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Abstract

Type 2 diabetes mellitus and higher total plasma
homocysteine concentrations are each associated
with an increased incidence of cardiovascular disease
and with diminished cognitive performance. Relations
between homocysteine concentrations and cardiovas-
cular disease incidence are stronger in the presence
of type 2 diabetes mellitus. Therefore, we hypothe-
sized that relations between homocysteine concentra-
tions and cognitive performance would be stronger in
the presence of type 2 diabetes. We related homocys-
teine concentrations and cognitive performance on
the Mini-Mental State Examination in 817 dementia-
and stroke-free participants of the Maine-Syracuse
Study, 90 of whom were classified with type 2 dia-
betes mellitus. Regardless of statistical adjustment for
age, sex, gender, vitamin co-factors (folate, vitamin
B6, vitamin B12), cardiovascular disease risk factors,
and duration and type of treatment for type 2 diabetes
mellitus, statistically significant inverse associations
between homocysteine concentrations and cognitive
performance were observed for diabetic individuals.
The weaker inverse associations between homo-
cysteine concentrations and cognitive performance
obtained for non-diabetic individuals were not robust
to statistical adjustment for some covariates. Interac-
tions between homocysteine concentrations and type
2 diabetes mellitus are observed such that associa-
tions between homocysteine and cognitive perform-
ance are stronger in the presence of diabetes.

Keywords: cardiovascular risk factors; cognitive per-
formance; diabetes mellitus; folate; homocysteine;
vitamin B12; vitamin B6.
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Introduction

Increments in total homocysteine (tHcy) concentra-
tions are independently associated with increasing
risk for cerebrovascular and cardiovascular disease
(CVD) (1–4). Similarly, diabetes mellitus is a known
risk factor for atherosclerosis, peripheral vascular dis-
ease, and CVD (5). Moreover, there is evidence that
high levels of tHcy contribute to the acceleration of
CVD in diabetics (6). Levels of tHcy are sometimes,
but not always, higher in diabetics (7).

There is substantial evidence that the presence of
diabetes mellitus is related to lower cognitive per-
formance (5, 8). Also, several studies have shown that
tHcy levels are inversely related to cognitive perform-
ance within the normal range of cognitive ability
(9–13). Consequently, we felt it important to examine
interactions between diabetes mellitus and tHcy as
they relate to cognitive performance. We did so by
stratifying by presence and absence of type 2 diabe-
tes mellitus (DM) and examining relations between
tHcy and cognitive performance within these groups.

When undertaking these studies it is important to
statistically adjust associations between tHcy and
cognitive performance for serum folate, vitamin B6

and vitamin B12 concentrations, CVD risk factors, his-
tory of CVD morbidity, and depressed mood (5, 10,
14).

The Maine-Syracuse Study (15) provides data with
respect to tHcy, DM, and the covariates of interest.
Consequently, we tested the following hypotheses
using individuals from this study sample who were
clinically stroke- and dementia-free: 1) tHcy and the
presence of DM would interact such that relations
between tHcy and cognitive performance would be of
a higher magnitude for diabetics than for non-diabet-
ics; and 2) relations between tHcy and cognitive per-
formance, for diabetics and non-diabetics, would be
attenuated by adjustment for vitamin cofactors and by
adjustment for CVD risk factors, depressed mood, and
CVD morbidity.

Materials and methods

Design

The Maine-Syracuse Study provided the community-dwell-
ing study sample (15, 16). At the most recent longitudinal
examination (April 2001 to January 2005), tHcy and vitamin
cofactor (i.e., vitamins B6, B12 and folate) blood concentra-
tions were obtained for 854 individuals. The vitamin cofactor
data and data on blood pressure (BP), other CVD risk factors,
depressed mood, and CVD morbidity constituted the set of
covariates for the present study. Informed consent was
obtained from all participants. The consent forms and pro-



1102 Robbins et al.: Homocysteine, DM, and cognitive performance

Article in press - uncorrected proof

tocol were approved by the institutional Review Boards for
Human Research at the University of Maine and at the State
University of New York Upstate Medical University.

Subjects

Hospital or physician records and records of a clinical BP
examination and detailed medical interview were available
for all 854 study participants, of whom 37 were excluded for
the following reasons: 1) probable dementia (ns8) assessed
by a committee of psychologists and a physician, using the
criteria of the National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s Dis-
ease and Related Disorders Association (17); or 2) a
confirmed history of clinical stroke (ns29). The final sample
consisted of the remaining 817 participants.

Procedure

Participants were admitted to the study center the morning
following a fast from midnight. The visit began with a com-
prehensive medical history and a physical examination that
included the drawing of a blood sample and BP measure-
ment. Blood samples were collected in standard EDTA tubes
for plasma tHcy and plasma B6 determinations and in
serum separator tubes (gel and clot activator) for serum
determinations.

The medical history was verified via diagnostic records
and/or physician contact with permission of the participant.
After a light breakfast, a test protocol that included the Cen-
ter for Epidemiological Studies Depression Scale (CES-D)
(18) and the Mini-Mental State Examination (MMSE) (19) was
administered by a psychometrician.

Blood samples were delivered, on ice, to Centrex Clinical
Laboratories, Syracuse, New York, for processing and same-
day assay of serum folate, serum vitamin B12, a lipid panel,
triglycerides, glucose and creatinine. Serum folate and
serum vitamin B12 concentrations were determined using
a paramagnetic-particle chemiluminescent immunoassay
(ADVIA Centaur, Bayer HealthCare, Tarrytown, NY, USA).
Glucose was determined by a colorimetric test and serum
creatinine was determined using a two-point rate test type
(Vitros Chemistry System, Johnson and Johnson, New
Brunswick, NJ, USA). Coefficients of variation for all these
procedures were less than 5.0%.

Plasma samples used for determination of tHcy and vita-
min B6 (plasma pyridoxal 59-phosphate) were stored at
y408C until a batch of 100–150 samples was collected. Plas-
ma tHcy concentrations were determined at the Department
of Pharmacology, University of Oxford, using a fluorescence
polarization immunoassay (Axis-Shield, Dundee, UK) on an
Abbott IMx auto-analyzer (Abbott Laboratories, Chicago, IL,
USA) (20). The coefficient of variation for the tHcy assays
was less than 3.5%.

Vitamin B6 concentrations were determined at the Nutri-
tional Biochemistry Laboratory, Medical Research Council –
Human Nutrition Research (Cambridge, UK) using a Waters
Empower 2010-controlled high-performance liquid chroma-
tography system (HPLC) (Watford, UK) and a Waters 474
scanning florescence detector. The HPLC system was a
Waters 2695 Alliance separation module (Waters Symmetry
Shield RP8, 5 mm, 4.6=250 mm). Assay control was via a
dual-level lyophilized standard from ChromSystems diag-
nostics by HPLC (Munich, Germany). Coefficients of variation
for the plasma pyridoxal 59-phosphate assays were 3.75% or
less.

Cognitive test and predictor variables

The MMSE is widely used as a global screening measure of
cognitive functioning (19, 21). Questions address such cog-
nitive functions as orientation to time and place, registration
and recall, attention and calculation, language, and visual
construction. Scores can range from 0 to a maximum of 30.

Plasma tHcy (mmol/L) was the predictor variable in relation
to cognitive performance. Most participants in the DM group
were classified on the basis of treatment with insulin (ns32)
or oral antidiabetic agents (ns57). One additional participant
assigned to the DM group was classified on the basis of
a fasting glucose level at the visit of )200 mg/dL (11.1
mmol/L) with self-reported symptoms of polyuria and poly-
dipsia (22). Results described below were the same when
this participant, whose fasting glucose level was 11.4
mmol/L, was excluded from analyses. None of the partici-
pants were classified as type 1 diabetics. Enzyme cofactor
covariates were serum folate (nmol/L), vitamin B6 (nmol/L),
and vitamin B12 (pmol/L). Demographic and candidate CVD
covariates were as follows: age (years); education (years);
gender; systolic BP (mm Hg); cigarette smoking (number/
week); total cholesterol (mmol/L); alcohol consumption
(ounces/week); body mass index (BMI, kg/m2); coffee con-
sumption (cups/day); mild renal dysfunction; history of CVD
morbidity; and depressed mood. Mild renal dysfunction was
defined as an estimated creatinine clearance using the Cock-
croft-Gault formula (23) of -60 mL/min (1 mL/s) (24). History
of CVD morbidity was defined as a confirmed record of myo-
cardial infarction, coronary artery disease, congestive heart
failure, angina pectoris, or transient ischemic attack.
Depressed mood was defined as a CES-D score of 16 or
greater (19).

Statistical analyses

The MMSE scores were skewed. We transformed MMSE
scores to natural log values and compared results of analy-
ses using log-transformed and raw MMSE scores. Because
results were the same, we report results for the raw scores
only. Raw scores were transformed to z-scores. Distributions
of folate, vitamin B6, and vitamin B12 concentrations, and cig-
arettes smoked/week were also skewed. A natural log trans-
formation was calculated for these covariates and used for
analyses.

Associations of tHcy with MMSE scores (z-transformed)
for the DM and non-DM groups were examined in a series
of multivariable regression models. In separate analyses,
tHcy=DM status interaction effects were tested to further
validate the a priori stratification. The first (basic) model
included age, education, and gender. Subsequent models
added additional covariates to the basic model as follows: 1)
folate; 2) vitamin B6; 3) vitamin B12; and 4) risk factor cova-
riates chosen via a backward elimination regression proce-
dure (described in Results below).

Results

Sample descriptives

Table 1 summarizes sample characteristics. Com-
pared to the non-DM participants, participants with
DM had significantly higher tHcy concentrations, low-
er MMSE scores, and exhibited a higher prevalence
of obesity, CVD morbidity, and depressed mood. Fur-
thermore, the DM group was older, had lower levels
of education, lower levels of folate, higher systolic BP,
and higher BMI.
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Table 1 Sample characteristics.

Variable Full sample (ns817) Non-DM group (ns727) DM group (ns90) p

Mean SD % Mean SD % Mean SD %

tHcy, mmol/L 10.0 3.8 9.8 3.6 11.8 5.2 0.001
MMSE score 28.4 1.8 28.5 1.6 27.1 2.6 0.001
Age, years 61.8 12.6 61.5 12.7 64.7 11.0 0.03
Education, years 14.6 2.7 14.8 2.7 13.4 2.8 0.001
Folate, nmol/L 38.5 11.8 38.8 11.6 36.2 13.3 0.06
Vitamin B6, PLPa, nmol/L 95.5 93.2 97.3 93.4 80.9 91.3 0.12
Vitamin B12, pmol/L 390.6 212.9 390.7 213.4 389.6 210.4 0.96
Systolic BP, mm Hg 131.3 21.9 130.3 21.7 139.3 21.7 0.001
Diastolic BP, mm Hg 70.7 10.0 70.6 10.1 71.9 8.5 0.25
Alcohol, ounces/week 1.5 2.8 1.6 2.9 0.7 1.7 0.003
Cigarettes, number/week 9.0 36.7 9.2 36.9 7.5 36.0 0.65
Total cholesterol, mmol/L 5.3 1.0 5.3 1.0 4.8 1.2 0.001
Body mass index, kg/m2 29.4 6.1 28.8 5.5 34.1 8.0 0.001
Coffee, cups/day 1.8 1.9 1.9 2.0 1.4 1.4 0.03
Creatinine clearanceb, mL/s 1.5 0.6 1.5 0.6 1.5 0.7 0.75
Gender (female) 58.3 58.6 56.2 0.66
Obesity (BMIG29.9 kg/m2) 45.6 42.0 75.3 0.001
CVD morbidityd 16.2 13.5 38.2 0.001
Mild renal dysfunctione 16.8 16.1 22.5 0.14
Depressed mood 10.4 9.4 19.3 0.008
a Pyridoxal 59-phosphate. b Estimated using the Cockcroft-Gault Formula (23). c Current antidiabetic medication treatment, or
fasting glucose levels of 200 mg/dL (11.1 mmol/L) or greater. d CVD includes the following diagnostic categories: 1) myocardial
infarction, ns37 (4.5%); 2) coronary artery disease, ns69 (8.4%); 3) congestive heart failure, ns21 (2.6%); 4) angina pectoris,
ns52 (6.4%); and 5) transient ischemic attack, ns31 (3.8%). e Estimated creatinine clearance -1 mL/s.

Table 2 Regression coefficients (b) and standard errors
(SEb) showing the associations between tHcy (1-mmol/L
increments) and MMSE test scores in SD units (z-scores) for
the DM and non-DM groups.

Model Group

DM Non-DM

Basic
b y0.082** y0.022*
SEb 0.028 0.010

Basicqfolate
b y0.078** y0.018
SEb 0.029 0.010

BasicqB6

b y0.071* y0.020*
SEb 0.028 0.010

BasicqB12

b y0.082** y0.017
SEb 0.028 0.010

Basicqrisk factorsqCVD morbidity
b y0.067* y0.013
SEb 0.034 0.010

*p-0.05; **p-0.01. Basic model: age, education, gender.
Risk factors: cigarette smoking, systolic BP, mild renal dys-
function, total cholesterol, coffee consumption, depressed
mood.

Preliminary analyses

Tests of Cook’s distance indicated that no individual
participant in either the DM or the non-DM group sig-
nificantly (p)0.95) influenced the regression coeffi-
cients presented below (25). Neither interactions of
tHcy with age nor quadratic effects of tHcy were sta-
tistically significant in relation to MMSE scores for
either the DM group (p)0.80) or the non-DM group
(p)0.22).

DM individuals were less likely than non-DM indi-
viduals to arrive for their examination having fasted
for 9 or more hours (20.0% vs. 4.0%, respectively;
p-0.001). However, tHcy concentrations (p)0.40)
and MMSE scores (p)0.30) did not differ on the basis
of fasting status for either the DM or the non-DM
group. Furthermore, fasting status, as well as two of
the candidate risk-factor covariates (alcohol consump-
tion and body mass index), failed to meet backward
elimination criteria for inclusion (p-0.20) in the final
risk-factor model. The covariates retained for the final
risk-factor model were systolic BP, cigarette smoking,
total cholesterol, coffee consumption, mild renal dys-
function, CVD morbidity, and depressed mood.

For each of the five models tested there was a sta-
tistically significant interaction of tHcy=DM status
(p-0.05). Thus, we proceeded to stratify by the pres-
ence or absence of DM for all further analyses as
planned.

Major findings

Associations of tHcy and MMSE scores were stronger
for the DM group than for the non-DM group (Table
2). Introduction of the covariates, particularly the risk
factor covariates, attenuated the associations of tHcy

and MMSE scores for both groups. Nevertheless, the
associations of tHcy and MMSE scores remained
stronger for the DM group than the non-DM group.
For example, each 5-mmol/L increment in tHcy is
associated with a one-third of a standard deviation
decrement in MMSE scores for the DM group, but
only a one-twentieth of a standard deviation decre-
ment in MMSE scores for the non-DM group.
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None of the vitamin cofactors or the risk factor
covariates were related to MMSE scores for the DM
group (all p)0.07). However, several covariates
showed significant associations with MMSE scores
for the non-DM group: 1) folate (natural log) (bs
0.226, SEbs0.099, p-0.05); 2) cigarette smoking (nat-
ural log) (bsy0.099, SEbs0.026, p-0.001); and 3)
total cholesterol (bs0.084, SEbs0.032, p-0.01).

Additional analyses were conducted in order to
assess whether adjustment for self-reported duration
of diabetes or type of treatment attenuated associa-
tions of tHcy and MMSE scores for the DM group.
Self-reported duration, which ranged from 0 to
43 years (Ms9.6, SDs8.8), was positively correlated
with tHcy (rs0.46, p-0.001), even with adjustment
for age and gender, but unrelated to MMSE scores
(p)0.90). With respect to type of treatment, DM par-
ticipants treated with insulin (ns32) did not differ
either in MMSE scores (p)0.20) or in tHcy concentra-
tions (p)0.45) from DM participants treated with oral
antidiabetic drugs (ns57). Attenuation of regression
coefficients relating tHcy and MMSE ranged from
0% to 14% for duration and 0% to 8% for treatment
modality across the five models. However, the pattern
of significant inverse relations for tHcy and MMSE
scores for the DM group was unchanged.

Several previous studies of tHcy using the MMSE
have screened out participants scoring under 24 (9,
12), the cut-off point below which further diagnostic
evaluation for mild to more severe cognitive impair-
ment or probable dementia is indicated (21). After
screening out participants scoring under 24 on the
MMSE (ns25), we repeated the series of analyses
detailed above. Results for the remaining non-DM
group (ns15 excluded) were attenuated such that sig-
nificant associations of tHcy and MMSE z-scores were
no longer observed (all p)0.25). These exclusions
(ns10) also attenuated results for the remaining DM
group, for which regression coefficients were reduced
by a range from 5% to 29% in various models.
However, associations of tHcy and MMSE z-scores
remained statistically significant for all models with
one exception. With statistical adjustment for the
demographic and risk factor covariates, the associa-
tion of tHcy and MMSE z-scores was non-significant
(bsy0.044, SEbs0.028, ps0.12).

In a final set of analyses, we stratified on the basis
of tHcy concentrations in order to compare MMSE
scores for DM and non-DM participants with lower or
higher tHcy concentrations. A similar pattern of
MMSE results was observed: 1) whether tHcy was
stratified at the median (9.1 mmol/L), the mean (10
mmol/L), or a higher value (12.5 mmol/L); 2) no matter
which covariates were included in the model; and 3)
whether individuals with MMSE scores under 24 were
excluded. The most discrepant MMSE means were
shown by the group with DM and high tHcy. For
instance, with tHcy stratified at 10 mmol/L and adjust-
ment for the demographic and risk factor covariates,
MMSE means were as follows: 1) non-DM, low
tHcy, Msy0.014; 2) non-DM, high tHcy, Msy0.082;
3) DM, low tHcy, Msy0.027; and 4) DM, high tHcy,
Msy0.730.

Discussion

Our results indicate that associations between tHcy
and performance on a global screening test of cog-
nitive performance are stronger for diabetic than for
non-diabetic individuals. In this respect the present
results parallel those indicating that tHcy is related to
heightened risk of CVD for diabetic relative to non-
diabetic individuals (6). Becker et al. (7) have sug-
gested that these CVD data indicate that DM and tHcy
have adverse synergistic effects. Our results are con-
sistent with this interpretation in that the poorest
mean performance levels were consistently observed
for individuals with DM and high tHcy levels.

Results were mixed in the few previous studies that
have investigated tHcy and cognitive function in rela-
tion to DM. A three-level glycemic status variable
(normal fasting glucose vs. impaired fasting glucose
vs. diabetes) did not interact with tHcy in relation to
cognitive function in a sample of 1241 subjects aged
61–73 years, although an overall association of tHcy
and cognitive function was reported (14). Inverse
associations were reported between tHcy and MMSE
scores in a clinical sample of 50 DM patients (26).

Although DM tends to cluster with other CVD risk
factors, there is an adverse impact of DM on cognition
that is independent of these other risk factors (5).
Although broadly attributable to impaired metabolic
control (i.e., hypoglycemia, hyperglycemia, hyperin-
sulinemia), specific bases for the association of DM
with cognition are poorly understood (5). High tHcy
does not always cluster with other CVD risk factors
(27), and our results converge with those of recent
studies (10, 14) indicating that tHcy associations with
cognitive functioning cannot simply be attributed to
the effects of these other risk factors.

Elevation in tHcy is seen in the presence of deficits
in the vitamin cofactors, folate, vitamin B6, and vita-
min B12 (28, 29). Since 1996, overall reductions in tHcy
concentrations and a decreased prevalence of high
homocysteine values have been observed in the Unit-
ed States due to fortification of enriched grain prod-
ucts with folic acid (30). Nevertheless, in this study,
tHcy concentrations obtained between 2001 and 2005
were inversely associated with cognitive perform-
ance. Furthermore, these associations do not appear
to be attributable to vitamin cofactor status because
they were observed despite statistical control for con-
centrations of vitamin B6 and vitamin B12, as well as
folate (10).

Exclusion of participants who scored under 24 on
the MMSE resulted in attenuation of associations
between tHcy and MMSE scores, regardless of which
covariates were included in the model. However, for
the DM group these associations remained statisti-
cally significant for all models except one. For the
model that included risk factor and CVD covariates,
the association between tHcy and MMSE scores was
rendered statistically non-significant (ps0.12). This
result could be attributed to the reduction in sample
size (ns80) after these exclusions for the DM group,
the reduced range of outcome (MMSE) scores, or the
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fact that the poorest-performing participants were
excluded. A recent study with over 2800 participants
reported significant inverse associations between
tHcy and MMSE scores, regardless of whether MMSE
scores under 24 were excluded (31). Furthermore,
these results were reported for a model that included
many of the risk factor covariates that we used (31).

We hypothesized and found that statistical adjust-
ment for the vitamin cofactors, as well as the CVD risk
factors, CVD morbidity, and depressed mood, atten-
uated associations between tHcy and cognitive per-
formance to varying degrees. For the DM group,
however, significant inverse associations persisted.
These results may be attributable to the neurotoxic
effects of tHcy (32–34). The adverse effects of tHcy on
endothelial function have been proposed as the basis
for the association of tHcy with CVD risk (35), and the
accelerated CVD risk for diabetics (7). Elevations in
tHcy can also sensitize neurons to the adverse effects
of oxidative stress (32). Oxidative stress is associated
with DM due to hyperglycemia (5). Although specu-
lative, this phenomenon might possibly serve as the
basis by which tHcy and DM interact to impact cog-
nitive function and promote neurodegenerative dis-
orders (32).

Our participants with DM had higher tHcy levels
than non-DM participants. We also found that increas-
ing duration of diabetes was related to higher tHcy
levels. However, neither duration of diabetes nor type
of treatment (insulin vs. oral antidiabetic drugs) relat-
ed to cognitive function or accounted for the associ-
ations of tHcy with cognitive function.

High tHcy has been associated with dementia
(36–38), cerebrovascular disease (39–42), and brain
atrophy (43, 44). This study adds to the literature that
links high tHcy to poorer cognitive performance and
further indicates that cognitive performance is poor-
est in the presence of both high tHcy and type 2 DM.
These results suggest that intervention studies
designed to test whether treatment for high tHcy is
efficacious in maintaining cognitive functioning
(45–47) may be particularly important for individuals
with type 2 DM.
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