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The hypersonic inflatable aerodynamic decelerator (HIAD) system under development by 

the National Aeronautics and Space Administration (NASA) has the potential to deliver 

the size of payloads to the Martian surface that will be necessary for future human-scale 

missions.  An important step in realizing the promise of the HIAD system is to 

understand the structural behavior of this inflatable, textile, relatively compliant system.  

This is accomplished through structural testing and the development of structural 

modeling and analysis methodologies and tools.  The structural modeling tools that have 

been developed to date utilize a continuum, shell-based finite element (FE) analysis 

approach.  This methodology is capable of capturing the structural response of the HIAD 

system, but the models are time intensive to develop, difficult to parameterize and 

computationally intensive to run.  In this dissertation a computationally efficient, beam-



based FE modeling approach is developed.  The beam-based modeling methodology 

addresses the challenges that are encountered in analyzing an inflatable, textile system, 

such as the effect of internal inflation pressure, nonlinear material response, the loss of 

pretension due to inflation pressure during loading, and the large deformations that occur 

as a result of having relatively compliant system.  Material models are developed for use 

with both shell and beam-based FE models.  A three-dimensional, corotational, 

flexibility-based, fiber beam modelling methodology is developed for the inflatable, 

braided members with axial reinforcing cords.  The modeling methodology and tools are 

applied to the analysis of component level inflatable tubes and the single torus structures 

that make up the HIAD system.  Initial validation of the modeling strategy is 

accomplished by comparing model predictions and parallel experiments conducted by 

others at the University of Maine.  The modeling tools are then extended to analyze the 

full HIAD system, composed of multiple, stacked tori with straps.  The interactions 

between tori are accounted for, along with the strap sets that connect tori to each other 

and to the center-body of the decelerator.  The modeling methodology is then further 

validated by comparison with results from pressure tub testing of a full HIAD system 

conducted by NASA researchers.  Following model development and validation, the 

analysis methodologies are used to investigate structural response of full-scale HIAD 

devices.  A number of configurations are investigated, including the influence of strap 

pretension and non-axisymmetric configurations and loading.  The structural modeling 

tools are then coupled to optimization techniques to better understand the structural 

response drivers and demonstrate the feasibility of using the tools developed here in 

optimization studies. 



ACKNOWLEDGMENTS 

There are a number of people who must be thanked and acknowledged for their guidance, 

encouragement and inspiration in my pursuit of this PhD degree.  I would like to first and 

foremost thank my advisors, Dr. Bill Davids and Andy Goupee for the constant support 

throughout my graduate career and the opportunities to pursue the research that we have 

been engaged in.  Along with Josh Clapp, I am confident I could not have been part of a 

better research group.  After nine years in the University of Maine’s Civil and 

Environmental Engineering department I have been afforded opportunities that I would 

not have imagined.  Thank you to the faculty. 

I would like to particularly thank and acknowledge my family.  My parents have 

provided continuous support throughout my educational career.  The same is true of my 

parents-in-law.  I hope to be able to pass on the same kind of support and encouragement 

that has been given to me.  My wife and partner Kathleen has been a source of constant 

support and encouragement.  There is no question that it would not have happened 

without her.  And of course Anika and Charlie, who have made it worthwhile. 

I gratefully acknowledge the support of NASA and their commitment to training and 

supporting the next generation of scientists and engineers.  Particularly Dr. Neil 

Cheatwood, Mike Lindell, Keith Johnson, Stephen Hughes, Dr. Anthony Calomino and 

the rest on the NASA HIAD project group. 

This work was supported in part by a NASA Space Technology Research Fellowship.  I 

am also thankful for the support of the Maine Space Grant Consortium (MSGC) and their 

awarding of the Graduate Research Fellowship and NASA EPSCoR Grant.  

ii 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS .................................................................................................. ii 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 The HIAD Structure ......................................................................................... 1 

1.2 Research Objectives ......................................................................................... 3 

1.3 Organization of Dissertation ............................................................................. 5 

CHAPTER 2 BRAID MECHANICS AND MATERIAL MODELS................................. 7 

2.1 Braid Mechanics ............................................................................................... 7 

2.1.1 Critical Braid Angle .................................................................................. 9 

2.1.2 Pretension of Reinforcing Members ....................................................... 11 

2.1.3 Netting Theory and the Shell Constitutive Relationship ......................... 14 

2.2 Material Model Development ......................................................................... 17 

2.2.1 Inflatable Shell Material Model .............................................................. 18 

2.2.1.1 Shell-Based Finite Element Model Properties ................................... 18 

2.2.1.2 Beam-Based Finite Element Model Properties .................................. 23 

2.2.2 Cord Model ............................................................................................. 27 

2.2.2.1 Simplified Cord Model ....................................................................... 29 

2.2.2.2 Hysteresis Algorithm .......................................................................... 30 

iii 



CHAPTER 3 BEAM-BASED FINITE ELEMENT MODELING 

METHODOLOGY DEVELOPMENT ............................................................................. 38 

3.1 Background ..................................................................................................... 38 

3.2 Development of Analysis Methodology ......................................................... 42 

3.2.1 Relevant Coordinate System and Geometry ........................................... 43 

3.2.2 Flexibility-Based Element State Determination ...................................... 47 

3.2.3 Convergence of Element ......................................................................... 55 

3.2.4 Application .............................................................................................. 57 

CHAPTER 4 FINITE ELEMENT MODEL VALIDATION: COMPONENT 

LEVEL .............................................................................................................................. 58 

4.1 Analysis of Straight Tube Testing .................................................................. 58 

4.1.1 Description of Tests ................................................................................ 58 

4.1.2 Shell-Based Finite Element Model ......................................................... 59 

4.1.3 Beam-Based Finite Element Model ........................................................ 63 

4.1.4 Comparison of Experimental, Shell and Beam-Based Finite 

Element Results .................................................................................................... 64 

4.1.5 Out-of-Plane Deformations ..................................................................... 70 

  

iv 



4.2 Analysis of Torus Testing............................................................................... 74 

4.2.1 Background ............................................................................................. 74 

4.2.2 Torus Experimental Setup ....................................................................... 77 

4.2.3 Description of Specimen and Test .......................................................... 80 

4.2.4 Analysis ................................................................................................... 81 

4.2.4.1 Description of Torus Modeling .......................................................... 81 

4.2.4.2 Cable Response .................................................................................. 84 

4.2.4.3 Description of Test and Model Output ............................................... 87 

4.2.4.4 Results and Model Comparisons ........................................................ 88 

4.3 Summary and Recommendations ................................................................... 95 

CHAPTER 5 FINITE ELEMENT MODEL VALIDATION: HIAD LEVEL ................. 98 

5.1 Description of Tests ........................................................................................ 98 

5.2 Description of Test Article ........................................................................... 100 

5.3 Description of Beam-Based Finite Element Model ...................................... 105 

5.3.1 Torus Elements ...................................................................................... 105 

5.3.2 Interaction Elements .............................................................................. 107 

5.3.3 Link Elements ....................................................................................... 116 

5.3.4 Strap Elements ....................................................................................... 118 

5.3.5 Model Boundaries, Loading and Solution Scheme ............................... 119 

5.4 Results of Analysis ....................................................................................... 121 

v 



CHAPTER 6 FULL-SCALE HIAD ANALYSES ......................................................... 127 

6.1 Strap Prestress Analysis................................................................................ 127 

6.1.1 Problem Description and Motivation .................................................... 127 

6.1.2 Description of Model, Boundaries and Loading ................................... 129 

6.1.3 Analysis, Results and Significance ....................................................... 135 

6.2 Full-Scale HIAD Tab Study ......................................................................... 141 

6.2.1 Problem Description and Motivation .................................................... 141 

6.2.2 Analysis and Results ............................................................................. 143 

6.3 HIAD Structural Optimization ..................................................................... 147 

6.3.1 HIAD Model Description ...................................................................... 148 

6.3.2 HIAD Optimization ............................................................................... 153 

CHAPTER 7 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS ................................................................................................................. 161 

7.1 Summary and Conclusions ........................................................................... 161 

7.2 Applications and Future Research Directions .............................................. 164 

BIBLIOGRAPHY ........................................................................................................... 171 

BIOGRAPHY OF THE AUTHOR ................................................................................. 177 

 

  

vi 



LIST OF TABLES 

Table 2.1.  Calculated lamina and laminate properties for a braided, inflated shell  

at various inflation pressures and braid angles. .................................................... 22 

Table 2.2.  Shell properties for use with beam-based FE modeling tools. ....................... 26 

Table 5.1.  Loop strap configurations. ............................................................................ 104 

Table 5.2.  Configuration of tori, 3.7 meter HIAD article. ............................................. 106 

Table 6.1.  Configuration of tori, 16.7 meter HIAD configuration. ............................... 130 

Table 6.2.  Strap set configurations. ............................................................................... 132 

Table 6.3.  Strap prestrain and prestress results. ............................................................. 138 

Table 6.4.  Configuration of tori, 6 meter HIAD configuration. .................................... 149 

Table 6.5.  Zylon shear stiffness interpolation table (N/mm). ........................................ 150 

Table 6.6.  Strap set configurations for 6 meter HIAD. .................................................. 151 

 

  

vii 



LIST OF FIGURES 

Figure 1.1.  Conceptual rendering of the HIAD structure. ................................................. 1 

Figure 2.1.  Detail of braided shell. .................................................................................... 7 

Figure 2.2.  Braid unit cell. ................................................................................................. 9 

Figure 2.3.  Braid unit cell with axial reinforcing. ............................................................ 12 

Figure 2.4.  Free body diagram with hoop resultant force and internal fiber tow 

tensile force. .......................................................................................................... 12 

Figure 2.5.  Free body diagram with longitudinal resultant force, internal fiber tow 

tensile force and cord force. .................................................................................. 13 

Figure 2.6.  Pressure vessel with restraining forces. ......................................................... 15 

Figure 2.7.  Pressure vessel equilibrium cut. .................................................................... 16 

Figure 2.8.  Straight, inflatable, braided tube with integral reinforcing cord detail. ........ 18 

Figure 2.9.  Comparison of measured and predicted pressure resultant forces 

(Clapp et al. 2016a). .............................................................................................. 23 

Figure 2.10.  Geometry of an inextensible fiber in a braided pressure vessel before 

and after the application of a small longitudinal strain (not to scale). .................. 25 

Figure 2.11.  Cord force-strain relationship from tension testing of pristine cords 

and a cord extracted from an inflatable member (Clapp et al. 2016a). ................. 28 

Figure 2.12.  Cord force-strain relationship for an inflatable tube with three cords, 

a 71° braid angle, 138 kPa of inflation pressure and a 170 mm minor radius. ..... 30 

Figure 2.13.  Illustration of cord hysteresis model including location of pivot points 

and load path directions. ....................................................................................... 34 

Figure 2.14.  Cord hysteresis algorithm test results. ......................................................... 35 

viii 



Figure 2.15.  Cord test and hysteresis algorithm force-strain response. ........................... 36 

Figure 3.1.  Global and local coordinate systems for a three-dimensional, inflatable, 

corotational beam element. ................................................................................... 44 

Figure 3.2.  Illustration of shell cross-section with quantities of interest. ........................ 46 

Figure 3.3.  Convergence of model to critical buckling load for a shear deformable 

member ................................................................................................................. 56 

Figure 4.1.  Straight tube four-point bend test configuration. .......................................... 59 

Figure 4.2.  Half-symmetric 3D finite-element model of straight tube bending test 

(saddle support on left and applied loading through straps on right). .................. 61 

Figure 4.3.  Deformation of shell-based finite element model (red to blue colors 

indicate high to low deflections, respectively; yellow arrows represent the 

magnitude of tensile cord load). ............................................................................ 63 

Figure 4.4.  Beam model of straight tube test. .................................................................. 64 

Figure 4.5.  Comparison of experimental results with shell and beam FE modeling 

for nominal 60° straight tube four-point bend tests. ............................................. 65 

Figure 4.6.  Comparison of experimental results with shell and beam FE modeling 

for nominal 71° straight tube four-point bend tests. ............................................. 66 

Figure 4.7.  Trace of deformed member for every 0.2 kN of applied load, 60o braid 

angle, 138 kPa inflation pressure, 2 cords up. ...................................................... 66 

Figure 4.8.  Comparison of initial stiffness....................................................................... 67 

Figure 4.9.  Comparison of post wrinkling stiffness. ........................................................ 69 

Figure 4.10.  Cord misalignment during straight tube four-point bending test. ............... 71 

ix 



Figure 4.11.  In-plane and out-of-plane load deformation behavior for a 71° beam at 

138 kPa of inflation pressure with two cords up and a 1° twist. ........................... 72 

Figure 4.12.  In-plane and out-of-plane load deformation behavior for a 71° beam at 

138 kPa of inflation pressure with the symmetric axis of the member 

oriented horizontally. ............................................................................................ 73 

Figure 4.13.  Torus test configuration. .............................................................................. 78 

Figure 4.14.  Photogrammetry view of test configuration. ............................................... 79 

Figure 4.15.  Torus and cross-section geometry. .............................................................. 80 

Figure 4.16.  Beam-based FE model of torus load test wedge detail. ............................... 84 

Figure 4.17.  Cable assembly response. ............................................................................ 86 

Figure 4.18.  Out-of-plane strap/torus penetration, before and after initial wrinkling 

(Whitney 2016). .................................................................................................... 89 

Figure 4.19.  Torus out-of-plane load testing with model comparisons. .......................... 90 

Figure 4.20.  Torus test and nominal model R and Z position versus θ location at no 

external load, after the application of the out-of-plane load and after the 

application of the in-plane load. ............................................................................ 91 

Figure 4.21.  Torus test and model R and Z position versus θ location for torus with 

geometric contribution to braid stiffness only. ..................................................... 92 

Figure 4.22.  Torus test and model R position versus θ location for nominal torus 

and load controlled modeling schemes after the application of in-plane 

loads. ..................................................................................................................... 94 

Figure 4.23.  Final in-plane torus shape from test and load controlled modeling. ........... 95 

Figure 5.1.  3.7 meter HIAD specimen and pressure tub (Swanson et al. 2015). ............. 99 

x 



Figure 5.2.  3.7 meter HIAD plan view. ......................................................................... 101 

Figure 5.3.  3.7 meter HIAD cross-section. .................................................................... 102 

Figure 5.4.  Idealized load versus strain response of Zylon cords. ................................. 107 

Figure 5.5.  Cross-section of inflated member subjected to opposing compressive 

pressures. ............................................................................................................. 109 

Figure 5.6.  Cross-section of inflated member subjected to shear loading. .................... 112 

Figure 5.7.  Cross-section of inflated member subjected to axial and shear loads. ........ 113 

Figure 5.8.  Cross-section of an inflated member with link elements. ........................... 117 

Figure 5.9.  Axial strap response. ................................................................................... 118 

Figure 5.10.  Beam-based HIAD FE model. ................................................................... 120 

Figure 5.11.  Load-deformation response of 3.7 meter HIAD pressure tub test 

with interaction element stiffness sensitivity. ..................................................... 122 

Figure 5.12.  Fore radial strap response. ......................................................................... 123 

Figure 5.13.  Loop strap set two fore and aft response. .................................................. 124 

Figure 5.14.  Loop strap set four fore and aft response. ................................................. 124 

Figure 5.15.  Load-deformation response of 3.7 meter HIAD pressure tub test with 

strap stiffness sensitivity. .................................................................................... 126 

Figure 6.1.  16.7 meter major diameter HIAD, configuration of tori. ............................ 130 

Figure 6.2.  Idealized load versus strain response of cords. ........................................... 131 

Figure 6.3.  16.7 meter HIAD model with straps (only 24 strap sets shown). ................ 133 

Figure 6.4.  Loop and radial strap force-strain response. ................................................ 134 

Figure 6.5.  Desired and equilibrium HIAD cross-section. ............................................ 136 

Figure 6.6.  Desired, initial and equilibrium HIAD cross-section configurations. ......... 139 

xi 



Figure 6.7.  Uniform pressure analysis on prestressed and simplified prestressed 

HIAD configurations. ......................................................................................... 140 

Figure 6.8.  Rendering and cross-section of HIAD structure with tab (Johnson 

et al. 2016). ......................................................................................................... 142 

Figure 6.9.  Tabbed 16.7 meter HIAD expected pressure distribution. .......................... 143 

Figure 6.10.  Tab structure. ............................................................................................. 144 

Figure 6.11.  Load deformation response of HIAD with and without a tab. .................. 145 

Figure 6.12.  Deformed shape of un-tabbed (top) and tabbed (bottom) HIAD. ............. 146 

Figure 6.13.  Radial strap loads. ..................................................................................... 147 

Figure 6.14.  6 meter major diameter HIAD, configuration of tori. ............................... 148 

Figure 6.15.  Strap force-strain response. ....................................................................... 152 

Figure 6.16.  Load-deformation response of 6 meter HIAD configuration with 

uniform pressure load. ........................................................................................ 153 

Figure 6.17.  Convergence of solution (run 1). ............................................................... 157 

Figure 6.18.  Converged design variables. ...................................................................... 158 

Figure 6.19.  Load-deformation response of 6 meter HIAD configuration with 

uniform pressure load, nominal and converged HIAD configurations. .............. 159 

Figure 7.1:  HIAD structure with center-body and cables for actively controlling 

the HIAD shape................................................................................................... 167 

 

 

xii 



Chapter 1 

INTRODUCTION 

1.1 The HIAD Structure 

The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under 

development by the National Aeronautics and Space Administration (NASA) is designed 

to decelerate a payload as it travels through the atmosphere of a planet during reentry 

(Hughes et al. 2011; Johnson et al. 2016).  The structure consists of multiple, slender, 

inflatable torus members.  The tori are stacked to form a cone shape (see Figure 1.1).  

Each torus is strapped to adjacent tori while the innermost torus is strapped to the 

relatively rigid center-body.  Additional radial straps extend from the center-body to 

outer tori.  The outer cone, or fore side of the HIAD, is covered with a flexible thermal 

protection system (TPS).  The TPS protects and insulates the inflatable structure from the 

extreme heating that is encountered during atmospheric reentry. 

 

Figure 1.1.  Conceptual rendering of the HIAD structure. 

The individual torus members consist of a braided fabric shell covering a non-structural 

gas barrier.  Discrete, axial reinforcing cords are braided into the shell and provide the 

majority of the axial and flexural rigidity of the tori.  The inflatable system is deflated 

and packed within the confines of a launch vehicle.  The system in only inflated on the 
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way to the destination planet or before atmospheric reentry.  The inflated cone creates a 

large surface area to slow down the payload as it travels through the atmosphere during 

reentry. 

There are several advantages to using the HIAD system in place of a traditional rigid 

decelerator.  Primarily, the inflatable system will be of significantly lower mass than a 

comparably sized rigid aeroshell, which can lead to decreases in fuel requirements.  

Further, the ratio of system mass to decelerator area is not constrained by size limitations 

imposed by the launch vehicle, and the inflated major diameter of the HIAD system can 

be much larger than the diameter of the launch shroud.  For these reasons, the HIAD 

system has the potential to significantly increase payload delivery capacity from orbit to 

the surface of a planet with an atmosphere, such as Mars (Wright et al. 2012). 

There has been a great deal of study on the structural response of the HIAD system 

including flight tests conducted in the earth’s atmosphere (Wright et al. 2012) and large 

scale wind tunnel experimentation (Cassell et al. 2013).  Finite element (FE) modeling of 

the HIAD system and components to date has utilized shell based continuum elements 

(Lindell et al. 2006; Li et al. 2015; Lyle 2014 and 2015) to model the shell and integral 

reinforcing cords.  Although these models can accurately capture the response of the 

HIAD structure and components, they require significant development time and are 

computationally intensive to run. 

The HIAD system is constructed from stacked, slender members, and is therefore a good 

candidate for modeling using beam-based FE models.  Beam FE models are capable of 

accurately capturing the large displacement response of structural members with 
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composite cross-sections composed of materials having highly nonlinear constitutive 

relationships, and are very computationally efficient.  In particular, flexibility- or force-

based fiber-beam elements have been used successfully to model the highly nonlinear 

behavior of reinforced concrete frames composed of nonlinear materials that exhibit 

hysteretic behavior (Spacone et al. 1996a, 1996b).  When material nonlinearities or 

plasticity are present in a frame analysis, finding polynomial displacement FE 

interpolation functions that correctly describe the displaced shape is quite difficult 

without a very refined discretization of the structure.  On the other hand, it is 

straightforward to obtain force interpolation functions that satisfy equilibrium in the 

element exactly. 

Inflatable structures present unique modeling challenges in handling internal pressure, 

material response and behavior after the fabric loses prestress, or “wrinkles”.  These 

modeling challenges must be overcome as the scale of the HIAD system (up to a 20 

meter major diameter) makes them impractical to test experimentally.  An important step 

in realizing the great potential of inflatable structures and the HIAD system is the 

development of effective and reliable modeling tools that will allow for the design space 

to be efficiently explored. 

1.2 Research Objectives 

The objectives of the current research are to: 

• Improve our understanding of the structural behavior of slender, braided, 

inflatable members with discrete axial reinforcing cords by developing computationally 

efficient modeling methodologies and analyzing the inflatable structures; 
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• Develop methods for linking constitutive properties of the braid and cord with FE 

models; 

• Develop computationally efficient, beam-based FE modeling and analysis 

methodologies appropriate for use with slender, inflatable members in general and the 

HIAD system in particular; 

• Validate the FE modeling tools through comparison with experimental results 

from inflatable beam, torus and HIAD tests; 

• Apply the FE analysis methodologies to the study of full-scale HIAD systems; 

• Demonstrate the effectiveness of these beam-based FE analysis tools for 

exploring the HIAD design space and facilitating HIAD structural optimization studies. 

Specific questions that the research addresses to achieve these objectives include: 

• How can material test data of the compliant, inflatable system constituent 

materials be incorporated into various modeling methodologies? 

• How can the braided, inflatable members with reinforcing cords that make up the 

HIAD system be efficiently modeled and analyzed? 

• What drives the structural response of inflatable, braided members with axial 

reinforcing cords? 

• How can the HIAD system be effectively modeled using a beam-based FE 

modeling methodology? 

• How can the HIAD system be refined and optimized to achieve design goals and 

objectives? 
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1.3 Organization of Dissertation 

This dissertation is organized into six chapters.  The focus of Chapter 2 is the mechanics 

of the braided shell, and how to best incorporate material test data from the inflated, 

braided membrane and axial reinforcing cords into both shell and beam-based FE models.  

Material models must be handled very differently depending on the type of analysis that 

is being conducted. 

In Chapter 3 a description of both shell and beam-based FE modeling of inflatable, 

braided members with discrete axial reinforcing cords located around the cross-section of 

the member is presented.  Shell-based FE modeling tools were developed using the 

commercial FE code ABAQUS.  The beam-based FE modeling tools were developed for 

the purpose of this research in the MATLAB environment.  Although it would be 

possible to incorporate the beam-based FE modeling methodology into a commercial FE 

code, such as ABAQUS, developing the analysis tools in-house allowed for significantly 

more flexibility in the development process. 

In Chapter 4 the shell and beam-based FE modeling tools are applied to the analysis of 

component level tests conducted at the University of Maine’s Advanced Structures and 

Composites Center.  The results of straight-tube, four-point-bend tests are compared to 

shell and beam modeling results.  The beam-based FE modeling tools are also applied to 

the analysis of single torus load testing. 

In Chapter 5 the beam-based FE modeling tools are extended to the analysis of a full 

HIAD structure.  The HIAD modeling methodology is developed and the results of 
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analyses are compared to test data from static testing of a HIAD device previously 

conducted by NASA. 

In Chapter 6 the beam-based FE modeling tools developed in Chapter 3 and validated in 

Chapter 4 and Chapter 5 are applied to the analysis of full-scale HIAD structures.  The 

influence of strap prestress is investigated and compared to a simplified modeling 

approach that does not require the solving of an inverse problem in order to put the HIAD 

in the correct prestressed state.  The structural response of 16.7 meter major diameter 

HIAD structures, with and without an aerodynamic tab, is investigated in order to assess 

the structural impact of tab loading on the system and demonstrate the use of the 

modeling tools with non-axisymmetric structural configurations and loading.  A 12 meter 

HIAD structure is investigated.  The baseline design is considered and the analysis tools 

that have been developed are coupled with structural optimization techniques in order to 

refine the system and understand the design sensitivities. 

Finally, Chapter 7 provides a summary of the research that was conducted for this 

dissertation along with some conclusions.  Potential areas of future research and logical 

extensions of the modeling and analysis methodology and tools are also discussed. 
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Chapter 2 

BRAID MECHANICS AND MATERIAL MODELS 

This chapter includes details on the response of the braided shell and the axial reinforcing 

cords that make up the cross-section of the inflatable members.  Netting theory, which 

explains the axial response of a braided, inflatable tube, is explained in detail.  Novel 

methods are developed for the determination of effective braid and cord constitutive 

models from independent tests that are suitable for direct implementation in shell and 

beam FE models. 

2.1 Braid Mechanics 

The shell of the slender, inflatable members that make up the beams and tori that are 

utilized in the current research is composed of braided Technora fabric tows, as shown in 

Figure 2.1.  An impermeable polyurethane membrane layer is included on the inside of 

the braided shell to make the assembly airtight. 

 

Figure 2.1.  Detail of braided shell. 

7 
 



Understanding the response of the braided shell is a critical step in understanding the 

response of the inflatable members that will be discussed in more detail in subsequent 

chapters.  As a thin-walled cylinder is inflated, the shell is put into the well-known stress 

state where the hoop stress (𝜎𝜎𝐿𝐿) is twice that of the longitudinal stress (𝜎𝜎𝐿𝐿), or 

𝜎𝜎𝐿𝐿 =
𝑝𝑝𝑝𝑝
2𝑡𝑡

, Equation 2.1 

and, 

𝜎𝜎𝐻𝐻 =
𝑝𝑝𝑝𝑝
𝑡𝑡

. Equation 2.2 

The radius of the cylindrical pressure-vessel is 𝑝𝑝, the internal inflation pressure is 𝑝𝑝 and 

the shell thickness is 𝑡𝑡. 

Neglecting the compliant adhesive that bonds the braid fibers, the braided shell is 

composed of off-axis fibers that are only capable of carrying longitudinal stress.  

Therefore, only one equilibrium braid angle can stably accommodate the specific stress 

state of an inflated cylinder without any axial restraint.  When axial constraint is present 

(as provided by reinforcing cords, straps or mechanical constraint from a load-frame), the 

percentage of the pressure resultant carried by the braid and the restraint can be 

calculated directly as a function of braid angle.  Netting theory is used to describe the 

stress state of the braided shell and to calculate quantities such as the equilibrium braid 

angle and percentage of force that is accommodated by the axial restraint.  Netting theory 

principles have been applied to other applications such as pneumatic actuators and 

airbags (Davis and Caldwell 2006).  Others have derived the fundamental netting theory 

equations (Zu 2012; Evans and Gibson 2002) by considering the biaxial stress state of the 

braided shell and applying stress transformations in order to determine the critical braid 
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angle and percentage of axial force that must be accommodated by axial restraint.  Those 

same quantities are derived below in a simplified and intuitive manner using a unit cell 

approach. 

2.1.1 Critical Braid Angle 

A unit cell of braid is considered in the derivation of the critical braid angle for a 

cylindrical pressure vessel made of a braided fabric.  Figure 2.2 illustrates the braid unit 

cell.  The individual fibers form a parallelogram oriented at an angle 𝛽𝛽 measured from an 

axis aligned with the longitudinal axis of the cylindrical pressure vessel.  Also shown is 

the origin of the reference coordinate system and the longitudinal (𝐿𝐿) and hoop (𝐻𝐻) axes 

that will be used in subsequent calculations.  The arbitrary length of a fiber tow is 𝑙𝑙.  The 

fibers are assumed to be capable of only accommodating tensile forces and are able to 

freely rotate at all joints. 

 

Figure 2.2.  Braid unit cell. 

𝑙𝑙 

𝛽𝛽 

𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽 

2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 
𝐿𝐿 

𝐻𝐻 
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The longitudinal and hoop force resultants are calculated using the tributary width and 

height of the unit cell and the shell stress (Equation 2.1 and Equation 2.2), 

𝐹𝐹𝐿𝐿 =
𝑝𝑝𝑝𝑝
2

2𝑙𝑙 sin𝛽𝛽 = 𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽, Equation 2.3 

and, 

𝐹𝐹𝐻𝐻 = 𝑝𝑝𝑝𝑝2𝑙𝑙 cos𝛽𝛽 = 2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽. Equation 2.4 

Note that membrane quantities are utilized throughout.  All shell stress quantities, along 

with all shell moduli 𝐸𝐸𝐿𝐿, 𝐸𝐸𝐻𝐻 and 𝐺𝐺𝐿𝐿𝐻𝐻, are assumed to be pre-multiplied by the shell 

thickness, giving units of force per length.  Likewise, all shell cross-sectional areas 

include a pre-multiplication by the shell thickness, giving units of length.  Using 

membrane quantities allows for the thickness of the shell to be removed from all 

calculations, which will be done consistently throughout this document. 

The free body diagram shown in Figure 2.2 is only in a state of stable equilibrium at one 

braid angle.  In order to calculate this braid angle the principle of virtual work is applied.  

The coordinates of the longitudinal and hoop pressure resultants are determined as a 

function of the braid angle, 

𝑦𝑦𝐿𝐿 = 2𝑙𝑙 cos𝛽𝛽 Equation 2.5 

and, 

𝑥𝑥𝐻𝐻 = 𝑙𝑙 sin𝛽𝛽 Equation 2.6 

The variation of the coordinate locations with a virtual change in braid angle can then be 

determined, 

𝛿𝛿𝑦𝑦𝐿𝐿 = −2𝑙𝑙 sin𝛽𝛽 𝛿𝛿𝛽𝛽 Equation 2.7 

and, 
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𝛿𝛿𝑥𝑥𝐻𝐻 = 𝑙𝑙 cos𝛽𝛽 𝛿𝛿𝛽𝛽 Equation 2.8 

The principle of virtual work states that the sum of all forces acting on a body is zero for 

any virtual displacement (e.g., see Hibbeler 2016), or for the current system, 

𝛿𝛿𝑈𝑈 = 0 = 𝐹𝐹𝐿𝐿𝛿𝛿𝑦𝑦𝐿𝐿 + 2𝐹𝐹𝐻𝐻𝛿𝛿𝑥𝑥ℎ. Equation 2.9 

Substituting in Equation 2.3, Equation 2.4, Equation 2.7 and Equation 2.8 yields, 

𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽 (−2𝑙𝑙 sin𝛽𝛽 𝛿𝛿𝛽𝛽) + 2(2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽) (𝑙𝑙 cos𝛽𝛽 𝛿𝛿𝛽𝛽) = 0. Equation 2.10 

Simplifying and solving for 𝛽𝛽 provides the well-known netting theory result for the 

critical, equilibrium braid angle, 𝛽𝛽 = tan−1 √2, or approximately 54.7°. 

Without axial restraint the braid will return to the critical braid angle when pressurized.  

This behavior is taken advantage of by utilizing braid angles greater than the critical braid 

angle, and including axial reinforcing in the form of braided Technora cords.  Once 

pressurized the axial reinforcing cords are tensioned, preventing the braid angle from 

changing and giving the inflated member some degree of axial and bending rigidity.  The 

amount of pretension that the axial reinforcing members accommodates can also be 

calculated using a unit cell. 

2.1.2 Pretension of Reinforcing Members 

Another braid unit cell is shown in Figure 2.3, below.  Also shown in Figure 2.3 is an 

axial reinforcing cord that restrains the braid from deforming significantly.  The same 

longitudinal and hoop pressure resultants are included as in Figure 2.2. 
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Figure 2.3.  Braid unit cell with axial reinforcing. 

The force in a fiber can be calculated using statics and by taking a cut that includes the 

hoop resultant force and the internal tensile force of two fibers, (Figure 2.4, below). 

 

Figure 2.4.  Free body diagram with hoop resultant force and internal fiber tow tensile 

force. 

𝑙𝑙 

𝛽𝛽 

𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽 

2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 

𝐿𝐿 

𝐻𝐻 

𝛽𝛽 

2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 

𝑓𝑓𝑓𝑓 

𝑓𝑓𝑓𝑓 
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Enforcing static equilibrium in the hoop direction yields, 

�𝐹𝐹𝐻𝐻 = −2𝑝𝑝𝑝𝑝𝑙𝑙 cos𝛽𝛽 + 2𝑓𝑓𝑓𝑓 sin𝛽𝛽 = 0. Equation 2.11 

Solving for the force in the fiber, 

𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑙𝑙
cos𝛽𝛽
sin𝛽𝛽

. 
Equation 2.12 

With the fiber tension known a second cut including the longitudinal resultant force, fiber 

tows and axial reinforcing cord can be taken, as in Figure 2.5. 

 

Figure 2.5.  Free body diagram with longitudinal resultant force, internal fiber tow tensile 

force and cord force. 

Static equilibrium can then be enforced in the longitudinal direction, 

�𝐹𝐹𝐿𝐿 = 𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽 − 2𝑝𝑝𝑝𝑝𝑙𝑙
cos𝛽𝛽
sin𝛽𝛽

cos𝛽𝛽 − 𝑇𝑇0 = 0. 
Equation 2.13 

The force in a cord, 𝑇𝑇0, can be solved for, 

𝑇𝑇0 = 𝑝𝑝𝑝𝑝𝑙𝑙 �sin𝛽𝛽 − 2
𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽
sin𝛽𝛽

�. 
Equation 2.14 

 

𝛽𝛽 
𝑝𝑝𝑝𝑝𝑙𝑙 sin𝛽𝛽 

𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑇𝑇0 
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The arbitrary length of the fibers in a unit cell can be calculated as a function of the 

geometry of the pressurized cylinder and the number of reinforcing cords that are utilized 

(𝑚𝑚) on the cylindrical cross-section of the member, 

2𝑙𝑙 sin𝛽𝛽 = 2𝜋𝜋𝑝𝑝 �
1
𝑚𝑚�

, Equation 2.15 

or, 

𝑙𝑙 =
𝜋𝜋𝑝𝑝

𝑚𝑚 sin𝛽𝛽
. Equation 2.16 

The quantity 𝑙𝑙 can then be substituted into Equation 2.13, 

𝑇𝑇0 =
𝑝𝑝𝜋𝜋𝑝𝑝2

𝑚𝑚
(1 − 2 cot2 𝛽𝛽). 

Equation 2.17 

The results yield the well-known netting theory expression for the force in an axial 

reinforcing cord as a function of the pressure resultant and braid angle (Zu 2012). 

2.1.3 Netting Theory and the Shell Constitutive Relationship 

It is also possible to relate netting theory results to Hooke’s Law for an orthotropic 

membrane in a state of biaxial, plane stress.  While netting theory can be used to describe 

the stress state of a pressurized braided shell, it cannot be used directly in the shell-based 

FE modeling of the pressurized membrane as any sort of material model.  Relating 

netting theory to Hooke’s Law will serve as a link between the two analysis types. 

The starting point is to consider a pressurized cylinder made up of a thin, orthotropic 

membrane.  Axial forces (𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) are developed as a result of restraining the pressurized 

shell longitudinally (at the desired braid angle) and keeping the shell in a state of 

equilibrium, as shown in Figure 2.6. 
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Figure 2.6.  Pressure vessel with restraining forces. 

Hooke’s Law, a constitutive relationship for an orthotropic material, is used to relate the 

strain in the material to the stress in the material, 

𝜀𝜀𝐿𝐿 =
𝜎𝜎𝐿𝐿𝐿𝐿
𝐸𝐸𝐿𝐿

− 𝜈𝜈𝐿𝐿𝐻𝐻
𝜎𝜎𝐻𝐻
𝐸𝐸𝐻𝐻

. Equation 2.18 

The modulus of elasticity in the longitudinal and hoop directions are 𝐸𝐸𝐿𝐿and 𝐸𝐸𝐻𝐻, 

respectively.  The Poisson’s ratio in the longitudinal and hoop directions is 𝜈𝜈𝐿𝐿𝐻𝐻 and the 

longitudinal and hoop stress in the restrained, pressurize cylinder are 𝜎𝜎𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐻𝐻, 

respectively.  Two subscripts are used for the longitudinal stress to differentiate it from 

Equation 2.1. 

Next, equations of equilibrium are applied to the restrained pressure vessel.  A cut 

through the pressure vessel is shown in Figure 2.7, below. 

𝐿𝐿 

𝐻𝐻 

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
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Figure 2.7.  Pressure vessel equilibrium cut. 

Summing forces in the longitudinal direction yields, 

�𝐹𝐹𝐿𝐿 = 𝑝𝑝𝜋𝜋𝑝𝑝2 − 2𝜋𝜋𝑝𝑝𝜎𝜎𝐿𝐿𝐿𝐿 − 𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0, Equation 2.19 

and can be rearranged for 𝜎𝜎𝐿𝐿𝐿𝐿, 

𝜎𝜎𝐿𝐿𝐿𝐿 =
𝑝𝑝𝑝𝑝
2
−
𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

2𝜋𝜋𝑝𝑝
. Equation 2.20 

The compatibility equation is supplied with the assumption that the pressure vessel is 

restrained from expanding or contracting in the longitudinal direction; therefore, 

𝜀𝜀𝐿𝐿 = 0. Equation 2.21 

Equation 2.2, Equation 2.18, Equation 2.19 and Equation 2.21 can be combined to form, 

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

𝜎𝜎𝐿𝐿𝐿𝐿 
2𝜋𝜋𝑝𝑝𝜎𝜎𝐿𝐿𝐿𝐿 

𝑝𝑝𝜋𝜋𝑝𝑝2 

𝑝𝑝 
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𝑝𝑝𝑝𝑝
2𝐸𝐸𝐿𝐿

−
𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
2𝜋𝜋𝑝𝑝𝐸𝐸𝐿𝐿

−
𝜈𝜈𝐿𝐿𝐻𝐻
𝐸𝐸𝐻𝐻

𝑝𝑝𝑝𝑝 = 0. Equation 2.22 

Recognizing that for an orthotropic material, 

𝜈𝜈𝐿𝐿𝐻𝐻 =
𝐸𝐸𝐿𝐿
𝐸𝐸𝐻𝐻

𝜈𝜈𝐻𝐻𝐿𝐿 , Equation 2.23 

Equation 2.22 can be rearranged to form, 

𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑝𝑝𝜋𝜋𝑝𝑝2(1 − 2𝜈𝜈𝐿𝐿𝐻𝐻). Equation 2.24 

It is clear that Equation 2.24 is of the same form as Equation 2.17 (for 𝑚𝑚 = 1, or one 

restraining member).  Equating the two restraining forces relates netting theory and 

Hooke’s Law and yields, 

𝜈𝜈𝐿𝐿𝐻𝐻 = cot2 𝛽𝛽. Equation 2.25 

This expression will be used later in the chapter to determine the braided shell orthotropic 

properties (that satisfy netting theory), using tension-torsion test data presented by Clapp 

et al. (2016a). 

2.2 Material Model Development 

The inflatable members are composed of a braided shell, an impermeable, non-structural 

gas barrier and discrete axial reinforcing cords that are braided into the shell.  An 

inflatable member, along with a detail of the braided shell and an axial reinforcing cord 

can be seen in Figure 2.8.  Extensive material experimentation was performed as part of 

the University of Maine NASA EPSCoR program and is further described in Clapp et al. 

(2015), Clapp et al. (2016a) and Clapp et al. (2016b).  Extracting information from 

experimentation for use as input into FE analyses is a critical a critical step in obtaining 

accurate analysis results. 
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Figure 2.8.  Straight, inflatable, braided tube with integral reinforcing cord detail. 

2.2.1 Inflatable Shell Material Model 

The inflatable shell material model must be handled very differently depending on 

whether a shell-based FE model or a beam-based FE model is under development.  In 

both model types the work done by the internal inflation pressure undergoing a volume 

change must be accounted for.  This can be accomplished by using pressure follower 

loads, as in the case of a shell-based FE model, or by integrating the pressure volume-

change component of work into the constitutive relationship of the shell, as in the case of 

beam-based FE modeling. 

2.2.1.1 Shell-Based Finite Element Model Properties 

The primary results of tension-torsion testing (Clapp et al. 2016a) were reliable 

measurements for the longitudinal stiffness (𝐸𝐸𝐿𝐿) and the in-plane shear stiffness (𝐺𝐺𝐿𝐿𝐻𝐻) of 

the fabric membrane.  However, incorporating the measured test data into a structural FE 

model of an inflated tube simulated as an orthotropic shell also requires both the stiffness 
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in the hoop direction (𝐸𝐸𝐻𝐻) and the Poisson ratio (𝜈𝜈𝐻𝐻𝐿𝐿) in the hoop and longitudinal plane.  

Accurate shell properties are critical model inputs.  Although the axial and bending 

behavior of braided inflatable tubes with axial reinforcing cords are driven by the 

stiffness of the cords, the relative values of 𝐸𝐸𝐿𝐿, 𝐸𝐸𝐻𝐻 and 𝜈𝜈𝐿𝐿𝐻𝐻 drive the amount of 

pretension that the reinforcing elements experience due to inflation pressure and therefore 

strongly influences the axial and bending behavior of the inflatable members. 

The Poisson’s ratio, 𝜈𝜈𝐿𝐿𝐻𝐻, can be found directly by equating netting theory and Hooke’s 

law for an orthotropic material and netting theory (Equation 2.25).  Given 𝐸𝐸𝐿𝐿, 𝐺𝐺𝐿𝐿𝐻𝐻 and 

𝜈𝜈𝐿𝐿𝐻𝐻, the hoop stiffness 𝐸𝐸𝐻𝐻 must be calculated in order to have all stiffness parameters of 

the orthotropic stiffness tensor for use in a shell based FE analysis.  Using lamination 

theory and straightforward, realistic assumptions about the braid and fiber behavior 𝐸𝐸𝐻𝐻 

can be estimated. 

The braided fabric was idealized as a three-layer laminate.  The inner lamina layer was 

the isotropic bladder with known properties determined from the independent 

experiments (𝐸𝐸 = 9.6 N/mm and 𝜈𝜈 = 0.44, Clapp et al. 2016a).  The braid was treated as 

two lamina having fibers oriented in the positive and negative 𝛽𝛽 directions, respectively.  

The transverse stiffness of a fiber layer (𝐸𝐸2) was assumed to be essentially zero (the value 

1.8 ∙ 10−4 N/mm was used for numeric stability), as a sheet of unidirectional fibers will 

not have any transverse stiffness.  Likewise, the in-plane Poisson’s ratio was set to zero 

as enforcing a tensile strain in a sheet of unidirectional fibers will not induce a transverse 

strain.  The effective braid lamina properties, (𝐸𝐸1 and 𝐺𝐺12) were found such that when 
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incorporated into a three ply laminate at the correct braid angle the laminate properties, 

(𝐸𝐸𝐿𝐿, 𝐺𝐺𝐿𝐿𝐻𝐻 and 𝜈𝜈𝐿𝐿𝐻𝐻) matched test data and netting theory. 

An optimization routine was employed with a two parameter objective function, 𝐹𝐹 given 

in Equation 2.26, to minimize the error between the predicted laminate properties, test 

data and netting theory. 

𝐹𝐹(𝐸𝐸1,𝐺𝐺12) = �1 −
𝐸𝐸𝐿𝐿(𝐸𝐸1,𝐺𝐺12)

𝐸𝐸𝐿𝐿
�
2

+ �1 −
𝐺𝐺𝐿𝐿𝐻𝐻(𝐸𝐸1,𝐺𝐺12)

𝐺𝐺𝐿𝐿𝐻𝐻
�
2

+ �1 −
𝜈𝜈𝐿𝐿𝐻𝐻(𝐸𝐸1,𝐺𝐺12)

cot2(𝛽𝛽) �
2

 

Equation 2.26 

Following the determination of the braid lamina properties 𝐸𝐸1 and 𝐺𝐺12 via minimization 

of F, the hoop stiffness of the braided tube 𝐸𝐸𝐻𝐻 is easily computed from laminate analysis 

using classical lamination theory.  It is worth noting that while laminate properties could 

be input directly into the FE model for analysis, it is often more convenient in practice to 

obtain effective lamina properties, (𝐸𝐸1 and 𝐺𝐺12 for each braid lamina and the bladder 

properties) and use them as FE model inputs.  Defining the shell section as a laminate 

consisting of multiple lamina at user-specified orientations allows the stresses and strains 

in the FE model to be easily transformed to the fiber direction.  Further, this facilitates 

comparisons to published and tested fiber properties, which is of interest because it 

permits the effects of braid geometry, de-crimping, and inter-tow friction to be estimated.  

Extracting effective lamina properties also allows for the influence of the bladder to be 

isolated. 

Table 2.1 presents the results of the lamina optimization analysis for varying internal 

inflation pressures and braid angles.  The columns 𝐸𝐸𝐿𝐿 and 𝐺𝐺𝐿𝐿𝐻𝐻 were taken from tension 
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torsion test data (Clapp et al. 2016a).  𝐸𝐸1 and 𝐺𝐺12 were determine using Equation 2.26.  

𝐸𝐸𝐻𝐻 was forward-calculated using classical lamination theory and optimized lamina 

properties.  The in-plane Poisson’s ratio, 𝜈𝜈𝐿𝐿𝐻𝐻, was determined using netting theory from 

Equation 2.25. 
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Table 2.1.  Calculated lamina and laminate properties for a braided, inflated shell at 

various inflation pressures and braid angles. 

Measured 

Braid 

Angle 

Inflation 

Pressure 

(kPa) 

Modulus (N/mm) 

𝝂𝝂𝑳𝑳𝑳𝑳 Apparent 

𝑬𝑬𝟏𝟏 

Apparent 

𝑮𝑮𝟏𝟏𝟏𝟏 
𝑬𝑬𝑳𝑳 𝑬𝑬𝑳𝑳 𝑮𝑮𝑳𝑳𝑳𝑳 

60.0° 3 267 0.8 12 81 104 0.33 

59.5° 34 1424 1.5 14 109 549 0.35 

59.6° 69 2016 1.9 15 120 773 0.34 

59.7° 103 2439 1.9 15 123 931 0.34 

59.8° 138 2868 2.7 17 142 1090 0.34 

62.9° 3 278 1.9 14 132 96 0.26 

64.7° 34 1197 2.7 15 255 363 0.22 

64.7° 69 1970 2.1 14 253 594 0.22 

64.7° 103 2521 2.1 14 258 759 0.22 

64.7° 138 2877 2.1 14 261 865 0.22 

70.9° 3 316 3.3 14 333 68 0.12 

70.9° 34 1128 3.3 14 625 224 0.12 

70.9° 69 1629 3.3 14 701 320 0.12 

70.9° 103 2159 2.3 13 707 420 0.12 

70.9° 138 2404 3.3 14 771 468 0.12 

 

FE models of the tension-torsion test specimens (Clapp et al. 2016a), were generated to 

evaluate the effectiveness of the lamina properties.  The models were analyzed in the 

commercial FE program ABAQUS (Hibbett et al. 2014).  Quadratic shell elements were 
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used to model the fabric membrane.  The ends of the tube were fully constrained while 

internal pressure was applied to the membrane by means of a distributed follower force.  

Lamina properties derived from bladder testing and tension-torsion test data (Table 2.1) 

were defined at the measured braid angle, and ABAQUS generated the effective 

orthotropic material properties using standard, built-in functionality for laminate analysis.  

The diameter of the tube was input from test specimen measurements.  An analysis of the 

inflation process was performed to compare the fixed end reactions to test and theoretical 

values (Equation 2.17).  The FE results agree well with measured reactions and netting 

theory, as can be seen in Figure 2.9. 

 

Figure 2.9.  Comparison of measured and predicted pressure resultant forces (Clapp et al. 

2016a). 

2.2.1.2 Beam-Based Finite Element Model Properties 

When analyzing the inflatable structures using a beam-based FE approach, the shell 

inputs must be handled differently.  The longitudinal and shear modulus of the inflatable 
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shell were obtained from tension-torsion testing of the braided fabric shell in the 

pressurized state.  In order to isolate the longitudinal stiffness of the shell the biaxial 

plane-stress state of the braided membrane was considered as, 

𝐸𝐸𝐿𝐿 =
1
𝜀𝜀𝐿𝐿

(𝜎𝜎𝐿𝐿𝐿𝐿 − 𝜈𝜈𝐿𝐿𝐻𝐻𝜎𝜎𝐻𝐻). Equation 2.27 

The longitudinal strain (𝜀𝜀𝐿𝐿), as well as the longitudinal and hoop stress (𝜎𝜎𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐻𝐻), and 

the in-plane Poisson’s ratio (𝜈𝜈𝐿𝐿𝐻𝐻) were tracked throughout the duration of the tests of 

Clapp et al. (2016a) using photogrammetry techniques and the measured reaction of the 

pressurized cylinder on the load frame.  When developing shell-based FE models of the 

inflatable system the orthotropic material properties derived from the tension-torsion 

testing must be utilized.  With pressure follower forces and a pressurization step the 

membrane is put into the correct state of pretension and the gross axial stiffness of the 

braided shell is obtained because of the work done by the pressure loads.  However, in 

the case of the beam-based FE analysis, using 𝐸𝐸𝐿𝐿 directly will under-predict the shell’s 

response in extension and bending because the shell is not in the correct prestressed state 

and the work done by the pressure follower forces is not accounted for.  For use in the 

beam-based FE modeling methodology the stiffening effect of braid geometry changes 

must be added back into the extensional response to obtain the gross extensional stiffness 

of the inflated member.  The changes in geometry are accounted for using netting theory. 

The braided textile fabric serves primarily to carry the hoop stress induced by the internal 

inflation pressure while the longitudinal reinforcing cords restrain the inflated member 

longitudinally.  To calculate the gross stiffness of the braided, inflatable member the 

compressive reaction force on the shell (usually accommodated by the axial reinforcing 
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cords) is calculated in two states using netting theory.  The reaction is first calculated in 

the initial, pressurized configuration, 

𝐹𝐹0 = −𝑝𝑝𝜋𝜋𝑝𝑝2(1 − 2𝑐𝑐𝑐𝑐𝑡𝑡2𝛽𝛽), Equation 2.28 

and again after enforcing a small longitudinal strain (∆𝜀𝜀𝐿𝐿), 

𝐹𝐹1(∆𝜀𝜀𝐿𝐿) = −𝑝𝑝𝜋𝜋𝑝𝑝12(1 − 2𝑐𝑐𝑐𝑐𝑡𝑡2𝛽𝛽1) + 2𝜋𝜋𝑝𝑝𝐸𝐸𝐿𝐿∆𝜀𝜀𝐿𝐿 . Equation 2.29 

After the application of ∆𝜀𝜀𝐿𝐿, the new radius and braid angle (𝑝𝑝1 and 𝛽𝛽1, respectively), can 

be calculated directly from the geometry of the braided shell assuming that the length of 

braided fiber (𝑙𝑙𝐹𝐹) does not change, as shown in Figure 2.10. 

 

Figure 2.10.  Geometry of an inextensible fiber in a braided pressure vessel before and 

after the application of a small longitudinal strain (not to scale). 

Finally, a secant modulus can be calculated using the initial and perturbed reaction force, 

𝐸𝐸𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑔𝑔 =
(𝐹𝐹1 − 𝐹𝐹0)
2𝜋𝜋𝑝𝑝0∆𝜀𝜀𝐿𝐿 

. 
Equation 2.30 

The gross extensional modulus is used in all beam-based FE analyses.  Table 2.2, below, 

presents the gross extensional stiffness calculated for two straight-tube specimens at 
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various inflation pressures.  Also shown is the internal inflation pressure, tube geometry 

and longitudinal shell stiffness that were used in the calculation of 𝐸𝐸𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑔𝑔 (Equation 

2.30).  The in-plane shear modulus (𝐺𝐺𝐿𝐿𝐻𝐻) is shown for completeness, although 𝐸𝐸𝐿𝐿, and 

𝐺𝐺𝐿𝐿𝐻𝐻 values presented in Table 2.2 are identical to the values found in Table 2.1. 

Table 2.2.  Shell properties for use with beam-based FE modeling tools. 

Specimen p β r EL Egross GLH 

 (kPa) (deg.) (mm) (N/mm) (N/mm) (N/mm) 

N
om

in
al

 6
0°

 

St
ra

ig
ht

 T
ub

e 

34 59.8 170.4 14 20 549 

69 59.7 170.4 15 27 773 

103 59.8 170.7 15 33 931 

138 59.8 170.8 17 41 1090 

N
om

in
al

 7
1°

 

St
ra

ig
ht

 T
ub

e 

34 70.6 169.0 14 16 224 

69 70.6 169.0 14 18 320 

103 70.6 169.3 13 20 420 

138 70.6 169.5 14 23 468 
 

For the current analysis, the gross extensional stiffness could have been taken directly 

from load-strain tension test data of the pressurized tube and normalized by the 

circumferential length where the diameter of the tension torsion specimens and straight 

tube specimens analyzed in later chapters are nominally equal.  However, using netting 

theory to calculate the gross extensional modulus allows for the effects of geometry to be 

isolated so that orthotropic shell properties can be obtained for use in either a shell or 

beam-based FE model.  Further, the netting theory approach allows for the gross 

properties of the inflated shell to be scaled.  The gross stiffness of the inflated tube 
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obtained from testing cannot simply be normalized by the circumferential length and 

scaled to different diameter cross-sections without neglecting the influence of geometric 

changes, as was done in Brayley et al. (2012). 

The braided shell is assumed to be capable of carrying loads even after the longitudinal 

strain in the shell cross-section due to bending has overcome the initial longitudinal strain 

due to inflation.  The off-axis shell fibers are in tension even when the braided shell is in 

a state of longitudinal compression since the fibers must continue to accommodate the 

hoop stress due to inflation pressure.  Experimental observations have confirmed that 

inflatable, braided tubes with axial reinforcing cords do not wrinkle during bending in the 

same manner as tubes with woven shells, but instead remain taut, even with longitudinal 

strains less than zero (Brayley et al. 2012; Clapp et al. 2016a). 

2.2.2 Cord Model 

In addition to the braided fiber shell and impermeable bladder, the inflatable members are 

also composed of axial reinforcing cords that are located at discrete locations around the 

member cross-section (see Figure 2.8).  The stiffness contribution of the internal 

reinforcing cords drives the extensional and bending response of the inflatable members 

and understanding their response is important.  From tension testing of the axial 

reinforcing cords, the cord force-strain relationship was observed to be nonlinear at low 

tensile strain and linear at high tensile strain.  The cords are incapable of carrying any 

compressive force.  Further, the cords exhibit hysteretic behavior, following different 

loading and unloading paths. 
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Figure 2.11 presents the results of cord testing on three pristine Technora cords and one 

cord that was extracted from an inflatable member after it had experienced repeated load 

cycling (the extracted cord was otherwise identical to the pristine cords in material and 

geometry). 

 

Figure 2.11.  Cord force-strain relationship from tension testing of pristine cords and a 

cord extracted from an inflatable member (Clapp et al. 2016a). 

The cords were subjected to repeated load cycling up to the approximate maximum 

expected cord load from straight tube testing (described later) and the expected load at 

inflation pressure for a range of braid angles and inflation pressures.  The response of the 

cords was highly nonlinear at the beginning of the loading regime and zero strain is not 

easily quantifiable.  As such the curves in Figure 2.11 were shifted in order to all be 

coincident with each other at 3.2 kN of load, shown with the blue square.  The 3.2 kN 

load level was chosen as the expected cord force for a 71° specimen with three cords at 

138 kPa of inflation pressure and a nominal radius of 170 mm (see Equation 2.17).  As 

can be seen from Figure 2.11, the response is highly repeatable.  Even for the case of the 
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extracted cord, after a single load cycle the load-strain response closely matches the 

pristine cords. 

Also clear from Figure 2.11 is the cord hysteretic response.  The unloading response was 

significantly stiffer than the loading response and the loading and unloading path creates 

an open loop.  Incorporating both the loading and unloading response of the cords is 

necessary to capturing the load-deformation behavior of the inflatable, braided members 

with integrated axial reinforcing cords (Clapp et al. 2015, 2016b).  With simple boundary 

conditions and loading regimes it is possible to know the load path that a particular cord 

on the cross-section will take a priori.  Knowing the cord load path allows each cord to 

be independently pre-programed with the correct one-dimensional force-strain 

relationship. 

2.2.2.1 Simplified Cord Model 

The same cord model was used for both shell and beam-based FE modeling.  The one-

dimensional cord force-strain relationship was saved as a lookup table for interpolation 

within the FE routine for both shell and beam-based FE analysis methodologies.  A 

unique cord force-strain relationship can be used for each cord.  In the current study a 

force-strain relationship was used that allows cords that are above the neutral axis (𝑁𝑁𝑁𝑁) 

of bending, or that are expected to accommodate compressive forces to follow the cord 

unloading path, while cords that are below the 𝑁𝑁𝑁𝑁 of bending, or that are expected to 

accommodate tensile forces are allowed to follow the cord loading path.  The third cord 

loading cycle was used in all analyses as it was repeatable.  Utilizing the third loading 

cycle allowed consistency between analyses when specimens were loaded multiple times.  

The initial tensile force in each cord was calculated using netting theory (Equation 2.17).  
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Once the initial cord force was obtained a cord force-strain lookup table was generated 

from tension test data of the reinforcing cord.  At load levels above the initial cord force 

the cord loading path was used.  At load levels below the initial cord force a cord 

unloading path was interpolated from unloading tension test data.  Figure 2.12 shows a 

representative cord force-strain relationship used as model input for a tube with three 

cords, a 71⁰ braid angle, 138 kPa of inflation pressure and a 170 mm minor radius.  The 

circle indicates the initial cord load (𝑇𝑇0) where the slope of the load-strain response 

changes.  The response of the cord below zero strain had a slope of essentially zero (an 

axial rigidity (𝐸𝐸𝑁𝑁) of 444 N was generally used for numerical stability). 

 

Figure 2.12.  Cord force-strain relationship for an inflatable tube with three cords, a 71° 

braid angle, 138 kPa of inflation pressure and a 170 mm minor radius. 

2.2.2.2 Hysteresis Algorithm 

When the path of cord loading cannot be predicted a-priori (as in the case of buckling or 

analyses of more complex structures with multiple load cases that involve loading and 

unloading), a cord model that tracks the strain history of the cord response and is able to 

incorporate the observed hysteretic effects must be utilized.  Analogous one-dimensional 

models for elements exhibiting plastic or softening response have been developed by 
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others (e.g. see Taucer et al. 1991).  Development of a cord hysteretic algorithm that 

could be implemented in future shell or beam based FE modeling approaches is presented 

here. 

Preliminary inputs to the cord hysteresis algorithm are a cord loading curve and a cord 

unloading curve that are generated from test data.  At any given step the model inputs 

include the current cord strain, whether the cord is loading or unloading (strain direction) 

and the location of previous points where the loading direction changed (pivot points).  

An unloading pivot point occurs when the load direction changes from loading to 

unloading.  A loading pivot point occurs when the cord changes from unloading to 

loading.  The output of the model is simply the current cord force and stiffness.  Although 

the stiffness and hysteretic response of the cords could also be influenced by the loading 

rate, time-dependent material properties are not considered here. 

The goal of the hysteresis algorithm development is to provide a way to reasonably 

estimate the current force and stiffness of a cord subjected to a loading history.  The 

current hysteresis algorithm follows simple rules based on phenomena observed from 

cord testing to determine when an unloading or loading pivot point is created or removed, 

and how the calculation of the cord force and stiffness should be handled for various 

combinations of strain magnitude, strain direction and location of pivot points.  A brief 

summary of the algorithm is as follows: 
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If:  The cord strain is less than zero (COMPRESSION) 

Then:  The cord is linear elastic with a small stiffness 

If:  The cord strain is greater than zero, and 

the cord strain is greater than all of the loading and unloading pivot points, and 

the cord strain direction is greater than zero (TENSILE LOADING) 

Then:  Use loading curve 

If:  The cord strain is greater than zero, and 

the cord strain direction is less than zero (TENSILE UNLOADING) 

Then:  Scale unloading curve between current unloading and loading pivot points 

If:  The cord strain is greater than zero, and 

the cord strain is between the current loading and unloading pivot points, and 

the cord strain direction is greater than zero (TENSILE RELOADING) 

Then:  The cord force-strain relationship is taken as a linear secant between 

current loading and unloading pivots points 
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The creation of loading and unloading pivot points is controlled with the following rules: 

Unloading Pivot Points 

• A new unloading pivot point is created when the strain direction goes from 

positive to negative (when the cord starts to unload) 

• An unloading pivot point is eliminated when the strain in the cord goes 

back above the unloading pivot point 

• Unloading pivot points are reset if the cord goes into compression 

Loading Pivot Points 

• A new loading pivot point is created when the strain direction goes from 

negative to positive (when the cord starts to load) 

• A loading point is eliminated when the strain in the cord goes above the 

corresponding unloading pivot point 

• Loading pivot points are reset if the cord goes into compression 

The updated cord force-strain relationship is a function of the current strain in the cord, 

whether the cord is loading or unloading and the location of pivot points, or where the 

cord load path changes directions (updated at each load step).  Simple logic is utilized to 

determine what cord force-strain relationship is utilized.  If the cord strain is less than 

zero the stiffness of the cord is zero (or a small number for numerical stability).  If the 

cord is loading and the strain in the cord is greater than all previous unloading pivot 

points, then the cord follows a single loading curve derived directly from cord tension 

tests.  If the cord is unloading a single unloading curve derived from tension tests is 

scaled from the unloading pivot point to zero strain.  If the cord is loading and the cord 
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strain is less than a previous unloading pivot point, then the cord force-strain relationship 

follows a secant line between the previous loading pivot point and unloading pivot point. 

Figure 2.13 conceptually illustrates the cord hysteresis model.  The cord starts at zero 

strain and force and is loaded along the solid line.  If the cord is unloaded at 3.16 kN of 

load (unloading pivot point), the force-strain relationship would follow the dashed line 

until the cord completely unloads.  If the cord were to instead start reloading at 0.33 kN 

of load (loading pivot point) the force-strain relationship would follow the dotted secant 

line between the two pivot points.  Once the force in the cord is greater than the 

unloading pivot point the cord force-strain relationship would revert to the original 

loading curve. 

 

Figure 2.13.  Illustration of cord hysteresis model including location of pivot points and 

load path directions. 
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Using the above relatively simple rules it is possible to make comparisons with cord tests.  

Cords were subjected to repeated loading and unloading in a load controlled tensile test 

(Figure 2.11).  Cord strain was measured by means of an extensometer.  Since the 

hysteresis model requires cord strain as the input, the measured cord strain from the 

tension test was used directly to see if a reasonable cord force could be extracted. 

The loading curve was taken as the force strain relationship for the first cycle of loading 

(up to the maximum recorded load, a linear, tangent extrapolation was utilized 

afterwards).  The unloading curve was taking from the first cycle of unloading.  Figure 

2.14 shows the results of cord testing and a comparison with the cord hysteresis model.  

Even after the application of the first load cycle (where the model essentially utilizes the 

test output directly), the model accurately captures the load/unload response of the cord 

test. 

 

Figure 2.14.  Cord hysteresis algorithm test results. 
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The force-strain response of the tested cord and hysteresis algorithm is shown in Figure 

2.15. 

 

Figure 2.15.  Cord test and hysteresis algorithm force-strain response. 

The purpose of the cord hysteresis model is to provide a phenomenological means of 

predicting the cord response when subject to repeated cycles of loading.  However, it may 

also be possible to predict the response of the cords by developing a sub-, or meso-scale, 

model of the braided members that includes all relevant geometry, fiber-tow stiffness and 

interaction between fibers.  Such a model would likely require significant resources to 

develop and be computationally demanding.  Eventually such an algorithm could be 

incorporated into the beam-based FE modeling methodology that is developed in later 

chapters via a sub-routine that would return cord force and stiffness given strain and 

strain history. 
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With a better understanding of the response of constituent materials that make up the 

inflatable members (braided shell and axial reinforcing cords), the response of the 

members can be analyzed.  The shell and cord material models that were described here 

are used as inputs to both shell and beam-based FE analyses described in the following 

chapters.  
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Chapter 3 

BEAM-BASED FINITE ELEMENT MODELING METHODOLOGY DEVELOPMENT 

This chapter presents the development of a computationally efficient analysis 

methodology for use with slender, braided, inflatable members with axial reinforcing 

cords located at discrete locations around the member cross-section, and is based on 

Young et al. (2017a).  The modeling methodology is validated at the component (Chapter 

4) and structure (Chapter 5) levels.  The development of such an analysis methodology 

will allow for the modeling of full-scale HIAD structures and HIAD optimization studies, 

as described in Chapter 6. 

3.1 Background 

Pressurized beams, arches and tori are unique tensile structures and can be used in a 

number of civilian, military and aerospace applications (Verge 2006; Brown et al. 2001; 

Veldman and Vermeeren 2001).  Inflatable, slender members can be packed into a 

relatively small volume and deployed rapidly to create load carrying structures.  Included 

in this class of structures is the HIAD system. 

There has been a great deal of study on the structural response of the HIAD system 

(Hughes et al. 2011) including flight tests conducted in earth’s atmosphere (Wright et al. 

2012) and large scale wind tunnel experimentation (Cassell et al. 2013).  Finite element 

(FE) modeling of the HIAD system and components to date have utilized shell-based 

continuum elements to model the inflatable shell and follower forces to model the 

internal inflation pressure (Lindell et al. 2006; Lyle 2014, 2015; Li et al. 2015; Clapp et 

al. 2015).  Although these models can accurately capture the load-deformation response 

of the HIAD structure and components, they require significant development time and are 
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computationally intensive to run, especially when including the contact interaction 

between inflatable members. 

The HIAD system is constructed from stacked, slender members, and is therefore a good 

candidate for modeling using beam-based FE models.  Beam FE models are capable of 

accurately capturing the large displacement response of structural members with 

composite cross-sections composed of materials having highly nonlinear constitutive 

relationships.  In particular, flexibility- or force-based fiber-beam elements have been 

used successfully to model the highly nonlinear behavior of reinforced concrete frames 

composed of nonlinear materials that exhibit hysteretic behavior (Spacone et al. 1996a, 

1996b).  When material nonlinearities or plasticity are present in a frame analysis, finding 

polynomial displacement FE interpolation functions that correctly describe the displaced 

shape is very difficult without a highly refined discretization of the structure, leading to 

large computation times.  On the other hand, it is straightforward to obtain force 

interpolation functions that satisfy equilibrium in the element exactly.  The trade-off is 

that when using force-based interpolation functions an iterative procedure must be 

performed at the element level to ensure that the distribution of section forces at element 

integration points are compatible with the force interpolation functions.  Further, the 

element stiffness matrix cannot be obtained directly, but must be determined through 

inversion of the element flexibility matrix and incorporated into the global stiffness 

matrix for subsequent global, stiffness-based FE iterations (Neuenhofer and Filippou 

1997; de Souza 2000). 

Inflatable structures present unique modeling challenges due to internal pressure, material 

response and behavior after the fabric loses prestress, or “wrinkles”.  Previous work on 
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inflatable, slender members has primarily focused on isotropic or orthotropic fabric shells 

without axial reinforcing cords.  Cavallaro et al. (2003) investigated the mechanics of 

woven air beams.  Le van and Wielgosz (2005) derived equations for the deformation of 

a thin walled beam with an internal inflation pressure subjected to stretching and bending 

and later (Le van and Wielgosz 2007) discretize the solution to develop a two 

dimensional, shear deformable beam finite element for an isotropic material.  The work 

has been applied by Wang et al. (2009) to study the load deformation response of large 

scale inflatable space frames.  Apedo et al. (2010) investigated the constitutive 

relationships of pressurized, orthotropic fabrics along with Nguyen et al. (2015).  

Elsabbagh (2015) developed a beam element for the analysis of isotropic inflatable 

members that are axisymmetric about the longitudinal axis. 

Braided beams have been analyzed by others to a lesser extent.  Brown et al. (2001) 

derived equations for the initial stiffness and wrinkling moment for braided beams while 

Veldman et al. (2005) developed a bending theory for braided beams with axial fibers 

located on the beam cross-section, as well as performed bending tests on vertically 

mounted cantilever beams past the onset of wrinkling.  Davids and Zhang (2008) 

previously developed a beam finite element to analyze the in-plane response of inflatable, 

woven members.  The element was extended to analyze the large displacement response 

of inflatable, woven beams and arches (Davids 2009), and braided members with discrete 

reinforcing straps bonded to the cross-section of the element (Brayley et al. 2012).  The 

constitutive relationship of the beam cross-section was considered to be linear elastic, 

tension only and for members that carried combined axial load and bending moment, the 

bending response was interpolated from moment curvature relationships that were 
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developed for varying levels of axial load.  In the case of Veldman (2005) and Brayley et 

al. (2012) the post wrinkling response on the inflatable, braided members with discrete 

reinforcing straps was modeled using parameters empirically derived from beam bending 

experimentation.  In all cases only two-dimensional deformations were considered, 

neglecting in-plane and out-of-plane coupling that can occur due to even a small 

misplacement of the discrete reinforcing cords or small geometric imperfections of the 

inflatable members.  Further, the treatment of coupling between axial and bending forces 

using pre-defined moment-curvature relationships as done by Davids (2009) and Brayley 

et al (2012) does not rigorously capture the effect of all deformations and stress 

combinations. 

Significant challenges exist in modeling the structural response of braided, slender 

members with discrete, integral, axial reinforcing cords.  Although the braided shell 

contributes minimally to the axial and flexural stiffness of the members prior to 

wrinkling, braid geometry and elastic properties are critical inputs to obtain the correct 

cord prestress and prestrain and to obtain the correct gross axial stiffness of the shell 

(Clapp et al. 2016a), including the effects of braid angle changes that occur during axial 

extension.  The response of the discrete, axial reinforcing cords around the shell cross-

section largely drives the axial and bending response of the inflatable member.  In order 

to accurately model the response the nonlinear and tension only response of the cords 

must be taken into account along with the cord loading direction, whether loading or 

unloading (Clapp et al. 2015, 2016b).  The three-dimensional response of inflatable 

members with discrete axial reinforcing cords around the shell cross-section is also 

critical; even small misalignments of the cords with the longitudinal axis or geometric 
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imperfections can drive out-of-plane deformations or buckling modes in more complex 

structures. 

There is currently a need to develop a practical, computationally efficient FE modeling 

methodology employing beam elements that captures the three-dimensional, large 

displacement and materially nonlinear behavior of inflatable, braided, slender members 

with integral, axial reinforcing cords.  Such a methodology will allow engineers to 

efficiently explore the HIAD structural design space and perform more formal 

optimization studies.  In this chapter, such a methodology is developed that incorporates 

the effects of work done by pressure and volume on the inflatable system.  The analysis 

methodology allows for the response of the members to be captured significantly past the 

point of initial wrinkling without the use of empirically derived parameters.  Utilization 

of a three-dimensional corotational framework along with a flexibility-based fiber-beam 

element for the inflatable member allows for the full stress state of the member to be 

analyzed, including the axial, bending and torsional response.  Coupling that occurs 

between the axial and bending response, as well as between in-plane and out-of-plane 

bending is captured. 

3.2 Development of Analysis Methodology 

A methodology to perform three-dimensional analyses on inflatable, braided, slender 

members with integral reinforcing cords using beam finite elements is presented.  The 

element geometry within the corotational framework and the element state determination 

process are detailed.  Details on the material constitutive relationships that are utilized in 

the modeling methodology were presented in Chapter 2. 
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3.2.1 Relevant Coordinate System and Geometry 

The inflatable structures of interest have the potential to undergo large displacements and 

rotations, but exhibit only moderate strains of less than 5% under applied loads (Clapp et 

al. 2016b).  As such, a three-dimensional corotational formulation is employed following 

Crisfield (1990).  Figure 3.1 illustrates the global FE coordinate system (𝑋𝑋, 𝑌𝑌 and 𝑍𝑍) as 

well as the local element, or basic coordinate system (𝑥𝑥, 𝑦𝑦 and 𝑧𝑧) which does not include 

rigid body modes.  In the corotational formulation the local element coordinate system 

translates and rotates with the element’s rigid body motions and must be updated every 

global iteration.  The nodal displacements are transformed to the local element coordinate 

system without rigid body modes, allowing for the element stiffness matrix and element 

forces to be calculated using the flexibility-based FE element formulation, discussed 

below.  The element and geometric stiffness matrices, along with the element forces can 

then be transformed from the local to the global coordinate system including all 

translational and rotational degrees of freedom for assembly into the global stiffness 

matrix and internal force vector respectively.  Further details on the formulation and 

derivation of the corotational formulation are omitted here but are thoroughly covered by 

others (Crisfield 1990, de Souza 2000), including the handling of successive rotations in 

three-dimensional space. 
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Figure 3.1.  Global and local coordinate systems for a three-dimensional, inflatable, 

corotational beam element. 

Figure 3.1 shows the initial shape of the element, including the radius of the member, 𝑝𝑝, 

and the element initial length, 𝐿𝐿.  The initial shape is taken as the inflated state rather than 

the deflated or “natural” state.  The inflation process is not considered here whereas the 

initial, inflated configuration is assumed to be known along with the material constitutive 

relationships in the pressurized, prestressed state.  When analyzing curved members 

either a curved beam formulation or a sufficient mesh refinement using straight elements 

is required to accurately capture the response. 

The element degrees of freedom of interest (𝑞𝑞) are derived from the global displacements 

as detailed in Crisfield (1990) and are shown in Figure 3.1.  The element degrees of 

freedom include the axial displacement, rotation about the 𝑧𝑧 and 𝑦𝑦 axes at nodes 𝑖𝑖 and 𝑗𝑗 

and the rotation about the 𝑥𝑥 axis, or 

𝒒𝒒𝑇𝑇 = �𝑢𝑢𝑥𝑥,𝜃𝜃𝑧𝑧𝑧𝑧 ,𝜃𝜃𝑧𝑧𝑧𝑧 ,𝜃𝜃𝑦𝑦𝑧𝑧 ,𝜃𝜃𝑦𝑦𝑧𝑧 ,𝜃𝜃𝑥𝑥�. Equation 3.1 
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The element degrees of freedom correspond to the element forces, 𝑸𝑸, also shown in 

Figure 3.1, 

𝑸𝑸𝑇𝑇 = �𝑁𝑁𝑥𝑥,𝑀𝑀𝑧𝑧𝑧𝑧 ,𝑀𝑀𝑧𝑧𝑧𝑧 ,𝑀𝑀𝑦𝑦𝑧𝑧 ,𝑀𝑀𝑦𝑦𝑧𝑧 ,𝑀𝑀𝑥𝑥�. Equation 3.2 

Figure 3.1 also illustrates the angle that the shell braid makes with the longitudinal axis 

(𝛽𝛽), the location of generic cords on the element and the location of nodes 𝑖𝑖 and 𝑗𝑗. 

When modeling inflatable, braided members with integrated reinforcing cords an 

important consideration is the number and location of the reinforcing cords.  The 

reinforcing cords are integrated into the braided textile fabric during the manufacturing 

process and are prestressed and prestrained during inflation.  Figure 2.8 shows a straight, 

inflatable, braided tube and a detail of one of the integral, axial reinforcing cords located 

on the member cross-section. 

There can be any number of reinforcing cords located anywhere on the member cross-

section in the model.  An array 𝛼𝛼 of length 𝑚𝑚 (where 𝑚𝑚 is the number of cords), is 

created for every section integration point.  Each entry of 𝛼𝛼 is the measure of the angle 

from the local positive 𝑧𝑧-axis counter-clockwise to the cord of interest.  Figure 3.2 shows 

an arbitrary element cross-section at an integration point with the local element 

coordinate system (𝑧𝑧 and 𝑦𝑦 are visible, 𝑥𝑥 is into the page), along with the location of an 

arbitrary cord and the measure of the angle 𝛼𝛼.  The number of section integration points 

(𝑛𝑛), is specified for each element. 
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Figure 3.2.  Illustration of shell cross-section with quantities of interest. 

A cord configuration that is not evenly spaced around the cross-section will produce an 

internal, unbalanced moment.  The internal moment must be brought into a state of 

equilibrium in an initial pressure equilibrium step, and an initial curvature will be present 

upon convergence.  The cords are integrated into and bonded to the braided shell, as can 

be seen in Figure 2.8.  During inflation and bend testing of the inflatable members no 

cord de-bonding or slip was observed.  Strain compatibility is therefore assumed between 

the cords and braided shell. 

Figure 3.2 contains additional information about the element cross-section that will be 

referred to throughout this paper.  As in Figure 3.1, 𝑝𝑝 is the radius of the inflated tube.  

Shown in Figure 3.2 are a number of section deformations and section forces.  The 
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symbol 𝒅𝒅 denotes the section deformation vector while the corresponding symbol 𝑫𝑫 

denotes the section force vector, 

𝑫𝑫(𝑥𝑥) = �𝑁𝑁(𝑥𝑥),𝑀𝑀𝑧𝑧(𝑥𝑥),𝑀𝑀𝑦𝑦(𝑥𝑥),𝑉𝑉𝑧𝑧(𝑥𝑥),𝑉𝑉𝑦𝑦(𝑥𝑥)�𝑇𝑇. Equation 3.4 

The section curvatures and shear strains, 𝜅𝜅(𝑥𝑥) and 𝛾𝛾(𝑥𝑥), are illustrated in Figure 3.2 

along with the section moments and shear forces, 𝑀𝑀(𝑥𝑥) and 𝑉𝑉(𝑥𝑥), about or on the 𝑧𝑧 and 𝑦𝑦 

axes respectively.  The section axial strain, 𝜀𝜀(𝑥𝑥), and axial force, 𝑁𝑁(𝑥𝑥), are positive into 

the page (not shown). 

The geometric centroid of the inflated shell is the origin of the local coordinate system 

and is shown for reference.  Although the neutral axis (𝑁𝑁𝑁𝑁) can translate and rotate with 

the deformation of the element, all analyses are conducted from the geometric centroid of 

the integration point cross-sections and it is not necessary to track the movement of the 

𝑁𝑁𝑁𝑁 or the elastic centroid.  The inflated shell is assigned an extensional and in-plane 

shear modulus (𝐸𝐸𝐿𝐿 and 𝐺𝐺𝐿𝐿𝐻𝐻), and each cord is assigned a one-dimensional, nonlinear 

force-strain relationship, as was discussed in Chapter 2.  Also shown is the internal 

inflation pressure, 𝑝𝑝, that is defined for each element. 

3.2.2 Flexibility-Based Element State Determination 

A flexibility-based, fiber-beam element is used to handle the response of the inflatable 

member composed of materials with different, nonlinear constitutive relationships.  The 

use of such elements for the analysis of inflatable members represents a departure from 

their traditional application to reinforced concrete members.  Prior to the onset of 

material nonlinearities in a frame analysis the displaced shape of a member can be 

𝒅𝒅(𝑥𝑥) = �𝜀𝜀(𝑥𝑥), 𝜅𝜅𝑧𝑧(𝑥𝑥), 𝜅𝜅𝑦𝑦(𝑥𝑥), 𝛾𝛾𝑧𝑧(𝑥𝑥), 𝛾𝛾𝑦𝑦(𝑥𝑥)�𝑇𝑇, and Equation 3.3 
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described exactly using displacement interpolation functions.  After the onset of material 

nonlinearities or plasticity a displacement based interpolation function can no longer 

exactly describe the member’s shape; however, the force and moment distribution 

through the member can be described exactly.  For example, in the case of nodal loading, 

the axial force is constant through the member while the moment varies linearly.  An 

iterative (Spacone et al. 1996a and 1996b; Taucer et al. 1991) or non-iterative 

(Neuenhofer and Filippou 1997; de Souza 2000) procedure is used to ensure that the 

distributions of section forces at element integration points are compatible with the force 

interpolation functions upon convergence of the load increment.  Force-based beam 

elements are computationally more demanding than displacement based beam elements; 

however, these elements are able to effectively and stably handle material nonlinearities 

and generally require fewer degrees of freedom to achieve a desired level of accuracy 

(Neuenhofer and Filippou 1997).  For the current study geometric nonlinearities are 

handled at the element level using the corotational formulation, a geometrically linear 

flexibility-based beam element at the section level and sufficient mesh refinement.  The 

element formulation could be further extended in the future to include geometric 

nonlinearities at the section level for the materially nonlinear, shear deformable inflatable 

members, as was done by Neuenhofer and Filippou (1998) for materially linear, Euler-

Bernoulli beams, or by de Souza (2000) for Euler-Bernoulli beams including material 

nonlinearities.  However, such a refinement is not required. 

The non-iterative form of the state determination process was employed following 

Neuenhofer and Filippou (1997).  From a previously converged state, the element 

displacements (𝒒𝒒) are obtained from the corotational formulation (Equation 3.1).  The 
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element resisting force increments (𝑑𝑑𝑸𝑸) are calculated using the current element 

displacements and the element displacements from the previous iteration (𝒒𝒒𝟎𝟎), along with 

the previous element stiffness matrix (𝑲𝑲𝟎𝟎
𝒆𝒆𝒆𝒆), 

𝑑𝑑𝑸𝑸 = 𝑲𝑲𝟎𝟎
𝒆𝒆𝒆𝒆(𝒒𝒒 − 𝒒𝒒𝟎𝟎). Equation 3.5 

Because the torsional portion of the element response is decoupled from the axial, shear 

and flexural response, the torsional component of all calculations at the element and 

section level is excluded until the end of the analysis, when it is added back into the 

element resisting force vector and element stiffness matrix. 

The element quantities must next be related to quantities at section integration points.  

Quantities are calculated at each section integration point from one (𝑥𝑥 = 0) to 𝑛𝑛 (𝑥𝑥 = 𝐿𝐿).  

Force interpolation functions (𝒃𝒃) relate the resisting forces at the nodes (𝑸𝑸), to the section 

forces (𝑫𝑫, Equation 3.4), without element loading, 

𝒃𝒃(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0
0 𝑥𝑥

𝐿𝐿� − 1 𝑥𝑥
𝐿𝐿� 0 0

0 0 0 𝑥𝑥
𝐿𝐿� − 1 𝑥𝑥

𝐿𝐿�
0 −1

𝐿𝐿�
−1

𝐿𝐿� 0 0

0 0 0 1
𝐿𝐿�

1
𝐿𝐿� ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

Equation 3.6 

The shear forces are included in the section quantities whereas the current analysis 

includes shear deformation.  Shear deformations are incorporated into the force-based 

element following Marini and Spacone (2006), generalized to three dimensions.  The 

shear response of the element is modeled using Timoshenko beam theory.  The shear 

response at the section level is modeled as linear and decoupled from the axial and 

bending response.  Assuming that a shear strain does not induce an axial strain in the 
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cords is consistent with a small strain analysis.  The shear stiffness of pressurized braided 

tubes has been shown experimentally to be pressure dependent, but essentially constant at 

a given pressure (Clapp et al. 2016a).  The component of shear deformation is a small 

percentage of the total deformation for braided inflatable members where off-axis fibers 

provide some shear resistance.  Shear deformation was found to vary from 2.5 to 11% of 

the total elastic portion of the deformation for the current study, highest for beams with a 

low inflation pressure and a high braid angle.  Shear deformation can be significant (over 

30%), for other types of inflatable beams, such as woven members (Kabche et al. 2011), 

due to the high shear compliance of woven fabrics. 

The section force increments are determined by interpolating from the nodal resisting 

force increment using the force interpolation functions and including the residual, or 

unbalanced, section forces from the previous iteration, 𝑫𝑫𝟎𝟎
𝒖𝒖, discussed later, 

𝑑𝑑𝑫𝑫(𝑥𝑥) = 𝒃𝒃(𝑥𝑥)𝑑𝑑𝑸𝑸 + 𝑫𝑫𝟎𝟎
𝒖𝒖, Equation 3.7 

The section deformation increments can then be calculated using the section force 

increments and the flexibility matrix (𝒇𝒇𝟎𝟎), saved from the previous iteration, 

𝑑𝑑𝒅𝒅(𝑥𝑥) = 𝒇𝒇𝟎𝟎(𝑥𝑥)𝑑𝑑𝑫𝑫. Equation 3.8 

The section deformation increments are added into the section deformations from the 

previous iteration, 

𝒅𝒅(𝑥𝑥) = 𝑑𝑑𝒅𝒅(𝑥𝑥) + 𝒅𝒅𝟎𝟎(𝑥𝑥). Equation 3.9 

Next, the section constitutive relationship must be used to calculate the section resisting 

forces.  The location of each axial reinforcing cord is stored at each section using an 𝑚𝑚 

by five geometric array, 𝒆𝒆, 
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𝒆𝒆(𝑥𝑥) = [𝟏𝟏,− sin𝜶𝜶 , cos𝜶𝜶 ,𝟎𝟎,𝟎𝟎]. Equation 3.10 

The last two entries in each row of 𝒆𝒆 are zero because the shear deformations of the 

section are assumed to not contribute to the cord deformation.  The cord deformation 

increments, or cord strain increments, are calculated as, 

𝑑𝑑𝒆𝒆(𝑥𝑥) = 𝒆𝒆(𝑥𝑥)𝑑𝑑𝒅𝒅(𝑥𝑥), Equation 3.11 

and are used to update the previously saved total cord deformation array, 

𝒆𝒆(𝑥𝑥) = 𝑑𝑑𝒆𝒆(𝑥𝑥) + 𝒆𝒆𝟎𝟎(𝑥𝑥). Equation 3.12 

The initial strain in each cord at each section point is interpolated from the cord force-

strain relationship, 

𝒆𝒆𝟎𝟎(𝑥𝑥) = 𝒆𝒆𝟎𝟎(𝑥𝑥,𝑇𝑇0). Equation 3.13 

The initial force in the cord at inflation pressure (𝑇𝑇0) is obtained from netting theory 

(Equation 2.17).  Using the axial force-strain lookup table that has been defined for each 

cord at each section point, the tensile force in the cords at each section, 𝑻𝑻(𝑥𝑥), can be 

interpolated using the updated cord deformation array, 𝒆𝒆(𝑥𝑥), 

𝑻𝑻(𝑥𝑥) = 𝑻𝑻(𝑥𝑥, 𝒆𝒆(𝑥𝑥)), Equation 3.14 

along with the tangent stiffness of each axial reinforcing cord, 

𝑬𝑬𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕(𝑥𝑥) = 𝑬𝑬𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕(𝑥𝑥, 𝒆𝒆(𝑥𝑥)). Equation 3.15 

The geometric array, 𝒆𝒆, is then used to calculate the cord component of the section 

stiffness matrix including all axial-bending and 𝑧𝑧-𝑦𝑦 bending coupling terms, 

𝒌𝒌𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅(𝑥𝑥) = 𝒆𝒆𝑇𝑇(𝑥𝑥)[𝑬𝑬𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕(𝒙𝒙)]𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅𝒆𝒆(𝑥𝑥). Equation 3.16 

The component [𝑬𝑬𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕(𝒙𝒙)]𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅 is the cord stiffness arranged as an 𝑚𝑚 by 𝑚𝑚 diagonal 

matrix, rather than a vector of length 𝑚𝑚.  The shell portion of the section stiffness matrix 

is taken as, 
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𝒌𝒌𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑔𝑔2𝜋𝜋𝑝𝑝 0 0 0 0

0 𝐸𝐸𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑔𝑔𝜋𝜋𝑝𝑝3 0 0 0
0 0 𝐸𝐸𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑔𝑔𝜋𝜋𝑝𝑝3 0 0
0 0 0 𝐺𝐺𝐿𝐿𝐻𝐻𝜋𝜋𝑝𝑝 + 𝑝𝑝𝜋𝜋𝑝𝑝2 0
0 0 0 0 𝐺𝐺𝐿𝐿𝐻𝐻𝜋𝜋𝑝𝑝 + 𝑝𝑝𝜋𝜋𝑝𝑝2⎦

⎥
⎥
⎥
⎥
⎤

. 

Equation 3.17 

The usual shear correction factor of two for a thin walled circular section is used in the 

calculation of the section shear stiffness.  Including the pressure resultant in the shear 

stiffness terms accounts for the work done by the internal inflation pressure undergoing a 

volume change due to shear deformation (Fichter 1966, Davids and Zhang 2008).  

Although the contribution of this stiffness term is minimal for braided, inflatable 

members, especially when compared to a woven inflatable member, it is included here 

for completeness.  The five by five section stiffness matrix, 𝒌𝒌(𝑥𝑥), is the sum of 𝒌𝒌𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅(𝑥𝑥) 

and 𝒌𝒌𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆(𝑥𝑥).  The current section flexibility matrix, 𝒇𝒇(𝑥𝑥), is found by inversion of the 

section stiffness matrix. 

The section resisting forces are calculated as the sum of cord and shell forces.  The initial 

force in the cords due to inflation pressure be accounted for when calculating the axial 

resisting force, 

𝑫𝑫𝒄𝒄(𝑥𝑥) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧�𝑻𝑻𝑧𝑧(𝑥𝑥)

𝑚𝑚

𝑧𝑧=1

− 𝑝𝑝𝜋𝜋𝑝𝑝2(1 − 2𝑐𝑐𝑐𝑐𝑡𝑡2𝛽𝛽)

−�𝑻𝑻𝑧𝑧(𝑥𝑥)𝑝𝑝 sin𝜶𝜶𝑧𝑧

𝑚𝑚

𝑧𝑧=1

�𝑻𝑻𝑧𝑧(𝑥𝑥)𝑝𝑝 cos𝜶𝜶𝑧𝑧

𝑚𝑚

𝑧𝑧=1
0
0 ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

+ 𝒌𝒌𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆(𝑥𝑥)𝒅𝒅(𝑥𝑥). 

Equation 3.18 
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The section resisting forces interpolated from the element resisting forces will not 

generally be equal to the section resisting forces calculated using the section constitutive 

relationship.  The residual section deformation can be calculated as, 

Once all section quantities have been calculated the current element flexibility matrix and 

the element residual displacements can be determined by integrating over the element 

length, 

𝑭𝑭 = �𝒃𝒃𝑇𝑇(𝑥𝑥)𝒇𝒇(𝑥𝑥)𝒃𝒃(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐿𝐿

0

, 
Equation 3.20 

and 

A Gauss-Lobatto numerical integration scheme is employed following Spacone et al. 

(1996).  Although the Gauss-Lobatto integration scheme is less accurate than typical 

Gauss integration, the sections always include the element end points.  In a frame 

analysis with loading concentrated at the member ends, the maximum moment and 

therefore point of greatest material nonlinearity will be at an element end.  Including the 

ends of elements in the analysis as an integration point therefore improves the accuracy 

of the solution. 

The current element stiffness matrix (𝑲𝑲𝒆𝒆𝒆𝒆) in the local element coordinate system is found 

by inverting the element flexibility matrix (𝑭𝑭).  The total element resisting forces can 

then be updated using the previous element forces, 𝑸𝑸𝟎𝟎, 

𝝆𝝆(𝑥𝑥) = 𝒇𝒇(𝑥𝑥)[𝑫𝑫0
𝑔𝑔(𝑥𝑥) + 𝑑𝑑𝑫𝑫(𝑥𝑥) −𝑫𝑫𝒄𝒄(𝑥𝑥) ]. Equation 3.19 

𝒄𝒄 = �𝒃𝒃𝑇𝑇(𝑥𝑥)𝝆𝝆(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐿𝐿

0

. 
Equation 3.21 
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The element residual forces (𝑲𝑲𝒆𝒆𝒆𝒆𝒄𝒄) are included in Equation 3.22 so that they can be 

assembled into the global internal force vector and accounted for during global 

equilibrium iterations.  The unbalanced section resisting forces can be calculated for the 

next iteration by comparing the interpolation of element forces to the section equilibrium 

summations, 

𝑫𝑫𝒖𝒖(𝑥𝑥) = 𝒃𝒃(𝑥𝑥)𝑸𝑸 −𝑫𝑫𝒄𝒄(𝑥𝑥). Equation 3.23 

The unbalanced section forces are passed to the next global FE iteration where they are 

again applied to Equation 3.7 at the element level.  Upon global convergence of the 

loading increment the residual section deformations will be sufficiently minimized and 

the element will be brought into a state of compatibility. 

After application of the state determination process the component of torsional stiffness 

can be included in the element stiffness matrix, turning the five by five axial and flexural 

stiffness matrix into a six by six matrix including all of the local element degrees of 

freedom, 

𝐾𝐾𝑡𝑡𝐻𝐻𝑔𝑔𝑔𝑔𝑧𝑧𝐻𝐻𝑡𝑡 = 𝐺𝐺𝐿𝐿𝐻𝐻
2𝜋𝜋𝑝𝑝3

𝐿𝐿
. 

Equation 3.24 

The torsional behavior of the element is uncoupled from the axial, flexural and shear 

response.  Modeling the torsional response of the shell as uncoupled from the shear 

response and the axial response of the fibers is consistent with a small strain analysis for 

a straight member.  In the case of large torsional deformations or in the case of a curved 

beam, decoupling the torsional response from the basic system may not be justified 

whereas an axial strain may be caused by warping effects or from torsion-bending 

𝑸𝑸 = 𝑸𝑸𝟎𝟎 + 𝒅𝒅𝑸𝑸 − 𝑲𝑲𝒆𝒆𝒆𝒆𝒄𝒄. Equation 3.22 
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coupling respectively.  The torsional restraining force is added to the end of the element 

resisting force vector, 

𝑀𝑀𝑥𝑥 = 𝐾𝐾𝑡𝑡𝐻𝐻𝑔𝑔𝑔𝑔𝑧𝑧𝐻𝐻𝑡𝑡𝜃𝜃𝑥𝑥. Equation 3.25 

The current element tangent stiffness matrix (𝑲𝑲𝒆𝒆𝒆𝒆) and element resisting forces (𝑸𝑸) can 

then be sent back to the corotational formulation (Crisfield 1990) for incorporation into 

the global stiffness matrix along with the geometric stiffness matrix, and the creation of 

the internal force vector, respectively.  Global Newton iterations continue until the 

externally applied forces are in equilibrium with the internal element forces, within a 

specified tolerance. 

3.2.3 Convergence of Element 

In order to check convergence of the element the critical buckling capacity (𝐹𝐹𝑐𝑐𝑔𝑔), of a 

linearly elastic, shear deformable member with both ends pinned was compared to an 

analytical solution from Fichter (1966) with no internal inflation pressure, 

𝐹𝐹𝑐𝑐𝑔𝑔 =
𝐸𝐸𝐸𝐸 𝜋𝜋

2

𝐿𝐿2 𝐺𝐺𝑁𝑁𝑣𝑣

𝐸𝐸𝐸𝐸 𝜋𝜋
2

𝐿𝐿2 + 𝐺𝐺𝑁𝑁𝑣𝑣
 

Equation 3.26 

The length of the column (L) was taken as unity and the stiffness product, 𝐸𝐸𝐸𝐸, was taken 

as 𝜋𝜋−2.  As can be seen from Equation 3.26, as the shear stiffness of the section (𝐺𝐺𝑁𝑁𝑣𝑣) 

goes to infinity, 𝐹𝐹𝑐𝑐𝑔𝑔 converges to the critical buckling factor for an Euler-Bernoulli 

column, which is unity for the parameters used here.  The two-dimensional finite element 

model, shown in Figure 3.3, consists of a member with one end restrained from 

translating and the other end restrained from translating perpendicular to the axis of the 

member.  An axial compression load was applied to the roller end of the member.  A half 
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sine wave perturbation was included in the initial geometry of the member such that the 

mid-span eccentricity was equal to 0.1% of the element length.  Figure 3.3 shows the 

convergence of the model for a varying number of nodes compared to the analytical 

solution, represented by the dashed lines (Equation 3.26). 

 

Figure 3.3.  Convergence of model to critical buckling load for a shear deformable 

member 

As can be seen from Figure 3.3, the model converges to the analytical solution.  Although 

a faster rate of convergence could be obtained by incorporating geometric nonlinearities 

into the flexibility formulation at the section level, a satisfactory solution can be obtained 

by simply refining the mesh. 
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3.2.4 Application 

With the development of the beam-based FE modeling methodology complete it was 

implemented in a general-purpose FE modeling code developed in the MATLAB 

environment and applied to the analysis of inflatable members and structures.  Chapter 4 

documents the validation studies performed on component level tests of straight tubes 

and individual torus structures while Chapter 5 presents validation studies performed on 

the full HIAD structure.  The tools are then further extended to the analysis of full-scale 

HIAD structures in Chapter 6. 
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Chapter 4 

FINITE ELEMENT MODEL VALIDATION: COMPONENT LEVEL 

This chapter presents the results of studies conducted in order to validate the beam-based 

FE modeling methodology that was developed in the previous chapter.  The straight tube 

tests conducted by Clapp et al. (2016b) are modeled using both the beam-based FE 

modeling methodology, and a high-fidelity shell-based FE modeling methodology.  The 

beam-based modeling tools are then extended to model the torus load tests that were 

detailed in Whitney (2016).  Chapter 5 contains additional validation studies in which the 

beam-based modeling tools are applied to the analysis of full HIAD pressure tub tests 

conducted by NASA (Swanson et al. 2015). 

4.1 Analysis of Straight Tube Testing 

An important step in the development of the beam-based FE modeling methodology for 

inflatable, braided, slender members with discrete axial reinforcing cords is to compare 

modeling results to component level tests and shell-based FE modeling techniques.  In 

the following section the beam-based FE modeling techniques are applied to the analysis 

of straight tube four-point bending tests performed on specimens with varying braid 

angles, inflation pressures and in multiple orientations. 

4.1.1 Description of Tests 

An extensive experimental campaign to acquire the four-point bend load deformation 

behavior of straight, inflatable, braided tubes with discrete axial reinforcing cords was 

conducted along with the development of shell-based FE models, details of which can be 

found in Clapp et al. (2016b). 
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All of the test specimens had three axial reinforcing cords that were evenly spaced around 

the shell cross-section.  The angle of the braid, the internal inflation pressure and the 

orientation of the specimens were varied.  Figure 4.1 presents the straight tube four-point 

bend test configuration.  The ends of the beams were supported by rollers with a center of 

rotation located 350 mm down from the center of the inflated tube.  The distance between 

roller centers was 3,280 mm.  Two loading straps were centered in the clear span and 

located 1,040 mm apart (center to center).  A spreader beam was used to transfer the load 

from the actuator to the two strap sets.  The displacement of the member at the mid-span 

was recorded using string potentiometers and a photogrammetry system. 

 

Figure 4.1.  Straight tube four-point bend test configuration. 

4.1.2 Shell-Based Finite Element Model 

A three-dimensional shell finite-element model was developed using the commercial FE 

software package ABAQUS (2014) to predict the response of the four-point bend test 

specimens.  The inflatable tube was modeled with element type S8R, an 8 node reduced 

integration quadratic shell element.  The shell section was defined as a laminate 
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consisting of three lamina.  The shell material was defined as a linearly elastic, 

orthotropic material, as was previously described in Chapter 2.  The Technora cords, 

which are integral to the inflated tube, were modeled with element type B32, a 3 node 

quadratic beam element.  The cord nodes were superimposed onto the shell nodes.  The 

cord beam section was defined generally by specifying the area, bending moments of 

inertia and torsional rigidity of the section.  The axial behavior of the beam elements 

were defined as a tension only material by means of a direct force-strain input table from 

material testing, also described in Chapter 2.  All geometric parameters were based on as-

built conditions and all properties input to the model were from independent component-

level testing (see Table 2.2). 

In four-point bend testing of the inflatable tube and in tension testing of the cord material 

(Figure 2.11), it was observed that the first application of loads produces results that are 

significantly less stiff than subsequent loading cycles.  Results were repeatable after the 

second load application.  Because each inflated test specimen was subjected to multiple 

loading cycles at different inflation pressures and orientations, the third load cycle is 

reported here for consistency across all specimens and orientations.  The third cord 

tension loading cycle was also used in developing the cord force-strain relationships used 

in the FE models.  Contact pairs were defined between the loading strap and the inflatable 

tube, and also between the rigid support cradle and the inflatable tube.  Contact 

conditions between the beam and loading strap and the beam and support cradle were 

modeled in order to accurately capture actual test boundary conditions.  

In order to reduce the computational expense of the model, half symmetry was employed.  

The nodes in the center of the beam are constrained from moving in the global Z 
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direction, as defined by the triad in Figure 4.2.  The nodes are further constrained from 

rotating about the X or Y axes.  The end of the beam was supported by a rigid cradle on a 

roller.  The motion of the cradle was tied to a point located below the cradle that was 

coincident with the actual center of rotation of the support wheel in the test assembly.  

The roller was constrained from translating in the X or Y direction, and rotating about the 

Z axis.  The free end of the inflatable tube was modeled as rigid, the behavior of the tube 

at the free end was not of interest.  There was over one tube diameter between the rigid 

support and the rigid free end of the beam to eliminate the influence of any unwanted 

edge effects. 

 

Figure 4.2.  Half-symmetric 3D finite-element model of straight tube bending test (saddle 

support on left and applied loading through straps on right). 

The model utilizes three loading steps in the analysis process: an inflation step, a gravity 

step and finally a loading step.  In the inflation analysis step loads are applied to the tube 

to simulate the inflation process.  The internal pressure was modeled as a distributed 

follower force.  The end resultant was applied to the rigid tube end as a shell edge load 

with a total magnitude equaling the pressure end resultant.  Modeling the internal 
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pressure as distributed follower forces, as opposed to an encapsulated ideal gas, was 

reasonable in this case whereas the pressure was constant over the entire quasi-static test.  

A large displacement analysis was employed.  

The second analysis step simply applies an acceleration to the model equal to the 

acceleration due to gravity.  Although the effect of self-weight was minimal in this test 

configuration (the inflatable tubes have a mass of about 4.5 kg), it was included to 

increase the realism of the model.  As in the case of the inflation step, a large 

displacement analysis was employed.  

In the final analysis step, force was applied to the strap ends to simulate the loading of the 

inflated tubes.  The strap ends are constrained to only allow translation in the global Y 

direction, the direction of the applied force.  The loading was transferred to the inflatable 

tube through contact, as in the real structure.  A large displacement analysis in 

conjunction with an arc-length or Riks solver was employed.  The arc-length solver 

allows the analysis to overcome any instability caused by wrinkling of material above the 

neutral axis of the beam and to obtain the post-wrinkling behavior of the specimen. 

The displacement solution was generally the solution of interest.  Converged solutions 

were obtained with relatively large elements having approximately 75 mm sides.  A 

typical model of an inflatable tube consisted of approximately 1,350 nodes and 450 

elements.  A screenshot of the finite-element model at peak displacement is shown in 

Figure 4.3.  The yellow arrows indicate the magnitude of tensile forces in the cords.  Note 

that the top cord forces are less than the bottom cord forces due to the reduction from 

applied bending loads, but are still in tension since load loss due to the applied bending 
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moment was less than the load due to initial inflation.  Comparisons with experimental 

results, and with the beam-based FE modeling approach are presented in Figure 4.5 and 

Figure 4.6, along with the predictions from the beam-based model described next. 

 

Figure 4.3.  Deformation of shell-based finite element model (red to blue colors indicate 

high to low deflections, respectively; yellow arrows represent the magnitude of tensile 

cord load). 

4.1.3 Beam-Based Finite Element Model 

The beam-based FE modeling tools that were developed in Chapter 3 were applied to the 

analysis of the straight-tube four-point bend test.  FE model inputs were measured 

directly from test specimens, rather than utilizing nominal values and the third load cycle 

was utilized for the development of all material models, as was the case for the 

development of shell-based FE models.  The measured geometric and material inputs that 

were used in the analyses are presented in Table 2.2. 

Global load controlled Newton iterations were utilized and adaptive load stepping was 

implemented in all analyses (Clarke and Hancock 1990).  To further reduce computation 

time, half symmetry of the four-point bend test was employed.  A rigid vertical link was 
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used to model the effect of the roller offset from the tube centerline.  The bottom of the 

link, or roller, was constrained from translating vertically or out-of-plane, and from 

rotating about an axis parallel with the beam (Figure 4.4).  The components of rotation 

perpendicular to the axis of the beam were constrained at the plane of symmetry, along 

with displacement parallel to the longitudinal axis of the beam.  Ten elements utilizing 

three integration points were utilized in all analyses.  The mesh was found to be 

acceptably refined and a converged load-displacement curve could be obtained with a 

coarser mesh. 

 

Figure 4.4.  Beam model of straight tube test. 

4.1.4 Comparison of Experimental, Shell and Beam-Based Finite Element Results 

For the current study two inflatable tube test specimens were analyzed, one with a 

nominal 60° braid angle and one with a nominal 71° braid angle.  Both specimens were 

analyzed in two configurations at four inflation pressures (34, 69, 103 and 138 kPa), for a 

total of 16 analyses.  In the one-cord-up configuration 𝜶𝜶, the location of the cords 

measured counter-clockwise from the horizontal axis, was taken as [90°, 210°, 330°].  In 

the two-cords-up configuration 𝜶𝜶 was taken as [30°, 150°, 270°]. 
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Figure 4.5 and Figure 4.6 present the load versus mid-span displacement test results and 

analyses of the nominal 60° and 71° specimens respectively.  Beam FE modeling results 

were compared with experimental and shell-based FE results.  As can be seen from the 

modeling results, the beam FE modeling methodology captures the initial stiffness of the 

experimental results, the wrinkling load, the soft transition to the wrinkled state and the 

post-wrinkling stiffness with reasonable accuracy.  The wrinkling load, which 

corresponds with a dramatic reduction in beam stiffness that occurs when the top-most 

cord(s) lose pretension due to inflation, is accurately captured by the model and the 

response is tracked well beyond the point of initial wrinkling.  It is especially important 

to note the significant drop in wrinkling load with braid bias angle and inflation pressure 

which is correctly predicted by the model. 

 

Figure 4.5.  Comparison of experimental results with shell and beam FE modeling for 

nominal 60° straight tube four-point bend tests. 
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Figure 4.6.  Comparison of experimental results with shell and beam FE modeling for 

nominal 71° straight tube four-point bend tests. 

Figure 4.7 illustrates the load deformation response of a representative analysis (60° braid 

angle, two cords up at 138 kPa of inflation pressure).  The deformed configuration is 

shown for every 0.2 kN of applied load.  As can be seen from the plot, most of the 

deformation occurs at the end of load application process. 

 

Figure 4.7.  Trace of deformed member for every 0.2 kN of applied load, 60o braid angle, 

138 kPa inflation pressure, 2 cords up. 

Figure 4.8 presents comparisons of initial stiffness of the four-point bend test with shell 

and beam FE models.  The initial stiffness was calculated as a least squares fit to the 

initially linear portion of load displacement curves (Figure 4.5 and Figure 4.6), taken at 
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load levels below 50% of the load corresponding to the knee in the load-displacement 

response.  As can be seen from Figure 4.8, both the shell and beam FE models reasonably 

track the increase in initial stiffness with an increase in pressure.  The beam FE modeling 

results tend to predict a somewhat stiffer response than is observed with testing or 

predicted by the shell FE model.  However, the beam FE model would be expected to 

predict a stiffer load displacement response due to its inherent kinematic assumptions of 

plane sections and first-order shear deformation theory, and since it cannot capture three-

dimensional deformations of the shell. 

 

Figure 4.8.  Comparison of initial stiffness. 
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calculated as a linear fit to the four-point bend load displacement curve after the onset of 

wrinkling to 120 mm of displacement.  As with the initial stiffness, the change in post 

wrinkling stiffness is generally tracked by both the shell and beam FE models.  In this 

case the shell FE model predicts a slightly stiffer response than the beam FE model.  This 

may be due to the shell model accounting for the small change in radius that occurs post 

wrinkling.  When the member wrinkles the NA drops from the initial, geometric centroid 

of the shell, putting more of the cross sectional area into compression.  The average 

radius of the cross section will then increase slightly due to the Poisson effect.  Although 

the pressure-volume change work that occurs as a result of this change in radius is 

accounted for in the beam-based FE model, the slight increase in section modulus is not. 

In the case of the 71° beam the post wrinkling stiffness of the tests seems to be 

approximated by the both the shell and beam FE models, but not tracked with change in 

pressure, as is the case for the 60° specimen.  The discrepancy between measured and 

predicted post wrinkling stiffness is due to the measurement of the shell extensional 

stiffness.  The post wrinkling stiffness is dominated by the extensional stiffness of the 

shell.  As can be seen from Table 2.2, the measured value for 𝐸𝐸𝐿𝐿 for the 71° beam does 

not increase with pressure.  Further, the magnitude of the change in longitudinal stiffness 

that results from a change in braid angle as the shell undergoes an extension decreases as 

the braid angle increases (Equation 2.30).  The post wrinkling stiffness of the 71° beam 

may improve with the pressurized tension testing of a more representative specimen or by 

utilizing mean values from a larger tension testing data set. 
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Figure 4.9.  Comparison of post wrinkling stiffness. 

Although both the shell and beam-based FE models closely follow the experimental 

results, the shell FE models do so with a significant increase in the number of degrees of 

freedom.  The beam model has approximately 150 degrees of freedom versus 8,000 

degrees of freedom for the shell-based FE model.  Further, the shell-based model 

incorporates a number of multiple degree of freedom constraints and contact interactions.  

The beam FE models are able to accurately capture the response of the inflatable 

members across internal inflation pressures, braid angles and member orientations with a 

significant decrease in the number of degrees of freedom and model complexity. 
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4.1.5 Out-of-Plane Deformations 

Although the response of the members was primarily in-plane, out-of-plane deformations 

were also of interest and could be induced with some member configurations.  Significant 

out-of-plane deformations were observed in some cases during testing.  The out-of-plane 

deformation was driven by small manufacturing imperfections in the members, as is 

discussed below.  Including initial imperfections in the model allows the analysis to 

capture the full three-dimensional response of the specimens and illustrates the sensitivity 

of these structures to the presence of imperfections, and the importance of capturing the 

full three-dimensional response.  Also of interest was the response of the member with 

the symmetric axis of the cross-section oriented horizontally, rather than vertically as was 

the case for previous straight tube analyses.  Orienting the cross-section of the member in 

this manner could allow for comparisons to future torus configurations, where the 

symmetric axis of the member cross-section is also oriented horizontally. 

During four-point bend testing of the straight, inflatable tubes out-of-plane deflections of 

approximately 40 mm occurred, although all loading remained in-plane.  These out-of-

plane deflections were not initially noticed visually during the test, but were captured by 

digital image correlation data gathered during testing.  Out-of-plane deflections were 

particularly pronounced in the two cords up configuration after the wrinkling load had 

been reached.  As the inflatable tube was loaded the top cords began to lose their 

pretension while the tensile force in the bottom cord increased.  Once the strain in the top 

cords became negative the member had lost almost all lateral stiffness and small 

imperfections or a misalignment of the bottom cord axis with the longitudinal axis of the 

beam caused by a slight twisting of the member could cause relatively large out-of-plane 
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deflections; this phenomenon is essentially a lateral buckling instability.  Figure 4.10 

illustrates the cord misalignment that occurred during testing of the straight tube 

specimens on one of the support saddles.  Shown is the bottom cord offset from the white 

tic mark indicating dead center of the support.  When a twist was observed down the 

length of a beam, efforts were made to ensure that the bottom cord straddled opposite 

sides of the dead center mark on opposite sides of the beam with the goal of positioning 

the cord as close as possible to the bottom of the cross-section at mid-span. 

 

Figure 4.10.  Cord misalignment during straight tube four-point bending test. 

In the case of the tube-twist analysis the entire beam was modeled.  In the shell model an 

additional step was incorporated that enforced a rotation at one end of the beam equal to 

1°.  All other boundary and loading conditions were the same as in previous analysis, 

except that symmetry was not employed.  In the beam model a total of 20 elements were 

used, each with three integration points, since symmetry boundary conditions would 

unrealistically restrain the beam.  The boundary conditions of the roller end of the beam 

(Figure 4.4) were applied to both ends of the beam.  An additional translational constraint 

parallel with the longitudinal axis of the beam was added at one end of the member to 
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fully constrain the model.  Figure 4.11 shows both the experimental, and shell and beam 

based FE modeling results of the analysis. 

 

Figure 4.11.  In-plane and out-of-plane load deformation behavior for a 71° beam at 138 

kPa of inflation pressure with two cords up and a 1° twist. 

As can be seen from Figure 4.11, the beam FE model response follows the three-

dimensional response of the straight tube experimental results closely.  There is minimal 

out-of-plane deflection until the onset of wrinkling, when the top cords lose stiffness.  

Following the wrinkling of the beam, the off-axis bottom cord drives out of plane 

deflection to magnitudes similar to those observed in testing.  In the beam FE model and 

the experimental setup, the torsional stiffness of the tube restrains the out-of-plane 

deflection.  In the experimental setup and shell-based FE model the tube is further 

restrained to some extent by the loading strap that was used to apply the vertical load. 

Also analyzed was the inflatable member in a third orientation, with the three cords 

located at 𝜶𝜶 = [60°, 180°, 300°].  The symmetric axis of the cross-section was oriented 

vertically, rather than horizontally, as was the case for the previous analyses.  The 
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horizontal orientation of the member is of interest because two of the three cords will be 

aligned vertically, as in the case of a torus member.  With the exception of the orientation 

of the member, the beam-based FE model that was developed was identical to the twisted 

member analysis.  The braid angle of the member was maintained at 71° and the internal 

inflation pressure was 138 kPa.  A load test of the member in the horizontal orientation 

was not conducted.  The predicted response of the member is shown in Figure 4.12. 

 

Figure 4.12.  In-plane and out-of-plane load deformation behavior for a 71° beam at 138 

kPa of inflation pressure with the symmetric axis of the member oriented horizontally. 

The out-of-plane displacement of the member is again essentially zero pre-wrinkling; 

with the symmetric axis of the three cords oriented horizontally the centroid of member is 

still located at the geometric center.  The wrinkling load was lower than the wrinkling 

load of the member in the two-cord-up configuration, but was higher than the one cord up 

configuration.  The post wrinkling stiffness both in and out-of-plane was higher than the 

post wrinkling stiffness for both the one and two cords up configurations.  As the top 

cord lost stiffness the two remaining cords were offset both horizontally and vertically 

and provided additional geometric stiffness when compared to the one and two cords up 

configurations. 
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4.2 Analysis of Torus Testing 

In order to understand and to be able to predict the structural response of the HIAD 

system, the behavior of individual tori must be understood.  The beam-based FE 

modeling methodology that was developed in Chapter 3 for slender, inflatable, braided 

members with axial reinforcing cords is applied to the analysis of toroidal components.  

The torus load testing and experimentation are fully described in Whitney (2016) and 

additional comparisons are made in Young et al. (2017b). 

4.2.1 Background 

Previous research on the structural response of inflatable tori is generally limited to 

analytical studies.  Weeks (1967) performed an analytical investigation on the buckling 

of inflatable, shear deformable tori subject to both conservative and non-conservative 

uniform external loading.  Le van and Wielgosz (2007) used the numerical test cases of a 

pinched toroidal beam and a toroidal beam subject to a radial compressive force to 

partially validate the development of a beam-based finite element (FE) modeling 

approach for isotropic inflatable members.  Wang et al. (2009) applied the method for 

analyzing slender, inflatable members developed by Le van and Wielgosz (2005) to the 

load deformation analysis of an inflatable frame that included toroidal members.  

Roychowdhury and DasGupta (2015a) investigated the response of hyperelastic toroidal 

membranes subject to a radial line load applied to the inner equator of the torus.  Various 

hyperelastic material models, deflated inner and outer radius ratios, and internal inflation 

pressures or constant amounts of gas were analyzed.  Berger et al. (2004) performed a 

limited experimental investigation into the out-of-plane static response of an inflatable 

torus composed of twelve straight segments. 
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Others have also studied the dynamic response of inflatable tori analytically and 

computationally.  Investigations include those performed by Smalley et al. (2001), Raouf 

and Palazotto (1996), Jha (2002) and Pazhooh et al (2011a and 2011b), all using a variety 

of modeling methodologies and material models.  The inflation process of toroidal 

members has been investigated by Tamadapu and DasGupta (2013 and 2014) and by 

Roychowdhury and DasGupta (2015a and 2015b). 

Like tori, inflatable arch systems are subjected to combined bending, axial compression 

and potentially torsion under simple loading regimes.  The study of inflatable arches 

tends to be more grounded in experimental methods than tori, likely due to the simpler 

fixed or pinned boundary conditions at both ends.  Guo et al. (2015) experimentally and 

numerically investigated the response of a full-scale inflatable terrestrial structure 

composed of inflatable arches and beams.  The inflation of individual arches was also 

investigated experimentally and numerically by Li et al. (2016).  The inflatable members 

were modeled using membrane elements and pressure follower forces to simulate 

inflation pressure in both cases.  Molloy et al. (1999) numerically investigated various 

loading regimes on a pair of leaning arches that were in contact at their apex.  Likewise, 

Plaut et al. (2000) derived the equations for a pressurized membrane arch and applied 

various loading regimes to investigate the in-plane response.  Roekens et al. (2016) 

experimentally and numerically investigated the response of the ‘tensairity’ arch that 

combines both rigid and inflatable components by attaching aluminum flanges to the top 

and bottom outer sections of the inflatable member with a circular cross section. 

Davids (2009) investigated the response of woven fabric pressurized arches 

experimentally and numerically.  A two-dimensional beam element was used to model 
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the response of the inflatable members, work due to inflation pressure was incorporated, 

and nonlinear moment-curvature relationships for varying levels of axial load were used 

to treat the tension only nature of the pressurized fabric.  Brayley et al. (2012) 

investigated the response of braided fabric arches with externally bonded reinforcing 

straps.  Moment-curvature relationships were again used to model the response of the 

members, an approach that does not capture biaxial bending coupling and axial-bending 

coupling that can occur.  In all cases only the in-plane response of the arches was 

analyzed, although out-of-plane deformations were either observed or prevented from 

occurring with bracing. 

Obtaining the structural response of real, inflatable, braided torus structures with axial 

reinforcing presents a significant increase in experimental and analysis complexity when 

compared to straight or arch members.  The minimally restraining boundary conditions of 

a torus structure present unique challenges when compared to an arch with pinned or 

captured ends.  The combined biaxial bending, axial and torsional response must be taken 

into account along with geometric and material nonlinearities and real, measured 

geometry. 

The response of an inflatable, toroidal member subjected to both out-of-plane and in-

plane loading was investigated using the modeling tools developed in Chapter 3 and 

partially validated using straight-tube test data in Section 4.1.  The combined loading 

case was selected because it represents the most complex loading state for the inflatable 

member and best serves to demonstrate the model response.  Demonstration of the beam-

based FE modeling approach for the application of torus loading represents a significant 

jump in complexity from the modeling of straight tube inflatable members as the torus 
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structure will experience a state of combined bending and axial loading.  Given a straight 

beam element formulation is utilized to model a curved structure, a sufficient mesh 

refinement is employed to ensure the initial curvature is adequately captured. 

In the following section a torus loading methodology that applies both out-of-plane and 

in-plane loading is described.  The torus load test configuration is also described, along 

with the test specimen that was used for model validation efforts.  The beam-based FE 

model is described in detail and model comparisons with the experimental results are 

made. 

4.2.2 Torus Experimental Setup 

In this section the torus experimentation is described.  Additional details on the 

development of torus load testing can be found in Clapp (2017).  Whitney (2016) gives 

additional details of the experimental setup and a description and results of a much more 

extensive test matrix including other torus configurations.  Both the load frame used in 

the experimentation described here and many of the experimental methods were adapted 

from previous work with inflatable tori conducted by NASA researchers (Levine 2017). 

The torus test load frame was designed to apply in-plane, radial loading to the inflatable 

torus at discrete loading points.  The steel load frame consisted of horizontal top and 

bottom circular plates, plate support posts and a floor reaction plate, as shown in Figure 

4.13. 
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Figure 4.13.  Torus test configuration. 

Sixteen electric actuators were mounted vertically around the outer perimeter of the floor 

reaction plate.  Pairs of actuators applied load to the top and bottom of the torus cross-

section at eight different circumferential locations.  The first loading point was located at 

11.25° measured counter-clock-wise from the reference axis shown in Figure 4.14.  

Cables attached to the actuators passed over a pulley attached to the bottom circular 

reaction plate and radially out towards the inflatable torus member.  Each cable was 

connected to a 50 mm wide fabric strap that was wrapped and bonded around the 

inflatable torus and returned back towards the load frame.  A second cable was attached 

to the other end of the strap, returned radially to the load frame and sent through a pulley 

on the top circular reaction plate where it then connected to the second actuator in a pair.  

Each loading cable included an inline load cell and a string potentiometer that was 

attached to the cables on the radial side of the pulley to measure radial displacement. 
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Figure 4.14.  Photogrammetry view of test configuration. 

The inflated torus was supported vertically by four test stands evenly spaced around the 

test setup.  The diameter of the torus supports was 570 mm and the support centers were 

located at 34°, 124°, 214° and 304°.  Two layers of peel ply release fabric were placed 

between the supports and the torus to minimize friction. 

The location and movement of the individual photogrammetry points (seen in Figure 

4.14) in three-dimensional space were tracked throughout the duration of an individual 

test.  The photogrammetry system took pictures of the experimental setup at a rate of 2 

Hz.  An algorithm was developed to determine the location of the center of the torus 

cross-section at locations around the circumference of the torus based on the location of 

the somewhat arbitrarily placed photogrammetry points located on the surface of the 

torus (Clapp 2017).  In this manner the precise location of the torus centerline was 

tracked throughout the duration of the test for comparison to numerical models. 
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4.2.3 Description of Specimen and Test 

The test article used for model validation purposes was designated as T3AP-3 in Whitney 

(2016).  The geometry is representative of the third torus in the six-meter major diameter 

HIAD structure that was experimentally investigated by NASA researchers (Cassell et al. 

2013).  The material system consists of a braided Technora fiber shell with an 

impermeable urethane gas bladder and is identical to the material system investigated in 

Clapp et al. (2016a and 2016b) and in previous validation studies.  The minor radius of 

the inflated torus is nominally 170 mm and the braid angle is nominally 71°.  The average 

braid angle, however, was determined to be 69.5° and varied from an average braid angle 

of 71.8° measured on the inside equator of the torus to 67.4° measured on the outside 

equator of the torus at 137 kPa of inflation pressure.  The average braid angle was within 

0.1% of these values at the lowest inflation pressure of 34 kPa.  Two Technora axial 

reinforcing cords, identical to those detailed in Clapp et al. (2016b), were nominally 

located at ±60° from the inside equator of the torus, as illustrated in Figure 4.15. 

 

Figure 4.15.  Torus and cross-section geometry. 

In order to induce significant out-of-plane deformation a torus load test was performed at 

103 kPa of inflation pressure.  Two sets of hanging weights (2.1 kN each), were initially 
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applied at opposing points on the torus (at 78.75° and 258.75° measured from the 

reference axis shown in Figure 4.14).  After application of the out-of-plane hanging 

weights the in-plane loading commenced.  Load control was used initially to apply a 44.5 

N preload to all of the cables.  Once the cables were all properly loaded to the target 44.5 

N preload, the displacements of the cables ends were controlled with a linear ramp up to 

the target cable end displacement at a rate of 12.7 mm per minute. 

4.2.4 Analysis 

In this section the modeling strategy is described along with the details and parameters of 

the study performed to partially validate the modeling approach.  Developing confidence 

numerical simulations can produce reasonable predictions of the structural response of an 

inflated torus to loading is an important step in gaining confidence in the predicted 

response of a full HIAD system. 

4.2.4.1 Description of Torus Modeling 

The pressure dependent axial and shear moduli of the braided shell material were 

obtained through pressurized tension-torsion testing of inflatable specimens with 

identical material and geometry as in the present study (Clapp et al. 2016a).  The 

extensional and shear properties utilized were 20 and 420 N/mm respectively and include 

the effect of the impermeable bladder and the geometric stiffening effects that occur 

when the inflated shell undergoes axial deformation due to a braid angle change (e.g. see 

Chapter 2). 

The cross-section of the member was modeled with two cords at ±60° from the inner 

equator of the torus, as shown in Figure 4.15.  The cord load-strain response was obtained 
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through tension testing of comparable Technora braided cords.  As with previous 

modeling efforts, the load versus strain response of the cords was taken as the unloading 

response at loads below the force in the cords due to inflation pressure, while the loading 

response was assumed at load levels above the force in the cords at inflation pressure and 

is based on Figure 2.11. 

The initial geometric shape of the inflated structure (defined in the 𝑅𝑅, 𝜃𝜃 and 𝑍𝑍 directions 

per Figure 4.14) was imported directly from photogrammetry measurements of the 

inflated torus before the application of any load.  No initial shape data were collected on 

the orientation of the cross-section.  As such, the cross-section was assumed to be 

oriented vertically before the application of external loads (with the cords remaining in 

the nominal locations at ±60° from the inner equatorial axis of the torus). 

The four support stands that the torus rested on were modeled as bilinear vertical springs 

supporting the torus elements from below.  The springs had a relatively high compression 

stiffness (0.5 to 1.2 kN/mm) to limit inter-penetration between the support and torus and 

a small tension stiffness to allow lift-off (0.18 N/mm).  In the out-of-plane loading test a 

small amount of local compression was observed where the torus contacted the support 

edge.  As such, the compression stiffness of the vertical springs was chosen to obtain the 

same amount of torus/support inter-penetration observed in testing.  Each support was 

modeled with one spring at each edge of the support (located 570 mm apart).  In this 

manner the torus can contact one or both edges of the support, as in the case of the 

experimental setup.  At the location of the torus supports, the torus elements were further 

constrained by adding soft tangential and radial springs.  Although these elements could 

be used to approximate the contact friction between the torus and support, the spring 
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stiffness was kept low enough (0.18 N/mm) to not influence the response of the torus 

while still providing sufficient numerical constraint to avoid a singular stiffness matrix. 

The radial loading cables were attached to the torus by means of rigid link elements.  

These link elements connected the torus elements, located at the centerline of the inflated 

torus, to the cable ends and were the length of the minor radius of the torus.  In this 

manner the loading cables were capable of imparting torsional loading to the torus.  

Radial cable elements returned the link element ends to location of the torus load frame 

pulleys.  The response of the cable elements is described in more detail below.  The free 

cable element ends were constrained vertically and tangentially with stiff axial springs 

(1.75 kN/mm).  The cable ends could then either be unconstrained radially, loaded 

radially or displaced radially. 

Figure 4.16 illustrates a wedge portion of the FE model including torus elements, link 

elements, loading cables and support and cable end boundary springs.  The mesh was 

refined in order to obtain a convergent load deformation response.  For all analyses 

approximately 100 elements, each with three integration points, were utilized to model 

the inflatable torus, although convergent results were obtained with significantly fewer 

elements. 
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Figure 4.16.  Beam-based FE model of torus load test wedge detail. 

Three analysis steps were utilized in modeling the out-of-plane torus load test.  In the first 

step the 2.1 kN out-of-plane loads were applied to the torus model at 78.75° and 258.75° 

acting downward.  In this step the cable ends were un-constrained and allowed to 

translate radially.  In the second step the 44.5 kN preload was then applied to each cable 

end acting radially inward.  In the third and final step the cable ends were displaced 

radially inward 43 mm by enforcing the locations of the cable end nodes.  In all load 

steps Newton iterations were utilized to ensure the model was in a converged state and 

adaptive load stepping was implemented in order to reduce computation time (Clarke and 

Hancock 1990). 

4.2.4.2 Cable Response 

One of the greatest challenges with the modeling of the inflatable torus load tests was 

providing the correct amount of constraint to the torus during loading.  When modeling a 

load controlled torus test the response of the torus was under-constrained; the 

fundamental ovalization mode of the torus was obtained for all load cases.  When 
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modeling a torus test where the displacements of the cable ends were controlled, the 

radial cable system becomes part of the loaded structure and the relative stiffness of the 

cable and strap assembly must be accounted for.  The radial cable loading assembly 

consists of steel cable, an inline load cell, connection fittings and the straps that are 

bonded to the outside of the inflated torus, all in series.  In addition to the relative 

compliance of the loading assembly, the cross-sectional compliance of the inflated torus 

shell must also be included as the torus member can be indented, compressed or undergo 

ovalization as the loading strap applies force to the torus. 

The nonlinear load-strain response of each cable assembly (including cables, connection 

hardware, load cells and the torus cross-sectional response) was obtained for the test.  

The portion of the test of interest was the uniform cable end displacement step.  During 

the 44.5 N preload portion of the test the relative compliance of the cable system is not 

relevant.  From photogrammetry data of the particular test of interest the displacement 

response of the torus centerline was extracted.  The strain of an individual cable assembly 

(𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻−𝑧𝑧) was then estimated per Equation 4.1. 

𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻−𝑧𝑧 =
�𝑈𝑈𝑔𝑔𝑐𝑐𝑟𝑟𝑧𝑧𝑐𝑐𝑐𝑐−𝑧𝑧𝑡𝑡𝐻𝐻𝑔𝑔𝑡𝑡𝑔𝑔 − 𝑈𝑈𝑔𝑔𝑐𝑐𝑟𝑟𝑧𝑧𝑐𝑐𝑐𝑐−𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻 �

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻−𝑧𝑧
. 

Equation 4.1 

The variable 𝑈𝑈𝑔𝑔𝑐𝑐𝑟𝑟𝑧𝑧𝑐𝑐𝑐𝑐−𝑧𝑧𝑡𝑡𝐻𝐻𝑔𝑔𝑡𝑡𝑔𝑔  represents the radial displacement of the torus at the location of 

the 𝑖𝑖𝑡𝑡ℎ cable attachment throughout the loading test.  The variable 𝑈𝑈𝑔𝑔𝑐𝑐𝑟𝑟𝑧𝑧𝑐𝑐𝑐𝑐−𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻  is the 

corresponding enforced radial displacement of the cable end throughout the loading test 

and 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻−𝑧𝑧 is the initial length of the cable from the torus centerline to the load frame 

pulley.  Cross-sectional rotation or 𝑍𝑍 displacement of the torus at the point of cable 

connection was not included in the estimation of cable assembly strain. 

85 
 



Using the force data taken directly from the inline load cell of the cable assembly the 

load-strain response of each individual cable for each test was constructed from 44.5 N to 

the final load level recorded in the cable.  The response of the cable assembly for the 

cable end displacement portion of the out-of-plane test is shown in Figure 4.17.  At load 

levels above the maximum value recorded during testing (which may be encountered 

during modeling of the torus), or when the load level in the cable decreased during the 

test, a tangent stiffness was utilized.  At load levels below 44.5 N a linear stiffness was 

used that was tangent with the load-strain response at 44.5 N of load.  As can be seen 

from Figure 4.17, the response of the individual cables varies considerably and exhibits a 

nonlinear force-strain relationship. 

 

Figure 4.17.  Cable assembly response. 

The nonlinear load-strain behavior derived from the torus load test was used to simulate 

the response of the corresponding cables in the torus models.  This method provided a 

means of approximating the torus loading while providing the correct amount of restraint 

to the torus structure.  As will be discussed subsequently, the torus model prediction of 
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load-deformation response was found to be particularly sensitive to the relative stiffness 

of the loading cables. 

4.2.4.3 Description of Test and Model Output 

Before presenting the results of testing and analysis, a description of the test output used 

for presentation of the results is worthwhile.  The load deformation response of the torus 

is shown as total cable load (calculated as the sum of all cable in-line load cell readings) 

versus the enforced cable end radial displacement (e.g. see Figure 4.19).  The load versus 

deformation response is presented starting from 712 N of total load (44.5 N of preload 

per cable) since the cable end displacement prior to the application of the 44.5 N preload 

is not informative.  As the controller works to eliminate slack from the cable and apply 

the correct amount of preload to the cable end the displacement tended to be large and to 

fluctuate. 

The total cable load versus enforced cable end displacement was chosen to illustrate the 

gross load-deformation response of the member, although other methodologies were 

considered.  Presenting the total cable load versus average torus radius is another way to 

present the load-deformation response; however, utilizing the average radius can obscure 

the higher frequency deformations that occur around the circumference of the torus.  

Likewise, utilizing a total cable load versus the radial displacement at a particular 

location on the torus can be informative for a particular test, but it is difficult to make 

comparisons as different tests may deform in different configurations and the location 

where the displacement is tracked is arbitrary.  Presenting the total cable load versus 

enforced cable end displacement provided a means of comparing the gross load 

deformation response of the loaded torus for varying inflation pressures and displacement 
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levels; however, this approach does neglect to capture the local variations that occur as 

the torus is loaded. 

In order to make comparisons with the response of the torus at a more local level, the 𝑅𝑅 

and 𝑍𝑍 centerline position of the torus versus 𝜃𝜃 location is also presented at various load 

levels (e.g. see Figure 4.20).  These plots present a more detailed view of the local 

response of the torus at various load levels; however, the load deformation response of 

the member is difficult to extract.  Both plot types can be used in conjunction to obtain a 

better understanding of the torus response at various load and displacement levels. 

4.2.4.4 Results and Model Comparisons 

In the test a rapid drop in load was observed after 43 mm of cable end displacement.  The 

drop in load was caused by a rapid de-bonding of the top internal reinforcing cord to the 

braided shell as the strap holding the out-of-plane load (at 79°) caused wrinkling and 

penetrated the braided shell (shown in Figure 4.18).  The response of the torus is not 

shown beyond 43 mm of cable end displacement as reliable displacement measurements 

were not recorded after the onset of out-of-plane loading strap penetration. 
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Figure 4.18.  Out-of-plane strap/torus penetration, before and after initial wrinkling 

(Whitney 2016). 

The results of analysis and comparisons to the out-of-plane torus load test are shown 

below.  Figure 4.19 presents the total cable load versus enforced cable end displacement 

results for the test and model with all nominal inputs, as described previously.  Also 

shown are results of additional analyses that will be discussed subsequently. 
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Figure 4.19.  Torus out-of-plane load testing with model comparisons. 

The nominal model appears to track the test results well, although it somewhat over-

predicts the final load.  The 𝑅𝑅 and 𝑍𝑍 position versus 𝜃𝜃 location of the modeling results is 

shown in Figure 4.20.  The 𝑅𝑅 and 𝑍𝑍 shape of the torus specimen and model is shown with 

no external load, after the application of the out-of-plane load and after the application of 

both the out-of-plane and in-plane loading. 
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Figure 4.20.  Torus test and nominal model 𝑅𝑅 and 𝑍𝑍 position versus 𝜃𝜃 location at no 

external load, after the application of the out-of-plane load and after the application of the 

in-plane load. 

The out-of-plane shape is captured by the model after the application of out-of-plane 

loading.  However, the shape of the torus after the application of in-plane cable end 

displacements is under-predicted (both in-plane and out-of-plane).  Although the initial 

shape of the torus prior to loading is utilized as the initial shape of the model, it is 

postulated that because at the time of testing the torus specimen had experienced 

significant load cycling that there was likely damage to the textile braid and bladder, or 

interface between the two, that was not accounted for by simply using the measured 

initial shape.  Progressive amounts of damage were visible in the stiffness and final load 

response as gradually increasing levels of cable end displacement were applied to the 

specimen (Whitney 2016), although no damage was visible on the torus structure.  The 
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analysis was rerun utilizing only the contribution of the braid gross extensional stiffness 

that is due to geometric changes that the braid experiences as it undergoes a longitudinal 

strain (7 N/mm).  The fiber tows that made up the braided shell were assumed to be 

capable of rotating freely.  The 𝑅𝑅 and 𝑍𝑍 position versus 𝜃𝜃 location results, Figure 4.21, 

agree with the tested response significantly more favorably. 

 

Figure 4.21.  Torus test and model 𝑅𝑅 and 𝑍𝑍 position versus 𝜃𝜃 location for torus with 

geometric contribution to braid stiffness only. 

The final shape is still somewhat under-predicted, but the model captures the gross in-

plane and out-of-plane response of the torus when loading is applied.  The magnitude of 

out-of-plane displacement increases in a similar manner for both the test specimen and 

modeling results from the out-of-plane load state to the in-plane load state; the model’s 

ability to predict the large load magnification is important.  As can be seen from Figure 
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4.19 the load deformation response of the torus is captured by the modified model 

reasonably well, with a final cable load discrepancy of less than 2%. 

An analysis was also conducted using the nominal torus model and rigid cables, rather 

than the cable response derived from torus testing (Equation 4.1 and Figure 4.17) to 

demonstrate the sensitivity of the results to the stiffness of the restraining cables.  

Although the final shape of the torus (not shown) is more in-line with the response of the 

model with a modified shell modulus, the final load is severely over-predicted (a 128% 

increase in final total cable load), as is evident in Figure 4.19.  The rigid cable model 

shown in Figure 4.19 illustrates the importance of utilizing a reasonable cable response.  

In the case of displacement controlled tests and analyses, the loading cables become part 

of the structural response.  The cables serve to apply boundaries to the torus and constrain 

the structure in a way that cannot be approximated by assuming the cables are rigid. 

Finally, the response of the nominal torus model was analyzed using load-controlled 

(rather than displacement controlled), solution schemes.  In the first case uniform cable 

loads were applied.  In the second case the measured cable loads from testing were 

applied to the corresponding cables in the model.  The final load level applied to the 

model agrees with the final load level measured in testing in both cases; however, the 𝑅𝑅 

position versus 𝜃𝜃 location results, Figure 4.22, show a significant difference between in-

plane torus test and model shapes.  The final shapes of both load controlled models have 

taken a fundamental, ovalized shape. 
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Figure 4.22.  Torus test and model 𝑅𝑅 position versus 𝜃𝜃 location for nominal torus and 

load controlled modeling schemes after the application of in-plane loads. 

The ovalization of the torus models is also apparent in the true-scale illustration of the 

torus centerline final shapes, shown in Figure 4.23. 
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Figure 4.23.  Final in-plane torus shape from test and load controlled modeling. 

Although a load controlled test may be of interest, displacement control was found to be 

the most repeatable and predictable, given experimental constraints.  When modeling the 

torus structure in load control the correct level of constraint is not applied to the torus and 

the lowest energy mode shape is obtained. 

4.3 Summary and Recommendations 

The modeling tools that have been developed for the analysis of slender, inflatable 

members with axial reinforcing cords have been shown to be able to adequately capture 

-1500 -1000 -500 0 500 1000 1500 
mm 

-1500 

-1000 

-500 

0 

500 

1000 

1500 

m
m

 θ 

Test 
Load control model, uniform force 
Load control model, measured force 

95 
 



the experimental load-deformation response of both beams and tori.  Torus load testing 

included both in-plane and out-of-plane loading and put the inflated member into a 

complex combined load state, including axial, bending, shear and torsional loading.  In 

the real HIAD system, the adjacent tori support and brace each other and the load state 

consists primarily of a distributed load around the circumference of the torus.  Although 

the load state produced in the out-of-plane torus test is not representative of real HIAD 

loading, it serves as a validation test case for the modeling tools and analysis 

methodologies. 

A number of challenges were encountered in the analysis of the out-of-plane torus test.  

The model was found to be sensitive to boundary conditions, the loading cable stiffness 

and distribution, loading methodology and initial torus shape.  Although the beam-based 

FE modeling tools were used to analyze the torus load test, it should be noted that the 

challenges that were encountered are not exclusive to the beam-based FE analysis 

methodology and are encountered with shell-based FE models of the torus system as 

well.  The challenges are driven by the unrestrained nature of the torus test and the 

sensitivity of the system to imperfections and variability.  Improvements to the torus load 

testing methodology may include incorporating a reliable load control scheme.  The 

decision to execute the tests using a displacement control of the cable ends loading 

scheme was driven primarily by the limitations of the electric actuators’ actuation speed 

and the need for a reliable and repeatable control variable for input and comparison with 

numerical models.  Although the displacement control scheme provided the reliability 

that was desired, the system became much more sensitive to the relative stiffness and 

variability of the loading cables, as discussed previously, and tended to drive specific 
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deformation modes.  Future refinements to the torus load testing and analysis program 

may include refining the load control scheme, perhaps by significantly decreasing the rate 

of loading.  With a load controlled methodology applied to the torus tests the in-plane 

displaced shapes will likely become more varied and sensitive to the initial shape.  It 

should be ensured that the initial shape of the torus member is well quantified.  In 

addition to measuring the centerline location of the member, the initial cross-sectional 

rotation and precise location of the axial reinforcing cords should also be measured.  

Finally, the inflatable members are susceptible to damage and a degradation of properties, 

as was observed in the current study.  Modeling results should compare to the first 

extreme loading cycle whenever possible. 

Having successfully modeled component level testing of straight tubes and toroidal 

members, the modeling tools are extended to analyze the full HIAD structure in the 

following chapter. 
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Chapter 5 

FINITE ELEMENT MODEL VALIDATION: HIAD LEVEL 

HIAD structure modeling efforts have utilized a shell-based FE modeling approach with 

pressure follower forces and both implicit (Li et al. 2015; Lindell et al. 2006) and explicit 

(Lyle 2014 and 2015) solution schemes.  Although these approaches can predict the 

response of the HIAD structure subjected to pressure loading, they are time consuming to 

develop, computationally expensive and can often take days to run.  Applying the beam-

based FE modeling methodology to the analysis of a full HIAD structure is a significant 

departure from previous HIAD modeling efforts.  Further, modeling a full HIAD 

structure represents a large increase in complexity from the modeling of single, inflatable 

components.  In modeling multiple tori, the interaction between the inflatable members 

must be accounted for.  The straps that connect the tori to each other and to the relatively 

rigid center-body must also be included.  The beam-based FE modeling methodology 

under development has been partially validated using straight-tube and torus 

experimentation of braided, inflatable, slender members with axial reinforcing cords 

located at discrete locations around the cross-section of the member as detailed in 

Chapter 4.  The modeling methodology is further validated by comparing the results of 

load testing on a full HIAD structure. 

5.1 Description of Tests 

NASA researchers (Swanson et al. 2015) developed a testing methodology to apply a 

uniform pressure load to a HIAD structure.  Although a uniform pressure load case is not 

representative of aero loading on the structure during atmospheric reentry, this load case 

can be used to assess a particular HIAD configuration and can serve as validation for the 
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development of various modeling schemes.  A picture of the HIAD pressure tub test 

configuration is shown in Figure 5.1 along with the 3.7 meter major diameter HIAD 

specimen that will be the focus of validation efforts for the beam-based modeling 

approach.  The fore side of the HIAD structure is visible in Figure 5.1.  Also shown are 

the various strap types and components of the structure and test configuration that will be 

described subsequently. 

 

Figure 5.1.  3.7 meter HIAD specimen and pressure tub (Swanson et al. 2015). 

The HIAD structure was strapped to the center-body structure, as in a typical 

deployment.  The center-body was firmly mounted to the floor with an inline load cell to 

measure vertical reaction.  A steel skirt that was sealed to the floor encompassed the outer 

torus of the HIAD structure (visible in Figure 5.1).  An impermeable membrane was then 

draped over the outside of the HIAD structure and sealed to the upper rim of the skirt. 
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To apply a uniform pressure load to the outer, or fore, side of the HIAD structure the air 

encapsulated by the skirt and outer membrane was evacuated, creating a pressure 

differential between the fore and aft faces of the HIAD.  The atmospheric pressure then 

applied a uniform, positive pressure load on the fore side of the HIAD.  The internal 

inflation pressure (gauge pressure) of the tori on the depressurized side of the membrane 

was regulated at the nominal inflation pressure throughout the duration of the test.  The 

vertical reaction of the loaded structure on the center-body was recorded throughout the 

duration of the test, along with the loads in individual straps.  The experimental results 

that are shown in subsequent sections are not based on the first experimental run of a 

pristine specimen, although the loads applied in previous runs were not to the level that 

permanent damage would be expected.  The deformed shape of the aeroshell was tracked 

using string potentiometers at discrete locations and a laser scanner over the fore surface 

of the HIAD. 

5.2 Description of Test Article 

The 3.7 meter major diameter HIAD test article is shown in Figure 5.1.  The structure 

consisted of eight inflatable tori.  Tori T1 (the torus closest to the center-body) through 

T7 (the seventh torus from the center-body) all had minor diameters of 251 mm.  Torus 

T8 had a minor diameter of 89 mm.  A plan view of the 3.7 meter HIAD configuration is 

shown in Figure 5.2.  A cylindrical coordinate system will generally be used to describe 

the HIAD structure.  The 𝑅𝑅 axis is aligned perpendicular to the longitudinal axis of the 

tori.  The 𝑍𝑍 axis is perpendicular to the 𝑅𝑅 axis and is out of the page in Figure 5.2.  The 𝜃𝜃 

axis sweeps about the positive 𝑍𝑍 axis with counter-clockwise taken as positive. 
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Figure 5.2.  3.7 meter HIAD plan view. 

A cross-section of the 3.7 meter HIAD structure is shown in Figure 5.3.  The tori were 

configured at a 20° angle from the horizontal (𝑅𝑅) axis.  In Figure 5.3 the tori are shown 

overlapping each other and overlapping the center-body.  In the actualHIAD specimen 

this interference caused the tori to compress against each other and against the center-

body, creating some amount of prestress in the tori and straps before any loading was 

applied.  The inflation pressure for all tori in the test of interest was 83 kPa. 
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Figure 5.3.  3.7 meter HIAD cross-section. 

The cross-section shown in Figure 5.3 is arbitrarily taken at 𝜃𝜃 = 0°.  It should be noted 

that the configuration of the HIAD structure in Figure 5.3, and in all subsequent analyses, 

places the point of the cone shape at the origin.  The positive Z axis is aligned with the 

axis of radial symmetry.  This convention, although arguably backwards for the pressure 

tub tests, was adopted based on previous HIAD reentry analyses conducted by others 

where the orientation of the structure is nose down. 

The individual tori are a similar construction to the straight tubes and individual torus 

discussed previously.  As with the torus article discussed in Section 4.2, each torus has 

two cords located at ±60° from the inner equatorial axis and the nominal braid angle of 

the shell is 71°.  Unlike the components discussed previously, the braid and cord material 

is now Zylon, rather than Technora.  Additional tension/torsion testing of an inflatable 

Zylon tube with identical material and geometry as in the 3.7 meter HIAD structure was 

conducted (Clapp 2017).  The longitudinal modulus of the shell was found to be 15.7 

N/mm and the shear modulus of the shell was found to be 700 N/mm.  Additional Zylon 

cord testing was also conducted by NASA researchers. 
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The tori are connected to each other and to the center-body with straps, as can be seen in 

Figure 5.1.  The straps are made of a woven Zylon material.  The strap configuration on 

the 3.7 meter HIAD specimen was composed of three different strap sets: loop straps, 

radial straps and chevron straps (as shown in Figure 5.1).  Loop straps connected an 

individual torus to adjacent tori or back to the center-body in the case of T1.  Radial 

straps connected the center-body to a set of chevron straps, and the chevron straps 

connected radial straps on the fore side of the structure to radial straps on the aft side of 

the structure.  All straps were made of Zylon material which was also tension tested by 

NASA researchers. 

The configuration of the loop straps is detailed in Table 2.1.  The strap set number, 

number of straps within the set, 𝜃𝜃 location of the first strap and strap connectivities are 

shown.  The individual straps within a strap set were evenly spaced around the 

circumference of the HIAD structure.  The target loop strap prestress was 0.22 kN.  In 

cases where the initial strap load level was recorded, the recorded value is shown. 
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Table 5.1.  Loop strap configurations. 

Strap 

set 

Number of 

straps 

Location of first 

strap (deg.) 

Connection Strap 

preload (kN) 

1 12 15 Center-body to T1 0.22 

2 12 15 T2 to T3 0.22 

3 12 15 T4 to T5 0.31 

4 12 15 T6 to T7 0.27 

5 12 0 T1 to T2 0.16 

6 12 0 T3 to T4 0.27 

7 12 0 T5 to T6 0.27 

8 24 7.5 T7 to T8 0.22 
 

There were a total of 12 radial straps on the fore side of the HIAD and 12 radial straps on 

the aft side of the HIAD.  The first fore radial strap was located at 𝜃𝜃 = 15° and the first 

aft radial strap was located at 0° (fore and aft radials were staggered around the 

circumference of the HIAD).  The radial straps were connected to the HIAD center-body 

and extended to the midpoint between the T2 and T3 torus.  The radial strap target 

pretensioned was 0.44 kN, however an initial pretension of 0.18 kN was recorded. 

The chevron straps were the only straps that were not aligned with the 𝑅𝑅 axis.  A given 

chevron strap started at the terminal end of an aft radial strap, extended over torus T6 and 

returned to the terminal end of the next fore radial strap, sweeping a total of 𝜃𝜃 = 15° in 

the process.  A corresponding chevron then started at the same fore radial strap, extended 

over T6 and returned to the terminal end of the next aft radial strap.  In this manner each 

fore radial strap was connected to the adjacent aft radial straps, and each aft radial strap 
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was connected to the adjacent fore radial straps.  The chevron straps were in series with 

the radial straps and developed approximately half of the radial strap pretension (0.09 

kN). 

5.3 Description of Beam-Based Finite Element Model 

Modeling the full HIAD system using a beam-based FE modeling approach represents a 

significant and novel departure from previous, shell-based FE modeling strategies.  

Further, the development of beam-based FE analyses is a significant increase in model 

complexity from component level analyses. 

Modeling the full HIAD system using a beam-based FE modeling approach requires the 

use of inflatable torus elements, interaction elements to capture the response between tori, 

strap elements to represent the loop, radial and chevron straps, and link elements to 

connect straps and tori.  In addition to describing the various element types that are used 

in modeling the full HIAD system, a description of the boundary conditions, loading and 

solution schemes that were employed are also included. 

5.3.1 Torus Elements 

The elements representing the inflatable torus members were the three-dimensional, 

corotational, flexibility-based beam elements that were previously detailed in Chapter 3 

and applied to the analysis of straight and toroidal members in previous validation efforts.  

Tori T1 through T7 were specified with a minor diameter of 251 mm and torus T8 was 

specified with a minor diameter of 89 mm.  The 𝑅𝑅 and 𝑍𝑍 locations of the torus cross 

sections were specified as detailed in Table 5.2 and also as shown in Figure 5.3.  The 

internal inflation pressure was specified as 83 kPa for each torus. 
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Table 5.2.  Configuration of tori, 3.7 meter HIAD article. 

Torus 𝑹𝑹 location 

(mm) 

𝒁𝒁 location 

(mm) 

Minor diameter 

(mm) 

Inflation 

pressure (kPa) 

T1 308.6 246.6 251 83 

T2 527.5 36.2 251 83 

T3 748.1 406.5 251 83 

T4 970.4 487.5 251 83 

T5 1194.5 569.0 251 83 

T6 1420.2 651.2 251 83 

T7 1647.6 733.9 251 83 

T8 1807.2 703.2 89 83 
 

A shell braid angle of 69° degrees was utilized based on previous experience with 

nominally 71° braided members in the curved configuration (see Section 4.2.3).  The 

measured extensional and shear stiffness of the braided shell were utilized as model 

inputs (15.7 and 700 N/mm, respectively).  The additional longitudinal stiffness due to 

the geometric changes that the braided shell undergoes when subjected to an axial strain 

was also included in the typical manner (Equation 2.30, the gross extensional modulus 

was 20.4 N/mm for tori T1 through T7 and 17.4 N/mm for the shoulder torus, T8). 

Two axial reinforcing cords were located at ±60° from the inner equatorial axis of each 

torus.  The cord response was derived from tension testing of Zylon cords conducted by 

NASA researchers.  The cord specimens were identical to the cords used in the 3.7 meter 

HIAD test specimen.  The cord force at 83 kPa of inflation pressure was calculated to be 
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1.44 kN for tori T1 through T7, and 0.18 kN for T8 based on Equation 2.17.  The 

idealized load-strain response is shown in Figure 5.4, below. 

 

Figure 5.4.  Idealized load versus strain response of Zylon cords. 

Each torus was modeled as geometrically perfect.  It is not expected that the HIAD 

system will have the same sensitivity to geometric imperfections as an individual torus 

structure, since in a full HIAD stack adjacent tori brace each other and mitigate the 

influence of an initially imperfect geometry.  A total of 144 straight beam elements were 

utilized per torus, although a converged solution could be obtained with significantly 

fewer elements. 

5.3.2 Interaction Elements 

Although the beam elements that make up the inflatable torus members can simulate the 

axial, bending, shear and torsional response of the members, they cannot simulate the 

stiffness of the members perpendicular to the longitudinal axis.  This component of 

stiffness is important to simulate the response of the HIAD because each torus is 

compressed against adjacent tori, both in the unloaded state and as the structure is loaded. 
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Interaction elements are used in the beam-base FE model of the HIAD system in order to 

simulate this cross-direction stiffness of the inflatable members, and to tie adjacent tori 

together.  Each interaction element goes from the centroid of the cross-section of a given 

torus to the centroid of the cross-section of the adjacent torus, and is aligned with the 𝑅𝑅 

axis.  Each torus is modeled with the same number of nodes, located at the same 𝜃𝜃 

locations in order to accommodate the alignment of interaction elements.  Interaction 

elements also tie torus T1 back to the center-body, for the 3.7 meter HIAD located at 𝑅𝑅 = 

203.2 mm and 𝑍𝑍 = 246.6 mm.  The interaction elements employ three dimensional, 

corotational elements with a linear elastic material model. 

The axial stiffness and bending rigidity of the interaction elements must be chosen to 

approximate the cross-section compression and shear stiffness of the inflatable members.  

The properties are linearized about the inflated state although future refinements may 

incorporate a nonlinear response, including separation between tori.  Both the axial and 

flexural rigidity of the interaction elements are determined based on a unit length of the 

inflatable member undergoing deformations due to either a cross-direction compression 

or shear, respectively. 

The axial rigidity of an interaction element can be estimated by considering a cylindrical 

member with inflation pressure 𝑝𝑝, subjected to two opposing compressive pressures (𝑓𝑓), a 

cross-section of which is shown in Figure 5.5. 
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Figure 5.5.  Cross-section of inflated member subjected to opposing compressive 

pressures. 

The compressive stiffness of the member cross-section is determined using a FE sub-

model.  A unit width of the torus cross section is modeled using beam elements.  The 

axial stiffness of the elements is specified as a high value (7 GPa), while the bending 

rigidity is very low (0.7 kPa).  The values were chosen to model the textile shell as 

inextensible and the response of the sub-model was not sensitive to changes in these 

values.  Quarter symmetric boundary conditions were employed at the planes of 

symmetry (at 𝜃𝜃 = 0 and 𝜃𝜃 = 𝜋𝜋
2
).  All out-of-plane degrees of freedom were also 

constrained.  A minimum of 30 nodes were used to model the quarter cross-section, 

although convergent results could be obtained with significantly fewer elements.  Large 

deformations were assumed, and all loads including the internal pressure were modeled 

as follower forces. 

In the first loading step, pressure follower forces were applied to the nodes in order to 

simulate the internal inflation pressure.  After equilibrium was achieved at the desired 
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inflation pressure, a small horizontal pressure (𝑓𝑓 with units of force/length2) was applied 

to the apex nodes of the model within a width of 0.1𝑝𝑝.  After convergence of the second 

step the vertical displacement of the apex (Δ) was obtained and a stiffness of the entire 

cross-section was determined from the quarter symmetric model, 

𝑘𝑘𝑐𝑐𝑥𝑥 =
0.2𝑝𝑝𝑓𝑓
2Δ

. 
Equation 5.1 

The convergent cross-section compressive stiffness was found to be independent of the 

minor radius of the cross-section and is equivalent to, 

𝑘𝑘𝑐𝑐𝑥𝑥 = 0.35𝜋𝜋𝑝𝑝. Equation 5.2 

The units of the stiffness value are force/length/length as a unit width of the member was 

considered. 

A similar calculation can be performed using the principle of virtual work and assuming 

the displaced shape of the deformed cross-section.  The following re-derivation of the 

axial stiffness is provided for illustrative purposes.  The final axial stiffness of the 

inflatable member cross-section derived below was not used in subsequent FE analyses as 

the assumed compressed shape of the cross-section over-constrains the member’s 

response and produces an overly-stiff result. 

The initial volume of a unit slice of the member cross-section is simply 𝜋𝜋𝑝𝑝2.  A line load 

is assumed to be applied to the apex of member (𝑓𝑓, with units of force/length).  It is 

assumed that the cross-section of the member ovalizes a small amount (Δ) when loaded 

and that the circumferential shell is non-extensible.  The final volume of the unit slice is 

then, 
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𝑉𝑉𝑓𝑓 = 𝜋𝜋(𝑝𝑝 + Δ)(𝑝𝑝 − Δ) = 𝜋𝜋𝑝𝑝2 − 𝜋𝜋Δ2, Equation 5.3 

and the change in volume is −𝜋𝜋Δ2.  The total work on the unit slice due to the externally 

applied line load undergoing a deformation (Δ), and the internal inflation pressure 

undergoing a volume change is, 

𝑊𝑊 = 2𝑓𝑓Δ − 𝑝𝑝𝜋𝜋Δ2. Equation 5.4 

Applying the principal of virtual work by taking the variation of the location of the force 

with a virtual change in deformation and the variation of the internal inflation pressure 

undergoing a virtual volume change, and setting the subsequent expression to zero yields, 

𝛿𝛿𝑈𝑈 = 2𝑓𝑓𝛿𝛿Δ − 2𝑝𝑝𝜋𝜋Δ𝛿𝛿Δ = 0. Equation 5.5 

The axial stiffness of the inflatable member cross-section (𝑘𝑘𝑐𝑐𝑥𝑥 = 𝑓𝑓/2Δ) is then, 

𝑘𝑘𝑐𝑐𝑥𝑥 = 0.5𝜋𝜋𝑝𝑝. Equation 5.6 

The units of the stiffness value are again force/length/length because a unit width of the 

member is considered.  When Equation 5.6 is compared to Equation 5.2 it is clear that the 

axial response derived from the principle of virtual work is stiffer compared to the result 

obtained from the FE analysis (due to over-constraining the deformed shape).  Although 

the axial stiffness value derived above is not used in subsequent analyses, it serves to 

illustrate the response driver and the cross-sectional stiffness’s independence of the minor 

radius when the linearized stiffness of the cross-section is used. 

A similar, shear stiffness for the cross-section of the member was determined.  Figure 5.6 

illustrates the configuration of the shear virtual test. 
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Figure 5.6.  Cross-section of inflated member subjected to shear loading. 

A unit width of the torus cross section was again modeled using beam elements with the 

same convergent properties.  Anti-symmetry was employed with pin boundary conditions 

at the plane of symmetry (at 𝜃𝜃 = 0 and 𝜃𝜃 = 𝜋𝜋).  All out-of-plane degrees of freedom 

were again constrained.  A minimum of 30 nodes were used to model the half cross-

section, although convergent results could be obtained with significantly fewer elements. 

In the first loading step, pressure follower forces were again applied to the nodes in order 

to simulate the internal inflation pressure.  After equilibrium was achieved at the desired 

inflation pressure, a small horizontal load (𝐹𝐹 with units of force/length) was applied to 

the apex node of the model.  After convergence of the second step the horizontal 

displacement of the apex node (Δ) is obtained and a stiffness of the entire cross-section 

was determined, 

𝑘𝑘𝑣𝑣 =
𝐹𝐹
2Δ

. Equation 5.7 
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Like the compression stiffness of the cross-section, the shear stiffness was found to be 

only a function of internal inflation pressure and not the minor radius, 

𝑘𝑘𝑣𝑣 = 0.72𝜋𝜋𝑝𝑝. Equation 5.8 

The axial and shear stiffness of the tori were then used to calculate the axial and bending 

rigidity of the interaction elements.  The stiffness between two tori was determined by 

considering two halves of the adjacent tori and calculating an equivalent, effective 

stiffness of the members in series.  The configuration that was used to calculate the 

effective axial and bending rigidity is shown in Figure 5.7.  In the case of T1 there was no 

adjacent torus and the adjacent center-body was assumed to be infinitely rigid.  A factor 

of two was used in the case of the axial stiffness of each torus half because the length of 

each component is half the length of the member that was used to calculate 𝑘𝑘𝑐𝑐𝑥𝑥 (Equation 

5.2) and axial stiffness is inversely proportional to length.  A factor of eight was used in 

the case of 𝑘𝑘𝑣𝑣 for each torus half because bending stiffness is inversely proportional to 

length cubed. 

 

Figure 5.7.  Cross-section of inflated member subjected to axial and shear loads. 
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Calculating the axial rigidity between the two tori is accomplished by finding the 

equivalent stiffness of the two half-sections in series, 

𝑘𝑘𝑐𝑐𝑥𝑥 𝐻𝐻𝑒𝑒−𝑧𝑧 = [(2𝑘𝑘𝑐𝑐𝑥𝑥 𝑧𝑧−1)−1 + (2𝑘𝑘𝑐𝑐𝑥𝑥 𝑧𝑧)−1]−1. Equation 5.9 

The equivalent axial rigidity is then, 

𝐸𝐸𝑁𝑁𝐻𝐻𝑒𝑒−𝑧𝑧 = 𝑘𝑘𝑐𝑐𝑥𝑥 𝐻𝐻𝑒𝑒−𝑧𝑧(𝑝𝑝𝑧𝑧−1 + 𝑝𝑝𝑧𝑧)𝑙𝑙. Equation 5.10 

The value 𝑙𝑙 is the tributary width of the interaction element along the circumference of 

the torus and is a function of the number of nodes per torus that are used in the analysis 

(𝑁𝑁) and the major radius of the torus (𝑅𝑅𝑧𝑧, Table 5.2), 

𝑙𝑙 = 2𝜋𝜋
𝑅𝑅𝑧𝑧
𝑁𝑁

. Equation 5.11 

The shear stiffness of one cross-section is modeled as a cantilever beam with a length 

equal to the minor diameter of the torus.  To calculate the effective or equivalent stiffness 

between adjacent tori, two half-sections in series are again considered (Figure 5.7).  Each 

half-cantilever stiffness is derived from the stiffness of adjacent tori.  The cantilever 

stiffness of the half-torus section is eight times larger than the stiffness of the full-torus 

section found in Equation 5.8 because the bending stiffness is inversely proportional to 

length cubed.  When the effective member is subjected to a unit load the total tip 

deflection (Δ𝑡𝑡𝐻𝐻𝑡𝑡𝑐𝑐𝑐𝑐) is a result of the cantilever deflection of both torus cross-section 

halves, 

Δ1 =
1

8𝑘𝑘𝑧𝑧−1
 𝑖𝑖𝑛𝑛𝑑𝑑 Equation 5.12 

Δ2 =
1

8𝑘𝑘𝑧𝑧
, Equation 5.13 
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the rigid body rotation and translation of section 𝑖𝑖 caused by translating the unit load 𝑓𝑓𝑣𝑣 

from the tip of the cantilever to the end of 𝑝𝑝𝑧𝑧−1, 

Δ3 =
3𝑝𝑝𝑧𝑧

16𝑘𝑘𝑧𝑧−1𝑝𝑝𝑧𝑧
,𝑖𝑖𝑛𝑛𝑑𝑑 Equation 5.14 

the rigid body rotation and translation of section 𝑖𝑖 caused by the moment that is produced 

when translating the unit load 𝑓𝑓𝑣𝑣 from the tip of the cantilever to the end of 𝑝𝑝𝑧𝑧−1, 

Δ4 =
3𝑝𝑝𝑧𝑧2

8𝑘𝑘𝑧𝑧−1𝑝𝑝𝑧𝑧−12
. 

Equation 5.15 

The total tip deflection is then, 

Δ𝑡𝑡𝐻𝐻𝑡𝑡𝑐𝑐𝑐𝑐 = Δ1 + Δ2 + Δ3 + Δ4. Equation 5.16 

The equivalent bending rigidity of the cantilevered interaction element can then be 

calculated, 

𝐸𝐸𝐸𝐸𝐻𝐻𝑒𝑒−𝑧𝑧 =
(𝑝𝑝𝑧𝑧 + 𝑝𝑝𝑧𝑧−1)3

3Δ𝑡𝑡𝐻𝐻𝑡𝑡𝑐𝑐𝑐𝑐
𝑙𝑙. 

Equation 5.17 

The equivalent axial and bending stiffness of the interaction elements will be equivalent 

to the axial and bending stiffness of one of the tori when the two adjacent tori are 

identical.  The equivalent bending rigidity of the interaction element is used for the out-

of-plane stiffness of the element (perpendicular to HIAD cone).  The in-plane (aligned 

with the 𝜃𝜃 direction of the HIAD) and torsional stiffness of the interaction elements are 

specified as relatively rigid.  Torsional displacement of a torus relative to adjacent tori is 

not expected to drive the response of the HIAD as the friction between tori provides a 

significant amount of stiffness and HIAD aero-loading does not tend to rotate the tori 

relative to each other. 
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The purpose of the interaction elements is to tie adjacent tori together and provide a 

reasonable approximation of the stiffness between tori.  Although there is opportunity for 

improving the interaction element material models that are utilized, the model has been 

found to not be highly sensitive to variation in the interaction element stiffness, as will be 

shown subsequently. 

5.3.3 Link Elements 

In the real HIAD structure, straps wrap around the tori and are either connected back to 

themselves, to other straps or to the center-body.  In a shell-based FE modeling approach 

the straps can be modeled as wrapping around the tori.  Straps are either boded to the 

torus shell using constraints or friction is defined between the strap and the torus shell 

surfaces.  In a beam-based modeling approach the straps cannot be modeled as wrapping 

around the torus because the nodes are aligned along a one-dimensional axis and there is 

no diameter for the straps to wrap around.  Instead, link elements are utilized in a similar 

manner to the link elements utilized in modeling the response of torus load testing 

(Section 4.2).  Figure 5.8 illustrates the cross-section of a torus member at the location of 

a strap set. 
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Figure 5.8.  Cross-section of an inflated member with link elements. 

For a set of loop straps, two link elements extended from the torus node to the shell of the 

torus cross-section (the length of each element is equal to the minor radius of the torus 

cross-section).  In this manner differential strap loading could apply a torsional load to 

the inflatable torus, as in the real structure.  The geometry of all strap sets was specified 

such that they are tangent to the cross-sections of the tori. 

In the current modeling efforts, the link elements are specified as rigid, or having 

stiffness much greater than the connecting torus or strap elements.  This approach allows 

the strap response to drive the response of the HIAD.  In the real HIAD structure, when 

the straps experience high load levels they will indent the torus.  Depending on the load 

level of the strap, the indentation can be significant.  The effect of indentation could be 

captured using the link elements and specifying a nonlinear moment curvature 

relationship.  The moment curvature relationship of the link elements would be derived 

phenomenologically based on the expected indentation response (a function of internal 

inflation pressure, minor radius, strap width, material response, etc.).  This approach is 

not pursued in the current research as the strap indentation response is not well 

Link element 

Torus cross-section 

Strap 

Load 

Torus node 
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understood and the 3.7 meter HIAD pressure tub specimen was not loaded to the point 

where significant strap indentation was observed. 

5.3.4 Strap Elements 

Strap elements connected the link element ends to each other, to other strap elements, or 

to the rigid center-body.  The response of the straps, like the response of the cords, was 

tension only, nonlinear at low strain levels, and linear at high strain levels.  The strap 

response, derived from test data produced by NASA researchers (personal 

communication, July 7, 2016), is shown in Figure 5.9.  A small compression stiffness was 

utilized for numerical stability (18 N). 

 

Figure 5.9.  Axial strap response. 

In the real HIAD structure the straps were all pretensioned to some specified load level 

before the structure was loaded (to target levels of 0.22 to 0.44 kN in the 3.7 meter HIAD 

structure).  As can be seen from Figure 5.9, at the target pretension levels the response of 

the straps is still quite nonlinear.  Two approaches were considered in order to put the 
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beam-based HIAD FE model in the correct prestressed state prior to loading the structure.  

One method utilizes a pressure equilibrium step with strap prestrains as the model input.  

The magnitude of the strap prestrains are determined by solving an inverse problem with 

the objective of obtaining the specified strap prestress, further discussed in Chapter 6. 

A simplified method (utilized in the analysis of the 3.7 meter pressure tub tests) assumes 

the level of strap prestress is known, along with the inflated shape of the structure.  The 

axial strap response (Figure 5.9) is then shifted so that the strap is capable of 

accommodating a compression load up to the desired level of prestress.  In post 

processing of the results the pretension is added back into the strap load.  In the model of 

the 3.7 meter pressure tub test, the pretension values discussed in Section 5.2 were 

utilized. 

5.3.5 Model Boundaries, Loading and Solution Scheme 

A rendering of the beam-based HIAD FE model is shown in Figure 5.10.  The cross-

sections of the torus members have been rendered so that the model more accurately 

represents the real HIAD structure visually, although the interaction and link elements are 

obscured. 
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Figure 5.10.  Beam-based HIAD FE model. 

The HIAD inflatable shell was fixed to the center-body.  All T1 interaction elements that 

return to the center-body were fixed.  The loop straps in set 1 (Table 2.1) that wrap 

around torus T1 were fixed at the center-body, along with the center-body end of the 

radial straps. 

Loading was applied to the torus nodes of the HIAD structure.  A uniform pressure (𝑃𝑃) 

was assumed and the tributary width (𝑤𝑤𝑧𝑧) of each torus was determined.  The tributary 

width of each torus is essentially the minor diameter of the torus, minus the overlap or 

compression from adjacent tori (Figure 5.3).  The tributary width of each torus was not 

updated during the analysis.  Although the tributary width may change as the structure 

deforms, it is not expected to have a significant influence on the response of the structure.  

The uniform pressure that was applied to the tributary width of the torus was integrated to 

the torus element.  The load that is applied to each node is a function of the magnitude of 

the line load, the major radius of the torus and the number of nodes per torus, 

𝐹𝐹 = 𝑃𝑃𝑤𝑤𝑧𝑧2𝜋𝜋
𝑅𝑅𝑧𝑧
𝑁𝑁

. Equation 5.18 
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The vertical reaction of the HIAD structure was recorded during testing.  In order to 

make comparisons to test data, the total uniform pressure load was scaled to match the 

maximum recorded vertical load (approximately 40 kN).  The initial orientation of the 

nodal forces is aligned perpendicular to the aero-shell surface (at an angle of 20° from 

vertical).  As a pressure load will always remain perpendicular to the surface that the 

pressure is applied to, non-conservative follower forces were employed so that the forces 

rotate and translate with the torus nodes (Argyris and Symeonidis 1981).  Global load 

controlled Newton iterations were utilized and adaptive load stepping was implemented 

in the solution in order to reduce analysis time (Clarke and Hancock 1990). 

5.4 Results of Analysis 

The beam-based FE model of the 3.7 meter HIAD pressure tub testing was analyzed and 

compared to test results.  The result of greatest interest was the gross load-deformation 

response of the HIAD.  The vertical deflection of torus T7 (the outermost, full-size torus) 

was tracked throughout the duration of the test using string potentiometers.  Figure 5.11 

shows the average experimental load-deformation response of the T7 torus with the 

model comparison. 
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Figure 5.11.  Load-deformation response of 3.7 meter HIAD pressure tub test with 

interaction element stiffness sensitivity. 

Two holds in the total load (at approximately 23 and 36 kN) were applied in order to 

assess the visco-elastic response of the HIAD structure and are visible in the 

experimental data.  As can be seen from Figure 5.11, the beam-based FE modeling 

response generally follows the gross load-deformation response of the experimental 

results.  The initial stiffness of the model response captures experimental results well and 

there appears to be an inflection point in both curves at approximately the same load level 

(at approximately 15 kN).  The modeling response is stiffer at higher load levels.  A 

stiffer response is expected to some extent with the lower level modeling methodology 

employed here. 

Shell-based FE modeling results are also provided for the same HIAD configuration and 

load case for comparison purposes.  The shell-based FE modeling results were produced 

by Michael Lindell, lead structural analyst for the NASA HIAD project (personal 
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communication, June 6, 2017).  The shell-based FE model employed 1/24th wedge 

symmetry (a 15° slice of the HIAD was modeled), whereas the full HIAD structure was 

modeled using the beam-based modeling approach.  Analysis times on comparable 

computer systems are approximately one hour versus one minute for the shell versus 

beam-based modeling approaches respectively.  If the full HIAD was modeled using shell 

elements, this discrepancy would be significantly greater. 

Also shown in Figure 5.11 is the response of system when twice and half of the beam-

based interaction element stiffness is utilized (Equation 5.2 and Equation 5.8).  As can be 

seen from Figure 5.11, the response is influenced by the interaction stiffness, but even 

when doubling or halving the stiffness the response is within the same range of the 

measured response. 

The response of the straps was also investigated, a representative subset of which is 

shown below.  Figure 5.12 shows the response of a subset of fore radial straps obtained 

from test results and the results of modeling efforts. 

 

Figure 5.12.  Fore radial strap response. 
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Some variability in the testing results is visible due to specimen and measurement 

variability.  Although the modeling response is on the same order of magnitude as the test 

results, the beam-based FE modeling response does under-predict the load 

accommodated by the radial straps.  Figure 5.13 and Figure 5.14 presents model 

comparisons with test data for loop strap sets two and four respectively (see Table 2.1). 

 

Figure 5.13.  Loop strap set two fore and aft response. 

 

Figure 5.14.  Loop strap set four fore and aft response. 

Again, the beam-based FE modeling response is on the same order of magnitude, and 

shows similar trends to the measured response.  The predicted loop strap response tends 
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to exceed the measured loop strap forces.  In general, the load levels predicted by the 

modeling response tend to be under-predicted by radial and chevron straps and over-

predicted by loop straps.  The shell and beam-based FE modeling results generally follow 

similar trends.  It is noted that the initial force in the straps is typically under-predicted by 

the shell-based modeling efforts.  This is illustrative of the fact that the desired initial, 

pressurized state is difficult to obtain with the shell-based FE model. 

It is hypothesized that the discrepancy between measured strap loads and those predicted 

with the beam-based FE model are largely due to real variability in the response of the 

straps.  The HIAD structure is composed of a multiple tori and strap sets.  Many of the 

structural components are redundant and the HIAD structure is indeterminate to a high 

degree.  Modeling efforts can be sensitive to the distribution of stiffness of the members 

in highly redundant structures.  As can be seen from Figure 5.9, at the levels of strap 

pretension that were targeted and measured for 3.7 meter HIAD pressure tub testing, the 

strap response is still in the highly nonlinear range.  Even at the maximum loads 

experienced for the pressure-tub load case (approximately 3 kN) the strap response is still 

within the nonlinear range.  Even small amounts of variability in the strap response could 

make the stiffness significantly off in this range.  While the results of the analysis show 

that the beam-based FE modeling tools are capable of approximating the response of a 

full HIAD system without the use of any tuning or empirically derived parameters, the 

strap response should be carefully quantified to ensure the best correlation with test 

results.  To illustrate the sensitivity of the system to the strap stiffness, two additional 

analyses were conducted.  In the first analysis all straps had twice the nominal stiffness, 
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and in the second analysis all straps had half of the nominal stiffness.  The results of the 

analyses can be seen in Figure 5.15. 

 

Figure 5.15.  Load-deformation response of 3.7 meter HIAD pressure tub test with strap 

stiffness sensitivity. 

Successfully applying the beam-based FE modeling methodology that was developed for 

use with slender, inflatable members with discrete axial reinforcing cords represents a 

significant increase in complexity from previous modeling efforts.  Previous model 

validation efforts considered single straight or curved members, while modeling the full 

HIAD system required accounting for the interaction and connections between tori.  With 

confidence that the beam-based FE modeling approach can reasonably capture the 

response of a full HIAD system, the analysis methodology is extended to model full-scale 

HIAD articles in Chapter 6. 
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Chapter 6 

FULL-SCALE HIAD ANALYSES 

Following validation of the beam based FE modeling approach to experimental results of 

straight tube, torus and full HIAD structures in Chapter 4 and Chapter 5, the modeling 

tools were extended to the analysis of larger scale and more complex HIAD structures.  

In this chapter models of two HIAD structures are developed and analyzed.  First, a 16.7 

meter major diameter HIAD model for reentry on Mars was created.  Strap pretension 

and load-deformation analyses with loading derived from computational fluid dynamics 

(CFD) analyses were conducted.  The response of the structure with an aerodynamic tab 

for the purpose of controlling the orientation of the HIAD during atmospheric reentry 

was also investigated.  In addition to the 16.7 meter HIAD structure, a 6 meter major 

diameter HIAD model for Earth reentry was created.  The 6 meter model was utilized to 

couple the structural analysis tools that have been developed as part of this research with 

structural optimization tools.  The coupling of analysis and optimization routines allows 

for the response drivers of the system to be explored and the response of the system to be 

better understood.  A description of the HIAD 6 meter model and analyses are provided. 

6.1 Strap Prestress Analysis 

In this section strategies for including the effect of strap prestress were investigated.  

While in Chapter 5 a simplified approach was utilized to incorporate strap prestress, a 

more rigorous approach was taken here. 

6.1.1 Problem Description and Motivation 

The HIAD structure is composed of a series of concentric tori that are stacked together to 

form a cone shape (see Figure 1.1).  The individual tori are strapped together and 
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strapped to the relatively rigid center-body.  During the initial construction process the 

individual straps are pretensioned to a desired load level (generally on the order of 0.2 to 

0.9 kN) to obtain a target shape.  As the structure is loaded during atmospheric reentry 

some of the straps will experience an increase in tension while other straps will 

experience a decrease in tension.  Once the straps that experience a decrease in tension 

are completely unloaded they will become slack and lose all stiffness.  The level of strap 

pretension therefore has the potential to significantly influence the structural response of 

the HIAD system. 

In addition to strap pretension levels, the strap pretension process has the potential to 

influence the initial shape of the HIAD structure.  As individual straps are pretensioned 

the HIAD may deform, potentially loading or unloading other straps in the system in 

unexpected ways.  An initial shape of the HIAD system that has been modified by the 

pretensioning process could further influence the load-deformation response. 

In the previous analysis of the 3.7 meter HIAD test article a simplified approach was 

taken in order to incorporate strap prestress.  The initial, pretensioned shape of the HIAD 

structure was assumed to be known, along with the level of strap pretension in each strap 

set.  The load-strain response of the individual straps (Figure 5.9) was then shifted so 

they could accommodate a level of compression equal to the level of expected pretension.  

In the post-processing stage the initial strap pretension was simply added back into the 

element axial force. 
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The benefit of utilizing the simplified prestress approach is an initial, prestress 

equilibrium step was not needed.  However, it was unknown as to whether or not the 

simplified approach significantly influenced the response of the HIAD modeling results. 

In order to more accurately incorporate the initial, prestressed HIAD configuration, an 

initial equilibrium step must be utilized.  The level of strap prestrain must be defined such 

that the desired level of strap prestress is obtained.  The challenge with this approach is 

the HIAD structure is indeterminate to a high degree and small changes is the initial level 

of prestrain in one strap set can have an influence on the final strap prestress in all other 

strap sets, and an influence on the HIAD initial shape.  In order to find the levels of strap 

prestrain that produce the correct amount of pretension, and maintain the desired HIAD 

shape, an inverse problem must be solved. 

6.1.2 Description of Model, Boundaries and Loading 

Before continuing with the development of the strap prestress analysis, a description of 

the HIAD model that was utilized in the development of the strap prestress equilibrium 

methodology is warranted.  The 16.7 meter HIAD model was developed and analyzed 

prior to the development of the 3.7 meter HIAD model detailed in Chapter 5, and the 

development of the 6 meter article described later in this chapter.  As such the cord and 

strap material inputs are not as refined as in other analyses, but they do approximate the 

material response adequately.  The HIAD structure was composed of six tori, as shown in 

Figure 6.1.  The outer, shoulder torus creates a 16.7 meter major diameter structure and 

the center-body major diameter was 4.3 meters.  All naming, sign and coordinate system 

conventions remain consistent with previous analyses (Chapter 5). 
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Figure 6.1.  16.7 meter major diameter HIAD, configuration of tori. 

The tori created a 20° angle from the horizontal, 𝑅𝑅 axis.  The configurations of the HIAD 

tori are specified in Table 6.1.  

Table 6.1.  Configuration of tori, 16.7 meter HIAD configuration. 

Torus 𝑹𝑹 location 

(mm) 

𝒁𝒁 location 

(mm) 

Minor diameter 

(mm) 

Inflation 

pressure (kPa) 

T1 4704 2142 809 138 

T2 5429 2406 809 138 

T3 6161 2673 809 138 

T4 6900 2942 809 138 

T5 7645 3213 809 138 

T6 8189 3153 323 138 
 

All tori had two axial reinforcing cords located at ±60° from the inner equatorial axis of 

the torus.  The cord force-strain relationship (shown in Figure 6.2) was based on the 

𝑅𝑅 
𝜃𝜃 

𝑍𝑍 
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response of a Zylon cord.  The stiffness of the cord was doubled because it was assumed 

two cords would be needed to accommodate the significantly increased cord force due to 

the larger section diameter of the tori.  The cord load at inflation pressure was calculated 

to be 27 kN for tori T1 through T5 and 4.3 kN for torus T6 (Equation 2.17). 

 

Figure 6.2.  Idealized load versus strain response of cords. 

The extensional and shear stiffness of the Zylon braided shell were utilized as model 

inputs (15.7 and 700 N/mm, respectively).  The additional longitudinal stiffness due to 

the geometric changes that the braided shell undergoes when subjected to an axial strain 

was also included as described in Chapter 2, Section 2.2.1.2 (Equation 2.30, the gross 

extensional modulus was 35.6 N/mm for tori T1 through T5 and 23.7 N/mm for the 

shoulder torus, T6). 

As with the 3.7 meter major diameter HIAD discussed in Chapter 5, strap sets included 

loop straps, radial straps and chevron straps.  Table 6.2 details the configurations of each 

strap set.  Radial straps connected from the HIAD center-body (CB) to the base of the 

chevron (chev.) straps between the T2 and T3 tori. 
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Table 6.2.  Strap set configurations. 

Strap 

set 

Strap type Number 

of 

straps 

Location of 

first strap 

(deg.) 

Connection Swept 

𝜽𝜽 

(deg.) 

Target 

preload 

(kN) 

1 Loop-aft 148 0 CB to T1 0 0.2224 

2 Loop-aft 148 0 T2 to T3 0 0.2224 

3 Loop-aft 148 0 T4 to T5 0 0.2224 

4 Loop-fore 148 0 CB to T1 0 0.2224 

5 Loop-fore 148 0 T2 to T3 0 0.2224 

6 Loop-fore 148 0 T4 to T5 0 0.2224 

7 Loop-aft 148 1.22 T1 to T2 0 0.2224 

8 Loop-aft 148 1.22 T3 to T4 0 0.2224 

9 Loop-aft 148 1.22 T5 to T6 0 0.2224 

10 Loop-fore 148 1.22 T1 to T2 0 0.2224 

11 Loop-fore 148 1.22 T3 to T4 0 0.2224 

12 Loop-fore 148 1.22 T5 to T6 0 0.2224 

13 Radial-aft 148 1.22 CB to Chev. 0 0.4448 

14 Chev.-aft 296 1.22 Radial to T5 ±0.61 0.2224 

15 Radial-fore 148 0 CB to Chev. 0 0.4448 

16 Chev.-fore 296 0 Radial to T5 ±0.61 0.2224 
 

The 16.7 meter HIAD model and straps are illustrated in Figure 6.3.  A plan view of the 

aft side of the HIAD is visible (+𝑍𝑍 is out of the page).  Only 24 strap sets are shown in 
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Figure 6.3 (rather than the 148 strap sets that were used in the analyses), so that 

individual straps are discernable. 

 

Figure 6.3.  16.7 meter HIAD model with straps (only 24 strap sets shown). 

The force-strain response of the loop and radial strap sets are shown in Figure 6.4.  A 

small compression stiffness was utilized for numerical stability (18 N).  To avoid 

numerical issues that were encountered in the development of the 16.7 meter HIAD 

model, the chevron strap’s response was taken as linear (507 kN) with an axial rigidity 

equal to the axial rigidity of the loop straps in the linear range (above 1 kN of load in 

Figure 6.4).  Because the radial and chevron straps are in series, the chevron straps were 

𝑅𝑅 

𝜃𝜃 
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not capable of accommodating load after the radial straps loose pretension, even though 

the constitutive relationship of the chevron straps allowed compression. 

 

Figure 6.4.  Loop and radial strap force-strain response. 

A force offset was not included in the strap response, as had been done for previous 

analyses using the simplified prestress approach.  A strap prestrain input was 

incorporated for each strap set.  A positive prestrain induced a contraction of the member.  

If both ends of a strap element were fixed a tension force would develop following the 

response shown in Figure 6.4. 

Even with no initial strap prestrain, the HIAD is not in a state of static equilibrium 

because there is some amount of torus overlap, causing the tori to react or compress 

against each other.  To account for this initial pre-compression the interaction elements 

were prestrained by an amount equal to the overlap between two adjacent tori.  The 

distance 𝐿𝐿𝑧𝑧 between two tori centers was, 

𝐿𝐿𝑧𝑧 = [(𝑅𝑅𝑧𝑧+1 − 𝑅𝑅𝑧𝑧)2 + (𝑍𝑍𝑧𝑧+1 − 𝑍𝑍𝑧𝑧)2]1 2� . Equation 6.1 
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The radial (𝑅𝑅) and vertical (𝑍𝑍) location of the torus centers can be found in Table 6.1.  

The change in length between the two tori was, 

Δ𝐿𝐿𝑧𝑧 = 𝐿𝐿𝑧𝑧 − 0.5(𝑑𝑑𝑧𝑧+1 + 𝑑𝑑𝑧𝑧). Equation 6.2 

The minor diameters of the tori (𝑑𝑑) are also found in Table 6.1.  Equation 6.1 and 

Equation 6.2 can then be combined to determine the amount of interaction prestrain, 

𝜀𝜀𝑧𝑧 =
Δ𝐿𝐿𝑧𝑧
𝐿𝐿𝑧𝑧

. Equation 6.3 

Because the prestrain was negative for all adjacent tori, the interaction elements always 

elongated and began the analysis in a pre-compressed state.  For the case of the first 

interaction element set (between the center-body and T1), 𝑑𝑑𝑧𝑧 was simply taken as zero. 

When an arbitrary set of strap and interaction element prestrains are defined and used as 

model inputs, the HIAD configuration was not in a state of static equilibrium, even 

though no external loading was applied.  All of the internal forces must be allowed to 

come to an equilibrium configuration.  The amount of force that was developed in each 

strap set cannot be predicted a priori because the structure was nonlinear and highly 

redundant.  Newton iterations were used to ensure that the final configuration of the 

prestrained HIAD structure was in an equilibrium configuration.  Although there may be 

more efficient form finding solution techniques available, such as the force density or 

dynamic relaxation methods (Adriaenssens et al. 2014), utilizing Newton iterations was 

found to be sufficient for the current application. 

6.1.3 Analysis, Results and Significance 

As was discussed previously, the goal of the analysis was to determine the correct level 

of prestrain in each strap set, such that the desired level of strap prestress was achieved 
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(Table 6.2) and the desired shape of the structure was maintained.  An objective function 

was developed that incorporated the strap force objectives, along with the HIAD shape 

requirements as a soft constraint. 

The strap force portion of the objective function simply found the difference between the 

desired strap pretension (Table 6.2) and the strap tension after the convergence of the 

prestrain equilibrium step (𝒇𝒇𝟎𝟎 and 𝒇𝒇, respectively).  The vector of 14 force discrepancies 

(the chevron straps, sets 14 and 16 in Table 6.2, are not included in the objective function 

because they are in series with the radial straps and a function of the radial strap force) 

are then individually squared and summed together to obtain a scalar objective value.  

The shape portion of the objective function sums the squared difference of the individual 

torus centers after the convergence of the equilibrium step from a line that passes through 

the torus centers in the desired configuration (a vector of torus location errors, 𝒆𝒆), as 

illustrated in Figure 6.5.  The shape objective was then added to the strap force objective 

to obtain a single, scalar objective value. 

 

Figure 6.5.  Desired and equilibrium HIAD cross-section. 
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The input variables included the 16 strap prestrains and an initial cone angle adjustment.  

It was found that as the system approached the correct, prestressed state, the entire HIAD 

tended to pitch forward, making an angle less than 20° with the horizontal axis.  The cone 

angle adjustment modified the initial location of the torus centers to allow the HIAD to 

pitch to the correct final angle.  The torus centers were rotated as a rigid body about the 

T1 torus center by the magnitude of the cone adjustment angle.  For example a cone 

adjustment angle of -10° would produce an initial HIAD configuration with tori oriented 

at an angle of 30° from the horizontal axis (instead of the 20° shown in Figure 6.5).  The 

formulation of the unconstrained optimization problem was, 

𝑓𝑓𝑖𝑖𝑛𝑛𝑑𝑑 𝑿𝑿 

𝑐𝑐𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑖𝑖𝑡𝑡 �  (𝒇𝒇𝟎𝟎𝒅𝒅 − 𝒇𝒇𝒅𝒅)𝟏𝟏
14

𝑧𝑧=1

+ �  𝒆𝒆𝒋𝒋𝟏𝟏
6

𝑧𝑧=1

 𝑖𝑖𝑐𝑐 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑛𝑛𝑑𝑑. 

Equation 6.4 

The vector 𝑿𝑿 includes the 16 strap set prestrains and cone adjustment angle. 

The optimization problem was solved using the built in MATLAB (2015) function 

fmincon with the interior-point algorithm.  The converged solution produced results that 

were well within an acceptable tolerance and are detailed in Table 6.3.  The converged 

cone adjustment angle was -5.32°. 
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Table 6.3.  Strap prestrain and prestress results. 

Strap 

set 

Prestrain Target prestress 

(kN) 

Equilibrium 

prestress (kN) 

1 -0.0414 0.2224 0.2235 

2 0.0439 0.2224 0.2209 

3 0.00756 0.2224 0.2234 

4 0.0508 0.2224 0.2211 

5 0.0504 0.2224 0.2231 

6 -0.0196 0.2224 0.2238 

7 0.0212 0.2224 0.2213 

8 0.0948 0.2224 0.2214 

9 0.0650 0.2224 0.2225 

10 0.0592 0.2224 0.2213 

11 0.0807 0.2224 0.2243 

12 0.0580 0.2224 0.2224 

13 0.000410 0.4448 0.4423 

14 0.0891 -- 0.2217 

15 0.0129 0.4448 0.4450 

16 0.124 -- 0.2231 
 

The final strap pretension was less than 1% of the target pretension in all cases.  Figure 

6.6 illustrates the desired, initial (with cone adjustment angle), and final (equilibrium) 

configurations of the HIAD cross-section.  As can be seen from Figure 6.6, the HIAD 
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pitches forward and compresses during the strap equilibrium step to achieve the desired 

cone angle. 

 

Figure 6.6.  Desired, initial and equilibrium HIAD cross-section configurations. 

The strap prestress finding methodology that was developed here could be applied to the 

analysis of higher fidelity, shell-based FE models with wedge symmetry applied, 

although more efficient solution techniques would be worth investigating.  Alternately, 

the beam-based FE model could potentially be used to determine strap prestrain inputs to 

the shell-based model, although care would be required to ensure that all of the material 

and geometric inputs were closely matched between model types. 

Although the strap prestress finding methodology showed that the beam-based FE model 

is capable of achieving the correct prestressed state with an equilibrium step, whether or 

not the simplified strap prestress approach can produce adequate results was still an 

outstanding question.  The advantage to using the simplified approach is that neither the 

prestress finding process, nor is an initial equilibrium is step needed.  To assess the 

efficacy of the two approaches to handling strap prestress, three analyses were conducted 
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using a uniform pressure load on the fore side of the HIAD structure.  The configurations 

that were analyzed included: 

1. The prestressed model that utilized the prestrains obtained in the optimization 

process and an equilibrium step, 

2. A model that utilized the shape obtained in the optimization process with the 

simplified prestress methodology, and 

3. A nominal model that utilized the target HIAD shape and the simplified prestress 

methodology. 

The load deformation results (total vertical reaction versus vertical deflection of the T5 

torus) are shown in Figure 6.7, below. 

 

Figure 6.7.  Uniform pressure analysis on prestressed and simplified prestressed HIAD 

configurations. 

As can be seen from Figure 6.7, the prestressed analysis and non-prestressed analysis 

with prestressed geometry match well.  Even the nominal model that utilizes the 
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simplified approach and original geometry tracks the refined solutions reasonably well, 

with a final predicted load within 4% of the refined solution. 

The methodology that was developed for finding the initial, prestressed HIAD 

configuration is of use when conducting more refined analyses, or investigating a 

particular HIAD configuration.  However, for the purposes of obtaining the gross 

response of a HIAD structure, analyzing multiple configurations, or when in the design 

process where variables that influence the prestressed configuration may be 

parameterized, the simplified methodology is adequate and offers a significant amount of 

time savings. 

In addition to strap pretension levels, the variability in strap pretension (which was 

significant for the 3.7 meter HIAD structure investigated in Chapter 5), also has the 

potential to influence response.  The impact of strap variability could be investigated 

using optimized strap prestrains as the reference configuration and varying the prestrains 

within a strap set based on some expected distribution.  This study is outside of the scope 

of the current work and was not investigated here. 

6.2 Full-Scale HIAD Tab Study 

In this section analyses on the 16.7 meter HIAD configuration are continued.  The model 

is extended to investigate alternative pressure loading distributions and the influence of 

an aerodynamic tab on the structural response. 

6.2.1 Problem Description and Motivation 

In addition to utilizing the 16.7 meter major diameter HIAD model for the purpose of 

developing a strap pretension methodology, the configuration was also used for the study 
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of a non-axisymmetric HIAD.  As the HIAD travels through the atmosphere it is 

desirable to be able to control the orientation of the body’s lift and drag vectors in order 

to more accurately control the flight of the system.  There are multiple concepts for 

creating the non-axisymmetric shapes that would allow more desirable lift to drag ratios 

than those produced by the typical stacked cones that have been described previously.  

Concepts include controlling the payload center of mass, a canted stacked torus 

configuration that produces a more ovalized cone, morphing HIAD concepts where the 

shape of the relatively compliant structure is actively changed during reentry using cables 

and actuators, and the use of aerodynamic tabs, to name a few (Johnson 2016). 

An important question with all of the non-axisymmetric configurations is how the change 

in external pressure loading that is induced by the asymmetry influences the structural 

response.  In the current study, a tab configuration was investigated.  The tabbed HIAD 

consisted of the 16.7 meter structure with an additional tab cantilevered from the T5 

torus.  The tab was pitched to match the cone angle of the HIAD structure (20° from the 

horizontal axis), as shown in Figure 6.8. 

 

Figure 6.8.  Rendering and cross-section of HIAD structure with tab (Johnson et al. 

2016). 
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6.2.2 Analysis and Results 

The tab size was chosen to be 3% of the total frontal, projected area of the HIAD.  The 

length of the tab is approximately 1.9 meters and has a swept area of 25°.  To obtain the 

expected pressure distribution on the fore side of the HIAD surface, CFD analyses were 

conducted by NASA researchers (personal communication, February 24, 2016).  The 

pressure distribution is shown in Figure 6.9.  Also shown in Figure 6.9 are the global 

coordinate system, and the location of the leeward and windward sides of the HIAD. 

 

Figure 6.9.  Tabbed 16.7 meter HIAD expected pressure distribution. 

Two analyses were developed to assess the influence of the tab on the structural response 

of the HIAD system.  In the first analysis the pressure distribution shown in Figure 6.9 

was interpolated to the tori but the tab structure and tab loading were not included.  In the 

second analysis the tab structure was approximated using beam finite elements and the 
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pressure loading from Figure 6.9 was interpolated to both the tori and the tab structure.  

To model the tab structure, rigid beam elements were cantilevered from the T5 torus.  

The pressure distribution of the tab was then integrated to point loads located at the 

cantilever tips.  A total of 35 tab elements were utilized (one per torus node in the tab 

region).  The tab structure is shown on a 60° wedge of the HIAD in Figure 6.10.  The 

torus cross-sections have been rendered and the strap elements are not shown for clarity.  

By modeling the tab in this manner, no assumptions were made as to how an actual tab 

would be designed or connected to the HIAD structure, except that it would be 

cantilevered from the last full-sized torus (a worst-case scenario).  The tab elements 

imparted the correct thrust and torque to the torus elements while not over-constraining 

the torsional rigidity of the inflatable member.  The simplified strap pretensioning 

methodology was utilized in both analyses. 

 

Figure 6.10.  Tab structure. 
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The normalized pressure distribution shown in Figure 6.9 was scaled so that the total 

integrated vertical force on the aeroshell portion of the HIAD was almost 1,200 kN, a 

load level that is expected to be above the operational load level during reentry.  The load 

deformation response of the two HIAD structures (vertical reaction versus vertical 

displacement of the T5 torus), is shown in Figure 6.11. 

 

Figure 6.11.  Load deformation response of HIAD with and without a tab. 

As can be seen from Figure 6.11 the response of the HIAD remains essentially constant 

on the windward side of the HIAD with and without the presence of the tab.  The 

response of the structure on the leeward, tabbed, side of the HIAD is significantly 

influenced by the presence of the tab.  Although the response of the leeward side of the 

tabbed HIAD softens at higher load levels (above 1,000 kN of vertical reaction), the 

structure is still capable of accommodating load.  The deformed shape of the un-tabbed 

and tabbed HIAD at the maximum load is shown in Figure 6.12, viewed from the leeward 

side.  The tab structure is shown in the bottom HIAD configuration and the color mapped 

total deformation is also provided.  The straps are not shown in Figure 6.12 so that the 

deformations of the tori are more clearly visible. 
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Figure 6.12.  Deformed shape of un-tabbed (top) and tabbed (bottom) HIAD. 

As can be seen from Figure 6.12, the deformation due to the tab is fairly localized to the 

area surrounding the tab structure.  As the tab structure was loaded the additional force 

and torque was accommodated by the strap system and the torsional rigidity of the T5 

torus.  The final magnitude of the maximum shear strain in torus T5 was estimated to be 

0.24% without the tab structure and 0.50% with the tab structure.  The maximum shear 

strain reported in Clapp et al. (2016a) was approximately 0.3%.  Although the estimated 

shear strain for the tabbed structure is 67% greater than the values reported in Clapp et al. 

(2016a), the member is expected to be capable of accommodating the greater shear strain 

without wrinkling because it is continuously braced by adjacent tori. 

Figure 6.13 illustrates the response of the radial straps on the fore side of the HIAD 

structure with and without the presence of a tab.  With a uniform pressure loading all 

radial straps would be expected to load equally.  As can be seen from Figure 6.13, there is 

some spread in the radial strap loads around the HIAD structure as the system without a 

tab is loaded by the non-axisymmetric pressure distribution; however, the magnitude of 
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discrepancy between straps increases significantly for the tabbed structure.  The more 

highly loaded straps are in the immediate vicinity of the tab structure. 

 

Figure 6.13.  Radial strap loads. 

The beam-based modeling methodology is a powerful tool for exploring various HIAD 

configurations, including non-axisymmetric designs.  The previous analysis demonstrates 

the feasibility of analyzing large-scale and non-standard HIAD configurations, and how a 

non-uniform pressure distribution can be applied to the model. 

6.3 HIAD Structural Optimization 

An efficient HIAD structural modeling tool has been developed and validated at the 

component and structural levels.  Although it has been demonstrated that the modeling 

tools can be used for the analysis of the HIAD system, there are still outstanding 

questions as to what parameters drive the structural response.  The influences of internal 

pressure distribution, torus braid angles, strap placement, cord placement, component 

stiffness, etc. are still being understood.  In the following sections the HIAD modeling 

and analysis tools are coupled to optimization routines in order to demonstrate how some 

of these questions may be answered, and how the HIAD design process may be 

automated.  A genetic algorithm (GA) is employed to demonstrate the methodology 
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because of its ease of implementation and robust nature.  Although at the current stage of 

the development process the structural configuration is not being optimized, coupling the 

analysis to optimization routines can still be a powerful tool for understanding the 

response of the system and developing analysis methodologies. 

6.3.1 HIAD Model Description 

Before continuing with a description of the optimization studies that were conducted, a 

description of the HIAD article that was utilized is warranted.  The HIAD configuration 

that was utilized in the development of optimization studies was based on a 6 meter 

configuration designed for reentry in Earth’s atmosphere.  The system consisted of seven 

tori (six full sized tori and one shoulder torus).  The nominal inflation pressure was 69 

kPa for each torus.  Figure 6.14 illustrates the configuration of the tori. 

 

 

Figure 6.14.  6 meter major diameter HIAD, configuration of tori. 
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The diameter of the center-body was 1.24 meters and the tori created a 20° angle from the 

horizontal, 𝑅𝑅 axis (coordinate systems are consistent with previous HIAD analyses).  The 

configurations of the HIAD tori are specified in Table 6.1. 

Table 6.4.  Configuration of tori, 6 meter HIAD configuration. 

Torus 𝑹𝑹 location 

(mm) 

𝒁𝒁 location 

(mm) 

Minor diameter 

(mm) 

Nominal inflation 

pressure (kPa) 

T1 808 450 386 69 

T2 1167 630 387 69 

T3 1528 762 389 69 

T4 1891 894 390 69 

T5 2256 1027 391 69 

T6 2622 1160 392 69 

T7 2899 1145 168 69 
 

All tori had two axial reinforcing cords located at ±60° from the inner equatorial axis of 

the torus.  The cord force-strain relationship is based on a Zylon cord and is shown in 

Figure 5.4.  The cord load at the nominal inflation pressure ranged from 3.08 to 3.18 kN 

for tori T1 through T6 and was 0.56 kN for torus T7 (Equation 2.17). 

The extensional and shear stiffness of the Zylon braided shell used in this study were 

based on test data at 83 kPa of inflation pressure (the extensional and shear moduli were 

15.7 and 700 N/mm respectively).  The Zylon braid used in this study was only tested at a 

71° braid angle and 83 kPa of inflation pressure using the tension/torsion methodology 

described in Clapp et al. (2016a).  The extensional stiffness is assumed to be constant 

149 
 



across all braid angles and inflation pressures and the additional longitudinal stiffness due 

to the geometric changes that the braided shell undergoes when subjected to an axial 

strain was included in the typical manner.  However, the shear stiffness is expected to 

vary with inflation pressure and braid angle.  To estimate the shear stiffness for 

configurations other than a 71° braid angle and 83 kPa of inflation pressure, the results of 

testing with a Technora braid (reported in Clapp et al. 2016a) were scaled to the single 

Zylon data point that was available.  The scaled data that was used to interpolate the 

shear stiffness of the braided material as a function of inflation pressure and braid angle 

is shown in Table 6.5, below. 

Table 6.5.  Zylon shear stiffness interpolation table (N/mm). 

  Braid angle (deg.) 

  55 60 65 71 

In
fla

tio
n 

pr
es

su
re

 (k
Pa

) 3.4 351 202 186 128 

34 2550 1069 707 436 

69 3552 1501 1156 622 

103 3891 1814 1477 818 

138 4096 2119 1684 911 
 

As with the 3.7 meter major diameter HIAD discussed in Chapter 5 and the 16.7 meter 

HIAD discussed earlier in this chapter, strap sets included loop straps, radial straps and 

chevron straps.  Table 6.6 details the configurations of each strap set.  Radial straps 

connected from the HIAD center-body (CB) to the base of the chevron (chev.) straps 

between the T2 and T3 tori. 
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Table 6.6.  Strap set configurations for 6 meter HIAD. 

Strap 

set 

Strap type Number 

of 

straps 

Location of 

first strap 

(deg.) 

Connection Swept 

𝜽𝜽 

(deg.) 

Preload 

(kN) 

1 Loop-aft 32 0 CB to T1 0 0.4448 

2 Loop-aft 32 0 T2 to T3 0 0.4448 

3 Loop-aft 32 0 T4 to T5 0 0.4448 

4 Loop-aft 32 0 T6 to T7 0 0.4448 

5 Loop-fore 32 0 CB to T1 0 0.4448 

6 Loop-fore 32 0 T2 to T3 0 0.4448 

7 Loop-fore 32 0 T4 to T5 0 0.4448 

8 Loop-fore 32 0 T6 to T7 0 0.4448 

9 Loop-aft 32 5.625 T1 to T2 0 0.4448 

10 Loop-aft 32 5.625 T3 to T4 0 0.4448 

11 Loop-aft 32 5.625 T5 to T6 0 0.4448 

12 Loop-fore 32 5.625 T1 to T2 0 0.4448 

13 Loop-fore 32 5.625 T3 to T4 0 0.4448 

14 Loop-fore 32 5.625 T5 to T6 0 0.4448 

15 Radial-aft 32 5.625 CB to Chev. 0 0.890 

16 Chev.-aft 64 5.625 Radial to T5 ±2.8 0.4448 

17 Radial-fore 32 0 CB to Chev. 0 0.890 

18 Chev.-fore 64 0 Radial to T5 ±2.8 0.4448 
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The strap force-strain response was derived from test data produced by NASA 

researchers and is shown in Figure 6.15 (personal communication, September 7, 2016).  

A small compression stiffness was utilized for numerical stability (18 N).  The simplified 

strap pretensioning method was used in all 6 meter HIAD analyses. 

 

Figure 6.15.  Strap force-strain response. 

A uniform pressure load was applied to the tori.  The load-deformation response of the 

nominal HIAD configuration is shown in Figure 6.16.  The total vertical reaction is 

shown versus the vertical displacement of the T6 torus.  The operational load level is 

expected to be at approximately 130 kN of total vertical reaction.  The initial, tangent 

stiffness of the structure was 555 N/mm. 
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Figure 6.16.  Load-deformation response of 6 meter HIAD configuration with uniform 

pressure load. 

6.3.2 HIAD Optimization 

Any HIAD optimization study will necessarily include a subset of HIAD design 

parameters, objective functions and constraint functions.  Before conducting an 

optimization study to demonstrate the feasibility of coupling the HIAD analysis tools 

with optimization techniques, the formulation of the complete optimization of the HIAD 

structure is worth considering.  From the formulation of the complete optimization 

problem, optimization studies using a subset of variables, objectives and constraints can 

be formulated that are informative and tractable.  The general formulation of the 

optimization problem for the full HIAD system is as follows, 
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𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑                 𝑿𝑿, 

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑛𝑛        𝒇𝒇(𝐗𝐗)  

𝑆𝑆𝑢𝑢𝑆𝑆𝑗𝑗𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐       𝒔𝒔(𝐗𝐗) = 0 

𝒅𝒅(𝐗𝐗) ≤ 0. 

𝐗𝐗𝑚𝑚𝑧𝑧𝑡𝑡 ≤ 𝑿𝑿 ≤ 𝐗𝐗𝑚𝑚𝑐𝑐𝑥𝑥. 

Equation 6.5 

The vector 𝑿𝑿 contains the design parameters that fully describe the HIAD system.  A 

subset of parameters may include the braid angle, inflation pressure, cord locations and 

number of cords for each torus.  It may also include the number of straps within a strap 

set, layout of straps, strap pretension and information about the strap cross-section.  

Further, the number of tori, minor diameters of tori and location of the cross-section of 

each torus may be included, to list a few parameters. 

The objective functions, 𝒇𝒇(𝐗𝐗), may include goals to minimize the total structure mass or 

maximize the structural stiffness for any number of given load cases.  The equality and 

inequality constraint functions, 𝒔𝒔(𝐗𝐗) and 𝒅𝒅(𝐗𝐗) respectively, may include limits on the 

required initial stiffness, maximum allowable displacement, minimum load at which the 

structure loses stiffness, or maximum allowable strap loads based on strength or 

indentation criteria, all for any number of given load cases.  Constraint functions may 

also include constructability constraints, based on a maximum or minimum strap density 

or strap clearances.  Frequency and dynamic constraints may also be included.  It is also 

required that the design variable stay within reasonable and physical bounds, as indicated 

by the limits on the design parameters, 𝑿𝑿. 
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For a system as complex as the HIAD structure, the number of design variables, objective 

functions, constraint functions and load cases can quickly grow into a problem that is not 

currently tractable with available computational resources, analysis tools and solution 

techniques.  For the current research an optimization problem was formulated that 

utilized a subset of design variables, along with a single objective function and nonlinear 

constraint.  Any optimization problem will include a subset of design variables, since the 

complete optimization problem involves a very large (if not infinite) number of variables.  

An analysis that includes a subset of the full optimization problem is worthwhile because 

the optimization tools can be utilized to better understand the response drivers of the 

HIAD system. 

There were a total of 14 design variables consisting of inflation pressure and the braid 

angle for each torus.  The lower and upper bounds on the internal inflation pressure were 

34 and 138 kPa respectively.  The upper and lower bounds on the braid angle were 57° 

and 71° respectively.  The goal of the optimization problem was to maximize the initial 

stiffness of the structure for the uniform, externally applied pressure load case.  The 

initial stiffness was calculated as a tangent slope of the total 𝑍𝑍 direction reaction (∑𝐹𝐹𝑧𝑧) 

versus vertical displacement of the T6 torus (𝑈𝑈𝑧𝑧−𝑇𝑇6).  As mentioned previously, the initial 

stiffness of the nominal configuration was 555 N/mm.  Although the inflation pressure 

was allowed to vary for each torus, it was desired that the total mass of the gas not exceed 

the total gas mass for the nominal model (with each torus at 83 kPa of inflation pressure). 

The total mass of the HIAD gas was estimated using the ideal gas law for each element, 

𝑝𝑝𝑉𝑉 = 𝑚𝑚
𝑀𝑀
𝑅𝑅𝑇𝑇. Equation 6.6 
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Where 𝑝𝑝 is the inflation pressure, 𝑉𝑉 is the volume of the gas in the element, 𝑚𝑚 is the mass 

of the gas in the element, 𝑀𝑀 is molar mass of the gas, 𝑅𝑅 is the universal gas constant and 

𝑇𝑇 is the temperature of the gas (in Kelvin scale).  Equation 6.6 was rearranged for the gas 

mass of the element, 𝑚𝑚.  The mass of each element was then summed to find the total gas 

mass (𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐).  Nitrogen (𝑁𝑁2) was utilized as the inflation gas (𝑀𝑀 = 28.14 𝑔𝑔/𝑚𝑚𝑐𝑐𝑙𝑙).  The 

temperature was assumed to be 295 K and the gas constant was taken as 8.31 𝑚𝑚
3𝑃𝑃𝑐𝑐

𝐾𝐾∙𝑚𝑚𝐻𝐻𝑐𝑐
. 

The formulation of the optimization problem was, 

𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑                  𝑿𝑿 =  [𝒑𝒑𝑇𝑇1 𝑡𝑡𝐻𝐻 𝑇𝑇7,𝜷𝜷𝑇𝑇1 𝑡𝑡𝐻𝐻 𝑇𝑇7 ] 

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑛𝑛        𝑘𝑘(𝑿𝑿) =  −
𝜕𝜕∑𝐹𝐹𝑧𝑧
𝜕𝜕𝑈𝑈𝑧𝑧−𝑇𝑇6

 

𝑆𝑆𝑢𝑢𝑆𝑆𝑗𝑗𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐       g(𝐗𝐗) = 1 −
𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐
𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐0

≥ 0 

34 𝑘𝑘𝑃𝑃𝑖𝑖 ≤ 𝒑𝒑𝑇𝑇1 𝑡𝑡𝐻𝐻 𝑇𝑇7 ≤ 138 𝑘𝑘𝑃𝑃𝑖𝑖 

57° ≤ 𝜷𝜷𝑇𝑇1 𝑡𝑡𝐻𝐻 𝑇𝑇7 ≤ 71°. 

Equation 6.7 

The total gas mass of the nominal structure (𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐0) was determined to be 6.4 kg.  The 

stiffness objective used in Equation 6.7 was negative so that in minimizing the objective 

function, the stiffness was maximized. 

A genetic algorithm (GA) was employed to find the design variables that satisfy the 

optimization problem as formulated in Equation 6.7.  The real-coded GA algorithm 

documented in Goupee and Vel (2006) was utilized.  This implementation is based on 

select algorithms proposed by Deb (2001).  Although more efficient optimization tools 

may exist (Sigmund and Maute 2013), the GA was chosen for its robust nature and ease 

of implementation for the HIAD system.  GAs have been successfully applied to the 
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optimization of engineering structures by many others (Poirier et al. 2013; Lohn 2008; 

Young 2013). 

A total of 280 individuals were specified per generation (20 individuals per design 

variable).  The analysis was terminated after 400 generations.  The analysis was repeated 

three times and each iteration yielded comparable converged design variables (accounting 

for the stochastic nature of the GA).  Figure 6.17 shows the convergence of the 

normalized solution for run 1.  The normalized fitness is the percent change in stiffness 

from the nominal solution.  The first run of the analysis is representative of all three runs 

and will be used for the purposes of analysis. 

 

Figure 6.17.  Convergence of solution (run 1). 

As can be seen from Figure 6.17, a 3% increase in the initial, tangent stiffness was 

achieved.  The total gas mass of the structure was maintained at 6.4 kg.  Although the 

increase in stiffness was not substantial, the optimized design values did converge to 

informative final values.  The distribution of inflation pressures and braid angles for tori 

T1 through T7 for all three optimization runs can be seen in Figure 6.18, below. 
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Figure 6.18.  Converged design variables. 

Clear trends can be seen for the distribution of both the internal inflation pressures and 

braid angles.  Inner tori were more highly inflated than outer tori (with the exception of 

the shoulder torus, T7) and braid angle increased from the inner to outer tori.  As the 

HIAD is loaded with a uniform external pressure, the aeroshell tends to deflect inward.  

The inward deflection both compresses and rotates the tori.  While the outer tori are 

compressed to a greater extent, the inner tori experience a greater amount of rotation.  It 

is reasonable that the converged solution increased inflation pressure while decreasing 

the braid angle of the inner tori (therefore increasing the shear stiffness of the tori), and 

increased the braid angle on the outer tori (therefore increasing the force in the cords and 

increasing axial stiffness).  The design variables in all three runs converged to 

comparable values, with the exception of the T7 inflation pressure.  The shoulder, T7, 

torus contributes minimally to the stiffness of the HIAD structure, and accommodates 
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much less gas than other tori because of the comparably small section diameter.  

Although there is some spread in the final inflation pressure for the T7 torus, each run 

produced a similar increase in inflation pressure from the T6 torus and may converge 

further with the use of other solution techniques.  The full load-deformation response of 

both the nominal system and the converged solution are shown in Figure 6.19. 

 

Figure 6.19.  Load-deformation response of 6 meter HIAD configuration with uniform 

pressure load, nominal and converged HIAD configurations. 

While the converged solution met the optimization objectives and constraints, the load at 

which the HIAD loses stiffness is significantly lower than for the nominal case.  As the 

outer tori become less inflated, the external load level required for the cords to lose their 

prestrain due to inflation pressure decreases.  Because the operational load is expected to 

be approximately 130 kN, the converged solution may not be feasible as it would 

experience larger deformations than the nominal HIAD.  An additional, maximum 

allowable deflection constraint could be added into the formulation of the optimization 

problem in order to constrain the HIAD response from deforming significantly at 

operational load levels. 
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The coupling of analysis and optimization tools can be used to better understand the 

response of the system, as demonstrated here for the HIAD structure.  The structure can 

be further optimized and refined with the incorporation of additional constraints and 

modifications to the objective function.  Whether trying to understand the influence of 

individual parameters or trying to refine the structural design, the coupling of analysis 

and optimization routines can be a powerful tool. 
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Chapter 7 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this chapter the current research is summarized and conclusions are drawn with respect 

to the applicability of the HIAD modeling methodologies that were developed.  Potential 

directions for future research are also discussed, including logical extensions to the 

modeling and analysis methodologies and tools that were developed here. 

7.1 Summary and Conclusions 

The HIAD structure, under development by NASA researchers, has the potential to 

provide a decelerator with a significantly decreased mass when compared to traditional, 

rigid decelerators, and provide the required frontal area to effectively decelerate the sized 

payloads that will be required for future, human-scale missions.  The HIAD system can 

be deflated and packed within the launch vehicle shroud for deployment on the way to 

the destination planet.  Upon deployment the major diameter of the structure would be 

significantly greater than the diameter of the launch vehicle, an advantage over a 

comparable rigid decelerator that is constrained by the launch vehicle size.  An important 

consideration with these inflatable, relatively compliant systems is the structural response 

during atmospheric reentry.  A HIAD configuration that is too compliant may experience 

a global buckling failure as the structure is loaded, while a system that is over-designed 

may have more mass than is necessary.  While ground development and testing of 

structural components and small-scale HIAD systems are important for understanding the 

structural response, human-scale HIAD systems may be larger than can be physically 

tested in an economic manner. 
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Numerical modeling techniques for the HIAD system are therefore important for 

understanding the structural response of full-scale HIAD systems.  Others have 

developed continuum-based FE modeling methodologies for analyzing the HIAD system.  

These modeling tools, although able to capture the response of the HIAD system, are 

time consuming to develop, difficult to parameterize and computationally demanding to 

run because of the relatively compliant nature of the HIAD system, and the added 

complexities that arise when working with an inflatable system.  In the current research a 

simplified, beam-based FE model approach for the analysis of inflatable members and the 

HIAD system was developed.  The beam-based modeling approach incorporates the 

challenges that are encountered in analyzing an inflatable, textile system, such as the 

influence of internal inflation pressure, nonlinear material response, the loss of pretension 

due to inflation pressure, and the large deformations that occur as a result of having 

relatively compliant system. 

A number of research goals and objectives were addressed in the current research. 

• Material models for the braded shell that compose the HIAD tori and the internal 

axial reinforcing cords that give the members axial and bending rigidity were developed 

for both shell and beam-based FE modeling approaches. 

• Computationally efficient, beam-based FE modeling and analysis methodologies 

were developed for use with the slender, inflatable members that that make up the HIAD 

system. 

• The modeling methodology was validated at the component level by making 

comparisons to both straight tube and individual torus loading test data. 
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• The modeling methodology was further extended to model the full HIAD system, 

including the interaction between tori and the strap systems that attach tori to each other 

and to the rigid center-body. 

• The full HIAD modeling tools were validated using pressure tub test data 

produced by NASA researchers. 

• The modeling methodologies were extended and applied to the analysis of full-

scale HIAD structures. 

• Various methodologies for incorporating strap prestress were investigated. 

• The structural response of a non-axisymmetric HIAD configuration was 

investigated that could be used to control the orientation of the inflatable body during 

atmospheric reentry.  The modeling tools were demonstrated for non-uniform designs and 

non-uniform external loading. 

• The beam-based modeling and analysis tools were coupled to optimization 

techniques to further understanding of the structural response drivers, and to demonstrate 

the feasibility of automating the structural design process. 

The beam-based HIAD structural analysis methodologies that have been developed here 

are shown to be capable to capturing the structural response of the HIAD system.  The 

modeling tools will complement the high fidelity, shell-based FE modeling tools under 

development by others.  While the beam-based modeling tool can be used to efficiently 

explore the HIAD design space, explore various configurations and parameters, and 

perform trade, sensitivity and optimization studies, the shell-based modeling tools can be 

utilized for refined analysis once a final configuration has been down-selected. 
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7.2 Applications and Future Research Directions 

There are a number of applications, potential research directions and extensions for the 

modeling tools and methodologies that build on the research detailed here.  The first 

potential research extension is to apply the methodologies and tools developed in this 

dissertation to the analysis of other HIAD configurations. 

HIAD parameterization 

The modeling tools have been parameterized for the analysis of the HIAD system and can 

be used explore the HIAD design space and perform trade studies.  HIAD design 

parameters include: 

• Torus inflation pressure 

• Torus minor radius 

• Torus shell properties 

• Braid angle 

• Number of cords 

• Cord location 

• Cord response 

• HIAD cone angle 

• Location of torus cross-sections 

• Strap connectivity 

• Strap properties 

• Strap prestress 

• Magnitude of external pressure load 
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The modeling tools are currently parameterized for an axisymmetric HIAD system, based 

on the current state-of-the-art design.  As the configuration of the HIAD evolves and 

additional features are required, the MATLAB based preprocessing routines will be 

relatively straight-forward to modify. 

Application of the strap prestress analysis 

As was discussed in Section 6.1, finding the initial, prestressed state of a HIAD system 

can be an involved process, even for the beam-based FE model.  The complexity of the 

process is increased substantially when going from a beam to a shell-based FE modeling 

approach.  In a shell-based modeling approach the pressurization step has to be included, 

and the analysis time to get to the preloaded state is prohibitively long to be able to apply 

the prestress search method that was developed here.  Although more advanced form-

finding analysis methodologies such as the dynamic relaxation or force-density methods 

(Adriaenssens et al. 2014) may decrease the analysis time for a single execution of the 

objective function, the prestress search methodology would still be prohibitively time 

consuming.  The final results of the beam based strap prestress search methodology 

developed in Section 6.1 (level of strap prestrain and initial HIAD shape), could be used 

to inform the initial state of the shell-based FE model, eliminating the need for solving 

the computationally expensive inverse problem with the shell-based FE model.  

Likewise, the methodology could also be used to inform the initial strap lengths and torus 

configurations of an actual HIAD system, decreasing manufacturing complexity and 

time.  Further exploration and validation of the initial state analyses could be performed 

by quantifying the shape and strap loads of just two tori before and after coupling the two 

tori together and tensioning the straps. 
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Incorporation of the cord hysteresis algorithm 

The response of the torus axial reinforcing cords was shown to follow different loading-

unloading paths, and was shown to be load history dependent (Chapter 2).  A preliminary 

cord hysteresis algorithm was developed in Chapter 2 that was capable of tracking the 

load response by using the strain and strain history of the loading regime.  In order to 

more accurately capture the response of a HIAD subjected to multiple loading cycles or 

for load cases where cords experience both loading and unloading, the cord hysteresis 

algorithm should be incorporated into the finite element framework.  The force-strain 

lookup table that is currently utilized would be replaced by the cord hysteresis algorithm 

and input parameters would be updated every global FE iteration. 

Incorporation of strap indentation response 

At high loads or low inflation pressures individual straps that connect tori to each other 

and to the center-body may indent into the torus shell.  This phenomenon was observed 

during out-of-plane torus testing conducted by Whitney (2016).  This indentation has the 

potential to significantly influence the load deformation response of the HIAD at high 

loads.  Strap indentation can be incorporated into the HIAD by tailoring the response of 

the link elements.  A nonlinear moment-curvature relationship would be defined such that 

the gross response of the straps and indentation is captured.  However, before the 

indentation response can be incorporated into the beam based HIAD modeling tools, the 

phenomenon must be better understood.  This can be accomplished through 

parameterized indentation testing and a higher fidelity modeling approach. 

166 
 



HIAD shape morphing analyses 

The benefits developing HIAD configurations that can actively control the orientation of 

lift and drag vectors relative to the HIAD body during reentry were discussed in Chapter 

6, and shape morphing is a topic currently under investigation by NASA researchers.  

The beam-based FE modeling tools are a good candidate for assessing the structural 

response of these non-standard configurations.  In addition to the tab configuration 

discussed in Chapter 6, another potentially feasible option is to use actuated cables on the 

HIAD center-body that connect to the outer torus, as shown in Figure 7.1.  The load in 

individual cables would be controlled in order to morph the HIAD shape and control the 

aerodynamic response. 

 

Figure 7.1:  HIAD structure with center-body and cables for actively controlling the HIAD 

shape. 

The beam-based FE modeling tools could incorporate these actuated cables to assess 

structural performance of the HIAD system.  A computationally efficient beam-based 

model could also be incorporated into an experimental controls simulation for the 

purpose of developing a control algorithm. 
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Incorporation of the thermal protection system 

The thermal protection system (TPS) covers the fore side of the HIAD system and 

protects the tori and strap system from the high levels of heating encountered during 

atmospheric reentry.  The structural response of the HIAD system is influenced by the 

TPS.  In preliminary tests of the 3.7 meter HIAD system conducted by NASA 

researchers, the presence of a TPS reduced radial strap loads by almost 40% (personal 

communication, February 11, 2014).  In addition to providing thermal protection, the TPS 

may be tailored to increase the stiffness of the HIAD structure.  The TPS could be 

incorporated into the beam-based FE modeling approach with the inclusion of membrane 

elements.  The use of membrane elements would keep the computational overhead of the 

modeling tools low (when compared with shell elements) and has the potential to 

accurately capture the influence of the TPS. 

Development of dynamic and fluid structure interaction analyses 

To date, all analyses on the HIAD system using the beam-based modeling methodology 

have been static analyses.  Understanding the static response of the HIAD system is 

critical and is the logical place to begin development of structural analysis 

methodologies.  However, the entry of the HIAD system into an atmosphere from orbit 

may be influenced to a large extent by the structural dynamics of the system.  In order to 

perform dynamic analyses on the HIAD system using the beam-based modeling tools, the 

mass and damping properties must be incorporated.  The damping parameters would 

likely be derived phenomenologically, as they are a result of a complex interaction with 

the textile materials and friction between tori, straps and TPS.  While straightforward 

eigenvalue analyses could be quickly implemented to assess mode shapes and 
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frequencies, appropriate explicit or implicit time-stepping algorithms would also need to 

be implemented to determine the dynamic time-history response. 

With the incorporation of mass and damping matrices the modeling tools could be 

applied to a number of additional analyses to better understand the response of the 

system.  Fundamental mode shapes and frequencies of the HIAD system could be 

obtained.  The HIAD system could be subjected to various dynamic loads representative 

of the reentry loading profile.  The computationally efficient modeling tools could be 

coupled with CFD analyses or other fluid-structure interaction analyses in order to better 

understand how the deformed shape of the relatively compliant structure influences the 

fluid flow and loading on the system.  Understanding the coupling between the HIAD 

structural shape and fluid flow around the structure is not an area that has been 

investigated to a high degree, but may be critical for the actual deployment during the 

mission. 

  

169 
 



Additional HIAD structural optimization analyses 

There are significantly more opportunities for the development of structural optimization 

studies using the HIAD system.  Whether or not the modeling tools are advanced to 

incorporate the extensions suggested in this section, the modeling and optimization tools 

can be used to further explore the HIAD design space and better understand the influence 

that various design parameters have on the response of the system.  As optimization 

studies progress, refining the optimization methodologies may be worth considering in 

order to decrease analysis time.  The optimization tools can also be incorporated into a 

larger-scale multi-disciplinary design optimization study, where the structural response is 

one of many parameters that is considered in the optimization of the global HIAD 

system. 
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