with Twitter." 49

None of this is to say that, in many cases, Twitter and others lack good
reasons for reining in their software technologies and thereby preventing
interoperability with third party products and services.50 For instance, a party
may wish to retain control over its software technologies for security, privacy,
business, and user experience reasons, among others.151

Nonetheless, the lack of standardized means by which heterogeneous
products can interoperate with each other remains one of the biggest obstacles
to realizing many of the advantages of interconnecting the universe of smart
products.152 And standardization cannot occur without parties allowing use of
their own copyrighted software technologies-in particular software
interfaces-as part of these ecosystems. This lack of standardization can thus
lead to significant anticommons concerns, particularly given the presence of
copyright, as described more fully below.

146 Id (pointing to a number of rental car companies that have failed to make available software
technologies that would allow third parties to seamlessly integrate their services within their own).

147 Mike Isaac, Twitter Cuts OffLinkedIn Who's Next?, ALL THINGS D (June 29, 2012, 6:57 PM), http://
allthingsd.com/20120629/twitter-cuts-off-linkedin-whos-next/.

148 id
149 id
150 See, e.g., Thielens, supra note 133 (discussing the importance of managing software APIs for the

Internet of Things to work well and securely).
151 Id
152 John F. O'Rourke & Trevor K. Roberts, There Is No Such Thing as the Internet of Things At Least

Not Yet!, LEGALTECH NEWS (Nov. 12, 2015), http://www.legaltechnews.com/id= 1202742252036/There-is-No-
Such-Thing-as-the-Internet-of-Things-at-Least-Not-Yet?mcode=0&curindex=0&curpage=ALL&slreturn=
20151019145317 (arguing that the Internet of Things can only come about "if the [software] protocols that
will manage all of this data are standardized").

[Vol. 66:265290

SOFTWARE'S COPYRIGHT ANTICOMMONS

C. Anticommons in Software

In order to better understand how these two trends in software innovation
lead to anticommons concerns, it is important to more fully understand what
the term "anticommons" means. Michael Heller coined the now well-known
phrase "tragedy of the anticommons."53 I use "anticommons" throughout this
Article as shorthand for "tragedy of the anticommons."

An anticommons is the mirror-image of a "tragedy of the commons."5 4 A
tragedy of the commons develops when "multiple owners are each endowed
with the privilege to use a given resource, and no one has the right to exclude
another."5 5 When multiple parties possess unfettered ownership interests in
the common resource, the resource is likely to be overused, resulting ultimately
in its destruction, unless users of the resource are somehow regulated.156 The
most commonly cited examples of a tragedy of the commons are depleted
fisheries and overgrazed fields.157

In contrast, an anticommons may arise when numerous parties have rights
in a resource, but those rights fail to provide any of these parties "an effective
privilege" to use the resource without permission from all the others.158 For
instance, each rights holder, on the basis of its right in the resource, can
prevent the other rights holders from using the common resource. 159 But these
rights of exclusion do not include a right of use, meaning that no one party can
unilaterally use the resource without permission from all the others.160

As a matter of logic, anticommons concerns become increasingly acute as
the number of parties possessing rights in a given resource increases, simply
because the chances of any one of those parties using its rights in ways that
inhibit use of the resource may also increase.161 Hence, a resource may end up
not being used, or used less than what is socially optimal, because rights
clearance becomes increasingly cumbersome or, in some cases, impossible.

153 See Heller, supra note 17, at 623-24 (defining the term "tragedy of the anticomnons").
154 id
155 Id
156 id
157 Id at 624.
158 Id
159 Id
160 id
161 id

2017] 291

EMORY LAW JOURNAL

The paradigmatic example of an anticommons is the image of shuttered
storefronts in post-Soviet Russia.162 The underuse (or non-use) of these
properties resulted, not because parties lacked rights to them, but because none
of the numerous rights holders could use the properties without permission
from each of the others.163 Hence, each property was subject to too many
distinct property interests, none of which actually enabled any of the separate
right holders to use the property.164 In the world of intellectual property,
scholars have pointed to biotechnology resources covered by multiple patent
rights as presenting similar anticommons concerns.165

This Article adopts this anticommons conceptual lens in assessing
copyright's effects in the software world, with some slight modifications. For
instance, the paradigmatic example of an anticommons is when a rights holder
refuses to allow others to use the common resource on the basis of her
rights.166 While this type of "holdup" problem may also often apply in the
software context, this Article contends that the sheer number of copyright
interests can also result in underuse of a resource-and thus anticommons
concerns-even when rights are not aggressively asserted in this more typical
fashion. The following sections assess how.

1. How Collaborative Innovation May Lead to an Anticommons

The collaborative nature of modem software innovation described above
creates many of the conditions necessary for an anticommons in the software
world. For instance, as discussed above, the resource in this case-any given
software product-is likely to include numerous copyright interests because of
the collaborative innovation models widely used in the software industry.
Indeed, object-oriented programming increases this likelihood because any
given software object will often depend on and reuse other software objects.167

And each of these numerous copyright interests may give the respective
copyright holder an ability to exclude others from making use of the
collaboratively built resource. Hence, though many parties have copyright
interests in any given collaboratively built software product, no one party has
an effective privilege to use it absent permission from the numerous other

162 Id at 622-24.
163 Id at 639.
164 id
165 Heller & Eisenberg, supra note 17, at 698.
166 See supra notes 17-18 and accompanying text.
167 Song, supra note 120, at 689-90.

[Vol. 66:265292

SOFTWARE'S COPYRIGHT ANTICOMMONS

rights holders.'68 And because the collaborative nature of modem software
development practices often results in any given software product including
hundreds, and in some cases thousands, of separate copyright interests,
clearing the rights necessary to obtain an effective privilege of use can be
difficult.

Of course, as discussed above, collaborative software innovators have
employed various licensing tools to facilitate their collaborative activities,
which help reduce these concerns in important respects. For instance, the
typical copyright licenses under which collaboratively built software projects
are made available help alleviate the concern that parties will underutilize the
software resources. This may be so because the licensing models in some sense
ensure an "effective privilege of use" by guaranteeing access to the software
resource,169 so long as the user meets whatever conditions of use the license

specifies.170 Indeed, as others have argued, these collaborative licensing
models may thus help eliminate anticommons concerns in the software context
and elsewhere.'7 '

While these licensing models have undoubtedly helped address some

anticommons concerns, they do not eliminate them and, in fact, may create
some of their own. For instance, as I and others have written, despite the
generally liberal nature of these copyright licenses, the software remains
subject to a multiplicity of copyright interests.172 And those interests demand

adherence to the applicable licensing terms, regardless of how onerous they
may be on any given user.173 The result is that the growing number of
copyright interests in any given piece of software often leads to underuse of the

168 See supra notes 17-18 and accompanying text.
169 id
170 Robert W. Gomulkiewicz, De-Bugging Open Source Software Licensing, 64 U. PITT. L. REv. 75, 79-

96 (2002) (reviewing some of the basics of FOSS licensing as well as highlighting some of the challenges that
specific licensing requirements may pose).

171 See supra note 27 and accompanying text.
172 See, e.g., Asay, supra note 22, at 759-62; Gomulkiewicz, supra note 170; Greg R. Vetter, "Infectious"

Open Source Software: Spreading Incentives or Promoting Resistance?, 36 RUTGERS L.J. 53, 71-78 (2004)
(laying out some of the basics of FOSS licensing).

173 Gomulkiewicz, supra note 170 (cataloguing various terms that may make the licensed software

difficult for many potential users to actually use); Vetter, supra note 172, at 152-57 (laying out some of the
reasons as to why certain FOSS licensing terms may be difficult for potential users to accept).

2017] 293

EMORY LAW JOURNAL

software product and thus anticommons concerns."' This result may be
particularly so given a growing trend of aggressive license enforcement.7 5

For instance, because of the presence of copyright, parties using
collaboratively built software undertake significant costs in order to ensure
compliance with the applicable terms.176 These costs include monitoring
intake, use, and distribution of such software products, which can be
significant and are typically an ongoing effort.7 7 In some cases, parties simply
ban certain types of collaboratively built software because the terms are too
demanding in light of their business practices.'78 The result is reduced use of
the licensed software products, and that reduced use is in part the result of a
multiplicity of copyright interests that collaborative innovation models help
spawn.

Indeed, the mere fact that many software copyright holders may intend for
their software to be used liberally does not change this reality. In other words,
even though these copyright holders may not appear to hold up use of the
collaboratively built software because they do not actively assert their rights in
more traditionally exclusionary ways,179 their retention and use of copyright in
achieving their objectives might be viewed as "holdup by other means"
because copyright, as employed, still leads to significant exclusion. For
instance, as discussed, even though these copyright holders provide that their
software may be used, they nonetheless condition such use on terms that can
be unpalatable for many. Indeed, in many cases, potential users would rather
pay significant sums of money for use than comply with the stated terms.80 Or

174 Asay, supra note 22, at 768; Vetter, supra note 172, at 152-57.
175 See, e.g., Joe Fay, VMware vs German Kernel Dev. Filings Flung in Linux-Lifting Lawsuit, THE

REGISTER (Oct. 29, 2015), http://www.theregisterco.uk/2015/10/29/hellwigversus vmwareupdate/ (detailing a
lawsuit against VMware for allegedly failing to comply with such license conditions); Steven J. Vaughan-
Nichols, VMware Sued for Failure to Comply with Linux License, ZDNET (Mar. 6, 2015, 5:26 AM), http:!!
www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license/ (detailing more aggressive
efforts in recent years by developers of collabomtively built software to enforce license conditions).

176 Asay, supra note 22, at 768-75.
177 Id
178 Id at 770.
179 Such copyright holders do still at times assert their rights of exclusion when they perceive that users

have violated the applicable license conditions. For a partial list of such lawsuits, see Heather J. Meeker, Open
Source and the Age ofEnforcement, 4 HASTINGS SCI. & TECH L.J. 267, 268-70 (2012) (providing a catalogue
of FOSS-related lawsuits as of 2012).

180 This is why, for instance, some software companies use a dual license strategy for their collaboratively
built software projects, in which users can choose either a proprietary license or the applicable FOSS license.
See Philip H. Albert, Dual Licensing. Having Your Cake and Eating It Too, LINUxINSIDER (Nov. 16, 2004,
5:00 AM), http://www.linuxinsider.com/story/38172.html.

[Vol. 66:265294

SOFTWARE'S COPYRIGHT ANTICOMMONS

in other cases, though the terms may be more palatable, those multiple, often
confusing terms still result in a variety of rights clearance activities that slow
and impede use of the software product."' In both cases, numerous copyright
interests and the possibility of copyright remedies thus slow adoption and use
of collaboratively built software products.

Of course, it may be the case that, but for the licensing models that helped
facilitate collaborative innovation in the first place, society may not have the
collaboratively built software for use at all. Hence, even if the multiplicity of
copyright interests leads to some underuse of the collaboratively built software,
this underuse is the necessary tradeoff, the argument goes, to ensure that
collaborative software innovation remains robust.18 2

I have addressed this question in other work, where I argue there is
significant reason to doubt that copyright and the collaborative licensing tools
based in it are responsible for ensuring that collaborative software innovation
remains vigorous.8 3 Indeed, other scholars have pointed to a number of factors
that motivate parties to create and innovate that seem to have little to do with
copyright and other intellectual property interests.'8 4 Furthermore, significant
recent empirical evidence shows that more and more software collaborators
simply contribute to collaborative projects under no copyright terms at all. For
instance, studies of projects on GitHub, the dominant online open source
software repository today, show that 85% of projects on the site have no
copyright license assigned to them.8 5 In addition, increasingly more
developers are shunning licenses that impose "copyleft" terms,186 which

181 Asay, supra note 22, at 769.
182 Moglen, supra note 107, at 22.
183 See Asay, supra note 22.
184 E g., Jeanne C. Fromer, Expressive Incentives in Intellectual Property, 98 VA. L. REV. 1745, 1771-81

(2012) (analyzing the non-pecuniary reasons that parties innovate); Sebastian V. Engelhardt, What Economists
Know About Open Source Software. Its Basic Principles and Research Results 10-12 (Jena Econ. Research,
Working Paper No. 2011-005, 2011), http://papers.ssrn.com/sol3/papers.cfm?abstmctid= 1759976 (providing
a literature review of relevant studies done on the motivations of programmers in contributing to open-licensed
projects); Josh Lerner & Jean Tirole, The Economics of Technology Sharing. Open Source and Beyond 7-11
(Nat'l Bureau of Econ. Research, Working Paper No. 10956, 2004), http://www.nber.org/papers/w10956
(postulating many of the same signaling incentives that motivate software programmers while also reviewing
extant surveys that confirm that such incentives do in fact motivate programmers to contribute time and
resources to open-licensed projects); Josh Lerner & Jean Tirole, The Simple Economics of Open Source 14-19
(Harv. Bus. Sch., Working Paper No. 00-059, 2000), http://papers.ssrn.com/paper.taflabstmctid=224008
(discussing the "signaling incentives" that motivate software programmers to participate in FOSS projects).

185 Neil McAllister, Study. Most Projects on GitHub Not Open Source Licensed, THE REGISTER (Apr. 18,
2013, 1:22 PM), http://www.theregister.co.uk/2013/04/18/githublicensingstudy/.

186 id

2017] 295

EMORY LAW JOURNAL

founders of the open source software movement have argued are crucial to
ensuring robust collaboration in the software commons.' Hence, this
evidence suggests the underuse of collaboratively built software resources that
reliance on copyright leads to may not actually be needed.

Even assuming that some underuse of collaboratively built software is a
necessary tradeoff for otherwise robust software collaboration-which this
Article and prior scholarship dispute-it is a tradeoff that has been largely
overlooked or even assumed to be negligible.' But as this Article argues, the
collaborative nature of modem software development results in significant
anticommons potential because modem software products consist of
increasingly more copyright interests. And any one of those copyright interests
may ultimately translate into underuse of the software resource because of the
way in which copyright is deployed.

2. How Growing Interoperability Needs May Lead to an Anticommons

The interoperability necessary to realize many of the benefits of the
interconnected economy also creates significant anticommons concerns. In the
interoperability context, the resource that may be underutilized-and thus
subject to anticommons concerns-is the universe of things that might
otherwise interoperate with each other, rather than the individual software
resources. As discussed above, this universe is quickly expanding as more and
more goods use software to function. Yet the possibility of these goods and
services interconnecting in socially beneficial ways only becomes a reality
when the software technologies necessary for such interoperability-primarily
software interfaces-are available for use. Hence, the vast possibilities
associated with this resource depend in significant part on parties opting to
participate in it by making these software technologies available to others.

Copyright may decrease the chances of this happening. For instance, if
software interfaces are subject to copyright, the developer of any given set of
interfaces may withhold permission to use these technologies and thereby
prevent the benefits of an interconnected ecosystem of devices and services.
And because these interconnected ecosystems (ideally) implicate thousands of

187 Moglen, supra note 107, at 19-23.

188 Id. (trumpeting the success of the free software movement and failing to acknowledge any possible
unintended consequences-such as underuse of the software resources-that might result from the licensing
terms applied to such resources). For a study that does assess such possibilities, see Vetter, supra note 172, at
144-56 (discussing whether "infectious" licensing terms may actually lead to underuse of software resources
rather than facilitating use and further development of them).

[Vol. 66:265296

SOFTWARE'S COPYRIGHT ANTICOMMONS

separate parties with distinct copyright interests, anticommons concerns grow
simply because there are more chances that some parties will, in fact, use
copyright in ways that prevent such interoperability. Hence, if software
interfaces and other technologies necessary to enable interconnectedness are
subject to copyright, the possibility of such interconnectedness decreases.

Of course, concerns about copyright holders using their rights to prevent
interoperability are not new. In the past, some circuit courts have addressed
these concerns by allowing for reuse of the software technologies necessary for
interoperability.8 9 For instance, the Sixth Circuit denied copyright relief to
Lexmark, a manufacturer of printers and related printer toner cartridges, when
Lexmark sought to prevent competitors from using some of its software
technologies necessary to supply compatible printer toner cartridges for
Lexmark's printers.190 Similarly, the Ninth Circuit ruled against Sega when
that company attempted to use copyright to prevent a third-party game
manufacturer from using some of Sega's software technologies to produce
games compatible with Sega's gaming console.191

But in today's world, where interoperability needs are growing, these
precedents may prove insufficient. In these earlier cases, for instance, the
copyright question focused on bilateral interoperability between the products
of two parties. In today's world, however, multilateral interoperability is often
the more relevant question. For instance, can party A reuse some of party B's
software technologies, not simply to increase compatibility with party B's
products, but in order to enhance interoperability with the larger universe of
potentially interconnected things? As will be discussed further in section D, the
leading modem appellate case to address this issue, Oracle v. Google,
answered this question in the negative,192 although on retrial the district court
jury found Google's use of Oracle's software interfaces to be a fair use.193 That

189 E.g., Lexmark Int'l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 529-31, 533-45 (6th Cir.
2004); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1993); see also Matthew Sag,
Copyright and Copy-Reliant Technology, 103 Nw. U. L. REV. 1607, 1624-56 (2009) (pointing to a thread of
case law that appears to reject copyright claims where the copying was done for a non-expressive purpose);
Matthew Sag, Orphan Works as Grist for the Data Mill, 27 BERKELEY TECH. L.J. 1503, 1528-42 (2012).

190 Lexmark, 387 F.3d at 529-31, 533-45
191 Sega, 977 F.2d at 1527-28.
192 Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1353-54 (Fed. Cir. 2014); see generally Pamela

Samuelson, Three Fundamental Flaws in CAFC s Oracle v. Google Decision, 37 EUR. INTELL. PROP. REV. 702
(2015) (reviewing the Oracle v. Google decision and noting problems with the outcome).

193 Joe Mullin, Google Beats Oracle Android Makes "Fair Use" ofJavaAPIs, ARSTECHNICA (May 26,
2016, 4:03 PM), http://arstechnica.com/tech-policy/2016/05/google-wins-trial-against-omcle-as-jury-finds-
android-is-fair-use/.

2017] 297

EMORY LAW JOURNAL

decision, of course, is likely to be appealed.'94 Furthermore, other circuits have
not explicitly wrestled with this broader interoperability question, although
many of the same copyright factors discussed in the bilateral context-such as
copyright's idea-expression, scenes a faire, and merger doctrines-will
certainly be relevant in answering the question in the multilateral one.195

Hence, interoperability rationales for limiting the reach of software copyright
may need a modem reboot in order to help stem an anticommons in an
increasingly interconnected world.

It should be noted that copyright is not the only factor that may stand in the
way of an interconnected world of things. For starters, too seamless of
integration between heterogeneous products and services raises a number of
privacy and security concerns.196 Too smart of a home may mean that hackers
have an easier time infiltrating the most intimate, sensitive parts of our lives,
for instance.197 Relatedly, companies may have legitimate reasons, such as user
experience concerns, for wanting to prevent integration of their goods and
services with those of third parties.198

Indeed, companies can employ a variety of means besides copyright to
prevent their goods and services from becoming integrated with those of other
parties; the simplest means may be to build the good or service so that it is not
capable of interoperating with third-party products. Furthermore, as the Twitter
example demonstrates, companies often use technical and contractual
mechanisms to prevent others from integrating third-party goods and services
with theirs.199

But despite these other possible roadblocks to an interconnected world of
things, copyright stands out as particularly problematic for a number of
reasons. First, allowing copyright to stand in the way of interoperability
arguably does not serve the purposes of copyright. Copyright, after all, is a

194 id
195 E.g., Lexmark, 387 F.3d at 534-37 (discussing copyright's idea-expression, scenes A faire, and merger

doctrines, which are relevant to the broader interoperability question).
196 See Kenneth Corbin, Congress Probes Internet of Things Privacy, Security, CIO (July 30, 2015, 12:22

PM), http://www.cio.com/article/295453 1/govemment/congress-probes-intemet-of-things-privacy-security.
html (discussing some of the privacy and security concerns associated with the Internet of Things).

197 Pierluigi Paganini, How Hackers Violate Privacy and Security of the Smart Home, INFOSEC INSTITUTE
(Sept. 11, 2015), http://resources.infosecinstitute.com/how-hackers-violate-privacy-and-security-of-the-smart-
home/.

198 See Isaac, supra note 147 (highlighting an example where Twitter limited access to its service by
Linkedln).

199 Id

[Vol. 66:2652989

SOFTWARE'S COPYRIGHT ANTICOMMONS

body of law authorized under the Constitution to promote the progress of
"Science and useful Arts." 200 Under the dominant theoretical understanding of
this constitutional provision, copyright is meant to provide authors with
sufficient incentives to create original works of authorship.20' But in situations
where copyright is employed to prevent interoperability, copyright often seems
to be serving other interests, such as protecting privacy, security, or in some
cases simply inhibiting competition.202 And this is problematic in part because
copyright law rights, limitations, infringement standards, defenses, and
remedies have all been designed with a different set of interests in mind.203

None of this is to say that privacy, security, and competition concerns are
without merit. But it is to say that copyright, given its purpose and how that
purpose is reflected in copyright law's many doctrines, is typically not the
appropriate tool for addressing those concerns.204 Copyright may, in a sense,
bolster the technical and contractual measures that parties use to protect these
interests, and thus help safeguard the same concerns, by providing a party with
powerful copyright remedies.205 But using copyright in this way also creates
greater risks of underutilizing the resource-and thus anticommons
problems-because of the deterrent effect of copyright remedies.

Indeed, as can be seen in the Lexmark and Sega cases mentioned above,
copyright holders may frequently seek to use copyright to protect interests that
lie outside of copyright's purposes. In fact, others have noted a growing trend
of parties attempting to use copyright to protect interests unrelated to
copyright's purposes, such as when doctors use copyright to quash bad online

200 U.S. CONST. art. I, § 8, cl. 8.
201 See Landes & Posner, supra note 33, at 325-33 (articulating the traditional view that copyright law is

justified as a corrective to market failure, in which copyright interests are granted to parties as incentives to
engage in creative behavior in order to overcome the market failure).

202 Cf Clark D. Asay, Ex Post Incentives and IP in Garcia v. Google and Beyond, 67 STAN. L. REV.
ONLINE 37, 38, 40-44 (2014) (articulating concerns about the use of copyright to protect non-copyright
interests in other contexts); Jeanne C. Fromer, Should the Law Care Why Intellectual Property Rights Have
Been Asserted?, 53 Hous. L. REv. 549, 587-93 (2015) (arguing generally that courts should care why
intellectual property rights are asserted and strongly consider denying relief in situations where the purposes
behind the assertion do not align with the body of law's purpose).

203 See Rebecca Tushnet, How Many Wrongs Make a Copyright?, 98 MINN. L. REV. 2346, 2361-74
(2014) (noting a variety of problems with expanding copyright to protect interests outside of incentivizing
parties to create, the traditional rationale of granting copyright).

204 Cf Fromer, supra note 202, at 553-75; Tushnet, supra note 203, at 2361-74.
205 See 17 U.S.C. §§ 502, 504 (2012) (providing for the remedies of injunctive relief and statutory

damages under copyright law).

2017] 299

EMORY LAW JOURNAL

reviews206 or embarrassed newscasters resort to copyright to prevent
dissemination of newscasts that went awry.207 Hence, without reining in
copyright for software technologies, parties in the interconnected world may
increasingly use copyright similarly in protecting interests for which copyright
was not intended. And when they do, anticommons concerns grow because that
interconnected world becomes less connected than it otherwise might be.

A second, related reason that copyright stands out as particularly
problematic is, simply, that copyright makes the standardization of software
technologies for interoperability less likely. As mentioned, the lack of
standardization in these types of technologies is one of the biggest obstacles to
an interconnected world. Copyright makes this standardization more difficult
because if different parties' software interoperability technologies are subject
to copyright, the chances of collaboration and reuse of those technologies
decrease. For instance, if copyright forces each party to develop its own,
distinct set of software technologies for interconnecting with other products,
then interconnecting the universe of products becomes more difficult. With
standardization, conversely, ultimately interconnecting a variety of products
and services becomes more likely.

Another way to think about this same point is to view the software
technologies necessary for interoperability as a vocabulary. If disparate parties
use a common vocabulary in how their products interact with third-party goods
and services, then making that universe of things compatible is a much more
tractable problem. If each product or service is forced to have a distinct
vocabulary, on the other hand, then interconnecting that universe of things
becomes a much more difficult task.

Of course, parties could simply coordinate with each other and decide upon
common software protocols for interoperability, similar to what often happens
with respect to patent rights and standards bodies.208 In fact, this transactional
approach to the problem aligns in some respects with certain theoretical views.

206 Graeme McMillan, Doctors Now Using Breach of Copyright to Quash Bad Online Reviews, TIME:
TECHLAND BLOG (Apr. 14, 2011), http://techland.time.com/2011/04/14/how-do-doctors-avoid-bad-online-
reviews-legally/.

207 Kristin Bergman, After On-Air Mishaps, Embarrassed Newscasters Turn to Copyright Law, DIGITAL
MEDIA LAW PROJECT (Aug. 13, 2013, 3:41 PM), http://www.dmlp.org/blog/2013/after-air-mishaps-
embarrassed-newscasters-turn-copyright-law.

208 See generally Mark A. Lemley, Intellectual Property Rights and Standard-Setting Organizations, 90
CAL. L. REv. 1889 (2002) (discussing the importance of standard-setting organizations in governing patent
rights).

[Vol. 66:265300

SOFTWARE'S COPYRIGHT ANTICOMMONS

Put simply, one perspective is that copyright actually enables the
interconnected economy, rather than undermines it, by granting parties rights
in their software technologies, which rights then allow parties to more

effectively transact with one another in protecting their interests while
simultaneously promoting those of the public.209 Hence, copyright holders get
some return for their investment in creating the software technologies, while
the public benefits from the development of an interconnected economy.

While this argument has some theoretical appeal, it takes the property
rights as a given. In other words, this approach's primary point is that property
rights-and the remedies associated with them-facilitate beneficial
transactions because parties are emboldened to pursue these transactions,
knowing that they need not rely solely on contractual remedies in the event of

a transaction falling apart.210 But putting these transactional benefits to the side
for a moment, it is vital to ask whether the property right was justified or
needed in the first place? Indeed, while property rights in some cases may
facilitate transactions that result in beneficial relationships between parties, the
lack of property rights undoubtedly facilitates greater use of the resource,
assuming that the creator of that resource was willing to develop it absent
property rights. Hence, it cannot be said that property rights are warranted in

every instance simply because they may facilitate transactions, particularly
when ultimately unnecessary transactions over time may result in an expansion
of rights that create additional anticommons concerns.211

With respect to software technologies necessary for interoperability,
several reasons suggest that parties would still have incentives to create them
even absent property rights. First, today's economy increasingly demands such
interconnectedness,212 and parties that fail to satisfy those demands may simply
fail commercially. These demands do not mean that any given party will
always have incentives to allow others to use their software technologies in
order, for instance, to make a competitive product with interoperability
capabilities. But it does generally mean that parties will have incentives to

209 See Robert P. Merges, A Transactional View ofProperty Rights, 20 BERKELEY TECH. L.J. 1477, 1519-
20 (2005) (highlighting the use of copyright as an effective tool in creating enforcement options for the
contracting parties).

210 id
211 See generally James Gibson, Risk Aversion and Rights Accretion in Intellectual Property Law, 116

YALE L.J. 882 (2007) (discussing the "doctrinal feedback" created by copyright law and those who make use
of it where the prudent practice of securing unnecessary copyright licenses expands the reach of copyright
entitlements).

212 See supra note 139.

2017] 301

EMORY LAW JOURNAL

continue to develop software interfaces and to collaborate with others in
interconnecting their goods and services.

Second, in cases where parties wish to participate in the interconnected
economy but also desire to protect privacy, security, user experience, or other
competitive interests, means other than copyright, such as contract and
technological solutions, are available to help address these concerns. Of
course, these solutions, absent copyright and its associated remedies, may not
be as robust. For instance, if some party reverse engineers and then copies a
technological mechanism in a product meant to safeguard the privacy of the
product's users, then the absence of copyright remedies may mean that those
privacy interests are less capable of vindication. And that possibility may mean
that a party is less incentivized to create the product. But, again, making
copyright the vindicator of all possible interests is the wrong approach for a
number of reasons discussed above.213 While copyright may be a convenient
solution for such problems, that convenience masks deeper problems in using
copyright as a panacea for all possible issues.

Last, while property rights may make sense for software more broadly, they
seem less crucial with respect to the more limited set of software technologies
that simply allow heterogeneous products and services to speak with one
another. While designing these technologies certainly requires effort, effort
alone is generally not considered a basis for copyright protection.214 It is
certainly true that a party may wish to prevent others from copying such
technologies in creating competitive products. But, as courts and scholars have
long recognized, preventing such competition by granting rights in these
functional software elements generally falls outside the purposes of copyright
law. 215

Instead, the primary result of subjecting interoperability technologies to
strong copyright protections may be a growing anticommons in an
interconnected world. The next section examines Google's Android and a
copyright controversy surrounding it in order to provide one recent, high-
profile example of how copyright may lead to significant anticommons

213 See supra notes 200-07 and accompanying text.
214 See Feist Publ'ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 359-61 (1991) (rejecting a "sweat of the

brow" rationale for granting copyright protection).
215 See Samuelson, supra note 81, at 73-86; Samuelson, supra note 79; supra note 189 and accompanying

text.

[Vol. 66:265302

SOFTWARE'S COPYRIGHT ANTICOMMONS

concerns because of the collaborative, interconnected nature of modern
software innovation.

D. Android's Java Problem

Google's Android operating system for mobile devices is a collaboratively
built software platform. While Google takes the lead in engineering and
releasing new versions of the software platform, the project is made available
under a variety of open source software licensing terms.216 This licensing
scheme means that any third party can take and use Android as it wishes, so
long as it complies with the relevant licensing conditions.217 Amazon, for
instance, has done exactly that in using Android in its various mobile
devices.218 These licensing terms also mean that a variety of third parties can
and do contribute to the official version of Android that Google maintains and
releases.219 Furthermore, Android was built using object-oriented
programming, meaning it includes a variety of software objects from third-
parties.220 As a result, Android contains copyrighted contributions from
numerous third parties, as well as materials that Google has incorporated into
the project itself.221

Some of the materials that Google incorporated into Android include thirty-
seven of Oracle's Java APIs. As discussed throughout, APIs can generally be
understood as software technologies that make it possible for different
software programs to interact with each other and share data, without having to
otherwise rewrite each individual program.222 APIs are incredibly important;
they enable many things that computer users take for granted, such as being

216 For a general overview of Android, see Hildenbmnd, supra note 123.
217 See Licenses, ANDROID, https://source.android.com/source/licenses.html (last visited Oct. 18, 2016)

(providing an overview of the terms under which Android is made available to the public).
218 Greg Lamm, How Amazon Uses Android for Kindle Fire, but Cuts Google Out, PUGET SOUND BUS. J.

(Jan. 24, 2012, 8:22 AM), http://www.bizjournals.com/seattle/blog/techflash/2012/01/how-amazon-uses-
andorid-for-kindle-fire.html.

219 See, e.g., Contributing, ANDROID, https://source.android.com/source/contributing.html (last visited
Oct. 18, 2016) (encouraging external parties to contribute software to the Android project). Of course, Google
ultimately decides which contributions make it into the official version of Android. Id.

220 See generally Android Architecture, EASYTUTZ (Feb. 3, 2015), http://www.eazytutz.com/android/

android-architecture/ (describing Android's architecture in detail).
221 See, e.g., Google Individual Contributor License Agreement, GOOGLE DEVELOPERS, https://

cla.developers.google.com/about/google-individual (last visited Oct. 18, 2016) (making clear that contributors
retain copyright ownership in their contributions, while granting permissive licenses to other developers and
users of the Android project).

222 Brian Proffitt, What APIs Are and Why They're Important, READWRITE (Sept. 19, 2013), http://
readwrite.com/2013/09/19/api-defined.

2017] 303

EMORY LAW JOURNAL

able to copy text from one application to another or having the Yelp app
display nearby restaurants on a Google Map in the app.223

When Google elected to incorporate the Java APIs into Android, it did so
for a number of reasons that are relevant to this Article's inquiry.224 First, the
Java APIs had become an industry standard; programmers were accustomed to
creating their applications using the Java programming language and
incorporating these APIs in order to perform the types of computing functions
that the APIs specify.225 Hence, though Google could have developed their
own nomenclature for similar computing functions, doing so would have been
inefficient, both from the company's perspective and that of third party
programmers.226 For instance, programmers would have had to completely
rewrite many of their software programs in order to make them work properly
with Android.227 And even if third party programmers did write applications
from scratch for use with Android, their preexisting familiarity with the Java
APIs made choosing those APIs for Android a natural choice for Google.228 In
other words, the interconnectedness of software innovation in today's world
made incorporating the APIs into Android imperative.

Second, in addition to these efficiency considerations, Java technologies
also presented a number of technical merits when compared to other options.229

Sun Microsystems had built the Java technologies with the intention to make it
simpler for them to seamlessly work across a variety of heterogeneous
software and hardware platforms.230 Thus, despite the Java solutions having a
number of technical shortcomings in this regard (which Google sought to
overcome in Android), the basic design of Java technologies still presented
significant technical merits in fostering collaboration and interoperability.
Furthermore, Sun released much of the Java technology to the public under

223 id
224 Stephen Shankland, Android, Java, and the Tech Behind Oracle v. Google (FAQ), CNET (Apr. 20,

2012, 4:00 AM), http://www.cnet.com/news/android-java-and-the-tech-behind-omcle-v-google-faq/ (laying
out the history of Google's adoption of Java technology as part of Android and providing many of the
rationales for this adoption).

225 id
226 id.
227 id
228 Indeed, as one senior engineer at Google at the time of Google's decision to use Java for Android said,

all the alternatives to Java "sucked." Richard Waters, Android Boss on the Alternatives to Licensing Java:
"They All Suck", FINANCIAL TIMEs: TECH BLOG (Aug. 3, 2011, 6:16 PM), http://blogs.ft.com/tech-
blog/2011/08/android-boss-on-the-alternatives-to-licensing-java-they-all-suck/.

229 Id; see also Shankland, supra note 224.
230 Shankland, supra note 224.

[Vol. 66:265304

SOFTWARE'S COPYRIGHT ANTICOMMONS

open source software licensing terms, thereby encouraging third parties to
adopt and further develop these technologies.231 Collaboration and
interoperability were thus important foundations of the Java technologies. And
these foundations were important considerations when Google elected to
incorporate the Java APIs into Android.232

The story of Android shows how the collaborative, interconnected nature of
much software development leads to many of the anticommons concerns
discussed above. For instance, parties wishing to use Android (or pieces
thereof) must undertake significant efforts in reviewing the relevant copyright
licenses and complying with the terms thereof As briefly mentioned above,
these types of compliance efforts are pervasive and relate not only to the use of
Android, but to collaboratively built projects more generally.23 3 But Android is
no ordinary project-its ten million lines of code mean that potential users
must take into account thousands of separate copyright interests subject to a
variety of different license requirements.234 The end result is reduced-or at
least slowed-adoption of different pieces of the project as potential users
grapple with this vast sea of copyright interests.

Indeed, while standardization of the relevant licenses and compliance
automation tools may help ease this burden, the reality is that parties cannot
fully rely on such standardization and automation if they wish to fully comply
with all relevant copyright licenses.235 And while a general spirit of liberality

231 China Martens, Sun Open Sources Java Under GPL, INFOWORLD (Nov. 13, 2006),
http://www.infoworld.com/article/2660378/application-development/sun-open-sources-java-under-gpl.htmil
(discussing Sun's decision to make several core Java technologies available under permissive licensing terms).

232 Shankland, supra note 224.
233 See, e.g., Michael Dolan, Why Companies that Use Open Source Need a Compliance Program,

LINUXCOM (June 1, 2015), https://www.linux.com/news/featured-blogs/205-mike-dolan/833369-why-companies-
that-use-open-source-need-a-compliance-progmm (discussing the rising use of collaboratively built software
and the need for companies making such use to ensure compliance). Indeed, prominent lawyers in this field of
law have written books on best practices relating to compliance. See generally HEATHER MEEKER, OPEN
(SOURCE) FOR BUSINESS: A PRACTICAL GUIDE TO OPEN SOURCE SOFTWARE LICENSING (2015) (providing
nearly 300 pages of compliance tips for businesses intending to use collaboratively built software).
Furthermore, companies exist whose primary business consists of helping users of collaboratively built
software comply with the relevant licensing terms. Eg., Open Source License Compliance & Governance,
BLACK DUCK, https://www.blackducksoftware.com/solutions/compliance (last visited Oct. 18, 2016).

234 See Lee, supra note 15.
235 See Ibrahim Haddad, 7 Steps to Strengthen Your Open Source Compliance, SAMSUNG OPEN SOURCE

GROUP (May 4, 2015), http://blogs.s-osg.org/7-steps-to-strengthen-your-open-source-compliance/ (providing a
detailed look at best practices in ensuring compliance with open source software licensing terms, some of
which rely on growing automation, but many of which can never be fully automated). For an example of a full-
length book dedicated to explaining how best to address compliance issues relating to use of open source
software, see Meeker, supra note 233.

2017] 305

EMORY LAW JOURNAL

relating to the project may help assuage fears of copyright infringement
allegations, the reality is that many collaborative developers are growing more
assertive in enforcing their copyright interests against those they believe do not
strictly comply with the relevant licensing terms.236

Of course, another view is that these potential anticommons concerns pale
in comparison to the benefits of the software commons that collaborative
licensing models have helped build, as discussed above. Hence, copyright,
whatever problems it entails, may actually ensure the success of collaborative
software innovation.237 It does so in some cases, for instance, by requiring that
users of the collaboratively built software make their improvements to such
software available to the public under the same liberal terms.238 But Android is
not good evidence in support of this argument, since much of Android is
subject to licensing terms that make no such requirement.239 Furthermore, as I
have argued above240 and elsewhere,241 it is increasingly doubtful that
copyright actually plays these purported roles effectively, particularly in light
of the growing anticommons concerns described in this Article.

The recent Oracle v. Google decision may exacerbate these anticommons
concerns. As briefly mentioned supra, in Oracle v. Google the Court of
Appeals for the Federal Circuit overturned the district court's decision, ruling
that the Java APIs were subject to copyright and remanding the case to the
district court for a fuller consideration of Google's fair use arguments.242

Google filed a petition for writ of certiorari with the Supreme Court in 2015,
but its request was denied.243 On remand, the district court jury found that

236 For instance, the Software Freedom Conservancy launched the "GPL Compliance Project for Linux
Developers" project in May 2012 as an effort to help developers enforce their copyrights against parties failing
to comply with the applicable license terms. See Conservancy's Copyleft Compliance Projects, SOFTWARE
FREEDOM CONSERVANCY, https://sfconservancy.org/linux-compliance/ (last visited Nov. 9, 2015); see also
supra note 179 and accompanying text. Of note, Android includes parts of Linux. Android is Based on Linux,
but What Does That Mean?, How-To-GEEK, http://www.howtogeek.com/189036/android-is-based-on-linux-
but-what-does-that-mean/ (last visited Oct. 18, 2016).

237 Moglen, supra note 107, at 21-23.
238 Id. at 20-23.
239 Much of Android is subject to the Apache 2.0 license, which mainly requires that users of the code

include in their own distributions of the same code relevant copyright notices and a copy of the Apache
license. See Licenses, ANDROID, https://source.android.com/source/icenses.html (last visited Dec. 8, 2015).

240 See notes 182-87 and accompanying text.
241 Supra note 22 and accompanying text.
242 Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1348 (Fed. Cir. 2014).
243 Google Inc. v. Oracle Am., Inc., 135 S. Ct. 2887, 2887 (2015).

[Vol. 66:265306

SOFTWARE'S COPYRIGHT ANTICOMMONS

Google's use of the Java APIs was a fair use.244 Nonetheless, the decision is
likely to be appealed, leaving some ongoing legal uncertainty.245 Furthermore,
as discussed above, other circuits have not addressed the precise issue in
Oracle v. Google. Hence, this continuing lack of legal certainty increases
anticommmons concerns because it provides any number of parties whose
software technologies are found in Android with a colorable legal claim
against Google, users of Android, and developers of Android.246

III. ADDRESSING ANTICOMMONS CONCERNS IN THE SOFTWARE WORLD (AND

ELSEWHERE)

The previous Part argued that the collaborative, interconnected nature of
much modem software innovation means that anticommons concerns will
increasingly bedevil the software industry and information technology sector
more generally. For instance, these characteristics of modem software
innovation mean, simply put, that numerous copyright interests may be present
in any given software solution or ecosystem, which increase the risks of any
given copyright holder asserting or using their rights in ways that inhibit
collective use of the resource. Part II also briefly examined Oracle's copyright
suit against Google's Android as one recent, high-profile example of some of
these anticommons concerns at play. The question then becomes: what, if
anything, can be done to help alleviate these issues?

This Part explores one potential answer to that question. It assesses the
merits of adapting copyright law's fair use defense to the collaborative,
interconnected realities of much modem software innovation. The following
sections discuss how these adaptations may be made.

Before proceeding to that analysis, however, it should be noted that other
options for addressing these issues exist. For instance, scholars have long
argued that software interfaces, because of their functional nature, should not
be subject to copyright at all.247 And several courts have ruled along these lines
in the past, including the district court in the Oracle v. Google case (before the

244 Kate Conger, Jury Finds Google 's Implementation of Java in Android Was Fair Use, TECHCRUNCH
(May 26, 2016), http://techcrunch.com/2016/05/26/jury-finds-googles-implementation-of-java-in-android-was-
fair-use/.

245 Mullin, supra note 193.
246 Pamela Samuelson, Why Google's Fair Use Victory over Oracle Matters, THE GUARDIAN (May 31,

2016, 5:25 PM), https://www.theguardian.com/technology/2016/may/31/google-fair-use-victory-omcle-software-
androids (describing the types of parties that may be liable had Oracle won the fair use trial).

247 Samuelson, supra note 79, at 14-16.

2017] 307

EMORY LAW JOURNAL

Federal Circuit ultimately overturned its decision).248 In general, I agree with
the reasoning of these scholars and courts. But I still assess fair use as a
possible solution since fair use is the relevant inquiry in ongoing cases, such as
Oracle v. Google, and is likely to be the relevant inquiry in future cases as
well. Furthermore, these scholars and courts have limited their analyses to
whether software interfaces should be subject to copyright, while this Article's
analysis is broader. In other words, some of the software in today's
collaborative, interconnected software industry is and clearly should be subject
to copyright, but fair use may still play a role in allowing for its use without
infringement liability.

Another option for dealing with these types of anticommons issues is a
compulsory license regime, similar to what exists in the world of music.249 A
compulsory licensing regime in the software world would mean that third
parties could use the copyrighted software so long as they paid a fee, either set
by regulators250 or a collective rights organization.251 Indeed, some legal theory
suggests that addressing anticommons problems through these types of liability
rules is the correct approach.252

But even if this is theoretically true, the practical and political hurdles in
implementing a compulsory licensing regime are significant. For instance,
compulsory licensing regimes in other areas such as music are plagued with
problems of their own, and many of these same problems are likely to surface
in the software context as well.253 Fair use, on the other hand, provides a
flexible tool that is well-suited to addressing instances of market failure.254

248 See Corynne McSherry, Dangerous Decision in Oracle v. Google. Federal Circuit Reverses Sensible

Lower Court Ruling on APIs, ELEC. FRONTIER FOUND. (May 9, 2014), https://www.eff.org/deeplinks/
2014/05/dangerous-ruling-omcle-v-google-federal-circuit-reverses-sensible-lower-court.

249 For a brief but excellent overview of some music copyright basics, see Kristelia A. Garcia, Facilitating

Competition by Remedial Regulation, 31 BERKELEY TECH. L.J. 183 (2016).
250 Id. at 192-96.
251 For a discussion of how these collective rights organizations operate as public-private hybrid solutions

to transaction-cost problems, see Peter DiCola & Matthew Sag, An Information-Gathering Approach to
Copyright Policy, 34 CARDOZOL. REV. 173, 208-09 (2012).

252 See Guido Calabresi & A. Douglas Melamed, Property Rules, Liability Rules, and Inalienability. One
View of the Cathedral, 85 HARV. L. REv. 1089, 1127 (1972).

253 See, e.g., Jane C. Ginsburg, Copyright and Control over New Technologies of Dissemination, 101
COLUM. L. REv. 1613, 1642-45 (2001) (describing problems with statutory licensing schemes); Mark A.
Lemley, Dealing with Overlapping Copyrights on the Internet, 22 U. DAYTON L. REv. 547, 583 (1997) (noting
the complexity of compulsory licensing schemes); Robert P. Merges, Contracting into Liability Rules.
Intellectual Property Rights and Collective Rights Organizations, 84 CAL. L. REv. 1293, 1308-16 (1996)
(providing critiques of compulsory licensing regimes).

254 See supra note 43 and accompanying text.

[Vol. 66:2653089

SOFTWARE'S COPYRIGHT ANTICOMMONS

And while many have lamented its unpredictability, others have shown that
fair use is not so uncertain as claimed, instead highlighting it as an increasingly
important tool in helping solve many important modem copyright questions.255

The following sections assess how fair use may be adapted to help address one
such copyright dilemma: growing anticommons concerns in today's software
world.

A. Rebooting Fair Use

Fair use has long been a primary means of permitting socially beneficial
uses of copyrighted materials that, absent the defense, would infringe a
copyright holder's rights.256 Google, for instance, successfully relied on the
defense in copying and digitizing, without permission, millions of books for
use in its Google Books project.257 Fair use has also played a significant role in
allowing important technologies such as VCRs 258 and Internet search

259
engines.

Over the years, fair use has also grown in importance in the software
context.260 In Sega v. Accolade, for instance, the Ninth Circuit found
Accolade's copying and disassembling of Sega's software in order to make
compatible games for Sega's gaming consoles to be a fair use.261 Subsequent

255 Tushnet, supra note 44, at 871 ("Critics charge that fair use is unpredictable and inconsistent with the
rest of copyright law, but-like many a building material-a doctrine can be both flexible and also strong
enough to support reliance."); see also Michael J. Madison, A Pattern-OrientedApproach to Fair Use, 45 WM.
& MARY L. REV. 1525, 1528-30 (2004); Neil Weinstock Netanel, Making Sense of Fair Use, 15 LEWIS &
CLARK L. REV. 715, 718 (2011); Matthew Sag, Predicting Fair Use, 73 OHIO ST. L.J. 47 (2012); Pamela
Samuelson, Unbundling Fair Uses, 77 FORDHAM L. REV. 2537, 2541 (2009).

256 See Lydia Pallas Loren, Fair Use: An Affirmative Defense?, 90 WASH. L. REV. 685, 686 (2015) ("No
one doubts that the fair use doctrine is a critically important part of U.S. copyright law" because it "provides a
guarantee of 'breathing space within the confines of copyright"' (quoting Campbell v. Acuff-Rose Music, 510
U.S. 569, 579 (1994))).

257 Robinson Meyer, After 10 Years, Google Books Is Legal, THE ATLANTIC (Oct. 20, 2015), http://
www.theatlantic.com/technology/archive/2015/10/fair-use-transformative-leval-google-books/411058/.

258 Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 454-56, (1984) (denying a claim of
contributory copyright infringement because VCRs are capable of substantial non-infringing uses such as time-
shifting home videos, which was deemed fair use of the copyrighted material).

259 Perfect 10 v. Amazon.com, Inc., 508 F.3d 1146, 1168 (9th Cir. 2007) (finding Google's display of
thumbnail versions of copyrighted material in its search results constituted fair use).

260 See, e.g., Stephen M. McJohn, Fair Use of Copyrighted Software, 28 RUTGERS L.J 593 (1997)
(examining Supreme Court cases where fair use played a key role and proposing additional modifications to
the doctrine so as to foster creativity); Samuelson, supra note 81 (reviewing some of the early software-related
cases establishing how fair use applies to use of copyrighted software).

261 977 F.2d 1510, 1518, 1524-25 (9th Cir. 1993).

2017] 309

EMORY LAW JOURNAL

cases have similarly relied on fair use in determining questions of copyright
infringement with respect to software goods and services.262

Yet despite these cases, a number of scholars have expressed concern that
the fair use defense is not adequately tailored to address modem technological
environments.263 For instance, the fair use test consists of four non-exhaustive
factors,264 yet none of those factors explicitly takes into account how use of the
copyrighted work may impact technological innovation.265 Application of
traditional fair use principles may thus prove insufficient in rendering
decisions that promote, rather than hinder, modern technological innovation.

Such a concern is particularly poignant in the software world because of
software's technological, utilitarian nature. Indeed, because software is itself a
type of technology, questions about its uses will frequently concern
technological considerations. Yet because the fair use inquiry on its face is
agnostic to technological considerations, courts may often apply the fair use
factors in software cases in ways that ignore, or at least give insufficient
attention to, such considerations.

Furthermore, as discussed in Part II, software innovation in today's world
is increasingly collaborative and interconnected. Yet traditional fair use
principles are not specifically geared towards these new technological realities
either. Fair use may thus increasingly fail to strike a productive balance among
the multitude of creators in today's collaborative, interconnected software
world.

For instance, though a long line of software cases has applied fair use in a
way that allows for use of copyrighted software to promote interoperability,266

the fair use factors on their face do not dictate this outcome. And in light of
cases such as the Federal Circuit's decision in Oracle v. Google, which seemed
to downplay the role of interoperability in assessing copyright questions more

262 See Samuelson, supra note 255, at 2605-10 (reviewing case law subsequent to the Sega case applying

fair use principles to software-related copyright disputes).
263 See, e.g., Asay, supra note 49 (2016) (arguing that the fair use defense should incorporate principles

from patent law to better promote technological innovation); Edward Lee, Technological Fair Use, 83 S. CAL.
L. REV. 797 (2010) (arguing for better adapting the fair use defense to situations where speech technologies are
used in conjunction with copyrighted materials).

264 17 U.S.C. § 107 (2012) (laying out the fair use factors).
265 Lee, supra note 263, at798-801.
266 See, e.g., Pamela Samuelson, supra note 79 (tracing the evolution of intellectual property law

protection for software application progmnuming interfaces).

[Vol. 66:265310

SOFTWARE'S COPYRIGHT ANTICOMMONS

generally,267 there are grounds for concern that the growing interoperability
needs of modem software developers will receive insufficient attention in
resolving future copyright disputes.

This Article thus suggests that interoperability needs, as well as the
collaborative nature of much modem software innovation, deserve greater
consideration when courts assess fair use in the software context. In order to
show how courts could structure the fair use inquiry accordingly, this Article

dissects fair use into its component parts and analyzes each separately.

A fair use inquiry typically involves assessing four non-exhaustive

statutory factors: (1) the purpose and character of the use, (2) the nature of the
copyrighted work, (3) the amount and substantiality of the copyrighted work
used, and (4) the use's effect on the market for or value of the copyrighted
work.268 Courts often give most weight to the purpose and character of the use
factor-i.e., whether the use is "transformative" or not-as well as the use's
effect on the market for or value of the copyrighted work. 269 But no one factor
is dispositive.27 0 The following sections discuss how the collaborative,
interconnected nature of much modem software innovation might be better
reflected when taking these four factors into account.

1. Factor One- Whether the Use Is "Transformative"

As mentioned, courts are much more likely to find fair use if the user of the
copyrighted work makes a "transformative" use of the copyrighted material.
While it is difficult ex ante to know whether a particular use is transformative,
the inquiry generally focuses on whether "the new work merely 'supersede[s]
the objects' of the original creation" or whether and to what extent it alters the
original "with new expression, meaning, or message."27 1 Hence, if the
subsequent user of the copyrighted material adds no new expression or
meaning to the original, and fails to put the copyrighted material to novel uses,

267 750 F.3d 1339, 1376-77 (Fed. Cir. 2014).
268 17 U.S.C. § 107 (2012).
269 See Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 579 (1994) ("[T]he more tmnsformative the

new work, the less will be the significance of other factors "); 4 MELVILLE B. NIMMER & DAVID NIMMER,
NIMMER ON COPYRIGHT § 13.05[A][4] (stating that the fourth factor often "emerges as the most important, and
indeed, central" factor in fair use cases) (citations omitted)); Joel L. Hecker, The Wave of the Future or Blatant
Copyright Infringement?, N.Y. ST. B. J. 44, 45 (2007) (indicating that courts have traditionally given the most
weight in a fair use analysis to the first and fourth factors).

270 Campbell, 510 U.S. at 577-79; Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 455 n.40
(1984) (both indicating that no one factor is dispositive).

271 Campbell, 510 U.S. at 577-78.

2017] 311

EMORY LAW JOURNAL

that user is less likely to have engaged in a transformative use of the
copyrighted material. And a successful fair use defense becomes, accordingly,
less likely. Conversely, if the subsequent user puts the copyrighted materials to
uses that go beyond the original aims of those materials-and thereby adds
new meaning to them-that user is more likely to have engaged in a
transformative use and thus be eligible for a successful fair use defense.

By way of example, courts have often found parodies of copyrighted works
to be transformative because a parody uses a copyrighted work to comment on
it critically.27 2 Parodic uses, therefore, add new meaning or expression to the
original work and do not simply mimic it.273 Conversely, copying and
archiving magazine articles for one's later research purposes may not be
transformative because the copies serve the same purposes as the original
articles.274

In the software context, some courts have found transformative use when
parties reverse engineer their competitors' software in order to gain access to
functional elements of the software for use in creating competing products.275

These competing products were considered transformative because, although
commercially competitive, they were different from, and perhaps
improvements upon, their competitors' products.276 Furthermore, the
competitive products did not include copyrightable material from the copyright
holder, but functional elements of the software instead.277 These earlier cases
thus point to some fair use case law finding that making intermediate copies of
copyrighted works in order to create competitive goods that can interoperate
with the competitor's products involves a transformative use.

But the interoperability and collaboration needs of the modem software
industry go beyond what these cases may support. Indeed, these earlier cases
often have a similarly narrow fact pattern: a party copies its competitor's
software in order to gain access to functional, non-copyrighted parts of the
software that are necessary to create products that are compatible with those of
the competitor's. Furthermore, these cases also seem to depend on a finding
that part of what was copied and used in the competitive product was not
subject to copyright at all. But what happens if the copying is done simply in

272 Id. at 579.
273 id
274 Am. Geophysical Unionv. Texaco Inc., 60 F.3d 913, 924-25 (2d Cir. 1995).
275 Sony Comput. Entm't., Inc. v. Connectix Corp., 203 F.3d 596, 602-03 (9th Cir. 2000).
276 Id at 602, 606.
277 Id at 602-03.

[Vol. 66:265312

SOFTWARE'S COPYRIGHT ANTICOMMONS

order to promote interoperability and collaboration more generally? And what
should the outcome be if the copied software is more extensive than a few lines
of functional code?

The Oracle v. Google case implicates some of these very questions. As
discussed, Google copied the Java APIs in significant part because
programmers were accustomed to programming software in the Java
programming language and using the associated Java APIs. Hence, because the
Java APIs had become an industry standard, Google wanted to include that
standard in Android so that developers could more readily collaborate with the
company in creating compatible software products.278 Google also copied the
elaborate taxonomy of thirty-seven Java APIs in their entirety, rather than
merely a few snippets of software code.279 While these APIs were still
functional in important respects, their creation and organization into an
extensive taxonomy makes it easier to distinguish their uses from those
implicated in earlier software fair use cases.

It is thus unclear, at least based on existing precedent, whether these
broader types of collaborative, interconnected uses are transformative under
the traditional fair use inquiry. Of course, as others have argued, it may be the
case that such uses should be permitted for a different reason altogether: the
functional software elements copied should not be subject to copyright
protection at all.28 0 But as mentioned, it may be more difficult to sustain this
type of argument when a party, rather than copying some minimal amount of
functional code so that its own products work on a competitor's platform,
instead copies an elaborate software taxonomy from another party's product in
order to create a product that in some sense displaces that other party's
technologies.281 Indeed, as the Federal Circuit noted in Oracle v. Google, such
elaborate software taxonomies certainly entail significant amounts of
creativity, and clearly enough under copyright's low threshold to qualify for
copyright protection.282

278 The Federal Circuit, in fact, held this against Google, calling Google's interoperability arguments
"confusing" because Google "designed Android so that it would not be compatible with the Java platform."
Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1371 (Fed. Cir. 2014). The broader interoperability rationales
of Google, therefore, did not hold much sway with the Federal Circuit. Id.

279 Id at 1347.
280 See, e.g., Samuelson, supra note 192, at 702.
281 Oracle, 750 F.3d at 1376-77.
282 Id at 1364-71.

2017] 313

EMORY LAW JOURNAL

Hence, if these types of software technologies are subject to copyright and
existing fair use cases provide insufficient support for finding that their reuse is
protected, then fair use needs a modem reboot so that fair use better facilitates
modem software innovation. This Article proposes that uses for purposes of
interoperability, broadly defined, should generally weigh in favor of finding a
use to be transformative. Interoperability broadly defined naturally includes
using another party's software in order to make one's products compatible with
the copyright holder's goods and services, as many of the older cases find. But
permissible uses would also include reusing another party's software
technologies in order to increase compatibility with the broader universe of
software technologies, similar to what Google did with the Java APIs.

This broader acceptance of interoperability in the transformative use
analysis should not be confined, however, to software interfaces. As discussed
throughout, object-oriented programming is an important foundation of
collaborative software innovation. But this building-block approach to
software development also means that some copyright holder of a software
object within a particular software stack could become an obstacle to the entire
stack's use. Hence, parties using the stack should have greater leeway to use
software objects within it to the extent that these parties add new,
transformative expression to the original object, and also to the extent that the
software object has become an industry standard so that its absence would
frustrate collaborative innovation more generally.

This broader acceptance of interoperability in the transformative use
inquiry aligns with the inquiry's goal of ensuring that subsequent uses of the
copyrighted work supersede the purposes of the original creation or add new
expression, meaning, or message to it. For instance, reuse of software
technologies such as software interfaces or objects in order to promote
compatibility more generally will often result in the use of these software
technologies in completely new contexts, such as enabling otherwise
distinctive software services to exchange data in an ever-expanding Internet of
Things economy.

Another example is Google's use of the Java APIs. As discussed, the
original purpose behind the Java APIs was to allow for compatibility with
specific Sun-created Java technologies.28 3 Google's reuse of the Java APIs in
order to facilitate greater compatibility and collaboration outside of strictly

283 Id. at 1348.

[Vol. 66:265314

SOFTWARE'S COPYRIGHT ANTICOMMONS

Sun/Oracle products thus represents a different purpose than that of the
original creation, and arguably one with greater societal potential. Indeed,
according to some accounts, Android has completely transformed the mobile
computing industry and powered innovation in the smartphone market since its
introduction in 2008.284

Of course, if a party copies third-party software in the name of
interoperability and collaboration, but in reality simply invokes these
principles in order to reproduce the copyrighted holder's own software
product, then such uses would clearly not be transformative. For instance, if
Google had copied the Java APIs as well as the "implementing code" for
carrying out the functions that the APIs specified, a finding of transformative
use would be unwarranted. In such a case, Google would have simply copied
Oracle's product and sought, with perhaps some minimal changes, to displace
it on the market.

But in Android's case, Google created its own implementing code, virtual
machine, and Java-based software platform and added many of its own APIs
and software objects from third parties.28 5 As mentioned, Android incorporated
the Java APIs because they represented a widely used programming
nomenclature. But there is little if any credence to a claim that Android is
merely a copy of some Oracle product. Indeed, Oracle and its predecessor,
Sun, had largely failed to create with the Java APIs what Google built with
Android.28 6 It is thus difficult to argue that Google's use of the Java APIs in
Android served the same purpose as Oracle's use of the APIs with its
technologies, or that Android's use thereof failed to add new meaning or
expression.

Hence, where parties such as Google use another party's software
technologies to create a vastly different software program that is compatible

284 See Glenn Chapman, Analysts Say Google Is Just Trying Harder' Than Apple, and Android
Innovation Is Racing Ahead, BUS. INSIDER (Nov. 18, 2012, 5:31 PM), http://www.businessinsider.com/
android-innovation-is-faster-than-apple-2012-11 (suggesting that Android innovation has outpaced the
competition since its introduction in 2008); Anton Wahlman, Apple Desperately Copies Google 's 2008
Features but Passes on Innovation, THE STREET (June 6, 2014, 5:25 PM), http://www.thestreet.com/story/
12730613/1/apple-desperately-copies-googles-2008-features-but-passes-on-innovation.html (suggesting that,
in 2014, Apple's most recent improvements to its iPhones simply mimic innovations that Google introduced
with Android at its inception).

285 See generally Ron Amadeo, The History of Android, ARSTECHNICA (June 15, 2014, 9:00 PM),
http://arstechnica.com/gadgets/2014/06/building-android-a-40000-word-history-of-googles-mobile-os/.

286 Larry Dignan, Google: Oracle, Sun Blew It on a Java Smartphone, CNET (Apr. 18, 2012, 5:46 AM),
http://www.cnet.com/news/google-omcle-sun-blew-it-on-a-java-smartphone/.

2017] 315

EMORY LAW JOURNAL

with developers' software applications and development needs more generally,
then such uses appear to be transformative in important respects because they
"supersede the objects of the original work" and add "new expression,
meaning, or message" to the underlying work.287 Indeed, if the touchstone of
the transformative use inquiry is societal benefit resulting from the new uses,
then allowing uses that promote interoperability and collaboration broadly
defined has much in its favor.

Of course, expanding what counts as a transformative use always runs the
risk of colliding with a copyright holder's right to prepare derivative works,
one of a copyright holder's exclusive rights.288 But this seems less concerning
when reusing modular software objects. They are by definition self-contained,
and the newcomer, in connecting their new object with these preexisting
objects, does not "recast, transform, or adapt" the underlying work in a way
that the Copyright Act would seem to cover.28 9 Similarly, software interfaces
simply allow modular products to interface; users of those interfaces thus
typically do not modify them, but instead use them as they are to enable
distinct software programs to interoperate in new, creative ways. Hence, while
a broad reading of "derivative works" could capture these types of uses, an
arguably better reading is that these types of uses are not derivative of the
underlying works in any vital respect.

2. Factor Two Nature of the Copyrighted Work

The second factor of a fair use analysis concerns "the nature of the
copyrighted work." 290 This factor recognizes "that some works are closer to the
core of intended copyright protection than others," with the consequence that
fair use is more difficult to establish when highly creative works are copied.2 9'
Examples of highly creative works may be fictional short stories292 or
movies.293 Furthermore, if a work has not yet been disseminated publicly, then

287 Campbell v. Acuff-Rose Music, 510 U.S. 569, 576-79 (1994).
288 17 U.S.C. § 106(2) (2012).
289 The definition of "derivative work" under the Copyright Act is somewhat amorphous and broad. See

17 U.S.C. § 101 (2012). But the examples and criteria provided seem to indicate that the work must somehow
be modified, which in the case of modular software products is not the case. See id. Indeed, that is one of the
primary virtues of object-oriented programming-one can reuse preexisting software objects with new ones
without having to modify the preexisting ones.

290 17 U.S.C. § 107 (2012).
291 Campbell, 510 U.S. at 586.
292 Stewartv. Abend, 495 U.S. 207, 237-38 (1990).
293 Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 445 n.40 (1984).

[Vol. 66:265316

SOFTWARE'S COPYRIGHT ANTICOMMONS

copying that work is less likely to be found fair because of its unpublished
nature.294 Conversely, if the copied work is mostly factual in nature-for
instance, a biography or news broadcast-or has been published, then these
factors are more likely to weigh in favor of fair use under the second factor.295

When assessing this factor in the software context, some courts have noted
that software poses unique challenges because functional considerations often
influence a software work's design.296 And works that have "strong functional
elements" are similar to factual works in that they are not entitled to as much
copyright protection.297 Hence, in the context of a software copyright dispute,
this second factor will often weigh in favor of finding fair use because of
software's functional characteristics.

But the collaborative nature of much modem software innovation, as well
as growing interoperability needs within the software industry, have not
received explicit attention under this second factor in assessing fair use in the
software context. They should for at least two reasons. First, the U.S. Supreme
Court has made clear that when works are unpublished, a fair use defense to
copying that work is less likely to succeed.298 A corollary to that premise is
that published works should receive greater fair use consideration.299 In the
case of collaboratively built software, this condition is clearly met. Indeed, one
of the key points of collaborative models of software innovation is to make the
software widely available to the public.300

Second and relatedly, these types of software works have been made
available with a clear intent to encourage widespread use of the software. In
other words, not only have such works been published, they have been
published in a manner that abandons typical limitations on use and instead
grants users broad freedoms in hope of encouraging ongoing use of the
software. As discussed, copyright holders have made available significant
numbers of important software works in this manner.301 Indeed, Sun made
many of its Java technologies available under liberal terms as far back as

294 Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539, 563-64 (1985).
295 Id; cf Jake Linford, A Second Look at the Right ofFirst Pubhlication, 58 J. COPYRIGHT Soc'y U.S.A.

585 (2011) (agreeing that a work's publication pushes in favor of fair use but questioning the logic of this
result).

296 Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1524 (9th Cir. 1993).
297 id
298 Harper & Row, 471 U.S. at 563-64.
299 But see Linford, supra note 295.
300 See supra Part IIA.
301 id

2017] 317

EMORY LAW JOURNAL

2006.302 And in the face of Google's adoption of the Java APIs, Sun took no
adverse action against Google, even seeming to encourage the use.303 It was
only later, when Oracle acquired Sun and its assets, that Oracle brought a
copyright lawsuit against Google.

Hence, when liberally released software is copied but then later becomes
subject to a copyright dispute, as in Oracle v. Google, courts should take into
account as part of the fair use inquiry the permissive manner in which
copyright holders have made the works publicly available, either expressly
through licensing terms or tacitly through acquiescence to use. And typically,
these considerations should weigh in favor of fair use under the "nature of the
copyrighted work" factor.

This is not to argue that liberally released copyrighted software should
become, effectively, public domain material not subject to copyright at all.
Indeed, liberally licensed works often include conditions of use that are
important to the copyright holder.304 But if a party releases copyrighted
software works to the public under liberal terms (or perhaps no express terms
at all), then arguably the nature of the work changes given the circumstances of
its release. Hence, the work, while still subject to copyright, should also
become subject to the ongoing collaboration and interoperability needs of users
that may have adopted the technologies precisely because of such terms.305

Taking into account the functional realties of software can help play a role
in policing how broad these ongoing rights should be. As mentioned, the
functional nature of software already plays a role in assessing fair use in
software disputes under the "nature of the work" factor. And it would continue
to do so under this Article's rebooted conception of fair use. For instance, the
more functional the software elements copied, the more likely that the "nature
of the work" factor should weigh in favor of finding fair use. And this
favorable fair use outcome should be even more likely when the functional

302 Martens, supra note 231.
303 Farber, supra note 31.
304 Moglen, supra note 107, at 21.
305 In certain respects, this argument may be likened to a promissory estoppel argument under contract

law, where parties, despite the absence of a bargained-for contract, may still have some quasi-contractual
rights vis-i-vis the promisor because of reasonable reliance on the promise and considerations of equity. David
G. Epstein, Melinda Adbuckle & Kelly Flanagan, Contract Law's Two "P.E 's" Promissory Estoppel and the
Parol Evidence Rule, 62 BAYLOR L. REv. 397, 404-07 (2010). Similarly, in the software context, where a
party releases software to the public with express or tacit hopes of encouraging use thereof, the fair use inquiry
under the "nature of the work" factor should take this into account in determining whether users should have
ongoing rights with respect to the software.

[Vol. 66:265318

SOFTWARE'S COPYRIGHT ANTICOMMONS

software elements have been liberally released to the public, as discussed
above.

In sum, liberally released software elements that enable interoperability and
collaboration, such as APIs and certain software objects, are one good
candidate for a fair use finding based on the "nature of the copyrighted work"
factor within the fair use inquiry. At least two reasons support this conclusion.
First, these types of software elements are often strongly functional; they are
necessary to use in order to ensure compatibility with other software that relies
on the same or similar technologies. And second, because the copyright
holders in question initially released the functional software elements under
liberal terms (or otherwise tacitly encouraged use thereof), it seems inequitable
to then allow these same copyright holders to switch their stance once users
have taken the proffered bait.

3. Factor Three Amount of the Copyrighted Work Used

Factor three in the fair use inquiry takes into account the "amount and
substantiality of the portion used in relation to the copyrighted work as a
whole."306 In general, the more of a copyrighted work that another party
copies, the more difficult it becomes to sustain a fair use defense.307 But even
copying relatively small amounts can weigh against fair use if the copier takes
"the heart" of the copyrighted work.308 On the other hand, some courts have
still found fair use where a party copies the entire copyrighted work.309 Such
outcomes are still possible when, despite the wholesale copying, fair use's
other factors strongly militate in favor of fair use (e.g., because the use is
considered highly transformative).310

The collaborative, interconnected nature of much modem software
innovation should become more relevant to assessing this factor of the fair use
inquiry as well. For instance, copying software interfaces for compatibility or
collaboration purposes constitutes a limited amount of copying of the
underlying copyrighted work; interfaces divorced from the software that

306 17 U.S.C. § 107 (2012).
307 See NIvMER & NIMMER, supra note 269, at § 13.05[A] [3].
308 Harper & Row, Publishers v. Nation Enters., 471 U.S. 539, 564-65 (1985) (finding that copying even

small portions of an unpublished book weighed against fair use because the second user copied the "heart of
the book" (quoting Harper & Row, Publishers v. Nation Enters., 557 F. Supp. 1067, 1072 (S.D.N.Y. 1983))).

309 Sega Enters. v. Accolade, Inc., 977 F.2d 1510, 1526-27 (9th Cir. 1992) (citing Sony Corp. v.
Universal City Studios, Inc., 464 U.S. 417, 449-50 (1984)).

310 Id. at 1527.

2017] 319

EMORY LAW JOURNAL

actually implements them are only a small part of the larger software work.
Furthermore, interfaces are not the "heart" of the work, either. Instead, they are
simply a taxonomy of functions that many developers are either accustomed to
using or need to use so that their own software products are compatible with
technologies that employ the same interfaces. The heart of the software work
remains the software that performs the specified functions, both in the original
product and those products meant to interoperate with it through such
interfaces.

Of course, courts may frame the issue differently by viewing interfaces as
distinctly copyrightable works. For instance, the Federal Circuit in Oracle v.

Google appeared to view the APIs as a separately copyrightable work distinct
from the software that actually implements the computing functions that the

APIs specify.3 1' Under this view, copying the interfaces would thus constitute
copying the entire work. Furthermore, this characterization of the work may
also mean that the "heart" of the work was copied, since the copier uses the
interfaces for similar purposes for which they were originally designed (i.e., as
interfaces). Hence, if this characterization were to be accepted, it would likely
militate against a finding of fair use.

But viewing software interfaces in this way seems misguided for several
reasons. For instance, the Java APIs, and interfaces in general, serve no

purpose without software that implements the functions they specify; the

purpose behind interfaces is simply to identify commands that other software
performs.312 Hence, if no actual software implementing the interfaces is
present, the interfaces on their own have no value or purpose. Viewing the
interfaces divorced from the underlying software works, therefore, is in some
sense nonsensical because the interfaces have no independent practical reality,
even if they are identifiable in software source code files.

Of course, it is certainly possible to separate a single copyrightable work
into multiple, distinct copyright interests. A collective work such as a
newspaper, for instance, includes distinct copyrights in each article, photo, and

other creative material present in the newspaper issue, as well as a copyright in
the overall newspaper issue.313 Well-delineated characters, such as Superman
or Rocky, can also be separately copyrightable from the works in which they

311 See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1367-68 (Fed. Cir. 2014).
312 Proffitt, supra note 222.
313 U.S. COPYRIGHT OFFICE, FL-104 CONTRIBUTIONS TO A COLLECTIVE WORK (2016), http:!

www.copyright.gov/fls/fl104.pdf

[Vol. 66:265320

SOFTWARE'S COPYRIGHT ANTICOMMONS

appear.314 Furthermore, copyright merely requires that a fixed work entail
"independent creation" and "a modicum of creativity"; it includes no specific
requirement that a work be useful, independently or otherwise.315

But software is difficult to analogize to other types of copyrightable works
because of its utilitarian nature. For instance, with a newspaper, each separate
article or photo still has some purpose when separated from the overall
newspaper issue. An article still serves the purpose of providing whatever
message it conveys. And an accompanying photo still conveys some
information to the beholder of it, even if the article with which it was originally
paired adds context to that message.

Software interfaces, conversely, are strictly functional in carrying out the
specified functions and facilitating communication between software
products-if those software products are absent, the interfaces themselves do
nothing and convey no information to anyone that happens to observe them in
software source code. Hence, whatever creativity interfaces entail only
becomes present and relevant when they are paired with the software that
implements them.

Distinguishing copyrighted characters from software interfaces drives
home this point. For instance, characters in works only earn copyright
protection when the characters have been sufficiently delineated in the works
in which they appear.316 Or as one court put it, delineation of the character
must be such that the character constitutes "the story being told."3 17 While

characters can thus in some sense become independently copyrightable from
the underlying works, in reality their copyright depends on how the author has
developed the character in the underlying works. Indeed, even when well-
delineated characters such as Rocky appear in a sequel, they carry with them
into the sequel the characteristics delineated in the previous films. 318 Without
reference to those underlying works, therefore, it is nonsensical to discuss
copyright in those characters.

314 See Zahr K. Said, Fixing Copyright in Characters: Literary Perspectives on a Legal Problem, 35
CARDOZO L. REv. 769, 772-73 (2013).

315 Feist Publ'ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 346 (1991) (citing In re Trade-Mark Cases,
100 U.S. 82, 94 (1879)).

316 See Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).
317 Warner Bros. Pictures v. Columbia Broad. Sys., 216 F.2d 945, 950 (9th Cir. 1954).
318 See Said, supra note 314, at 815 n.235.

2017] 321

EMORY LAW JOURNAL

Software interfaces are different. When they appear in their version of a
"sequel"-a new software work such as Android, for instance-the
implementing software from the prior work that initially gave them an identity
is no longer present or even relevant. Instead, the new software that Google or
some other third party writes to implement the interfaces gives those interfaces
their new identity and purpose. Software interfaces may thus be likened to
copyrighted characters in that their copyright status depends on the software
that implements them. Without that implementing software, software interfaces
have no identity or purpose. But that is where the similarities with copyrighted
characters stop because software interfaces do not rely on earlier software
implementations for their identity in new contexts, such as when Google used
the Java APIs in Android. Instead, the new software context-Android-
provided those software interfaces a new reality. And that new reality as a
whole is what, arguably, should be subject to copyright.

Hence, the third factor under the fair use inquiry-the amount and
substantiality of the copyrighted work copied-should weigh in favor of fair
use when parties copy software strictly for interoperability and collaboration
purposes. And this conclusion is justified for at least two reasons. First, the
amount copied-typically software interfaces-is minimal when compared to
the software code necessary to implement the interfaces. Courts may reach
different conclusions if they treat software interfaces as distinctly
copyrightable works. But as discussed above, software interfaces should be
viewed together with the implementing software as a single work, since
breaking the work into component parts renders the separate works inoperable.
Second, while interfaces are important functionally, copying them for
compatibility and collaboration purposes does not result in the "heart" of the
work being used. The heart of the software work consists of actual
implementation of the computing functions that the interfaces specify.

When software developers copy software objects wholesale, however,
much of the above analysis changes. For instance, it is harder to argue that the
object is simply a small piece of a larger software stack, since the object is
modular and self-contained. Indeed, the copier, in replicating the object
wholesale, has almost certainly copied the "heart" of the modular object; it is
hard to imagine what the software object's heart would otherwise be. Such
copying may thus push against fair use under this factor, though if the copying
involves a transformative use with minimal effects on the market, this factor
may carry less weight in the overall fair use decision.

[Vol. 66:265322

SOFTWARE'S COPYRIGHT ANTICOMMONS

4. Factor Four Effect on the Market

The fair use inquiry's fourth factor-the use's effect on the market for or
value of the copyrighted work-is traditionally one of the most important
factors within the fair use probe.3 19 This factor requires courts to assess not
only the market harm resulting from the alleged infringer's actions, but also to
consider the impact on potential markets for the copyrighted work if uses
similar to that of the alleged infringer were to become widespread.320 If the fair
use proponent uses the copyrighted material for commercial purposes, this may
weigh against a finding of fair use, particularly if the use involves mere
duplication of the copyrighted work for commercial purposes.321 But where a
work is transformative under fair use's first factor, the commercial nature of a
use is not itself dispositive.322

Hence, if a party simply copies and distributes verbatim another party's
copyrighted work, then the fourth factor-and the fair use question more
generally-is often easy to resolve against the purported fair user.323 More
difficult to resolve are cases where courts must assess not only existing sales
and markets, but potential markets as well.324 In these scenarios, courts
sometimes engage in a form of circular reasoning by simply concluding that a
user's failure to license a copyrighted work from the copyright holder cuts
against fair use because that failure harms the copyright holder's market for the
work.325 In other instances, courts decide in favor of fair use, without much
detailed analysis, simply because use of the copyrighted work involves
criticism of it.326 Because both categories of decisions often lack analytical
depth, some scholars view this fourth factor as one of the more problematic
ones within the fair use inquiry.327

319 17 U.S.C. § 107(4) (2012). For the importance of this factor, see NIMMER & NIVMMER, supra note 269,
at § 13.05[A][4] (stating that the fourth factor often "emerges as the most important, and indeed, central"
factor in fair use cases (footnotes omitted)).

320 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 590 (1994) (quoting NIMMER & NIMMER, supra
note 269, at § 13.05[A] [4]).

321 Id at 590-91 (citing Acuff-Rose Music, Inc. v. Campbell, 972 F.2d 1429, 1438 (6th Cir. 1992)).
322 Id. at 591.
323 See, e.g., United States v. Slater, 348 F.3d 666, 669 (7th Cir. 2003) (rejecting the defendant's plea for

fair use in a similar situation).
324 Carroll, supra note 43, 1104-05 (describing this difficulty).
325 Jeanne C. Fromer, Market Effects Bearing on Fair Use, 90 WASH. L. REv. 615, 616 (2015).
326 id
327 WWLLIAM F. PATRY, PATRY ON FAIR USE § 6:1 (2016) (indicating that the fourth factor is poorly

understood and, as a result, often misapplied).

2017] 323

EMORY LAW JOURNAL

Several scholars have recently argued that one way to help address such
problems is for courts to explicitly take into account market benefits as well as
market harms.328 For instance, courts often focus on the use's potential harm to
the market for the copyrighted work. 329 But in reality, market benefits arising
from the use are also relevant because, if present, they may more definitively
establish that no market harm exists. In the recent Google Books litigation, for
instance, one way to demonstrate a lack of market harm is to show that the
use-digitizing millions of books and then making snippets thereof available
through search queries-actually boosts book sales.330

While market benefits arising from the use may influence courts'
reasoning, they are not typically relied on in courts' fourth factor analyses.331

But as Jeanne Fromer notes, the Supreme Court has provided some
endorsement for an approach that explicitly considers market benefits, and she
argues that society would be well served if courts more fully embraced it.332

Fromer also points to Supreme Court case law that implies two ways to
separate relevant market effects from irrelevant ones: courts should exclude
from consideration those effects that are "empirically unlikely," as well as
market effects that "are unrelated to the protectable aspects of the copyrighted
work, such as its ideas or the societal value attributed to the work." 333

This approach to applying the fourth fair use factor, if consistently adopted,
would help better take into account the collaborative, interconnected nature of
much modem software innovation. For instance, if Party A borrows interfaces
and related elements from Party B's software in order to make its software
compatible with Party B's products, both market benefits and harms are
relevant to the fair use inquiry. On the one hand, Party B may miss out on a
licensing opportunity with Party A. That missed opportunity may be viewed as
a market harm if Party B regularly licenses these software components to third
parties, though it is also true such markets may exist primarily because parties

328 See, e.g., David Fagundes, Market Harm, Market Help, and Fair Use, 17 STAN. TECH. L. REV. 359
(2014); Fromer, supra note 325.

329 See, e.g., Campbellv. Acuff-Rose Music, Inc., 510 U.S. 569, 590 (1994) (quoting NIMER&NI MMER,
supra note 269, at § 13.05[A] [4]).

330 Joseph Ax, Google's Book-Scanning Project Legal, Says U.S. Appeals Court, REUTERS (Oct. 16, 2015,
2:09 PM), http://www.reuters.com/article/us-google-books-idUSKCNOSA1S020151016.

331 Cf Fromer, supra note 325, at 617 (noting that "twenty years after Campbell, some courts have begun
to recognize that market benefits ought to count in favor of finding that a defendant's use is fair").

332 See id. at 629.
333 Id. at 618, 641-49.

[Vol. 66:265324

SOFTWARE'S COPYRIGHT ANTICOMMONS

are often risk-averse and simply obtain licenses to third-party products that the
law may not actually require.334

But Party B's software may also benefit from compatibility with Party A's
product. Indeed, this benefit may be particularly so in a world where
consumers increasingly expect heterogeneous goods and services to be able to
exchange data, such as with the Internet of Things.335 Hence, in a
collaborative, interconnected software world, these types of market benefits
should also be taken into account in resolving how use of the copyrighted work
affects the work's market.

Situations where parties use software from another party in order to
increase compatibility more generally require a different analysis under this
factor. Google's use of the Java APIs may be characterized as this form of
borrowing. As discussed, Google incorporated the Java APIs into Android in
order to increase the compatibility of Android with the development practices
and products of software developers more generally.336 But its use of the Java
APIs did not make it compatible with Oracle's Java software technologies.337

Hence, possible market harms and benefits in such scenarios differ from those
where a party uses software elements from a third party simply to achieve
compatibility with that third party's products.

In these types of scenarios, on first glance market harm may seem
relatively straightforward. For instance, in Oracle v. Google, Oracle contended
that Google's use of its technologies in Android undermined Oracle's ability to
license these same technologies to others.338 Hence, while Oracle "never
successfully developed its own smartphone platform using Java technology,"
Android's release made it impossible for Oracle to license others to do so, or to
eventually do so itself.339 Furthermore, there is undisputed evidence that Sun
and Google engaged in lengthy licensing discussions with regards to the APIs,
which negotiations ultimately broke down, thereby eliminating a licensing
opportunity for Sun.340 Consequently, market harm to Oracle and other

334 See generally Gibson, supra note 211 (arguing that risk aversion may generally lead to an expansion of
intellectual property rights, or at least how parties and courts perceive the scope of intellectual property rights
in determining whether permission to use third-party materials is necessary).

335 See supra note 139 and accompanying text.
336 See supra notes 224-227 and accompanying text.
337 id

338 See 750 F.3d 1339, 1377 (Fed. Cir. 2014).
339 Id (quoting Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 978 (N.D. Cal. 2012)).
340 Farber, supra note 31.

2017] 325

EMORY LAW JOURNAL

similarly situated parties may result because copying those parties'
technologies eliminates market opportunities that they otherwise would have
had.

But market harm in such cases is not so straightforward. Examining certain
aspects of the Oracle v. Google case helps exemplify why. First, while Oracle
may have lost out on a licensing opportunity with Google,341 there is as yet no
clear evidence that other parties were seriously interested in licensing the Java
technologies for building a smartphone platform, or that their interest waned
once Android was released.34 2 Instead, the available evidence suggests that
Oracle's Java solution for smartphones simply did not work very well, which
seems to be the more likely reason why parties may not have been as eager as
Sun (and later Oracle) hoped to license the technologies for building a

smartphone platform.343

Furthermore, even with respect to the Google licensing opportunity, some
evidence suggests that Sun did not consider the APIs proprietary at the time,
instead hoping to license the Java trademark to Google so that Android-based
devices were Java-branded.3 44 Indeed, Sun may have even been willing to pay
Google to adopt the Java platform.345 Hence, the alleged negative market
effects of Google's use of the Java APIs seem "empirically unlikely," or at
least highly questionable.

Second, as discussed, Google used functional elements of the Java
technologies to make its product more appealing to software developers. While
the Federal Circuit found that the Java APIs included sufficient creativity for
them to be subject to copyright,346 the Java APIs' functional nature nonetheless

341 Brandon Bailey, Larry Page Evasive with Oracle's Lawyer, but Admits Google Never Obtained Java
License, MERCURY NEWS (Apr. 18, 2012, 3:55 AM), http://www.mercurynews.com/ci_20424638/google-
omcle-trial-larry-page-admits-android-java-licence (detailing how Sun and Google engaged in licensing
negotiations with respect to the Java technologies, but ultimately failed to reach a deal).

342 Cf Larry Dignan, Google: Oracle, Sun Failed at Java Smartphone Now Stop Whining, ZDNet (Apr.
18, 2012, 5:22 AM), http://www.zdnet.com/blog/btl/google-omcle-sun-failed-at-java-smartphone-now-stop-
whining/74561 (noting that "Sun failed to popularize Java based smartphones").

343 Id (highlighting Google's evidence that Sun/Oracle had tried but failed multiple times to develop a
Java-based software platform for smartphones); Andrew Orlowski, Java Won the Smartphone Wars (and
Nobody Noticed), THE REGISTER (July 19, 2012, 9:02 AM), http://www.theregister.co.uk/2012/07/19/
javajava everywhere/ (describing how Java-based phones largely failed because of sluggish performance, but
how certain Java technologies have proved vital to much of the smartphone market because developers are
accustomed to using Java in developing software apps).

344 Farber, supra note 31.
345 id
346 See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1363 (Fed. Cir. 2014).

[Vol. 66:265326

SOFTWARE'S COPYRIGHT ANTICOMMONS

should mean that they enjoy less expansive copyright protection than they
otherwise would. Hence, whatever market harms Oracle suffered because of
Google's use of the Java APIs stem from aspects of Oracle's software that are
less deserving of expansive copyright protection.

Third and importantly, taking into account the other fair use factors in
connection with the fourth factor may make purported market harms even
more dubious. For instance, as discussed, Google only copied thirty-seven
APIs out of hundreds and wrote its own implementing software, virtual
machine, and other APIs for Android.34 7 Hence, Google did not merely
duplicate Oracle's smartphone solution in the marketplace; Oracle did not
possess one to supersede, at least that third parties were eager to adopt. Instead,
Google arguably put some of Oracle's Java technologies to a transformative
use by utilizing them to create something that the market at the time lacked,
and which has yielded significant societal benefits.348

Of course, another view is that Google merely duplicated Oracle's entire
copyrighted work-the Java APIs-and that duplication superseded the
purposes of the original work and simply "serves as a market replacement" for
the APIs.349 But as discussed above under the third factor of the fair use
inquiry, separating software interfaces from the underlying software product is
in important respects illogical since the interfaces have no independent
practical reality without the software that implements them.

Furthermore, Android is not a substitute in the market for the Java APIs. If
anything, Android is a substitute for something neither Sun nor Oracle was
able to achieve: a successful smartphone software platform. Of course,
Google's use of the APIs, if ultimately condoned, may mean that Oracle will
face significant difficulty persuading another party to license the APIs. Hence,
if Google's use were to become widespread, it may mean that potential
markets for the APIs disappear.350 But potential markets that are "empirically
unlikely" arguably should not carry significant weight,35' and there is no
evidence that Oracle has had, currently has, or is poised to have a licensing
market with respect to the APIs separate from the software that implements

347 Oracle Am. Inc. v. Google Inc., 872 F. Supp. 2d 974, 978-79 (N.D. Cal. 2012),
aff'd in part, rev'd in part, 750 F.3d 1339 (Fed. Cir. 2014).

348 See supra note 284 and accompanying text.
349 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 590-91 (1994) (citing Sony Corp. v. Universal

City Studios, 464 U.S. 417, 451 (1984).
350 See id.
351 Fromer, supra note 325, at 642-45.

2017] 327

EMORY LAW JOURNAL

them.352 Indeed, this reality is not terribly surprising since APIs are not truly
separate works from the underlying software and only have meaning-and
value-when accompanied by software that performs the computing functions
that the APIs specify, as discussed above.

Fourth and relatedly, Google's use of the APIs may actually provide Oracle
with some market benefits. For instance, by further cementing the Java APIs as
industry standards, Google's use may improve the market for Java
technological solutions that Oracle actually possesses. Indeed, if Google had
opted for a different API nomenclature in Android, one possible result is that
more developers would, over time, wean themselves from using the Java APIs.
And if that happened, Oracle may have greater difficulty in attracting
customers to the Java-based solutions that it does offer.

In sum, fair use's fourth factor should better take into account the
collaborative, interconnected nature of much modem software development.
Courts can do so by assessing both market harms and benefits of the use, as
well as ruling out "empirically unlikely" potential markets and granting less
copyright protection when uses pertain to functional aspects of the software
work. Furthermore, this Article's reassessment of the first three fair use factors
should play into how courts assess this final fair use consideration as well.
Doing so may lead to different outcomes in cases where software innovation's
collaborative, interconnected realities are highly relevant, but often forgotten.

IV. BEYOND SOFTWARE'S COPYRIGHT PROBLEMS

The software industry is clearly not the only context in which collaborative,
interconnected creativity is increasingly relevant. As others have noted, the
advent of the Internet and digital technologies has enabled collaborative,
interconnected creativity in a variety of other spheres as well, including music,
photography, video, and literature.353 This "read-write" culture, where both
professional producers and everyday consumers interact to create

352 See Java SE General FAQs, ORACLE, http://www.omcle.com/technetwork/articles/javase/faqs-jsp-

136696.html (last visited Feb. 5, 2016); Licensing and Distribution FAQs, JAVA, https://java.com/en/
download/faq/distribution.xml (last visited Feb. 5, 2016) (providing licensing details with respect to Java
software implementations in general, which includes the interfaces).

353 See generally LAWRENCE LESSIG, REMIX: MAKING ART AND COMMERCE THRIVE IN THE HYBRID

ECONOMY (2008) (noting the growth of interconnectivity and its impact under current intellectual property
law).

[Vol. 66:2653289

SOFTWARE'S COPYRIGHT ANTICOMMONS

copyrightable materials, is apparent in today's world of YouTube, Facebook,
Instagram, and blogging.354

Nonetheless, scholars have generally downplayed concerns about a
copyright-induced anticommons.355 For instance, Michael Heller has suggested
that "[c]ompared with patent law, copyright law's tragedy of the anticommons
is less costly" because copyright's fair use doctrine allows for many uses that
would otherwise require permission.356 He does note that some underuse of
copyrighted resources may still occur, despite fair use, because of the deterrent
effect of transaction costs, as well as the fact that copyright holders may still
seek rents that exceed the value of the fair use.357 But Heller's fear of a
copyright-induced anticommons remains minimal at best.

Heller may have been less concerned with a copyright anticommons in part
because today's collaborative, interconnected economy was not the reality in
1999, when he wrote his article. But as argued throughout this Article, that
collaborative, interconnected economy is increasingly a cause of anticommons
concerns in the software context, particularly since the fair use inquiry is not
specifically adapted to these realities. And it stands to reason that similar
collaborative, interconnected creativity in contexts outside of software will
have comparable anticommons effects in those contexts.

Other scholars have shown less concern about anticommons problems in a
collaborative economy because, they contend, many creators in the read-write
culture may not even know that they own a copyright, or they create for
reasons unrelated to financial concerns.358 Yet a variety of recent copyright
controversies makes clear that these realities do not make anticommons
concerns disappear, but instead may be the source of them, in the software
context and elsewhere.

For instance, as described in the Introduction, in 2014 Cindy Lee Garcia
asserted copyright against Google in hopes of removing a film from YouTube
that included a five-second performance by her.359 The anti-Islamic film had
created outrage in many quarters, and Garcia's brief appearance in the film had

354 See generally id. at 36-50 (providing an overview of this interaction between consumers and
producers).

355 See, e.g., Heller, supra note 26, at 1175 n.61; Fagundes & Masur, supra note 26, at718.
356 Heller, supra note 26, at 1175 n.61
357 id.
358 See Fagundes & Masur, supra note 26, at 718-19.
359 See supra notes 1-11 and accompanying text.

2017] 329

EMORY LAW JOURNAL

resulted in death threats against her.3 60 Her copyright infringement claim was
thus meant to protect her privacy and, ultimately, her life. 36' Her first legal
recourse, however, was not to copyright.3 62 But once she learned that copyright
may be the most effective tool for removing the film from the public sphere,
she resorted to it.363

Hence, for Garcia, copyright became a tool for safeguarding interests
unrelated to the purposes of copyright.364 And when copyright becomes a tool
for safeguarding such interests, it becomes a source of anticommons concerns,
particularly in a world where copyrighted works are subject to multiple
copyright claims. Thus, the mere fact that contributors to a collaborative work
may not initially recognize that they have a copyright interest in the work, or
do not contribute to the work for financial reasons, does not mean that those
contributors will not eventually resort to copyright. Instead, as other scholars
have noted, examples increasingly abound of parties attempting to use
copyright to protect interests unrelated to copyright.365 When they do so, they
may contribute to an anticommons. And the increasingly collaborative,
interconnected nature of the world promises that such anticommons concerns
will only grow as the number of copyrights in a given resource increases.

In sum, copyright law-and society-would be well served with
adaptations that better reflect these collaborative, interconnected realities in
many creative settings. While this Article has focused on addressing how to do
so in the software context, similar fair use tailoring may prove useful in other
areas of creativity as well. This Article thus joins a growing body of scholars
urging that intellectual property law in general must better align with the
changing creative and inventive norms present in today's world in order to
promote, rather than inhibit, innovative and creative activities.366

360 See supra notes 1-11 and accompanying text.
361 Garciav. Google, Inc., 766 F.3d 929, 932, 939 (9th Cir. 2014).
362 Asay, supra note 202, at 41.
363 id
364 For an argument as to why the law should care about copyright being used to protect interests

unrelated to the purposes of copyright, see Fromer, supra note 202.
365 Id at 556-62 (reviewing many such examples).
366 See, e.g., LESSIG, supra note 353, at 253-73 (laying out proposals for adapting copyright law to the

read-write culture); Mark A. Lemley, IP in a World Without Scarcity, 90 N.Y.U. L. REV. 460 (2015)
(discussing how IP law must adapt to new models of production that turn the traditional economic theories
behind IP law on their head).

[Vol. 66:265330

SOFTWARE'S COPYRIGHT ANTICOMMONS

CONCLUSION

To the casual observer, the recent Oracle v. Google case may appear to
concern a rather mundane, technical question of copyright law. But as this
Article has argued, the case actually provides an apt illustration of growing
anticommons concerns in the increasingly collaborative, interconnected world
of software. These problems, if left unchecked, are likely to only grow unless
copyright law makes needed adjustments. And those adjustments must center
on better balancing the needs of individual copyright owners with those of the
hundreds and thousands of others that increasingly collide with each other in
today's collaborative, interconnected software world. This Article has
recommended certain changes to copyright law's fair use doctrine as one
possible means by which to better achieve that balance.

That same balance may also be needed in other areas of collaborative,
interconnected creative effort. Indeed, the economic models behind U.S.
copyright law, with their focus on the incentives of individual creators, fail to
adequately take into account the incentive structure in more collaborative,
interconnected models of creative production. But in order to better "promote
the Progress of Science and useful Arts," the constitutional basis for copyright
law, they must.367

367 U.S. CONST. art. I, § 8, cl. 8.

2017] 331

	Brigham Young University Law School
	BYU Law Digital Commons
	2017

	Software's Copyright Anticommons
	Clark D. Asay
	Recommended Citation

	tmp.1518138311.pdf.06NlG

