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Spatiotemporal advantages linked to hydroacoustic sampling techniques have 

caused a surge in the use of these techniques for fisheries monitoring studies applied over 

long periods of time in marine systems. Dynamic physical conditions such as tidal height, 

boat traffic, floating debris, and suspended particle concentrations result in unwanted 

noise signatures that vary in intensity and location within a hydroacoustic beam over time 

and can be mixed with the acoustic returns from intended targets (e.g., fish). Typical 

processing filters applied over long term datasets to minimize noise and maximize signals 

do not address spatiotemporal fluctuations of noise in dynamic systems. We present a 

methodological approach to obtain fish counts from large hydroacoustic datasets 

collected in dynamic systems by 1) developing an automated processing algorithm that 

imposes spatially and temporally varying noise thresholds according to the signal-to-

noise ratio present, 2) creating a fish count index standardized to the noise conditions 

present at the time of detection, and 3) validating the applied algorithm by manually 

quantifying the margins of error of automated fish counts from the processing algorithm. 



 

We demonstrate the efficacy of this method by applying it to a six-month hydroacoustic 

dataset collected in the tidal region of the Penobscot River, Maine USA. It enabled us to 

recover 60% of the data that would otherwise have been lost due to noise contamination. 

The successful implementation of this method allows for datasets with varying signal-to-

noise ratios to be standardized based on the noise signature present, enabling researchers 

to maximize their data usage. 

Quantifying how fish abundance changes after a significant portion of their 

natural habitat becomes re-accessible is critical to gauge the success of large restoration 

efforts.  Because fish abundance also changes with naturally fluctuating environmental 

conditions, examining abundance relative to these conditions can indicate fish responses 

to both anthropogenic and natural river variation. A side-looking hydroacoustic system 

was used to estimate fish abundance in the Penobscot River, ME from 2010-2016, where 

2010-2013 were pre-dam removal conditions, and 2014-2016 were post-dam removal 

conditions. The river was monitored during non-ice condition periods, roughly May to 

November annually. Automated data processing enabled continuous abundance estimates 

from fish tracks. A fourfold increase in median fish abundance occurred in the fall 

compared to spring and summer, regardless of dam presence. Concurrent with restoration 

activities, fish abundance increased approximately twofold pre- to post-dam removal. We 

examined the influence of natural environmental conditions including tide, discharge, 

temperature, diurnal cycle, day length, moon phase, as well as restoration activities 

(focusing on dam presence) on variability in fish abundance. Day length (or photoperiod) 

was the most important predictor variable in all eight time-series analyzed. During the 

fall migration, abundance was generally higher during outgoing tides, at night, and during 



 

relatively high river discharge. In the early fall, when daylength was between 11.28 h and 

12 h (September 24th to October 6th) and water temperature was above 11.96 °C, an 

eightfold increase in fish abundance was recorded in post-dam removal years. Alewife 

stocking numbers increased post-dam removal relative to pre-dam removal years and 

likely contributed to the increased fish abundance. This is one of the first validated tools 

to continuously examine the response of fish abundance to a major river restoration 

activity. In this application, it significantly increased our understanding of how fish 

abundance changed in the Penobscot River as result of major restoration efforts and 

provides a basic understanding of fish responses to naturally fluctuating environmental 

conditions. 
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CHAPTER 1: 

PROCESSING METHODS TO MAXIMIZE HYDROACOUSTIC SAMPLING 

RANGE AND MINIMIZE MIDFIELD BEAM CONTAMINATION  

IN DYNAMIC SYSTEMS 

 

ABSTRACT 

Spatiotemporal advantages linked to hydroacoustic sampling techniques have 

caused a surge in the use of these techniques for fisheries monitoring studies applied over 

long periods of time in marine systems. Dynamic physical conditions such as tidal height, 

boat traffic, floating debris, and suspended particle concentrations result in unwanted 

noise signatures that vary in intensity and location within a hydroacoustic beam over time 

and can be mixed with the acoustic returns from intended targets (e.g., fish). Typical 

processing filters applied over long term datasets to minimize noise and maximize signals 

do not address spatiotemporal fluctuations of noise in dynamic systems. We present a 

methodological approach to obtain fish counts from large hydroacoustic datasets 

collected in dynamic systems by 1) developing an automated processing algorithm that 

imposes spatially and temporally varying noise thresholds according to the signal-to-

noise ratio present, 2) creating a fish count index standardized to the noise conditions 

present at the time of detection, and 3) validating the applied algorithm by manually 

quantifying the margins of error of automated fish counts from the processing algorithm. 

We demonstrate the efficacy of this method by applying it to a six-month hydroacoustic 

dataset collected in the tidal region of the Penobscot River, Maine USA. It enabled us to 
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recover 60% of the data that would otherwise have been lost due to noise contamination. 

The successful implementation of this method allows for datasets with varying signal-to-

noise ratios to be standardized based on the noise signature present. This provides the 

opportunity for researchers to maximize their data usage by not having to restrict their 

dataset to a common divisor in data range and quality. 

 

INTRODUCTION 

Hydroacoustic technology has become increasingly popular for scientific studies 

involving fish abundance estimates (Hughes and Hightower, 2014; Auer and Baker 2007; 

Simmonds and MacLennan, 2005) and other ecosystem features such as tidal fish 

migrations (Krumme, 2004), deep-sea krill swimming behavior (Klevjer and Kaartvedt, 

2003), abundance estimates of squid (Zhang et al., 2015), and small scale oceanographic 

features such as zooplankton biomass estimates (Ballón et al., 2011). Hydroacoustic 

survey methods have multiple benefits compared to traditional fish survey methods, 

which make them more advantageous for answering specific abundance questions. With 

hydroacoustic applications, abundance estimates can be made over large temporal and 

spatial scales, which can be used for ecosystem-based fisheries management (Koslow, 

2009; Trenkel et. al., 2011) and species-specific fish population studies (Daum and 

Osborne, 1998). Specific applications also include studies in habitats as diverse as lakes 

and open sea mesopelagic zones: e.g., fish recruitment indices for walleye pollock 

(Theragra chalcogramma) in the Bering sea (Swartzman et al., 1995); northern lantern 

fish (Benthosema glaciale) and Mueller’s pearlside (Maurolicus muelleri) (Scoulding et 
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al., 2015) populations in the Norwegian Sea; schooling of herring (Clupea harengus) and 

mackerel (Scomber scombrus) (Misund and Beltestad, 1996); and predator-prey 

interactions between killer whales (Orcinus orca) and adult herring (Similä, 1997). 

In hydroacoustic studies, data quality can be limited considering that the intended 

targets (e.g., fish) are not the only acoustic returns recorded by the equipment used 

(Mann et al., 2008). Data quality can be quantified as the ratio of acoustic signal 

strengths of the fish targets with any other acoustic targets recorded (Kieser et al., 2005). 

Every target ensonified by the acoustic beam has a specific back scattering signature 

recorded as target strength (TS) (Love, 1977). The TS returns from fish are different from 

other sound reflecting targets. Reflections other than from fish are considered “noise” to 

the fish biologist but could be counted as false fish signals if not adequately minimized or 

removed in data processing (Banneheka et al., 1995). If fish targets are clearly 

distinguishable from the surrounding noise, the data is classified as having a good signal-

to-noise ratio (SNR) (Kieser et al., 2005). Fish targets can be isolated from surrounding 

noise using processing programs, e.g., Echoview® (Fraser et al., 2017; Viehman et al., 

2015; De Robertis and Higginbottom, 2007) or SONAR5 (Samedy et al., 2015). 

Algorithms established in these programs are used to remove noise sources from datasets 

that otherwise would falsely be counted as fish. Constant noise sources, such as a 

stationary rock in the acoustic beam, are easily removed with such algorithms because the 

position and TS of the rock does not change over time. In addition, interference sources 

can have a consistently higher TS value than the fish targets and are easily removed by 

applying a TS threshold. However, when the TS and the location of the noise source in 

the acoustic beam varies over time, standard algorithm noise removal filters must be 
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modified to adjust to the changing noise levels. Spatiotemporally varying noise levels in a 

dataset may then cause the sampling range of data with acceptable SNR to fluctuate 

based on where in the beam these interferences occur. This can then have a profound 

effect on data quality and its interpretation as fish abundance estimates. 

Hydroacoustic data are now more frequently being collected at study sites in 

dynamic aquatic systems that experience changing physical conditions (Fraser et al., 

2017; Viehman et al., 2015; Samedy et al., 2015). Such conditions result in changing 

noise levels over time, which cause the range of acceptable data quality sampled by the 

transducer to also vary over time (i.e., varying sampling range). Thus, data that are 

compared across temporal dimensions must be standardized in space. In horizontally 

oriented (side-looking) hydroacoustic systems in tidal rivers, for example, sound can be 

reflected from the surface at different distances from the transducer as the water level 

changes with the tide. This results in temporally varying noise levels that change spatially 

(Figure 1.1). The maximum range sampled by the hydroacoustic system is decreased 

when the acoustic beam encounters the river surface at a closer range during low tide, and 

increased during high tide. An increased sampling range yields an increased probability 

for capturing fish signals, as more water is sampled where fish might be present. When 

comparing two fish abundance data points collected at different times and with different 

maximum sampling ranges, it is necessary to standardize both data points by their 

respective sampling ranges for the comparison to be valid. This is similar to other 

standardization techniques in the field of fisheries including the application of catch per 

unit effort (CPUE) to standardize the number of fish captured over units of time, tows, 

vessels, and area (Bentley et al., 2010). 
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Other sporadic noise sources also affect data quality. High particle concentrations 

in the water column after storm events, surface waves from wind and boat traffic, 

intermittent debris floating through the acoustic beam, and other natural river conditions 

reduce the midfield beam quality, thus degrading SNR and the ability to isolate fish from 

other objects in the acoustic beam (Rudstam et al., 2008). These sporadic noise intensive 

sources are at risk of being counted as multiple fish targets. Noise contaminants become 

especially difficult to eliminate if they are present in the middle of the acoustic beam 

pattern. We addressed this scenario along with changing spatial range, where 

hydroacoustic data quality is dictated by the dynamic processes occurring within the 

aquatic system sampled. 

 

Figure 1.1. River surface reflectance causing variable ranges of usable data in an acoustic 

echogram. Data collection range and quality were highly dependent on the tides. 

  

 

Hydroacoustic systems can collect multiple data points per second (Trenkel et al., 

2011). As such, long term deployments make the collection of large datasets possible, yet 

difficult to process. The sheer quantity of data collected will often make manual 

processing nearly impossible, especially with limited resources in time and personnel. 
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Automated processing methods developed for adapting to the changing noise level and 

sampling range conditions could enable temporally comparable, spatially standardized 

fish counts. 

We present automated processing methods that produce accurate estimates of fish 

numbers by reducing spatiotemporally varying noise contamination. We also illustrate 

how fish estimates were standardized in an abundance index that makes it possible for 

them to be compared to other, temporally different datasets with independent noise 

signatures. The methods described in this paper should be useful to researchers 

experiencing temporally varying sampling volumes and midfield noise contamination in 

hydroacoustic data. 

 

Study site and data used 

 The methods described in this paper were developed by processing and analyzing 

hydroacoustic data collected for a fish abundance monitoring program in the upper 

reaches of the Penobscot River estuary in Maine, USA. This monitoring program was 

part of the Penobscot River Restoration Project (PRRP). The study site was located 5 km 

downstream from the city of Bangor (Figure 1.2). Stationary hydroacoustic survey 

systems were installed to monitor fish abundances in the river from a pre-dam removal to 

a post-dam removal condition. One 206 kHz transducer was deployed in a side-looking 

orientation on each side of the river sampling at four pings per second. Each transducer 

projected an acoustic beam across the river (Figure 1.3). Data collection began in 2010 

and continued through 2016, but was only possible from May to approximately 

November of each year due to drifting ice blocks in the river during winter that could 
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damage the equipment. The river was 195 m wide at the study side with a median 

channel depth of 7 m and a tidal range of up to 5.25 m. Each transducer was installed to 

be approximately 2 m below the river surface during low spring tide. The Penobscot 

River experienced a discharge ranging from 100 m3s-1 to 2000 m3s-1 between May and 

December of 2015 with peak flows occurring in early October (USGS station 01036390 

Penobscot River at Eddington). 

 

Figure 1.2. Map of the Penobscot watershed in Maine and the relative location of the 

study site. (A) the Penobscot watershed in Maine, (b) the relative location of the study 

site by river km, and (c) the approximate locations of the acoustic beams; Pen A and Pen 

B are the west and east side locations of annual transducer deployments. 
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Figure 1.3. Simplified cross-sectional illustration of the experimental setup at the survey 

sites in the Penobscot River, ME. 

 

 

The objective of this hydroacoustic monitoring study was to compile a relative 

fish abundance index for each year sampled, where the pre-dam removal years could then 

be compared to post-dam removal years. For this paper, we focused on a specific six-

month subset of data from 2015 collected on the Pen A river side (Figure 1.3) to illustrate 

individual processing steps and demonstrate the validity of the approach. Ultimately, this 

data-processing approach will be used on four, six-month hydroacoustic datasets 

collected on the Penobscot River to generate and compare fish abundance indices pre-and 

post-dam removal. 

 

METHODS 

Processing methods in this paper were built on the cell-based noise removal 

method of De Robertis and Higginbottom (2007). In addition, we (a) applied an alternate 

noise removal procedure for the midfield beam region in the TS domain, and (b) 

implemented a noise-varying maximum range line that addresses a changing volume 

sampled over time. 
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The parameter values used in the processing algorithm created in Echoview® were 

specifically identified for the dataset collected from May to December on the Pen A river 

side in 2015 (Table 1.1). The specific parameter values presented in Table 1.1 are subject 

to change when processing different datasets.  However, the methodological approach of 

how to minimize range varying noise contamination is applicable for different datasets 

experiencing similar conditions. While additional variables were used in the final 

algorithm applied to these data, the variables listed in Table 1.1 reflect the core 

parameters of the algorithm’s maximum range detection and overall noise removal 

approach. 
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Table 1.1. Echoview® acoustic data processing parameters. 

 

Variable Parameter/ Variable Value 

Single target detection:  single 

beam method 2 

TS threshold -45 dB 

Pulse length determination levels 6, 12, 18 dB 

Min. normalized pulse length 0.30, 0.60, 0.80 

Max. normalized pulse length 

 

3.00, 2.10, 5.00 

Fish tracking: 2D 

 

Data 2D 

Alpha (range) 0.1 

Beta (range) 0.1 

Exclusion distance (range) 0.4 m 

Missed ping expansion (range) 0.8 % 

Weights:  

Range 0.00 

TS 0.00 

Ping gap 0.00 

Min. number of single targets in a 

track 

6 

Min. number of pings in a track 

(pings) 

6 

 Max. gap between single targets 

(pings) 

 

12 

Resample (by number of pings) Min. threshold (Data) -49 dB 

 Ping selection:  All pings in 

interval 

 Number of pings in interval (m) 300 

 Resampling operation:  Percentile 

 Percentile 70.00 

  

 

Best Candidate Line Pick 

 

 

 

 

 

 

 

 

 

Data Range Bitmap 

Number of data points (n) 

 

Start depth (m) 

Stop depth (m) 

Minimum Sv for good pick (dB) 

Discrimination level (dB) 

Backstep range (m) 

Peak threshold (dB) 

Maximum dropouts (samples) 

Window radius (samples) 

Minimum peak asymmetry 

 

Minimum in-range data value 

Maximum in-range data value 

50 

 

0.00 

1000 

-100 

-100 

-0.50 

-50.00 

2 

8 

-1.00 

 

12.00 

100.00 
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Sampling range limitations 

A 206 kHz transducer was deployed in 2015 on the Pen A river side with a 

circular 6.6° beam angle. It was installed in a side-looking orientation below the river 

surface with an average depth of 1.84 m during low tide, and 6.45 m during high tide. 

The transducer was positioned 3 m above the river bottom measured 60 m from the 

transducer. Interference sources appearing at a sampling range of approximately 30 m 

during low tide and 60 m during high tide (Figure 1.1) were linked to the acoustic beam 

encountering either the river bottom or river surface during different tidal stages. 

Trigonometric calculations confirmed that during low tide noise reflections from the river 

surface would limit the sampling range to approximately 32 m, while at high tide the 

river bottom limited the sampling range to approximately 52 m (Figure 1.4). These 

calculations assume a perfectly balanced horizontal, side-looking aim of the transducer, 

which was presumptuously not the case in reality. Margins of error of ± 9 m in the 

theoretical sampling range at high and low tide are to be expected based on the actual aim 

of the transducer not being perfectly horizontal (based on ± 0.5° angle errors). 
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Figure 1.4. Interference sources limiting the maximum sampling range during low and 

high tide. Theoretical sampling ranges at which we expect to see noise interferences in 

the data at low tide (31.96 m) and high tide (52.12 m). The expected ranges are consistent 

with the observed interference ranges in Figure 1.1. 
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Identifying maximum range sampled 

 The issue of a tidally influenced sampling range was addressed by implementing 

a variable maximum range line that was set relative to the range at which the transducer 

beam encountered the river surface. To do this, the echogram was condensed into an n by 

m sized cell grid (Table 1.1) according to the equations of the Echoview® resample 

variable: 

𝑅𝑖,𝑗 =  
𝑟𝑖,𝑗+1+𝑟𝑖,𝑗

2
  for j = 1 to n-1 

𝐷𝑖,𝑗 =  
𝑑𝑖,𝑗+1+𝑑𝑖,𝑗

2
  for i = 1to m-1 

where i is the ping number, j the index for vertical samples of each ping in the echogram, 

Ri,j is the near range boundary (m) of sample j in ping i of the echogram, Di,j is the near 

boundary distance (n) of ping i for sample j in the echogram, ri,j is the range of sample j 

in ping i of the echogram, and di,j is the distance of ping i for sample j in the echogram. 

The adaptability of the maximum range line to the noise reflected from the river 

surface was limited by the cell size specified in the resample variable in Echoview® 

(Table 1.1). As such, the spatiotemporal unit of one cell represented the smallest interval 

at which the maximum range line could vary. The n domain of the cell grid used for data 

processing consisted of 300 horizontal pings as its x statistic (representative of time), and 

50 vertical regions as its y statistic (representative of space) as its m domain. At a 

sampling rate of four pings per second and a transducer beam range of 100 m, the size of 

each cell consisted of a spatiotemporal unit of 75 seconds (n) by 2 m (m). This meant that 

the maximum range line could adjust to changing noise levels in the river every 75 
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seconds by at least 2 m at its minimum, as this is the size of one cell. However, the 

maximum range line would only adjust if the noise level within a cell exceeded a 

specified threshold. 

To determine the noise level in each cell, a TS value representative of the 

seventieth percentile of all TS values within each cell was calculated. The seventieth 

percentile was identified to be suitable using the algorithm validation procedure, as it 

proved to be the most successful at removing noise contamination across all tidal stages 

while maintaining fish targets (see Algorithm Validation section). The calculated TS 

value was then assigned to the entire cell as: 

yI,J = 𝑊𝑘 + (𝑊𝑘+1 − 𝑊𝑘)(𝑘′ − 𝑘) 

where yI,J is the value of sample J in the output ping I, Wk is the TS value of sample k in 

the list W, W is the ordered list of sample values xi,j for all i,j in set Y, such that Wi ≤ Wi+1, 

k’ = N * P, k = [k’], N is the number of samples in W, P is the desired percentile to be 

calculated. 

Once the cell’s TS values were established, Echoview®’s Best Candidate Line 

Pick variable was used to set the maximum range line on the nearside boundary of each 

cell with a TS value exceeding a threshold of -49 dB (Figure 1.5B c). This threshold was 

representative of a minimum noise level above which fish were difficult to isolate 

without risking false classification. If the noise level changed in range over time, such as 

when the acoustic beam encountered the surface of the river, the TS value of the local 

cells would change accordingly. This then caused the maximum range line to adjust to 

the range of the cell where the TS value exceeded the specified threshold of -49 TS 
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(Figure 1.5B). Throughout, a variable maximum range line was created that automatically 

adjusted to the range at which the acoustic beam encountered the river surface, enabling 

us to use the most possible data sampled across all tidal stages. Data within the maximum 

range line was further processed for noise reduction and fish classification. 
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Figure 1.5. Example of cell grid implementation to identify regions of high noise 

contamination. Displayed is a raw TS echogram (A) and its corresponding cell grid 

implementation (B) to identify regions of high noise contamination. Midfield beam 

contamination (a) and variable sampling ranges of usable data (b) are evident. Noise 

signatures of each cell are used to create a flexible maximum range line (c) and to 

minimize the effects of midfield beam interferences through grey zones (d), where each 

cell represents a spatiotemporal unit of 300 pings in the n domain (e), and 2 m in the m 

domain (f). The color spectrum corresponds to the relative target strength of the returned 

acoustic signal, where strong returns are illustrated in brown (-24 dB and above) and the 

weakest signals admitted for processing are shown in grey (-49 dB). 

 

 

The described cell grid size was chosen as a compromise, as a larger grid size 

would have resulted in lower flexibility of the set maximum range line, and a smaller grid 

size would run the risk of masking out small schools of fish if they filled the entire 
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spatiotemporal unit of one cell. The cell grid was applied for the entire six-month dataset 

and used to identify the maximum range sampled as well as contend with midfield beam 

interferences. 

 

Midfield beam interferences 

Data quality varied with range. Data collected during high and mid tide periods 

often experienced midfield beam interferences at increased sampling ranges. The source 

of midfield beam interferences was assumed to be the result of side-lobe beam(s) 

encountering the river bottom at a range of approximately 30 m. As the sampling range of 

the main lobe (i.e. main beam) encounters the river surface at about the same distance, 

the midfield beam interference caused by the side-lobe is masked by the interferences 

caused by the river surface. Once the river depth increases and the main beam extends 

past the distance at which the side-lobe interference occurs, the midfield beam 

interference is again visible. During these times, the signal-to-noise ratios were high in 

the near-field, low in the midfield ranges, and high again in the far-field beam regions 

(Figure 1.5A). The algorithm was customized to mask the varying noise level intensities 

experienced in the midfield beam region, enabling the full range of the acoustic beam to 

be used for fish target classification. This was achieved by identifying acoustic beam 

regions that were contaminated with noise. These midfield noise zones, “grey zones,” 

were subject to stricter fish target isolation procedures than the non-contaminated-beam 

regions to avoid false fish classifications. Grey zones were identified using the same m by 

n cell grid as for the maximum range line (Figure 1.5B). All cells were assigned one TS 

value that was representative of the 70th percentile of all TS values within the cell.  If the 
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assigned TS value of a cell exceeded the -49 TS threshold, they were classified as grey 

zones, but only if the cell range was located before the maximum range line. Cells past 

the maximum range line were ignored. Grey zones were subject to a masking filter in 

form of a Data Range Bitmap (Table 1.1) that required TS values within the grey zone 

cells to be at least 12 dB higher than the TS value assigned to the cell to be quantified as a 

target instead of noise. As such, fish could still be counted in the noise contaminated 

regions of the acoustic beam classified as grey zones, given that their TS value was at 

least 12 dB above the noise surrounding them. 

Because the minimum TS threshold for fish located in grey zones was higher than 

those for the remaining, uncontaminated beam regions, an analysis of the total beam 

percentage masked for each tidal stage was performed. Tidal stage was analogous to the 

range sampled and used as a category to group files with similar sampling ranges. We 

estimated what percentage of the beam area was subject to midfield noise and thus higher 

fish count restrictions for each tidal stage. Hydroacoustic data files were sorted into tidal 

stage bins by matching the data collection times to a water depth time series recorded by 

a HOBO depth recorder deployed on the transducer mount. The HOBO depth tag was 

installed 1.21 m above the actual transducer connected to the mount. Because the change 

in river depth at the transducer (i.e., tidal height) spanned approximately 5.25 m, bins 

were divided into 0.25 m intervals, which was the average change in water depth during 

one 15-min hydroacoustic file. With a tidal range of 5.25 m at the study site, this resulted 

in a total of 21 tidal stage bins based on depth. Ten 15-min files were randomly selected 

from each tidal stage bin, and the number of masked and unmasked cells were exported 
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as binary values to a .csv file. The exported binary values were used to calculate the beam 

percentage masked for each tidal stage. 

 

Fish counts 

Fish counts were obtained by applying Echoview®’s fish tracking algorithm to the 

fish targets remaining after all noise removal and isolation procedures had been 

concluded. Potential fish targets were further isolated from any remaining noise by 

setting acceptable fish target criteria. To be counted as a fish target, a returned ping had 

to pass pulse length thresholds implemented at 6 dB, 12 dB, and 18 dB. The thresholds 

implemented at these pulse lengths were specific to the collection properties of the 

transducer used and determined by inspecting the pulse length determination values from 

a likely fish target in the acoustic beam. The appropriate thresholds at each pulse length 

interval were evaluated based on manual observations through trial and error (Table 1.1). 

The Echoview® fish tacking parameters were optimized according to the results of the 

algorithm validation procedure (Table 1.1) (see Algorithm Validation). 

 

Algorithm validation 

The validity of the algorithm applied to obtain fish counts was examined. A 

subsample of 90 data files composed of 30 files collected during high, mid, and low tides 

were randomly chosen from the full dataset of approximately 15,000 files. Each file of 

the subsample represented 15 minutes of acoustic data and was visually inspected for fish 

tracks in the raw TS echogram. At least three people experienced with hydroacoustic data 
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counted the numbers of fish in each of the 90 files. To maintain consistency among 

counters in fish classification and counting procedures, files were recounted if fish counts 

per file deviated by more than 5% among counters. All 90 files were then processed with 

the established algorithm in Echoview®.  

The sums of all fish counted manually and by the algorithm were compared for 

the 90 files. A regression analysis was performed, where the algorithm was deemed 

successful if the r- squared values for files of each tidal stage was greater than 0.8. If the 

algorithm values were below 0.8, the automated counts either represented an over- or 

under estimation of fish compared to the manual counts. In this case, the parameter 

values described in Table 1.1 were revised based on the differential between manual and 

automated counts.  

The final algorithm used for processing was a product of all variables set with 

parameter values that exhibited the lowest differential between manual and automated 

counts. An example of this approach is demonstrated for the resample percentile 

parameter, as it was the most decisive variable for the background noise removal 

calculations and had the largest impact on the number of fish counted by the algorithm. 

To determine which percentile would be most appropriate for noise removal and fish 

target retention, an independent iteration of the algorithm was performed in ten percentile 

increments on the 90-file data subsample. The percentile used ranged from 10 to 100 and 

increased by 10 for each iteration. To determine which percentile would yield the most 

accurate fish counts in the algorithm, the difference between manual fish counts and 

automated counts was used. The most accurate percentile would represent the smallest 

deviations from 0 for each of the 90 files processed. 
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A sensitivity analysis was also performed to determine if 90 files, 30 from each 

tidal stage, was an appropriate number of files to use for the algorithm’s validation 

procedure. If the r- squared values from a correlation between automated and manual 

counts only experienced negligible variations by adding additional files to the regression 

analysis, it can be concluded that the number of files, after which little variation in the R2 

value occurs, would be a sufficient representation of the entire dataset. 

 

Fish abundance estimation 

Fish abundance estimates were compiled from the fish counts obtained by 

Echoview®’s fish tracking procedure, where one fish track equaled one fish count. To 

create an index that allowed fish abundance comparisons over time, the number of fish 

counted over time was standardized by the range sampled. One 15-min file was uploaded 

at a time to the Echoview® template file containing the data processing algorithm. Once 

processed, the maximum range line for each individual ping and information about the 

fish tracks present were exported as .csv files for each 15-min hydroacoustic file. Visual 

Basic Scripting (VBS) was used to automate these steps for the entire continuous dataset 

spanning approximately 6 months. The .csv files were uploaded to MATLAB to calculate 

the median range sampled per hour and bin the number of fish tracks by hour for the 

entire collection period. Total numbers of fish per hour were then divided by the 

corresponding median range sampled for that hour to create the final metric used for 

comparing fish abundance estimates over the entire long-term dataset: fish counts hour-1 

meter sampled-1 (fish h-1 m-1).  
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RESULTS 

Maximum range sampled 

Based on the noise algorithm applied to the dataset, from May 20 to December 7, 

2015, the sampling range, with acceptable SNR, fluctuated between 12 m and 65 m and 

was reflective of the depth of the water (which fluctuated with the tide) at the sampling 

station in the Penobscot River (Figure 1.6).  River depth at the transducer housing 

platform varied between 0.25 and 5.5 m. 

 

Figure 1.6. Tidal height of the Penobscot River and the corresponding maximum 

sampling range of the transducer. Depth the HOBO tag installed on the transducer mount 

(right-hand y-axis) and the maximum range sampled (left-hand y-axis) for a two-week 

subsample of data. 
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Midfield beam interferences 

The percentage of the beam masked to reduce midfield beam interference was 

higher for longer sampling ranges that resulted due to tidal fluctuations (Figure 1.7). With 

a tidal range of 5.25 m at the study site, each tidal stage bin had a 0.25 m change in the 

water level, resulting in a total of 21 tidal stage bins. Tidal stages 1 through 7 were 

categorized as low tide, 8 to 14 as mid tide, and 16 to 21 as high tide. 

 

Figure 1.7. Beam masked percentages (grey zones) by tidal stage. Ten 15-min files were 

sampled for each tidal stage. The beam masked percentage for each ping was calculated. 

N = 36000. For each box plot the red central line indicates the median, the bottom and 

top edges the 25th and 75th percentiles, respectively, and the top and bottom whiskers the 

95% confidence intervals. The red markers represent outliers. 
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Algorithm validation 

Automated and manual counts of all tidal stages were highly correlated (Figure 

1.8). Low tide counts were better correlated than those during mid and high tides, but all 

R2 values were at least 0.86 and the overall R2 for all files was greater than 0.9.  The 

slope of the relationship between manual and automated counts was larger than one, 

indicating a slight overestimation of fish in the automated counts for all tidal stages 

combined.  Low tide files experienced an overestimation of 6%, high tide files an 

overestimation of 2%, and mid tide files an underestimation of 2%.  

 

Figure 1.8. Regression plot between automated fish counts and manual counts used for 

algorithm validation. The R2 values in the legend are from a regression for each tidal 

category separately (low, mid, and high). The R2 and slope equation below the trend line 

represent the regression analysis for all files combined, n = 90. 
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The differences between manual and automated counts had the highest variance 

when the percentile of the data masked was lowest. That is, the less noise masked, the 

less accurate the algorithm was at counting fish as some of the unmasked noise was 

counted as fish targets. There was a steady decrease in the difference between manual 

and automated count values as the percentile used for masking noise increased. The 

lowest variance in the difference between manual and automated counts was observed 

when using the 70th percentile for the resample variable in the algorithm for noise 

removal (Figure 1.9). 

 

Figure 1.9. Difference between automated and manual counts for different resample 

percentages used in the processing algorithm. N = 90. Box plot definitions are described 

in Figure 1.7 caption. 
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The sensitivity analysis on the number of files needed to represent the entire 

dataset revealed that the correlation index between manual and automated counts 

remained above 0.9 at a sample size of 30 and greater (Figure 1.10).  

 

Figure 1.10. Sensitivity analysis for the number of files used for comparing manual and 

automated fish counts. The sensitivity analysis depicts the R2 value for different numbers 

of files used in the regression analysis between automated and manual counts. Variability 

of R2 values between 30 files and 90 files used in the regression analysis was <0.05. 

 

 

Standardized fish counts 

Since counts were binned in 1-hr intervals, the sampling range needed to be 

binned by the same time period for fish counts to be standardized by sampling range. 

However, multiple sample ranges existed within 1-hr bins. We explored mean, median 

and mode as indexing mechanisms within the 1-hr bin (Figure 1.11). The median range 

per hour was chosen for the standardizing unit as it minimized the effect of outliers that 

could be attributed to objects passing close to the beam.  
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Figure 1.11. Mean, median, and mode for the maximum range line from a random data 

collection day in 2015. Box plot definitions are described in Figure 1.7 caption. 

 

 

The number of hourly binned fish counts across all six months sampled varied 

significantly between months (Figure 1.12A) with fish h-1 ranging from 0 to 2800 and 

fish h-1 m-1 ranging from 0 to 80 (Figure 1.12B). While the general trend for both fish 

abundance indices remained similar, the intensity of fish h-1 peaks were lowered when 

standardized by range sampled. Variability in fish abundance from May to September 

fluctuated between 0 and 25 fish h-1 m-1. An increase in fish abundance was observed 

from October to December, with fish h-1 m-1 ranging from 0 to 80. 
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Figure 1.12. Time series of fish counts binned by hour across six months sampled in 

2015. Depicted are fish h-1 (A), fish h-1 m-1 (B), and two weeks in October with fish h-1 

(black) and fish h-1 m-1 (red) overlaid (C). 

 

 

DISCUSSION 

Two concerns often associated with hydroacoustic methods are known to be (1) 

unintended noise interferences occurring within the acoustic beam that degrades the 

signal to noise ratio and impedes fish signal identification (Simmonds and McLennan, 

2005; Mitson and Knudsen, 2003; Banneheka et al., 1995), and (2) validation that the fish 

counts extracted from the raw data are in fact an accurate representation of the fish 

population sampled (Scoulding et al., 2015; Osborne and Melegari 2002; Hartman et al., 

2000). The methods presented in this paper are intended to address both of those 

concerns. We presented an approach to minimize noise interferences at varying range and 

intensity to maximize fish detection probabilities and create a standardized fish 
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abundance index, which is comparable across temporal dimensions. We also offered a 

validation process to quantify the accuracy of automated fish counts by comparing the 

margins of error among the percentile used for noise removal and masking procedures, 

and fish tracking parameters used in the automated count process. 

Implementing the noise masking procedure allowed us to utilize the maximum 

range sampled by the acoustic beam without having to create range-specific algorithms 

for every tidal height and spurious noise signature present. It is important to note that a 

large beam-masked-percentage did not directly result in lower fish counts. The beam-

masked-percentages merely reflect the amount of noise present in the dataset that was 

masked to identify fish signals more accurately. For high tide, for example, it was 

necessary for a higher percentage of the beam to be masked than at low tide (Figure 1.7) 

for the accuracy of automated fish signal identification to remain acceptable (Figure 1.8) 

as noise levels increased during high tide. If the masked areas remained unmasked, the 

algorithm would count many of these high noise regions at high tide as fish targets, 

causing overestimation of fish numbers present.  This became evident in the resample 

percentile analysis used to determine the most accurate percentile value used for the 

noise masking procedure. As the resample percentile parameter was the most decisive 

variable in classifying noise contaminated regions, the value used for this parameter 

determined how much noise was masked from the dataset. When the algorithm was run at 

low percentiles, much of the noise within the data remained, resulting in an overestimate 

of fish present. When the algorithm was run at high percentiles (80-90), the algorithm 

masked out fish data as well as the noise, causing an underestimation of fish present. The 

optimal percentile used in the masking procedure would therefore be able to mask out 
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noise interferences while maintaining fish targets. The optimal percentile used in the 

masking procedure was determined to be 70, as it displayed the smallest margin of error 

when comparing automated fish counts to manual fish counts (Figure 1.9). 

An alternate approach to masking regions with poor signal to noise ratios (SNR) 

in the midfield of the beam would be to disregard those high noise regions by simply 

placing a constant maximum range line at a fixed range, after which the SNR begins to 

decrease for all files. However, this would result in sampling only a small fraction of the 

river profile and neglect any fish present in the far field region of the beam. In our 

dataset, if only the first 15 m of the entire dataset were processed, a range at which the 

SNR was acceptable for all times sampled, the data used would only reflect 40% of the 

range data available when applying the methods described in this paper. In other words, 

this approach enabled us to recover 60% of the data that otherwise would have been lost 

due to noise. Using only nearfield data would retain sporadic noise sources in the 

nearfield beam which occur during boat passage, for example. Clearly, data reduction to 

the nearfield, with the best SNR, would not present a reliable fish abundance estimate. 

Fish abundance standardized by sampling range allows for temporal comparisons 

of fish counts detected with different maximum sampling ranges. Variability in the 

sampling range over time ultimately creates a bias when comparing fish abundance 

numbers across temporal dimensions, as the probability of fish detection increases with 

each additional meter sampled. This is similar to the CPUE concept, where the number of 

fish caught must be standardized by the effort put forth to achieving that catch, whether it 

be fishing time, number of vessels, number of tows, or area fished (Kendrick and 

Bentley, 2010). In our case, the bias was removed by standardizing the fish abundance 
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numbers by the range sampled. To compare fish abundances across temporal dimensions, 

where a difference of up to 45 m was recorded in the range sampled between high and 

low tides of the river (Figure 1.6), the standardized metric of fish h-1 m-1 was used. When 

applying this standardization method, we observed that numerous fish abundance peaks 

were muted because there was simply a larger sampling range during those periods 

(Figure 1.12C).  

We chose to standardize by meters sampled rather than volume sampled, due to 

the difficulty of assessing all factors involved in calculating an accurate beam volume at 

any given time sampled (Steig et al., 2010). To gain an accurate estimate of the volume 

sampled by the acoustic beam one would have to incorporate the following variables: (1) 

the volume of water per unit time varies with the flow rate of the river, (2) any objects 

detected in the nearfield beam limit the possibility for fish detection in the far field beam 

for the duration that they remain in the beam, and (3) the inconsistency of the geometric 

shape of the acoustic beam due to part of the beam encountering the changing river 

surface. With the objective to obtain a general fish abundance estimate over long-term 

monitoring, we applied a simpler spatial standardization unit of meters sampled, rather 

than volume sampled.  

A critical component of hydroacoustic data analysis is the inclusion of a 

validation technique that describes the margins of error expected based on the 

assumptions made for the data analysis procedure (Hartman et al., 1999, Frear 2002). 

Hydroacoustics uses sound backscatter as a proxy for fish numbers (Simmonds and 

McLennan, 2005). As with any proxy used in scientific measurements, hydroacoustics is 

not a perfectly accurate method to measure fish numbers present. Validation techniques 
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for hydroaoustic data processing used in previous studies involved manual tracking 

(Osborne and Melegari 2002), electrofishing (Hughes and Hightower 2015), gill netting 

(Hughes and Hightower 2015, Baldwin and McLellan 2008), and comparing single, dual 

and multi beam assemblages (Maxwell and Gove 2007). The known dataset used for our 

algorithm’s validation procedure was derived from visual counts of fish backscatter on 

the raw TS echogram file. Visual counts of fish backscatter were not a perfect 

measurement of how many fish were present in the file. Some fish patterns in the raw TS 

echogram are ambiguous and might be deemed to be a fish by some observers, but not by 

others. We attempted to be consistent with the quality of manual counts but expect that 

some variation among researchers remains. The validation method offered in this paper 

merely assumes a known dataset of fish targets to ground truth the noise removal and fish 

tracking algorithm. Methods for achieving a known dataset are at the liberty of the 

researcher, e.g., counting fish in a set period. Once this is established the algorithm 

validation process described in this paper could be used to quantify the accuracy of the 

algorithm for the known dataset.  

The fish abundance time series developed here gives an estimate of fish numbers 

present at a study site over time, which can be analysed to learn more about the biological 

processes in this tidal river. The increase in fish abundance from October to December is 

most likely the result of diadromous fish migration patterns in the Penobscot River during 

this time (Saunders et al., 2006). Juvenile alewives in particular have been observed to 

migrate in the Penobscot River during this time of year and are likely responsible for the 

pronounced increase in fish counts observed.  
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The use of hydroacoustic techniques in fisheries research is a growing field 

(Trenkel et al., 2011). Benefits associated with the extensive spatial component 

applicable over broad temporal scales make this technology an attractive method for 

studies involving fish abundance estimates and population studies to assess management 

guidelines (Daum et al., 2006). Applying a standardization method to compare datasets 

of different temporal and spatial scales allows for this technique to be used in long term 

monitoring studies where variable environmental conditions could be reflected in the 

data. With a well-founded validation method in place to evaluate the accuracy of 

automated fish counting algorithms, we look to apply the methods-based approach 

described in this paper to three more six-month datasets associated with the Penobscot 

River Restoration Project. Ultimately, we intend to compare fish abundance estimates 

from pre-dam removal years to post-dam removal years, and examine whether changes in 

fish abundance are observed in this part of the river after dam removal. 
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CHAPTER 2:  

USING HYDROACOUSTICS TO RELATE FLUCTUATIONS IN FISH 

ABUNDANCE TO RIVER RESTORATION EFFORTS  

AND ENVIRONMENTAL CONDITIONS IN  

THE PENOBSCOT RIVER, MAINE 

 

ABSTRACT 

Quantifying how fish abundance changes after a significant portion of their 

natural habitat becomes re-accessible is critical to gauge the success of large restoration 

efforts.  Because fish abundance also changes with naturally fluctuating environmental 

conditions, examining abundance relative to these conditions can indicate fish responses 

to both anthropogenic and natural river variation. A side-looking hydroacoustic system 

was used to estimate fish abundance in the Penobscot River, ME from 2010-2016, where 

2010-2013 were pre-dam removal conditions, and 2014-2016 were post-dam removal 

conditions. The river was monitored during non-ice condition periods, roughly May to 

November annually. Automated data processing enabled continuous abundance estimates 

from fish tracks. A fourfold increase in median fish abundance occurred in the fall 

compared to spring and summer, regardless of dam presence. Concurrent with restoration 

activities, fish abundance increased approximately twofold pre- to post-dam removal. We 

examined the influence of natural environmental conditions including tide, discharge, 

temperature, diurnal cycle, day length, moon phase, as well as restoration activities 

(focusing on dam presence) on variability in fish abundance. Daylength (or photoperiod) 

was the most important predictor variable in all eight time-series analyzed. During the 
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fall migration, abundance was generally higher during outgoing tides, at night, and during 

relatively high river discharge. In the early fall, when daylength was between 11.28 h and 

12 h (September 24th to October 6th) and water temperature was above 11.96 °C, an 

eightfold increase in fish abundance was recorded in post-dam removal years. Alewife 

stocking numbers increased post-dam removal relative to pre-dam removal years and 

likely contributed to the increased fish abundance detected. This is one of the first 

validated tools to continuously examine the response of fish abundance to a major river 

restoration activity. In this application, it significantly increased our understanding of 

how fish abundance changed in the Penobscot River as result of major restoration efforts 

and provides a basic understanding of fish responses to naturally fluctuating 

environmental conditions. 

 

INTRODUCTION 

Diadromous fish play an important role in improving and sustaining healthy 

riverine, estuarine, and marine ecosystems, yet their populations are in serious decline 

(Saunders et al. 2006). Ecosystems depend on these species collectively for: (1) the 

delivery of marine derived nutrients (Durbin et al. 1979; Kline et al. 1990); (2) prey for 

other fish species (Schulze 1996), marine mammals (Cairns and Reddin 2000), birds 

(Wood 1986), and terrestrial vertebrates (Cederholm et al. 1989); and (3) reducing the 

probability of predation for less abundant fish species (Saunders et al. 2006). The decline 

of diadromous fishes in the northeastern United States has largely been attributed to 

human influences including the damming of rivers, overfishing, and pollution (Moring 
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2005).  Recent regulatory and environmental conservation efforts have limited the 

negative effects of overfishing via the Magnuson Stevens Act, while a combination of 

industrial decline and stricter environmental policies, such as the Clean Water Act, have 

decreased pollutants dramatically.  

Today, perhaps the biggest challenge for diadromous fish species is damming of 

river systems for hydroelectric power generation or flood control (NRC 2004; Gephard 

2008). In 2004, the Penobscot River Restoration Project (PRRP) was implemented by the 

Penobscot River Restoration Trust (PRRT). A key element of this restoration project was 

the removal of Great Works Dam in 2012 and Veazie Dam in 2013. Veazie Dam was 

located just upstream of the head of tide, while Great Works Dam was located 13 km 

upstream from Veazie Dam. These dam removals opened 14 km of additional river 

habitat for diadromous fish. In 2014, a fish lift was installed at Milford Dam to improve 

fish passage at the now lowermost dam located 14 river km upstream from the removed 

Veazie Dam. To jump-start fish abundance increases, stocking efforts were increased for 

alewife (Alosa pseudoharengus) beginning in 2010 and increasing through 2016. If 

successful, the project was designed to not only revive the native fisheries of the region, 

but also bring economic, social and cultural benefits to the communities of the Penobscot 

region (Opperman et al. 2011). Economic, ecological, and socio-economic values of 

fisheries generally increase following ecosystem restoration efforts, as higher species 

richness leads to more complex ecosystems, lower volatility, and higher value trophic 

levels of fish species (Sumaila et al. 2000). However, specific case studies showing a 

quantitative account of restoration efforts in terms of fish abundance changes are lacking. 

The Penobscot River Restoration Project was a great opportunity to provide an indication 
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of what may be expected from river restoration efforts including dam removal. 

Quantifying the success of such a large restoration effort would not only provide a 

valuable indicator for fish abundance recovery due to dam removal, but also give other 

communities a model to draw on for decision-making (Trinko-Lake et al. 2012).  

The goal of the PRRP was to restore 11 species of sea-run fish to the Penobscot 

River, while maintaining energy production. Specifically, this project aimed to increase 

the abundance of all 11 native diadromous fish species. With over 14 km of additional 

river habitat directly available after dam removal, nearly half of the native species 

(Atlantic sturgeon, Acipenser oxyrhynchus oxyrhynchus; Atlantic tomcod, Microgadus 

tomcod; rainbow smelt, Osmerus mordax; endangered shortnose sturgeon, Acipenser 

brevirostrum; and striped bass, Micropterus salmoides) had 95-100% of their historic 

habitat restored (Trinko-Lake et al. 2012; Saunders et al. 2006). Alewife, blueback 

herring (Alosa aestivalis), American shad (Alosa sapidissima), American eel (Anguilla 

rostrata), sea lamprey (Petromyzon marinus), and endangered Atlantic salmon (Salmo 

salar) now have access to as much as two-thirds of their historic habitat (Opperman et al. 

2011). With a great percentage of their historic habitat available again, it is crucial to 

monitor the relative change in abundance of these species in the lower reach of the 

Penobscot River. 

Fish abundance and species assemblages vary seasonally in rivers with large 

diadromous fish populations (Iafrate et al. 2008). Both downstream and upstream 

migration timing and intensity in rivers are influenced by water flow, water temperature 

and photoperiod (daylength; Jonsson 1991). For example, photoperiod and temperature, 

have been identified as triggers for initiating downstream migratory behavior of Atlantic 
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salmon smolts (Martin et al. 2012). Large seasonal differences in fish abundance and 

species composition were documented in upper San Francisco estuary are largely 

controlled by fluctuations in salinity and temperature, with the lowest abundance 

occurring in winter and spring, and the highest abundance in summer and fall (Gewant 

and Bollens 2012). Gewant and Bollens (2012) developed a fish count metric that 

normalized the catch rate of fish by sampling site and effort. However, establishing such 

standardized measures of abundance over long time series is challenging and not 

common-place. 

Most traditional approaches to document variation in fish abundance are spatially 

and temporally limited (e.g. fyke nets; Gewant and Bollens 2012) and focus on individual 

fish rather than total abundance. Tagging techniques, trawling, and electrofishing are all 

sampling techniques that yield sporadic fish abundance and species estimates, providing 

good spatial coverage (Kiraly et al. 2015; Watson 2017), but poor temporal resolution. To 

investigate changes in total fish abundance in a river and how it varies in response to 

different river and environmental conditions, a continuous sampling technique for fish 

abundance would be optimal to yield high temporal resolution time series of relative fish 

numbers in a single location. Hydroacoustic monitoring techniques are often used to meet 

such requirements (Rudstam et al. 2012; Trenkel et al. 2011).  

Hydroacoustic technologies have been used by fisheries researchers to count the 

number of diadromous fish passing through a given area continuously (millisecond 

resolution) over time, providing an indicator of fish presence. For example, down-

looking, mobile hydroacoustic techniques have been applied to estimate the number of 

adult spawners returning to the Roanoke River, North Carolina, USA, and identify 
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seasonal pulses of hickory shad (Alsos mediocris), American shad, and striped bass 

(Mitchell 2006). Fixed-location, bottom-mounted, upward-looking hydroacoustic 

transducers were deployed in the Baltic Sea to study diel patterns in pelagic fish 

behavior, including Baltic herring (Clupea harengus), sprat (Sprattus sprattus), and smelt 

(Osmerus eperlanus) (Axenrot et al. 2004). Fixed-location, side-looking (horizontally 

oriented) hydroacousitc methods have been used to estimate the abundance of migrating 

Chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska (Burwen et al. 

2003).  

Fish abundances in the Penobscot River are known to vary seasonally due to the 

suite of species assemblages and variation in the population sizes present (Saunders et al. 

2006). Adult anadromous fish species, such as alewives, blueback herring, and American 

shad immigrate to freshwater rivers to spawn in the late spring to early summer, while 

their young begin their emigration to the ocean in the fall (Mullen et al. 1986). Other 

anadromous fish species, such as adult Atlantic salmon immigrate in the spring and 

throughout the summer to headwater streams to spawn. Their offspring will use 

tributaries as foraging grounds for one to two years before emigrating to the ocean to 

continue their life cycle (Zydlewski and Zydlewski 2012). The American eel, a 

catadromous species, is known to immigrate as juveniles in the spring to early summer, 

mature in tributaries for years to decades and finally emigrate as adults to the ocean in the 

fall. As such, migratory behaviors vary within the Penobscot River, giving the river a 

dynamic flux of fish throughout the year. 

We aim to gain a better understanding of how the migratory periods of 

diadromous fishes vary within a migratory year as well as among years, and how that 
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variation may be explained by environmental conditions, including restoration efforts. 

Results derived from this study provide an indication of the changes a river undergoes 

after restoration efforts, and indicate what environmental conditions influence fish 

abundance variability in the Penobscot River. The goals of this study were to investigate: 

1) changes in total fish abundances pre- and post-dam removal, 2) seasonal variability in 

fish abundances in both pre- and post-dam removal years, and 3) how fish abundance 

variability was related to different river and environmental conditions, including the 

increased stocking efforts associated with the river restoration. Finally, we qualitatively 

compared changes in fish abundance to other, parallel studies of fish presence in the 

Penobscot River to explore the utility of this method as an indicator of how fish 

abundances respond to dam removal. 

 

METHODS 

Sampling procedure 

BioSonics side-looking split-beam hydroacoustic technology was used to estimate 

fish abundances (defined as fish h-1 m-1) in the Penobscot River, ME. Transducers were 

deployed on both sides of the river (Table 2.1); projecting an acoustic beam across the 

river from each side (Figure 2.1). Looking upstream, the station on the left river bank was 

designated Pen A, while Pen B was located on the right river bank (Figure 2.1). The 

study site was 5 km downstream of the Veazie Dam removed from the river in 2013 

(Figure 2.2). Average tidal ranges at the study site span 5.25 m. Surveys began in 2010 

and continued through 2016. Data collection was only possible from May to 
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approximately November of each year since the Penobscot River was subject to icy 

conditions that could compromise equipment between the months of November to April. 

Ice was likely to cause unwanted interference signals in the acoustic transducer beam and 

posed a collision threat to the equipment. The exact deployment dates varied each year 

due to variation in the ice-out date for the river (Table 2.1). 

 

Figure 2.1. Cross-sectional illustration of the experimental setup at the survey sites in the 

Penobscot River. Bottom topography was mapped by conducting down-looking 

hydroacoustic transects across the river (green lines in main image, red lines in inset). 

The bottom right inset shows the cross-river transects in an overhead Google Earth view. 
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Table 2.1. Annual dates for side-looking deployment of BioSonics split beam transducers 

in the Penobscot River, Maine. Pen A and Pen B are the respective split beam transducers 

and associated transceiver systems deployed on the Western and Eastern sides of the 

River, respectively. 

Year Pen A Pen B 

 Transducer 

Type 

Beam angle 

(Major, Minor) 

Deployed Removed Transducer 

Type 

Beam angle 

(Major, Minor) 

Deployed Removed 

2010 430 kHz 6.8°, 6.8° Aug. 27 Nov. 4 206 kHz 6.8°, 6.8° Apr. 27 Nov. 18 

2011 208 kHz 3.6°, 10.4° May 18 Oct. 26 208 kHz 3.6°, 10.5° Apr. 29 Dec. 9 

2012 208 kHz 3.6°, 10.4° May 28 Oct. 26 208 kHz 3.6°, 10.5° Apr. 18 Nov. 20 

2013 208 kHz 3.6°, 10.4° May 15 Nov. 11 208 kHz 3.6°, 10.5° May 1 Oct. 25 

2014 Transition year – No comparable data collected 

2015 206 kHz 6.6°, 6.6° May 20 Dec. 7 206 kHz 6.5°, 6.5° May 7 Nov. 17 

2016 206 kHz 6.6°, 6.6° May 7 Nov. 13 206 kHz 6.5°, 6.5° Apr. 26 Nov. 8 
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Figure 2.2. Map of Penobscot watershed in Maine and relative location of the study site. 

Map produced by Zydlewski and Staines in prep. a) the Penobscot watershed is shaded in 

green; b) River sections marked by river km starting at the mouth of the river entering 

Penobscot Bay and ending at the previous Veazie Dam location at rkm 48; c) satellite 

image of the river section sampled using hydroacoustics, the yellow triangles represent 

the approximate coverage of the two beams. 

 

 

 

Data quality assessment 

Early deployment years were often subject to technical difficulties that limited the 

functionality of the transducers. These difficulties, caused by poor transducer aim and 

physical beam restrictions as a function of large side-lobes and unwanted transducer 

cross-talk, resulted in some sampling periods being unsuitable for fish abundance 

estimates (Table 2.2). In addition, changing of the transducer beam angle and collection 

frequency by switching transducers within a sampling year caused some periods of data 

to be either unsuitable for processing, or were not comparable to the remaining years. 

Sampling periods with severely compromised data quality and range (2010 Pen B, 2012 
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Pen A, 2013 Pen A & B) were not used. Data suitability was determined using a data 

quality evaluation procedure for each deployment period. Data quality was assessed for a 

subsample of 90, 15-minute files that were randomly selected for each collection year and 

river side. Each file was evaluated to assess whether good data quality could be generated 

for at least the first 15 m from the transducer. Data quality was considered “good” when 

fish counts could be extracted.  

 

Table 2.2. Relative data quality of archived side-looking hydroacoustics data collected in 

the Penoboscot River, ME. Sampling years and river sides were deemed appropriate for 

automated processing based on the data quality present in a subsample of 90, 15-minute 

files. Green blocks indicate algorithms that were constructed for this dataset, while red 

blocks indicate that no accurate fish track information could be extracted. 

State Year Pen A (West Shore) Pen B (East 

Shore) 

 

Pre-dam  

Removal 

2010     

2011   

2012   

2013   

Post-dam 

Removal 

2014: transition year No comparable data collected 

2015   

2016   
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The range (distance from the transducer) of good data quality was specified as the 

range at which fish and noise could be distinguished using the automated processing 

approach described in Chapter 1. Briefly, this involved determining the maximum range 

at which the acoustic noise within a spatiotemporal region of 2 m by 300 pings (2 m by 

75 seconds at 4 pings per second) exceeded the acoustic threshold of -49 dB. With the 

fish target threshold set at -45 dB, -49 dB represented a noise level where fish targets 

were no longer clearly distinguishable from the acoustic noise within each cell. This 

process provided a distinct interface between regions where fish were detectable and 

undetectable due to background noise, that could be determined using automated data 

processing. The maximum range line was indicative of the range at which the 

transducer’s acoustic beam encountered a strong interference object (i.e., river bottom or 

surface). For all files, if a maximum range line could not be drawn using the automated 

process described, the data being collected was deemed not viable for automated fish 

detection. In this case, even the river bottom (or surface) did not elicit a strong enough 

signal to be measured, and deciphering a fish signal would be highly unlikely. Therefore, 

if the number of files with inappropriate sampling ranges for the data subsample was 

above 10% for that year, we omitted that year and/or river side for data processing. When 

the number of files was within 10% of the number of files subsampled we constructed a 

processing algorithm for that year and river side. Based on this evaluation, part of 2010 

(after a 430 kHz transducer was installed in August), 2011, 2015, and 2016 were selected 

from the Pen A side for data processing, and 2011, 2012, 2015, and 2016 were selected 

from the Pen B side (Table 2.2).  
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Automated data processing  

A standardized processing approach (Chapter 1) was used to generate and apply 

year and river-side specific hydroacoustic processing algorithms in Echoview. Briefly, 

this approach involves a cell-based noise removal approach where midfield beam 

interferences potentially causing false fish signal classifications were masked, and a 

maximum range line was drawn at the range from the transducer where fish targets were 

indistinguishable from background noise (see data quality assessment). Tidal fluctuations 

caused variability in midfield beam interferences and maximum range detection, as the 

volume sampled by the acoustic beam would change according to the river depth based 

on the tides. Noise levels within each cell would change over time based on the varying 

noise signatures caused by the tides. Based on the spatiotemporal metric of each cell (2 m 

by 300 pings), the maximum range line and mask applied to remove midfield beam 

interference could adjust by the metric of one cell at its minimum, when the noise level 

threshold of -49 dB was exceeded. Once the maximum range line was identified, and 

midfield beam interferences masked, the potential fish targets remaining were determined 

to be fish tracks based on the spatiotemporal proximity of potential fish targets to others 

detected in the beam. Each fish track was characterized as one fish count. Information 

recorded for each fish track included depth, velocity, target strength (TS), directionality, 

and range from transducer. Fish counts were binned by hour (number of tracks per hour) 

and divided by the median range sampled for each hour to produce spatiotemporally 

standardized fish abundance estimates (fish h-1 m-1). Once applied, the exported fish 

abundance data was used to construct a continuous time series of fish abundance 

estimates for each year and river side. Each year’s algorithm was validated through an 
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independent subsample of data files on which manual fish counts were made and 

correlated with the automated fish counts derived from each year and river sides’ 

automated processing algorithm. Final algorithms used had a regression coefficient of at 

least 0.85 and were applied to the entire hydroacoustic dataset of each year and river side. 

 

Data correction for range 

Using a range standardization method to create a temporally comparable metric 

assumes detection probability remains constant with each additional meter sampled. 

However, the number of fish counts increased with increasing range sampled, with the 

greatest number of counts being observed between 25 m and 40 m ranges (Figure 2.3). A 

bimodal distribution can be observed when examining fish counts by range due to the 

sampling range extending to 25 m and 40 m more frequently. Fish located at 25 m and 40 

m ranges were sampled more frequently, thus causing total fish counts in these ranges to 

be higher. When examining variability in fish abundances inter-annually and between 

pre- and post-dam removal years, it was important to use a standardized fish abundance 

metric where fish detection probabilities were as similar as possible for all years sampled. 
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Figure 2.3. Histogram of all fish tracks detected by range. N = 3,298,789. The light-grey 

area depicts all fish counts within 15 m of the transducer, which represents 6.34% of all 

fish tracks detected (N = 209,143) and was used to estimate changes in fish counts pre- 

and post-dam removal (Figure 2.7). The combined dark-grey and light-grey areas were 

used to assess changes in seasonal fish abundance and for CART analysis. All fish 

counts, after being binned by sampling hour, are represented in the fish abundance time 

series plot (Figure 2.5) and seasonal fish abundance plots (Figure 2.8) as part of the range 

standardized fish count metric fish h-1 m-1. 

 

 

Since median sampling ranges varied significantly between each year and river 

side, we decided to compensate for the remaining range bias by also only considering fish 

counts detected within the first 15 m of the acoustic beam when comparing fish counts 

pre- and post-dam removal. This essentially eliminated range-bias, as nearly 100% of all 

hours sampled (99%) had a median sampling range above this value. It also mitigated the 
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effect that the beam angle difference of the transducer types used might have had on fish 

signal detections, as the volume sampled by the different transducer types only varied by 

a maximum of 0.45 m3 for the first 15 m sampled (min. = 9.71 m3, max. = 10.16 m3). 

While this method allowed us to be confident that fish detection probabilities were nearly 

identical for pre- and post-dam removal comparisons, it also restricted our dataset to only 

6.34% of all fish counts made. 

When examining seasonal variability in fish abundance and its relation to 

environmental conditions (discharge, temperature, daylength, diel cycle, moon phase, tide 

phase, dam conditions, and river side), we used all ranges sampled since this provided the 

best possible estimate of fish abundances. Fish abundance was defined as a 

spatiotemporally standardized metric (fish h-1 m-1) to include fish counts from all 

sampling ranges. This metric was then used to assess seasonal changes in fish abundance, 

construct fish abundance time series for each year and river side processed, and describe 

their relation to environmental variables. 

 

Data Analysis 

Variation in fish abundance among pre-and post-dam removal years and seasons 

was examined using Analysis of Variance (ANOVA) techniques. However, data were not 

normally distributed (Kolmogorov-Smirnov, p = <0.01). Therefore, a Wilcoxon rank sum 

test was used to assess whether differences of total fish abundances between pre- and 

post-dam removal conditions were significant, and Kruskal-Wallis test was used to test 

whether total fish abundances varied significantly by season (spring, summer, fall). 

Seasons were classified using the equinox and solstice where: Spring was defined as 
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deployment until June 21st; Summer was June 21st to September 21st, and Fall from 

September 21st until system removal.  

We explored the relationship between observed fish abundances and river 

conditions using Classification and Regression Tree (CART) analysis. The target variable 

evaluated was the range-adjusted fish count metric (fish h-1 m-1). River and 

environmental parameters included three continuous predictors: river discharge (m3 s-1), 

temperature (°C), and daylength (h); and five categorical predictors: diurnality (day or 

night), tide phase (incoming and outgoing), moon phase (new moon, first quarter, full 

moon, second quarter), dam condition (present or removed), and river side (Pen A or Pen 

B).  

We used environmental data from a variety of monitoring stations and agencies 

including United States Geological Survey (USGS; West Enfield, station 01034500, 

Eddington station 01036390), HOBO depth and temperature loggers deployed at the 

study site, Penobscot Indian Nation temperature loggers deployed near the study site, and 

the U.S. Navy Astronomical Applications Department. Numeric values were assigned to 

all predictors for each active sampling hour recorded by the hydroacoustic system (Table 

2.3). Each sampling hour had corresponding values for fish abundance and each 

environmental condition. Since time was not a predictor, data gaps were ignored, as each 

sampling hour with a missing fish abundance value would also not be assigned an 

environmental condition, and thus not used in the CART analysis. 
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Table 2.3. Numeric values representative of different environmental variable conditions 

assigned to each sampling hour and used in CART analysis. 

 

 

Fish abundance data were partitioned based on the associated predictive variable 

that elicited the greatest difference in the values of the target variable, creating two 

mutually exclusive groups with maximum homogeneity (Breiman et al., 1984). This 

process was continuously repeated on the mutually exclusive data groups created to 

produce a decision tree. Each splitter node in a decision tree identified a condition that 

sorted fish abundance data by either meeting this condition, or not. Data partitioning 

continued until a terminal node was reached, signifying that no further splitter conditions 

were identified, or that user-specified limitations for the CART model were reached. 

Each node displayed a response value that was predicted based on the conditions of that 

Variable Class Definition (Condition) Value 

Fish abundance Target fish h-1 m-1 Continuous 

Daylength 

 

Temperature 

 

Discharge 

Predictor 

 

Predictor 
 

Predictor 

Daylight hours as a fraction of 24 

 

°C 

 

m3s-1 

Continuous  

 

Continuous 

 

Continuous 

Day, night 

(diel cycle) 

 

Tide phase 

 

Moon phase 

 

 

Dam condition 

 

River side 

Predictor 

 

 

Predictor 

 

Predictor 

 

 

Predictor 

 

Predictor 

Night, day, (dawn & dusk hours) 

 

 

Outgoing, incoming, slack tide 

 

New moon, first quarter, full moon, 

second quarter 

 

Pre-dam removal, post-dam removal 

 

Pen A, Pen B 

0, 1, (2 & 3) 

 

 

0, 1, 3 

 

1, 2, 3, 4 

 

 

0, 1 

 

1, 2 
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node. The number of terminal nodes describes the complexity of a tree. Where a complex 

tree might best describe the underlying relationship between predictor and response 

variable and create the most accurate fish abundance prediction values based on this 

relationship, it is often too complex to read and describe relationships. We present the 

results of both a complex CART version (unpruned), and a simplified version of the 

CART analysis.  

Complex trees of fish abundance split by predictor variables were used to extract 

the relative importance of those variables, and pruned back to a reasonable size that 

displayed and described the most important relationships. Terminal node sizes were 

restricted to contain at least 96 data points (i.e. the condition described in each terminal 

node must have been present for at least 96 hours or longer). Ninety-six was used as the 

minimum number of hours needed for a terminal node to be established, as hourly 

discharge values represented four-day averages, and each specific moon phase was also 

assigned to the 48 hours before and after its peak occurrence. CART analysis was used to 

evaluate the relative predictability of each variable, where the most predictive 

environmental variable assumed a value of 100, and all subsequent predictors assumed a 

value relative to this predictor. If two predictors were highly correlated, it only used the 

most significant data splitting variable of the two for establishing the decision tree. 

CART analyses were conducted through a data processing and data mining program by 

Salford Systems®. 
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RESULTS 

Automated processing validation 

All automated processing algorithms were validated. Automated fish counts per 

file produced by year and river-side specific algorithms were highly correlated (R2 > 

0.87) with manual counts of fish from the same file (Figure 2.4).  
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Figure 2.4. Regression plots of automated and manual fish counts for each year and river 

side sampled in the Penobscot River, ME. The x-axis represents manual counts and the y-

axis are automated counts for each file. Regression coefficients (R2) and slope equations 

are displayed. Grey boxes signify that data for the specified river side of that year was not 

of high enough quality for automated processing. 
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Range standardization 

The number of fish counts increased with increasing range. For all ranges 

sampled, the number of fish h-1 increased with range (Figure 2.5A) with a slope of 7.1. 

When standardized by the median range sampled for each hour, the increase in fish h-1 for 

each additional meter sampled are reduced to a slope of 0.1 (Figure 2.5B). Where fish h-1 

are largely dependent on the range sampled, the range-standardized fish abundance 

metric (fish h-1 m-1) was used to compare sampling hours with significantly different 

sampling ranges, as the fish count bias associated with sampling range is reduced from 

7.1 to 0.1. 

 

Figure 2.5. Fish h-1 metric (A) and fish h-1 m-1 (B) metric compared by range sampled. 

Blue and red lines indicate the best fit line for each plot, respectively. 
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Fish abundance pre- and post-dam removal  

Fish counts (fish h-1) within 15 m of the transducer increased during post-dam 

removal years relative to pre-dam removal years (Kruskal-Wallis p < 0.001; Figure 2.6). 

The mean of post-dam removal counts was 310% higher than pre-dam removal counts, 

while the 75th and 95th percentiles were 100% higher. 

 

Figure 2.6. Fish tracks sampled within the first 15 meters of the transducer beam for all 

years pre- and post-dam removal. Box plots represent all fish counts detected within the 

first 15 m of the transducer for all years pre- and post-dam removal, respectively. NPre-dam 

removal = 15,984, NPost-dam removal = 18,888. For each box plot, the black central line 

indicates the median, the bottom and top edges the 25th and 75th percentiles, 

respectively, and the top and bottom whiskers the 95th and 5th percentiles. The circles 

indicate means. 
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Range-corrected fish abundance changed seasonally with the highest being 

observed in the fall of all years sampled (Figure 2.7; Kruskal-Wallis, p < 0.001). Fish 

abundance in the spring and summer were significantly lower and less variable compared 

to the fall (Dunn-Sidak non-parametric post-hoc test, p < 0.01). Fish abundance by season 

was also significantly higher in post-dam removal years (Kruskal-Wallis, p < 0.001).  

 

Figure 2.7. Fish abundance pre-and post-dam removal grouped by season. Box plot 

definitions are described in Figure 2.6. NPre-dam removal (Spring; Summer; Fall) = 3,624; 5,616; 

5,184. NPost-dam removal (Spring; Summer; Fall) = 4,272; 6,480; 5,784. 

 

 

Continuous data revealed high variability in fish abundance for all years and river 

sides sampled (Figure 2.8). Fish abundances were higher in the fall for all years on both 
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river sides sampled. Lowest fish abundances were observed in the summer months (post 

summer solstice, June 21st, and before the autumn equinox, September 21st). 
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Figure 2.8. Recorded fish abundances (fish h-1 m-1) in the Penobscot River for each year and river side sampled from 2010-2016. Blue 

areas indicate data gaps. Fish abundance and sampling range distributions for each collection year and river side are given in Table 

2.4. Note that the limits on the y-axis are 0-100 fish h-1 m-1 for Pen A and 0-40 fish h-1 m-1 for Pen B. 
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Table 2.4.  Median fish abundance (fish h-1 m-1) and sampling range (m) broken down by 

year and river side. 

  2010 2011 2012 2015 2016 

River side A B A B A B A B A B 

F
is

h
 h

-1
 m

-1
 Median 6.18  0.06 0.18  0.56 2.89 0.14 2.08 0.38 

25th %tile 1.98  0 0.05  0.21 0.98 0.04 0.78 0.13 

75th %tile 15.08  0.28 0.58  1.68 7.47 0.53 4.93 1.05 

R
a
n
g
e 

(m
) 

Median 42.5  18.0 30.5  46.3 38.6 21.3 35.5 25.3 

25th %tile 34.6  18.0 26.6  35.2 28.7 18.9  27.4 23.8 

75th %tile 52.4  20.4 36.0  50.3 48.5 23.3 45.7 26.9 

 

Pen A 2010 was only deployed in the fall months, when the highest relative fish 

abundances for each the year occurred, and displayed the greatest median sampling range 

among all years and river side sampled (Table 2.4).  

 

Fish abundance and the environment 

The most accurate, unpruned CART model resulted in a tree with 248 nodes with 

a relative predictive error of 0.55 (R2 = 0.484). Briefly, the 3.4 times more targets were 

observed when day length was below 0.47, which roughly corroborates with the 

increased abundance observed in the Fall. Regardless of season, more fish were observed 

on river side Pen A than Pen B. Within the Fall season, roughly twice the number of 

targets were observed on an outgoing tide than an incoming tide. Of those targets leaving 

during the Fall on an outgoing tide, almost three times more targets were observed when 
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the temperature was below 11.6o C and those fish were more likely to migrate at night. 

Interestingly, dam removal was particularly useful in splitting relatively high 

temperature/low day length events, with roughly 8.7 times more targets after dam 

removal under these conditions. However, these conditions only account for 302 hours of 

the record. Finally, during high migration periods/high abundance events, higher 

discharge (>153 m3) was associated with the greatest number of observed fish abundance. 

Summer/spring abundance was generally lower and therefore more difficult to parse than 

Fall abundance with the CART approach.  

The highest mean fish abundance (28.17 fish h-1 m-1) for a terminal node occurred 

during a time of year when daylength was less than 0.47 (~11.3 h), on the Pen A river 

side during an outgoing tide when water temperature was between 4.56 °C and 9.25 °C. 

The fish were moving at night (including dusk or dawn), water discharge was greater 

than 153 m3s-1, and the moon phase was new, first quarter, or last quarter. A total of 110 

sampling hours (of the total 31,642, 0.34% of the data) met these specific river conditions 

among all sampling years. The lowest mean fish abundance (0.014 fish h-1 m-1) occurred 

when daylength was greater than 0.56 (~13.4 h) and less than 0.64 (~15.4 h), located on 

the Pen A river side before dam removal, when water temperatures were greater than 21.8 

°C, and fish were moving during the day during an outgoing tide. A total of 143 sampling 

hours met these specific river conditions. 

Relative predictability scores for each environmental predictor were generated 

based on the unpruned decision tree (Table 2.5). Variables were scored based on the 

relative importance of each variable to the first splitter identified, which assumes a score 

of 100 (Table 2.5). The relative score of each variable is reflected in its usage as a splitter 



66 
 

node in the unpruned decision tree. Variables with higher scores produced greater 

differences in mean fish abundance detected. Daylength was the variable of highest 

importance with side of the river and temperature having similar scores. Water discharge 

and dam presence had approximately one quarter the predictive power of daylength. Tide 

phase and diel cycle, and moon phase had the lowest predictive power. 

 

Table 2.5. Relative variable importance identified by the CART model with the highest 

relative predictability. 

River Variable Score 

Daylength 100 

River Side 76.17 

Temperature 73.34 

Discharge 24.83 

Dam Condition 23.02 

Tide Phase 18.78 

Day/ Night 14.08 

Moon Phase 7.50 

 

The simplified decision tree was pruned to 21 nodes to visualize the exact 

conditions of the environmental variables that elicited the greatest response in fish 

abundances in the Penobscot River. It revealed that a daylength value of 0.47 produced 

the largest difference in mean fish abundance (Figure 2.9). The mean fish abundance 

detected during a daylength period over 0.47 of the day was 1.5 while the mean fish 

abundance with a daylength below 0.47 was 7.2 fish h-1 m-1. The next splitter identified 
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was river side, referring to the transducer systems on either side of the river (Pen A and 

B). The mean fish abundance on the Pen A river side was 12.4, while Pen B only 

averaged 2.5 fish h-1 m-1. Fish abundance detected on the Pen A river side was higher 

during outgoing tide and slack tide (15.12 fish h-1 m-1) than during incoming tide (7.88 

fish h-1 m-1). Dam condition was found to produce a large difference in fish abundance 

for a subsample of 302 hours, where mean fish abundance was observed as 1.55 fish h-1 

m-1 pre-dam removal and 13.43 fish h-1 m-1 post-dam removal.  
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Figure 2.9. Pruned decision tree created by CART analysis with a total of 21 nodes. The 

top node contains all data sampling hours (N = 31,642). N signifies the number of 

sampling hours contained within each node. The standard deviation of data contained in 

each node is also given. Specific river conditions applied to each node are indicated by 

the arrow pointing to the respective node. 

 

 

DISCUSSION 

This study addressed three distinct questions about fish presence and abundance 

in the Penobscot River: 1) did fish abundance increase in post-dam removal years relative 

to pre-dam removal years, 2) did fish abundances differ seasonally pre- and post-dam 

removal, and 3) how was fish abundances variability related to different environmental 
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conditions in the Penobscot River? The answers are yes, yes, and daylength, river side, 

temperature, discharge, and dam presence were most explanatory. 

Fish abundances did increase post-dam removal and were clearly linked to 

specific seasons. Dam presence was an important indicator for fish abundance in the 

Penobscot River as total fish track counts within 15 m of the transducers increased in 

post-dam removal years (Figure 2.6), and post-dam removal years also had greater 

seasonal fish abundance (Figure 2.7). We hypothesized that fish abundance would 

increase post-dam removal based on other river restoration projects. For example, 

following a small dam removal in the Eightmile River system in Connecticut, enhanced 

river connectivity positively benefited fish assemblages and caused significant shifts in 

relative fish abundance over time (Poulos et al. 2014). 

Increased fish abundance post-dam removal has also been found in parallel 

studies exploring species assemblage changes in the Penobscot River post-restoration, 

and by visual fish counts conducted at the respective lowermost dams in the Penobscot 

River. Kiraly et al. (2015) and Watson (2017) conducted electrofishing surveys from 

2010 to 2012 (pre-dam removal) and 2014 to 2015 (post-dam removal) to study fish 

assemblages in the main stream and tributaries of the Penobscot River. River reaches that 

underwent habitat and connectivity changes post-dam removal displayed a 31% average 

increase in Morisita-Horn’s species similarity index and was attributed to increased 

habitat access for anadromous fish (Watson 2017). An increase in total abundance for 

alewife, American shad, American eel, sea lamprey, and striped bass was revealed post-

dam removal from visual fish counts conducted at the respective lowermost dam in the 

Penobscot River both pre- and post-dam removal (Veazie dam 2010 – 2013, Milford dam 
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2015-2016; Simpson, Mitchell, Maine Department of Marine Resources, unpublished 

data). 

Increases in fish abundance for this and parallel studies cannot be disentangled 

from concurrent stocking efforts intended to “jump start” the increases in native fish 

populations anticipated after dam removal. As part of the overall objective of the 

Penobscot River Restoration Project to increase native fish abundances, adult alewife 

stocking efforts to lakes connected to the Penobscot River were recorded as: 12,378 in 

2010; 3,734 in 2011; 48,648 in 2012; 32,775 in 2013; 43,204 in 2014; 56,506 in 2015, 

and 18,151 in 2016 (Cox et al. 2014). As such, production of juvenile alewife from these 

lakes has resulted in high fall emigration out of the Penobscot River. The high fish 

abundance we recorded in the fall cannot be separated into natural increases in fish 

numbers related to the dam removal and increases related to stocked adult production. 

This nuance must be considered when assessing the natural recovery of fish populations 

in the Penobscot River.  

Many diadromous fish species with different migratory behaviors are present in 

the Penobscot River. The fish count metric applied in this study provided total fish 

abundance numbers over time, which was highly reflective of the most abundant species 

of fish present in the river, alewife. Biomass data, which in hydroacoustics translates to 

target strength (TS), is not included in the abundance metric used. While sporadic fish 

abundance peaks that occurred in June (Figure 2.8) are lower and span a shorter time 

period than fall abundance peaks, total biomass moving through the river at both of these 

times may be closer than the abundance metric indicates. June fish abundance peaks are 

likely to include adult anadromous fish migrating upriver to spawn (e.g., alewife, blue 
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back herring, shad, and Atlantic salmon), while fall peaks represent the spawned river 

herring juveniles for that year that are emigrating from the river and moving downstream 

in the fall. This scenario would certainly be plausible for alewife, as adult alewife migrate 

upriver to spawn in the late spring to early summer, and the young of the year begin their 

emigration to the sea in the fall of that same year (Mullen 1986). 

Highest fish abundances were observed when daylength was less than 0.47 (11.3 

hours), water temperature was between 4.56 °C and 9.25 °C, and discharge above 153 

m3s-1. These conditions indicate that the timing of these high fish abundance periods 

occurred during the fall i.e. from October 8th until the transducers were taken out. Fish 

species migrating in the fall are known to be influenced by seasonal river conditions 

(Tommasi et al. 2015). Discharge, water temperature, and daylight have previously been 

described to have a significant impact on migratory behavior and timing of various 

diadromous fishes (Jonsson 1991). Discharge influences the timing of Atlantic salmon 

smolt to initiate downstream migrations in the spring (Hesthagen and Garnås 1986), for 

example, as high discharge periods allow for reduced energy expenditure by increased 

flow velocity (Hanson and Jonnson 1985), and provides shelter from predators in form of 

decreased visibility caused by turbidity (Hvidsten and Hansen 1989). Smolt migrations of 

Atlantic salmon in the Ørkla River, Norway, have been found to be initiated by the first 

spring peak in water discharge (> 100 m3 s-1) and continued to increase with increasing 

discharge (Hesthaven and Garnås 1986). The large increase in fish abundance detected 

during the fall months in the Penobscot River is likely a function of the migratory 

behavior of juvenile alewife. In addition to seasonal river conditions accentuating fall 

conditions for high fish abundance, periods with the greatest fish abundance were 
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specific to an outgoing tide, at night (including dusk or dawn), with a new, first quarter, 

or last quarter moon phase. This aligns with results from previous studies, which found 

that the onset of downstream migrating juvenile river herring (including alewife and 

blueback herring) occur mainly at night (Johnston and Cheverie 1988) with a new moon 

phase (Iafrate and Oliveira 2008).  

No environmental variable can be described as a single migration trigger for an 

assemblage of diadromous species, or even a particular species. The smolt migrations in 

the Ørkla River, Norway are highly correlated with discharge (Garnås 1986). However, 

migrations of the same species were correlated with water temperature in the Imsa River, 

Norway (Jonsson and Ruud-Hansen 1985). The results from our CART analysis suggest 

that fish abundance in the Penobscot River is also influenced by a combination of 

environmental parameters, with daylength, temperature, tide phase, dam conditions, diel 

cycle, discharge, and moon phase all playing a role, but with different levels of 

significance (Table 2.5). Thereby, the categorical predictors of tide phase, diel cycle, 

moon phase, and dam condition have lower predictability scores than the continuous 

predictors of daylength, temperature, and discharge, partially because these variables do 

not undergo any seasonal variability. The categorical predictors used occur in the same 

form during both low and high fish abundance periods, thus lowering the predictability 

compared to variables that undergo seasonal changes.  

River side is an artificial variable produced by our sampling procedure. CART 

identified river side as the second splitter, and second most important predictor of fish 

abundance. This indicates fish abundance on each river side differed significantly and 

could be due to any combination of 1) varying fish detection capabilities for each river-
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side system to 2) differences in behavioral patterns of species preferring one river side 

over the other for their movement through this part of the river. Though it is evident that 

fish numbers detected by each river side are different, this study’s focus was to develop a 

relative abundance index to assess changes in the Penobscot River from a pre- to a post- 

dam removal condition, and how the yearly variability in fish abundance observed might 

be linked to environmental conditions known to trigger fish migration behavior. CART 

analysis splitting fish abundance into two mutually exclusive groups by river side (Figure 

2.9) assures us that relative fish abundance for each river condition (river side) is only 

being compared to the relative fish abundance collected on the same river side. Future 

studies involving river side counts could explore location preferences for fish, which may 

then be linked to the flow profile of the river, and a cross-sectional sampled species 

assemblage (as in Mitchell, 2006). 

Standardizing fish abundance by range sampled does not completely remove the 

range bias associated with the fish detection probability at greater ranges (Figure 2.5B). 

While we are unable to correct for fish behavior, one possible solution to correct for the 

additional volume sampled at increasing range would be to calculate the volume sampled 

at each range and produce a metric of fish h-1 m-3. The theoretical volume sampled by the 

acoustic beam for each hour would be estimated by calculating the volume of the acoustic 

cone given height and beam angle. The calculated volume would represent the volume 

sampled under optimal conditions. Given the dynamic nature of the river, and limitations 

of the acoustic sampling technique, it was determined that the optimal sampling volume 

was not reflective of the actual volume sampled at any time. As described in (Scherelis 

2017), factors that influenced the volume sampled included the changing discharge of the 
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river, reflections from the river surface causing the geometric shape of the acoustic beam 

to change over time, and limited detection possibilities in the far-field of the beam due to 

“shadows” being produced by objects in the near-field beam. As many of these beam 

limitations were difficult to account for, especially over the entire sampling period, it was 

decided that we would accept the small error of standardizing fish counts by the range 

sampled (Figure 2.5B) to create a fish abundance metric, rather than attempting to 

standardize by volume, which would potentially produce a larger error by 

overcompensating for the volume gained. In other words, we decided to accept the 

inaccuracies of a known error, rather than risk incurring an unknown, potentially larger 

error. 

Side-looking hydroacoustics are amenable to providing a hands-off indicator of a 

fish assemblage response to river restoration practices. The approach enabled an indicator 

of fish responses to a suite of river conditions over multiple years. Temporal patterns of 

fish abundance were deciphered and provided evidence of a trend that indicates an 

increase in fish abundances in post-dam removal years. Methods used to process these 

data (Chapter 1) allowed information for each fish track to be exported in an easily 

accessible format. Additional data collected available include detailed information about 

each fish track detected, including target strength, directionality, velocity, and depth. 

These data can be used in the future to study, for example, spatial usage of the river 

channel by fish, and more specific behavioral patterns of fish in relation to environmental 

conditions, such as directionality as a function of the diurnal cycle, tidal stage, or moon 

phase. Target strength can also be used to focus on a specific size class of fish (Boswell 

et al. 2008). The possibility for future studies focused on behavioral responses of fish at 
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the individual level using this dataset does exist, but would also require parallel methods 

to confirm the patterns observed. The tools presented here allowed continuous tracking of 

the progress of large restoration efforts that would allow researchers and managers to 

maximize limited investments on specific restoration objectives, e.g., dam removal in 

conjunction with stocking practices.  
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