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Abstract: The current state of the art for partition based qualitative spatial reasoning sys-
tems such as the 9-intersection, 9+-intersection, direction relation matrix, and peripheral
direction relations is that of the binary set intersection—either empty or non-empty—
conveying the intersection (or lack thereof) of an object in the sets deriving the partition.
While such representations are sufficient for topological components of objects, these repre-
sentations are not sufficient for various tasks in qualitative spatial reasoning (composition,
representation transfer, converse, etc.) regarding partitions as tiles. Topological augmenta-
tion expands the current binary status quo into a system of assigning topological relations
between objects and tiles. A case study is presented in the form of the direction relation
matrix, demonstrating that an increased vocabulary has benefits for spatial information
systems, providing localized context within a qualitative embedding.

Keywords: direction relation matrix, topological intersections, geographic information sci-
ence, qualitative spatial reasoning, partitions

1 Introduction

From a cognitive perspective, qualitative spatial reasoning is a fundamentally important
task that is broken apart in how it is initially learned developmentally [50]. Not surpris-
ingly, the formalization of models for spatial intelligence for three decades produced a pro-
liferation of formal models (see [12]) that have broken apart qualitative spatial information
into three distinct components: topology, direction, and distance [36]. While these models are
effective for various tasks in querying, the fact remains that human decisions are made by
combining these three sources of spatial information into a unified view, despite that the
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2 DUBE

Figure 1: An example of converting a direction relation matrix symbol to a qualitative topo-
logical relation. In this case, the direction relation matrix symbol (NW,W,SW) is demon-
strated to result in disjoint (the solid outline) or meet (the dashed outline), an uncertain
result.

understanding of place cells and other brain structures has highlighted modularity in some
aspects of the spatial process [34, 47, 57].

More recently, the literature in qualitative spatial reasoning over the past two decades
has moved toward integrated forms of qualitative spatial reasoning, combining two or all
of the separate spatial reasoning areas into productive and more verbose systems (e.g., [2,
10, 17, 41, 46, 59]). The combination of the topology, direction, and distance reasoning
areas has helped to solve many spatial problems, but the realm of directions between areal
objects has continued to provide a host of tasks where current methods of reasoning are
inadequate or have not been applied substantively.

The source of direction reasoning issues is tied directly to how the current gold-
standards are constructed. Two well-known approaches to the representation of areal di-
rection [30, 49] focus on qualitative set intersections between an areal object (the figure
object) and a set of partition tiles defined by the shape of a second areal object (the ground
object). This qualitative set intersection approach has stark limitations linked to its missing
information:

• Given the pervasiveness of geographic information systems (GISs), their usage across
various areas of scientific endeavor, and the proliferation of volunteered geographic
information [28], converting from one formal model to another formal model is often
required to expand spatial knowledge within particular applications. One instance of
this conversion is between the direction relation matrix and a 9-intersection topolog-
ical relation [31]. This conversion currently cannot distinguish the topological rela-
tions disjoint and meet from one another in any circumstance (Figure 1). Adjacency is
one of the primal concepts in the Natural Semantic Metalanguage [27], and thus can
be considered essential to human understanding, though coarsening of topological
information results in formalisms such as RCC-5 that neglect boundary contact [5].

• One key way to gather additional information from stored information is through
the process of relation composition [60]. Composition fuses together relations over
a common domain element. Composition can be classified in two forms: strong and
weak [52]. The strong composition is the result that is applicable to any elements con-
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TOPOLOGICAL AUGMENTATION 3

Figure 2: The weak composition of direction relation matrix symbols (NE) and (NE,E,SE).
Not all members of these direction relation symbols can result in all of these resultant ele-
ments.

Figure 3: The converse relation of the minimum bounding rectangle tile in the direction
relation matrix. The result has a high degree of uncertainty, causing potential errors in
spatial reasoning applications where the direction relation is stored only in that order [61].

tributing to the relations in question, whereas the weak composition is an existential
composition, claiming that at least one domain set can produce the result. Using the
direction relation matrix, the weak composition has been computed [56]; however
the strong composition of two specific instances has not been achieved in a verifiable
form (Figure 2).

• The order that data/information are stored and communicated in a database is im-
portant. If the order of the relation in a database needs to be reversed, the converse
relation must be considered. For simple topological relations, the converse relation
is a one-to-one mapping (and thus invertible). Wang et al. [61] focused on this op-
eration for the direction relation matrix, with some relations having as many as 198
converses (Figure 3)! Only four relations from the direction relation matrix have a
unique converse that can also be undone uniquely.

• Given that both approaches employ areal partitions, consider the direction relation in
either formalism between a linear feature that is a subset of the minimum bounding
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4 DUBE

Figure 4: Application of the direction relation matrix to the relation between a line and a
region. In this case, the line does not qualitatively intersect any of the tiles, therefore each
tile is registered as empty, thus hiding the position of the line.

rectangle’s boundary from an areal object [24]. No tile in this instance produces a
non-empty qualitative intersection [29]. This result would be no different if the linear
feature occupied the boundary between any two of the partition tiles (Figure 4). As
such, these types of formalisms in their current form are ill-equipped for extension
beyond areas.

A formal model that can answer the call for these tasks represents a substantial step for-
ward for qualitative spatial reasoning with regard to directions. In this paper, it is argued
that changing from a binary set intersection to a qualitative topological set intersection
provides additional information in a large array of cases at the cost of inflating the set of
realizable symbols. While this set of symbols will not always be needed at that granular-
ity, storing data at a finer granularity and then deriving the coarsened view can provide
future application benefit in tasks such as the ones listed above by implementing an ap-
proach that unifies two of the identified categories of qualitative spatial reasoning. Such
extensions meet current needs in advanced cases, but may also one day meet currently un-
foreseen needs in the data science community, similar to the Google extension to the Brown
Corpus and its potential effects on language analysis [32]. Notably, research has attempted
to combine directional and topological reasoning [7, 9, 11, 35, 43, 44, 45, 54, 55], but none
of those attempts have been employed to solve such existing challenges. In essence, this
paper employs an approach akin to fuzzy sets [3, 6, 33, 64], however not in a numerical
sense. The proposed theory assigns classes of membership to non-empty qualitative set
intersections by infusing topological relations to provide additional context to an uncertain
position [63]. In this light, not all members of the same current relation class are considered
equal.

The rest of this paper is structured as follows. Section 2 highlights the spatial literature
concerning the combination of spatial information types as well as the direction relation
matrix and the standard topological relation formalisms based on intersections. Section 3
introduces topological augmentation and provides a proof that topological augmentation
can provide the information available in the vanilla direction relation matrix in a simple
and straightforward manner. Section 4 develops the integrity constraints for the various
types of tiles that can arise in an arbitrary spatial partition of R2. Section 5 analyzes the re-
sults of topological augmentation on the symbol sets from the peripheral direction relations
and the direction relation matrix. Section 6 revisits the examples from Section 1, showing
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TOPOLOGICAL AUGMENTATION 5

that topological augmentation provides immediate impact for unsolved directional tasks.
Finally, Section 7 provides conclusions and future work.

2 Motivating work in qualitative spatial reasoning

Qualitative spatial reasoning has been a fundamental factor in the spatial domain for the
past fifty years of research. In this section, motivating literature within this corpus of re-
search is reviewed, highlighting the need for a shift in how qualitative intersections are
addressed. Section 2.1 addresses the field of topological relations. Section 2.2 addresses
the direction relation matrix and its struggles regarding concepts in relation algebra and
transfer of spatial representations. Section 2.3 addresses previous work in the arena of
combining topological and directional qualitative spatial information.

2.1 Topological relations

One of the key areas that researchers have identified within spatial knowledge is that of
topological spatial knowledge. Topological spatial knowledge reflects information pertain-
ing to three specific concepts: connectivity, containment, and intersection. While the region
connection calculus focuses on predominantly connectivity [51], the scope of this paper
leans toward containment and intersection. Given the intended domain of this paper (sim-
ple regions), connectivity is functionally equivalent. One of the motivating tasks, however,
benefits specifically from containment and intersection at the level of identification. These
concepts generally form the backbone of spatial language [14, 38].

In qualitative topological spatial reasoning, containment and intersection are modelled
through Boolean qualitative set intersections in three salient models: the 4-intersection [22],
the 9-intersection [23], and the 9+-intersection [37]. These three models have been devel-
oped using four key topological definitions: interior, closure, boundary, and exterior [1].

Definition 2.1. Let X be a set in a topological space T . Let O be the collection of all open
sets On that are each a subset of X . The union of all members of O is called the interior of
X , denoted as Xo.

Definition 2.2. Let X be a set in a topological space T . Let C be the collection of all closed
sets Cn that are each a superset of X . The intersection of all members of C is called the
closure of X , denoted as X̄ .

Definition 2.3. Let X be a set in a topological space T . The set X̄\Xo is called the boundary
of X , denoted as ∂X .

Definition 2.4. Let X be a set in a topological space T . Let O be the collection of all open
sets On that do not intersect X . The union of all members of O is called the exterior of X ,
denoted as X−.

Definitions 2.1–2.4 effectively create a partition of space based on a set. Each point in the
space can be assigned to any of the three components interior, boundary, and exterior. This
partition motivates the 4-intersection (Figure 5) and the 9-intersection (Figure 6), a com-
bination of the topological components with respect to two objects. The 9+-intersection
extends this approach by considering a partition based on connected portions of these
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Figure ∂A ∩ ∂B Ao ∩Bo ∂A ∩Bo Ao ∩ ∂B

(a) ∅ ∅ ∅ ∅

(b) ¬∅ ∅ ∅ ∅

(c) ∅ ¬∅ ∅ ∅

(d) ¬∅ ¬∅ ∅ ∅

(e) ∅ ∅ ¬∅ ∅

(f) ¬∅ ∅ ¬∅ ∅

(g) ∅ ¬∅ ¬∅ ∅

(h) ¬∅ ¬∅ ¬∅ ∅

(i) ∅ ∅ ∅ ¬∅
(j) ¬∅ ∅ ∅ ¬∅
(k) ∅ ¬∅ ∅ ¬∅
(l) ¬∅ ¬∅ ∅ ¬∅

(m) ∅ ∅ ¬∅ ¬∅
(n) ¬∅ ∅ ¬∅ ¬∅
(o) ∅ ¬∅ ¬∅ ¬∅
(p) ¬∅ ¬∅ ¬∅ ¬∅

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5: The sixteen different relations identified by the 4-intersection with a graphical
instantiation of each. Wherever possible, the relation is expressed with a pair of simple
regions [22].

topological components, generalizing to the 9-intersection for simple regions (that is, those
bounded by a Jordan curve). Simple regions, given the Jordan curve property, are also
simply connected, namely that each object can be continually collapsed to a point while still
remaining within that domain [1]. Similarly, partition tiles within this paper are also simply
connected as each tile does not contain a hole.

The 9-intersection has led to a proliferation of sets of relations based on specific domains
of spatial interest, including line-line relations [18], line-region relations [24], simple region-
region relations in S

2 [20], digital relations [25], and complex region relations [42, 53]. While
this paper focuses on those relations in Figure 6, the proposed methodology can be em-
ployed similarly in such other domains if the rules for assignment are established.

Topological relations (such as these) have been used in prior studies to help reconstruct
spatial scenes [17, 21, 39] by storing the binary relationships between all objects in a space.
The approach presented in this paper utilizes this approach in the context of a specifically
structured partition of space.

2.2 Qualitative directions between areal objects

Qualitative topological spatial relations are just one perspective on a pair of objects and
their association. Qualitative directional spatial relations are another key perspective,
opening up a completely different level of spatial vocabulary [38]. While Euclidean spaces
manage the direction between a pair of points through vectors, the task of assigning a di-
rection between two areas of space is much more complicated. Approaches to this task
range from using centroids of objects [46] to the qualitative partition of space into re-
gions [8, 30, 45, 49].
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Figure 6: The eight topological relations identified by the 9-intersection between two simple
regions [23].

Figure 7: The peripheral direction relation embedding space [49], dropping a line from each
corner of a rectangle toward the rest of the space at an arbitrary angle.

This paper focuses on two qualitative partitions of space designed to create a direction
relation between two regions. The first approach is the peripheral direction relation [49],
while the second is the direction relation matrix [30]. While the same methodology applies
to the internal cardinal direction relations [45] and the objects interaction matrix [8], this
pursuit is left to future work.

2.2.1 Peripheral direction relations

Motivated by cardinal direction relations and the way in which eyes are positioned in mam-
mals [26], the peripheral direction relations [49] subdivide a space into partition tiles based
on the minimum bounding rectangle (MBR) of the ground (or target) object. The vertices
of the MBR serve as an anchor for a ray extending into infinity at a set direction angle,
defining intuitive concepts for North (in front of), South (in back of), West (to the left of),
and East (to the right of), as shown in Figure 7.

For simple regions, this method establishes a set of 29 distinct direction relations, one
for each connected set of tiles. Only two sets of tiles: 1) West and East, and 2) North and
South, do not satisfy this connected property.

2.2.2 Direction relation matrix

Though effective, the peripheral direction relations have a relatively small granularity and
have difficulty in expressing ordinal directions. An answer to this shortcoming is found
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8 DUBE

Figure 8: The direction relation matrix [30]. Using the object in the center of the figure, the
minimum bounding rectangle (M) is constructed. The direction relation matrix then uses
these tiles and assigns either a Boolean value or a proportion to represent the configuration.

with the direction relation matrix [30]. This approach uses the rectangular coordinates of
the MBR and extends each line of the MBR in infinity. The intersection of these lines creates
a 9-tile partition of space, one for each ordinal direction and the MBR itself (Figure 8).

The direction relation matrix has a much larger cardinality with respect to the peripheral
direction relations. 218 distinct relations are available between simple regions, as demon-
strated in Figure 9.

Numerous attempts have been made to exploit the direction relation matrix for addi-
tional types of information, including the determination of the converse relation [61], the
determination of the topological relation [31], the composition of direction relations [56],
and the use of the formalism to relate arbitrary objects [29]. In each case, specific deficien-
cies have been encountered as identified in the introduction.

2.3 Combinations of topology and direction

Though orthogonal, topology and direction play a pivotal role in the expression of spatial
knowledge. Numerous research lines have been traversed in this area. Sharma [54] used
direction relations and topological relations together in an effort to refine the composition
of topological relations. Other formalisms have been developed that integrate the informa-
tion together in varying capacities (e.g., [2, 7, 9, 11, 35, 41, 43, 44, 46]). None of these models,
however, has been used to exploit properties in the composition of direction relations [56],
nor applied to the general pursuit of knowledge regarding the properties of relation algebra
within the direction relation matrix setting [60].

One interesting approach is the combination of topological and directional relations
within the partitions themselves. Kor and Bennett [35] have employed this approach to
expressing relations in maps using the region connection calculus and the direction rela-
tion matrix in a modified form. Their work does not, however, focus on the attainment of
better contextual knowledge for the converse relation, composition result, and topological
relations that are associated with the direction relation matrix itself. This work is intended
to provide the bridge to filling those important gaps.
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TOPOLOGICAL AUGMENTATION 9

Figure 9: The 218 different symbols that can arise from the direction relation matrix with
Boolean assignments with respect to two simply connected regions [29].

3 Topological augmentation

This paper defines the concept of topological augmentation. Topological augmentation is an
approach to partition reasoning that assigns a topological relation between a figure object
and a set of ground partitions to better manage the intricacies of the object within a parti-
tioned space. This approach stands in contrast to Boolean set intersections, which provide
only enough information to determine that the object is present or not. While Kor and Ben-
nett [35] provide the first work in this area, the use of RCC-8 is not ideal when considering
objects that can produce more rich topological relations achievable by other formalisms
such as the 9-intersection. Topological augmentation is defined in Definition 3.1. For the
remainder of this paper, the nomenclature of Talmy [58] is adopted in referring to objects
as either figure (the first element of the spatial relation) or ground (the second element of
the spatial relation). Additionally, the paper adopts the 9-intersection [23] as its method

JOSIS, Number 14 (2017), pp. 1–29
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TPP y(b,WeakNorth(a)) NTPP y(b,WeakNorth(a)) TPP y(b,Horizontal(a))
∧ EC y(b,Horizontal(a)) ∧ EC y(b,WeakNorth(a))

Figure 10: Direction relations with specified RCC-8 relations [35]. This approach provides
a more flexible framework for describing further elements of object b’s position relative to
object a, but prior work does not focus on the gains that can be realized from a reasoning
perspective by taking this approach.

Figure 11: A comparison between the direction relation matrix of a pair of objects and the
corresponding topological augmentation.

for assigning a qualitative topological spatial relation. The definition is flexible enough to
account for other models of qualitative topological spatial relations.

Definition 3.1. Let X be a collection of sets partitioning a topological space T , and xi a
particular set from X called a tile. A topological augmentation is any method that assigns
a binary qualitative topological spatial relation between a set Y and each individual xi.

Topological augmentation can be seen as a refinement to a partition-based relation (such
as the direction relation matrix). Rather than modelling just whether or not the set Y in-
tersects each individual xi, topological augmentation calculates the topological spatial re-
lation and assigns that to each tile, rather than an empty or non-empty designation (as
in the case of the direction relation matrix). As such, each tile is assigned information
regarding the interior, boundary, and exterior of the figure object with regard to its own
interior, boundary, and exterior. A topological augmentation of the 9-intersection within
the direction relation matrix is shown in Figure 11.

The aim of topological augmentation is to produce the binary topological relation be-
tween the figure object and the ground tiles in such a manner that the original partition
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TOPOLOGICAL AUGMENTATION 11

relation can be maintained in the standard Boolean form (empty or non-empty). Theo-
rem 3.1 addresses this desideratum.

Theorem 3.1. Topological augmentation maintains the partition relation in its Boolean form.

Proof. Consider an arbitrary topological relation from an intersection-based method such
as the 9-intersection [23], 4-intersection [22], or the 9+-intersection [37]. These topological
relations maintain information about the intersections of the topological components of
their domain and co-domain by definition. If at least one point is shared between the two
components, then the intersection is non-empty. If no points are shared, the intersection is
empty.

Now, consider a qualitative partition relation in a Boolean form. Within this type of
partition relation, the tile is registered as non-empty if the figure object shares a point with
that tile, and empty otherwise.

Topological augmentation assigns a qualitative topological spatial relation between the
figure object and each tile in the partition. Both the figure object and the tile have an inte-
rior, boundary, and exterior. If the interior or boundary of the figure object intersects the
interior of the tile, then the figure object shares a point with the tile and thus has a non-
empty intersection with it. Similarly, if only the exterior of the figure object intersects the
interior of the tile, then the figure object does not share a point with the tile and thus has
an empty intersection. Thus by observing only the ∗-interior intersections of the tile, the
Boolean intersection is discernible for each individual tile, preserving the Boolean form of
the partition-based relation.

Given Theorem 3.1, we can also assert that a non-empty partition implies a topolog-
ical relation that has a non-empty interior-interior or boundary-interior intersection, and
that an empty partition implies that the topological relation does not have a non-empty
interior-interior intersection. This information is imperative for the determination of the
various combinations of topological augmentations that may mathematically exist within
specific domains of object relations (region to region, line to region, etc.) within a parti-
tioned environment.

In Section 4, the theory of topological augmentation is developed for the simple region-
region relations identified in Figure 3.

4 Simple region-region relations

One formalism that can benefit from the use of topological augmentation is that of quali-
tative areal direction reasoning such as with the direction relation matrix [30] and the pe-
ripheral direction relations [49]. Each of these partition-based formalisms have simply con-
nected tiles. This section provides the set of constraints that must be upheld for a particular
topological augmentation within these partitions (and other arbitrary partitions with sim-
ply connected tiles) to be realizable given the constraint of simply connected figure objects.
Each theorem details the conditions necessary for each of the eight topological relations
between simple regions to be assigned to an individual tile based either on its qualitative
set intersection (empty or non-empty) or a relation that is to be assigned to other specified
tiles. This section is broken into three parts: Section 4.1 details empty tile intersections;
Section 4.2 details general non-empty tiles; and Section 4.3 details bounded non-empty
tiles.
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Given that simple region-region relations are defined between objects bounded by Jor-
dan curves, for tiles not bounded by a Jordan curve, we impose a Jordan curve beyond
the scope of the figure object, a surrogate for an infinite extent. In so doing, particular
relations are restricted from these cases: contains, covers, and equal, as each of these requires
that the figure object is larger than its corresponding ground object. Since the tile is not
bounded by a Jordan curve, this is intuitively not possible between any figure object and
these particular tiles.

4.1 Empty tile intersections: disjoint and meet

From Theorem 3.1, given that a tile has an empty intersection, the corresponding relation in
the tile must have an empty interior-interior intersection within topological augmentation.
For the simple region-region relations in R

2, this limits the choices of relations to disjoint
and meet. The difference between these two relations is that disjoint shares no boundary
points, whereas meet shares at least one boundary point.

Theorem 4.1. Let tile x have an empty intersection with a figure object f . The relation between
figure object f and tile x may be disjoint provided that none of x’s neighbors have relation equal,
covers, or contains with respect to f .

Proof. The relation disjoint does not allow for a boundary intersection between f and x. To
demonstrate Theorem 4.1, it must be shown that the relation disjoint can occur based on the
composition of the relation between the figure object and the tile and the relation between
two neighboring tiles (specifically, meet).

Consider the relation between f and an arbitrary neighbor of x, and the resultant com-
positions with meet [19]:

• If the relation is disjoint, disjoint ; meet = disjoint, meet, overlap, coveredBy, inside.
• If the relation is meet, meet ; meet = disjoint, meet, overlap, coveredBy, covers, equal.
• If the relation is overlap, overlap ; meet = disjoint, meet, overlap, covers, contains.
• If the relation is inside, inside ; meet = disjoint.
• If the relation is coveredBy, coveredBy ; meet = disjoint, meet.

For each case, the composition includes the relation disjoint, therefore there is at least
one instance where disjoint can occur between three objects/tiles satisfying these two rela-
tions. Since the 9-intersection produces a strong composition [19, 52], this result applies for
arbitrary simply connected objects/tiles.

It must also be shown that the relations contains, covers, and equal do not allow for a
disjoint neighbor. This can similarly be achieved through composition with meet.

• If the relation is contains, contains ; meet = overlap, covers, contains.
• If the relation is covers, covers ; meet = meet, overlap, covers, contains.
• If the relation is equal, equal ; meet = meet.

In each case, the relation disjoint is not a member of the composition result, therefore
disjoint cannot exist in the presence of a neighboring tile with any of these relations. There-
fore, a tile may have relation disjoint only in the case that its neighbors do not have relation
contains, covers, or equal (Figure 12).

Since disjoint and meet are the only two relations that can exist for empty tiles, any tile
that may not be assigned disjoint must be assigned meet by default. Which cases allow for
either to be assigned?
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Figure 12: The set of tile relations for neighboring tiles that can produce disjoint (top), and
the corresponding tile relations that cannot (bottom).

Figure 13: The set of tile relations that can produce meet (top) and those that cannot (bot-
tom).

Theorem 4.2. Let tile x have an empty intersection with a figure object f . For x to be assigned
relation meet with respect to figure object f , a neighbor of x must be non-empty and must be
assigned a relation other than inside or contains.

Proof. Similar to Theorem 4.1, this proof is the result of the composition of the relation be-
tween the figure object and the tile and the relation between two neighboring tiles (specif-
ically, meet). The compositions of inside ; meet and contains ; meet (from the proof of Theo-
rem 4.1) do not allow for relation meet, but all of the others do (Figure 13)

Figure 14: The visual argument to demonstrate that a neighboring tile to tile relation meet
(in tile x) must be non-empty.

JOSIS, Number 14 (2017), pp. 1–29
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To demonstrate this theorem, it must also be shown that at least one neighboring tile is
also non-empty. Since both the figure object f and the tile x are bound by a Jordan curve
(or can be represented as such), one side of the boundary must consist entirely of interior
points of f . Since x possesses an empty intersection with f , the side opposite x must be
comprised solely of interior points of f . Since there is a boundary-boundary intersection
between f and x, any open disc o containing that intersection point must include interior
points of f and exterior points of f as well, independent of its radius (Figure 14). Since
o is simply connected and x cannot contain interior points of f , these interior points of
f must be in o \ x. Since the boundary of any object must be adjacent to its interior, at
least one interior point of f must be adjacent to this boundary intersection between f and
x. That point resides in a tile that neighbors x, therefore that tile’s intersection with f is
non-empty.

There are circumstances, however, where the assignment of relation meet is dependent
upon other tiles besides this non-empty one suggested in Theorem 4.2. Consider two tiles
that intersect only at a point (such as direction relation matrix tiles M and SE). If M has
a non-empty intersection and SE is to have relation meet with respect to a figure object f ,
dependencies must occur to validate the topological augmentation. These dependencies
are covered in Theorem 4.3.

Theorem 4.3. Let x be a tile with an empty intersection with f that is to be assigned meet based
upon its point neighbor (as in the given example). For x to be assigned relation meet, all other tiles
which share this point as boundary must have a relation that is not disjoint, inside, or contains.

Proof. Since these tiles all have the point intersection as a boundary, the boundary-
boundary intersection applied to x must also be shared with all of the specified tiles. This
precludes relations disjoint, inside, and contains, as each relation has no boundary-boundary
intersection available (Figure 6).

Theorems 4.1–4.3 provide the basis for assigning topological relations to empty tiles in
the prescribed environments with the specified domain of simply connected figure objects
and tiles. Section 4.2 addresses generally non-empty tile intersections.

4.2 Generic non-empty tiles: overlap, inside, and coveredBy

Non-empty tiles must be subdivided into two classes because there are relations that are
size dependent. Relations equal, contains, and covers require objects to be of identical or
larger size to their co-domain. Since there are tiles where a simply connected figure object
does not exist such that it can subsume the tile, these relations are not assignable to an
arbitrary tile, specifically to those not bound by a Jordan curve. For relations overlap, inside,
and coveredBy, any size constraints of these objects do not impact their general assignment,
independent of the status of the boundary as a Jordan curve. These three relations also
have very specific and straightforward parameters with which they can be assigned. These
relations are addressed in Theorems 4.4–4.6.

Theorem 4.4. Let tile x have a non-empty intersection with a figure object f . Tile x can be assigned
the relation overlap only if a non-point neighbor tile of x is non-empty.

Proof. The relation overlap implies an intersection between the figure object’s interior and
the tile’s exterior, therefore some additional tile in the space must be non-empty. Since
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Figure 15: The visual argument for an edge-neighboring tile to tile x being non-empty
when tile x has relation overlap with respect to object f .

the object must be simply connected, a path must exist that links any two such points
that would generate those intersections. That path may, however, go from the tile being
assigned to another point-adjacent tile, thus making those two tiles non-empty, using an
argument similar to that of Theorem 4.2 for interior adjacency.

To demonstrate the Theorem, we must also show that some other tile that is an edge-
adjacent neighbor of tile x also is non-empty. The interior adjacency argument from Theo-
rem 4.2 can also be used to demonstrate this Theorem. Consider two cases. The first is the
case where the edge-adjacent neighbor to x is also edge-adjacent to the point-neighbor to x.
Since interior points are surrounded by interior points, there exists an open disc o around
the point-adjacency that contains a set of only interior points of f (Figure 15). Since o has
a non-zero radius, the edge-adjacent neighbor to both x and its point-neighbor has interior
points of f and is thus non-empty.

The second case is the case where arbitrarily many tiles converge at that point-
adjacency. The same argument for case one can be employed in this case as well as each
point-neighboring tile will intersect o. One of these tiles must be edge-adjacent to x, satis-
fying the claim of the theorem.

Theorem 4.5. Let tile x have a non-empty intersection with a figure object f . Tile x can be assigned
the relation inside only if it is the only non-empty tile in the partition and all other tiles have relation
disjoint.

Proof. This can easily be demonstrated by the composition of the relation between the fig-
ure object and the tile and the relation between the two tiles (meet for all adjacent tiles;
disjoint for all others). inside ; disjoint = disjoint and inside ; meet = disjoint. Since meet
and disjoint always occur in empty tiles, this verifies that the tile in question is the only
non-empty tile in the partition.

Theorem 4.6. Let tile x have a non-empty intersection with a figure object f . Tile x can be assigned
the relation coveredBy only if it is the only non-empty tile in the partition, and at least one other
neighboring tile has the relation meet.

Proof. This can also easily be demonstrated by the composition of the relation between the
figure object and the tile and the relation between the two tiles (meet for all adjacent tiles;
disjoint for all others). coveredBy ; disjoint = disjoint and coveredBy ; meet = disjoint, meet. To-
gether, these make sure that all other tiles are empty. Since coveredBy implies a non-empty
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boundary-boundary intersection, any tile sharing that particular boundary-boundary in-
tersection point(s) must produce relation meet by exhaustion, as it is the only available
option with a boundary-boundary intersection per the result of Theorem 4.2.

Theorems 4.4–4.6 can be applied to any tile, bounded by a Jordan curve or not. Since
any size constraint implies smaller in these instances, there is no issue with these relations
being applied in either context. Section 4.3 addresses the remaining cases that imply that
the figure object is as large or larger than the tile.

4.3 Jordan-curve-bounded non-empty tiles: contains, covers, and equal

The relations in this section have a size dependency, and thus are only attainable when
the tile in question is bounded by a Jordan curve. In both of the gold standard cases in
the literature, only one tile may satisfy these demands (that of the minimum bounding
rectangle), however for internal direction relations [45] or the objects-interaction matrix [8],
many tiles can satisfy these demands. Theorems 4.7–4.9 address these relations.

Theorem 4.7. Let tile x have a non-empty intersection with a figure object f . The relation equal
can be assigned to x only if it is the only non-empty tile in the space, and additionally, all neighboring
tiles have relation meet and all non-neighboring tiles have relation disjoint.

Proof. This can be demonstrated through the composition of the relation between the figure
object and the tile and the relation between the two tiles (meet for all adjacent tiles; disjoint
for all others). equal ; meet = meet and equal ; disjoint = disjoint. As such, every neighbor
must have relation meet, and every non-neighbor must have relation disjoint. Given that
meet and disjoint are specifically empty tiles, the other requirement is satisfied.

Theorem 4.8. Let tile x have a non-empty intersection with a figure object f . The relation contains
can be assigned to x only if all of its neighbors are non-empty.

Proof. This can also be demonstrated through the composition of the relation between the
figure object and the tile and the relation between the adjacent tiles (specifically meet).
contains ; meet = overlap, covers, contains. All of these tiles have non-empty interior-interior
intersections, and thus by Theorem 3.1 have non-empty tile intersections.

Theorem 4.9. Let tile x have a non-empty intersection with a figure object f . The relation covers
can be assigned to x only if it is not the only non-empty tile in the space and none of its neighbors
has relation disjoint.

Proof. Similar to Theorem 4.8, consider the composition covers ; meet = meet, overlap, cov-
ers, contains. All neighboring tiles must have a relation from this set as the simple region
composition is strong, thus no neighbor can have relation disjoint. Since covers has a non-
empty interior-exterior intersection, the object must have a non-empty intersection with
some other tile.

Theorems 4.1–4.9 exhaustively cover the topological relations that can be assigned to
tiles based on the properties of the tiles within the partition and within the Boolean setting.
In Section 5, these methodologies are used to provide a large amount of diversity within
the peripheral direction relations and the direction relation matrix.
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5 Exposing diversity within qualitative spatial partitions

Using the foregoing Theorems from Section 4 and the sets of realizable relations between
simply connected regions in both the peripheral direction relations [49] and the direction
relation matrix [30], the diversity of realizable relations can be explored with topological
augmentation. Figure 16 and Table 1 explore this diversity from the realm of congruence
classes, relations that are identical under symmetry.

A congruence class refers to symbols that algebraically behave in similar ways to one
another. In the presence of a congruence class, one exemplar need only be considered to
provide information regarding all other members of that class. In the case of the peripheral
direction relations and the direction relation matrix, congruence classes can be identified
by the structure of the partitioning. There is a specific adjacency structure that remains con-
sistent between the tile sets, independent of what orientation the partitioning is observed
from. In the case of the direction relation matrix, when observing the space from the NE,
NW, SE, or SW directions, the partitioning is structurally equivalent. When observing the
space from the N, S, E, or W directions, the partitioning is structurally equivalent. In the
case of the peripheral directions, observing the space from any direction produces a struc-
turally equivalent result. As such, we can consider only a few cases to exhaustively cover
all of these available symbols. These congruence classes are identified based on matrix
transformations. Any matrix that can be produced by employing a horizontal, vertical,
major diagonal, or minor diagonal transposition (or any combination thereof) to the same
matrix are considered congruent to one another [15]. For the direction relation matrix, there
are 45 different congruence classes, whereas for the peripheral direction relations, there are
only 10.

Figure 16 and Table 2 determine the amount of topological augmentations that can exist
within a particular congruence class for both qualitative areal direction formalisms. For the
peripheral direction relations (Figure 16), these possibilities are enumerated (as the total set
is more manageable in number). For the direction relation matrix (Table 2), the cardinality
of each set is provided, allowing for the determination of the total number of relations
available through topological augmentation over simple regions.

Each grouping in Figure 16 represents a different congruence class of peripheral direc-
tion relations that can be rotated. Topological augmentation thus produces a set of 180
different realizable symbols from the original set of 29, averaging just over six symbols
from each peripheral direction relation.

Class (b) has the highest diversity amongst the relations. The one symbol belonging to
class (b) produces 17 different topological augmentations: one for inside, one for equal, and
15 for coveredBy. The least diversity comes from class (h), with only two possible symbols.
The impact of this diversity (or lack thereof) can be felt in many applications, as seen in the
next section.

Similarly, each congruence class in Table 2 has a varying degree of flexibility with topo-
logical augmentation. Class 9 (the center stripe) has the most diversity with 65 relations,
while class 44 (the empty center tile) has the least diversity. The most diverse single com-
bination is that of coveredBy in class 5, producing 46 specific relations (with inside and equal
producing the other two). Both class 44 and class 5 exhibit similar properties as exhibited
in the peripheral direction relations. Topological augmentation thus produces a set of 3,084
different realizable symbols from the original set of 218, averaging just over 14 symbols
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(a)

(b)

(c)

(d)

(e)

(f)

(g) (h)

(i) (j)

Figure 16: Topological augmentation applied to the peripheral direction relations. Each
group (a–j) represents the members of an exemplar from the ten congruence classes. Each
of these symbols (and rotated versions) can be used to provide additional context to pe-
ripheral direction relations. The symbols used to refer to each qualitative partition relation
correspond to those abbreviations for the 9-intersection relations given in Figure 6.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45

Table 1: Exemplars for each direction relation matrix class (reference for Table 2).
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Figure 17: The impact of topological augmentation on the possible topological relations
between a direction relation matrix symbol and a ground object. By observing the relation
meet with the MBR tile, the relation meet with the object is possible, but not guaranteed. If
the relation had been disjoint for this particular tile, the relation meet for the objects is not
possible.

from each direction relation matrix. Similarly, the effects of this diversity can be felt in
numerous applications as discussed in the conclusion.

While an increase in relational diversity seemingly violates the general premise of Oc-
cam’s Razor, a computer’s information systems or reasoning methods are not bound by
this premise. What is bound, however, is the manner by which the computer conveys that
knowledge back to users. In the next section, the benefits of this approach are displayed rel-
ative to important spatial reasoning tasks. Given that Theorem 3.1 ensures the maintenance
of the original information contained in these qualitative partition relations, the clarifica-
tion of context for the information system has no consequence on the given answers to the
user other than creating a reduction of possibilities, a better source of information.

6 Perspectives on previous problems

At the outset of the paper, a set of four tasks were presented in the areal direction realm that
provide substantial problems with respect to the advancement of partition-based direction
reasoning. Topological augmentation as presented in this paper provides substantive ad-
vances for each.

Guo and Du [31] studied the transition from the direction relation matrix to topolog-
ical relations. While their findings were accurate, they still could not distinguish disjoint
from meet in any circumstance. With topological augmentation, this inability to distinguish
topological relations is restricted only to cases where the boundary of a figure object inter-
sects either the boundary of the MBR tile or the MBR tile itself. This result is demonstrated
in Figure 17. Similar gains can be realized, distinguishing relations differing only by a
boundary-boundary intersection (e.g., contains and covers, inside and coveredBy).

Skiadopoulos and Koubarakis [56] studied the composition of the direction relation
matrix, but were only able to derive the weak composition [52]. Using topological aug-
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Class Symbols Augmentations Topological Augmentations per Symbol Total

1 4 5 20
2 4 13 52
3 1 48 48
4 8 10 80
5 4 53 212
6 4 8 32
7 4 13 52
8 8 27 216
9 2 65 130
10 4 41 164
11 4 14 56
12 4 21 84
13 8 33 264
14 8 21 168
15 4 33 132
16 8 10 80
17 8 11 88
18 4 11 44
19 4 17 68
20 8 17 136
21 4 17 68
22 8 17 136
23 4 17 68
24 4 11 44
25 1 17 17
26 4 8 32
27 8 8 64
28 4 9 36
29 8 9 72
30 8 9 72
31 4 9 36
32 8 9 72
33 4 9 36
34 4 6 24
35 4 4 16
36 4 4 16
37 4 5 20
38 8 5 40
39 2 5 10
40 2 5 10
41 8 5 40
42 4 3 12
43 4 3 12
44 1 2 2
45 1 3 3

218 3,084

Table 2: Topological augmentation applied to the direction relation matrix (exemplar
shown in Table 1).
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Figure 18: The strong composition of the direction relation matrix in the presence of topo-
logical augmentation. The distinction between disjoint and meet allows for distinguishing
opportunities based on the maximum rectangle algebra relation that could be present be-
tween the objects [4, 13, 48].

mentation within the direction relation matrix setting allows for the calculation of a strong
composition by utilizing information from the rectangle algebra. Revisiting the example
from the introduction, by considering the topological augmentation of a given direction
relation matrix, the size of the possible composition results are reduced. While Figure 18
shows a specific example, the partition carrying the meet relation in the topological aug-
mentation could change (between North, MBR, South, or any combination thereof), but the
same reduction would be achieved [13]. These gains are accomplished by restricting the
extent rectangle of the figure object [4, 13, 48]

Wang et al. [61] studied the determination of the converse relation to a direction rela-
tion matrix. Their work considered rectangular sets of tiles (given the need to reduce to an
MBR) as the vehicle for the computation of the converse relation. By employing topological
augmentation, the computation of the converse can be related to the rectangle algebra by
using the presence of the relation meet, thus reducing the cardinality of possible converse
relations, and thus reducing uncertainty. By selecting only a single rectangle algebra rela-
tion, significant gains can be realized in the minimization of the converse set. While the
maximum cardinality for a converse relation by the vanilla direction relation matrix is 198,
the maximum for the topologically augmented direction relation matrix is 111. Wherever
topological augmentation does not produce a unique converse direction relation matrix, it
reduces the uncertainty present [13].

The fourth motivating example was the lack of support for all possible lines within the
direction relation matrix framework [29]. By using line-region relations [24] as opposed to
region-region relations [23], all lines can be represented within the direction relation ma-
trix under topological augmentation (Figure 19). Similarly, other types of relation domains
can be applied under this philosophy. With respect to this line-region context, such an ap-
proach can be used to better describe the relationship between a line and direction partition
tiles. This approach could be used to sequentially address the interplay of a line with each
topological tile, providing valuable information to scene reconstructive processes.
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Figure 19: An example of topological augmentation for line-region relations, exemplifying
the presence of a linear feature along the boundary of the E and SE tiles of the direction
relation matrix.

7 Conclusions and future work

In this paper, a new formalism for partition-based qualitative spatial reasoning systems
called topological augmentation was presented. This formalism augments the Boolean set
intersection common to the direction relation matrix [30] and the peripheral direction rela-
tions [49] with a topological relation, providing additional granularity that has previously
been unavailable to users of these spatial representations (180 for the peripheral direction
relations, and 3,084 for the direction relation matrix). While similar to the work of Kor and
Bennett [35], this work extends beyond the region connection calculus [51], allowing for
entrance into such domains as line-region relations [24] and complex region-region rela-
tions [42, 53].

This work deviates substantially from the philosophical appeal of Occam’s Razor in-
sofar as it advocates for an inflation of an already sizable set of base relations that are not
necessarily needed in a fully refined sense by humans. The examples provided in Section 6,
however, demonstrate that reasoning systems can create meaningful refinements to current
tasks in spatial artificial intelligence. This approach is presented not as a means by which to
present results to users, but rather as an approach to help directional information systems
founded upon these types of formalisms reduce the amount of uncertainty presented to
their users.

There are many avenues for future work within this formalism. Currently, the direction
relation matrix is the state of the art for areal-based direction relations. Defining and ex-
amining the potential for the relation algebra upon these relations has been a task wrought
with difficulties with both the converse operation [61] and the composition operation [56].
Given the properties of the rectangle algebra [4, 48], it is hypothesized that topological
augmentation can provide meaningful insights into both of these arenas, making the quest
for the ascertainment of a relation algebra, or a systematic characterization of its missing
components, a more realizable task. More specifically, one task that has been particularly
difficult is the determination of an involution [60] over these two operations.

While the examples provided in this paper are in relation to direction tasks, topological
augmentation can also be employed in topological constructions as well. Previous work
regarding surrounds relations uses relations between partition tiles as a means for isolat-
ing surrounding configurations in maps [16]. By applying topological augmentation, this
approach can be expanded for more complex configurations. Specifically, this approach al-
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lows for the determination of similar relations in cases where the whole partition tile need
not be exhausted by some object of importance.

Topological augmentation is also a move toward a scene level view of space, rather than
a binary view of space. Approaches such as the o-notation [39], i-notation [40], Swiss canton
region [17], surrounds [16], MapTree [62], and the combination of this work and that of Kor
and Bennett [35] highlight that scene level information such as with partitions (a restricted
view of scene level representations) and the more diverse arbitrary scene provide benefits
that binary relations do not. Many decisions are made based on more than just a binary
relation. These approaches provide the foundation for the future of this field.
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