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Cusk (Brosme brosme) are a National Oceanic and Atmospheric Administration species 

of concern, currently under internal status review for the Endangered Species Act, but are 

considered data limited. Current concerns for cusk include: decline in abundance, increase in 

fishing mortality relative to survey biomass, increased patchiness in habitat, and lack of 

management (72 FR 10710). Future management will require an improved understanding of cusk 

distribution, habitat use, spatial distribution of bycatch interactions, and the impact of bycatch on 

the population.  This study set out to evaluate changes in cusk distribution and habitat, locations 

and levels of bycatch, and the feasibility of implementing conservation measures to reduce 

discard mortality of cusk bycatch.  

Data limited approaches were developed to map cusk habitat and potential areas of 

bycatch.  A spatio-temporal delta-Generalized Linear Mixed Model (GLMM) was used to 

combine observations from the Northeast Fisheries Science Center (NEFSC) spring and fall 

research bottom trawl survey with the NEFSC western Gulf of Maine (GOM) co-operative 



 

 

research longline survey.  The resulting density estimates were then used to develop model-based 

habitat suitability index (HSI) maps for cusk with increased data resolution.  

The American lobster (Homarus americanus) fishery is thought to be a significant source 

of mortality for cusk, as such bycatch of cusk within this fishery was evaluated. Bycatch 

‘hotspots’ were predicted based on the overlap of cusk and American lobster high quality habitat. 

Field studies were conducted in collaboration with Maine lobster fishermen to evaluate the 

ability of cusk to survive incidental catches within the lobster fishery.   These studies resulted in 

an estimated 75% survival rate in the medium-term (4 – 14 days) if recompressed. To evaluate 

the impact of implementing the recompression of cusk as a conservation measure throughout the 

Maine lobster fleet stock assessment simulations were conducted. Cusk bycatch was first 

estimated for the Maine lobster fishery to develop the simulation scenarios. These estimates 

indicate 2 – 9 cusk are caught per 10,000 trap hauls, depending on location. Life history 

parameters were also estimated for cusk for the simulations. The stock assessment simulations 

indicated that a decrease in fishing mortality would be beneficial to the population, but only 

decreasing mortality from the Maine lobster fishery would not be enough to significantly 

improve the population status.
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CHAPTER 1 

AN INTRODUCTION TO CUSK (BROSME BROSME) 

 

1.1. Habitat  

Cusk (Brosme brosme) are a demersal species preferring complex bottom types in 

relatively deep waters. The depth range for cusk has been documented between 20 to 1000 m 

(Collette and Klein-MacPhee, 2002), with preferences for moderately deep waters of 120 to 

140 m (Hare et al., 2012). Within the Gulf of Maine cusk, historically, have rarely been caught 

below 180 m and in less than 18 m (Collette and Klein-MacPhee, 2002). Cusk are thought to 

prefer hard, rocky substrate that provides structure for hiding (Husebo et al., 2002; Rountree and 

Juanes, 2010; Hare et al., 2012). Remotely operated vehicle (ROV) experiments on Stellwagen 

Bank National Marine Sanctuary showed cusk tended to be common around boulders (Rountree 

and Juanes, 2010) but are occasionally found on gravel and mud (Bergstad et al., 1998; Harris 

and Hanke, 2010). Cusk are a dominant finfish species in deep-sea coral reefs in the Northeast 

Atlantic, with a preference for coral habitats over non-coral habitats (Husebo et al, 2002). 

Norwegian fishermen reported reduced cusk catches in areas on the continental shelf in the 

Northeast Atlantic that were once dominated by coral reefs but have since been reduced by 

bottom trawl fishing (Husebo et al., 2002). 

Cusk are thought to prefer bottom water temperatures between 9ᶱ and 10ᶱ C and are 

inhibited by water colder than 4ᶱ C (Oldham, 1972). In the face of climate change and warming 

ocean temperatures, cusk habitat could be impacted (Hare et al., 2012). A decrease in preferred 

habitat and increased patchiness of habitat has been predicted for cusk under high emission 

climate change scenarios (Hare et al., 2012). The Gulf of Maine is at the southern extent of the 
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range for cusk in the Northwest Atlantic (Oldham, 1972), thus warming bottom temperatures 

over the next 50 – 100 years could be detrimental to cusk in this region (Hare et al., 2012). 

Cusk are a rare species with low catch rates in seasonal surveys in the Northwest Atlantic 

and in commercial fisheries (Beacham, 1981; Harris and Hanke, 2010). Many basic biological 

questions remain for cusk because of the limited data available. Habitat use of adult and 

juveniles has not been well documented (Harris and Hanke, 2010; Rountree and Juanes, 2010). 

Maximum age and age at maturity has yet to be validated (DFO, 2014). No spawning 

aggregations have yet to be found for cusk, indicating this is not part of their reproductive 

strategy (Harris and Hanke, 2010).  

Available diet studies show cusk are opportunistic predators. Their diet in the deep-sea 

corals off Norway were dominated by unidentified decapods, fish, and polychaetas (Husebo et 

al., 2002). Forty-nine cusk sampled from the NEFSC bottom trawl survey conducted from Cape 

Fear, North Carolina to Nova Scotia from 1977 to 1980 had a decapod crustacean dominated diet 

followed by bivalves, mollusks, gastropods, echinoderms, cnidarians, urochordates, and fish 

(Bowman et al., 2000).  

 

 

1.2. Range and Population Structure 

Cusk are found throughout the North Atlantic Ocean. They range from Newfoundland to 

Cape Cod in the Northwest Atlantic (Oldham, 1972; Hare et al., 2012) to the European Shelf in 

the Northeast Atlantic (Hare et al., 2012). Cusk are found throughout the Gulf of Maine but have 

declined in abundance by 75 - 80% in the NEFSC spring and fall trawl survey (1963 to 2009; 

Hare et al., 2012).  
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The population structure of cusk is affected by bathymetry. Genetic samples were taken 

from eight locations throughout the North Atlantic from 2004 to 2008 to determine the impact of 

the physical environment (i.e., depth, bathymetry, and ocean circulation) on cusk population 

structure (Knutsen et al., 2009). Successful genetic samples were scored for at least five of seven 

microsatellite loci for 764 specimens (Knutsen et al., 2009). Genetic differences were detected 

among individuals that were separated by distinct bathymetric features and individuals in habitat 

close together were more similar (Knutsen et al., 2009). Differences were most notable between 

areas that were divided by deep ocean ridges and basis (> 1000 m), indicating cusk are not 

inhabiting these deep ridges (Knutsen et al., 2009). These results prompted ongoing discussions 

for the Northwest Atlantic population to be considered a distinct population segment (Hare et al., 

2012).  

 

1.3. Known Life History 

Cusk spawn in the late spring and early summer in the Gulf of Maine and Georges Bank 

(Berrien and Sibunka, 1999) with no known spawning aggregations (Oldham, 1972). Similar to 

other gadids, cusk are highly fecund with an estimated 100,000 to 3 million eggs produced by 

females between 56 and 90 cm (DFO, 2014). There is discrepancy in the aging of cusk, some 

estimates found cusk to be sexually mature by age five or six (approximately 50 cm total length), 

with a generation time estimated at nine years, and a maximum life expectancy of twenty years 

(Harris and Hanke, 2010; Oldham, 1972). More recent aging data from Canada found cusk 

reaching sexual maturity at age 10, a generation time of fifteen years, and a larger fish (82 cm) 

estimated to be 39 years old (DFO, 2014; Davies and Jonsen, 2011). Length-at-age studies have 

been minimal in the Northeast Atlantic, but it is thought that most cusk reach maturity by 40-
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45cm or eight to ten years of age (Harris and Hanke, 2010; Beacham, 1981). Aging cusk using 

otoliths is difficult due to interpretation problems as 20-30% of large specimens (40-70 cm) have 

unreadable otoliths (Flodevigen et al., 1996).  

Cusk eggs are buoyant, between 1.06 and 1.38 mm, with an oil globule and are 

identifiable based on the pitted chorion (Markle and Frost, 1985). Larvae are approximately 

4 mm at hatching and remain pelagic until approximately 50 mm when they migrate to the 

benthos (Harris and Hanke, 2010; Collette and Klein-MacPhee, 2002). 

 

1.4. Biology 

 Cusk are an elongated fish with a rounded body before the vent and more compressed 

after the vent, tapering towards the caudal fin (Collette and Klein-MacPhee, 2002). Cusk color 

vary ranges from a dark gray to brown to green and yellow with a lighter colored belly (Collette 

and Klein-MacPhee, 2002). Cusk have a single dorsal fin that runs uniformly down the length of 

the body starting just behind the head and ending at the caudal fin as distinctly separate (Collette 

and Klein-MacPhee, 2002). Cusk have one anal fin which starts approximately mid-way down 

the body and ends at the caudal fin, also distinctly separate (Collette and Klein-MacPhee, 2002). 

The caudal fin and the pectoral fins are rounded in shape, with a fleshy base and the fin rays 

becoming visible towards the ends (Collette and Klein-MacPhee, 2002). The pelvic fins are 

elongated with freed fin rays at the ends and are found almost directly under the pectoral fins 

(Collette and Klein-MacPhee, 2002). Their body and head are covered in small cycloid scales 

(Collette and Klein-MacPhee, 2002) which makes them appear almost scale-less (Flodevigen et 

al., 1996). Cusk have a sub-terminal mouth with one barbel under the chin (Collette and Klein-

MacPhee, 2002).  
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1.5. Swimbladder Physiology  

Swimbladders are an energy-efficient method of obtaining neutral buoyancy within the 

water column (Smith and Croll, 2011). As a hydrostatic organ, the swim bladder is involved in 

respiration, the production of sound, and in some species sound reception (Helfman et al., 1997).  

The swimbladder originates from the foregut as a dorsal outgrowth with two general types, 

physoclistous and physostomous. Physoclistous swimbladders, as found in cusk, are completely 

closed off from the esophagus. Physostomous swimbladders, as found in salmonids for example, 

are connected with the pneumatic duct between the swimbladder and the gut, which allows gases 

to be quickly “exhaled” or “inhaled” (Harden-Jones, 1951a; Harden-Jones, 1951b; Nichol and 

Chilton, 2006).  Physoclistous species lose the connection to the foregut during embryonic 

development while physostomous species retain the connection (Helfman et al., 1997; Evans, 

1998). In some physoclistous species the ductus pneumaticus develops into the resorbing section 

of the swimbladder while in physostomous species is the ductus pneumaticus is the connective 

organ (Evans, 1998), which allows for air exchange between the swimbladder and the 

environment.  

Two types of physoclistous swimbladders have previously been identified, 

paraphysoclistous and euphysoclistous (Steen, 1970). Areas of gas secretion and reabsorption are 

not distinctly separate from each other in paraphysoclistous swimbladders but are in 

euphysoclistous swimbladders. Some euphysoclistous species have a diaphragm, a posterior 

chamber for reabsorption separated from the area of secretion by a membrane with an adjustable 

opening in the center (Steen, 1970). Other euphysoclistous species do not have a distinct 

chamber but only have a well vascularized region separated by the rest of the swimbladder 

mucosa by a muscular sheath called the oval (Steen, 1970). There are other physoclistous species 
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that do not have a distinct oval or diaphragm and resorption occurs throughout the swimbladder 

(Hoar, 1970).  

Physoclistous swimbladder inflation can take several hours to days (Evans, 1998; Nichol 

and Chilton, 2006; Campbell et al., 2009). Gases are concentrated by the countercurrent 

arrangement of arterial and venous capillaries known as the rete mirabile to increase partial 

pressure of the blood. The increased partial pressure of the gases allows for diffusion into the 

swimbladder (Evans, 1998). The Root effect reduces the oxygen carrying capacity and the Bohr 

effect reduces oxygen affinity of hemoglobin in low pH. The Root effect can be thought of as an 

exaggerated Bohr effect (Evans, 1998). Local acidosis at the rete mirabile reduces the capacity 

of hemoglobin to bind oxygen, which increases the amount of unbound O2. The unbound O2 

creates a pressure gradient and allows for the swimbladder to achieve a high partial pressure of 

oxygen. The Root effect is found only in fish hemoglobin among species that possess a 

swimbladder and/or choroid rete (Evans, 1998). The choroid rete maintains ocular partial 

pressure in species adapted to life at high pressure (Evans, 1998; Wittenbert and Haedrich, 

1974). Not all demersal species possess a choroid rete, but many if not all gadoid species are 

thought to have them (Wittenbert and Haedrich, 1974). Conversely, species with a swimbladder 

are thought to have rete mirabile; they are well developed in most physoclistous species but only 

weakly developed in physostomous species (Hoar, 1970).   

Organisms are at hydrostatic equilibrium with the environment when at neutral buoyancy 

(Harden-Jones, 1951a). Swimbladder gases will change volume with changes in pressure and 

temperature (i.e., the combined gas law; Smith and Croll, 2011). One atmosphere is roughly 

equivalent to ten meters of the water column. An organisms hydrostatic zone is roughly 

equivalent to the atmosphere they are in equilibrium with (Harden-Jones, 1951a). A decrease in 
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hydrostatic pressure causes gases in the swimbladder to be reabsorbed into the blood. Gases 

diffuse back into the blood per the partial pressure gradient (Hoar, 1970). The elevated O2 blood 

leaving the area of reabsorption flows directly to the gills where some of the oxygen will be 

released to the environment due to differences in partial pressure between gill surface and the 

water (Hoar, 1970). An increase in hydrostatic pressure will require secretion of gases into the 

swimbladder due to a decrease in gas volume to maintain hydrostatic equilibrium. 

Cusk possess a physoclistous swimbladder to maintain neutral buoyancy at high pressure. 

The exact physiology of the cusk swimbladder is unknown and areas of reabsorption in the cusk 

swimbladder have not yet been described. The cusk swimbladder does have well developed 

drumming muscles, like other gadoids, (Hawkins and Rasmussen, 1978), with substantial 

evidence suggesting the swimbladder is used for sound production (Rountree and Juanes, 2010).  

 

1.6. Threats to the Species 

On March 9, 2007 NOAA initiated an internal status review of cusk for listing with the 

Endangered Species Act, citing significant threats to the species: bycatch in commercial 

fisheries; increasing catches in the recreational fishery; no existing regulatory mechanisms for 

the fishery; habitat loss and degradation, increasing habitat patchiness (72 FR 10710, 2007). In 

2003, the Canadian Committee on the Status of Endangered Wildlife in Canada (COSEWIC) 

completed a status report for cusk assessing the species as Threatened (Harris, 2010) and updated 

the status to Endangered in 2012 (DFO, 2014) due to persistent declines in population levels. 

Cusk have been declined listing on the Canadian Species at Risk Act (SARA) to date (DFO, 

2014), which would provide full legal protection to cusk (Harris, 2010), much like the ESA. The 

evaluation of cusk in Canada partially influenced the U.S. initiating a status review for listing 
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cusk on the ESA (Tallack, 2012), in addition to the steady decline in abundance in the NEFSC 

autumn bottom trawl survey since the 1960s (O’Brien, 2006). 

 Cusk are predominately caught as bycatch in the longline, gillnet, and trawl groundfish 

fisheries and as bycatch in the lobster fisheries in both the United States and Canada (Harris et 

al., 2002; O’Brien, 2006). Cusk have been increasingly targeted in recreational fisheries in recent 

years (Figure 1.1), presumably due to the decline in Atlantic cod (Gadus morhua) in the Gulf of 

Maine (Tallack, 2012). Cusk are currently unmanaged in the United States which allows 

recreational anglers to keep all cusk they catch and there is no bycatch quota for any U.S. 

commercial fisheries.  

Cusk are vulnerable to high discard mortality due to their swimbladder physiology. For 

species that are not targeted commercially nor are economically valuable, incidental catch and 

discarding can be a significant source of mortality. Cusk experience barotrauma when brought to 

the surface in fishing gear and remain positively buoyant. Incidental catches, the resulting 

barotrauma, and discarding are likely significant threats to the cusk population. 

 



9 

 

 

Figure 1.1. U.S. commercial and recreational cusk landings, 1946 – 2016 (NEFSC landings 

data). In recent years, recreational landings (dashed lined) exceed commercial landings (solid 

line). 

 

1.6.1. Barotrauma 

Physoclistous teleost are likely to have a defined bathymetric range due to the 

swimbladder restricting vertical movement (Harden-Jones, 1951a; Brown and Thatje, 2014). 

Deep-dwelling organisms become adapted to high-pressure environments and are sensitive to 

perturbations from those environments (Brown and Thatje, 2014). Physoclistous fish adapted to 

high pressure will experience expansion of the swimbladder when forced outside of their depth 

range, potentially to the point of rupturing (Harden-Jones, 1951a). The trauma resulting from a 

reduction in pressure is known as catastrophic decompression (Rummer and Bennett, 2005) or 

barotrauma (Brown et al, 2009). Physoclistous species are likely to become positively buoyant 
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when brought to the surface due to gas expansion. Their ability to return to a depth of neutral 

buoyancy is inhibited and the chance of predation increases during this vulnerable state (Jarvis 

and Lowe, 2008). The likelihood of being positively buoyant is a function of capture depth and 

the size of the fish (Hannah et al., 2008b).  

Barotrauma causes severe physical external and internal injuries. Observable injuries 

include stomach eversion, exophthalmia, intestinal protrusion from the cloaca, external 

hemorrhaging, subcutaneous gas bubbles, and ocular gas bubbles (Rummer and Bennet 2005; 

Hannah et al., 2008b; Rogers et al., 2008; Campbell et al. 2009; Pribly et al., 2009; Butcher et 

al., 2012). Unobserved injuries include organ torsion, hemorrhaging in the liver, blood in the 

peritoneal cavity, and blood in the pericardium (Hannah et al., 2008a). Expansion of the 

swimbladder is thought to increase its permeability. Gases have been observed to infuse the 

tissues around the head kidney, heart, and postcranial musculature when a distended 

swimbladder was present (Hannah et al., 2008a). Gases were observed to move anterio-dorsally 

through the body and thought to be the cause of ocular gas bubbles, exopthalmia, and other 

external signs of barotrauma (Hannah et al., 2008a). This research concluded that external 

trauma can be attributed to the gases from the swimbladder following a path of least resistance 

within the body and not from fluid gases coming out of solution (Hannah et al., 2008a). 

However, others perceive observable injuries from barotrauma to be a result of changes in the 

state and volume of gas filled organs like the swimbladder and bubbles present elsewhere in the 

fish in addition to gas released from solution in the blood. Brown et al. (2010) attributed the 

damage of internal organs to the increase in blood pressure in the arteries and veins from 

increased blood volume from gases being released from solution. Exophthalmia and ocular 

clouding could arise from gases expanding in the choroid rete. 
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Barotrauma is not immediately lethal to an animal, but an increase in capture depth can 

increase the presence of trauma. Pacific rockfish (Sebastes spp.) had an increase in external signs 

of barotrauma with increasing capture depth (Hannah et al., 2008b). However, an increase in 

number of physical traumas present in Pacific rockfish is not predictive of survival potential 

(Hannah and Matteson, 2007; Jarvis and Lowe, 2008). Fish can survive barotrauma if 

recompressed (Jarvis and Lowe, 2008; Hannah et al., 2008a; Rogers et al., 2011; Butcher et al., 

2012). Treating barotrauma by recompressing fish increases the chance of surviving surface 

predation (Jarvis and Lowe, 2008; Hannah et al., 2008a; Rogers et al., 2011). Rosy rockfish 

(Sebastes rosaceus) were found to have a higher survivorship if recompressed or returned to 

capture depth almost immediately after capture (Rogers et al., 2011). Cod swimbladders are 

likely to rupture but is not lethal; they were able to recuperate from barotrauma in two to 

seventeen days, depending on the original depth of capture (Nichol and Chilton, 2006). Pacific 

rockfish behavior was shown to not be severely affected by recompression; most individuals 

maintained vertical orientation and could quickly swim away (Hannah and Matteson, 2007). 

Pacific rockfish also had a 68% survival rate over a two-day period with most of the animals 

showing no physical symptoms after two days (Jarvis and Lowe, 2008). Barotrauma did not 

cause mortality in snapper (Pagrus auratus) over a three-day period and individuals could 

recover in the short term, under the environmental conditions they experienced (Butcher et al., 

2012). Red emperor (Lutjanus sebae) could quickly repair the damage to their swimbladders 

from barotrauma (Brown et al., 2010).  

Investigations into alleviating barotrauma have been well documented (Jarvis and Lowe, 

2008; Hannah et al., 2008a; Rogers et al., 2011; Butcher et al., 2012). However, there is limited 

data regarding specific protocols for alleviation as well as diagnosing the physical condition of 
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many species that suffer from barotrauma (Butcher et al., 2012). Time at the surface and between 

capture and release is known to impact the survival of an animal and should be shortened during 

treatment (Brown et al., 2010). Line-caught red emperor were returned to twenty meters after 

venting treatment showed improved buoyancy and swimming ability (Brown et al.,2010). It is 

thought that the speed of pressure release from barotrauma might be the most important factor in 

deciding which treatment to administer (Brown et al., 2010; Butcher et al., 2012). A quick return 

to capture depth will lower the probability of predation, oxygen demand, energy expenditure, 

stress from warm surface water temps, sun exposure, or being hit by boats (Butcher et al., 2012). 

Treatment experiments on snapper showed venting to provide the quickest release of pressure 

(Butcher et al., 2012). However, venting only releases air from the swimbladder, not from all 

tissues, indicating that recompression might be a better method of release, although the long-

term consequences of recompression are unknown as is the vulnerability of a disoriented 

recompressed animal (Butcher et al., 2012). Potential benefits of treating barotrauma might 

outweigh the negative impacts of that treatment (Butcher et al., 2012). 

  

1.6.2. Bycatch and Discard Mortality 

Discard mortality is dependent on the individual’s physiology, the amount of physical 

trauma experienced, the environmental conditions experienced, the gear type encountered, and 

the skill of the fisherman. These factors are variable but contribute to the physiological condition 

of captured species, making survival dependent on the situation (Cooke et al., 2013). Despite 

being context specific, these variables can be used to predict what factors influence mortality 

across the population and in turn used for management decisions (Cooke and O'Connor, 2010).  
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For instance, regulations in California specify a depth limit for recreational groundfish 

fishing (California Fish and Wildlife, 2015). Conservation policies could require fishers to 

release captured fish under the assumption that a certain percentage will survive. Fishermen must 

make an instantaneous decision as to whether or not they should release a fish and in what 

manner it should be released. This decision will hinge on the fisherman's previous experience 

with a particular species and presumptions about a fish's ability to survive given its condition. 

Despite any discarding policies in place, fishermen will make an instantaneous decision to 

comply with the law, which will impact the effectiveness of those policies and on population 

estimates. Physoclistous species that exhibit external signs of barotrauma are likely to be 

perceived by fishermen as having a reduced ability to survive, potentially leading to reduced 

discarding of these species.  

It has been estimated that the Gulf of Maine lobster fishery accounts for approximately 

80% of all cusk discards on average (Tallack, 2012). Estimates of cusk bycatch in the 2008 Gulf 

of Maine lobster fishery (102 mt) were double that of 2008 commercial landings (54 mt) of cusk 

in the United States (Bannister et al., 2013). When examined at the trap level the Maine lobster 

fishery is estimated to catch an average of two fish per 1000 traps annually (Zhang and Chen, 

2015). These interactions are seasonal, as fishermen in the spring and fall experience higher 

catch rates than in the summer when fishing effort is highest (Figure. 1.2; Chen and Runnebaum, 

2014).  



14 

 

 

Figure 1.2. Cusk bycatch in the lobster fishery by month. Fishing pressure is highest between 

June and November in the Maine lobster fishery (Maine DMR lobster sea sampling data, 2006 – 

2013). 

 

1.6.3. Overview 

Cusk biology, distribution in the Gulf of Maine, and bycatch in the lobster fishery is not 

well understood. This dissertation explores different aspects of the incidental catch of cusk in the 

Gulf of Maine lobster fishery. Chapter 2 evaluates cusk habitat utilizing the NEFSC spring and 

fall bottom trawl and bottom longline surveys to improve habitat mapping of cusk. Chapter 3 

evaluates the overlap of cusk and lobster habitat to predict locations where bycatch is likely to 

occur. Chapter 4 evaluates the significant factors that influence cusk surviving recompression. 
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Chapter 5 uses a computer simulation to assess possible impacts of not including cusk bycatch 

on the stock assessment with different survival rates survival rates if recompressed.  

The systematic study conducted in this dissertation provides valuable information that 

fills knowledge gaps in our understanding of cusk population dynamics and provides insights on 

the conservation of this species that is at historically low levels. The framework developed in this 

study can also be applied to other species with similar life history and status. The significant 

policy implications of this study are discussed throughout.  
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CHAPTER 2 

HABITAT SUITABILITY MODELING OF CUSK IN THE GULF OF MAINE BASED 

ON A SPATIO-TEMPORAL MODEL 

 

2.1. Introduction  

Habitat suitability indices (HSI) are a method of assessing relative habitat quality for a 

species based on abundance at associated environmental conditions for a given location (Brooks, 

1997; Chen et al. 2009). These models have been extensively applied to evaluate potential 

habitat for aquatic species utilizing abundance indices derived from survey catch data (e.g., catch 

per unit effort, CPUE) (Terrell, 1984; Terrell and Carpenter, 1997; Morris and Ball, 2006). The 

predicted HSI can be projected spatially, providing valuable representation of habitat quality and 

potential locations of essential fish habitat (Chen et al., 2009). Habitat use and distribution is a 

critical aspect in the management and conservation of species that are in decline. Conventional 

HSIs that are based on survey data with declining catch rates for a species are not able to account 

for changes in catch rates over time, catch rates that are not reflective of species density, or 

missed sampling of a species’ habitat. These factors need to be accounted for in order to produce 

an unbiased understanding of habitat quality for a species. 

HSIs assume that high density of a species indicates high quality habitat and that the 

absence or low density of a species indicates habitat of low value to the species. The use of catch 

data as a proxy for density assumes that sampled catches truly reflect the density or absence of a 

species at a given location and are not confounded by stock status, sampling inefficiency and 

bias. This assumption may be reasonable for species that have relatively constant and high 

survey catchability over space and time. However, for species that have low abundance and are 
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poorly sampled (e.g., low survey catchability or reside in habitat that is not well covered by the 

survey program), or for which survey catchability has changed over time, conventional HSIs 

may perform poorly or even produce biased results.  

Conventional HSIs use available data from sampled locations, hereinafter referred to as 

sample-based HSIs, which are often restricted to the locations of occurrence and typically 

processed to assume that the samples are representative (i.e., the species is effectively sampled) 

and are comparable through time (i.e., no changes in sampling distribution and efficiency). 

Therefore, the sample-based HSIs might not be appropriate in at least the following two 

situations: 1) the survey misses a significant portion or type of the species’ habitat; and 2) 

sampling efficiency (i.e., catchability) changes over space and/or through time due to density-

dependent processes. Density-dependent habitat selection is a likely mechanism for species in 

decline (MacCall, 1990). When a species population is high, individuals move into previously 

marginal habitat because high quality habitat is saturated; thus, the overall suitability of all 

occupied habitat declines on average (MacCall, 1990). Conversely, as populations decline, 

individuals retreat to the highest suitable habitat as it becomes less densely occupied and 

available (MacCall, 1990; Hare et al., 2012).  

Another limitation of sample-based HSI arises when data from multiple surveys are 

available for a species. Attempts to combine data from multiple surveys face serious difficulties, 

including quantifying the relative differences of catchability among different sampling gear (i.e., 

trawl and longline). Such complications often result in discarding data by trimming the survey 

data to common surveyed areas and time periods with consistent survey methods or utilizing 

only one data set. This is often unsatisfactory due to losses in spatial coverage given that 

different surveys of different gear types usually sample different areas or habitats. For example, 
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trawl surveys likely do not sample rocky habitat as well as longline surveys. If rocky bottom is 

one of a species’ preferred habitat types, using only trawl surveys for developing HSIs could bias 

the results.  

Cusk (Brosme brosme) in the Gulf of Maine is one species facing difficulties with using 

conventional HSIs. It is a data-limited species, with low abundance, and low catchability. Cusk 

populations are monitored by two different multispecies survey programs, the Northeast 

Fisheries Science Center (NEFSC) spring and fall research bottom trawl survey (BTS) and more 

recently by the NEFSC cooperative research bottom longline survey (LLS) in the Western Gulf 

of Maine. These two survey programs differ in sampling efficiency, spatial coverage, and 

duration. Rocky, complex habitat, thought to be utilized by cusk, is not well sampled by the 

BTS. Cusk catchability is believed to have declined in the BTS time series due to declines in 

stock abundance (Davies and Jonsen, 2011; Hare et al., 2012). Additionally, changes to the 

survey protocols over the time series could impact the catchability of cusk in the BTS. In 2009, 

the BTS changed the sampling vessel, net type, and tow duration (Politis et al., 2014). The 

protocol changes in 2009 required conversion coefficients to be estimated for all species to allow 

for the data to be combined into a continuous time series (Miller et al., 2010). However, low 

catch numbers and low frequency of occurrence of cusk during the calibration study prevented 

conversion coefficients to be estimated for cusk (Miller et al., 2010). Catch declines of 

groundfish species within the BTS prompted the development of a bottom longline survey (LLS) 

to enhance monitoring efforts for data poor and depleted stocks residing in rocky habitat (Hoey 

et al., 2013). Both survey programs are stratified by depth and overlap in the Western Gulf of 

Maine (Figure 2.1). The LLS is able to sample rocky, complex bottom types more effectively 

than the BTS covering the same region, due to the nature of the gear.  
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Figure 2.1. Gulf of Maine and Georges Bank study area for habitat suitability mapping. All 

analyses were restricted to this region. The open circles represent positive catches of cusk in the 

NMFS spring and fall bottom trawl survey (1972 – 2015), and the gray circles represent all 

sampled locations for the bottom longline survey (2014 – 2015). 
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The BTS has shown a decline in the survey abundance index and mean size of cusk 

within U.S. waters of the Northwest Atlantic (Sosebee and Cadrin, 2006; Hare et al., 2012). The 

GOM and Georges Bank (GB) are the southern extent of the range for cusk and account for the 

majority of habitat within U.S. waters. Concerns regarding overfishing of the population, climate 

change, and increased patchiness of cusk habitat prompted a National Marine Fisheries Services 

(NMFS) internal status review of cusk for the Endangered Species Act (72 FR 10710, 2007). To 

implement effective management and conservation for cusk an understanding of their habitat 

distribution and use is necessary (Brooks, 1997; Hare et al. 2012).  

Traditional HSIs use empirical data from one survey to evaluate habitat quality (Tanaka 

and Chen, 2016), and model performance is dependent on the quality and quantity of input data 

(Jowett and Davey, 2007). In the case of cusk, the BTS would likely not provide a realistic 

evaluation of habitat quality because of catch declines over the time series and poor sampling in 

rocky habitat. This study proposes a modeling framework for data limited species, like cusk, by 

combining the bottom trawl survey and the bottom longline survey data to derive model-based 

density estimates to improve spatial resolution of data for use in HSIs. An independent spatio-

temporal model (Thorson et al., 2015) is used to derive spatially explicit density estimates from 

the bottom trawl and bottom longline surveys combined. The spatio-temporal model estimates a 

grid-based, season-specific cusk density over the entire study area, controlling for catchability. 

Grid-based density estimates are then used to develop season-specific HSI models, predicted 

over the same grid. The spatio-temporal model includes catchability, to account for the 2009 

BTS gear changes, and allows for data from different gear types to successfully be combined by 

accounting for differences in gear catchability. The results from the model-based HSI are 

contrasted with those derived from sample-based HSI to test the hypothesis that HSI 
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performance would improve with the use of higher resolution spatial information from 

combining multiple surveys and imputing values for un-sampled locations.  

 

2.2. Methods 

2.2.1. Survey and Environmental Data  

Cusk data are available from the NEFSC spring and fall bottom trawl survey (1980-2015) 

and the NEFSC spring and fall bottom longline survey (2014-2015). The BTS is a demersal, 

multispecies, depth stratified random survey synoptic of the GOM and GB. The NEFSC 

developed a depth stratified random longline survey in the western and central GOM to better 

sample species that primarily reside in complex habitat (Hoey et al., 2013). Six survey strata 

were selected for the LLS from ten offshore and four inshore strata from the BTS. This survey 

also samples in the spring and fall to coincide with the BTS and randomly samples hard bottom 

sites within each stratum (Hoey et al., 2013). The LLS follows the tidal cycle, with gear 

deployed one hour before slack tide and fished for two hours. The longline gear is one nautical 

mile long, with 1000 semi-circle hooks baited with squid set within a three-nautical mile grid 

(Hoey et al., 2013).  

Environmental variables known to impact cusk habitat are depth, temperature, and 

sediment type (Hare et al., 2012). Cusk have been documented between 18 m and 1000 m and 

are thought to tolerate temperatures between 0 ºC and 14 ºC, with the majority of cusk occurring 

between 6 ºC and 10 ºC in the GOM (Cohen et al., 1990; Collette and Klein-MacPhee, 2002). 

Cusk are thought to prefer rock, gravel, or pebble sediment but are known to inhabit mud areas 

in the GOM, but not smooth sand (Cohen et al., 1990; Collette and Klein-MacPhee, 2002). These 

three environmental variables were used to develop HSIs for the GOM and GB (Figure 2.1).  
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Simulated bottom temperature data (1980-2013) were obtained from the Northeast 

Coastal Ocean Forecast System (NECOFS) integrated atmosphere-ocean model forecast system 

for the GOM, GB, and New England Shelf regions. The simulated temperature data were 

generated from an unstructured Finite-Volume Community Ocean Model (FVCOM) grid for 

these regions (Beardsley, Chen, and Xu, 2013; NECOFS, 2013) and averaged over the primary 

two months when the surveys were conducted.  

For sample-based HSIs, depth data from the BTS were used. For model-based HSIs depth 

was extracted from the General Bathymetric Chart of the Oceans (GEBCO) 30 arc-second 

interval grid. Sediment data were extracted from the United States Geological Survey (USGS) 

East-Coast Sediment Texture Database (Poppe et al., 2014) using Geographic Information 

System (GIS). The study area was divided into 5710 cells (0.05º x 0.05º) for developing a model-

based abundance index and to predict grid-based HSIs by season. Simulated environmental 

variables were assigned to the beginning of the trawl survey location for sample-based HSIs and 

to the center of 0.05º x 0.05º grid cells for model-based HSIs.  

 

2.2.2. Spatial-Temporal Model for Predicting Abundance 

A spatio-temporal delta-generalized linear mixed model (delta-GLMM) developed by 

Thorson et al. (2015) was applied (using the VAST package in R; Thorson et al., 2017) to data 

collected from both NEFSC BTS and LLS to estimate cusk density fields from 1980 – 2015. 

This is a two-stage model that ultimately infers population density throughout the study area. 

Sample data is fit in two stage by: (1) estimating the probability of encountering and catching 

cusk (i.e., presence/absence) then (2) estimating catches (C) when cusk are present (Thorson et 

al. 2015). 
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The first model component estimates the probability (p) of catching at least one of the 

target species: 

Pr [C > 0] = p                                                        (2.1) 

The second stage of the model approximates positive catches (c):  

Pr[C = c| C > 0] = Gamma(c, σ -2,  λσ2)                           (2.2)                                                      

The probability density function Gamma (c, x, y) is evaluated at c given a gamma distribution, 

where λ is the expected catch if encountered, and σ is the coefficient of variation for positive 

catches (Thorson and Ward, 2013; Thorson et al., 2015).  

Spatial autocorrelation is incorporated into the model as a random effect to account for 

the spatial dependence of species density. Spatial () and spatio-temporal () autocorrelations 

are, two Gaussian Markov random fields are included in both stages of the model as a random 

effect (Thorson et al., 2015). The random fields are approximated at 250 pre-specified knots that 

are generated based on the proportional density of survey data over the defined domain (i.e., the 

0.05º x 0.05º grid; Thorson et al., 2015). The spatial () and spato-temporal (ε) random effects 

were used in both spring and fall density estimates. 

Encounter probability p and positive catch rates λ are approximated using linear 

predictors (Thorson et al., 2015): 

𝑝𝑖 = logit−1 (𝑑𝑇(𝑖)

(𝑝)
+ 𝑄𝑖

(𝑝)
+ 𝜔𝐽(𝑖)

(𝑝)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝑝)
)                         (2.3) 

𝜆𝑖 =  𝑤𝑖 exp (𝑑𝑇(𝑖)

(𝜆)
+ 𝑄𝑖

(𝜆)
+ 𝜔𝐽(𝑖)

(𝜆)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝜆)
 )                         (2.4) 

where 𝑝𝑖 and 𝜆𝑖 are the expected probabilities of an occupied habitat and positive catches given 

occupied habitat for sample i at a given location; 𝑑𝑇(𝑖)
 is the average reference density 

(encounters/positive catch rates) in year 𝑇(𝑖), 𝑄𝑖 is catchability for each survey; wi is the area 
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swept for sample i, 𝐽𝑖 is the nearest knot to sample i, 𝜔𝐽(𝑖) is a random field accounting for 

spatially correlated variability at knot 𝐽𝑖 that is persistent among years; 𝜀𝐽(𝑖),𝑇(𝑖) is the random 

field accounting for spatio-temporal correlation at knot 𝐽𝑖 in year 𝑇(𝑖); (Thorson et al., 2015). 

Spatial and spatial-temporal random fields were used in all models for both seasons.   

A design matrix with indicator variables for each survey is used to estimate 𝑄𝑖. This 

study assumes the need to estimate three catchability parameters due to the BTS protocol 

changes in 2009 and the inclusion of the LLS. A three-column design matrix was built using 

ThorsonUtilities with as many rows as observations and reduced to a two-column matrix for 

identifiability. The 2009 protocol changes cause the intercepts of 𝑄𝑖  and 𝑑𝑇(𝑖)
 to be collinear due 

to a lack of variance in 𝑄𝑖 in a given year as a result of two non-overlapping time-blocks in the 

BTS. To resolve this issue, year effect was modeled via a temporal autocorrelation structure:  

𝛽1(𝑡 + 1) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜌 ∗𝛽1 (𝑡), 𝜎𝛽1
2 )                                         (2.5)  

𝛽2(𝑡 + 1) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜌 ∗𝛽2 (𝑡), 𝜎𝛽2
2 )                                         (2.6) 

where 𝜌𝛽1and 𝜌𝛽2 are defined as a random walk and specified as one in the model (Thorson, 

2017).  

Catchability is then removed from the model and the underlying species density is 

predicted at each knot. Grid cells are assigned the density of the nearest knot based on closest 

Euclidean distance calculated using the Voronoi tool in the PBSmapping package in R (Schnute 

et al., 2013). This also estimates the area associated with each knot that can be used to estimate 

total abundance across the domain is then calculated as: 

𝑏̂𝑡 =  ∑ 𝑎𝑗𝑙𝑜𝑔𝑖𝑡−1𝑛𝑗

𝑗=1
(𝑑𝑇(𝑖

(𝑝)
+ 𝜔𝐽(𝑖)

(𝑝)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝑝)
) exp (𝑑𝑇(𝑖)

(𝜆)
+ 𝜔𝐽(𝑖)

(𝜆)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝜆)
 )           (2.7) 

Full model details can be found in Thorson et al. (2015). 
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Within the delta-GLMM, catch rate was estimated as catch number by area swept 

(Thorson et al., 2015). Area swept for the BTS tows in the GOM have been standardized as 

0.024km2 for the Bigelow, and 0.038km2 for the Albatross IV and the Delaware II (NEFSC, 

2013). The area fished (𝐴𝑖,𝑦 km2) for the LLS is calculated as the distance between the beginning 

location of the longline and the end of the longline set in km (L) times an estimated bait plume 

(b) along the length of the longline for each sample site (i) in a given year (y).  

𝐴𝑖,𝑦 = 𝐿𝑖,𝑦𝑏                                             (2.8) 

The bait plume (b) is assumed to be a fixed constant (=0.28 km) for all years and all locations. 

Evaluation of the impact of varying bait plume sizes on density estimates can be found in 

Appendix I.  

In summary, the delta-generalized linear mixed model is a variation on the standard 

generalized linear model. This is a two-stage model that first estimates the probability of 

presence then estimates positive catch rates in the second stage. To account for the spatial 

dependence of species density within the model, spatial autocorrelation is incorporated into the 

model as a random effect. Positive catch rates in the model are a function of area swept. 

However, this study is combining two types of surveys with two different concepts of area 

swept. The bottom trawl survey area swept is considered a standardized volume that is a function 

of the width of the doors and trawl speed. Longline surveys do not have a standardized area 

fished. The area impacted by the bait plume is a function of current speed, water temperature and 

density, and hunger of the fish, the hungrier a fish is the further away it can detect bait. 

The number of knots are user defined and derived over the spatial domain based on the 

relative sampling density. The first and second stage of the model is fit using the survey data. 

The first stage of the model is fit as a function of annual average density, catchability, and spatial 
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and spatial temporal random effects estimated from the nearest knot. The second stage of the 

model is fit given all of the same parameters as a function of area swept. Catchability is then 

removed and the underlying species density is predicted at each knot. Density is then assigned to 

each grid cell, generated for the entire domain, based on the closest grid (closest by Euclidean 

distance). 

 

2.2.3. Habitat Suitability Indices 

HSIs quantify the overall habitat quality for a species by evaluating species density 

associated with each selected environmental variable. Suitability Indices (SI) quantify the 

relationship between an environmental variable and species abundance at a given location 

(Terrell, 1984; Terrell and Carpenter, 1997; Morris and Ball, 2006). SIs are then combined either 

through a geometric mean or an arithmetic mean to derive an overall habitat suitability index to 

quantify habitat quality from relatively good (1) to relatively bad (0) (Chen et al., 2009; Tanaka 

and Chen, 2016). HSIs assume that locations with the highest abundance have the highest quality 

habitat for that organism.  

Season-specific HSIs were developed for 1980 - 2013 mean conditions using two 

different types of abundance indices to compare the performance of model-based HSIs relative to 

sample-based HSIs. CPUE (i.e., catch number per area swept) from the BTS was used as the 

abundance index for the sample-based HSIs. Model-based density estimates derived from both 

the BTS and LLS were extracted for each cell and used in the model-based HSIs. All abundance 

indices were divided into spring (i.e., April - May) and fall (i.e., October - November). The time 

series for cusk used in this study is from 1980 to 2015, however simulated monthly mean 

temperature data were only available up to 2013 at the time of writing. All data (i.e., observed 
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CPUE and model-based density) were trimmed to 1980-2013 and averaged for the entire time 

series. NECOFS simulated bottom temperatures (Chen et al., 2006) were averaged for the 

indicated seasons for the time series. Mean environmental data (i.e., bottom temperature, depth, 

and sediment type) were extracted for the beginning latitude and longitude for each trawl haul 

and for each grid center using GIS. 

Fisher natural breaks were used to bin the continuous environmental variables of depth 

and bottom temperature (Bivand, 2013; Tanaka and Chen, 2016). Sensitivity analyses were 

conducted to determine both the most appropriate number of bins for each model and the 

minimum bin size (5-8 bins). Categorical sediment data were extracted from the USGS sediment 

layer, the nine defined sediment types from the layer were used as bins (Poppe et al., 2005).  

For the sample-based HSIs, CPUE for cusk was calculated as catch number at station (i), 

in season (s), and year (y) per area swept for each vessel (v) (Chang et al., 2012; Tanaka and 

Chen, 2015; Tanaka and Chen, 2016).  

𝐶𝑃𝑈𝐸𝑖sy =  
𝐶𝑎𝑡𝑐ℎ 𝑁𝑢𝑚𝑏𝑒𝑟𝑖𝑠𝑦

𝐴𝑟𝑒𝑎 𝑆𝑤𝑒𝑝𝑡𝑣 
                                           (2.9) 

where catch number is the total number of cusk caught per tow and area swept is standardized 

for each of the three vessels used in the BTS (NEFSC, 2013). For model-based HSIs, mean 

abundances estimated from the spatio-temporal model were used for each 0.05º x 0.05º grid cell. 

The suitability index for bin (b) of environmental variable (k), SIj,k, was calculated on a 0.0 to 1.0 

scale (Chang et al., 2012; Tanaka and Chen, 2015 and 2016):  

SIb,k = 
𝐶𝑃𝑈𝐸𝑏,𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑘,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑘,𝑚𝑎𝑥− 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑘,𝑚𝑖𝑛
                                          (2.10) 

where 𝐶𝑃𝑈𝐸𝑏,𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average CPUE over all sampled stations within bin b for each 

environmental variable k (Tanaka and Chen, 2015 and 2016). These SI values were then 

averaged by an arithmetic mean (AMM) and a geometric mean (GMM).  
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𝐻𝑆𝐼𝐴𝑀𝑀 =  
∑ 𝑆𝐼𝑘

𝑛
𝑖=1

𝑛
                                             (2.11) 

𝐻𝑆𝐼𝐺𝑀𝑀 =  ∏ 𝑆𝐼𝑘
𝑛
𝑖=1

1/𝑛
                                  (2.12) 

where all SIi represent equally weighted SI values for the kth environmental variable for and n is 

the number of environmental variables included.  

The sample- and model-based HSIs were based on different datasets. Due to the 

limitation of sample-based HSI, the CPUE used was restricted to only the spring and fall BTS 

survey. However, model-based HSIs incorporated density estimates derived from both the BTS 

and LLS. Density estimates are extrapolated over the grid cells based on the abundance estimates 

for the nearest knot. The 0.05º x 0.05º grid size was used to increase spatial resolution for 

environmental variables over the entire survey area. 

 

2.3. Results 

2.3.1. Spatial-Temporal Model for Predicting Abundance 

Four model-based abundance indices were derived using only the BTS (spring and fall) 

then combing the BTS and LLS (spring and fall). Two catchability coefficients were defined for 

before and after the 2009 protocol changes to the BTS, treating the survey as two surveys within 

each season with no temporal overlap. Therefore, models with data from both survey programs 

estimated three catchability parameters and models that included only the BTS estimated two. 

The resulting abundance estimates do not vary in relative trend from the abundance estimates 

using the combined surveys. Abundance was high in 1980 – 1981 with a decline to persistent 

low levels since 2005 (Figure 2.2). However, there is a difference in the two most recent years of 

the time series (2014-2015) when the longline survey is added. Abundance estimates based only 

on the BTS show an increase from 2014 to 2015, while the abundance estimates based on both 
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survey programs show a decrease from 2014 to 2015 (Figure 2.2). All model-based abundance 

indices show a decrease in cusk abundance over the time series (1980 – 2015) for both seasons. 

Varying estimates of area fished for the LLS were tested to evaluate their impact on abundance 

estimates but were shown to have no impact because the catchability coefficient could account 

for differences in catch rate (Appendix I). This makes it possible to combine two different gear 

types without needing to know the size of the bait plume for the longline survey. 

Density plots for annual species distribution indicate that the cusk population is densest 

in the central GOM, with annual variability (Figure 2.3). Cusk density has constricted over the 

time-period, with lower densities predicted inshore in both seasons later in the time series 

(Figure 2.3). From 1980 to 1993 cusk density is highest in the time series, with a slight decrease 

in density particularly in the offshore regions that are the most yellow and red (Figure 2.3). Cusk 

population density from 1994 to 2007 remains relatively constant in the spring and the fall. 

Starting in 2008 to the end of the time series shows low density levels particularly in the inshore 

regions. Over the time series density around Georges Bank (i.e., the southernmost extent of the 

plots) shows a steady decline in cusk abundance, predominately in the spring and somewhat in 

the fall, over the entire time series (Figure 2.3). 
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Figure 2.2. Brosme brosme model-based abundance indices. Derived from the both the 

NEFSC bottom trawl survey and longline survey combined (a and b) and the NEFSC bottom 

trawl survey only (c and d). The spring (a and c) and fall (b and d) model based abundance 

indices accounted for spatial and spatio-temporal randomness. Error bars are standard deviations 

from the annual mean.  
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Figure 2.3. Density field plots from the delta-generalized spatio-temporal model. Red 

indicates areas of higher abundance, blue indicates areas of lower abundance.  
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2.3.2. Habitat Suitability Index Models 

2.3.2.1. Sample-Based HSI 

Sample-based SIs were derived from observed CPUE from the BTS using simulated 

temperature and sediment data and observed average depths. Simulated seasonal mean bottom 

temperatures were compared to observed instantaneous bottom temperatures from the BTS when 

available (Figure 2.4). The instantaneous observed temperatures were more variable (spring: 

1.35ºC to 12.30 ºC; fall: 4.47 ºC to 19.20 ºC) compared to simulated temperatures (spring: 

4.29ºC to 7.64 ºC; fall: 6.66 ºC to 14.09 ºC; Figure 2.4).  

 

 

Figure 2.4. Linear regression of simulated and observed mean, seasonal bottom 

temperature. NECOFS simulated, seasonal mean temperatures (x-axis) compared to 

instantaneous observed bottom temperature from the NEFSC BTS (y-axis), when recorded on 

the survey.  
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Assuming the simulated temperature represents mean conditions that cusk would 

experience during each season, the preferred mean temperatures for cusk were between 7.05º to 

7.63º C in the spring and 8.14 to 8.72º C in the fall (Figure 2.5). Cusk preferred depths between 

189 m to 224 m in the spring and 192 m to 227 m in the fall (Figure 2.5). Bedrock was the most 

preferred sediment type followed by a combination of sand, silt, and clay in the spring sample-

based HSI (Figure 2.5) and combinations of clay, silt, and sand in the fall sample-based HSI 

(Figure 2.5).  

HSIs assume that habitat quality increases with density. A simple linear regression 

between abundance and HSI was used to test this assumption. Sample-based HSIs for the spring 

and fall did not show a clear relationship between density and habitat quality (Table 2.1). Linear 

regressions between CPUE and sample-based HSIs in the spring showed a significant 

relationship (p-value < 0.01) but the models failed to fit the data well (e.g., spring AMM, CPUE 

R2 < 0.072; fall AMM, CPUE R2 < 0.05 Table 2.1). 
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Figure 2.5. Comparing model-based and sample-based suitability index curves for cusk. 

For these comparisons (a) all model-based abundance suitability indices (SIs) derived from both 

BTS and LLS; (b) sample-based abundance SIs derived from the BTS. Sediment types include: 

bedrock (br), gravel (gr), gravelly sediment (gr-sd), sand (sd), 33% sand, silt, and clay (sd/st/cl), 

25% - 50% sand with clay and silt (sd-cl/st), > 75% sand with silt and clay (sd-st/clay), 50-75% 

clay with silt with sand (cl-st/sd), clay (cl) (Poppe et al., 2003). 
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Table 2.1. HSI model comparisons. Linear regression results between abundance and 

arithmetic mean (AMM) and geometric mean (GMM) HSI results and Pearson’s correlation 

coefficient (estimated in R). 

Model R
2
 Correlation 

Coefficient 

p-value of t-

test for slope 

coefficient  

Spring AMM, model-based HSI 0.38 0.62 <0.01  

Spring GMM, mode model-based HSI 0.44 0.66 <0.01  

Spring AMM, sample-based HSI 0.07 0.27 <0.01  

Spring GMM, sample-based HSI 0.08 0.29 <0.01  

Fall AMM, model-based HSI 0.29 0.54 <0.01  

Fall GMM, model-based HSI 0.30 0.55 <0.01  

Fall AMM, sample-based HSI 0.04 0.21 <0.01  

Fall GMM, sample-based HSI 0.04 0.20 <0.01  
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2.3.2.2. Model-Based HSI 

Model-based SIs were derived from density field estimates from the delta-GLMM (spring 

and fall, b = 0.28 km). Model-based bottom temperature SI curves found 6.87º to 7.25º C as the 

most suitable temperatures in the spring and 8.07º to 8.68º C in the fall (Figure 2.5). SI depth 

curves for abundance indices derived from both data sets, showed that 161 m to 208 m was the 

most preferred depth range in both the spring and fall. For all spring and fall model-based HSI 

models, the most preferred sediment type was a combination of sand, silt, and clay in both the 

spring and fall (Figure 2.5).  

 

2.3.2.3. Comparison Between Sample- and Model-Based HSI 

The model-based SIs and sample-based SIs have similar results in habitat use for both the 

spring and the fall, except for sediment use. Both the model-based and sampled-based bottom 

temperature SI curves indicate cusk were caught in slightly warmer waters in the fall but prefer 

temperatures around 7º C in the spring and 8º C in the fall (Figure 2.5). The model-based depth 

SI curves showed cusk were associated with depth ranges between 2 m and 877 m in the spring 

and fall compared to BTS observed depth ranges in the spring (22 to 368 m) and fall (20 to 

412 m). Both model-based depth SI curves showed 161m to 208m as the most preferred depth 

ranges in the spring and fall (Figure 2.5). These preferred depth ranges are shallower than the 

preferred depth ranges estimated (189 m to 224 m in the spring and 192 m to 227 m in the fall) 

by the sample-based depth SI, but show the same pattern of preferring deeper depths in the 

spring and shallower depths in the fall (Figure 2.5).  

The model-based sediment SI histograms derived for both the spring and fall indicated a 

mixture of sand, silt, and clay to be the most preferred sediment (Figure 2.5). Most of the cusk 
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catches in both the spring and fall BTS were in these sediment types (Figure 2.6). For sample-

based sediment, SI histograms indicated that bedrock was the most important sediment type in 

the spring and gravel the third most important for the fall (Figure 2.5). However, for the entire 

time series (1980 – 2013) one cusk was caught in bedrock and two in gravel in the spring, and in 

the fall zero were caught in bedrock and six were caught in gravel (Figure 2.6).  

The model-based GMM HSIs had higher r2 and correlation coefficients for both seasons 

in all the models except in the fall sample-based HSI (Table 2.1). Model-based HSIs derived 

only from the BTS were statistically significant (p < 0.001) with an R2 of 0.3836 (AMM) and 

0.4366 (GMM) for the spring and 0.2927 (AMM) and 0.3041 (GMM) for the fall (Table 2.1, 

modeled BTS only). Model-based HSI models predicted habitat quality well relative to survey 

catch rates (Figure 2.7).  
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Figure 2.6. Spring and fall BTS positive catches of cusk by sediment type. Low catch rates of 

cusk at complex sediment types is likely to lead to biased sediment suitability index (SI) 

estimates. Sediment histograms are ordered from coarsest sediment (bedrock) to the finest 

sediment (clay). Sediment types include: bedrock (br), gravel (gr), gravelly sediment (gr-sd), 

sand (sd), 33% sand, silt, and clay (sd/st/cl), 25% - 50% sand with clay and silt (sd-cl/st), > 75% 

sand with silt and clay (sd-st/clay), 50-75% clay with silt with sand (cl-st/sd), clay (cl) (Poppe et 

al., 2003).
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Figure. 2.7. Cusk habitat suitability maps. These HSI maps were derived from the model-

based density estimates using data from both the bottom trawl and longline surveys. High habitat 

quality (red) is mostly offshore for both the spring and fall and lower habitat quality (dark blue) 

is mostly inshore and around Georges Bank. Positive catch rates from the BTS (circles) and the 

LLS (triangles) are used to validate model predictions of cusk habitat quality. The size of the 

circle or triangle indicate catch rates, with smaller circles/triangles indicating lower catch rates 

compared to the larger circle/triangle. 
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2.4. Discussion 

Model-based abundance indices were used to develop HSI models for cusk in the GOM 

and GB. HSIs commonly used in fisheries rely on catch rates from survey data as a measure of 

density to determine habitat quality (Guan et al., 2016; Tanaka and Chen, 2016 and 2015; Chen 

et al., 2011). Abundance estimates, for a given location, derived from observed survey data for 

HSIs are dependent on 1) whether or not the location was sampled by the survey, and 2) if the 

survey was able to catch the species of interest. The spatial and spatial-temporal random effects 

in the model in the delta-GLMM can account for changes in spatial distribution over time and 

predict density distribution of a species over the study area (Thorson et al., 2015). This provides 

high resolution spatial data for species with low catch rates or experiencing decreased 

catchability in surveys. These data can better inform HSIs, which in turn are better able to 

explain variance in abundance at different levels of habitat quality with an increase in spatial 

resolution. The ability to utilize multiple data sets to inform local abundance can overcome the 

sampling bias of BTS for species like cusk that associate with complex habitats. Fully utilizing 

all available survey data changed the perception of depth and sediment preferences of cusk 

because of the imputed estimates for un-sampled locations. HSIs were better able to predict an 

increase in habitat quality with increasing density with the use of model-based abundance 

estimates (i.e., spring AMM r2 = 0.38, fall AMM r2 = 0.3) compared to sampled-based HSI 

models derived from the spring (i.e., spring AMM r2 = 0.07) and fall only (i.e., fall AMM r2 = 

0.04; Table 2.1). 
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2.4.1. Spatial-Temporal Model for Predicting Abundance 

Annual abundance estimates based only on the BTS are likely biased due to density-

dependent and time-varying catchability of cusk. Bottom trawl surveys are likely to produce 

biased estimates of abundance if the species’ spatial distribution has changed over time and if 

gear performance varies by the habitat that the target species associates with over time (Thorson 

et al., 2013). Catchability of cusk in the BTS is thought to be a density-dependent process (Hare 

et al., 2012). The decline in cusk abundance is thought to have reduced the catchability of cusk in 

the BTS due to the population constricting to rocky habitat not accessible to the BTS (Davies and 

Jonsen, 2011; Hare et al., 2012). Cusk catches in the BTS are likely subject to changes in 

catchability over the time series because of these density-dependent processes. Although the 

delta-GLMM (Thorson et al., 2014) accounts for the changes in catchability before and after 

2009, finer temporal changes, (e.g., year-specific changes) were not considered. The inclusion of 

the random year effect accounts for time varying catchability for the BTS before and after 2009 

and for the LLS.  

The LLS was incorporated into the model-based abundance estimates in an attempt to 

compensate for density-dependent processes. Density-dependent processes cause systematic 

biases in BTS CPUE estimates which can lead to large error in estimating species’ spatial 

distribution (Thorson et al., 2013; Kotwicki et al., 2014). Including the longline survey when 

deriving density estimates changes the abundance estimates in the most present years (Figure 

2.2). As the LLS time-series increases, the perceived systematic bias in abundance estimates 

from the BTS can be tested and addressed. The LLS would need to be conducted at the same 

locations as the BTS tows to compare catch rates from the two surveys to fully understand the 

consequences of spatially varying catchability (Thorson et al., 2013). 
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Accounting for differences in catchability has been shown to produce estimates with 

reduced variability when multiple vessels are involved (Thorson and Ward, 2014). Differing 

values for the bait plume were tested for their impact on abundance estimates (Appendix I).  This 

essentially served as a test of the sensitivity of the model to catchability estimates for the LLS 

(Appendix I). Varying values of area fished had no impact on the abundance indices and 

estimated catchability in the model accounted for differences in area fished (Appendix I).  

 

2.4.2. Habitat Suitability Index Models 

Overall, the model-based HSIs were better able to account for variance in abundance at 

different levels of habitat quality compared to sample-based HSIs. The increased spatial 

resolution of density estimates (Figure 2.3) can provide information for a species’ use of habitat 

without perfect sampling coverage or low catch rates. Utilizing model-based abundance indices 

changes the perception of habitat use through two mechanisms. First, inclusion of the LLS 

provides data for the model outside of where the BTS sampled. The use of two gear types within 

the model-based density estimates provides increased data on habitat use because of the ability to 

sample in different sediment types. By utilizing all available data, the subsequent HSIs were 

better informed than both the sample-based HSIs and model-based HSIs that only used the BTS 

to predict abundance. Second, the estimated density fields by grid provides information where 

the LLS and/or BTS did not sample. Increasing the spatial resolution of density estimates and the 

interaction with environmental variables is believed to be the primary driver in improving the 

HSIs.  
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The sample-based SI sediment curves are likely biased due to low catch rates in more 

complex sediment types (Figure 2.5). Few cusk were caught in bedrock (1 in spring, 0 in fall) 

and in gravel (2 in spring and 6 in fall) between 1980-2013 (Figure 2.5). The model-based HSIs 

provide abundance estimates for areas not directly observed in the survey, allowing for an 

improved understanding of how cusk might be utilizing different sediment types. Model-based 

abundance estimates associated cusk with bedrock (20 times in the spring, 21 in the fall) and 

gravel (95 times in the spring, and 88 times in the fall). Cusk are thought to predominately reside 

on hard bottom (i.e., bedrock and gravel; Collette and Klein-MacPhee, 2002), making the model-

based abundance estimates associated with hard bottom more realistic with regard to presumed 

cusk behavior. The LLS could provide catch data for sediment types that the BTS is not able to 

provide consistent data for, which improves the spatially explicit density estimates over the time 

series. Model-based abundance estimates that incorporate the LLS are thought to improve data 

quality for use in habitat mapping by better informing the model in areas not well sampled by the 

BTS.  

HSI models are a relative index traditionally built from empirical data. These models are 

not able to account for uncertainty in their estimates. Using model-output as model-input can 

incorporate unaccounted uncertainty that can be magnified within the second model (Brooks and 

Deroba, 2015). However, the HSI model used in this study is not able to account for uncertainty 

no matter if modeled or empirical data are used. Future research should focus on: 1) using the 

delta-GLMM to evaluate habitat preference and/or 2) using model-based abundance estimates 

that have an associated uncertainty in abundance to account for uncertainty within habitat 

modeling.  
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This study did not assume that cusks’ preferences for sediment, depth, and temperature 

change on an annual basis. The relationship between mean abundance and each of these 

variables was assumed to be constant during 1980 to 2013. HSI models are typically used to 

understand a species’ response to changes in habitat (Terrell and Carpenter, 1997). Many HSI 

models assume that an organism’s habitat preference does not change on an annual basis; 

distribution might, but the underlying relationship does not (Chen et al., 2011; Tanaka and Chen, 

2015; Guan and Chen, 2016). For the HSI models in this study to provide such insight, annual 

predictions would need to be made. The aim of this research was to test the use of model-based 

abundance indices to improve habitat modeling, the next phase of this research will evaluate 

annual changes in habitat use based on modeled abundance.  

This study does not evaluate age or size dependent processes in habitat selection. Cusk 

caught in the LLS had a larger median size (57 cm) and narrower length range (30-84 cm) 

compared to the median size cusk (50 cm) caught in the spring and fall BTS, which had a much 

wider length range (11-94 cm). These size differences are expected given the two gear types 

have different selectivity. The average size at maturity for cusk in the Scotian Shelf area is 50 cm 

for males and females combined (COSEWIC, 2003). These two gear types catch predominantly 

mature individuals; a quarter of the catch is below 4 cm. Based on these size distributions, it is 

assumed that the habitat suitability indices represent adult habitat.  
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2.5. Conclusion  

The delta-generalized spatio-temporal model provided a means of generating modeled 

abundance that reflects spatial heterogeneity in species density. This model also provides a 

method of utilizing all available survey data for a species. The incorporation of different gear 

types to estimate abundance can, in part, overcome systematic density-dependent sampling 

biases that are seen in trawl surveys when a species’ abundance contracts to habitat that is not 

effectively sampled by the survey. Spatially explicit abundance estimates provide a means of 

evaluating the habitat suitability, by providing estimates in areas that were not directly sampled 

by the survey. The increased spatial resolution of abundance data improved the habitat suitability 

models in this study. A delta-GLMM offers a method of providing abundance information for 

areas not sampled by survey programs and for species caught in low numbers.  
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CHAPTER 3 

PREDICTING BYCATCH HOTSPOTS USING HABITAT MODELS DERIVED FROM 

A SPATIO-TEMPORAL MODEL 

 

3.1. Introduction  

Bycatch remains a serious threat to the conservation of rare, endangered, or overfished 

species (Alverson et al., 1996; Crowder and Murawski, 1998; Morgan and Chuenpagdee, 2003; 

Harrington et al., 2005). A variety of mitigation measures are used to reduce bycatch including 

gear modifications, effort reduction, area/time closures, total allowable catch for bycatch species, 

levies on incidental takes, or incentive programs to reduce bycatch (Wilcox and Donlan, 2007; 

O’Keefe et al., 2014). Implementing a variety of bycatch mitigation measures is often thought to 

be the best approach for conservation of bycatch (O’Keefe et al., 2014). However, record of the 

spatial extent and timing of bycatch is necessary for many of these management strategies to be 

developed (Lewison et al., 2009).  

Fisheries-dependent data (e.g., observer or logbook data) is typically used to understand 

the spatial-temporal patterns of bycatch (Lewison et al., 2009; Sims et al., 2008). However, not 

all fisheries require reporting of bycatch through logbook data nor have extensive observer 

coverage to effectively understand the spatial-temporal distribution of bycatch. Accurate spatio-

temporal distribution of bycatch cannot be estimated without explicit times and locations of 

bycatch interactions from fishery-dependent data. Similarly, the spatio-temporal distribution of 

bycatch is difficult to assess if bycatch observations are not randomly obtained across the 

fishery. 

  



47 

 

The underlying ecological process of bycatch is an overlap in presence of the target and 

non-target species. Concurrent presence of both the target and non-target species indicates shared 

habitat use. The spatio-temporal patterns of habitat overlap can be used to understand the spatial 

extent of potential locations for bycatch interactions (Eguchi et al., 2017). The overlap in habitat 

use of the target and bycatch species can be used to understand persistent areas of bycatch 

(Lewison et al., 2009) or bycatch “hot spots”. Potential bycatch “hot spots” can be spatially 

analyzed based on habitat maps for both the target and non-target species (Sims et al., 2008). 

These potential “hot spots” can then be incorporated in fisheries management to implement 

spatially explicit bycatch avoidance measures. Mapping the spatial extent of target and non-

target species overlap can also be used to fine tune monitoring programs for the species of 

conservation interest. 

A habitat suitability index (HSI) offers a method of assessing relative habitat quality for a 

given location (Brooks, 1997; Chen et al., 2009). These models typically utilize abundance 

indices (e.g., catch per unit effort, CPUE) derived from fisheries-independent surveys to evaluate 

the quality of habitat in a step-wise process (Terrell, 1984; Terrell and Carpenter, 1997; Morris 

and Ball, 2006). The HSI is then spatially projected to visualize areas of suitable habitat (Chen et 

al., 2009). These spatially projected indices can be used to explore species habitat distribution 

and changes over time (Guisan and Zimmermann, 2000). The HSI is derived from suitability 

indices estimated for each environmental covariate (i.e., depth, bottom temperature, sediment 

type, and salinity) to rank binned habitat variables as relatively high or low quality based on 

mean species abundance for each bin (Tanaka and Chen, 2016). This provides a ranking 

approach to evaluate preference based on available data.  
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HSIs are generally derived from a single survey which limits the spatial distribution of 

observations. Using modeled-abundance, instead of observed abundance, has been shown to 

improve HSI models by increasing the spatial resolution of density estimates (Chapter 2). The 

spatial-temporal delta-generalized linear mixed model (delta-GLMM) allows for multiple 

surveys to be incorporated into abundance estimates, allowing for all data to be fully utilized 

when combining multiple surveys (Thorson et al., 2015; Chapter 2). Multiple surveys with 

different gear types are able to be combined because of the ability to estimate catchability for 

each survey within the delta-GLMM (Thorson et al., 2017; Chapter 2).  

The objective of this research is to develop an ecological framework for predicting areas 

where cusk bycatch in the American lobster fishery is most likely to occur based on species 

habitat use. American lobster (Homarus americanus) is a key commercial species in the US, with 

the highest landings value from 2005 – 2014 (NMFS, 2016). Cusk are a NOAA species of 

concern and currently under internal status review for the Endangered Species Act (72 FR  

10710, 2007) and seasonally caught as bycatch within the American lobster fishery (Chen and 

Runnebaum, 2014). Bycatch reporting for the inshore Maine lobster fishery is not required, 

unless the fisher owns a federal permit for another fishery that requires bycatch reporting. Cusk 

bycatch within the American lobster fishery is an ideal case study for evaluating the utility of the 

ecological modeling framework that estimates species abundance given available survey data 

that can be used to develop habitat suitability maps to evaluate potential bycatch “hot spots.” 

This study utilizes the delta-GLMM to estimate spatially explicit density estimates for 

cusk and utilizing multiple surveys for each species (Thorson et al., 2014) following the methods 

in Chapter 2. These density estimates are then used to generate habitat suitability indices 

following the methods of developed by Tanaka and Chen (2016). First, seasonal density is 
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estimated for each species using a delta-GLMM. Using these density field estimates, seasonal 

species suitable habitat is mapped for all study years for both species. Next, the overlap in high 

quality habitat is evaluated on an annual basis. The overlap of high quality cusk and lobster 

habitat were mapped using habitat suitability index models to test the assumption of spatially 

explicit occurrence of bycatch. Density field estimates were mapped for both cusk and American 

lobster over the defined stock area for cusk. The validated HSI models were used to calculate the 

proportion of annual and mean overlap. The model results were validated from nominal bycatch 

estimates derived from the Maine lobster sea sampling program and from the NEFSC observer 

program. 

 

3.2. Methods 

3.2.1. Survey and Environmental Data 

Abundance estimates for cusk and American lobster were derived from multiple survey 

programs (Figure 3.1). For cusk, data are available from the Northeast Fisheries Science Center 

(NEFSC) spring and fall research bottom trawl survey (BTS; 1980-2015) and the NEFSC bottom 

longline survey (2014-2015). For American lobster data are available from the NEFSC spring 

and fall BTS (1980-2015), the Maine-New Hampshire (ME-NH) BTS 2001-2015), and the 

Massachusetts (MA) BTS (1982-2015). The NEFSC BTS is a demersal multispecies, stratified 

random survey operating from Cape Hatteras, North Carolina to the Scotian Shelf in the Gulf of 

Maine (GOM). The NEFSC stratified random longline survey operates in the western and central 

GOM to better sample demersal species in complex, rocky habitat not well sampled by the 

NEFSC BTS (Hoey et al., 2013). Six survey strata were selected for the LLS from ten offshore 

and four inshore strata from the BTS. The bottom longline survey also samples in the spring and 
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fall to coincide with the BTS and randomly samples both smooth and hard bottom sites within 

each stratum (Hoey et al., 2013). The ME-NH inshore, stratified random bottom trawl survey is 

conducted in the spring and fall by Maine Department of Marine Resources (Sherman et al., 

2005). The ME-NH BTS has four depth strata and extends to approximately twelve miles off 

shore, covering state waters. The Massachusetts BTS, conducted by the Division of Marine 

Resources (MADMR) in the spring and fall, is stratified by five biogeographic regions and six 

depth zones (King et al., 2010). The Maine lobster sea sampling program provides spatially 

explicit fisheries-dependent data about the Maine lobster fishery (MDMR,2016), but is not a 

randomly-designed survey program. This program began sampling bycatch in 2006, when 

possible. The Maine lobster sea sampling program has inherent biases due to the lack of a 

random-design for the survey program and inconsistency in recording bycatch. The NEFSC 

observer program provides catch rates of cusk by statistical area and year. Both the MDMR 

lobster sea sampling data and the NEFSC observer data are used to partially validate the overlap 

hotspots. 
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Figure 3.1. Study area and survey data for overlap of cusk and American lobster. The 

Maine-New Hampshire (ME-NH), Massachusetts (MASS), and North East Fisheries Science 

Center (NMFS BTS) are the bottom trawl surveys used for developing a model-based abundance 

index for American lobster. The NEFSC bottom trawl (NMFS BTS) and longline surveys were 

used for developing the model based abundance index for cusk. 

 

Cusk habitat use is strongly influenced by depth, bottom temperature, and sediment type 

(Hare et al., 2012). Environmental variables known to impact lobster habitat use are temperature, 

salinity, and depth (Tanaka and Chen, 2016). In recognition of these abiotic factors having 

influence on habitat choices for both species, all four variables (i.e., depth, temperature, 

sediment, and salinity) were used to model habitat. Cusk have been documented between 18 m 

and 1000 m and are thought to tolerate bottom temperatures between 0 ºC and 14 ºC, with most 

cusk occurring between 6 ºC and 10 ºC in the GOM (Cohen et al., 1990; Collette and Klein-

MacPhee, 2002). Cusk are thought to prefer rock, gravel, or pebble sediment but are known to 

inhabit mud areas in the GOM, but not smooth sand (Cohen et al., 1990; Collette and Klein-

MacPhee, 2002).  
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American lobsters are found in temperatures ranging from 0 ºC to 25 ºC and salinity 

ranging from 15 to 32 ppt (Reynolds and Casterlin, 1979; Crossin et al., 1998; ASMFC, 2015). 

American lobsters reside in a wide variety of sediment types; juvenile and adult lobsters can be 

found in mud, cobble, bedrock inshore and in similar sediment types offshore as well as in clay 

(Lawton and Lavalli, 1995). However, specific sediment preference is dependent on life history 

and molting stages (Lawton and Lavalli, 1995). American lobsters are thought to be mainly 

found in depths up to 50 m but have been fished along the continental shelf in waters up to 

700 m (Lawton and Lavalli, 1995). 

Monthly mean bottom temperature and salinity data (1980-2013) are simulated for the 

American lobster stock area from the Northeast Coastal Ocean Forecast System (NECOFS) 

integrated atmosphere-ocean model forecast system for the GOM and Georges Bank (GB) 

regions. NECOFS data are generated over an unstructured Finite-Volume Community Ocean 

Model (FVCOM) G3 grid for these regions (Beardsley et al., 2013; NECOFS, 2013; Li et al. 

2017). Seasonal means were taken for the predominate three months when bottom trawl and 

longline surveys for cusk and American lobster were conducted. Modeled depth data were 

extracted from the General Bathymetric Chart of the Oceans 30 arc-second interval grid 

(GEBCO, 2014). Sediment data were extracted from the United States Geological Survey 

(USGS) East-Coast Sediment Texture Database (Poppe et al., 2014) using Geographic 

Information System (GIS). Simulated environmental variables were correlated to the center of 

0.5º x 0.5º cells.  
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3.2.2. Species Density Estimates 

This study is an extension of previous habitat modeling efforts for cusk in the GOM that 

combined the NEFSC bottom trawl and longline surveys to estimate density fields for cusk to 

use in habitat mapping (Chapter 2). Previous density field plots were developed for the cusk 

stock unit (i.e., statistical areas 464 -465, 511-515, 521-522, 551, 561). However, this study is 

examining where cusk are likely to interact with the American lobster fishery. The spatial 

domain (i.e., grid cells) needs to match for both American lobster and cusk to compare habitat. 

For these reasons, density field estimates for both cusk and American lobster are estimated for 

the American lobster GOM and GB lobster stock unit (i.e., statistical areas 464 -465, 511-515, 

525-526, 521-522, 551-552, 561-562).  

A delta-GLMM was used to estimate abundance indices for American lobster and cusk 

(Thorson et al., 2015). Multiple surveys were combined to improve spatial-temporal coverage for 

both species (Chapter 2). Following the methods of Chapter 2, data from the NEFSC bottom 

trawl and longline surveys were combined to produce location specific density estimates for 

cusk. Following the methods used for cusk, lobster density field plots were estimated by 

combining the NEFSC bottom trawl survey, the ME-NH inshore bottom trawl survey, and the 

Massachusetts bottom trawl survey. 

The delta-GLMM is a two-staged model that estimates catch in numbers by (1) 

estimating the probability of encountering the target species (i.e., presence/absence) 

Pr [C > 0] = p                                                     (3.1) 

then (2) estimating species density given the presence of a species (i.e., positive catches; Thorson 

et al. 2015).  

Pr[C = c| C > 0] = Gamma(c, σ -2,  λσ2)                           (3.2) 
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The second stage of the model assumes that positive catches follow a Gamma distribution for 

both cusk and American lobster, where λ is the expected catch if encountered, and σ is the 

coefficient of variation for positive catches (Thorson and Ward, 2013; Thorson et al., 2015).  

Both stages of the model include two Gaussian Markov random fields to account for 

spatial () and spatio-temporal () autocorrelations (Thorson et al., 2015). The random fields are 

approximated at a pre-specified number of knots that are generated over the defined domain (i.e., 

the 0.05º x 0.05º grid; Thorson et al., 2015). In this study, 250 knots were preselected for both 

species and subsequently generated based on the proportional density of survey data over the 

study area for all years. Knot locations were determined by applying a k-means algorithm to 

survey location data. The area aj of each knot j was then calculated using the Voronoi tool in the 

PBSmapping package in R (Schnute et al., 2015). 

Encounter probability 𝑝𝑖  and positive catch rates 𝜆𝑖 are approximated using linear 

predictors (Thorson et al., 2015): 

𝑝𝑖 = logit−1 (𝑑𝑇(𝑖)

(𝑝)
+ 𝑄𝑖

(𝑝)
+ 𝜔𝐽(𝑖)

(𝑝)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝑝)
)                     (3.3) 

𝜆𝑖 =  𝑤𝑖 exp (𝑑𝑇(𝑖)

(𝜆)
+ 𝑄𝑖

(𝜆)
+ 𝜔𝐽(𝑖)

(𝜆)
+ 𝜀𝐽(𝑖),𝑇(𝑖)

(𝜆)
 )                     (3.4) 

where 𝑝𝑖 and 𝜆𝑖 are the expected probabilities of an occupied habitat and positive catches given 

occupied habitat for sample i at a given location; 𝑑𝑇(𝑖)
 is the average reference density 

(encounters/positive catch rates) in year 𝑇(𝑖), 𝑄𝑖 is catchability for each survey; wi is the area 

swept for sample i, 𝐽𝑖 is the nearest knot to sample i, 𝜔𝐽(𝑖) is a random field accounting for 

spatially correlated variability at knot 𝐽𝑖 that is persistent among years; 𝜀𝐽(𝑖),𝑇(𝑖) is the random 

field accounting for spatio-temporal correlation at knot 𝐽𝑖 in year 𝑇(𝑖); (Thorson et al., 2015). 

Abundance estimates were extrapolated over a prespecified survey area grid with 0.05º x 0.05º 
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grid cells, resulting in a density estimate for each grid cell. The prespecified grid for both cusk 

and lobster follows the GOM and GB defined lobster stock unit (ASMFC, 2015) 

Model settings for cusk follow those outlined in Chapter 2. To account for differences in 

catchability between surveys a design matrix is needed to estimate 𝑄𝑖 as an intercept. For cusk, 

this study assumes catchability needs to be estimated for the bottom trawl survey before and after 

the 2009 protocol changes. The protocol changes resulted in different catchabilities which could 

not be estimated for cusk due to low catch numbers and low frequency of occurrence during the 

calibration studies, preventing the estimation of conversion coefficients (Miller et al., 2010). To 

account for these differences the NEFSC BTS is considered to be two separate surveys. The 

three-column design matrix for cusk was built using the R package ThorsonUtilities with as 

many rows as observations and reduced to a two-column matrix for identifiability. The estimated 

intercepts for 𝑄𝑖  and 𝑑𝑇(𝑖)
 are collinear when both are estimated in the model. To resolve this 

issue, a structure on temporal variation was defined for both stages of the cusk delta-GLMM. A 

random walk process was defined for 𝑑𝑇(𝑖)
 for the first stage and second stages of the cusk delta-

GLMM. The random walk process can also account for time-varying catchability (Wilbert et al., 

2010).  

The lobster delta-GLMM also required a three-column design matrix for the three 

surveys included (i.e., ME-NH, MA, NEFSC BTS). A random walk process was defined also for 

𝑑𝑇(𝑖)
 for the first stage and second stages of the lobster delta-GLMM. The random walk process 

is also necessary to account for time-varying catchability in American lobster, but for the 

opposite reason to cusk. While cusk population abundance has declined (Hare et al., 2012), the 

American lobster population abundance has steadily increased (ASMFC, 2015).  
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3.2.3. Habitat Suitability Indices   

HSI models evaluate species abundance at selected environmental variables to quantify 

habitat quality at a given location. Suitability indices (SI) are calculated for each environmental 

variable to quantify the optimal range of environmental conditions (Terrell, 1984; Terrell and 

Carpenter, 1997; Morris and Ball, 2006). This provides a ranking approach to evaluate 

preference based on available data. SIs are then averaged (i.e., geometric mean or an arithmetic 

mean) at each location to determine relative habitat quality from suitable (1) to unsuitable (0) 

(Chen et al., 2009; Tanaka and Chen, 2016). Locations with the highest abundance are assumed 

to have the highest quality habitat for that organism. 

Seasonal HSI models were derived for cusk and American lobster to estimate habitat 

overlap in the defined stock unit for American lobster from 1980 – 2013. The time-series was 

truncated for the HSI models due to a lack of NECOFS modeled-temperature being available at 

the time of writing. The HSI model algorithm was developed by Tanaka and Chen (2016) for 

American lobster that previously utilized standardized catch-per-unit-effort from the ME-NH 

inshore bottom trawl survey (Tanaka et al., 2016). Density estimates derived from the delta-

GLMM were used in the HSI models in place of sample-based abundance estimates for both 

species. Utilizing model-based abundance provides spatially explicit abundance in areas that 

were not directly sampled and has shown improvement in HSI modeling frameworks (Chapter 

2). 

Mean density was estimated for each cell from the annual cell density derived in the 

delta-GLMM. The suitability index for bin (k) of environmental variable (j), SIj,k, was calculated 

on a 0.0 to 1.0 scale (Chang et al., 2012; Tanaka and Chen, 2015 and 2016):  

SIjk = 
𝐷𝑗,𝑘̅̅ ̅̅ ̅̅  − 𝐷𝑗,𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐷𝑗,𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅  −  𝐷𝑗,𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅
                                        (3.5) 
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where 𝐷𝑗,𝑘 ̅̅ ̅̅ ̅̅ is the mean density over all the entire study area within bin k for each environmental 

variable i. These SI values were then averaged as an arithmetic mean (AMM) and a geometric 

mean (GMM) for each cell.  

𝐻𝑆𝐼𝐴𝑀𝑀 =  
∑ 𝑆𝐼𝑖𝑗𝑘

𝑛
𝑖=1

𝑛
                                       (3.6) 

𝐻𝑆𝐼𝐺𝑀𝑀 =  ∏ 𝑆𝐼𝑖
𝑛
𝑖=1

1/𝑛
                                      (3.7) 

where all SIi represent equally weighted SI values associated for the ith environmental variable 

for calculating HSI values and n is the number of SI values included (i.e., the number of 

environmental variables).  

HSI models were cross validated using a subset of the data to test the HSI models built 

from a training set. The HSI models for the cross validation were built using 80% of the original 

data. To test how well the model performs when not built using all the data, 20% of the original 

data were used to run the ‘predicted HSI’. The HSI values estimated from the training data were 

regressed against the HSI estimates from the test data. The cross validation was conducted for 

both the  𝐻𝑆𝐼𝐴𝑀𝑀 and 𝐻𝑆𝐼𝐺𝑀𝑀 were conducted for both species. 

The change in habitat suitability over the time series was then evaluated for both species. 

HSI was estimated for each year (1980 – 2013). The vector of HSI values for each grid cell was 

linearly regressed by year to estimate the slope, or change, in habitat relative to the mean habitat 

for the time series. Slope was then extracted for each grid cell and mapped over the study area to 

evaluate where habitat for cusk and American lobster had changed positively or negatively over 

time for a given location (Tanaka and Chen, 2016). A positive slope is interpreted to mean an 

increase in habitat quality available while a negative slope is interpreted to mean a decrease in 

habitat quality available (Tanaka and Chen, 2016). 
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3.2.4. Overlap of Cusk and American Lobster 

Seasonal HSI maps for both species were developed from the HSI models. Low quality 

habitat (𝐻𝑆𝐼𝐴𝑀𝑀  < 0.3) were removed for each species to evaluate the overlap of moderate to 

high habitat quality. Areas with moderate to high habitat quality for cusk were subtracted from 

areas with moderate to high habitat quality for American lobster (eq. 3.8). Mean areas of overlap 

(𝑂𝑦,𝑖
̅̅ ̅̅ ̅) were estimated utilizing mean cusk and American lobster HSI maps for areas with 

moderate to high habitat quality (𝐻𝑆𝐼𝐴𝑀𝑀   > 0.3): 

𝑂𝑦,𝑖
̅̅ ̅̅ ̅ = 𝐻𝑆𝐼𝐿𝑜𝑏𝑠𝑡𝑒𝑟,𝑦,𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −  𝐻𝑆𝐼𝐶𝑢𝑠𝑘,𝑦,𝑖  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                         (3.8) 

Negative areas of overlap (i.e., -0.3) (see Figure 8 below) indicate higher quality cusk habitat 

suitability while positive values (i.e., 0.3) indicate areas of higher lobster habitat suitability. 

Values close to zero indicate similar cusk and lobster habitat, either both moderate or both high. 

Annual overlap maps were made for each season to extract the annual proportion of 

habitat suitability overlap. Grid cells with an 𝐻𝑆𝐼𝐴𝑀𝑀  > 0.3 were summed across the entire study 

area and extracted as a proportion of the total number of grid cells in the study area for each 

species. The changes in annual proportion of overlap were then correlated to NECOFS simulated 

bottom temperature to evaluate the relationship of temperature to the proportion of habitat 

overlap, using the cross-correlation function in R. Temperature variability from year to year is 

hypothesized to drive the proportion of habitat suitability overlap for these two species with 

strong temperature preference and dependence. 

To validate median predicted locations of overlap in habitat for cusk and American 

lobster, the positive catches from the Maine DMR lobster sea sampling program were mapped on 

top of the median overlap maps. This allows for a qualitative evaluation of where the median 

overlap predictions worked and did not work.  
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3.3. Results 

3.3.1. delta-GLMM Density Estimates 

The best model fit for both seasons and both species were produced with a random walk 

process defined for 𝑑𝑇(𝑖)
 for the first and second stages of the models. The resulting annual 

abundance indices in spring and fall show a decrease in cusk abundance and an increase in 

American lobster over the time series (1980 – 2015; Figure 3.2).  

Density field estimates for cusk show a contraction of the population further offshore 

while American lobster showed an expansion of the population throughout the GOM and GB 

region with a predominant increase in the inshore area (Figure 3.3).  

 

Figure 3.2. Lobster and cusk abundance indices. Abundance estimates for both seasons for 

cusk (a and b) and American lobster (c and d). 
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Figure 3.3. Density field plots for American lobster and cusk. Estimated from the delta-

generalized spatio-temporal model. Red indicates areas of high abundance, blue indicates areas 

of low abundance. 
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3.3.2. Habitat Suitability Index Models 

Seasonal HSI models for cusk and lobster were compared to determine the best method 

for estimating habitat quality. The AMM HSIs performed better for both cusk and lobster based 

on cross-validation analyses (Table 3.1). Cross-validation for cusk indicated marginal differences 

in model performance between the AMM (i.e., cusk spring AIC -7848.04.15, R2 0.99) and GMM 

(i.e., cusk spring AIC -4051.97.15, R2 0.93; Table 3.1) HSIs, with the AMM having slightly less 

variability in predictive performance (Figure 3.4). However, the cross-validation analyses 

showed greater variability in predictive performance for American lobster using the GMM HSI 

compared to the AMM HSI (Figure 3.4). Seasonal HSI maps for both species were based on 

AMM HSIs.  

Mean seasonal HSI maps indicate that American lobster suitable habitat is predominately 

inshore on the northern and southern coastal shelfs and on portions of Georges Bank and Browns 

Bank (Figure 3.5). The most suitable habitat for cusk is offshore in the central Gulf of Maine, 

outside of the prominent basins in the region and on the edge of Georges Bank (Figure3.5). Mean 

habitat suitability maps for cusk and American lobster are almost the inverse of each other with 

lobster preferring inshore habitat and cusk preferring offshore habitat.  
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Figure 3.4. Cross validation of habitat suitability index models. Estimated using modeled-

abundance from the delta-GLMM for both cusk (a and b) and American lobster (c and d).  

 

 

Table 3.1. Evaluation of model fit. AIC and mean R2 values for all models to evaluate model 

performance. 

Model AIC Mean R2 

Cusk AMM Spring -7848.04 0.99 

Cusk GMM Spring -4051.97 0.93 

Cusk AMM Fall -7884.21 0.99 

Cusk GMM Fall -5468.06 0.97 

Lobster AMM Spring -6940.84 0.98 

Lobster GMM Spring -6932.78 0.96 

Lobster AMM Fall -4716.21 0.94 

Lobster GMM Fall -7129.45 0.92 
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Figure 3.5. Habitat suitability maps for cusk and American lobster for the spring and fall. 

The most suitable habitat for cusk is in the offshore Gulf of Maine while the highest suitability of 

habitat for lobster is in the inshore Gulf of Maine on the coastal shelfs.  
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Change in habitat suitability over the time series was evaluated for both species over the 

study area. Spring habitat suitability for both cusk and American lobster had a positive change 

over most of the study area, with the most pronounced changes occurring in portions of Georges 

Bank for cusk and in the central Gulf of Maine for lobster (Figure 3.6). In the fall, habitat 

suitability for cusk had a negative change in quality in most of the Gulf of Maine except for a 

few patches where it positively changed in Georges Bank (Figure 3.6). Habitat suitability for 

American lobster in the fall had a positive change in the Gulf of Maine and Georges Bank during 

the time-period (Figure 3.6).  
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Figure 3.6. Changes in habitat suitability for cusk and American lobster (1980 – 2013). Blue 

indicates a negative change in habitat quality and red indicates a positive change in habitat 

quality. 
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3.3.3. Overlap of Cusk and Lobster 

There is inter-annual variability in the proportion of overlap for both seasons with an 

overall increase in the proportion of overlap in the spring and fall (Figure 3.7). Time-series 

analysis indicate the proportion of overlap in habitat suitability is negatively correlated with 

temperature in the spring and positively correlated in the fall with a slight time lag for both 

(Figure 3.8). In the Spring, temperature two years before have a significant negative correlation 

on the proportion of overlap, while in the fall temperatures seven years before have a significant 

positive correlation with the proportion of overlap (Figure 3.8). Salinity is significantly 

negatively correlated in both the spring and fall, more so in the spring though (Figure 3.9).  

 

 

Figure 3.7. Proportion of habitat overlap for cusk and American lobster. The proportion in 

overlap of moderate to high quality habitat (𝐻𝑆𝐼𝐴𝑀𝑀  > 0.3) has increased over the time series.  
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Figure 3.8. Proportion of habitat overlap correlated to temperature. Proportion of overlap 

(solid line) relative to seasonal mean temperatures dashed line for spring (a) and fall (b) with 

associated cross-correlations between proportion overlap and seasonal mean temperatures. 

Dashed blue lines on the time-series analysis (bottom plots) indicates a significant relationship. 
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Figure 3.9. Proportion of habitat overlap correlated to salinity. Proportion of overlap (solid 

line) relative to seasonal mean salinity dashed line for spring (a) and fall (b) with associated 

cross-correlations between proportion overlap and seasonal mean salinity. Dashed blue lines on 

the time-series analysis (bottom plots) indicates a significant relationship. 
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Mean areas of overlap of moderate to high quality habitat (𝐻𝑆𝐼𝐴𝑀𝑀  > 0.3) for cusk and 

lobster in mostly in the near shore regions along the norther coastal shelf (Figure 3.10). Mean 

overlap (Figure 3.10) provides evidence of persistent areas of habitat overlap along the edge of 

the northern and southern coastal shelf, in the central Gulf of Maine where cusk habitat is 

highest, and on the southern portion of Georges Bank in both the spring and fall (Figure 3.3.10). 

The mean overlap maps indicate higher proportion of overlap in the fall than in the spring 

(Figure 3.10). Mean overlap maps were partially validated by overlaying known locations where 

cusk bycatch in the Maine lobster fishery has occurred from 2006 – 2013, combined (Figure 

3.10). Aggregated NEFSC observer data indicate that the higher catches of cusk (i.e., reported 

presence of cusk) are in statistical areas 464, 515, and 561 for all seasons combined due to data 

aggregation requirements (Figure 3.11).  

 

Figure 3.10. Mean habitat overlap of cusk and American lobster. Spring (a) and fall (b) for 

HSI values greater than 0.3 to capture marginal (0.3 – 0.6) and high quality (0.6 – 1.0) habitat. 

Negative areas of overlap (i.e., -0.3) in indicate higher quality cusk habitat (blue) while positive 

values (i.e., 0.3) indicate areas of higher lobster habitat (yellow). Values close to zero (red) 

indicate similar cusk and lobster habitat, either both moderate or both high.  
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Figure 3.11. Positive catches of cusk observed in the NEFSC observer data from the federal 

lobster fishery. 

 

3.4. Discussion 

3.4.1. Delta-GLMM Density Estimates 

This study developed a modeling framework to predict where cusk bycatch is most likely 

to occur given habitat quality of the target and non-target species. This framework incorporates a 

method of increasing spatial resolution of density estimates for use in HSIs for each species 

using the delta-GLMM. Having density estimates on the same grid allows for habitat suitability 

indices to be directly compared at each cell across the study area to evaluate mean (Figure 3.9) 

and annual proportion of overlap in habitat suitability.  
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Using model-based density estimates in habitat mapping offers a method of overcoming 

the limitations encountered when using observed data (Becker et al., 2016). The use of modeled-

based density estimates allowed for multiple surveys to be combined (Thorson et al., 2016) and 

for habitat to be directly compared over the same grid. The use of model-based density has also 

been shown to improve habitat mapping for species with low encounter rates (Becker et al., 

2016). Using modeled-density allows for estimates to be made in locations that are not directly 

sampled by the survey program, offering insight into how a species is interacting with the 

environment in locations where species are not directly observed or where surveys may not be 

able to sample well.  

The model-based density estimates for American lobster show the population distributed 

predominately inshore with the highest density in Massachusetts waters until the late 1990s 

(Figure 3.3). American lobster density increased steadily over the time series, with offshore 

densities increasing in the most recent years (2010 – 2015; Figure 3.3). Density estimates show a 

clear increase inshore in 2000, which happens to coincide with the start of the ME-NH bottom 

trawl survey. Density estimates were generated without the ME-NH bottom trawl survey to 

evaluate how much of an impact that survey had on the 2000 population increase (results not 

shown). Without the ME-NH survey there was still a large increase in the inshore population of 

American lobster just west of Penobscot Bay. However, without accounting for temporal 

autocorrelation using a random walk the ME-NH survey had significant influence (results not 

shown). To reduce the perceived impact from temporal autocorrelation with the incorporation of 

a survey with a shorter time series than that of the other two surveys, a random walk 

autocorrelation was used for 𝑑𝑇 (Thorson et al., 2017), resulting in a better model fit when all 

three bottom trawl surveys were incorporated in the model.  
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Model-based density estimates for cusk in this study were expanded to include the GOM 

and Georges Bank lobster stock unit, which expands beyond the cusk stock unit. The density 

estimates for cusk in the Georges Bank region are low compared to the GOM, indicating catch 

rates from the trawl survey are low in that area. However, cusk HSI maps indicate portions of 

Georges Bank to be of high habitat quality (Figure 3.5).  

 

3.4.2. Habitat Suitability Index Model 

American lobster is predominately an inshore species with high habitat quality along the 

coast of Maine on the Northern Coastal Shelf. Habitat quality is higher in the fall than the spring 

(Figure 3.5), consistent with the findings from Tanaka and Chen (2016). The Southern Coastal 

Shelf, i.e., inshore waters around Massachusetts, also have high habitat quality. This area was not 

evaluated in the previous study by Tanaka and Chen (2016) that quantified habitat for American 

lobster, but the mean HSI maps indicate it has been important habitat for lobster over the time 

series.  

The high habitat quality for American lobster in the Maine inshore waters is also 

consistent with where most of the Maine lobster fishery occurs, less than twelve miles off the 

coast (ASMFC, 2015). More than 50% of Maine landings comes from the mid-coast region 

(ASMFC, 2015) where the habitat quality is highest in Maine, particularly in the fall (Figure 

3.5). Massachusetts has the second highest landings, but ~71% of the landings have come from 

Georges Bank since the early 1990s (ASMFC, 2016). Federal permits allow fishers to harvest in 

federal water (>3 miles offshore); the number of these permits increased by 41% in 1988 from 

the previous year and have remained relatively stable since (ASMFC, 2015). Habitat quality for 
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American lobster increased in offshore Gulf of Maine (>12 miles offshore) and portions of 

Georges Bank in the spring and fall (Figure 3.6). In pursuit fisheries, fishing behavior often 

mirrors stock abundance (Pelletier and Magal, 1996). As a pursuit fishery (Scheirer, 2003), the 

increase in habitat for American lobster in offshore waters suggests federal license holders would 

be fishing further offshore for lobster, thus they are more likely to encounter cusk.  

Cusk seasonal HSI maps indicate offshore central GOM and GB as favorable cusk habitat 

(Figure 3.5), consistent with findings in Chapter 2. Habitat maps for cusk were developed for a 

larger area in this study to evaluate potential overlap with the entire GOM and GB American 

lobster stock. By extending the study area, it is evident that there is a significant proportion of 

cusk habitat on Georges Bank (Figure 3.5) even though density estimates for much of this area 

are low (Figure 3.3). Cusk habitat is believed to be negatively impacted by warming 

temperatures in the Gulf of Maine (Hare et al., 2012). Cusk habitat on Georges Bank increased in 

quality in the spring over the study years (Figure 3.6), indicating this region could be of 

increasing importance for cusk and an area where the American lobster fishery could encounter 

cusk as bycatch.  

 

3.4.3. Overlap of Cusk and Lobster Habitat 

Mapping the overlap in habitat of target and non-target species is an indirect method of 

estimating where bycatch is likely to occur. Spatially explicit bycatch data from the American 

lobster fishery currently available is limited (ASMFC, 2015), and what does exist in the Maine 

lobster seas sampling data is biased due to non-random sampling of the fleet. This modeling 

framework provides a method of evaluating where high risk areas of bycatch are likely to be 

without having direct observations.  
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The mean overlap maps with specific locations of cusk bycatch match well in some 

locations and not well in others (Figure 3.10). Areas of habitat overlap are broader in the spring 

than the fall, which matches with our understanding of bycatch in the lobster fishery. Cusk 

bycatch in the Maine lobster fishery is highest in the spring (Chen and Runnebaum, 2012). Cusk 

bycatch interactions have been presumed to be highest in the spring because of the Maine lobster 

fishery increasing interaction with the species by predominately occurring offshore in the spring 

(Chen and Runnebaum, 2012). This study suggests that the proportion of overlap in the spring is 

also higher (Figure 3.7), which would also increase the probability of bycatch interactions.  

The general trends in overlap matches with the current understanding of where bycatch 

interactions occur (i.e., offshore in the Gulf of Maine and portions of Georges Bank) given the 

limited documented bycatch in the Maine lobster sea sampling program (Figure 3.10) and federal 

observer program (Figure 3.11). Cusk bycatch data from the federal observer program did not 

have spatially explicit or seasonal bycatch information to identify specific areas of bycatch due 

to data confidentiality. However, understanding the number of cusk caught per statistical area 

from this data can help interpret the predicted areas of overlap. The mean overlap map predicts 

statistical area 511, 512, 513, 515, 464, and 465 to have high overlap in habitat for cusk and 

American lobster in the spring and fall (Figure 3.10). Based on the NEFSC observer data, there 

have been several cusk caught in statistical areas 512, 513, 515, and 464 but not 511 or 464.  

American lobster distribution has been shown to be positively correlated with 

temperature and negatively correlated with salinity (Chang et al., 2010; Tanaka and Chen, 2016). 

The results of this study indicate that the annual proportion of overlap is negatively correlated 

with temperature in the spring and positively correlated in the fall. It is unclear if American 

lobster habitat preference or cusk habitat preference is driving this relationship. Temperature is 
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an important environmental variable for cusk and is thought to have a significant impact on 

habitat loss for this species (Hare et al., 2012). Climate projections for cusk indicate a 50 – 80% 

loss of habitat due to warming ocean temperatures (Hare et al., 2012). From 1980 – 2013 cusk 

habitat has increased in the offshore areas around Georges Bank (Figure 3.6), indicating a shift to 

cooler waters within their optimal thermal range (8 -10⁰ C; Collette and Klein-MacPhee, 2002). 

Previous habitat suitability analysis indicated that cusk prefer temperatures around 7⁰ C in the 

spring and 8 ⁰ C in the fall (Chapter 2). American lobster in the Gulf of Maine also prefer slightly 

warmer temperatures in the fall (~11 ⁰ C) than the spring (8 ⁰ C; Tanaka and Chen, 2016). A 

decrease in water temperatures in the spring results in an increase in proportion of overlap within 

a one degree temperature range (5.5 – 6.5 ⁰ C; Figure 3.8). Lobster density has been shown to 

increase in the Gulf of Maine when temperatures are over 5⁰ C (Chang and Chen, 2010). 

The proportion of overlap is negatively correlated with salinity in both seasons. American 

lobster’s affinity for specific salinity ranges is likely driving the negative correlation in 

proportion of habitat overlap. American lobster has limited ability to adapt to variability in 

salinity (Jury et al., 1994) and pulses of fresh water in the inshore areas can cause severe 

mortality in lobster (Thomas and White, 1969). American lobster optimal salinity range is 

between 31 and 33, with preference towards slightly lower salinity in the spring than the fall 

(Tanaka and Chen, 2016) as seen in the proportion of habitat overlap correlated to salinity 

(Figure 3.9).  
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3.4.4. Model Limitations 

The analysis does not capture the overlap of cusk and lobster habitat suitability in inshore 

western GOM as well as the central and eastern inshore Gulf of Maine (Figure 3.9). The Maine 

lobster sea sampling data indicates several areas where cusk were caught as bycatch, but those 

locations fall outside of the predicted overlap area (Figure 3.10). The NEFSC bottom trawl 

survey likely does not have many observations of cusk in that area, so there are few data points 

to inform the model-based density estimates for cusk. As more data are available for cusk in 

inshore areas, there may be better predictive capacity for the model-based density estimates to 

inform the HSI models.  

These spatially explicit locations should be interpreted as areas likely to experience 

bycatch during the spring and fall but not as absolute locations of bycatch. HSI models do not 

model species distribution, they only provide data on habitat quality relative to species density at 

a given location (Terrell, 1984; Terrell and Carpenter, 1997; Morris and Ball, 2006). While these 

models are useful in understanding habitat distribution and shifts, they are limited by the input 

data available (Guisan and Zimmermann, 2000). Although the model-based HSIs improve the 

spatial distribution of data available for use in the HSIs, these estimates are also limited by the 

data availability.  

 

3.5. Management Considerations 

This study developed a modeling framework that can be used as a method of predicting 

locations of potential bycatch for non-target species in commercial fisheries with limited to no 

bycatch data. The mean overlap in habitat maps can be interpreted to be the most persistent areas 

of potential bycatch across all study years. There is a larger proportion of overlap in habitat in 
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the spring compared to the fall, consistent with the current understanding of cusk bycatch. Cusk 

bycatch is thought to be predominately in the spring because the Maine lobster fishery is mostly 

offshore during that time (Runnebaum and Chen, 2014).  

Evaluating the change in American lobster and cusk habitat suitability in relation to 

changing ocean temperatures will be important in understanding where the bycatch is most likely 

to occur. This study indicates that both American lobster and cusk habitat suitability is increasing 

in the offshore Gulf of Maine and Georges Bank regions (Figure 3.6). These changes will be 

extremely important in the management of all bycatch species in the American lobster fishery as 

the fishery continues to move offshore in pursuit of lobster.  
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CHAPTER 4 

EVALUATING THE EFFECTIVENESS OF RECOMPRESSING CUSK (BROSME 

BROSME) IN LOBSTER TRAPS, THROUGH COLLABORATIVE  

RESEARCH, AS A CONSERVATION  

MANAGEMENT STRATEGY 

 

4.1. Introduction  

Bycatch is a significant issue facing global fisheries (Davies et al., 2009). Approximately 

8% of all fish caught in commercial fisheries around the world are discarded (Kelleher, 2005), 

typically due to fisheries regulations or low economic values (Harrington et al., 2005; Rochet 

and Trenkel, 2005). The survival rates of these discarded individuals depend on the physiology 

of the species, type of gear used, handling practices, and environmental conditions (Benoit et al., 

2010). Understanding how these factors might influence post-release mortality under realistic 

fishing conditions can lead to a better understanding of discard mortality, a significant source of 

uncertainty in fisheries stock assessments (Alverson et al., 1994; Davis, 2002; Chen et al. 2007; 

Benoit et al., 2010).  

Species with swimbladders often experience barotrauma, injury or mortality when caught 

as bycatch due to change in pressure. The reduction in barometric pressure causes air to expand 

in the swimbladder, forcing the stomach to evert (Smith and Croll, 2011). Other physical traumas 

can include exophthalmia, subcutaneous gases, and external hemorrhaging (Campbell et al., 

2009; Pribly et al., 2009; Butcher et al., 2012). Releasing positively buoyant fish at the surface is 

often fatal because of predation or suffocation due to the inability to return to depth quickly 

(Brown et al., 2010).  
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Treating barotrauma has been shown to successfully increase the rate of survival for 

physoclistous species. For example, Pacific rockfish (Sebastes spp.)  have been shown to have 

higher survivorship over two days if recompressed in wire cages almost immediately after 

capture and the physical symptoms of barotrauma were reversed (Jarvis and Lowe, 2008). 

Snapper (Pagrus auratus) are also able to survive over a three-day period after recompression in 

bathy cages (Butcher et al., 2012). Cod (Gadus morhua) recuperation from barotrauma took 

between two and seventeen days depending on the original depth of capture when surface 

released after tagging (Nichol and Chilton, 2006), and individuals could survive in the short-term 

if they could re-submerge (i.e., swim away) on their own (Ferter et al., 2015).  

This research is focused on cusk (Brosme brosme) bycatch in the Gulf of Maine 

American lobster fishery, highlighting the use of collaborative research to evaluate the ability of 

cusk to survive barotrauma. Cusk are classified as a National Marine Fisheries Services' (NMFS) 

“Species of Concern” and currently under NMFS internal status review for the Endangered 

Species Act (ESA). Concerns for this species include increased patchiness in habitat, habitat loss 

and degradation, incidental catch in commercial fisheries, recreational catches, and lack of 

management (72 FR 10710). Cusk are caught as bycatch in the Maine lobster fishery, currently 

reported to account for approximately 80% of all cusk discards on average (Tallack, 2012). 

Estimates of cusk bycatch in the 2008 Maine lobster fishery (102 mt) were double that of 2008 

commercial landings (54 mt) of cusk in the United States (Bannister et al., 2013). These 

estimates suggest a cumulative impact on the cusk population, but when examined at the trap 

level the Maine lobster fishery is estimated to catch an average of two fish per 1000 traps 

annually (Zhang and Chen, 2015), with an estimated 2.7 million trap tags sold in 2015 (Maine 

DMR, 2017). These bycatch interactions are seasonal. They are highest in the spring and fall 
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when fishermen are fishing offshore in deeper water as opposed to summer when fishing effort is 

highest and predominately inshore (Chen and Runnebaum, 2014). Additionally, sampling 

programs specifically targeting cusk have had challenges in the past resulting in zero catches of 

cusk over a dozen sampling trips (Maine DMR, 2011). Given the low frequency of occurrence in 

the lobster traps and challenges in targeting cusk catch, it is currently difficult to predict timing 

and location of cusk bycatch.  

Collaboration with stakeholders is a cost-effective method of increasing sample sizes 

over large spatial scales (Fairclough et al., 2014; Sorensen and Jordan, 2016). Participants in 

collaborative research are concerned individuals from the public (Conrad and Hilchey, 2011) that 

might be impacted by the outcomes of the research (Silver and Campbell, 2005). The use of 

volunteers in the data collection process not only decreases the cost of data collection, but 

increases the quantity and spatio-temporal coverage of data (Fairclough et al., 2014).  

Collaborative research as increasingly been utilized in all aspects of fisheries research, 

from design to data gathering and analysis (Hartley and Robertson, 2009).  Fishermen’s 

observations have improved the quality of data collected, how it is analyzed, and resulting 

management decisions (NRC, 2004; Silver and Campbell, 2005). Fishermen have significantly 

contributed to knowledge of fish behavior, schooling and migration patterns, spawning grounds, 

and habitat preference (Johnson and van Densen, 2007). Fishermen can provide reliable, fine-

scale fisheries information that will allow for better quality data (Johnson, 2010).  

Fishermen participating in a 2011 cusk conservation workshop proposed recompressing 

cusk with lobster traps instead of using descending devices as have been suggested by scientists 

for other species (Tallack, 2012). This study used data collected by fishermen to determine 

survival rates of cusk using lobster traps as descending devices. This sampling program uses 
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fishermen to collect data and their knowledge to direct the timing of sampling trips for a rare 

bycatch species in the Maine lobster fishery. The specific objectives of this research are to 1) 

determine if cusk can survive barotrauma if recompressed and 2) evaluate if lobster traps are a 

suitable mechanism for recompression.  

 

4.2. Methods 

In 2013, the Maine Department of Marine Resources (DMR), Maine Sea Grant, and local 

lobster cooperatives recommended fishermen that were thought to catch cusk as bycatch and 

would potentially be interested in participating in this research. Those fishermen were 

approached individually with the opportunity to participate through data collection on their own, 

taking the author as an observer, or both.   

4.2.1. Field Experiments 

 Fishermen collected data by conducting on-board observations to evaluate cusk survival 

by utilizing lobster traps as recompression mechanisms. Typical lobster traps have two to three 

distinct compartments called the 'kitchen' and the 'parlor(s)'. The kitchen is the baited entrance of 

the trap that allows for free entry and exit of the trap. The first and second parlors have one way 

entrances that allow organisms in but not out. In 2011, fishermen that participated in a cusk 

conservation workshop proposed placing cusk back into the ‘kitchen’ to recompress them, giving 

them the opportunity to escape (Tallack, 2012). This research set out testing fishermen’s 

hypotheses.  

When fishermen caught a cusk during normal fishing activities they recorded the latitude, 

longitude, depth, and sediment type of the catch location. They t-bar tagged cusk with a unique 

identification number, recorded the types of trauma present (i.e. stomach eversion, exopthalmia, 
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subcutaneous gases), then they replaced the fish in the front part of the trap to be recompressed. 

Traps were returned to the same fishing locations at approximately the same depth. On average, 

traps would fish six days, but ranged between four and fourteen days, before they were hauled 

again, at which time fishermen recorded if the cusk was alive, dead, or gone after recompression. 

Data were collected from 2013 to 2016 from eight fishermen. 

In 2014 and 2015, one fisherman conducted surface release experiments, providing useful 

information about the immediate outcome for surface releases. Cusk were observed for 30 

seconds after release at the surface and documented as either “swam away” or “floated” at the 

surface. These surface release experiments were not conducted by other fishermen but provided 

preliminary analyses to compare to other surface release experiments. 

The author accompanied fishermen on selected fishing trips to validate this data collection 

method and to collect video data of cusk being recompressed. The observer was advised by the 

fishermen when they would be fishing in locations where cusk were likely to be caught. The observer 

collected the same data fishermen collected for the comparison. All observed trips were conducted in 

locations where cusk had previously been seen by fishermen. 

Cusk that were video recorded by the author were photographed and tagged for identification 

purposes, and evaluated for trauma type prior to recompression. Cusk were then returned to an 

experimental trap with mounted video monitoring equipment to assess behavior in the traps and, 

whether the cusk could escape the trap. A GoPro camera in a CamDo deep water housing was used with 

a CamDo LED autonomous dive light in a deep-water housing was mounted to an un-baited, research 

lobster trap. Both time lapse (5 seconds) and continuous videos were taken.  

 



83 

 

4.2.2. Analysis of Logbook Data using Random Forest 

Random forest (RF) models were used to identify the most important factors in 

classifying the outcome of recompression. This is a method of machine learning to derive 

classification trees for determining the relative importance of predictor variables (Breiman, 2001; 

Liaw and Wiener, 2002; Hochhalter, 2012). Generally, the data are divided into training and test 

data sets to build the classification trees. RF models are built through a multistage process, 

starting with bootstrapping (i.e., 500) samples from the training data and developing a 

classification tree from each randomly selected sample (Hochhalter, 2012). Each node of the tree 

is built by randomly selecting predictor variables, then determining which of those variables 

results in the most effective split (Goldstein et al., 2010). Trees are continuously added until 

there is one variable per node and repeated until the specified number of trees are built 

(Goldstein et al., 2010). Using a larger number of trees generally results in stability of variable 

importance (Goldstein et al., 2010), for this reason 500 trees were selected as the RF tuning 

parameter. 

Data for this study are limited, with fifty-two observations of cusk survival in the 

medium-term and eleven in the short-term. For this reason, the relative importance of depth, time 

at the surface, stomach eversion, subcutaneous gases, exopthalmia, and days between hauls were 

determined for the medium-term only using the full data set to build classification trees. 

Preliminary analyses indicated that the starting number for randomly selecting data for 

bootstrapping (i.e., set seed) impacted the outcome of variable importance (results not shown). 

To overcome this variability, the set seed was randomly selected and RF algorithm was run 

iteratively 500 times, randomly changing the starting position each time to estimate mean 

decrease in accuracy. The mean decrease in accuracy of each variable was recorded for each run, 
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and is interpreted to be variable importance (VI). VI was then averaged for each factor to 

estimate mean variable importance (𝑉𝐼̅̅ ̅). The reported variable importance indicates the 

percentage in decrease of accuracy of classifying the outcome if that variable were removed.  

Preliminary analysis also indicated the data set for short-term survival (11 observations) was too 

small for reliable classifications using RF. The RF models were built using the randomForest 

package (Liaw and Wiener, 2002) for R statistical software.  

 

4.3. Results 

From 2013 to 2016, a total of 211 cusk were reported by eight fishermen and the author 

from an estimated 14,000 trap hauls. The number of traps hauled were not recorded the first year 

of the project, therefore trap hauls were estimated based on the average number recorded in 

previous years. Cusk were caught between 16 m and 156 m, 96% were alive when first captured 

in the traps (nine came up dead when first caught). Exopthalmia was reported in 55.6% of cusk, 

stomach eversion in 48.3%, and subcutaneous gases in 10.7%, with 23.9% of cusk caught 

experiencing no observable symptoms of trauma (Figure 4.1). Some fish had multiple trauma 

types present, 9% were reported to have both subcutaneous gases and exopthalmia, 29.8% had 

both exopthalmia and stomach eversion, 7.3% had stomach eversion and subcutaneous gases, 

and 4.7% had stomach eversion, exopthalmia, and subcutaneous gases reported (Figure 4.1). 

Fishermen reported 163 cusk from approximately 10,000 trap hauls: 59% (n = 97) were 

recompressed, 31.9% (n = 52) had definitive survival observations reported at the next haul, and 

27.6% (n = 45) were released overboard and observed to “float” or “swim away.” The cusk that 

were recompressed but did not have observed outcomes of survival reported (n = 45) were either 

left blank by the fisherman (n = 9) or there were multiple cusk in the trap with no tag number 
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reported and varying outcomes documented (n = 36). For the university observer, eleven cusk 

were recompressed with observed outcomes, out of forty-eight caught on observer days, in 

approximately 4,000 trap hauls.  

There were forty-five cusk released at the surface by a fishermen to determine their 

ability to return to depth on their own. Of those released overboard, 58% (n = 26) immediately 

swam down while the remaining 42% (n = 19) floated. In general, cusk that swam away came 

from shallower depths than those that floated at the surface (Figure 4.2). Stomach eversion and 

no trauma present were the most significant variables for determining classifications in the RF 

models.  

 

Figure 4.1. Reported symptoms of physical barotrauma. Exopthalmia (EX), stomach eversion 

(SE), subcutaneous gases (SG), no trauma (NT), and combined presence of physical traumas. 

Exopthalmia and stomach eversion were the most commonly reported symptoms of barotrauma 

in cusk in this study. 
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Figure 4.2. Evaluating capture depth relative to surface release discarding and 

recompression. Depth was not a significant factor in cusks’ ability to immediately swim away 

(p > 0.05), but significant for medium term survival after recompression (p < 0.01). 

 

The two most important variables in categorizing recompressed cusk as alive, dead or 

gone based on the mean relative importance (𝑉𝐼̅̅ ̅) were stomach eversion (15.51% 𝑉𝐼̅̅ ̅) and no 

trauma (15.25% 𝑉𝐼̅̅ ̅). Time at the surface (11.39% 𝑉𝐼̅̅ ̅) and the combination of exopthalmia and 

stomach eversion (9.09% 𝑉𝐼̅̅ ̅) were the next two most important variables. The least important 

variables were days between haul (4.39% 𝑉𝐼̅̅ ̅), exopthalmia (3.77% 𝑉𝐼̅̅ ̅), all three trauma types 

reported (0.94% 𝑉𝐼̅̅ ̅), subcutaneous gases and exopthalmia (0.94% 𝑉𝐼̅̅ ̅), stomach eversion and 

subcutaneous gases (0.94% 𝑉𝐼̅̅ ̅), subcutaneous gases (0.93% 𝑉𝐼̅̅ ̅), and depth (-1.76% 𝑉𝐼̅̅ ̅) (Figure 

4.3). 
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Figure 4.3. Relative importance of variables for cusk released at the surface. Random forest 

models were used to determine the most important factors in categorizing if a cusk could swim 

away or not. Stomach eversion and no visible presence of trauma were the two most important 

factors for surface releases. 
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Fifty-two fish were recompressed by fishermen were observed after 4-14 days with 38% 

(n = 20) reported to have medium-term survival (i.e., reported alive), 37% (n = 19) were reported 

gone, and 25% (n = 13) were reported dead. For short-term survival (2 and 8 hours), 82% (n = 9) 

of cusk were reported alive, 9% (n = 1) gone, and 9% (n = 1) dead. These findings support the 

hypothesis that cusk can survive if recompressed. The RF model found depth and time at the 

surface to consistently be the first and second most important variables for constructing 

classification trees (Figure 4). The relative importance of physical trauma (i.e., exopthalmia, 

stomach eversion, and subcutaneous gases), the combinations of those trauma types, lack of 

trauma (i.e., no trauma), and days between hauls varied in importance. The results in Figure 4 are 

the averages of mean decrease in accuracy for five-hundred runs. Based on these averages, depth 

(18.85% 𝑉𝐼̅̅ ̅) is by far the most important predictor variable followed by time at the surface 

(13.20% 𝑉𝐼̅̅ ̅). The combination of stomach eversion and subcutaneous gases (10.42% 𝑉𝐼̅̅ ̅), all 

three major reported trauma types (10.38% 𝑉𝐼̅̅ ̅) no reported trauma (10.29% 𝑉𝐼̅̅ ̅) and exopthalmia 

(9.83% 𝑉𝐼̅̅ ̅) are the next most important variables. The least important variables are subcutaneous 

gases (5.7%  𝑉𝐼̅̅ ̅) presence of both subcutaneous gases and exopthalmia (5.57% 𝑉𝐼̅̅ ̅) stomach 

eversion (4.58% 𝑉𝐼̅̅ ̅) and the presence of both exopthalmia and stomach eversion (3.71% 𝑉𝐼̅̅ ̅) 

(Figure 4.4).  
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Figure 4.4. Relative importance of variables for recompressed cusk. Random forest models 

were used to determine the most important factors in categorizing the outcomes of 

recompression. Depth and time at the surface were the two most important factors for 

categorizing if a cusk survive, died, or was reported gone. 
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A total of eleven videos were attempted, with six being successfully recorded (Table 4.1). 

Length of videos ranged from 2 to 3.5 hours, depending on the battery life in cold, deep water. Soak 

times for cusk placed in traps with video equipment ranged from 2 to 8 hours. Short soak-times resulted 

in videos only capturing a short period of recompression for some cusk. Some observer trips resulted in 

no videos because of logistics or lack of catching cusk.  

The videos provide insight into the initial behavior after recompression. Two cusk appear 

upside down for almost an hour and then flip over (right side up). One cusk seen to lay still in the 

traps after recompression until the video ran out (about 2.5 hours) but was alive after being 

hauled to the surface shortly thereafter. One cusk was more lively in the videos and appeared to 

not need a recovery time. One cusk escaped the trap before the trap even hit the bottom because 

of jerking as other traps it was connected to landed on the bottom. 

 

Table 4.1. Outcomes for videoed recompression. Dates and depths of attempted video 

monitoring, * indicates successful video recorded. 

Date Depth Outcome 

6/5/2013 187ft Died 

11/17/2013* 348ft Survived 

5/24/2014* 290ft Survived 

5/29/2014* 222ft Survived 

6/3/2014* 282ft Survived 

6/11/2014* 193ft Survived 

11/11/2014 90ft Survived 

5/25/2015 180ft Survived 

6/12/2015 70ft Survived 

7/23/2015* 90ft Gone 

5/12/2016

  

100ft Survived 
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4.4. Discussion 

This research suggests that cusk are able to survive barotrauma with an estimated 38% 

survival rate. The 37% of cusk reported as gone from the traps are believed to have escape, as 

opposed to dying and being eaten, because there was no indication of fish remains in the traps. 

Fishermen were asked to record if fish were dead upon re-haul or if there were any remains, for 

those fish to be recorded as dead. Cusk caught within the traps were between 45 cm and 75 cm, 

so were large enough to likely leave behind bones that would be too big to fall through the traps 

or be carried off by lobsters. Based on this available evidence, there is potential that medium 

term survival is 75% instead of the observed 38%, but this cannot be validated with the available 

data.  

This research suggests that recompression is likely a better discarding practice than 

surface discarding for increasing medium-term survival. Of the forty-five surface-released cusk 

in this study, 42% were observed to float on the surface immediately after release.  The ability to 

overcome positive buoyancy at the surface is thought to be the most important aspect of 

surviving discarding (Hannah et al., 2008a). In some cases, the ability of a fish to return to depth 

on their own diminishes with capture depth (Hochhalter, 2012). Submergence success is thought 

to improve short-term survival (Hannah et al., 2008a), indicating the longer a discarded fish 

remains at the surface the higher the probability of mortality. Given that 42% percent of cusk did 

not have immediate submergence success in this study suggests that the morality rate of surface 

discarding is likely similar.  

While recompression appears to be an effective method of increasing discard survival of 

cusk in the medium-term, replacing cusk back inside the lobster trap is likely not the best method 

of recompression. Only 37% of recompressed cusk were noted as gone from the lobster traps at 



92 

 

the next haul. The authors consider this to be a low percentage of escapement relative to the 

ability of cusk to survive (i.e., assumed 75% survival). Instead of replacing cusk in the head of 

the trap, descending devices could be attached externally to the trap to retain cusk long enough to 

reach capture depth, giving them the ability to easily escape the recompression device. However, 

when cusk are recompressed inside the lobster traps it appears as if there is a recovery period 

directly after recompression based on video data. It is unclear if the recovery period is a result of 

the cusk being jarred when the trap hits the bottom or if it is related to the physical traumas of 

decompression, time at the surface, and subsequent recompression. Hannah and Matteson (2007) 

found that the frequency of behavioral impairment increases with capture depth.   

Depth and time at the surface were the two most important variables in categorizing the 

outcome of recompression in the medium-term (4 to 14 days). Depth had a significant impact on 

excess buoyancy and internal trauma for Pacific rockfish caught at 20 m but not at 5 m (Butcher 

et al., 2012), likely indicating fish caught at deeper depths sustain more trauma. Time at the 

surface was significant in predicting mortality within two days for Pacific rockfish (Jarvis and 

Lowe, 2008). Although RF models do not provide direction and statistical significance of 

relationships, there is the potential that depth and time negatively impact survival when 

evaluated within the context of other barotrauma studies. 

The next most important variables in categorizing the outcome of recompression were the 

combination of stomach eversion and subcutaneous gases; the combination of exopthalmia, 

stomach eversion, and subcutaneous gases; no trauma present; and exophtlamia (Figure 4.4). 

Barotrauma studies on Pacific rockfish did not find specific combinations of trauma as a 

significant predictor of survival (Jarvis and Lowe, 2008). However, this study found that the 

presence of the aforementioned trauma type combinations are relatively important in classifying 
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recompression outcomes. Exopthalmia was considered non-informative in determining mortality 

in Pacific rockfish (Butcher et al., 2012). However, exopthalmia was an important variable in 

determining the outcome of recompression for cusk and the only physical symptom of 

barotrauma to do so alone (Figure 4.4). Several species of gadoids have a choroid rete to 

maintain the partial pressure of the eye (Wittenberg and Haedrich, 1974) and is susceptible to 

changes in barometric pressure, as found in swimbladders (Parker et al., 2006). Cusk likely have 

a choroid rete, like other genera in the family, and the cause of exopthalmia in cusk as well as 

increasing the potential of injury around the head and brain. Pacific rockfish with everted 

stomachs had gases infusing the tissues around the head kidney, heart, and postcranial 

musculature (Hannah et al., 2008b).  

Fishermen provided more observations of medium-term survival data but with 

inconsistencies in their reporting. Fishermen were not as diligent at recompressing cusk or 

recording signs of cusk at the next haul, but they provided more comprehensive data than could 

be collected the author on day trips. Several fishermen expressed concerned about the outcomes 

of this research and the subsequent regulations that might arise. The outcomes reported by 

fishermen are thought to be their true observations of the outcome of cusk survival. Fishermen 

were forth coming with information throughout the logbook reporting, some reported instances 

when cusk were used for bait instead of recompressed for the study. However, there is concern 

that the lack of reporting outcomes (n = 9) from some fishermen was out of fear of the 

consequences of the results of this research. This is consistent with findings in other 

collaborative research (Hall-Arber and Pederson, 1999). 

Fishermen provided more data than what could be obtained on day trips by providing 

medium-term observations after 4 to 14 days. Several cusk observations were reported on the 
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same day by different fishermen. Capturing this amount of information simultaneously would 

require a more extensive observer program to provide the same level of observation as the 

fishermen provided. However, observer coverage is costly (Brooke, 2012), particularly when 

seeking to observer a single species with low catch rates. Fishermen increased the sampling 

effort for rare species that are not as easy to capture as opposed to species that are more abundant 

or that form aggregations such as seen in similar experiments on cod (Gadus morhua; Ferter et 

al., 2015).  

Past studies documenting the survival of physoclistous species experiencing barotrauma 

rely on hiring fishing vessels to conduct experiments, which can be cost prohibitive for obtaining 

a large spatial and temporal distribution (Ferter et al., 2015), but more reliable in providing 

standardized data. However, there is a tradeoff between hiring fishing boats as research 

platforms and having fishermen independently collect data. Collaborating with the fishing 

industry is thought to increase fishermen’s trust in the data (Johnson and van Densen, 2007). 

Although this study does not have the same precision in reporting as other barotrauma studies 

conducted by scientific observers, this study benefitted by having fishermen conduct their own 

recompression experiments because they shared their observations with fellow fishermen.  

The dissemination of research findings by fishermen were witnessed by the author on 

days when observing at-sea. Participating fishermen were asked about the research being 

conducted. Often the fishermen summarized the research being conducted, their observations, 

and the overall findings of the project. Participating fishermen corrected the perceptions of other 

fishermen who thought that cusk were not able to survive citing their own experience and the 

video data collected by this research. This behavior was interpreted to mean that participating 

fishermen were accepting of this scientific research. The author believes other fishermen were 
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more willing to believe the results of this study when it was reported by their peers. This research 

was also presented to industry groups by the author over the course of the study. Despite being a 

contentious issue, this research was well received by those groups with overwhelming support. 

This reception by industry is believed to be the result of a well-established relationship of the 

second author with local industry groups and because of the transparency strived for throughout 

the research process.   

The increasing use of cooperative research reflects the growing awareness that 

stakeholder contribution to the research process leads to higher industry acceptance. Increased 

acceptance of scientific research has proved to be more effective at generating higher fishermen 

buy-in to the research, better fisheries management, and increased stewardship of the resources 

as opposed to traditional scientific research practices (Wendt and Starr, 2009). Collaborative 

research is believed to make science more relevant to stakeholders (Johnson and van Densen, 

2007) by making it more salient, credible and legitimate to the stakeholder (Cash et al., 2002). 

Scientists and fishermen have different perceptions of what makes research salient, credible, and 

legitimate (Cash et al., 2002). Extensive involvement of fishermen in this research increased the 

legitimacy of the research to industry (Cash et al., 2003) but is likely to reduce the perception of 

credibility by fellow scientists. However, it is necessary to incorporate fishermen in developing 

appropriate solutions to mitigate bycatch (Hall and Mainprize, 2005) to increase buy-in to the 

conservation practices.  

The use of commercial fishermen to collect data is not a novel approach to increase the 

spatio-temporal distribution of sampling (Hartley and Robertson, 2009; Fairclough et al., 2014; 

Masse et al., 2015). However, bycatch data from fishermen's logbooks are not thought to be as 

reliable as observer data because of misreporting (NOAA, 2011). Similarly, data collected by 
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volunteers are not treated the same as formal data collection methods by trained scientists 

(Conrad and Hilchey, 2011). Despite these drawbacks there are three notable benefits to 

cooperative research: 1) it is a cost-effective approach to increasing the spatio-temporal 

distribution of observations for rare species (NOAA, 2011); 2) stakeholders view cooperative 

research as more credible science because of the democratic nature of the scientific process 

(Hartley and Robertson, 2006); and 3) cooperative research is an effective outreach tool (Conrad 

and Hilchey, 2011).  

 

4.5. Handling Recommendations  

Based on our findings and the current barotrauma literature, cusk should be returned to 

depth as quickly as possible. The amount of time spent at the surface was an important factor in 

classifying the outcome of recompression in this study. Brown et al. (2010) found that the 

amount of time at the surface should for red emperor (Lutjanus sebae) should be minimal when 

providing treatment for barotrauma. The longer the time that a fish with a closed swimbladder is 

at the surface, the more likely the gases in the swimbladder are to expand. In this study, some 

cusk did not have an everted stomach when first surfacing but did by the time the traps were 

redeployed for fishing 5-10 minutes later.  

Depth was the most important variable in classifying the results of recompression in the 

RF models. Pacific rockfish also experience barotrauma (Jarvis and Lowe, 2007; Hochhalter, 

2012; Hannah et al., 2013). Regulations in California define a depth limit for recreational fishing 

for Pacific rockfish (California Fish and Wildlife, 2015) to reduce the likelihood of mortality in 

recompressed fish. Physoclistous species that exhibit external signs of barotrauma (i.e., stomach 

eversion and exopthalmia) are likely to be perceived by fishermens as having a reduced ability to 
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survive the trauma, potentially leading to reduced discarding of these species, based on 

conversations with fishermen scientists in this study. Avoiding the deepest depths during seasons 

when cusk are likely to be caught could reduce the capture rate and subsequent mortality of cusk.  

Other recompression devices were not tested in this study, but could serve as an 

important management tool in cusk conservation. Videos collected through this research indicate 

that some cusk spend time recovering in a vulnerable position directly after recompression. 

Given that it is unclear if this is from impact of the trap hitting bottom or from being 

recompressed in general, other recompression tools need to be explored for effectiveness in the 

long-term (i.e., several months) survival of cusk. Conversely, the empty traps could provide a 

safe place for cusk to recover in the short-term to avoid predation from larger predators but 

escapement rates are relatively low (37%) in this study. 

Several management options should be explored for cusk conservation in the future. Two 

observations were made during this study, through conversations with fishermen: 1) impacted 

stakeholders (i.e., lobstermen) should be involved in future management discussions and 2) there 

needs to be incentives for fishermen to participate in conservation of bycatch species. Lobstermen 

were uneasy about the outcomes of this research and the impact it could have on future regulations 

for the lobster fishing industry. However, participating fishermen scientists frequently referred to 

this research as proactive and hoped management decisions would reflect the findings of the study. 

Participants in this study also suggested incentives to get lobstermen to fully participate in bycatch 

conservation. Asking one commercial sector to conserve a species for another commercial sector 

that will likely not have access to in the future, due to closed licenses, could have negative impacts 

on the relationships between fishermen and managers.  

 



98 

 

4.6. Conclusion 

This study found that cusk could survive barotrauma in the medium-term (4 to 14 days). 

The number of cusk observed to survive was 38% while the number observed to be gone from 

the traps was 37%, suggesting a potential 75% survival rate for recompressed cusk. Given the 

37% escapement rate, lobster traps might not be the most effective recompression tool for cusk. 

Depth and time at the surface are the most important factors in categorizing recompression 

outcomes. These findings are interpreted to mean that cusk caught in deeper depths have a higher 

probability of mortality, and cusk kept at the surface longer also have a higher probability of 

mortality. 

Bycatch research is often contentious in nature, resulting in increased management 

measures for fishermen. Fishermen compliance with these conservation measures is driven by 

their perception of the legitimacy of the regulation (Nielsen et al, 2003). This research was 

centered on a collaborative approach to increase the credibility and legitimacy of these findings 

with fishermen to increase the likelihood of compliance with any potential future regulations 

regarding cusk bycatch in the lobster fishery.   
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CHAPTER 5 

EVALUATING THE EFFECT OF REDUCING DISCARD MORTALITY RATES ON 

CUSK (BROSME BROSME) BIOMASS THROUGH STOCK  

ASSESSMENT SIMULATIONS 

 

5.1. Introduction 

Bycatch and subsequent discard mortality can be a significant source of unaccounted 

mortality of fished species, and can result in biased stock assessments (Chen et al., 2007). 

Discard mortality can be an even greater threat to the conservation of species that are rare, 

endangered, or overfished (Alverson and Hughes,1996; Crowder and Murawski, 1998; Morgan 

and Chuenpagdee, 2003; Harrington et al., 2005). Fishing mortality rates (F) are expected to be 

higher with the inclusion of discard mortality and estimates of F will be biased without inclusion 

of bycatch, potentially resulting in overestimation of the population size (Breen and Cook, 2002).  

Harvest restrictions often require discarding of bycatch of the target and non-target 

species (Davis, 2002). A key assumption of discarding is long-term survival, but this is not 

always the case (Cooke et al., 2013). In some instances, additional conservation measures are 

implemented to ensure reduced discard mortality for species with low population sizes or of 

significant conservation concern to help the population recover. Assisted recompression of 

positively buoyant species experiencing barotrauma from decompression has gained momentum 

as a conservation tool of incidentally caught groundfish species with high susceptibility to 

barotrauma (NOAAFisheries, 2014; ADFG, 2017; WDFW, 2017). Survival rates are estimated 

to be high for many species including Pacific rockfish (Sebastes spp.; Hannah et al., 2008; Jarvis 

and Lowe, 2008; Hochhalter and Reed, 2011; Hochhalter, 2012), snapper (Pagrus auratus; 
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Butcher et al., 2012), and red snapper (Lutjanus campechanus; Campbell et al., 2010). Ideally 

reducing discard mortality would help the population to recover. However, this assumption 

should be tested to evaluate if the estimated survival is greater than the variability associated 

with bycatch estimates.  

Cusk (Brosme brosme) are a physoclistous groundfish species that experience 

barotrauma, trauma from decompression, when brought to the surface by fishing gear. Catch 

rates of cusk in the Northeast Fisheries Science Center spring and fall bottom trawl survey have 

been declining since 1963 (Hare et al., 2012). There is growing concern about the population 

levels and mortality rates in commercial and recreational fisheries (72 FR 10710, 2007). Cusk 

are classified as a National Marine Fisheries Services’ (NMFS) “Species of Concern” and 

currently under NMFS internal status review for the Endangered Species Act (ESA).  

Cusk are caught as bycatch within the American lobster (Homarus americanus) fishery in 

the Gulf of Maine, which thought to contribute a significant proportion of total mortality for 

cusk. There is also concern with a potential increase in interactions between the lobster fishery 

and cusk due to habitat suitability of lobster increasing in offshore areas where cusk are more 

likely to be found (Chapter 3). In 2012, lobster fishermen proposed recompressing cusk to reduce 

discard mortality from barotrauma (Tallack, 2012). Survival rates of cusk caught in the lobster 

fishery were estimated when treated for barotrauma, a proposed conservation measure for 

reducing discard mortality (Chapter 4). Cusk were estimated to have a 37% known survival rate 

in the medium-term (4-14 days) and 38% escapement rate (Chapter 4). If recompression of cusk 

is implemented state wide, before an Endangered Species Act (ESA) listing decision, the 

conservation measure would likely be taken into consideration during the status review process 

(Kass, 2015; 68 FR 15100, 2003). Conservation plans for candidate species can alter the formal 
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assessment of a species status if they are determined to minimize the threat(s) identified for the 

species (Kass, 2015). Although recompression has evidence of increasing the survival of 

recompressed cusk (Chapter 4), it is not clear if this conservation would increase the recovery 

potential of cusk. 

Stock assessment simulations provide a method of adjusting varying discard mortality 

rates and varying bycatch rates to assess the ability of the population to positively respond to 

conservation practices. However, there is currently not an accepted stock assessment for cusk 

(NOAA, 2015), a data poor species in this regard (Hare et al., 2012). The lack of an accepted 

stock assessment prevents an evaluation of these conservation measures using data from the true 

cusk population. Instead, a simulated population developed from the known population 

parameters of cusk can be used to estimate the relative impact of conservation measures on the 

population status.  

This study evaluates how varying levels of bycatch and discard mortality rates (DMR) 

impact the cusk population. This study first simulated a “true” population utilizing available 

fisheries-independent and -dependent data to derive population parameters. Second, low, median 

and high cusk bycatch amounts were estimated for the Maine lobster fishery based on fisheries 

dependent data. Finally, stock assessment simulations were conducted to evaluate the impact of 

recompression survival at these different levels of bycatch. These simulations provide a method 

of evaluating if conservation measures to recompress cusk bycatch would have a significant 

impact on population recovery.  
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5.2. Methods 

A simulated population was developed in the NOAA Fisheries Toolbox (NFT) length 

based population simulator 8.0 (PopSim, NOAA, 2013) to use as input in the NFT Statistical 

Catch at Length (SCALE) model. Outputs from PopSim used in SCALE include: catch length 

frequencies, survey length frequencies, recruitment indices, and adult indices (section 5.2.3; 

Figure 5.1). To evaluate the impact of survival on population recovery, four discard mortality 

rates (i.e., 25%, 50%, 75%, 100%) were applied to three estimated bycatch scenarios (i.e., low, 

median, high). The true population was held constant for all model runs with variability in total 

catch for each run for the three bycatch scenarios and four mortality rates.  

 

5.2.1. Defining the True Population 

Several population parameters were defined for PopSim to generate the true population. 

These population parameters were estimated from available survey data where possible or 

defined from the currently available literature. Available survey data for estimating cusk 

population parameters include the NEFSC spring and fall bottom trawl survey as well as the 

NEFSC demersal longline survey for groundfish species in the western Gulf of Maine.  

 

5.2.1.1. Growth and Aging  

The length-based population simulator uses parameters from the von Bertalanffy growth 

equation to create a growth transition matrix (NOAA, 2013). Mean length at age was estimated 

by combining data from the NEFSC spring and fall bottom trawl survey (1991 – 1994) and 

observer trips for the commercial fisheries (1994 and 1995; unpublished data). These data were 

fit to a von Bertalanffy growth function (VBGF) in R statistical program package FSA (Ogle, 

2013a): 
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𝐿𝑎
̅̅ ̅ =  𝐿∞(1 − 𝑒−𝐾(𝑎−𝑎0) )      (5.1) 

 

Mean length at age (𝐿𝑎
̅̅ ̅) is a function of age (a), relative to the maximum length 𝐿∞, growth rate 

(K), and the theoretical age at length zero (𝑎0) (Ricker, 1975). Standard deviation of mean length 

for the initial population was assumed to increase with increasing age. 

In PopSim, the probability of being in a given length bin is based on the number of bins 

between the minimum and maximum lengths and age specific variance defined by the user 

(Deroba and Schueller, 2013). Growth into the next year (a + 1) is defined based on the number 

of surviving fish in each length bin at each age in the next year and the user defined VBGF 

parameters, given the probability of being in a given length bin the next year (Deroba and 

Schueller, 2013). Natural mortality (M) was assumed to be 0.2 and fully selected for both sexes 

at all ages.  

 

5.2.1.2. Length-Weight Relationship 

The cusk length-weight relationship was estimated from data collected on NEFSC 

research bottom trawl survey (2001-2015). Observations with either missing length or weight 

were removed. Length-weight relationships are generally non-linear relationships; length 

increases linearly but weight increases three-dimensionally as a volume (Olge, 2013b). 

Additionally, there is generally an increase in variability of weight for a given length (Olge, 

2013b). These generalizations are seen in cusk data from the NEFSC spring and fall bottom 

trawl. The relationship can be modeled to account for the non-linear relationship and increasing 

variability in weight at length (Ogle, 2013b):  
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𝑊𝑖 = 𝑎𝐿𝑖
𝑏𝑒𝜀𝑖       (5.2) 

where a and b are constant for all cusk and 𝜀 𝑖 is error term for each individual cusk (i). Log 

transforming length and weight allows for the logistic equation (5.2) to be transformed to a linear 

model for estimating a and b parameters (Faroese, 2006).:  

log(𝑊𝑖) = log(𝑎) + 𝑏 log(𝐿𝑖) + 𝜀𝑖          (5.3) 

 

5.2.1.3. Maturity 

Maturity ogives were derived from the NEFSC spring and fall bottom trawl survey (2001 

– 2014) to estimate length at 50% maturity (L50) and were developed individually for males and 

females. Ogives were estimated using the R statistical program package sizeMat (Torrejon-

Magallanes, 2016). The probability of being mature (Burnett et al., 1989) at a given size is 

estimated with a logistic regression (i.e., GLM with logit link) using bootstrapped samples and 

allowing for replacement, to estimate median probability and confidence interval (Torrejon-

Magallanes, 2016):  

𝑃𝐿 = 1/1 + 𝑒−(𝛽̂0+𝛽̂1𝑋)       (5.4) 

where PL is the probability of an individual being mature at length X, 𝛽̂0 is the slope and 𝛽̂1 is 

the intercept.  L50, the median length at maturity, is estimated as: 

𝐿50 = − 
𝛽̂0

𝛽̂1
         (5.5) 

 

5.2.1.4 Fishery and Survey Data 

Fishing mortality rates (F) were assumed to be combined rates to represent recreational 

and commercial fisheries. Initial estimates for F are user defined and were assumed to vary 

between 0.15 and 0.3 at random within the population simulator. One fishing fleet is defined in 
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PopSim to work in accordance with SCALE (NOAA, 2013). True catch within the population 

simulator is estimated using the Baranov’s catch equation (Deroba and Schueller, 2013) for 

fishery catches, distinguished by θ: 

𝐶𝜃,𝑦,𝑙,𝑎 =  
𝐹𝑦𝑆𝑙

𝑍𝑦,𝑙
𝑁𝑦,𝑙,𝑎(1 − 𝑒−𝑍𝑦,𝑙)                                              (5.6) 

where 𝐶𝜃,𝑦,𝑙,𝑎 is the true catch at length (l) and age (a)  per year (y), 𝐹𝑦 is the user defined fishing 

mortality rate per year, 𝑆𝑙 is selectivity at length defined by the user, and 𝑍𝑦,𝑙 is total mortality at 

length, the sum of natural mortality (My), defined by the user, and fully selected F for each 

length class in this study (Deroba and Schueller, 2013; NOAA, 2013). The user provides starting 

guesses for selectivity which are based on observed commercial length frequencies (a = 56 cm 

and β = 0.1). Catch at length per year is a direct input into the SCALE stock assessment model.  

This study assumes two surveys are conducted annually (i.e., spring and fall), requiring 

survey catch at length to be defined for each survey. The true numbers at length (l) are known for 

each year within the simulated population (Deroba and Schueller, 2013). The true population 

stock numbers at January 1(𝑁𝑦,𝑙) are multiplied by selectivity (S), then summed over all lengths, 

and a survey catchability (q) and a lognormal error are applied to obtain total number of fish 

sampled in each survey (Deroba and Schueller, 2013; NOAA, 2013).  

Next, an age composition is estimated by converting stock at age into a multinomial 

distribution between zero and one (Deroba and Schueller, 2013; NOAA, 2013). The user 

specified number of samples are drawn from the multinomial distribution to estimate the survey 

catch length frequencies (Deroba and Schueller, 2013; NOAA, 2013).  

𝐶𝜗,𝑦 =  ∑ 𝑁𝑦,𝑙𝑆𝑞𝑒𝜀𝑦
𝑙  ; 𝜀𝑦~𝑁(0, 𝜎𝜗

2)                                       (5.7) 

Adult indices used as input in the SCALE stock assessment model are calculated from age 

frequencies times 𝐶𝜗,𝑦 (NOAA, 2006). 
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Catch samples of the fishery and the surveys were assumed constant for all years to isolate the 

effects of varying survival rates on F. Fishery selectivity assumed an a = 55cm and β = 0.1. 

Catch samples from fishery removals were assumed to be 1000 (CV 0.1). Survey samples for the 

spring survey (survey one) were assumed to be 600 (CV 0.1), catchability 0.1, and selectivity of 

1.0 while catch samples for the fall survey (survey two) was 700 (CV0.2), catchability 0.1, and 

selectivity 1.0.  

 

5.2.1.5 Initial Population 

The initial starting population size (i.e., in year y =1) is user defined within PopSim as 

numbers at age (Deroba and Schueller, 2013) and was estimated in an iterative process. The 

initial numbers at age were obtained from the equilibrium population estimated by a preliminary 

SCALE run that was based on known cusk parameters.  

In the first iteration of PopSim, the initial starting population and recruitment that were 

provided reflected cusk trends in catch. Recruitment in the population simulator is at age one 

(NOAA, 2013) and the 1983 recruits were set to equal the 1982 age 1 year class. Cusk are highly 

fecund, producing an estimated three million eggs per female (Collette and Klein-MacPhee, 

2002). Recruitment was user defined for the rest of the years to reflect the catch rates estimate 

for cusk from 1982 – 2013, ranging from 1.3 million to 50,000 age 1 recruits when the 

population was low. The resulting simulated landings and cusk-like abundance indices from this 

first PopSim run were used as input into the preliminary SCALE run.  

The starting year (1982) equilibrium stock numbers at age outputted from the preliminary 

SCALE run were then used as input for the initial population at age for 1982 in the final PopSim 
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run. The second iteration of PopSim, using the same inputs described above and in the previous 

sections, generated abundance indices reflective of the equilibrium population, and the resulting 

adult and recruitment indices were incorporated back into SCALE for the base simulation run.  

 

5.2.2. Estimating Bycatch Scenarios 

Total bycatch of cusk in the GOM lobster fishery is thought to significantly contribute to 

total removals of this stock. Maine Department of Marine Resources (MDMR) collects some 

bycatch data through the lobster sea sampling program that started in 2006 (MDMR, 2016a). 

This is a fisheries-dependent monitoring program with non-random sampling of the fishery. 

Bycatch is not recorded for every observer trip as the program was designed to evaluate 

biological characteristics of individual lobsters (MDMR, 2016a). Consequently, these data 

cannot reliably be scaled up to the fishery for estimating total bycatch using standard (by)catch 

estimation methods: 

𝐶 =  𝑞𝐸𝑁       (5.8) 

because catch (C) cannot be assumed to be proportional to fishing effort (E) and population 

density (N).  

Bycatch observations from the sea sampling data are recorded per trap from 2006 – 2013 

(after 2013 they are recorded per trawl of multiple traps). These are currently the best data 

available to evaluate bycatch in the Maine lobster fishery as it is the longest time series with 

coast wide, year-round spatial coverage (MDMR, 2016a). It is currently the most consistent 

time-series for bycatch data, but bycatch monitoring efforts by the Northeast Fishery Observer 

Program recently were reinstated in 2012 for the federal lobster fishery (Brooke, 2015).  
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The Atlantic States Marine Fishery Commission (ASMFC) lobster stock assessment 

measures effort in the fishery as the number of traps in an area (i.e., number of trap tags per zone 

for Maine; ASMFC, 2015). However, a more effective measure of effort would be number of 

trap hauls (ASMFC, 2015). The lobster sea sampling program provides data on the number, size, 

and weight of lobsters caught per trap haul as well as the number and type of bycatch, when 

available (MDMR, 2016a).  

Expanding on the efforts of Boenish and Chen (in review), cusk bycatch confidence 

intervals (CI) are estimated per trap haul to estimate a range of total bycatch in the Maine lobster 

fishery. Bycatch per month is estimated as:  

𝐵𝑦𝑐𝑎𝑡𝑐ℎ𝑚 = 𝐸𝑓𝑓𝑜𝑟𝑡𝑧,𝑚 ∗ 𝐵𝑃𝑈𝐸𝑚                                          (5.9) 

where effort is number of traps hauled for each zone (z) and month (m), and bycatch-per-unit-

effort (BPUE) is estimated for each month, coast wide. Effort is estimated as:  

𝐸𝑓𝑓𝑜𝑟𝑡𝑧,𝑚 =  
𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑧,𝑚

𝐶𝑃𝑈𝐸𝑧,𝑚
                                                    (5.10) 

 

where landings are the reported zonal, monthly landings to the Maine DMR and 𝐶𝑃𝑈𝐸𝑧,𝑚 is 

estimated below in section 5.2.2.1 and defined as total weight of legal lobster per trap. 𝐵𝑃𝑈𝐸𝑚 is 

estimated in section 5.2.2.2 and is defined as the total number of cusk per trap. 𝐶𝑃𝑈𝐸𝑧,𝑚 and 

𝐵𝑃𝑈𝐸𝑚 are estimated through bootstrapped generalized additive models (GAM) and the total 

amount of cusk bycatch, in numbers, is an estimated range (Figure 5.1).  
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Figure 5.1. General framework for estimating cusk bycatch. Bycatch estimates are derived 

from the Maine lobster sea sampling data from Maine Department of Marine Resources using 

bootstrapped binomial-GAMs to estimate 95% CIs of the probability of presence (P) or absence 

(A) of cusk in a lobster trap and delta-GAMs to estimate 95% CI of trap hauls as a measure of 

effort in order to estimate a Fieller confidence interval (Fieller, 1954) of low, median, and high 

bycatch scenarios in numbers of individual cusk per year.  

 

5.2.2.1. Estimating Lobster CPUE 

GAMs are a common approach to standardizing catch and effort data (Maunder and Punt, 

2004). GAMs have also been used to predict fishing effort for unobserved trips and to estimate 

bycatch (Walsh and Pooley, 2002). Two-stage GAMs (delta-GAMs) are effective for zero-

dominated data, even when the zeros are caused by missed sampling (Maunder and Punt, 2004). 

Therefore, a delta-GAM was used to estimate the number of trap hauls per zone per month.  
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The delta-GAM first estimates the probability of encountering an individual legal-sized 

lobster (𝑃) using a logit-link function with binomial distribution given spatial-temporal 

covariates (5.9; Barry and Welsh, 2002; Boenish and Chen, in review): 

𝑙𝑜𝑔𝑖𝑡 (𝑃) =  𝛽0 +  ∑ 𝑠𝑗( 𝐸𝑗) +  𝜀𝑛
𝑗=1                     (5.11) 

where 𝛽0 is the intercept, 𝑠𝑗 is the smoothing spline function for covariate 𝐸𝑗 for continuous 

covariates, and categorical covariates did not have an smoothing spline applied. The second 

stage of the model then estimates mean weight of log-transformed legal-sized lobster in 

kilograms (w) given a log-link and Gamma distribution conditional on the probability of 

presence in the first sage (Boenish and Chen, in review; Maunder and Punt, 2004):  

𝑙𝑜𝑔(𝑤) =  𝛽0 +  ∑ 𝑠𝑗( 𝐸𝑗) +  𝜀𝑛
𝑗=1                                            (5.12) 

Spatial (i.e., latitude, longitude, distance offshore, depth, sediment type) and temporal (i.e., 

month and year) covariates were used to standardize catch rates of lobsters per trap haul. Step-

wise, backwards model selection was used to determine the best model in the first and second 

stages based on significant models with the lowest AIC.  

  Catch-per-unit-effort (CPUE) is then defined as the absolute log-transformed lobster 

weight per trap haul (ln(z)) per zone (z) and month (m): 

ln(𝑧) = ln(𝑃) + ln (𝑤)                                             (5.13) 

Effective effort in the lobster fishery is then estimated as trap hauls using bootstrapped sampling 

methods to run 500 iterations of delta-GAMs per zone per month (Boenish and Chen, in review). 

The lobster delta-GAM estimates the number of lobster landings per trap haul (Lobster CPUEz,m; 

Figure 5.1). To account for the lobster sea sampling data not being from randomly selected 

vessels, confidence intervals are needed to estimate the range of lobster CPUEz,m (upper and 

lower). To do this, bootstrapped 95% CIs are generated by sampling legal lobsters caught and 
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running the 500 iterations of delta-GAM to generate low, median, and high lobster CPUEz,m 

(Figure 5.1; Boenish and Chen, in review).  

 

5.2.2.2. Estimating Cusk BPUE 

Ideally, cusk bycatch rates would be estimated in the same manner. However, a two-stage 

delta-GAM at the zonal scale was not feasible for developing a standardized bycatch-per-unit-

effort (BPUE) for cusk because of low sample rates (303 cusk from 247,314 sampled traps). 

Instead, the probability of cusk being present in a trap in a given month, for all zones combined, 

was estimated with a binomial presence/absence GAM, the same as the first stage of the delta-

GAM (eq. 5.9), with 500 bootstraps.  

Because reliable catch rates could not be predicted with the second stage of the delta-

GAM, the mean number of cusk per trap and 95% CI were estimated through 500 bootstrapped 

samples from the positive catches of cusk using MDMR sea sampling data (2006 – 2013). The 

mean number of cusk per trap, when present, was multiplied by the probability of presence from 

the binomial GAM to get an estimate of the number of cusk caught per trap per month (𝐵𝑃𝑈𝐸𝑚). 

Next, a ratio of mean number of cusk caught per mean weight of lobster was derived 

( 𝐵𝑃𝑈𝐸𝑚/𝐶𝑃𝑈𝐸𝑧,𝑚). Since CPUE and BPUE are mean estimates, it is necessary to look at the 

range of the number of cusk caught per weight of lobster. However, the ratio of two means, 

normally distributed, does not result in a normally distributed ratio (Fieller, 1954). Additionally, 

a ratio with different units cannot have confidence intervals directly estimated (Fieller, 1954). 

Therefore, it is necessary to use the Fieller method to estimate the ratio of confidence intervals 

(Fieller, 1954). The standard error of the quotient (Q =  𝐵𝑃𝑈𝐸𝑚/𝐶𝑃𝑈𝐸𝑧,𝑚) is first estimated: 

𝑆𝐸𝑄 =  𝑄√𝑆𝐸𝐵
2

𝐵2
+

𝑆𝐸𝐶
2

𝐶2
                                                    (5.14) 
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where SEB is the standard error for BPUE, SEC is the standard error for CPUE, B and C are 

Gaussian variables for BPUE and CPUE, respectively (Fieller, 1954). The 95% CIs are then 

estimated using the 𝑡∗ statistic for 95% CIS: 

95% 𝐶𝐼 = 𝑄 ±  𝑡∗x 𝑆𝐸𝑄                                                (5.15) 

The ratio 𝐵𝑃𝑈𝐸𝑚/𝐶𝑃𝑈𝐸𝑧,𝑚 can then be multiplied by the Maine DMR zonal, monthly lobster 

landings (kg) data to get an estimate of the number of cusk bycatch rates per zone and month 

during 2006 - 2013. Even though 𝐵𝑃𝑈𝐸𝑚 is estimated coast wide with the assumption that catch 

rates are the same in all zones, trap haul is estimated per zone and month, which gives bycatch 

rates per zone and month. The 5% and 95% CIs are the low and high bycatch estimates per zone 

per month. The low, median, and high bycatch estimates per zone per month are then summed to 

get total annual bycatch rates.  

 

5.2.2.3. Estimating Bycatch Scenarios 

Historical bycatch scenarios were back calculated based on the amount of bycatch 

estimated in 5.2.2.2 by back-calculating bycatch given the abundance of cusk relative to trap 

density and effort:  

𝐵𝑃𝑈𝐸𝑦
̂ = (𝑠 𝐴𝑦 ∗ 𝑇𝑦) ∗ 𝐹     (5.16) 

Where 𝐵𝑃𝑈𝐸𝑦 is the predicted number of cusk caught as bycatch per year, 𝐴𝑦 is the model-

based abundance derived in Chapter 2, 𝑇𝑦 the number of traps estimated from the lobster stock 

assessment report, and F is the fishing mortality rate from the lobster stock assessment report 

(ASMFC, 2015), s is a scaling factor estimated by minimizing the sum of squared error from 

‘observed’ bycatch quantities from above minus the predicted 𝐵𝑃𝑈𝐸𝑦
̂ . 
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Table 5.1. Bycatch Scenarios. The resulting bycatch scenarios (low, median, and high) in 

metric tons and the estimated ladings from PopSim (MT). 

 

Year PopSim 

Landings  

(MT) 

Low 

 Bycatch 

(MT) 

Median 

Bycatch  

(MT) 

High 

Bycatch 

(MT) 

1982 1622.88 153.4574 158.3912 181.6126 

1983 1047.7 124.1831 128.1757 146.9673 

1984 1493.06 139.3719 143.8529 164.9428 

1985 1015.91 176.6026 182.2806 209.0043 

1986 1307.14 174.0105 179.6052 205.9366 

1987 625.21 122.3033 126.2355 144.7426 

1988 887.55 95.41889 98.48671 112.9256 

1989 976.55 87.01187 89.80939 102.9761 

1990 907.36 96.49923 99.60178 114.2042 

1991 567.81 90.85707 93.77822 107.5268 

1992 425.86 60.63065 62.57999 71.75469 

1993 809.6 96.86986 99.98433 114.6428 

1994 513.61 102.9583 106.2685 121.8483 

1995 410.84 75.50634 77.93395 89.35966 

1996 604.71 77.64609 80.14249 91.89199 

1997 349.78 73.07925 75.42882 86.48726 

1998 243.93 68.72372 70.93326 81.33261 

1999 371.64 74.0783 76.45999 87.66961 

2000 271.04 69.60528 71.84316 82.37592 

2001 389.91 75.60234 78.03303 89.47327 

2002 226.4 104.2848 107.6377 123.4182 

2003 410.24 51.809 53.47472 61.31452 

2004 569.42 103.1963 106.5142 122.13 

2005 616.8 114.7593 118.4489 135.8145 

2006 406.26 71.79 74.10264 84.552 

2007 295.1 52.2915 55.84236 65.25 

2008 518.22 59.937 62.65185 71.865 

2009 298.5 55.179 57.16494 64.5795 

2010 222.38 58.5795 60.64661 69.0885 

2011 314.54 54.159 56.06522 63.5325 

2012 177.45 71.6805 73.87775 83.718 

2013 120.03 68.163 70.78397 80.7015 
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5.2.3 Stock Assessment Simulations 

In 2009, the NOAA SCALE model was used to estimate cusk biomass for the NOAA 

Office of Protected Resources for determination of listing (NOAA, 2015). Length-based stock 

assessment models provide a method of assessment for hard-to-age species (Punt et al., 2013). 

Statistical-catch-at-length models assign size-classes to age-classes, fundamentally using a 

statistical-catch-at-age model (Punt et al., 2013). The SCALE model is an age structured model 

that fits length data, abundance indices, and recruitment-at-age estimated by binning length data 

from the surveys to the estimated age class (NOAA, 2006).  

Simulated data from PopSim were used as input data to SCALE (Figure 5.2). This data 

includes adult and recruitment indices, catch length frequencies, survey length frequencies, catch 

rates, and mean length at age. The adult and juvenile indices were estimated from the defined 

population parameters above: mean length at age, the length-weight relationship, and maturity 

ogives. Assumed parameters were M equal to 0.2 as natural mortality is unknown and fishery 

selectivity was fixed at intercept equal to 56 cm and slope equal to 0.1 based on observed 

commercial length frequencies. SCALE allows for one fleet in the model, requiring estimated 

landings and discard estimates to be combined. Landings were estimated from PopSim given F 

and stock biomass.  

A total of twelve scenarios were developed for the stock assessment simulations: three 

bycatch scenarios (i.e., low, median, and high) and four discard mortality rates (i.e., 25%, 50%, 

75%, 100%). All the scenarios were compared to the base case scenario that assumed no bycatch 

(i.e., 0% discard mortality). Sensitivity analyses were conducted using the same input data to 

determine the best SCALE model settings for conducting the simulations. The final model 

settings fit the catch length frequency starting at 15 cm with a defined effective sample size of 
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1000. The model fit survey length frequency beginning at 15 cm for both the spring (survey 1) 

and fall (survey 2) with an effective sample size of 60 and 70 respectively.  

The estimated and back calculated bycatch scenarios were added to the simulated 

landings for each scenario (Table 5.1). Discards were not estimated within SCALE, instead the 

bycatch estimate was adjusted to account for the varying discard mortality rates (i.e., 25%, 50%, 

75%, 100%). The discard mortality rate of 100% assumed full mortality of all individuals 

estimated to be incidentally caught within the Maine lobster fishery, whereas the 25% discard 

morality rate assumed that 75% of the incidentally caught individuals were released alive and 

were able to survive.  

Relative difference (RD) of the bycatch scenarios to the base run were calculated for 

SSB, recruitment, and fully selected F for each year of the simulation: 

𝑅𝐷 =  
𝑏𝑦𝑐𝑎𝑡𝑐ℎ−𝑏𝑎𝑠𝑒

𝑏𝑎𝑠𝑒
 x 100                                               (5.17) 

where bycatch is the bycatch scenario and base is the base run.  
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Figure 5.2. General framework for the stock assessment simulations. The simulated 

population is used as model input within the SCALE stock assessment model to evaluate varying 

levels of bycatch rates and survival rates and the subsequent impact on spawning stock biomass 

(SSB), recruitment, and fishing mortality (F).  
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5.3. Results 

5.3.1. Defining the True Population  

The true population defined in PopSim directly reflects the population parameters from 

multiple years estimated for cusk. Initial population (Table 5.2) and recruitment (Table 5.3) 

numbers were estimated to reflect the current understanding of cusk. Cusk mean weight for the 

NEFSC spring and fall bottom trawl survey combined was 1.5kg (±1.3kg; 2001-2015). Total 

landings (not including bycatch) in 1982 was 2281.46 MT. For this study, the initial starting 

population for cusk in 1982 was 2,711,612 distributed among age classes.  

 

5.3.1.1. Growth and Aging 

Maximum age for cusk was assumed to be 20 years. Mean length at age was 4.5 cm (SD 

3.0) for age 1 fish and 112.9 cm (SD 7.0) for age 20 fish (Table 5.2). The resulting population 

parameters estimated in the von Bertalanffy growth function (5.1) were 𝐿∞ = 126.6, K = 0.1097, 

and 𝑡0 = 0.6733.  
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Table 5.2. PopSim and SCALE inputs. The initial population numbers are for PopSim only. 

Mean-length at age and the standard deviation of mean-length at age are for SCALE only. 

Age Initial 

Population 

(numbers) 

(PopSim) 

Mean Length 

(cm) 

(POPSIM & 

SCALE) 

Standard 

Deviation 

(SCALE) 

1 1001480 4.5 3.0 

2 819942 17.1 5.0 

3 671310 28.5 6.0 

4 549620 38.7 7.0 

5 449988 47.8 7.0 

6 368414 56.0 7.0 

7 301626 63.3 7.0 

8 246942 69.9 7.0 

9 202170 76.0 7.0 

10 165516 81.1 7.0 

11 135504 85.8 7.0 

12 110934 90.0 7.0 

13 90818 93.8 7.0 

14 74350 97.2 7.0 

15 60868 100.3 7.0 

16 49830 105.4 7.0 

17 40794 107.6 7.0 

18 33396 109.6 7.0 

19 27340 111.4 7.0 

20 22382 112.9 7.0 

 

5.3.1.2. Length-Weight Relationships 

Cusk demonstrate classic allometric growth (Figure 5.3). Log transformed length and weight 

(2000 – 2015) result in a = -12.4086 and b = 3.222 for males and females combined for spring 

and fall (Figure 5.3).  
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Figure 5.3. Cusk length-weight relationship. Linear regression of log transformed length and 

weight to estimate a and b parameters for estimating the “true” population parameters.  
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5.3.1.3. Maturity 

Maturity ogives were developed for males and females using 385 samples with known 

sexual maturity stages out of 404 documented in the NEFSSC spring and fall bottom trawl 

survey (2000-2015).  Based on the maturity classifiers for the NEFSC survey, immature is a 

single category and mature fish can be classified as either developing, ripe, spent, or resting 

(Burnett et al., 1989). There were 219 females (25 immature, 193 mature, 1 unknown) and 154 

males (26 immature, 127 mature, 1 unknown). Size at maturity for females was estimated at 

30cm (CI = 22.5 - 33.8cm) with a bootstrapped slope 𝛽̂0 = -5.2822. Size at maturity for males 

was estimated at 36.1 cm (CI = 31.3 - 39.4 cm) and a bootstrapped slope 𝛽̂0 = -6.7591 (Figure 

5.4).        

   

 

Figure 5.4. Cusk maturity ogives. Maturity ogives for male and female cusk used to define the 

population parameters in the population simulator to estimate a “true” population. 
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5.3.1.4 Fishery and Survey Data 

The population simulator estimated landings for each year given the starting population at 

age and assumed F for each year (Figure 5.5). Simulated landings followed the general trend of 

cusk commercial landings in the United States from 1982 to 2013 (Figure 5.5). Fishery 

selectivity in SCALE is asymptotic (Figure 5.5; NOAA, 2006), therefore, the following 

selectivity curve (Figure 5.6) was assumed for PopSim fishery selectivity with an intercept of 55 

and slope of 0.1. 

 

 

Figure 5.5. Cusk landings used in the stock assessment simulations. Observed (solid line) 

landings for cusk from NOAA and simulated (dashed line) landings from 1982 – 2013. The 

simulated landings were used in all the stock assessment simulations. 
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Figure 5.6. Fishery selectivity assumed for the simulated population. The fishery selectivity 

is assumed to have an intercept of 55 and slope of 0.1 given observed commercial length 

frequencies. 

 

5.3.1.5 Initial Population 

The initial population (Table 5.2) and recruitment numbers (Table 5.3) were estimated to 

reflect the current understanding of cusk. Starting values for the initial population at age for 1982 

are the equilibrium population estimated in the preliminary SCALE and used to develop the true 

population in PopSim (Table 5.2).   
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Table 5.3. Recruitment input for PopSim. Assumed user defined recruitment numbers in 

PopSim to derive simulated catch data similar to observed cusk catch data. 

 

Year Recruitment Year Recruitment 

1983 1001480 1999 1235550 

1984 930180 2000 1391260 

1985 888830 2001 109955 

1986 967060 2002 91365 

1987 1076400 2003 72500 

1988 981850 2004 92895 

1989 717800 2005 117775 

1990 326630 2006 170630 

1991 347720 2007 169955 

1992 466900 2008 71365 

1993 278650 2009 62500 

1994 286510 2010 52895 

1995 303890 2011 57775 

1996 283890 2012 50630 

1997 1045630 2013 54955 

1998 1185790 2014 51365 

 

 

   

5.3.2. Bycatch estimations 

5.3.2.1. Lobster CPUE and Cusk BPUE 

Final models for the first and second stage delta-GAMs for CPUE estimates and cusk 

binomial-GAM BPUE estimates are outlined in Figure 5.7. Temporal covariates (i.e., year and 

month) were included in every lobster model and distance offshore was the only spatial covariate 

excluded in the first stage of the models for zones A and F (Figure 5.7). Sediment type was 

excluded from the second stage of the models for zones A, B, and E while longitude was 

excluded from zone G; the second stages for the rest of the zones included all covariates (Figure 

5.7). Number of lobsters were included in every lobster zone model (stage 1 and 2) to account 

for trap density dependent processes. The final model for cusk BPUE (GAM Stage 1) for the 

entire coastal Maine region included temporal covariates as well as latitude, depth, sediment 
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type, weight of lobster in the trap, and distance offshore (Figure 5.7). Weight of lobsters was 

more important than number of lobsters in the cusk binomial-GAM. 

Bycatch by zone ranged from 2.9 to 9.1 cusk per 10,000 traps (Table 5.4). The number of 

cusk caught per 10,000 traps increased from east (zone A) to west (zone G), with zone A having 

the lowest estimates and zone G having the highest (Table 5.4).  Resulting annual cusk bycatch 

CI estimates varied annually but all years were within an order of magnitude of each other (Table 

5.5).  

 

 

 

Figure 5.7. Covariates used in bycatch the final GLMs. The models include each lobster zone 

and cusk throughout the Maine coast. Potential covariates include: Year (Yr), Month (Mo), 

Latitude (Lat), Longitude (Lon), quantity of Lobster (Lob) in numbers (and in weight for the 

cusk model) for zones A through G, Sediment Type (S), and Distance Offshore (DS). 
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Table 5.4. Estimated number of cusk per 10,000 traps per zone. Estimated in section 5.2.2.2. 

Zone 
Low  

(#/10,000 traps) 

Median 

(#/10,000 traps) 

High  

(#/10,000 traps) 

A 2.9 3.0 3.4 

B 3.7 3.9 4.5 

C 3.1 3.3 3.7 

D 4.6 4.7 5.4 

E 7.3 7.7 9.0 

F 7.2 7.5 8.5 

G 7.6 7.9 9.1 

 

 

Table 5.5. Bycatch estimates for 2006 – 2013. CI of the number (#) of cusk caught as bycatch 

per year from 2006 – 2013 estimated from the Maine Department of Marine Resources lobster 

sea sampling program.  

 

Year Low (#) Median (#) High (#) 

2006 47860 49401.76 56368 

2007 34861 37228.24 43500 

2008 39958 41767.9 47910 

2009 36786 38109.96 43053 

2010 39053 40431.07 46059 

2011 36106 37376.81 42355 

2012 47787 49251.83 55812 

2013 45442 47189.31 53801 

 

 
   

5.3.2.2. Bycatch Scenarios 

The backward projected (back calculated might sound better) estimates of low, med, high 

bycatch during 1982-2005, based on the observed 2006-2013 median and upper and lower CI 

values are presented in Figure 5.8. The predicted estimates from the Maine DMR lobster sea 

sampling data were used for 2006 – 2013 (solid lines; Figure 5.8). The value of the three bycatch 

scenarios are of similar magnitude, adding anywhere from 200 to 50 MT to overall catches 

(Figure 5.8). 
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Figure 5.8. Bycatch scenarios used in the stock assessment simulations. Bycatch scenarios 

backward estimated (dashed line) from the 2006-2013 (solid line) bycatch confidence intervals 

estimated from the Maine Department of Marine Resources lobster sea sampling data. The high 

bycatch scenarios are in maroon, low are in turquoise, and median are in black.  

 

5.3.3 Stock Assessment Simulations 

SSB, recruits, and F estimates were compared to the base case SCALE model output that 

assumed zero incidental catches (Figure 5.9). In each of the three bycatch scenarios, SSB and 

recruits were estimated to be higher than the no-bycatch scenario in the two highest mortality 

scenarios (i.e., 75% DMR, 100% DMR; Figure 5.9) while the lowest discard mortality rate of 

25% estimated SSB and recruitment closet in value to the no bycatch scenario (Figure 5.9). F 

would be expected to be lower when biomass is estimated higher because higher total catches 
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assume higher population give Baranov’s catch equation. This holds true for parts of the time 

series but F is higher at the higher DMRs in 1997 and 2008 - 2013 (Figure 5.9). Throughout the 

time series, SSB and recruits are estimated higher in the earlier years but end close to the same 

value of SSB and recruits for all the scenarios in 2013 (Figure 5.9).  

RDs were evaluated between the base case (0% DMR) and different discard mortality 

rates for each bycatch scenario (Figure 5.10). The higher estimates for SSB and recruits for the 

higher discard mortality rates are evident in the calculated RD. The RD for F shows that fishing 

mortality rates for the 50% DMR, 75% DMR, and 100% DMR fluctuate higher and lower than 

the no bycatch catch scenario for the entire time series (Figure 5.10). The 100% and 75% DMRs 

for the three bycatch scenarios have the highest variability in F relative to the other scenarios 

(Figure 5.10). 
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Figure 5.9. Stock assessment simulation output. Estimated spawning stock biomass, 

recruitment, and fishing mortality rates for the three bycatch scenarios (high, median low), four 

discard mortality scenarios (25% DMR, 50% DMR, 75% DMR, 100% DMR), and the base case 

(0% DMR). 
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Figure 5.10. Relative difference of stock assessment simulation output. Relative differences 

in estimates for spawning stock biomass, recruitment, and fishing mortality rates relative to the 

base case for the three bycatch scenarios (high, median low), four discard mortality scenarios 

(25% DMR, 50% DMR, 75% DMR, 100% DMR), and the base case (0% DMR). 
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Final model settings were evaluated based on the lowest objective function for the base 

case scenario. All bycatch scenarios were compared to the no bycatch scenario by the estimated 

objective function, residual catch weight, and residual length frequency (Table 5.6). The 

objective function and residuals of the twelve bycatch scenarios were all similar to those of the 

no bycatch scenario.  

 

Table 5.6. Stock assessment simulation model outputs. Model comparisons for each 

simulation run for the three bycatch scenarios low bycatch (LB), median bycatch (MB), high 

bycatch (HB) and four (25, 50, 75, 100) discard mortality rates (DMR) and the no bycatch 

scenario.  

Model Obj. Fun. Resid. Catch Wt. Resid. Length Freq. 

No Bycatch 84.7598 0.053476 20.6541 

LB_25DMR_stitched_bycatch 84.4885 0.0490634 20.6058 

LB_50DMR_stitched_bycatch 84.2558 0.0453034 20.562 

LB_75DMR_stitched_bycatch 84.0557 0.0420913 20.5221 

LB_100DMR_stitched_bycatch 83.8831 0.0393384 20.4856 

MB_25DMR_stitched_bycatch 84.4793 0.0488991 20.6042 

MB_50DMR_stitched_bycatch 84.2400 0.0450241 20.559 

MB_75DMR_stitched_bycatch 84.0353 0.041732 20.518 

MB_100DMR_stitched_bycatch 83.8597 0.0389293 20.4807 

HB_25DMR_stitched_bycatch 84.4447 0.0483117 20.5973 

HB_50DMR_stitched_bycatch 84.1817 0.0440403 20.5466 

HB_75DMR_stitched_bycatch 83.9616 0.0404959 20.5013 

HB_100DMR_stitched_bycatch 83.7766 0.0375438 20.4605 

 

 

    

5.4 Discussion 

This study set out to determine the impact on population biomass of implementing a 

conservation measure to reduce discard mortality for cusk bycatch in the lobster fishery. The 

proposed conservation measure is to recompress cusk bycatch within the Maine lobster fishery to 

increase the probability of survival. Recompressing cusk within lobster traps showed a 75% 
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survival rate over the medium term (4-14 days; Chapter 4). The impacts of this conservation 

measure were evaluated relative to estimated SSB, recruitment, and F in twelve bycatch 

scenarios relative to a base case scenarios assuming no bycatch. To conduct the stock assessment 

simulations, the population dynamics for cusk were defined based on the most recently available 

data to reflect the current understanding of cusk. Additionally, cusk bycatch was estimated for 

the Maine lobster fishery as this is thought to be a significant source of unaccounted mortality for 

cusk.  

 

5.4.1 Defining the True Population 

Cusk population dynamics have not been updated in the literature since the 1970s 

(Oldham, 1972) and cusk is considered data limited with regard to stock assessments (Hare et al., 

2012). Many of the population parameters were unknown or have a significant level of 

uncertainty associated with the available data. The most notable uncertainty for cusk is large 

discrepancies in estimates for maximum age (DFO, 2014).  

For this study, cusk maximum age was assumed to be 20-years because it is between the 

lower 15-year maximum life expectance reported by Oldham (1972) and the higher 39-years 

reported by DFO (2014). Oldham (1972) collected random samples of cusk otoliths from 

commercial longline vessels, but cusk over nine years were not used in the age estimatesbecause 

interpretations of marginal rings were unreliable. Newer methods for aging otoliths (i.e., bomb 

radiocarbon dating; Broecker and Peng, 1982) indicate that an 82 cm cusk is 39 years old (DFO, 

2014) while fish of similar length were estimated to be 12 – 13 years by Oldham (1972). Gear 

selectivity, which excluded smaller cusk (<35 cm), may have complicated age-at-length 

estimates potentially skewing the aging interpretations for Oldham (1972). Sizes ranged from 
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35 cm to 97 cm and estimates for mean length of aged 4, 5, 6, and 7 fish maybe have been biased 

high (Oldham, 1972). Based on these estimates, cusk were thought to live to age 14 and reach 

sexual maturity by age 5 or 6 (Oldham, 1972; Collette and Klein-MacPhee, 2002). The bomb 

radiocarbon dating methods used by DFO have not yet been validated (DFO, 2014), adding 

uncertainty to the discrepancy in age estimates. These discrepancies have resulted in uncertainty 

in understanding growth rates for cusk (DFO, 2014), a necessary population parameter and a 

source of uncertainty in the stock assessment simulations.  

Aging errors can be problematic for stock assessments dependent on age data, and may 

impact all assessment inputs (Reeves, 2003). The underlying population dynamics estimated for 

the true population are dependent on the mean-length at age estimates. Length based parameters 

(i.e. survey length frequency, catch length frequency, maturity, and population growth) are 

converted to age based parameters, using the mean length at age provided to the simulator 

(Deroba and Schueller, 2013). Errors in the conversions to indices at age will persist from the 

age-length key (Deroba and Schueller, 2013). The CVs for mean length at age capture the 

uncertainty in the aging estimates (Deroba and Schueller, 2013), however, errors in the CVs will 

also persist in defining the true population. These errors will also persist within the stock 

assessment simulations. These aging errors are not as detrimental to this study as they are to the 

management of cusk. This study aims to understand the impacts of discard mortality on the 

population. All the length based processes (i.e., length at maturity) within the population 

simulator for defining the true population will be biased, but that bias is consistent among 

scenarios. However, these aging errors do impact our understanding of the length-based 

population parameters estimated for the stock assessment simulations. Efforts to develop reliable 

aging efforts for cusk will be necessary to develop a reliable stock assessment for this species.  
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5.4.2. Bycatch Estimations 

Standardized bycatch estimates were developed to generate bycatch scenarios for the 

stock assessment simulations. Standardizing fisheries-dependent data is a method of adjusting 

catch rates to account for impacts from factors other than abundance (Maunder and Punt, 2004). 

Effort estimates for the American lobster fishery, defined as trap haul (Boenish and Chen, in 

review), provided the foundation for being able to estimate the number of individual cusk caught 

annually. The standardized bycatch estimates from this study differ from similar efforts by 

Zhang and Chen (2015) that estimated two cusk caught per 1,000 traps also using the Maine 

DMR lobster sea sampling data. Zhang and Chen (2015) aggregated cusk bycatch data from the 

lobster sea sampling program (2006 – 2011) by grids throughout coastal GOM, and found that 

the largest spatial aggregation (900 nautical miles) improved model fitting for standardized 

bycatch estimates. The present study also found that aggregating at a larger spatial scale was 

needed (i.e., all zones combined). Aggregating cusk data by zone was first attempted (results not 

shown), however there were not enough observations of cusk per zone per month for the GAM 

model predictions to be reliable. Aggregating can reduce the problem of having a high 

percentage of zero observations, but likely result in a loss of information (Zhang and Chen, 

2015). Bycatch rates for cusk were estimated for the entire GOM to increase the number of 

observations of cusk per month, resulting in the loss of zone specific estimates.  

Even earlier efforts by the Marine Stewardship Council (MSC) estimated the amount of 

cusk bycatch within the Maine lobster fishery using the MDMR sea sampling data as well (MSC, 

2013). The MSC assessment report for the Maine lobster trap fishery estimated 0.43 individual 

cusk caught per fishing trip and estimated a total of 112,387 cusk caught incidentally in 2008 

from approximately 260,000 trips in the Maine lobster fishery (MSC, 2013), which are 33% – 
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40% higher than the standardized 2008 BPUE estimates (39,958 - 47,910) from the present study 

(Table 5.5). The MSC estimates assume that cusk bycatch is homogenously distributed 

throughout space and time for the entire fleet because estimates were extrapolated to all 

estimated fishing trips for 2008. However, cusk have a patchy distribution (Chapter 2; Hare et 

al., 2012) and the probability of cusk bycatch in the Maine lobster fishery is not homogenous 

over space and time (Chapter 3).  

The bycatch estimates from the present study now make the third attempt to estimate 

bycatch in the Maine lobster fishery. These estimates range from 0.43 cusk per trip, to 2 cusk per 

1,000 traps, to 2.9 – 9.0 per 10,000 traps utilizing the same data but from different time periods 

and with different methods. While standardized bycatch estimates are more reliable (Maunder 

and Punt, 2004), there is a significant amount of uncertainty surrounding the level of cusk 

bycatch in the Maine lobster fishery. This adds another level of uncertainty to understanding 

cusk population dynamics and the total removals of cusk, needed for reliable stock assessments.  

Cusk bycatch within the Maine lobster fishery is a function of cusk behavior, fisher’s 

behavior, and to some extent lobster behavior. Trap saturation was taken into consideration for 

both standardized CPUE and BPUE by either incorporating the number or weight of lobster in 

the trap at the time of hauling. All lobster models included the number of lobster while the cusk 

model included weight of lobster (Figure 5.7). Given that cusk are a territorial species, and have 

been documented to be aggressive towards other species (Roundtree and Juanes, 2010), 

presumably defending their territory, it is important to take into consideration intraspecies 

interactions and carrying capacity of the traps when estimating bycatch. Cusk bycatch is seasonal 

(Chen and Runnebaum, 2014), presumably in part because of fishing behavior. Fishers tend to be 

in deeper water during the spring and fall when cusk bycatch tends to be highest and more in 
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shore in the summer when cusk bycatch is the lowest. However, lobster catch rates are lower in 

the spring (MDMR, 2016b), when cusk bycatch is high. Catch rates for cusk could be higher 

during this time because density of lobster per trap is much lower than in the summer months.  

The 2006 – 2013 median BPUE and upper and lower CI estimates for cusk were used to 

back-calculate bycatch estimates (1982 – 2005) based on the cusk abundance index derived in 

Chapter 2 and annual lobster F estimated from the lobster stock assessment (ASMFC, 2015). The 

cusk abundance estimate is developed from a spatio-temporal delta-generalized linear mixed 

model using fisheries-independent data (Chapter 2), which is thought to yield reliable abundance 

indices (Shelton et al., 2014). Back-calculated bycatch estimates assume that bycatch rates are 

directly proportional to cusk abundance and effort within the lobster fishery. This assumption 

assumes that catchability is constant for the entire time-series (Maunder and Punt, 2004). 

However, catchability of cusk is likely a density-dependent processes changing with declines in 

the population.  

 

5.4.3. Stock Assessment Simulations 

Annual abundance is directly proportional to catches, resulting in population estimates 

that are higher with higher catch rates. Population size in SCALE is estimated based on the 

numbers at length that survived natural mortality and fishing mortality from the previous year 

(NOAA, 2006). F is estimated by removing catch from the population using Baranov catch 

equation (NOAA, 2006). As catch rates increase with each of the DMR scenarios so does SSB, 

which is not unexpected (Figure 5.9) and F would then be expected to be lower when biomass 

estimates are higher, all things being equal. The expectations of SSB hold true for all scenarios 

(Figure 5.9). The expectations of F do not hold true for the entire time series. F is higher than the 
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base case F at the higher DMRs in 1997 - 2003 and 2008 - 2013 (Figure 5.9). These results 

indicate that fishing mortality rates have increased relative to population biomass and 

recruitment. From 2008 to 2013, the decline in SSB and recruitment to the lowest levels in the 

time series is followed by F increasing relative to the no bycatch scenario, in the higher mortality 

scenarios (Figure 5.10). In 1997 – 2003, when F at the higher DMR rates flips to being higher 

than F in the base case, SSB is declining and then starts to increase again and recruitment is at an 

all-time high (Figure 5.9). During this time, the population is dominated by younger fish because 

SSB is at a low but recruitment is high with the younger age classes dominating for the next few 

years. The fishery is selecting for the larger individuals, so F is high relative to the number of 

larger individuals available in the population. 

A reduced discard mortality rate of 25% brought SSB and recruitment levels closer to the 

base case scenario with no bycatch for all three bycatch scenarios. F in the 25% DMR scenario in 

all three bycatch scenarios were of similar magnitude to F in the base case scenario with no 

bycatch (Figure 5.9). The estimated bycatch levels (MT) for the time series (Figure 5.8) are of 

similar magnitude to the most recent commercial landings value (Figure 5.5). These simulations 

show that high discard mortality results in the waste of a resource, a known problem with 

regulatory discards without reducing bycatch or discard mortality (Harrington et al., 2005). 

When bycatch rates are similar to the predicted rates of a targeted and commercial fishery, it is 

critical to reduce discard mortality to reduce wasting the resource.  

However, it is not apparent from these simulations that SSB and recruits can recover 

strictly from reducing discard mortality of bycatch (Figure 5.9). SSB and recruitment estimates 

ended at almost the same level for all DMRs but with much higher Fs for the higher DMR 

scenarios (Figure 5.9). Small amounts of bycatch at low population levels can have a significant 
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impact on population viability (Soykan et al., 2008). Depensation coupled with low levels of 

removals is of concern for cusk because of their patchy distribution throughout the GOM. 

Increased patchiness was not thought to lead to depensatory effects for cusk because their eggs 

and larvae are planktonic and are easily disperse throughout the GOM (Hare et al., 2012). 

However, if depensation were not a problem, cusk abundance would likely be higher than was 

estimated in Chapter 2. Historical evidence also suggests that cusk can easily be fished out, 

within a few years (Goode 1884 in Collette and Klein-MacPhee, 2002) because they are a 

territorial, long-lived species with high site fidelity, and reach maturity at an older age. 

The impact of aging errors on SSB, recruitment, and F estimated within the stock 

assessment should be acknowledged for cusk given uncertainty in the aging estimates. Aging 

errors are known to produce biased estimates of SSB, recruitment, and F within stock 

assessments (Reeves, 2003) and have an impact on all the age based population parameters 

estimated in this study. Trends for estimates of SSB and F have been shown to be the same when 

aging errors are present, with varying but not significantly different absolute values estimated 

(Reeves, 2003). Bias in SSB estimates from aging errors have not been shown to be consistent in 

one direction or the other, while under-aging tends to result in consistently lower recruitment 

estimates, and general aging errors tend to under-estimate true mean F (Reeves, 2003). It is likely 

that F for each of the twelve DMR/bycatch scenarios and one base case in this study was 

underestimated.  The impacts of high F on a small population with low recruitment could 

exacerbate population decline, and would likely be missed in a stock assessment. Given that the 

maximum age of cusk is not yet agreed on, further advances will be a necessary step in 

developing a stock assessment for cusk in the future and to better understand potential biases 

from aging errors on SSB, recruitment, and F estimates.  
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When developing a stock assessment for cusk it will also be critical to account for total 

fishing mortality (i.e., commercial, recreational, bycatch, and discard mortality rates). 

Commercial removals of cusk are low (Figure 5.5) currently with bycatch estimates equaling 

close to commercial removals (Figure 5.8). Not accounting for the magnitude of bycatch and 

discard mortality rates will lead to underestimates of F and result in biased estimates of SSB. 

Two previous studies using the same data as this study (Zhang and Chen, 2015; MSC 2013), but 

from different years, have resulted in three different orders of magnitude of bycatch estimates for 

cusk in the Maine lobster fishery. Determining the most likely bycatch rates for cusk in the 

Maine lobster fishery is a critical first step to understanding total removals from the population. 

Chapter 4 indicates that cusk survival when recompressed is between 37 – 75%, but most likely 

75%.  

 

5.5. Management Recommendations 

Rebuilding programs for species experiencing a decline in population have been most 

successful when there is a measurable reduction in fishing mortality at the beginning of the 

rebuilding phase instead of an incremental decrease in fishing mortality (Brodziak et al., 2008). 

Cusk are currently an unmanaged species and under NMFS internal status review for the 

Endangered Species Act, in part because it is not managed and because survey catch rates have 

declined (72 FR 10710, 2007). With no fisheries management plan in place for cusk, the 

likelihood of population recovery is low without management intervention. Recompressing cusk 

bycatch in the Maine lobster fishery was proposed as a potential conservation measure (Tallack, 

2012) and was shown to increase survival rates of cusk in the medium-term (4 – 14 days) in 

Chapter 4. This proposed conservation measure would focus on reducing the discard mortality 
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rate of cusk bycatch within the Maine lobster fishery, which is thought to be a significant source 

of mortality for cusk. However, as a groundfish species, cusk are likely caught as bycatch in 

other groundfish fisheries (O’Brien, 1998) and have been increasingly targeted by recreational 

fishers (Hare et al., 2012; Tallack, 2012). Given previous experience, total mortality from 

recreational and other commercial fisheries would need to be significantly reduced as well in 

order to have a chance at population recovery. However, some rebuilding programs that have had 

measurable cuts in fishing mortality have not seen the population recovery anticipated due to 

incidental catches (Caddy and Agnew, 2004), depensation, loss of habitat from climate effects, 

predator-prey relationships, or loss of evolutionary resilience (Murawski, 2010). Additionally, 

moratoriums for late-maturing groundfish species have not been as successful as they have been 

for short-lived pelagic species (i.e., herring) because there is still incidental take of the species 

from targeting other groundfish species, and recruitment is low (Caddy and Agnew, 2004). 

Reducing total mortality on known cusk locations through time/area closures, especially 

during the spawning season, could reduce the likelihood of localized depletion. Cusk recovery 

will likely be impacted by depensation and loss of habitat due to climate effects. Cusk habitat is 

thought to have become increasingly patchy (72 FR 10710, 2007), which can increase the 

likelihood of depensation slowing population recovery. Reducing mortality in areas where cusk 

are known to inhabit will provide this long-lived species opportunity to spawn. Cusk are 

predicted to be negatively impacted by climate change (Hare et al., 2012), which could also 

negatively impact population recovery. Cusk have not ever been a widely distributed species 

because they are sedentary and territorial (Collette and Klein-MacPhee, 2002), therefore 

management of this species will have to be at a relatively fine scale where they are known to 

inhabit.  
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Managing cusk as part of a mixed fishery (i.e., the multispecies groundfish fishery) 

would be a good first step in population recovery for this species. Rebuilding a mixed fishery 

may be more plausible than rebuilding specific components of a mixed fishery (Murawski, 

2010). Although cusk are not currently considered to be a component of a mixed fishery, they 

have been caught and landed as part of other groundfish fisheries (i.e., line trawl, otter trawl, gill 

net, and longline in the Gulf of Maine; O’Brien, 1998). As a demersal groundfish species that 

have been observed in productive areas, such as coral habitat, with other groundfish species, 

such as Acadian redfish, (Roundtree and Juanes, 2010), cusk are, in effect, already part of a 

mixed fishery but without the necessary regulations to ensure sustainable management. The New 

England Fisheries Management Council (NEFMC) manages groundfish species through the 

multispecies groundfish fisheries management plan. Incorporating cusk into the NEFSC 

multispecies groundfish fisheries management plan could allow for rebuilding cusk through 

mixed fishery management but could also impact commercial and recreational fishermen’s 

access to more robust and lucrative species (Murawski, 2010; Broadziak et al., 2008).  

Implementing management plans for cusk and efforts to significantly reduce discard 

mortality would be a critical aspect to further consider in the ESA status review. ESA listings 

must consider formalized conservation measures, and their effectiveness, implemented before the 

review process (Kass, 2015; 68 FR 15100, 2003). This study suggests that reducing discard 

mortality to 25% would result in SSB and recruitment estimates to similar levels of no bycatch 

(Figure 5.9). While reducing discard mortality of cusk bycatch in the lobster fishery to low levels 

will have a positive impact, it might not be enough to facilitate a population recovery. Requiring 

lobstermen to recompress cusk as a conservation measure would reduce the discard mortality of 

cusk (Chapter 4) but compliance with these conservation measures might be low if fishermen do 
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not agree with the measure. This conservation measure would then be less effective and total 

mortality would likely be underestimated if 100% compliance was assumed or overestimated if 

0% compliance was assumed. However, implementing effective measures to reduce discard 

mortality of cusk may prevent the need for listing cusk under the ESA if the conservation 

measures are extensive and have been shown to work (Kass, 2015; 68 FR 15100, 2003).  

The lack of state and federal management for cusk is likely to reduce the ability of cusk 

to recover and potentially lead to the need for an ESA listing if population levels continue to 

decline further. Future management decisions will need to be made for cusk, and there is no 

‘silver bullet’. Management decisions will be difficult for this data limited species due to high 

levels of uncertainty and potential obstacles to a successful recovery. A multipronged approach 

to significantly reducing total mortality from commercial, recreational, and bycatch fisheries will 

be necessary, but even a drastic reduction in total mortality will not guarantee population 

recovery. 
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APPENDIX A: EVALUATING THE IMPACT OF BAIT PLUME SIZE ON DENSITY 

ESTIMATES 

 

This study, in part, set out to determine if data from two gear types could be combined to 

develop abundance indices. To test if catchability within the delta-GLMM was capable of 

accounting for differences of gear types, different estimates of area fished were evaluated for the 

LLS. The distance between the beginning and end of a longline set were known but the bait 

plume around the longline was not known. Bait plume is a function of current speed and 

direction, bait type, and soak duration, which sets the range over which the bait can be detected, 

as well as factors influencing the range over which fish will respond to detected bait; the fish 

response factors include length of food deprivation (i.e., hunger), fish size, and swimming speed 

(Løkkeborg et al., 1995; Zhou et al., 2014). These specifics are rarely known in fisheries surveys, 

and feeding response to bait plumes has not been measured for cusk. Without knowing the 

details necessary to estimate the bait plume, three values of b were tested based on the estimates 

for moderate food deprivation in Løkkeborg et al. (1995). A minimum, medium, and maximum 

value of b (280m, 560m, 1121m respectively) were used to test the sensitivity of abundance 

estimates to longline area fished.  

 

A total of six model-based density fields with different configurations of values for b were 

estimated for spring and fall. Each season had three models that incorporated both the BTS and 

LLS using the three values of b (i.e., 0.28km, 0.56km, and 1.12 km). The resulting estimates for 

area fished varied by an order of magnitude (less than 0.5 km2 when b = 0.28km and up to 

2.0km2 when b = 1.121km). Three catchability parameters were estimated to account for the 
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2009 protocol changes in the BTS. The estimated abundance index for the three models in the 

spring and three in the fall were unchanged with changes in the value of b (Figure 2). AICs for 

all three values of b were unchanged for the different model runs in both the spring (3837) and 

the fall (3676).   

 

When catchability was not estimated for the LLS, the annual abundance index was inconsistent 

and highly variable during the exploratory phase of this study (results not shown). The delta-

GLMM could account for differences in catchability between the LLS and BTS, indicating this is 

an effective method of incorporating multiple surveys with different gear types to estimate 

abundance indices, even without accurate bait plume measures for a longline survey.    
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