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 The study of contemporary evolution and eco-evolutionary dynamics is classically 

defined in terms of genetic evolution, but the actual suite of processes driving contemporary 

trait change is likely much more complex than often credited.  This dissertation considers 

additional mechanisms of trait change that might be important to an emerging model system 

for study of contemporary evolution and eco-evolutionary dynamics.  Specifically, the research 

focuses on phenotypically plastic and demographic trait variation in Eastern and Western 

Mosquitofish (Gambusia affinis and G. holbrooki) facing the major ecological gradient of 

predation risk.  Plasticity experiments employed a common-garden rearing design to manipulate 

fish predator cues experienced by individuals, their parents, or their grandparents and in turn 

quantify reaction norms in mosquitofish size, shape, and behavior.  The two species of 

mosquitofish showed divergent plastic responses in behavior, with the relatively bolder G. 

holbrooki becoming even bolder in response to predator cues.  In contrast, males and females 

within species showed parallel behavioral responses.  Despite strong sexual dimorphism, both 

sexes and both species showed parallel patterns of plasticity toward streamlining of body shape 



 
 

when exposed to predators.  Interestingly, mosquitofish also showed evidence of transmitting 

predator cues across generations, where female G. affinis become shyer and more streamlined 

when their parents or grandparents experienced predators.  In contrast, male G. affinis showed 

little evidence of transgenerational plasticity and appear to rely more heavily on their own 

experience.  Another set of field surveys and experiments with G. holbrooki considered the 

potential role of sexual dimorphism and demographic variation in sex ratios as another form of 

trait variation with possible community and ecosystem consequences.  Natural population 

surveys revealed female-biased sex ratios and higher primary production in the absence of 

predators.  Mesocosm experiments suggested males and females differed in dietary preferences 

and that both sex ratio and density influence community responses.  Although these findings 

support a need to expand the current eco-evolutionary synthesis to mechanisms beyond just 

genetic evolution, they also support some general patterns in these mechanisms and ways in 

which they might work with evolution to produce an even more dynamic interaction of ecology 

and trait change in nature.  
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CHAPTER 1: INTRODUCTION 

There is a growing body of empirical and theoretical literature that relates heritable trait 

variation within and among populations to population, community, and ecosystem processes.   

This eco-evolutionary synthesis has garnered substantial attention in recent years, based in 

large part on increasing evidence that the traits of many populations change in “contemporary” 

time, or along the same timescales as ecological processes (Thompson 1998, Hendry and 

Kinnison 1999, Collyer et al. 2007).  This opens the door for phenotypic trait changes to not only 

occur in response to ecological dynamics, the focus of evolutionary ecology for decades, but also 

has the potential to reciprocally shape ecological dynamics (Hairston Jr et al. 2005, Kinnison and 

Hairston Jr 2007, Post and Palkovacs 2009, Ellner et al. 2011).   

However, review of the current eco-evolutionary studies reveals a fairly narrow 

theoretical focus on classically heritable trait variation; wherein, most empirical studies in the 

field are conducted with wild-sourced individuals for which the exact heritable basis for 

phenotypic traits is unknown.  Evolution has a long history of studying phenotypic variation in 

nature, but it is almost certainly not accurate to portray all interactions of phenotypes and 

ecology as evolution in the narrow sense of “changes in allelic frequencies over time” (Lande 

1976, Hoffmann and Merila 1999, Futuyma 2014).  Indeed, many cases reported results that are 

not well resolved (Post and Palkovacs 2009) and phenotypic effects are often misclassified 

(Ellner et al. 2011).  There are good reasons to believe that other processes contributing to trait 

variation may have as large if not larger effects on phenotypes and ecology, exemplifying the 

importance of understanding the relative contributions of these additional phenotypic effects 

compared to genetic evolution if we are to build a true synthesis linking the reciprocal dynamics 

between trait variation and ecological dynamics.  My dissertation is motivated by a desire to 

better understand the extent, and in some cases ecological effects, of these neglected 
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components of population trait variation in an emerging model system for study of eco-

evolutionary dynamics in aquatic systems – mosquitofish. 

Mosquitofish as a Model System 

A good focal species for field and lab studies of eco-evolutionary dynamics would in 

principle 1) have widespread and large ecological effects, 2) be prone to contemporary trait 

change, and 3) be logistically manageable in the context of replicable laboratory and field 

experiments, as well as field surveys. The mosquitofishes (Gambusia spp.), a genus of forty-five 

species of small, sexually dimorphic, live-bearing fishes within the family poeciliidae, possess all 

of these attributes.   

 Mosquitofish are native to North and Central America but two species the Eastern and 

Western Mosquitofish (Gambusia holbrooki and G. Affinis respectively) are now found on every 

continent except Antarctica.  These fishes are now so widespread, in part, because they have 

been used extensively as biocontrol agents for mosquitoes and their associated vector-borne 

diseases (Meffe 1985).  Once established in a new region, however, mosquitofish are also 

extremely successful at invasion and colonization (Grapputo et al. 2006).  This is in part 

facilitated by the live-bearing reproductive mode of these species, which have very short 

generation times (as short as a few months) and can give birth to an average of 1-101 offspring 

per brood (Krumholz 1948).  A single female can thus establish a new population that could 

grow to thousands of individuals within a single year.  These life history traits facilitate the 

capacity of the species for control of fast-reproducing insect pests like mosquitos, but are also 

associated with profound impacts on the ecosystems to which they are introduced.  

 Despite their reputation for consuming mosquito larvae, Gambusia species are 

voracious, generalist feeders that can very effectively deplete aquatic insect larvae and thus 
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influence ecosystem pathways tied to these consumers (Goodsell and Kats 1999, Matveev et al. 

2000).   In addition, mosquitofish have been known to eat from several trophic levels, 

consuming anything from detritus and algae, to zooplankton, insect larva and even other fishes 

(Rincon et al. 2002, Specziar 2004, Blanco et al. 2004).  Hence, mosquitofish serve as 

mesopredators, linking trophic levels together.  Mesopredators have become a focus in ecology 

due to the theory of mesopredator release, wherein the unabated growth of a mesopredator is 

linked with mass extirpations in the lower trophic levels in an ecosystem (Crooks and Soulé 

1999, Myers et al. 2007, Ritchie and Johnson 2009, Albins and Hixon 2013).  In addition to their 

direct effects as consumers, mosquitofish interact in other important ways with other species in 

foodwebs.  Again, their short generation times and large abundance often make mosquitofish 

strong competitors with fishes, or other taxa (e.g., amphibians) that occupy similar habitats and 

consume similar prey.  Moreover, mosquitofishes tend to be behaviorally aggressive in 

interactions with competitors, segregating those species to a lower quality habitat (Rincon et al. 

2002, Carmona-Catot et al. 2013).  Conversely, the high productivity, small size, and lack of any 

defensive morphology, make mosquitofish a common and preferred prey for many larger 

piscivorous fishes and aquatic birds (Britton and Moser 1982, Meffe and Snelson 1989).   

In addition to their widespread and strong ecological interactions, mosquitofish and 

other poeciliids have long been the subject of observational and experimental studies of local 

adaptation and contemporary evolution.  The short generation of times of these animals make it 

possible for substantial evolution to occur over periods of just years to decades.  Historic studies 

show that mosquitofish show marked patterns of divergence in morphological and life history 

traits in association with habitat (Stearns 1983a), predator regime  (Langerhans and DeWitt 

2004, Langerhans et al. 2004, 2005), and abiotic factors (Stockwell and Weeks 1999).  Many of 

these patterns have arisen since mosquitofish were introduced to new habitat ranges and are 
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repeatable, suggesting consistent patterns of selection and trait responses.  At the same time, 

the small size, broad diet, and fast generation times of mosquitofish are logistically useful in that 

they make these species suited to being reared and assayed in highly replicated lab experiments 

that can span multiple generations.   

The laboratory that I study in at the University of Maine has begun extensive field and 

lab investigations of eco-evolutionary dynamics in the two closely related Eastern and Western 

Mosquitofishes.  Much of this work is couched in terms of the role that addition or removal of 

top predators might play in the evolution of prey traits that influence the strength and pattern 

of trophic cascades.  However, predators are known to have a diversity of evolutionary and non-

evolutionary effects on their prey (Abrams 2000, Werner and Peacor 2003, Peckarsky et al. 

2008).  Hence, for this study system to be most informative, one would ideally want to 

understand not just the capacity of these species for genetic evolution in response to predators, 

but also the full suite of interacting processes that determine phenotypic trait expression and 

variation in nature. 

Components of Phenotypic Trait Variation 

Classic quantitative genetics tells us the variance among phenotypes in a given 

population can in principle be decomposed into a genetic component (VG), an environmental 

component (VE), their interactions (VGxE), and their covariances (COVGE) (Stearns 1992).  The 

environmental component and genes-by-environment interactions have a long history of study 

with respect to phenotypic plasticity, with the latter receiving the most focus in the form of 

phenotypic norms of reaction (Mousseau and Fox 1998b, Crispo et al. 2010, Fusco and Minelli 

2010, Viney and Diaz 2012).  Within-generation (i.e., intra-generational) changes in phenotypes 

due to phenotypic plasticity have been documented for a wide range of traits in animals and 
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plants.  This plasticity is most often treated as adaptive, in the sense that it represents a 

mechanism by which organisms can adjust their phenotypes in a fashion that conveys greater 

fitness in the face of environmental heterogeneity and uncertainty (Via et al. 1995). 

This classic framework was developed initially for animal husbandry and thus was often 

applied to particular sexes or life stages within a carefully managed breeding program and a 

controlled environment or set of environments.  Wild populations present additional 

complexities in the form of further potentially important sources of trait variation.  First, wild 

populations have more complex demographic structure associated with individuals like age and 

sex.  Given that individuals of different ages and sex often have markedly different traits, this 

demographic variability can contribute substantially to overall trait variation and in principle the 

ecological effects of that variation (Ellner et al. 2011).   Second, whereas husbandry programs 

often seek to precisely control for the environments experienced by parents and offspring to 

better isolate heritable effects of allelic variation, the environments experienced by various 

lineages can vary widely in nature.  This variation in environments experienced by parents, or 

even grandparents, can be passed on to influence offspring phenotypes through an array of 

non-allelic transgenerational effects.  Mechanisms of transgenerational information  

transmission range from simple sharing of local environmental conditions with parents 

(Galloway and Etterson 2007, Shama et al. 2014), to maternal effects (e.g., yolk provisioning) 

(Marsh-Matthews et al. 2005, McLeod et al. 2007), and epigenetic inheritance (e.g., DNA 

methylation) (Gapp et al. 2014, Ho 2014, Iwasaki and Paszkowski 2014). 

 Although mosquitofish have been studied extensively with respect to their ecological 

effects and evolution in response to predators and other environmental factors, little is known 

about the degree that mosquitofish respond plastically to predator cues, either within or among 
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generations.  Likewise, anecdotal observations and published field studies suggest a large 

amount of demographic variation among mosquitofish populations in attributes like sex ratios, 

and that these attributes might vary with predator regimes (Britton and Moser 1982).  Hence, 

there is a clear need for some understanding of whether or how these additional processes 

might contribute to mosquitofish trait variation, particularly if the ultimate goal of employing 

these fishes is to understand the reciprocal interactions of trait change and ecological change 

over contemporary time scales. 

Dissertation Approach and Chapters 

In this dissertation, I used a combination of surveys, lab rearing experiments and 

mesocosms to better understand the causes and consequences of a complex suite of 

mechanisms underlying phenotypic responses of mosquitofish populations to predators.  

Variation in sex ratios is a potentially widespread demographic feature of prey fish populations 

where dimorphism between males and females can not only arise due to sexual selection but 

also reflect different ecological roles and vulnerabilities.   In my first research chapter (Chapter 

2), I consider intra-generational phenotypic plasticity of two species and both sexes of 

mosquitofish in response to non-lethal predator cues.  In this rearing experiment, I assess 

plasticity in an exceptionally broad set of traits (size, shape and behavior) and ask whether 

patterns of plasticity are primarily parallel or unique for the different sexes and species.  In my 

second research (Chapter 3), I use an experimental manipulation of one species of mosquitofish 

across three generations to evaluate possible transgenerational plasticity of bold-shy behavior 

associated with parental or grandparental exposure to predators.  In my third data chapter 

(Chapter 4), I use the same multigenerational design to assess transgenerational plasticity of size 

and morphology in female mosquitofish.  In my final research chapter (Chapter 5), I consider the 

ecological consequences of sex ratio variation in this sexually dimorphic group of fishes.   
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CHAPTER 2: PARALLEL AND UNIQUE PATTERNS OF PREDATOR-INDUCED PHENOTYPIC 

PLASTICITY IN TWO SPECES AND SEXES OF MOSQUITOFISH 

 

Introduction 

Environmentally-induced phenotypic plasticity is commonly viewed as an alternative to 

local adaptation, particularly in reference to mechanisms that produce phenotypic variation 

across a heterogeneous landscape (Bradshaw 1965, Via et al. 1995, Dybdahl and Kane 2005).  

The pattern of this plasticity is referred to as a reaction norm.  This viewpoint however, is 

drastically over-simplified.  Phenotypic plasticity can be considered an adaptation in its own 

right, particularly as a mechanism to accommodate spatially variable or changing environments 

(reviewed in Gotthard et al. 1995, Ghalambor et al. 2007).  Given that phenotypic plasticity 

functions similar to other adaptations, it may in theory show analogous patterns of parallel or 

convergent evolution (West-Eberhard 2005, Ghalambor et al. 2007, Wund et al. 2008).  Like 

other adaptations, one would predict that the degree to which adaptive plasticity is similar 

(parallelism of reactions norms) or unique for two species, or even two sexes, will be 

determined both by the extent that the species or sexes face similar patterns of selection across 

that gradient, including adaptive tradeoffs, and the degree that history (contingency) and shared 

or unique genetic architecture promote or constrain analogous responses to that selection.  In 

this study we consider parallel and unique aspects of phenotypic plasticity in behavior, size, and 

morphology of males and females of two very closely related, and ecologically similar fish 

species that are adapted to the same environmental gradient of predation risk.   

Predator-mediated phenotypic plasticity is common in nature.  Phenotypes of prey 

species respond to physical cues of depredation attempts (Trussell et al. 2003, Hammill et al. 

2010), chemical cues of predators or injured conspecifics (Brossman et al. 2014), visual cues (Sih 



8 
 

et al. 2011), or predator alterations to the community (Alonzo et al. 2003).  Physical changes in 

prey size or shape often confer a fitness benefit associated with a reduced ability of predators to 

consume individual (Dewitt et al. 2000) or an increase in an individual’s escape performance 

(Langerhans et al. 2004).  Behavioral antipredator defenses are highly variable among taxa but 

usually center around alterations to time allocation, activity levels or habitat use when feeding 

(Chalfoun and Martin 2010, Rodgers et al. 2013) or conducting other risky behaviors like mating 

(Johnson and Basolo 2003, Eggers et al. 2005).  Importantly, these various adaptive responses to 

presence of predators come with tradeoffs in environments without predators (Palkovacs et al. 

2011), placing a selective premium on an individual’s capacity to produce the right phenotype 

under the right depredation risk conditions.  

In fishes, most work on predator-driven phenotypic plasticity, as well as adaptive 

divergence, has focused on responses in behavior, body size, and body shape.  Many risk-

response behaviors center around “within-situation” time budgeting and activity levels (Sih et al. 

2004), assuming an important trade-off between the risky but profitable benefits of time spent 

foraging or seeking mates and safer but less profitable behaviors that afford concealment and 

reduce the odds of encountering predators.  Traditionally, bold behaviors such as aggressiveness 

and dominance were thought to come at an increased risk of depredation relative to more 

reserved shy behaviors (Sih et al. 2004, 2012).  However,  some research indicates that boldness 

can afford its own benefits for reducing depredation risk, such as when bolder individuals are 

more vigilant of predators (O’Steen et al. 2002, Pascual and Senar 2014).  As with size and 

shape, there is evidence that different predator environments lead to divergence in boldness.   

Many fishes are able to adjust their effective body size in response to predation risk in 

one of two ways.  Species that increase body size often do so specifically in response to gape-

limited predators.  As a result, some individuals will grow very quickly or develop body 
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projections to surpass the maximum size a predator can consume (Januszkiewicz and Robinson 

2007).  Alternatively, some species show decreased overall body size (Bell et al. 2011, Välimäki 

et al. 2012) often in association with earlier maturation and greater early investment into 

reproduction (Torres-Dowdal et al. 2012, Handelsman et al. 2013).  As in cases of adaptive 

population divergence, the degree to which such size plasticity is parallel or unique among 

species (or sexes) might depend upon the degree that size has the same effect on depredation 

risk in different species or sexes, but also the degree there is similar size tradeoffs associated 

with processes like competition and reproduction that also influence fitness (Hjelm and Persson 

2001, Farley et al. 2015). 

Beyond the effects of size on predation risk, body shape in fishes can also influence the 

likelihood of  prey escape when pursued by different types of predators (Borazjani 2013, 

Scharnweber et al. 2013).  Studies of population divergence, or even plasticity, suggest that 

escape potential can be affected in two ways.  Individuals with more streamlined and 

hydrodynamic body shapes experience less drag (Fu et al. 2013) and thus potentially able to 

move more efficiently and quickly through water when pursued by predators.  Alternatively, or 

often additionally, individuals may develop body proportions favoring greater area of the caudal 

region and its important role in burst  starts (Langerhans et al. 2004, Scharnweber et al. 2013) to 

avoid depredation from a lunging attack by a predator.  Again, the relative degree of parallel or 

unique plasticity in fish body shape is expected to depend on the specific attributes of predators 

and potential tradeoffs between depredation risk and competition or reproduction.   

Most studies of phenotypic plasticity in fishes or other species focus on single traits or 

trait types.  However, overall adaptation to a given environmental gradient might in principle 

involve concerted plastic responses in all or many of these trait categories as part of an 

integrated plastic phenotype.  This raises the possibility that species (or sexes) showing parallel 
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patterns of plasticity in one set of traits might generally show parallel patterns in other traits, 

resulting in an overall integrated pattern of parallelism.  Although it might be possible to infer 

such integrated parallelism of plasticity by comparing multiple studies of plasticity in various 

traits, sexes, and species, the most rigorous assessment of integrated parallelism would involve 

simultaneous quantification of multiple forms of plasticity within a single study and set of 

individuals from two species or two sexes within a species.  In the current study we adopt this 

integrated approach for assessing parallelism, both across species and across sexes of 

mosquitofish (Gambusia spp.).  The sexes and species of mosquitofish represent an interesting 

contrast for understanding factors determining parallelism of plasticity given that the sexes of 

our focal species are more overtly different in terms of size, shape, and behavior than are 

members of the same sex across species, raising the question of whether similar trait 

backgrounds or interbreeding and other interactions that occur with a population of males and 

females, are more prone to produce parallel plasticity across the various components of an 

integrated phenotype. 

Objectives 

Here I examine potential parallel and unique aspects of predator-induced phenotypic 

plasticity of two closely-related and ecologically analogous species of prey fish (Eastern 

Mosquitofish: Gambusia affinis and Western Mosquitofish: G. holbrooki).  Specifically, we 

assessed 1) whether predator cues produce size, shape, or behavioral plasticity within the 

integrated phenotypes of mosquitofishes; 2) the degree that plastic responses are parallel or 

unique by species; and 3) the degree that responses are parallel or unique by sex.  I in turn 

consider whether the data are consistent with integration of parallelism at different scales (sex 
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versus species) and what that might tell us about the relative roles of selection, contingency and 

constraint in the origins parallelism of plasticity in general. 

Methods 

Study species 

Eastern and Western Mosquitofish widespread and often abundant species of North 

American poeciliid fishes.  These species have very similar morphology, behavior, life histories, 

and niche and were considered a single species (or group of subspecies) until as recent as 1988 

(Wooten et al. 1988).  In fact, some authorities (e.g., Integrated Taxonomic Information System 

[ITIS]) continue to treat them as a single taxon (G. affinis), even though they are genetically and 

meristically distinct (reviewed in Pyke 2005).  Both Eastern and Western Mosquitofish are 

sexually dimorphic with females larger than males, and males possessing gonopodia for internal 

fertilization.   

Both of these mosquitofish species have been introduced extensively for biological 

control of disease-carrying invertebrates (Meffe 1985) and have a combined introduced range 

that now includes all continents except Antarctica (Brown 1987, Cote et al. 2011).  The high local 

abundance of these fishes in their native and introduced ranges is driven by high fecundity 

accompanied with short generation times and a viviparous reproductive strategy (Vondracek et 

al. 1988, Haynes and Cashner 1995).  The colonizing capacity, abundance, and ecological habits 

of these fish that made them appealing for disease vector control also make them a high 

concern IUCN Red List invasive species (Pyke and White 2000).  In particular, these fish are 

voracious consumers of aquatic insects and zooplankton (Goodsell and Kats 1999, Matveev et al. 

2000) and can be aggressive competitors that displace other species (Carmona-Catot et al. 

2013).   
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Importantly for the present study, mosquitofish are also common prey for piscivorous 

fish and aquatic birds (Britton and Moser 1982, Meffe and Snelson 1989) and evidence suggests 

that predators are important in driving adaptive trait divergence of mosquitofish populations.  

For instance, the presence of predators is associated with population differences in color 

patterns (Horth 2004) and body shape (Langerhans and DeWitt 2004).  Both of the species in 

this study coevolved with a diversity of centrarchid predators, including Largemouth Bass 

(Micropterus salmoides) and their congeners.  Populations of Gambusia that coexist with 

piscivorous fish predators exhibit streamlined body shapes with greater investment in the size of 

the caudal region important for generating high escape velocity in response to predator attacks 

(Langerhans et al. 2004).  Body size and shape in mosquitofish has also been correlated to 

boldness and sociability (Cote et al. 2011).  Moreover, where the ranges of G. holbrooki and G. 

affinis overlap, G. holbrooki commonly displaces G. affinis (Walters and Freeman 2000). 

Collection and Breeding 

Gambusia holbrooki were collected using dip nets from a pond site in the Croatan 

National Forest lands near New Bern, NC (Lilly Pond 34.79°N, -76.86°W).  The pond is a 

protected freshwater site with long-standing populations of eastern mosquitofish and 

centrarchid predators.  Gambusia affinis were collected with the aid of the Contra Costa 

Mosquito and Vector Control District in Concord, CA (37.93°N, 121.95°W).  The source pond is a 

facility protected site with an open system to aquatic and aerial predation.  

All wild brood fish were quarantined and captive reared in a single lab for one year in 

the absence of any predator cues.  Brood fish were thus extensively acclimated to shared 

laboratory conditions before being used to produce offspring.  Offspring of wild fish (F1) were 

bred to produce the laboratory stock used for experimentation (F2).  Mosquitofish do not have 

superfetation (Turner 1937), nor are they likely to store sperm for more than a few weeks 
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(Constanz 2012), thus all offspring used for experiments were the product of laboratory matings.  

All fish rearing and breeding took place under conditions of 26.5°C water temperature and 

15L:9D photoperiod.  Aquaria, breeding pools, and rearing pools were filled with treated and 

conditioned well water and water levels were maintained with untreated deionized water.  Fish 

were fed ad libidum 1-2 times daily with a diverse diet, including dried tubifex worms, dried krill, 

spirulina flakes, and live bearer flake food.   

Breeding and offspring production took place in three replicate 295 liter wading pools 

per species with a central, circular refuge area of artificial plants surrounded by 5 mm mesh that 

could be accessed by fry but not by cannibalistic adults (Figure 2.1a).  Each breeding tank 

employed ten to twelve adults of one species, with a sex ratio of 60-70% females.  Pools were 

checked daily for fry that were then removed from the breeding tanks for allocation to the 

rearing treatments.  Any fry >12 mm were discarded to ensure all fry were exposed to rearing 

treatments at a similar size and development stage.   

 

Figure 2.1: Experimental design pools for breeding and exposure treatments.  Pool a) is the 

breeding system with an inner ring of mesh acting as fry refugia.  Pool b) is the exposure 

treatment, with the inner ring of mesh serving as the bass enclosure (for exposed groups).  

Mesh lines separating the outer ring delineates the two populations, G. holbrooki and G. affinis. 

 

 The group of fry from a given parturition event were equally and randomly allocated to 

rearing treatments with or without predator cues.  All of the exposure pools included a central 

chamber constructed of 1 mm polyurethane coasted square mesh that contained either a 
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predator or remained empty depending on the exposure treatment.  The remaining area of each 

pool was further subdivided with 1 mm polyurethane mesh into two halves, into which 

individuals of the two species were respectively introduced (Figure 2.1b).  Hence, both species 

and sexes experienced identical exposure conditions within each treatment.  Both the predator 

and non-predator pools (each subdivided for two species) were replicated three times to further 

account for any potential pool effects.  The predator used in our exposure pools was a live 

Largemouth Bass fed live mosquitofish throughout the study period.  Predator cues thus 

included a cohesive set of potential visual, chemical, and physical (e.g., auditory or movement) 

signals associated with both predators and prey depredation itself (conspecific and 

heterospecific).  Fry of both species remained in these respective pools until the appearance of 

secondary sexual characteristics at approximately 4-12 weeks, at which time they were assayed 

for behavior, size at maturity, and morphology. 

Behavioral Assays 

Mature fish from the exposure treatments were assayed for risk taking and foraging 

behaviors after a 72 hour fasting period.  Assays were performed in a risk-reward arena that 

contained a Largemouth Bass enclosed behind 5 mm polyurethane coated diamond mesh at one 

end to provide visual and chemical cues of predation risk and a shoaling group of three to five 

conspecifics enclosed behind similar mesh at the opposite end.  The central region of the arena 

was subdivided into a 2x5 grid to quantify movements within the tank (Figure 2.2).  The “safe 

zone” was represented by the space closest to the shoal group before the feeding grid.  

Conversely, the “danger zone” was the represented by the final row on the grid closest to the 

predator enclosure.  A food reward was used to encourage exploration in the arena.  The food 

reward consisted of freeze-dried krill or spirulina flakes distributed randomly into one or the 
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other side of each pair of grid squares (Figure 2.2).  Experimental fish were individually 

introduced into an acclimation tube at the safe end of the arena for two minutes before the  

 

Figure 2.2: Behavioral assay experimental design.   Panel a) is a representative diagram of panel 
b) the actual set-up.  Area 1) is the Largemouth Bass enclosure, Area 2) is the risk assessment 
grid, Area 3) is the acclimation tube, and Area 4) is the conspecific shoaling group.  The “danger 
zone” is represented by the vertical lined area.  The “safe zone” is represented by the diagonal 
lined area.   
 

tube was lifted and the assay began.  This arena design allowed us to simultaneously score both 

time spent in risky (predator) versus safe (conspecific shoal) locations, as well as time spent 

conducting shy but energetically unrewarding (e.g., holding at shoal end of arena) versus bold 

but potentially rewarding exploration behaviors.  Behaviors were continuously recorded using 

the JWatcher software (ver. 1.0, Macquarie University and UCLA) for ten minutes and included 

fish activities (swimming or feeding), location (closeness to shoal group), and the time taken to 

first exit the release zone to explore.  Behaviors were analyzed with a multivariate analysis of 

variance (MANOVA) on a linear mixed effects (LME) model with replicate as a random variable 

and exposure treatment, species, and sex as fixed effects.  Subsequent comparisons within 

treatment groups (sex, species, or exposure) were performed using a t-test with unequal 

variances with a Bonferonni correction. 
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Body Size 

After behavioral assays, individuals were euthanized with a lethal dose of MS-222 (>250 

mgL-1), weighed, and photographed against a grid background with a ruler for scale.  Individuals 

were measured in Image J (ver. 1.6.0_20, Rasband and NIH) for total length (tip of snout to tip of 

caudal fin), and body depth (vertical measure of the deepest portion of the body).  These 

different indexes were statistically compared in the same manner as behavior.   

Body Shape 

Data were collected for fifteen fixed landmarks (Figure 2.3, Appendix A) adapted from a 

set used by  Palkovacs et al. (2011), excluding some spinal and cranial markers and adding 

caudal region markers. These landmarks were used for geometric morphometric analyses 

collected on photographs of sample fish to summarize overall fish body shape using the 

program tpsDig2 (ver. 2.17, Rohlf and SUNY).  Because mosquitofish are strongly sexually 

dimorphic, relative warps were obtained for each sex and species combination in separate 

geometric morphometric analyses.  Relative warps were obtained from a principal component 

analysis (PCA) of thin-plate spline shape variation using tpsRelw (ver. 1.49, Rohlf and SUNY).  

Given these species are known to be strongly sexually dimorphic in size and shape, a pattern we 

confirmed, we also computed and compared discriminant function scores for each sex 

separately.  A MANOVA and discriminant function analysis (DFA) were performed on the relative 

warps using predator exposure treatment as the primary (discriminating) factor.  Interacting 

factors that were not significant (p<0.05) were removed and the reduced model was used.  DFA 

scores were then visualized in terms of landmark deformations using tpsRegr (ver. 1.40, Rohlf 

and SUNY).   
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Figure 2.3: Fish outline with fifteen morphometric landmarks.   a)-d) are cranial markers, e)-h) 
and k)-l) are fin positions, i)-j) identify the caudal peduncle, and m)-0) are eye markers.  Full 
descriptions are landmarks positions may be found in Appendix A.   
 

In all analyses, presence of phenotypic plasticity was inferred where there was statistical 

evidence for either a direct effect of predator exposure or for its interaction with sex or species.  

A significant sex-by-exposure or species-by-exposure interaction was considered support for 

non-parallel (unique) plastic responses.  Conversely, presence of a significant exposure effect 

without a significant sex-by-exposure or species-by-exposure interaction was considered 

evidence of a parallel norm of reaction.  All statistical analyses were performed using the R 

Programming Environment (Ver. 3.1.1, R Core Team 2014), using the libraries vegan (Oksanen 

Ver. 2.0), car (Fox and Weisberg Ver. 2.0), MASS (Ripley Ver. 7.3), nlme (Oenheiro and Bates Ver. 

3.1), heplots (Fox, Friendly, and Monette Ver. 1.0-1.6), and ape (Paradis et al. Ver. 3.3).   

Results 

Behavioral Assays 

Predator exposure had a significant effect on behavior of mosquitofish (Table 2.1).  

Importantly, there was a significant interaction effect between species and exposure treatment 

group (Table 2.1), but no interaction effect for sex and exposure (F1,214=0.54, p=0.49) and no 

fixed effect for sex (Table 2.1) indicating a unique plastic response by the two species but a 

parallel response among the sexes.  Hence, the following description of species effects apply in 
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common to males and females of both species.  Considered separately within the LME 

framework, all three behavior categories were affected by this species-by-exposure regime 

interaction (lag time: F1,216=8.10, p<0.01, percent time exploring: F1,216=7.51, p=0.02, and percent 

time foraging: F1,216=9.14, p<0.01).  G. affinis exhibited a slightly, but not significantly (t114= 1.58, 

p=0.11), longer lag time to begin exploring the risk-reward environment compared to G. 

holbrooki when both were reared in the absence of predator cues.  However, G. affinis greatly 

increased this lag time when reared in the presence of the predator, particularly compared to  

G. holbrooki (t95=4.51, p<0.001) that responded with opposite behavior and exhibited a slightly 

reduced lag time (Figure 2.4a).  Once a fish began exploring, individuals of both species that had 

not been exposed to predator cues spent similar time actively moving about the arena 

(t118=0.16, p=0.87).  However, G. holbrooki and G. affinis that had been previously exposed to 

predator cues showed significantly different (t101=-3.08, p=0.002) and opposing patterns of 

exploration.  G. holbrooki tended to increase their exploration time, whereas G. affinis showed 

somewhat reduced exploration. (Figure 2.4b).    

 

Table 2.1: Reduced behavior model expressing the effect of sex, species, and exposure regime.  

Behavior parameters include lag time and percent exploration.   

 

 

 

 

 

 

 

   Population 
Characteristic 

Std Error DF F-value P-Value Sig. 

Sex 1.08 1,216 0.93 0.335  

Species 3.39 1,216 12.81 <0.01 ** 

Exposure 3.35 1,216 2.46 0.119  

Species:Exposure 
Interaction 

2.17 1,216 8.10 <0.01 ** 
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Figure 2.4: Behavioral responses for mosquitofish species.   Species partitioned by G. affinis 
(grey diamonds and dashed line) and G. holbrooki (black squares and solid line).  Panel a) is the 
lag time for a fish to leave the safe zone the first time.  Panel b) is the percent time a fish spent 
outside of the safe zone swimming.  Panel c) is the percent time a fish spent near the shoal 
group (safe end).  Panel d) is the percent time a fish spent near the bass enclosure (risky end).  
Asterisks (*) represent significant differences with unique interactions (species by predation).  
Double crosses (ⱡ) represents significant effect of species.  All error bars are ±1 standard error.     
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As with time allocation, where fish spent their time was also plastically influenced by 

prior exposure to predator cues.  Time spent in the “safe” zone was significantly affected by an 

interaction between species and exposure but not with sex (Table 2.2) or between sex and 

exposure (F1,214=0.001, p=0.97).  Conversely, time in the “danger” zone showed no interaction 

and was driven by species alone (Table 2.2).  This again indicates a unique aspect to plasticity of 

the two species.  While percent time spent in the “safe” zone was similar for the two species in 

the absence of predator exposure during development (t114=-0.41, p=0.68), exposed G. affinis 

spent a significantly higher percent of time in the “safe” zone when compared to exposed G. 

holbrooki (t100=2.42, p=0.01) (Figure 2.4c).  Although we did not detect a significant species-by-

exposure interaction for time in the “danger zone” (F1,217=1.24, p=0.27),  this was likely due to 

reduced power due to greater variation among individuals in their use of this region of the 

arena.  Supporting this, we did detect an overall species effect (Table 2.2), and the trends for 

exposure effects on relative species use of the “danger zone” was essentially opposite that 

observed for time in the “safe zone” (Figure 2.4d).  Indeed, unlike the LME, separate t-tests at 

each exposure treatment indicate that whereas non-exposed members of these species do not 

differ in their time spent in the “danger zone” (t115=1.98, p=0.53), exposed G. holbrooki spent 

significantly more time there than exposed G. affinis (t104=2.19, p=0.03).  

Table 2.2: Reduced models for population characteristics’ effect on risk-taking behavior. 
Behaviors include percent time spent in the “safe” zone (nearest the shoal group) and “danger” 
zone (nearest to the predator).  All two-way interactions were included.  Interactions were 
removed if p<0.05.   

 

 Safe Zone Danger Zone 

Population 
Characteristic 

df F-
value 

p-
value 

Sig. Effect 
Size 

df F-
value 

p-
value 

Sig. Effect 
Size 

Sex 1,216 2.72 0.100   1,217 0.00 0.97   

Species 1,216 1.49 0.224   1,217 4.78 0.03 * 4.80 

Exposure 1,216 0.21 0.647   1,217 0.07 0.79   

Species:Exposure 
Interaction 

1,216 4.06 0.045 * 17.07      
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Body Size 

The multivariate length, body depth, and weight model showed no significant 

interactions between sex, species, or exposure groups on body size metrics, as well as no 

separate effect of predator exposure (Table 2.3), indicating that size was not phenotypically 

plastic.  The subsequent reduced model revealed significant effects of both sex and species.  The 

effect size of sex was double that for species or exposure, confirming the substantial sexual 

dimorphism in these fishes (Table 2.3).  Overall, females were 11% longer (t207=-5.33, p<0.001), 

30% deeper (t201=-10.5, p<0.001), and 50% heavier (t201=-6.40, p<0.001) than males.  Univariate 

assessment of the species effect indicated that G. holbrooki were 6% longer (t223=-2.60, p<0.01) 

than G. affinis but the species did not differ in body depth (t225=-0.79, p=0.43) or weight (t221=-

1.30, p=0.20) (Figure 2.5a-c).  In general males of the two species differed more in size than 

females.   

Table 2.3: Reduced model expressing the effect of sex, species, and exposure on fish body size. 
Size metrics are total length, body depth, and weight.  
 

 

 

 

 

Figure 2.5: Size metrics for mosquitofish groups based on species, sex, and exposure. G. affinis 
are (grey lines) and G. holbrooki are (black lines).  Species are partitioned into males (solid lines) 
and females (dashed lines).  Panel a) is snout to tail length, b) is the deepest part of the belly, 
and c) is weight.  Error bars are all ±1 standard error.   

Population 
Characteristic 

Std 
Error 

DF F-
value 

p-value Sig. Effect 
Size 

Sex 0.024 1,217 39.29 <0.001 *** 0.16 

Species 0.025 1,217 9.81 <0.01 ** 0.08 

Exposure 0.025 1,217 1.51 0.22   
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Body Shape 

 Unlike body size, we did find support for phenotypic plasticity of body shape.  Female 

body shape responded to predator cues with a parallel norm of reaction across species, as 

reflected by a significant effect of exposure treatment (η2=0.23) but not species, with no 

interaction between the two (Table 2.4).  Male body shape differed by species and changed with 

predator exposure, but still with a parallel reaction norm (Table 2.4).  Indeed, exposure effects 

among male fishes were twice as strong as species differences (exposure: η2=0.19, species: 

η2=0.10).   

Table 2.4: MANOVA analysis on linear models for body shape DFA scores.  Models are subset by 

sex to control for overt sexual dimorphism.   

 

Within each sex and species, discriminant function scores based on relative warps 

differed significantly by exposure treatment, with treatment accounting for 33% to 46% of 

variation in the DFA scores (Table 2.5).  Regression of DFA scores back on relative warps to 

depict associated deformations indicate that predator-exposed individuals of both sexes and 

species tended to show more slender and streamlined bodies, a trait that is most exaggerated 

by the relative ventral depth of the anterior anal fin insertion point (Figure 2.6).  The cranium is 

also streamlined, with dorsal-ventral flattening in both the jaw and the posterior extent of the 

cranium.  Fish from exposure treatments also had eyes more ventral in the cranium than those  

 Females Males 

Population 
Characteristic 

MS F-
value 

p-
value 

Sig. MS F-
value 

p-
value 

Sig. 

Species 2.48 2.56 0.11  16.5 18.2 <0.001 *** 

Exposure 33.8 34.9 <0.001 *** 22.5 24.9 <0.001 *** 
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Table 2.5: Simplified models testing the difference between relative warp DFA scores for 
exposed and non-exposed individuals within sex and species subgroups. 

Population Group MS DF F value P-Value Sig. Proportion 
Variance 

Female G. affinis 54.4 1,65 54.4 <0.001 *** 0.46 

Female G. holbrooki 38.8 1,49 38.8 <0.001 *** 0.44 

Male G. affinis 38.0 1,53 38.0 <0.001 *** 0.42 

Male G. holbrooki 25.7 1,52 25.7 <0.001 *** 0.33 

 

 

 

 

Figure 2.6: Frequency distributions of a series of discriminant function analyses on the 26 
relative warps.  Below are the appropriate morphological divergence visualizations. Female 

mosquitofish are represented in a) G. affinis and b) G. holbrooki.  Male mosquitofish are 

represented in c) G. affinis and d) G. holbrooki.  Grey bars are non-exposure populations and 

black bars are the exposed populations.  
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from non-exposure treatments.  Caudal regions in predator-exposed fish was expanded 

anterior-posterior, particularly along the dorsal side from the posterior dorsal fin insertion to 

the dorsal side caudal fin insertion.   In addition to these generally parallel reaction norm 

morphological effects of predator exposure for both sexes and species, there were some sex 

specific patterns of plasticity.  Male mosquitofish of both species showed evidence of predator 

exposure effects in the region of their anal fins not seen in females (Figure 2.6).  Exposure 

(F1,108=4.41, p=0.04), but not species (F1,108=2.27, p=0.14), significantly affected the width of the 

insertion, with predator-exposed males developing fin insertions 10% wider than non-exposed 

males (Figure 2.7).  The angle of gonopodial insertion was also marginally affected by predator 

exposure (F1,108=2.95, p=0.08) but not species (F1,108=2.20, p=0.14).  Gonopodia angle trended 

16% more flat in exposed populations compared to non-exposed individuals (Figure 2.7).  Given 

that exposure groups did not differ in any body size measurements (see above), these shape 

differences are not associated with differences in body size and analyses of DFA scores revealed 

no significant correlations with size measures.   

 

 

Figure 2.7: Male gonopodia fin insertion metrics among predator-exposed groups.  a) The width 

of the insertion points and b) the angle depth for the insertion in the dorsal direction.  All error 

bars are ±1 standard error.  
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Discussion 

 Our study clearly demonstrates that mosquitofishes show marked phenotypic plasticity 

in response to predator and depredation cues.  However, not all traits showed this response to 

the same extent and some traits showed more evidence of parallel plastic responses than 

others.  Behavioral responses were parallel for both sexes but unique within species, with the 

generally bolder of the two species becoming bolder after rearing under a predator cue.  Body 

shape of both species and sexes shifted toward greater caudal peduncle investment and an 

overall slimmer body profile in the presence of predator cues, a pattern that is very analogous 

to what has been suggested for adaptive divergence of mosquitofish from habitats lacking or 

containing predators respectively (Langerhans et al. 2004).  Size was not plastic with predator 

exposure.  We now discuss these patterns of plasticity with regards to what they might tell us 

about conditions that favor relatively parallel or unique plasticity within the overall integrated 

phenotypic responses of prey to presence or absence of predators. 

Parallel and Unique Plasticity of Behavior 

Exposure to predation can elicit bold behaviors in fish (Bell and Sih 2007), so it seems 

reasonable that such exposure can also plastically exaggerate bold tendency, as seems to be the 

case for the non-parallel behavioral plasticity of G. holbrooki and G. affinis.  The two species of 

mosquitofish showed fairly similar behavior when reared without predator cues.  In contrast, 

the behavior of the species became very different when they were exposed to predator cues 

with G. holbrooki becoming notably bolder and G. affinis becoming shyer, albeit to a lesser 

degree.  Indeed, G. holbrooki increased seemingly risky behaviors by 20-29% under predator 

exposure whereas G. affinis reduced such behaviors by 8-37%.   Prior studies suggest that bolder 

behavioral types might often be more plastic in their tendencies, altering their behaviors more 
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in the presence or absence of a predator or under alternating food conditions (Thomson et al. 

2012).  Indeed, our findings support this pattern for the plastic responses of G. holbrooki and G. 

affinis, although there were exceptions (e.g. greater change in lag time by G. affinis).   

It may not seem intuitive that the opposite responses of both G. holbrooki and G. affinis 

to predator cues could both be adaptive, but there is reason to think that may be the case.  

First, both species evolved with fish predators and so it is unlikely that one or the other would 

express maladaptive plasticity by chance alone.  Indeed, it might not be accurate to associate 

these bolder behaviors with increased risk of depredation.  Such bold behaviors may actually 

help manage risk for those already prone to bolder behavior overall.  Studies of boldness in 

fishes, including poeciliids, often suggest that shorter lag times, greater exploration, and 

approaching predators are associated with predator vigilance and ability to more efficiently 

gauge risk (O’Steen et al. 2002).  Indeed, the fact that bold and shy individuals persist in most 

populations of fish and other organisms has led to the theory that both phenotypes can be 

adaptive by expressing a cohesive set of intraspecific and interspecific behaviors (Sih et al. 2004; 

Wilson et al. 2010; Cote et al. 2011).  A similar line of reasoning might thus explain why two 

species with somewhat different innate tendencies toward boldness or shyness might evolve 

plasticity to predators that exaggerates those tendencies with adaptive peaks constrained 

within the overall behavioral syndrome (Sih et al. 2004; Briffa et al. 2008).   

In contrast to comparison of the two species, the two sexes showed largely parallel 

behavioral plasticity within species. This was somewhat surprising given the marked sexual size 

and shape dimorphism in these species, as well as known differences in how males and females 

allocate their activity and energy budgets in mosquitofish and other poeciliids (Magurran and 

Seghers 1994; Basolo and Alcaraz 2003).  For many fishes, the larger sex can experience 
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increased depredation (Britton and Moser 1982) and present shyer traits (Wilson et al. 2010; 

Harris et al. 2010) than the smaller sex.  That said, males and females may be somewhat locked 

together in their plastic responses to predators through both their social and genetic 

associations.  Socially, mature males almost continuously pursue females and because of this 

the attention of predators might depend on the joint behavior of interacting males and females.  

Even so, males and females of many species show different reaction norms to similar 

environmental cues (Øverli et al. 2006; Rodríguez-Prieto et al. 2011), suggesting that this is not a 

universal constraint on parallelism. 

Lack of Plasticity of Size 

It would seem intuitive that size might influence relative risk of predation, but we did 

not detect plasticity of size in either mosquitofish species despite the presence of such plasticity 

in other fishes (i.e. Januszkiewicz and Robinson 2007, Burns et al. 2009, Preisser and Orrock 

2012).  Larger size is often assumed to enhance prey escape ability through aspects of predator 

gape limitation or greater escape velocity, but these advantages might be offset if predators 

target the larger prey for their greater energetic value (Brooks 1968; Britton and Moser 1982).  

Similarly, nonlethal predation cues often drive responses of reduced body size (Fraser et al. 

2004; Bell et al. 2011).  While some prey may be able to grow large enough to surpass a certain 

predator’s gape limitation (Cowan et al. 1996), if the predator has no functional gape limitation 

for that prey (reviewed in Sogard 1997) or if the prey are small enough that the cost of capture 

and consumption varies little with size (Gill and Hart 1994), larger size may only make an 

individual a more attractive target.  Mosquitofish are exceedingly small relative to their 

predators and the largest mosquitofish in most populations are unlikely to ever exceed the gape 

limitations of bass. 
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Conversely, smaller prey may at times be more difficult for predators to detect and 

present lower per capita value to predators (Werner and Hall 1974; Goss-Custard 1977), even if 

smaller individuals oftentimes show bolder behaviors (Wilson et al. 2010; Harris et al. 2010).  

Hence, smaller body types are common in prey populations facing predation risk (reviewed in 

Blanckenhorn 2000).  However, being poeciliid fishes, mosquitofish are already among the 

smallest fish species in North America, with some of the shortest times to maturation (weeks), 

and highest investment in maternal provisioning (live bearers).  Hence, there may simply be 

limitations on the opportunity for plasticity favoring even smaller size and earlier maturation in 

response to predator cues.  That said studies have shown that mosquitofish and other poeciliid 

populations can evolve population differences in life histories in association with predators 

(Reznick and Endler 1982) or environmental predictability (Stearns 1989), so this constraint does 

not seem likely for plasticity. 

Parallel Plasticity of Shape 

Parallelism in divergence or plasticity might be predicted to be greatest where 

populations or species with similar genetic and phenotypic makeup are subjected to ecologically 

comparable gradients.  The two species of mosquitofish in this study are exceedingly similar in 

morphology and ecological niche, to the point that they are commonly confused and were 

initially treated as a single species (Wooten et al. 1988; Pyke 2005).  Hence, it is not unexpected 

that we found a strong degree of parallelism of shape plasticity in these two species, much the 

way that prior studies have provided evidence for a significant degree of parallelism in trait 

divergence (as opposed to plasticity) across predation regimes in several poeciliid fishes 

(Langerhans and DeWitt 2004; Scharnweber et al. 2013).  We also found evidence for parallel 

patterns of plasticity across sexes.  Our analyses clearly substantiate this sexual dimorphism.  

But aside from some differences associated with male reproductive anatomy, discussed below, 
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gross morphological plasticity associated with streamlining and cranial proportions were 

markedly similar for the two sexes. 

Interestingly, the broad parallelism of morphologically plasticity for the sexes and two 

species in this study may have relevance for parallelism at an even broader scale.  Specifically, 

plastic morphological responses to presence or absence of predator cues in this study appear 

remarkably analogous to patterns of putatively adaptive morphological divergence among wild 

populations of mosquitofish and other species that live with or without fish predators.  Multiple 

prey fish studies support that a more slender body shape, a longitudinal expansion of the caudal 

regions and a shift in eye position are geographically associated with presence of piscivorous 

fish predators (Langerhans and DeWitt 2004; González and Gianoli 2004; Hendry et al. 2006; Fu 

et al. 2013).  Moreover, functional studies have established that caudal peduncle size is linked 

with burst speed and quick escape behaviors in mosquitofish, and differs among populations 

with and without fish predators (Langerhans et al. 2004; Langerhans and Makowicz 2009; 

Borazjani 2013).  These population differences in body shape in prior studies show substantial 

parallelism within and among poeciliid species and sexes, and have been broadly interpreted as 

adaptive evolutionary divergence (Langerhans et al. 2004; Hendry et al. 2006; Langerhans and 

Gifford 2009), although that has been contested (Downhower et al. 2000; Downhower et al. 

2009; Langerhans and Gifford 2009).  Morphological plasticity of females in the present study 

showed particularly similar predator-associated patterns of overall streamlining and dorsal-side 

longitudinal expansion of the caudal peduncle to  patterns in divergent wild populations of G. 

affinis (Langerhans et al. 2004)(Figure 2.8).  Males showed a broadly similar, but weaker, extent 

of morphological change (Figure 2.8).  This similarity of plasticity pattern with that identified for 

adaptive population divergence could come about two ways that have implications for past and 

future studies.  
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Figure 2.8: Superimposition of morphological deformations due to plasticity (this study) and due 
to population divergence (Langerhans et al. 2004).   All panels are of G. affinis.  Thin plate spine 

images of plasticity from the present study are exaggerated by 4 units (shaded, black points).  

Images are paired with corresponding sex and predator exposure outlines from Langerhans et 

al. (2004) with 2 unit exaggeration (dashed, grey points). Different point sets from the two 

studies contribute to some differences in shape resolution, but overall deformation patterns are 

broadly analogous. 

 

  First, it is possible that previous work examining population divergence did not 

adequately control for plasticity when examining fish collected in the wild or even under 

common garden rearing.  Although a degree of captive rearing has been employed in a few prior 

studies to reduce potential environmental effects on trait variation (Stockwell and Weeks 1999; 

Langerhans et al. 2004), others have not (Hendry et al. 2006; Berner et al. 2010; Ingley et al. 

2014).  Even for studies employing a degree of captive rearing, environmental cues experienced 

in early life of fishes may persist for extended periods in captivity and mosquitofish are live 

bearers that may be particularly prone to pass cues on to developing offspring (maternal 

effects).  Conversely, our experimental design precludes the possibility that we would have 

confused adaptive divergence for plasticity.  However, we did not examine multiple populations 

from different predation conditions and wish to make clear that proof of plasticity in our study is 
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not proof that adaptive divergence does not also contribute substantially to previously observed 

patterns in nature.  Indeed, the second explanation for similarity of divergence and plasticity is 

the two might be theoretically predicted to be similar and serve complimentary adaptive roles.  

Where traits are initially plastic, selection may act to intensify or flatten the slopes and 

intercepts of associated norms of reaction leading to heritable population divergence (Crispo 

2008).  Simply stated, plasticity and adaptation are not mutually exclusive explanations for 

geographic patterns of parallelism. 

Although sexual parallelism of plasticity predominated, it was not complete.  The 

primary exception in this case, however, was a trait strongly associated with the different 

reproductive anatomy of males and females.  Anal fin morphology is sexually dimorphic for 

mosquitofish with males having anal fins modified into gonopodia for internal fertilization.  Male 

mosquitofish of both species showed much greater plasticity in this region than females, with 

males exposed to predator cues showing an expansion in the width and a reduction in the angle 

of this region.  This suggests potential plasticity in male reproductive anatomy in response to 

predation risk.  Prior work has found that mosquitofish populations in systems with predators 

generally have shorter gonopodia with a smaller overall area (Langerhans et al. 2005; Heinen-

Kay and Langerhans 2013).  We did not measure gonopodia length or area directly, but it seems 

likely that an overall reduction in the angle of gonopodia could also reflect a reduction in 

gonopodial investment.  Pre-copulatory behavior in males often involves “thrusting” the 

gonopodia in a display for the female from a “tucked” position (Peden 1972).  An increased 

angle would increase the visual effect from “tucked” to “thrusted.”  However, presence of a 

predator reduces pre-copulatory displays, increasing sneak matings (Godin 1995), and reducing 

female choosiness (Kelly and Godin 2001).  The expansion of width in the gonopodia may in part 

compensate for shortening of the gonopodia, as smaller gonopodia are less likely to succeed in 
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mating and are less effective in sperm competition (Langerhans et al. 2005; Heinen-Kay and 

Langerhans 2013).  Recently, Anderson and Langerhans (2015) suggested females show 

divergence patterns in genital aperture that compliments male gonopodial divergence, but our 

study was not designed to measure possible plasticity in this reproductive trait.  Overall, traits 

that are very tightly linked to alternative sexual anatomy and mating systems, like gonopodia in 

mosquitofish, might often be subject to more unique patterns of plasticity.  

Integration 

Phenotypic plasticity is presumed to serve, at least in part, as an adaptation to the 

challenges of a heterogeneous landscape, including both the temporal and spatial components 

of environmental variation (Via et al. 1995).  The prevalence of phenotypic plasticity in key 

adaptive traits, as found in this study, is consistent with an important role in organism 

performance and fitness.  Plasticity may be especially important to colonization capacity 

(Thibert-Plante and Hendry 2011; Torres-Dowdal et al. 2012) and contribute to the invasiveness 

of species such as mosquitofish.  Given its important adaptive role, we should thus expect 

plasticity, like other adaptive traits often show parallel, or even convergent expression across 

repeated adaptive gradients experienced by both sexes and ecologically similar species.  Parallel 

evolution of plasticity is perhaps particularly likely under many of the conditions of the current 

study, involving the two sexes within a species and two closely-related species, all of which face 

a very similar ecological gradient of predation in nature and share similar genetic and 

phenotypic backgrounds.  In the current study, parallelism of plasticity occurred for nearly all 

plastic traits of the two sexes, with the possible exception of actual reproductive anatomy.  In 

contrast, the two species showed much less integrated parallelism, wherein they showed 

parallel patterns of morphological plasticity but non-parallel patterns of behavioral plasticity.  

These findings thus indicate the combined effects of shared selection and constraints impeding 
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divergent patterns of plasticity are a potentially more potent pairing for producing parallelism of 

plasticity than the combination of shared selection and contingency.  However, we only 

considered one species pairing and the two sexes in our study, and while our approach is unique 

in combining both multiple traits and group contrasts, the generality of our inference must 

await additional future studies that adopt such broadly comparative approaches.   

 Of course, the other comparative question that can be asked within a dataset such as 

ours concerns potential differences among trait types.  In our study, morphological plasticity 

was more conserved than behavioral plasticity, showing parallel patterns for both sexes and 

both species when behavioral plasticity only showed parallelism for the sexes.  There may be 

theoretical reasons to expect such a pattern for many fishes based on the relative roles that 

morphology and behavior play in mediating predator-prey outcomes and how that influences 

opportunities for alternative adaptive outcomes of plasticity.  The morphological attributes 

associated with environments where predators so vastly outsize their prey are strongly 

associated with the ability to escape the predator attack with changes in speed and direction 

that commonly approach the physical and hydrodynamic limitations of fishes (Bainbridge 1957; 

Domenici and Blake 1997).  This implies strong adaptive constraints and little opportunity for 

alternative body conformations that would similarly aid escape.  As such both adaptive 

divergence and plasticity would be expected to follow very similar patterns within and among a 

wide diversity of fishes (Baylis 1983; Burns et al. 2009; Fu et al. 2013; Scharnweber et al. 2013).   

In contrast, behavioral attributes associated with predation environments involve 

mechanisms to reduce the initial risk of eliciting a potential predator attack in the first place 

which might more variable and contingent on the particular predator-prey pairing and 

environment (Martin et al. 2010; Pascual and Senar 2014).  These mechanisms could involve 



34 
 

either shy behaviors that reduce odds of encounter or detection, or bold behaviors that improve 

surveillance or signal awareness to predators (Bergstrom and Lachmann 2001; Sinn et al. 2008; 

Smith et al. 2009; Cooper 2010).   Hence, behavioral antipredator traits and plasticity might be 

hypothesized to vary more widely based on the innate behavioral tendencies and sensory 

capabilities of the specific prey and predators (Fuiman and Magurran 1994; Brown et al. 2006), 

as well as the physical and sensory environments in which they interact (Olla et al. 1998; 

Domenici et al. 2007).   

  Again, support for the hypothesis that morphological plasticity to predators is more 

prone to parallelism than behavioral plasticity will of course ultimately depend on evidence 

from a larger pool of studies that incorporate more species and contexts.  Certainly, most trait 

shifts in shape and behavior investigated in our study would be relevant to other fishes 

(Langerhans et al. 2004; Hendry et al. 2006; Dingemanse et al. 2009; Scharnweber et al. 2013) or 

even larval amphibians (Dayton et al. 2005; Kishida et al. 2009).  Beyond aquatic systems, many 

behavioral traits such as vigilance and alarm calling are pervasive across taxa (Fichtel and 

Kappeler 2002; O’Steen et al. 2002; Brown 2003; Morosinotto et al. 2013), and escape 

performance in terrestrial systems is probably equally constrained against the biophysical 

limitations of predators and prey (Jones 1990, reviewed in Emerson et al. 1994, Lenz and Marajó 

dos Reis 2011).   Hence, our study could serve as a model for others in showing the value of a 

comparative approach to studying plasticity that considers the degree of parallel and unique 

patterns across multiple modes of plasticity in the same groups of individuals. 
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CHAPTER 3: TRANSGENERATIONAL EFFECTS OF PREDATOR CUES ON RISK BEHAVIORS OF 

EASTERN MOSQUITOFISH (Gambusia holbrooki) 

 

Introduction 

 Different environmental conditions or cues often induce differential expression of 

phenotypic traits.  This phenotypic plasticity is common and is usually an adaptation to spatially 

and temporally heterogeneous habitats (Via et al. 1995, Alpert and Simms 2002, Baythavong 

2011).  Most research on environmentally-induced trait plasticity has focused on how 

phenotypes respond to environments experienced directly by those individuals, within a single 

generation.  However, a growing body of literature suggests that phenotypes of individuals can 

also be influenced by the environments experienced by their parent, or even grandparents, 

through non-allelic transmission processes in a form of transgenerational plasticity  (Jablonka et 

al. 1992, Agrawal et al. 1999, Jablonka and Raz 2009, Salinas and Munch 2012, Shama et al. 

2014).  Like environmental plasticity within generations, transgenerational plasticity is thought 

to be a potential adaptation providing offspring with better phenotypic match to local 

environmental conditions (Mondor et al. 2005, Storm and Lima 2010, Giesing et al. 2011).  

Although transgenerational plasticity might at times represent an alternative to intra-

generational plasticity, both types of plasticity could often interact in determining phenotypes 

(Sultan et al. 2009, Salinas and Munch 2012).  However, while many studies have demonstrated 

plastic effects within and among a single generation, comparatively few have assessed the 

strength and nature of their interactions across multiple generations.  In this study I consider the 

multigenerational effects of non-lethal predator exposure on the exploratory behavior of both 

sexes of a live-bearing fish.   



36 
 

 Transgenerational plasticity subsumes a complex suite of multigenerational, non-allelic 

inheritance of past environmental effects on trait expression.  The earliest work on 

transgenerational environmental effects surrounded detection of maternal effects, and to a 

lesser extent non-genetic paternal effects, within quantitative genetic analyses (Yamanaka 1928, 

Haldane 1932, Park 1935).  These parental effects, which can represent indirect genetic effects 

of either parent’s genotype or indirect effects of the parent’s environment, were often treated 

as a statistical nuisance that could bias estimations of trait heritability and genetic correlations.  

Maternal effects are often seen as particularly weighty because of the large role of mothers in 

provisioning eggs, embryos, and post-parturition offspring (Rossiter et al. 1993, Reznick et al. 

1996b, Storm and Lima 2010, Bestion et al. 2014).  More recent work has emphasized the likely 

adaptive significance of such parental effects, and maternal effects in particular (Mousseau and 

Fox 1998a, 1998b, Giesing et al. 2011, Bestion et al. 2014).  For this study I am primarily 

concerned with non-allelic carry-over effects of a parent’s environment, as opposed to indirect 

genetic effects of parents, because the former reflects true transgenerational plasticity in the 

form of cross-generation norms of reaction.  

 In more recent years there has been increasing attention to transgenerational effects 

that span even more generations, including studies providing evidence that phenotypes of a 

wide variety of species can be influenced by the environments of not just their parents, but of 

grandparents (Reznick 1981, Yazbek et al. 2010, Hafer et al. 2011, Herman et al. 2012).  As with 

maternal and paternal effects, any such grandparental effects are attributed to various forms of 

epigenetic inheritance that modify the expression of DNA across multiple generations without 

changing its allelic sequence structure (Rando and Verstrepen 2007, Jablonka and Raz 2009).  

However, epigenetic inheritance is not the only mechanism that can produce transgenerational 

plasticity.  For example, serial effects of maternal provisioning could permit grandmothers 
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experiencing exceptionally good or bad environments to produce exceptionally high or low 

quality daughters that are themselves at a lifetime advantage or disadvantage for producing 

similar quality offspring (Mitchell and Read 2005, Alonso-Alvarez et al. 2007, reviewed in 

Schmidt 2013).  Regardless of the mechanism, however, these multigenerational effects again 

reflect a form of phenotypic plasticity as captured in cross-generational norms of reaction 

relating the environments experienced in a given generation to phenotypes expressed one, two, 

or even more generations later.  One would predict that the reliability of environmental cues 

should become less and less with more generations and so grandparental plasticity effects might 

be generally weaker than parental or intra-generational plasticity, but that prediction has not 

been widely tested. 

Prey responses to predator cues represent a particularly compelling form of plasticity to 

examine for intra-generational and transgenerational effects because predators have large 

effects on prey fitness (Abrams 2000, Peacor et al. 2013), are often patchy in space and time 

(Bernstein et al. 1988), and provide robust cues that prey can readily detect (McIntosh and 

Peckarsky 2004, Lehtiniemi 2005).  Phenotypically plastic responses to predators are very 

common in nature (Trussell et al. 2003, Relyea and Auld 2005, Peacor et al. 2012) and respond 

to a wide variety of nonlethal predator-related cues, including depredation attempts (Hammill 

et al. 2010), predator chemical and visual cues (Sih et al. 2011, Brossman et al. 2014), and visual, 

auditory, or chemical alarm cues from conspecifics (Suboski et al. 1990, Brossman et al. 2014).  

One of the most overt responses of prey to cues of depredation risk are adjustments to 

behavior, such as might occur through environmental modulation of correlated personality 

traits associated with stereotypically bold or shy personality attributes within a broader 

behavioral syndrome (Sih et al. 2004, Bell and Sih 2007).  For example, prey species experiencing 

predator cues might seek out relatively safer habitats that afford less risk of encountering 
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predators or improve the odds of escaping attacks (Sih et al. 2012).  Prey could also adjust their 

activity types and levels to avoid drawing predator attention (Smith et al. 2009), improve their 

surveillance of predator presence (Pitcher et al. 1988, Pellegrini et al. 2009), or prioritize short-

term fitness gains over longer-term benefits (Eggers 1978, Scrimgeour and Culp 1994).  Although 

predator cues might elicit novel behaviors or loss of behaviors, the most common responses to 

predators may revolve around allocations to bold or shy behaviors within an overall  time 

budget, with a trade-off between relatively safe refuge and shoaling or group behaviors, versus 

riskier behaviors such as foraging or courtship (Johnson and Basolo 2003, Sih et al. 2003, 

Chalfoun and Martin 2010).  That said, not all seemingly bold behaviors are associated with 

greater risk of depredation.  For example, some prey exhibit seemingly bold predator inspection 

or alertness signals that draw predator attention but nonetheless reduce risk of predator attack 

(Fichtel and Kappeler 2002, O’Steen et al. 2002, Pellegrini et al. 2009, Wisenden et al. 2011, 

Pascual and Senar 2014).  Hence, whether seemingly bold or shy behaviors are adaptive in the 

face of predators could be highly context specific.   

While most behavioral responses to predator cues have been studied within the context 

of intra-generational responses, anti-predator behaviors have become an important area of 

study for transgenerational effects.  Offspring from predator stressed mothers tend to exhibit 

greater risk avoidance behaviors, such as increased predator sensitivity (Storm and Lima 2010), 

increased socializing or grouping (Giesing et al. 2011), or increased dispersal (Mondor et al. 

2005, Bestion et al. 2014).  This is sometimes referred to as “pre-adaptation” (Dyer et al. 2010) 

and can also make offspring more competitive and invasive, even in light of these biological 

stressors.  Indeed, in some cases the maternal environment is the most important factor in 

determining the phenotype or success of the offspring (Mousseau and Fox 1998b).  However, 

aside from a limited number of studies using clonally reproducing species (e.g. Walsh et al. 



39 
 

2014), most studies of predator exposure effects in vertebrates have been limited to single-

generation parental effects, and it is unclear how much predator exposure effects can link the 

phenotypes of individuals to the predator environments of their grandparents.   

A further downside of most multigenerational plasticity studies relying on clonal species 

or life stages is that they obviate any ability to assess whether males and females show the 

same plastic responses to predator cues within or among generations.  Males and females 

within species often show markedly different behavioral tendencies towards boldness or 

shyness and allocate their time budgets quite differently, irrespective of predators, likely as an 

expression of their differing energetic (Santos et al. 2007), reproductive (Genner et al. 2008, 

Pauers and McKinnon 2012), and social (Dadda et al. 2005, Hunt et al. 2009) requirements.  In 

these cases, males often invest large portions of their time into behaviors associated with 

attracting or competing for more mates (Bisazza et al. 2001, Dadda et al. 2005), whereas 

females invest more time in feeding and growth to appreciate higher fecundity (Magurran and 

Seghers 1994, Fryxell et al. 2015).  Males often possess more elaborate colors or display 

structures (Ruell et al. 2013) and spend more time out of cover in exploration (King et al. 2013).  

Indeed in some cases sex has been shown to be one of the strongest driving factors in stress 

response to predation (Mommer and Bell 2013).  These types of differences in reproductive 

strategies may incur different tradeoffs with respect to predation risk and thus favor different 

types or magnitudes of transgenerational plastic responses to predator cues. 

 Hence, whereas most vertebrate transgenerational plasticity studies are performed over 

a single generation and use both sexes as a single population type unless sex is used to trace a 

specific epigenetic (cellular) mechanism (e.g. mitochondrial epigenetics, neuroendocrinology), I 

sought to examine intra-generational and transgenerational plasticity across three generations, 
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and for both sexes to more fully understand the interplay between sex, current environment, 

and inherited environment.  My study species, the Eastern Mosquitofish (Gambusia holbrooki) 

provides an interesting and powerful study system since the sexes are highly sexually dimorphic 

and because unlike most fish, mosquitofish are viviparous so substantial intergenerational 

environmental effects might be transmitted through a broad suite of mechanisms, including 

epigenetically, in ova and during gestation. 

Objectives 

In this study I examined the transgenerational behavioral effects of nonlethal 

depredation cues on Eastern Mosquitofish (Gambusia holbrooki) over three generations.  

Specifically I assessed 1) the presence and strength of predator-driven behavioral responses 

passed along generational lineages at both the parental and grandparental scales, 2) the degree 

to which the presence and strength of transgenerational responses are shared or unique across 

sexes, and 3) the potential for transgenerational effects to constrain or reinforce intra-

generational phenotypic plasticity.   

Methods 

Study System 

Eastern Mosquitofish (Gambusia holbrooki) are an abundant and widespread poeciliid 

fish species native to the southeastern United States (Lee and Burgess 1980).  However, this 

species, and the closely-related Western Mosquitofish (G. affinis), have been introduced to 

freshwater and estuarine habitats at a near global scale (Brown 1987, Cote et al. 2011) for 

biocontrol of invertebrate vectors of human disease (Meffe 1985).  A significant part of the 

perceived value of these species for biocontrol is their natural ability to quickly colonize new 

habitats (Rehage et al. 2005, Grapputo et al. 2006, Cote et al. 2011), including highly disturbance 
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prone habitats that might be otherwise marginal or inhospitable for many other species.  This 

colonization success is generally attribute to the species’ high fecundity, short generations 

times, and viviparous reproduction (Krumholz 1948, Vondracek et al. 1988, Haynes and Cashner 

1995).  However, these same traits that have made mosquitofish a favored species for 

biocontrol are also the reason they are considered an IUCN Red List invasive species (Pyke and 

White 2000).  Indeed, these fishes are voracious consumers from multiple trophic levels, 

including insects, zooplankton, and algae (Goodsell and Kats 1999, Matveev et al. 2000), and 

aggressive competitors that can displace native species (Carmona-Catot et al. 2013).   

Important for this study, the colonizing capacity and broad habitat tolerances of 

mosquitofish have likely long caused populations and individuals to encounter habitats with or 

without predators.  Mosquitofish are a common prey item both for piscivorous fish and aquatic 

feeding birds (Britton and Moser 1982, Meffe and Snelson 1989).  The Eastern Mosquitofish 

coevolved in a region with a diversity of voracious centrarchid predators, including Largemouth 

Bass (Micropterus salmoides) and Bluegill Sunfish (Lepomis macrochirus).  Prior studies show 

that mosquitofish from habitats with and without fish predators show divergent morphology 

and behaviors (Langerhans et al. 2004, Heinen et al. 2013).  These differences in morphology 

and behavior have often been attributed to local adaptation, but there are good reasons to 

believe that mosquitofish might also respond to different predator environments via adaptive 

phenotypic plasticity and transgenerational environmental effects.  Indeed, I have previously 

shown evidence for phenotypic plasticity in mosquitofish behavior and morphology in response 

to predator cues (Arnett and Kinnison In Review, Chapter 3).  As live bearing fishes, mosquitofish 

maintain prolonged bodily contact with their developing embryos and prior studies have 

provided evidence that maternal genotypes can have strong influences on offspring size 

(Reznick 1981) and that mothers transfer nutrients to their offspring throughout pregnancy 
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(Marsh-Matthews et al. 2005).  Hence, mosquitofish may have greater capacity to pass 

environmental cues across generations than some egg-laying fishes, although even egg-laying 

fishes can show transgenerational plasticity (Salinas and Munch 2012).  Nonetheless, while it is 

tantalizing to hypothesize that adaptive transgenerational environmental effects might even 

contribute to the renowned colonizing capacity and invasiveness of mosquitofish, it is by no 

means certain that such effects exist or are adaptive.  

Finally, mosquitofish are also sexually dimorphic and may face different tradeoffs in how 

they allocate time and risk in response to predators.  Male mosquitofish reproductive success is 

thought to be highly tied to numbers of mating opportunities and males spend a very large 

portion of their short lifetimes pursuing and displaying to mates (Bisazza et al. 2001, Dadda et al. 

2005, 2008), to the point that they experience deterministic growth once they reach sexual 

maturity.  Conversely, female reproductive success is strongly tied to fecundity and females tend 

to spend relatively more time foraging (Blanco et al. 2004) and have indeterminate growth. 

These differences between males and females could in principle lead to different adaptive 

responses to predator cues within and among generations, something that has not been 

addressed with prior studies of multigenerational responses to predator cues that have focused 

largely on clonally reproducing species (e.g., Walsh et al. 2014).  

Collection and Breeding 

Wild Eastern Mosquitofish were collected using long pole dip nets from a pond in 

Croatan National Park Forest in North Carolina that coexisted at the time of capture with an 

established population of centrarchid predators (Lilly Pond 34.79°N, -76.86°W).  Wild fish were 

bred and reared in a laboratory setting for a minimum of one year to ensure all laboratory 

produced offspring were sired under non-predator cue conditions (Turner 1937, Constanz 2012).  
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Laboratory acclimated wild fish produced offspring (F1) that were laboratory reared and 

produced the laboratory stock used for experimentation and breeding of further generations 

(Figure 3.2).  Laboratory conditions of 26.5°C water temperature and 15L:9D photoperiod were 

used to emulate ideal breeding conditions and best mimic a temperate zone breeding season 

(Krumholz 1948, Haynes and Cashner 1995).  All aquaria, pools, and the assay arena were filled 

with conditioned well water and maintained with deionized water.  All fish were fed ad libitum 

1-2 times daily.  Fish diet consisted of livebearer flake food and a supplement of dried tubifex 

worms, dried krill, and algae flakes.   

The full experimental breeding and exposure design was replicated three times, 

beginning with random allocation of laboratory-bred offspring from a shared laboratory stock.  

Breeding and offspring production were done in small shoal groups to mimic natural mating 

systems and using a 60-70% female-biased sex ratio.  Breeding individuals were placed in a 295 

liter pool by treatment group.  Each breeding pool contained a central refuge with artificial 

floating plant mats and a 5 mm diamond mesh barrier to allow fry passage but block 

cannibalistic adults (Figure 3.1a).  Breeding pools were checked daily for fry, which were 

removed for allocation to predator cue treatments.  Fry measuring >12 mm were discarded to 

ensure similar age and developmental stage of fry at the time of experimental exposure.   

 The sibling group(s) of fry removed from breeding pools associated with the first 

generation of exposures were evenly divided and allocated to a predator-exposure or predator-

free cue environment to create the second exposure generation (Figure 3.2).  Offspring from the 

second generation were not divided and were instead allocated to the same cue environment as 

their parents to create the 3rd exposure generation (Figure 3.2).  The exposure treatment pools 

were again 295 liter wading pools with a 1 mm polyurethane mesh central chamber (predator 



44 
 

enclosure).  In predator-free treatments, this chamber remained empty, while predator-

exposure treatments contained one live Largemouth Bass (Figure 3.1b).  The live predator was 

fed surplus live mosquitofish throughout the study to ensure a constant and cohesive supply of 

cues including auditory, visual, and chemical associated with both predator presence and 

conspecific depredation.  Treatment pools were further subdivided into two halves with the 

same 1 mm mesh (Figure 3.1b).  One side of the pool was dedicated to second or third 

generation fry derived from the first generation exposed parents/grandparents and the other 

side housed fry derived the first generation non-exposed parents/grandparents. (i.e. Figure 3.2 

boxes 4 & 6).  This design ensured that all fry within a given replicate, generation, and exposure 

treatment experienced the exact same environmental cues.   

 

Figure 3.1: Experimental design for replicated breeding and exposure treatments.  Panel a) is the 
breeding system with a central fry refugium and outer ring of plants to reduce aggression and 
increase post-parturition survival.  Panel b) is the treatment pool with an inner ring either 
containing or not containing a predator for cues , and two subdivisions for rearing and exposing 
2nd and 3rd generation treatment lineages (from the exposed and non-exposed 1st generation 
shoals).  The full design of breeding and exposure treatments was independently replicated 
three times.  Replicated from image 2.1 and placed here for ease and convenience.   

 

Fry remained in treatment pools for 4-12 weeks until the clear presence of secondary 

sexual characteristics at which time they were assayed for behavior.  Recently matured adults 

were also taken from each first and second generation exposure treatment to establish the next 
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generation of breeding and exposure pools.  Parturition took place in pools without predator 

cues, but females did become pregnant in the presence or absence of predator cues depending 

on the experimental treatment within which they themselves were reared. 

 

 

Figure 3.2: Lineage model for nonlethal predator cues over three generations.  Boxes represent 
groups of mosquitofish reared under a given set of predator cues. Boxes with solid borders and 
connecting lines represent predator-exposed treatment groups and boxes with dashed boarders 
and lines represent predator-free treatments.  The blue colored boxes and arrows reflect the 
lineages of fish deriving from the non-predator-exposed fish in the first generation (box 1).  The 
red colored boxes and arrows reflect the lineages derived from the predator-exposed fish in 
generation one (box 2).  The group numbers, line colors and line style format in this figure are 
used as a convention in all subsequent figures and tables.  Behavioral traits were assayed for all 
groups to the right of the vertical dashed line.   

Behavioral Assays 

  Sexually mature fish were fasted for 72 hours before behavioral assays were performed.  

From each treatment, a minimum of twenty individuals (ten of each sex) were assayed for risk 

and foraging behaviors.  Behavioral assays were performed in a risk-reward test arena (Figure 

3.3).  One end of the arena contained a Largemouth Bass in an enclosure, while the opposite 
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end enclosed three to five conspecifics.  Both enclosures were made of 5 mm polyurethane 

coated diamond mesh.  The central region of the arena was subdivided into a 2X5 grid to 

quantify movement and contained a food reward to encourage exploration.  Each pair of 

squares had one provided with freeze-dried krill and one provided with spirulina algae flakes,  

 

Figure 3.3: Risk-reward test arena.   Panel a) is a diagrammatic representation of the actual 
assay tank in panel b).  Area 1) is the bass enclosure with the associated “danger zone” 
represented by vertical striping.  Area 2) notes the movement grid.  Area 3) is the acclimation 
tube and the associated “safe zone” is represented by diagonal striping.  Area 4) is the 
conspecific shoal group enclosure.  Replicated from Figure 2.2 for ease and convenience.  

 

these were randomly distributed along the grid in these pairs.  The two grid squares closest to 

the bass enclosure represented the “danger zone” during risk assessment.  Closest to the 

conspecific shoal group was an open space before the initiation of the grid.  This space 

represented the “safe zone” during risk assessment and was also the location of acclimation and 

release.  Individual fish were placed in the acclimation tube for two minutes before the tube was 

removed and the assay began.  Behaviors were recorded continuously for ten minutes using the 

JWatcher software (ver. 1.0, Macquarie University and UCLA).  Individuals were scored for 
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activity (swimming), location (distances from shoal group), and time to first exit the “safe zone” 

after release.   

Because different behaviors can be strongly positively or negatively correlated within a 

finite time budget, and because the various behavioral traits may relate to different expressions 

of an underlying behavioral syndrome (Sih et al. 2004, Bell and Sih 2007), I first sought to 

determine if among-individual variation in the suite of assayed behaviors could be reasonably 

summarized as a single bold-shy trade-off variable.  A principle components analysis (PCA) with 

Varimax rotation was conducted to produce a single major component factor for group 

comparisons within and among generations. Based on eigenvalues from the PCA, the resulting 

component explained a total of 73% of trait variation in behavior among all individuals in the 

study design, and showed strong trait loadings fully consistent with a bold-shy behavioral 

syndrome (Table 3.1).  Specifically, positive scores on this factor are associated with strong 

positive loadings of exploration time and time in the danger zone and strong negative loadings 

of lag time and time in the safe zone (Table 3.1).  Although I used scores derived from this 

universal PC for subsequent analyses, to allow behavioral comparison across generations, nearly 

identical PC solutions are obtained with sub-PCAs run within each generation, demonstrating 

this bold-shy trade-off factor is very robust and not weighted by a single generation group 

(Table 3.1).  To help support and interpret the analyses based on the bold-shy PC scores, I also 

conducted multivariate and univariate analyses of variance (MANOVA) on the  four separate 

behavior types; lag time, exploration time, percent time in the safe zone, and percent time in 

the danger zone.  
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Table 3.1: Varimax rotation behavior loadings on a PCA with all mosquitofish individuals.   

Loadings for each of the four behavioral types on a single Varimax rotated component.  Under 
the double line are the variances for each principle components.  The Varimax PCA includes all 
three generations and both sexes of mosquitofish. 

  Full Model 
Component 

1 

Generation 1 
Varimax PC 1 

Generation 2 
Varimax PC 1 

Generation 3 
Varimax PC 1 

Lag Time -0.78 -0.76 -0.79 -0.75 

Exploration Time 0.95 0.93 0.96 0.95 

Time in Safe Zone -0.91 -0.89 -0.92 -0.89 

Time in Danger Zone 0.75 0.76 0.77 0.71 

Proportion of Variance 0.73 0.71 0.75 0.71 

 

Bold-shy PC scores and the separate behavior traits were analyzed with linear mixed-

effect models (LME) that initially included Sex, the exposure conditions of the individual 

(hereafter “Exposure”), and the exposure condition of the individual’s ancestors from the first 

generation (hereafter “Lineage”) as fixed effects where appropriate (e.g., no lineage effect when 

comparing the two generation 1 groups of fish).  Experimental replicate was treated as a 

random effect and models were initially constructed with two-way interaction terms among the 

fixed factors and reduce where interaction terms were non-significant (p>0.05).  Many initial 

analyses showed strong interactions between males and females in full models, so subsequent 

analyses and figures are presented separately for females and males for tractability. Because of 

the challenges in raising large numbers of fish through multiple generations and the great 

variability in individual behaviors, p-value less than 0.1 were considered evidence of significant 

effects and p-value less than 0.05 were considered highly-significant.  Effect sizes were 

quantified using a Cohen’s d.  
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Results 

Intra-generational Plasticity 

The first generation plastic effects of exposure environment was one of the few cases 

where there was not a significant interaction between Sex and other model terms for the bold-

shy PC.  However, there were significant fixed-effects of Sex (F1,105=17.24; p<0.001), and 

Exposure (F1,105=8.52; p<0.004), with males being much bolder (higher PC scores) than females 

and predator-exposed fish being bolder than non-exposed fish.  However, failure to reject an 

interaction between Sex and Exposure in this initial analyses may have been artefactual, since 

further analyses suggest that any such plastic effect for females was weak if present it all (Table 

3.2, Table 3.3, Figure 3.4a, Figure 3.5a-d).  Specifically, no plastic effect of predator exposure 

was detected for generation one females when they were analyzed separately from males, for 

either PC or univariate analyses of behavior.  Moreover, in contrast to the case for males, paired 

comparisons of exposed and unexposed females at later generations (within respective lineages: 

groups 3 v 4; 5 v 6; 7 v 8; 9 v 10) did not support analogous increases of boldness with exposure 

to predators (Table 3.3, Figure 3.4a).  
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Table 3.2: Reduced complete MANOVA model on PC behavior for all three generations of both 
sexes of mosquitofish.  Lineage refers to the exposure treatment of the first generation relative.  
All two-way interactions were included and interactions with non-significant terms (p>0.05) 
were removed.  Model was reduced using backwards selection.  Significance (p<0.10) is 
represented with an asterisk (*), and highly significant values (p<0.05) are represented with a 
double asterisk (**).  Effect size values are Cohen’s d, using non-exposed treatment values as 
the baseline values. 

FEMALES Isolated 
Effect 

df F-value p-value Significance  Effect Size 

Gen 1 Plasticity Exposure 1,54 1.37 0.25  0.41 

Gen 2 
Parental 
Effects 

Exposure 1,115 0.25 0.62  -0.09 

Lineage 1,115 6.17 0.01 ** -0.46 

Gen 3 
Grandparental 
Effects 

Exposure 1,86 1.12 0.29  -0.22 

Lineage 1,86 4.07 0.05 * -0.46 

MALES Isolated 
Effect 

dF F-value p-value Significance  Effect Size 

Gen 1 Plasticity Exposure 1,48 8.54 0.005 ** 0.81 

Gen 2 
Parental 
Effects 

Exposure 1,90 0.01 0.91  -0.02 

Lineage 1,90 0.12 0.73  0.07 

Gen 3 
Grandparental 
Effects 

Exposure 1,81 3.13 0.08 * 0.36 

Lineage 1,81 0.00 0.97  0.05 
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Table 3.3: ANOVA model on PC behavior within generations for three generations of both sexes 
of mosquitofish.  Numbered group comparisons within generations references breeding 
schematic Figure 3.2.  Model was reduced using backwards selection. Significance (p<0.10) is 
represented with an asterisk (*), and highly significant values (p<0.05) are represented with a 
double asterisk (**).  Effect size values are Cohen’s d, using non-exposed treatment values as 
the baseline values. 

FEMALE Isolated 
Effect 

dF F-value p-value Significance  Effect Size 

Gen 1 1 vs 2 Exposure 1,54 1.37 0.25  0.41 

Gen 2 
 

3 vs 4 Exposure 1,66 0.32 0.57  -0.14 

5 vs 6 Exposure 1,47 0.01 0.93  -0.03 

3 vs 5 Lineage 1,58 4.12 0.05 * -0.52 

4 vs 6  Lineage 1,54 2.15 0.15  -0.39 

3 vs 6 Both 1,56 4.29 0.04 ** -0.55 

Gen 3 

7 vs 8 Exposure 1,40 2.72 0.10  -0.61 

9 vs 10 Exposure 1,44 0.07 0.80  0.02 

7 vs 9 Lineage 1,36 8.20 0.007 ** 0.93 

8 vs 10 Lineage 1,48 0.97 0.33  -0.21 

7 vs 10 Both 1,39 5.91 0.02 ** -0.85 

MALE Isolated 
Effect 

dF F-value p-value Significance  Effect Size 

Gen 1 1 vs 2 Exposure 1,48 8.54 0.005 ** 0.81 

Gen 2 

3 vs 4 Exposure 1,54 1.22 0.27  -0.26 

5 vs 6 Exposure 1,34 0.75 0.39  0.29 

3 vs 5 Lineage 1,46 0.40 0.54  -0.18 

4 vs 6  Lineage 1,41 1.47 0.23  0.39 

3 vs 6  Both 1,45 0.14 0.71  0.11 

Gen 3 

7 vs 8 Exposure 1,42 0.12 0.73  0.11 

9 vs 10 Exposure 1,37 3.18 0.08 * 0.64 

7 vs 9 Lineage 1,45 0.28 0.60  0.17 

8 vs 10 Lineage 1,34 0.85 0.36  0.30 

7 vs 10 Both 1,45 2.76 0.10  0.47 
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Figure 3.4: PC behavioral response trajectories across three generations of two sexes of 
mosquitofish.   Panel a) shows female fish and Panel b) show male fish.  Red colors (square 
points) are fish with exposed lineages (generation 1 exposure treatment).  Blue colors (round 
points) are fish with non-exposed lineages.  Filled markers with solid lines are groups that were 
themselves exposed to predator cues in that generation, while open markers with dashed lines 
are groups from non-exposure treatments.  Color and line scheme follows the pattern 
established in the breeding schematic Figure 3.2.     
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Figure 3.5: Individual behavioral response trajectories across all three generations for 
mosquitofish.  Panels a-d) are female mosquitofish and panels e-h) are male mosquitofish.  
Panels a) and e) are total lag time, panels b) and f) are total time exploring the arena, panels c) 
and g) are percent time spent in the zone closest to the shoal group, and panels d) and h) are 
percent time spent in the zone close to the Largemouth Bass.  Red colors (square points) are fish 
with exposed lineages (generation 1 exposure treatment).  Blue colors (round points) are fish 
with non-exposed lineages.  Filled markers with solid lines are groups that were themselves 
exposed to predator cues in that generation, while open markers with dashed lines are groups 
from non-exposure treatments.  Color and line scheme follows the pattern established in the 
breeding schematic Figure 3.2.     



54 
 

Looking at the univariate behaviors suggests that the overall plastic increases in 

boldness in response to predator cues, again primarily apparent in males, were most associated 

with reductions of time in the safe zone (16% females, 36% males), reduced lag time (41% 

females, 36% males), and an increase in exploration time (30% females, 36% males) (Figure 

3.4b, Figure 3.5 a-c, Table B.1, Table B.2).  

Female Transgenerational Plasticity 

Generation two “daughters” of the generation one treatment groups showed significant 

evidence of a generation one parental environment (Lineage) effect (Table 3.2, Figure 3.4a).  

Daughters from the first-generation group that had experienced predator cues (groups 5 & 6) 

became much shyer than females in their parent’s generation (group 2), regardless of their own 

predator exposure (Table 3.4).  This was not only true for overall bold-shy PC scores (Table 3.4a) 

but for all separate behavioral traits (Table B.3).  For example, these female offspring spent 60-

67% less time in the danger zone of the arena than the females of their parent’s generation.  At 

the same time, daughters from non-exposed parents (groups 3 & 4) maintained nearly the same 

boldness as their parental generation counterparts (group 2), such that the non-exposed 

offspring of non-exposed parents (group 3) ended up significantly bolder than their counterparts 

from exposed parents (group 5) (Figure 3.4a).  Generally, generation two females expressed 

overall trends of individuals with exposed parents, having stronger shy behaviors while those 

with non-exposed parent expressed stronger bold behaviors (Figure 3.5a-d), though most cases 

the trend for individual behaviors is non-significant (Table 3.3, Table B.1).   
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Table 3.4: ANOVA model on PC behavior among generations for three generations of both sexes 
of mosquitofish.   Model compares generation one to generation two and three, and generation 
two to generation three PC behavior.  Numbered group comparisons across generations 
references breeding schematic Figure 3.2.  Model was reduced using backwards selection. 
Significance (p<0.10) is represented with an asterisk (*), and highly significant values (p<0.05) 
are represented with a double asterisk (**).  Effect size values are Cohen’s d, using generation 
one values as the baseline values. 

FEMALE dF F-value p-value Significance  Effect Size 

Gen 1 
and 

Gen 2 

1 vs 3 1,62 0.81 0.37  0.22 

1 vs 4 1,60 0.07 0.79  0.08 

2 vs 5 1,50 7.58 0.008 ** -0.75 

2 vs 6 1,48 7.84 0.007 ** -0.78 

Gen 1 
and 

Gen 3 

1 vs 7 1,43 0.32 0.57  0.51 

1 vs 8 1,52 2.52 0.12  -0.08 

2 vs 9 1,46 6.89 0.01 ** -0.77 

2 vs 10 1,49 7.59 0.008 ** -0.72 

Gen 2 
and 

Gen 3 

3 vs 7 1,49 0.85 0.36  0.27 

4 vs 8 1,56 0.31 0.58  -0.16 

5 vs 9 1,45 0.00 0.96  -0.03 

6 vs 10 1,46 0.00 0.98  0.01 

MALE dF F-value p-value Significance  Effect Size 

Gen 1 
and 

Gen 2 

1 vs 3 1,52 1.34 0.25  -0.31 

1 vs 4 1,48 6.78 0.01 ** -0.66 

2 vs 5 1,42 15.83 0.0003 ** -1.24 

2 vs 6 1,41 9.10 0.004 ** -0.92 

Gen 1 
and 

Gen 3 

1 vs 7 1,49 5.35 0.03 ** -0.44 

1 vs 8 1,38 2.00 0.17  -0.28 

2 vs 9 1,43 18.63 0.0001 ** -1.35 

2 vs 10 1,43 8.67 0.005 ** -0.86 

Gen 2 
and 

Gen 3 

3 vs 7 1,55 0.05 0.82  -0.06 

4 vs 8 1,40 0.52 0.48  0.31 

5 vs 9 1,36 0.10 0.76  -0.06 

6 vs 10 1,35 0.41 0.53  0.21 
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 Moving on to the third generation, ANOVAs with Exposure and Lineage terms indicated 

that the “granddaughters” of the first generation fish again showed evidence for enduring 

influences of their generation one grandparent’s environments (Lineage), such that fish with 

predator-exposed grandparents were significantly shyer than those with grandparents that had 

not experienced predators (Table 3.4, Figure 3.4a).  Much of this transgenerational plasticity 

owed to a seeming enduring effect of grandparent exposure favoring reduced boldness 

(increased shyness) in granddaughters, as it had in daughters, irrespective of the environment 

experienced by those subsequent generations (i.e., groups: [9 & 10] = [5 & 6] < 2).  This enduring 

shyness (groups [9&10] vs 2) was again apparent in all of the associated univariate behavioral 

traits (Table B.3).  As with the parental effects for daughters, granddaughters with unexposed 

grandparents (and parents) remained the boldest of all generation three treatment groups 

(Figure 3.4a, Figure 3.5a-d).  Indeed, this never-exposed lineage (group 7) was significantly 

bolder than both of the lineages deriving from exposed grandparents (groups 9 and 10) (Table 

3.3, Table B.1).  By generation three, any lineages that were ever exposed to predators, via 

grandparents, parents, or directly, showed 78-83% longer lag times than the never-exposed 

lineage fish (Figure 3.4a, Figure 3.5a, Table B.1), as well as some lesser shifts toward shyness on 

other traits (e.g., 35% increase in time in safe zone and 27% less time exploring for the 

unexposed granddaughters of exposed grandparents). 

Male Transgenerational Plasticity 

   Generation two male mosquitofish showed no overall effects of exposure treatment or 

lineage (Table 3.2).  Indeed, none of the groups in generation two groups significantly differed 

from each other in overall boldness-shyness or most univariate trait comparisons (Table 3.3, 

Figure 3.4b, Figure 3.5e-h); the only exception being some evidence that predator-exposed sons 

with predator-exposed parents might have spent slightly more time in the danger zone than 
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other groups (4 & 5).  However, given the large differences in boldness of first generation males, 

this meant that the sons of exposed parents (groups 5 and 6) showed substantial reductions in 

boldness compared to males in their parent’s generation (group 2) whereas the sons of 

unexposed parents showed either no significant reduction (group 3) or a much smaller 

reduction (group 4) relative to their already shy parent generation (group 1) (Table 3.4, Figure 

3.4b).  Reductions in boldness from generation one to two were most commonly associated 

with increased lag time by 53-87% (Figure 3.5e, Table B.4).  Additionally, groups that 

experienced either parental- or direct-exposure to predators increased time in the safe zone by 

18-43% and decreased total exploration time by 39-54% (Figure 3.5f-h, Table B.4).     

 Generation three male mosquitofish showed a significant overall effect of recent 

(generation 2 + generation 3) predator exposure but no effect of the grandparent’s predator 

environment in ANOVAs with lineage and exposure effects (Table 3.2).  In this model the third 

generation effect of exposure to predator cues (generation 2 + generation 3) was analogous to 

that in the first generation, with the exposed groups being generally bolder than their 

unexposed counterparts (Figure 3.4a).  At a pairwise comparison level, this effect of exposure 

was most apparent in contrasting individuals from the group with predator exposure in three 

generations (group 10) against the groups that had not experienced predators in either their 

own and their parent’s generation or their grandparent’s (9 vs 10 and 7 vs 10), with latter 

marginal for PC and significant for two individual traits (Table 3.3, Table B.3).  The greater 

boldness of the exposed fish was driven primarily by significantly longer exploration times (34-

55%) and significantly shorter times in the safe zone (24-32%) (Figure 3.5f-g).  There was no 

evidence of changes in boldness between the second and third generations of males within their 

respective lineages (Table 3.4, Table B.4).  Hence, like the second generation, nearly all 

generation three grandsons continued to express significantly shyer traits than the males from 
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their grandparent’s generation (generation 1).  The only exception being for exposed generation 

three males from the non-exposed lineage (Table 3.4).   

Discussion 

 Mosquitofish clearly show behavioral plasticity to predators and depredation cues along 

an overt bold-shy continuum.  However, males and females differed substantially in the extent 

or patterns of their intra-generational and transgenerational plasticity.  Females showed little if 

any intra-generational plasticity but relatively strong plastic responses to parental and 

grandparental exposure.  In contrast, males showed stronger intra-generational plasticity in the 

first generation, and evidence of some analogous plasticity in subsequent generations (third), 

but much less evidence of transgenerational plasticity.  I discuss these patterns of behavior with 

regards to what they might tell us about the relative important of direct versus inherited 

predator cues for potentially adaptive plasticity of the two sexes of this live bearing fish.   

Females Respond to Ancestral Cues 

 Theory suggests that transgenerational effects are expected to be most adaptive where 

the inherited environmental cues from  parents or grandparents are dependable (Moret 2006, 

Uller 2008, Storm and Lima 2010, Hoyle and Ezard 2012) and provide the offspring with a form 

of “pre-adaptation,” or head-start in performance (Moret 2006, Dyer et al. 2010, Salinas and 

Munch 2012).  In the current study female mosquitofish showed overt plastic responses to the 

environments of their parents and grandparents that often spanned a whole integrated suite of 

bold-shy behaviors.  Specifically, the daughters and granddaughters of fish that were exposed to 

predator cues became substantially shyer than both their predecessors and the daughters and 

granddaughters of fish that had not experienced predator cues.  Other studies of offspring 

responses to parent’s exposure to predator cues often show a similar shift toward antipredator 
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behaviors (Mondor et al. 2005, Giesing et al. 2011, Bestion et al. 2014) or selection of safer 

habitats (Storm and Lima 2010, Keiser and Mondor 2013). The current study extends these 

transgenerational responses to predator cues through even more generations.  Hence, based on 

the above adaptive theory, we might thus presume that past exposure of parents or 

grandparents to predators is a fairly reliable cue.  Female mosquitofish face a risk of similar 

exposure and should thus adopt behaviors that mitigate this risk, even if they don’t directly 

experience predator cues themselves. 

It is interesting that this transgenerational plasticity of females appears to be even 

stronger than intra-generational plasticity, such that daughters and granddaughters may rely 

more on the cues faced by their parents or grandparents than those they experience directly.  

This might seem somewhat counterintuitive if one presumes that an individual’s own sensory 

experience in the present should be more reliable than cues passed from other individuals that 

experienced the environment longer ago.  However, that presumption might not be true if one 

considers reliability in terms of an environmental sampling scale problem (Templeton and 

Franklin 1992, Koops 2004).  Many predators are transitory, have large ranges, or migrations 

which make their presence patchy in both space and time (Bernstein et al. 1988, Folt and 

Schulze 1993).  Wild predators also often go to great lengths to conceal their presence from 

prey (Quinn and Cresswell 2004, Cresswell et al. 2010).  Prey on the other hand are only able to 

sample environmental conditions across a finite period of time and space, and must ultimately 

use that acquired information and remaining uncertainty to make decisions about predator 

presence (Sih 1992).  This uncertainty may also be greater or lesser, depending on the predator-

prey relationship and the extent of the risk the predator may pose (Ferrari et al. 2010).  While 

prey are often sensitive to cues (McIntosh et al. 1999), prey individuals do not respond as 

strongly or even in the same direction for all cue types (e.g. olfaction vs vision) (Martin et al. 
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2010), likely due to differences in cue reliability (Magurran et al. 1996, Brown 2003, Wisenden et 

al. 2004).  Ultimately, individuals make predator detection and response decisions with a 

significant degree of error, balancing between the energetic costs of overestimating predator 

abundance with the fatal costs of underestimation (Bouskila and Blumstein 1992, Abrams 1994).  

Hence, an individual that does not perceive predator cues itself could face dire consequences 

from behaving in a risky fashion if it made an error in assessing its environment, or in the event 

that predators do eventually show up after a period of local absence.  The swampy lakes in 

Croatan National Forest where the focal population from this study originates average just four 

feet deep (USDA and Forest Service 2014), and are prone to drying and flooding.  Moreover, 

many of the lakes have an acidic pH, ranging from 4.5-5.0 (USDA and Forest Service 2014).  

Acidic pH and low water levels reduce the condition of Largemouth Bass and reduce 

reproduction and recruitment (Miranda et al. 1984, Leino and McCormick 1993), potentially 

making these predators relatively sparse and patchy in the environment.  During some seasons 

or years, mosquitofish might even be isolated in marginal pools or habitats for extended 

periods, equating with one or more generations, until rains and flooding reconnect habitats and 

provide access by predators or distribute offspring in isolated habitats back into areas with 

predators.  Therefore, predator cues passed from prior generations could thus provide a more 

comprehensive and reliable sampling of predation risk.   

A tantalizing trend in my data suggests an exception that could prove the rule.  At the 

same time that females in lineages where parents experienced predators dropped to a low level 

of boldness in generation two and stayed at that bottomed-out level through generation three, 

fish from the lineage that had never experienced predators in any generation showed a trend 

towards increasing boldness generation-to-generation, or at least greater divergence from other 

groups (Figure 3.4a).  This would fit with transgenerational plasticity as a solution to an 
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environmental sampling scale problem, in that more generations without predators would, in 

principle, be a more reliable cue of predator absence.  This could theoretically function much 

like an individual increasing sampling time or sites (Bouskila and Blumstein 1992, Sih 1992, 

Abrams 1994) or increase signal evaluation capacity (Wiley 2009, Ferrari et al. 2010).  In this 

case, ancestral information may increase cue reliability, in which case greater boldness might be 

favored for greater competitive ability.   

Males Respond to Current Environmental Experience 

In contrast to females, the bold-shy behaviors of males were much more influenced by 

the environments they themselves experienced and less clearly influenced by the environments 

of their parents or grandparents.  In both the first and third generations, exposure to predator 

cues was associated with significantly greater boldness.  In other words, the effects of intra-

generational exposure to predators in males is opposite that of transgenerational plasticity in 

females.  On the other hand, the only suggestions of a possible transgenerational effect for male 

mosquitofish was some evidence for a greater decrease in boldness for males from the 

predator-exposed lineages than the non-exposed lineages between the first and second 

generations.  Given an overall trend toward reduction in boldness across all treatments from the 

first to second generation (Figure 3.4b), and the absence of any group differences in this second 

generation, I am hesitant to interpret this pattern as more than equivocal evidence of a parental 

effect.  So then, why might male mosquitofish show such a different reliance on intra-

generational versus transgenerational plasticity than their female counterparts? 

The aforementioned theories would suggest that transgenerational cues might be 

somehow less reliable for males than they are females.  It is not immediately clear why this 

should be the case since both sexes coexist in the same environment and thus experience the 
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same histories and odds of predator occurrence at particular points in time.  A mother’s, 

father’s, grandmother’s, or grandfather’s exposure would thus presumably have the same 

information value to their male or female descendants.  All individuals had both parents 

exposed to a given set of predator-presence or absence cues, so this difference also cannot be 

explained by differential capacity for information transmission through maternal or paternal 

inheritance mechanisms.  With this in mind, it may make sense to hypothesize that the 

difference in male versus female reliance on within- versus between- generation predator cues 

might depend less on cue reliability and more on the relative utility of the two forms of 

information to individuals of different sex.  Indeed, a few other works have found that intra-

generational and transgenerational effects are negatively correlated, so individuals may express 

one or the other but not both (Hoyle and Ezard 2012, Walsh et al. 2014), perhaps providing 

additional support for segregation of responses in males and females.   

Female mosquitofish and other female poeciliids have much longer reproductive life 

spans compared to their period of juvenile rearing than males.  Development from parturition to 

maturity in mosquitofish takes roughly 4-6 weeks (Krumholz 1948).  Many mature females may 

have post-maturation lifespans of equal or greater duration, whereas males may rarely live so 

long (Krumholz 1948), females living up to three times longer.  Because of their greater 

longevity, female mosquitofish are more likely than males to experience a change in predator 

conditions from absence of predators to presence sometime after their period of their early 

rearing, increasing the value of transgenerational cues of past predator presence.  Males on the 

other hand live such short times on average that their adult experience is unlikely to be different 

than their juvenile experience, even if their parents or grandparents experienced something 

similar. 
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This difference in reliance on transgenerational versus intra-generational plasticity 

might be thought to imply that females are more developmentally locked into their behavioral 

tendencies than males.  However, that inference is not clearly warranted.  The current study 

was not designed to test for reversibility of behavioral tendencies within generations, which 

would have required systematically switching individual exposures partway through their 

juvenile rearing.   Moreover, studies of behavioral syndromes in fishes and many other 

organisms suggest that most individuals can 1) up or down regulate their boldness to some 

degree, but 2) tend to remain relatively bold or shy with respect to other individuals across a 

broad spectrum of contexts (Sinn et al. 2008).  Indeed, this cross-context consistency has often 

been used as a defining feature of such a behavioral syndrome (Sih et al. 2004, Sinn et al. 2008), 

suggesting that relative boldness may be developmentally determined early in life.  Whether 

individuals are developmentally set on a relatively bold or shy pathway could occur whether 

that pathway is initiated by cues transmitted from prior generations, or by the individual’s own 

early environmental exposure.  Indeed, these two alternatives are not always distinct for 

mosquitofish and other viviparous species where internally developing embryos might not only 

be indirectly programed through epigenetic mechanisms, but also directly experience some cues 

transmitted passively through their mother’s blood supply.  

Sexual differences in Direction of Plastic Responses 

Setting aside generational distinctions, prior studies suggest that females of many 

species are generally shyer and more conservative in their behavioral strategies than their male 

counterparts, spending greater time foraging and increasing their fecundity through size and 

gestational success (Klimley 1987, Shine 1988, Prenter et al. 1999, Kamilar and Pokempner 

2008).  On the other hand, variation in male reproductive success of many species is more often 

associated with competition for numbers and quality of mates.  Boldness in males can aid them 
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in locating or defending mates or mating territories, successful courtship, or coercive matings 

(Wells 1977, Vehrencamp et al. 1989, Luyten and Liley 1991, Matthews et al. 1997, Hack 1998).  

Although these activities often increase risk of predator encounter or make males more 

conspicuous to predators (Endler 1987, Candolin 1997, Sih et al. 2003), such risks could actually 

favor greater boldness by placing a selective premium on males to mate early and often.  These 

differences in roles within mating systems, and initial levels of boldness, could predispose males 

and females to different risk tradeoffs and divergent plastic responses to predator cues.  Indeed, 

in clonal comparisons of intra- versus trans-generational effects, increased early reproductive 

investment was commonly associated with within-generation plasticity (Walsh et al. 2014), such 

as seen in male mosquitofish in the present study.  Conversely, clonal individuals that expressed 

transgenerational responses favored slower growth and later reproductive timing (Walsh et al. 

2014), more similar to the general life history of a female mosquitofish (Krumholz 1948).   

In the present study, males were notably bolder than females in generation one.  This 

general sex difference was obscured for most groups by generations two and three; however, 

the lineage that experienced predator cues in all generations was the top ranked treatment 

group for boldness in males, but the bottom-ranked (shyest) treatment for females.  Hence, 

there is some empirical reason to believe that male and female mosquitofish do differ in their 

underlying boldness to begin with, and that this fits with the natural history of this species. 

The vast majority of female mosquitofish are mated almost immediately upon sexual 

maturation, provided males are present.  However, the live-bearing nature of this species means 

that mated female mosquitofish face a prolonged window where depredation risks loss of all 

reproductive success.  Internal development of embryos also means females may often have 

more to lose than gain from repeated courtships or mating attempts during pregnancy (Arnqvist 
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1989, Kawagoe et al. 2001, reviewed in Kokko et al. 2003).  Pregnancy itself can increase risks of 

depredation and prior work has shown that gestating females shift toward shyer behaviors to 

reduce their predation risk (Bauwens and Thoen 1981, Stankowich and Blumstein 2005, Ibáñez 

et al. 2015).  As noted above, females that are bolder in seeking food resources might benefit 

competitively when predators are absent and conspecifics are abundant, but behaviors that 

reduce risk and aid longevity may be strongly favored for mature females when predators are 

present and conspecifics competitors are less abundant. 

 In contrast to females, the almost scramble nature of male reproductive success in 

mosquitofish places less of a premium on male size and more on male activity, as evidenced by 

their determinant growth at maturation (Krumholz 1948).  Sex ratios in wild populations without 

predators are often strongly skewed toward females (Fryxell et al. 2015), suggesting that males 

experience higher mortality rates and have a shorter average time window to reproduce, but 

could experience very high reproductive success by mating quickly, even coercively, with the 

larger pool of available females.  In contrast, it’s almost more difficult to envision cases where 

less boldness could be favored.  However, in the presence of predators sex ratios are more even 

(Chapter 5); thus males must compete more directly among each other for mates, and females 

are able to engage in more mate choice.  These conditions could favor males that are less apt to 

expend energy in restless exploration for short term mating payoffs in favor of reserving energy 

and time for a greater period of likely mating competitiveness.    

Interestingly, the very different mating system roles and tradeoffs of males and females 

suggests a final reason why they might show opposing plastic responses to predators – their 

response might in part be responses to demographic and behavioral responses of the opposite 

sex.  When piscivores are present, mosquitofish are often less abundant and our study suggests 
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females adopt shy behaviors that could even include avoidance of males since male courtship 

could draw predator attention (Agrillo et al. 2007), but males are also very rarely ever limiting 

for fertilizations when needed and females are able to store sperm from past matings (Houde 

1997), resulting in a form of sexual conflict that has been studied in related poeciliid fishes 

(Magurran and Seghers 1990, Magurran and Nowak 1991).  Hence, in the presence of predator 

cues, males might adopt greater boldness, particularly in the form of increased exploratory 

restlessness, to increase their odds of encountering the relatively smaller number of more 

cautious mates.  Males that wander more might also be more aware of predator risks in the 

vicinity of different potential mates.  Conversely, females might become shyer under predator 

cues in part to offset some of the predation risks and lost foraging opportunities associated with 

being pursued by bolder males. 

Concluding Remarks 

 Overall, this study supports the hypothesis that transgenerational environmental 

plasticity is passed through lineages and, at least for some individuals within a population, is 

likely to be adaptive.  Adaptive behavioral transgenerational plasticity is relevant in other fishes 

(Giesing et al. 2011) and other aquatic invertebrates (Marsh-Matthews et al. 2005), and some 

terrestrial organisms (Reedy et al. 2012).  Across many study systems females are often 

considered to be under higher depredation risk largely due to their size and gestation 

constraints (Britton and Moser 1982, Magurran and Nowak 1991, Trexler et al. 1994, 

Pocklington and Dill 1995, Götmark et al. 1997) and this is often suggested as the basis for their 

relative shyness (Bauwens and Thoen 1981, Stankowich and Blumstein 2005, Ibáñez et al. 2015).  

Some other studies have also shown that females appear more likely to plastically inherit 

parental behaviors (Brown and Shine 2007, Benton et al. 2008).  However, this explanation 

based on female depredation risk is probably not sufficient on its own to explain all differences 
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between males and females in their relative reliance on transgenerational versus current 

environmental cues.  In mosquitofishes, and related poeciliids, empirical evidence suggests 

males often face higher mortality rates and have much shorter life spans, particularly in the 

presence of predators.  This often leads to highly biased sex ratios, as I discuss in Chapter 5.  As I 

noted above, the high mortality risks and extremely short reproductive life spans of males might 

be just as important as an explanation for why males don’t rely on transgenerational plasticity 

as any arguments for why depredation risk somehow favors female reliance on 

transgenerational cues and shyness in females.  I think this raises an interesting question about 

how we treat transgenerational plasticity when it comes to theory and empirical inference. 

Specifically, is it appropriate that we often treat transgenerational plasticity (e.g., in 

female mosquitofish) as an exceptional process that requires special explanation, when it could 

turn out to be the general expectation?  Our current tendency to treat cases of 

transgenerational plasticity as novelties likely derives from the current paucity of examples, but 

that paucity could owe more to the recent emergence of the field more than prevalence of 

transgenerational plasticity itself.  If it turns out that both transgenerational and intra-

generational plasticity are very common, then cases where transgenerational plasticity is absent 

might be more equally or more informative to testing and building theory.  Unfortunately, the 

vast majority of published studies of transgenerational plasticity test for such effects in single 

species, sexes and traits, and as a result are prone to putting forth adaptive explanations that 

are rarely rigorously testable (Salinas et al. 2013, Burgess and Marshall 2014).  Worse still, 

studies that don’t find transgenerational effects might often face publication bias.  Hence, 

comparative studies, like the one I present here, where transgenerational plasticity is tested in 

different sexes, species, environments, or traits, and where non-detections are reported along 

with detections, are greatly needed.   
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CHAPTER 4: TRANSGENERATIONAL MORPHOLOGICAL RESPONSES TO NONLETHAL PREDATOR 

CUES IN FEMALE EASTERN MOSQUITOFISH (Gambusia holbrooki) 

 

Introduction 

Phenotypic plasticity is the expression of a reaction norm, the differential expression of 

phenotypic trait values for a given genotype experiencing different environmental conditions 

(Via and Lande 1987, Via et al. 1995, Baythavong 2011).  Much of the research on 

environmentally induced phenotypic plasticity is centered on the adaptive potential of reaction 

norms expressed by individuals during their own lifetime (Chapter 2, Arnett and Kinnison In 

Review).  While such adaptive phenotypic plasticity is common, a more recent body of research 

indicates that environmental cues non-genetically inherited by individuals from their parents 

(Hoyle and Ezard 2012) or grandparents (Yazbek et al. 2010, Hafer et al. 2011) can also have a 

significant effect on their trait expression.  Such multigenerational environmental transmission, 

termed “transgenerational plasticity”, is similarly theorized to provide individuals with the ability 

to produce phenotypes that are advantageous in their current environments (Galloway and 

Etterson 2007, Herman et al. 2012), assuming that environments experienced by parents, or 

more distant ancestors, are informative of risks or opportunities in the current generation.  In 

this chapter I consider the multigenerational effects of non-lethal predator exposure on the size 

and shape of females of a live-bearing fish. 

Transgenerational plasticity encompasses a suite of mechanisms providing for non-

genetic transmission of environmental influences from generation to generation in a fashion 

that influences the trait expression of offspring or other descendants (Jablonka et al. 1992, Day 

and Bonduriansky 2011).  It represents a form of phenotypic plasticity in the sense that this 

transmission represents the potential for a given genotype to produce alternate phenotypes 
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based on a particularly environmental experience, albeit in this case the environment was 

experienced by parents or other progenitors, resulting in essentially a cross-generation norm of 

reaction.  The earliest research attributed to transgenerational plasticity revolved around the 

detection of maternal environment effects that were often seen as confounding many 

quantitative genetic estimates of trait heritability (Yamanaka 1928, Park 1935).  Both maternal 

and paternal environmental experiences can be conveyed to offspring by a diversity of non-

allelic inheritance mechanisms (Alexander 1974, Augspurger 1984, Wulff 1986, Westneat and 

Sargent 1996), but maternal effects are considered particularly strong due to the greater 

opportunity for mothers to influence offspring traits via nutrient provisioning of eggs or 

embryos, cytoplasmic transfer, and post-parturition provisioning or parental care (Metcalfe and 

Monaghan 2001, Marsh-Matthews et al. 2005, White et al. 2008, Wolff and Gemmell 2013).   

Although “epigenetic inheritance”, “parental effects” and “transgenerational plasticity” have 

sometimes been used synonymously with one another, this is an artifact of the most recent 

decade or so (Kirkpatrick and Lande 1989, Wolff and Gemmell 2013). In the present study I 

follow a more formal framework wherein the former (epigenetic inheritance) represents a 

specific set of molecular mechanisms that essentially program gene expression or other cellular 

functions, including DNA methylation.  In contrast, I consider  transgenerational plasticity to 

include epigenetic inheritance along with many non-epigenetic processes that can occur during 

gestation, parturition, parental status, or parental investment (Yamanaka 1928, Lévy et al. 1993, 

Travis et al. 1999, Pryke and Rollins 2012).  For example, transgenerational effects can even 

include aspects of parental investment that increase offspring survival, success, and fecundity 

(Alexander 1974, Feldman and Laland 1996, Westneat and Sargent 1996).   

 Recently, more attention has been focused on not just the potential of 

transgenerational plasticity between parents and offspring (i.e. maternal and paternal effects), 
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but on the possibility of cues that are transmitted across multiple generations.  Indeed, a 

growing body of work provides support that environments of grandparents can influence a 

diversity of traits of their grand-offspring (Alonso-Alvarez et al. 2007, Herman et al. 2012).  

Because of the multi-generation nature of these transgenerational effects they are often 

considered indicative of epigenetic inheritance mechanisms, but that is not an absolute 

requirement.  For example, sequential effects of maternal investment or site choice could 

permit grandmothers with exceptionally high investment to produce higher quality daughters, 

themselves at an increased advantage for offspring investment and similar quality offspring 

(Plaistow et al. 2007, Monteith et al. 2009, Plaistow and Benton 2009).  As with single 

generation parental effects, these transgenerational effects encompass a wide variety of 

mechanisms that can be mathematically expressed as reaction norms linking phenotypes in the 

current generation to environments experienced by progenitors.   

 Risk of depredation provides a strong basis for within- and among- generation plasticity.  

Plastic responses to predator cues are common in nature (Relyea and Auld 2005, Hossie and 

Murray 2012).  One of the best documented responses to risk of depredation is physical 

alterations to body size and shape.  Adjustments to body size are usually represented in two 

ways, individuals may increase their body size in order to surpass an easily consumed or 

palatable life history stage (Semlitsch 1990, Januszkiewicz and Robinson 2007).  Alternatively, 

some species may decrease or limit overall body size in the presence of predator cues, making 

their capture relatively unrewarding to a predator (Smith et al. 2014, Rodgers et al. 2015).  This 

latter pattern is frequently associated with a trade-off in the form of an associated tendency to 

mature at a smaller size or earlier age (Torres-Dowdal et al. 2012, Handelsman et al. 2013).  

Thus, the form of plasticity a group may take could depend upon both the nature of the 

predator-prey relationship and the nature of specific reproductive trade-offs.   
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In additional to changes in size, populations of many species express body shape 

alternations that increase evasion and escape from potential predators (Dahl and Peckarsky 

2003, Burns et al. 2009, Fu et al. 2013).  Commonly, these body shape alternations are 

manifested in a fashion that is thought to aid individuals in aspects of their aerodynamic or 

hydrodynamic performance for escaping depredation (McCollum and Leimberger 1997, Swaddle 

and Lockwood 1998, Fu et al. 2013).  These alterations can include aspects of shape that 

enhance maneuverability, burst escapes or sustained flight, such as wing tip shape in birds 

(Swaddle and Lockwood 1998) or caudal region dimensions in fishes (Langerhans et al. 2004, 

Scharnweber et al. 2013).  Again, we might suspect that the form of the actual plasticity 

expressed would be dependent on the nature of the predator-prey relationship.  For example, 

morphological arrangements that aid burst speed and maneuverability might be favored by prey 

that evade stalking or lie-in-wait predators in complex habitats; whereas, arrangements that aid 

sustained speed or endurance might aid prey that must outpace predators in the open.   

These types of plastic phenotypic responses to depredation risk, both in size and shape, 

are well established for cases of intra-generational, but what of size and shape responses to 

predator cues experienced by parents or grandparents?  Examples of such transgenerational 

predator effects do exist, particularly between parents and offspring.  For example, female 

aphids exposed to predator-cues produce more offspring with wings, presumably to aid in 

predator evasion and dispersal (Mondor et al. 2005).  Likewise, snail offspring from exposed 

parents develop thicker shells and smaller apertures to dissuade depredation attempts (Salice 

and Plautz 2011).  Most transgenerational plasticity studies in vertebrates have been focused at 

this single generation scale (Marsh-Matthews et al. 2005, Salinas and Munch 2012, Roche et al. 

2012, Mommer and Bell 2013, but see Monteith et al. 2009).  By comparison, many fewer 

studies have assessed the presence of transgenerational plasticity that might span more than a 
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single generation, and where such work has been done, it has often been conducted in clonal 

organisms such as daphnia (Walsh et al. 2014) or springtails (Hafer et al. 2011).  In theory, such 

multigenerational plasticity effects have the potential to be adaptive if predator conditions are 

maintained across generations (Bestion et al. 2014), or if encounters with predators are rare 

enough that a multigenerational sampling window provides a more integrative assessment of 

depredation risk than can be assayed by an individual’s own limited environmental sampling 

abilities (as described in Chapter 3).  However, just because such transgenerational effects might 

be adaptive in some contexts does not mean they necessarily exist for all species and traits.  

However, if such parental or grandparental effects are common or strong, this would be 

important to appreciate for studies that seek to understand how complex responses to 

predators shape prey evolution, ecology and their interactions. 

Objectives 

In this chapter I examine the capacity of nonlethal predator cues to induce 

transgenerational size and morphological effects in female Eastern Mosquitofish (Gambusia 

holbrooki).  Specifically, I assessed 1) the degree that predator cues influence the size of 

offspring or grand-offspring, 2) the degree that predator cues influence the body shapes of 

offspring or grand-offspring and 3) whether such patterns of transgenerational plasticity are 

similar or different from those of intra-generational plasticity. 

Methods 

Study Species 

 Eastern Mosquitofish (Gambusia holbrooki) are an abundant species of poeciliids with a 

native range in Eastern North America (Lee and Burgess 1980).  However, along with the closely 

related Western Mosquitofish (Gambusia affinis) these fishes are found nearly worldwide 
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(Brown 1987, Cote et al. 2011).  These species are sexually dimorphic, with females larger than 

males.  The greatly expanded modern day distribution of mosquitofish owes in large part to 

their extensive anthropogenic use for biological control of pest invertebrates (Meffe 1985).  

However, the traits of mosquitofish that make them so successful in biocontrol, such as high 

fecundity, short generation times, and viviparous reproduction (Krumholz 1948, Haynes and 

Cashner 1995) increase their ability to colonize new habitats as an IUCN Red List of invasive 

species (Pyke and White 2000).  Likewise, mosquitofish have a wide diet niche and feed from 

many trophic levels (Goodsell and Kats 1999, Matveev et al. 2000) and they are aggressive, 

efficient feeders that can displace or extirpate native species (Carmona-Catot et al. 2013).   

Central to this study, mosquitofish are often not the top predators in their communities, 

but are instead common prey for both piscivorous fishes and aquatic birds (Britton and Moser 

1982, Meffe and Snelson 1989).  The population used in this study coevolved with two 

centrarchid predators, Largemouth Bass (Micropterus salmoides) and bluegill sunfish (Lepomis 

macrochirus).  Prior studies have shown that mosquitofish populations experiencing presence or 

absence of predators often differ in aspects of body shape, behavior and color (Horth 2004, 

Langerhans et al. 2004).  Morphologically, mosquitofish populations that have coevolved with 

predators have streamline body shapes combined with an extended caudal peduncle to aid in 

velocity and burst escapes (Langerhans et al. 2004, 2005).  Although past studies have tended to 

emphasize the role of predators in genetic population divergence, I have shown evidence for 

intra-generational phenotypic plasticity in mosquitofish morphology and behavior (Chapter 2, 

Arnett and Kinnison In Review).  However, I hypothesize that Eastern Mosquitofish are also a 

good candidates for detecting transgenerational plasticity of body size and shape.  As Poeciliid 

live-bearers, mother mosquitofish maintain prolonged contact with their embryos and transfer 

nutrients to offspring throughout the gestational period (Marsh-Matthews et al. 2005).  Hence, 
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mosquitofish may have more opportunity and a greater capacity to pass on non-genetic cues 

than many oviparous fishes (but see Salinas and Munch 2012).  Along these lines, I showed in 

chapter 4 that female mosquitofish, but not males, are indeed subject to parental and 

grandparental effects on bold-shy behavior, and so one might hypothesize that females might 

show an integrated transgenerational plasticity response that also includes responses in size and 

body shape. 

Experimental Procedures 

All aspects for initial wild fish collection, laboratory acclimation, breeding of 

experimental lineages, and exposure to predator cues are described in the preceding chapter 

(Chapter 3).  As with the previously described experimental design, the full experiment was 

replicated three times from the same common lab-acclimated stock, beginning at generation 

one.  The resulting lineages are displayed in Figure 3.2, which was reproduced here in Figure 4.1 

for convenience.    

Assaying Trait Variation and Analyses 

Upon reaching sexual maturity (based on development of secondary sexual traits), 

experimental individuals were euthanized with a lethal dose of MS-222 (>250 mgL-1).  Individuals 

were weighed (±4 mg) and photographed on their left side against a grid with a ruler for scale.  

Linear measures of body size dimensions were obtained using Image J (ver. 1.6.0_20, Rasband 

and NIH).  These size measures included total length (snout to tip of caudal fin), total body depth 

(dorsal ventral measure at the deepest portion of the body), and caudal peduncle (shallowest 

portion of caudal region).  Size measurements were analyzed with a multivariate analysis of 

variance (MANOVA) on a linear mixed effects model (LME).  In the model, exposure treatment, 

treatment lineage, and sex were fixed effects while replicate served as a random effect.  Models 
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were constructed using backwards model selections and terms were removed if not significant 

(p<0.05).  Subsequent univariate comparisons within fixed effect groups were performed using 

an ANOVA with the same model parameters for each size metrics. 

 

Figure 4.1: Lineage model for breeding and assay groups over three generations.  Boxes 
represent groups of mosquitofish reared under a given set of predator cues. Boxes with solid 
borders and connecting lines represent predator-exposed treatment groups and boxes with 
dashed boarders and lines represent predator-free treatments.  The blue colored boxes and 
arrows reflect the lineages of fish deriving from the non-predator-exposed fish in the first 
generation (box 1).  The red colored boxes and arrows reflect the lineages derived from the 
predator-exposed fish in generation one (box 2).  The group numbers, line colors and line style 
format in this figure are used as a convention in all subsequent figures and tables.  Behavioral 
traits were assayed for all groups to the right of the vertical dashed line.   

 

Using the fish photographs, data were collected using tpsDig2 (ver. 2.22, Rohlf and 

SUNY) for fifteen fixed landmarks (Figure 4.2, Appendix A) adapted from a series of landmarks 

established in Palkovacs et al. (2011).  Geometric morphometric analyses were then performed 

on these landmarks to summarize overall fish body shape variation.  Due to sexual dimorphism 

(Krumholz 1948, Chapters 2&5), relative warps were obtained for females separately from 

males.  Twenty-six relative warps were obtained from a principle component analysis (PCA)  
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Figure 4.2: Morphometric landmarks for body shape comparisons.   a)-d) are cranial markers, e)-
h) and k)-l) are fin insertions and positions, i)-j) identify caudal peduncle, m)-n) are eye marks, 
and o) served as the eye centroid.  Complete landmark descriptions may be found in Appendix 
A.  Figure is duplicate from Figure 2.1 and included here for easy reference. 

 

performed on the thin-plate spline variation using tpsRelw (ver. 1.62, Rohlf and SUNY).  The first 

fifteen (clearly interpretable) relative warps were visualized to the extremes of actual sample 

variation, and interpreted for females (Figure C.1).  A MANOVA on an LME performed on the full 

26 relative warps using Exposure and Lineage factors (along with their interaction), and replicate 

as a random term, was used to initially test for intra-generational and transgenerational 

plasticity effects and established relative warps of particular significance to body shape under 

these conditions (Table C.1).  Pairwise ANOVAs between treatment groups with each of these 

four significant relative warps were subsequently performed to further interpret the overall 

MANOVA models.  To help visualize shape trends associated with current Exposure to predators 

or transgenerational Lineage effects, a discriminant function analysis (DFA) was performed on 

the relative warps pooling fish by either Exposure type or Lineage type within a given 

generation.  The associated Exposure or Lineage DFA scores were then visualized by regressing 

scores back on landmark deformations using tpsRegr (ver. 1.42, Rohlf and SUNY).   
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All statistical analyses, beyond the summarization of shape using geometric 

morphometrics, were performed using the R Programming Environment (Ver. 3.1.1, R Core 

Team 2014) using the libraries vegan (Oksanen Ver. 2.0), car (Fox and Weisberg Ver. 2.0), MASS 

(Ripley Ver. 7.3), nlme (Oenheiro and Bates Ver. 3.1), heplots (Fox, Friendly, and Monette Ver. 

1.0-1.6), and effsize (Torchiano Ver. 0.54).  For the same reasons noted in the preceding chapter 

(used the same breeding design), I considered p-values less than 0.1 as significant and values 

less than 0.05 as highly significant. 

Results 

Body Size: Intra-generational Plasticity 

Generation one females did not show a significant overall effect of exposure treatment 

on body size in MANOVA (Table 4.1), indicating little if any effect of intra-generational plasticity 

(Figure 4.3).  Likewise, there were no indications of significant exposure effects on individual size 

traits (Table D.1).  This absence of an intra-generational exposure effect was consistent for the 

two remaining pairwise comparisons of offspring split between predator exposed and non-

exposed conditions in generation two (groups 3 v 4; 5 v 6) (Table 4.2, Figure 4.3).  There was 

some evidence of an overall Exposure effect for generation three.  Specifically, fish that reared 

in the presence of predators tended to be somewhat larger than those that had not.  However, 

this third generation exposure effect cannot be uniquely attributed to intra-generational 

plasticity alone, because these third generation females came from parents with the same 

exposure and not from splitting of broods like the first two generations.  As such, Exposure 

effects at generation three could in principle include potential parental effects transmitted from 

the second generation. 
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Table 4.1: Reduced complete MANOVA on size metrics for all three generations of female 
mosquitofish.  Model includes total length, body depth, tail peduncle, and weight.  Lineage 
refers to the exposure treatment of the first generation relative (parent or grandparent).  All 
two-way interactions were included, interactions with non-significant terms (p>0.10) were 
removed.  Model was reduced using backwards selection. Significance (p<0.10) is represented 
with an asterisk (*), and highly significant values (p<0.05) are represented with a double asterisk 
(**).  Effect size values are Eta Squared, using exposed treatment values as the reference values. 

Females Effect dF F-value p-value Significance Effect 
Size 

Gen 1 Exposure 1,55 0.19 0.67  0.23 

Gen 2 
 

Exposure 1,120 0.40 0.53  0.03 

Lineage 1,120 0.04 0.85  0.07 

Gen 3 Exposure 1,101 5.32 0.03 ** 0.05 

Lineage 1,101 0.79 0.38  0.22 

 

Table 4.2: MANOVA pairwise comparisons on size metrics within generations for female 
mosquitofish.   Model compares groups within each generation using the four size metrics, total 
length, body depth, tail peduncle, and weight.  Numbered group comparisons within 
generations reference breeding schematic Figure 5.1.   Model was reduced using backwards 
selection. Significance (p<0.10) is represented with an asterisk (*), and highly significant values 
(p<0.05) are represented with a double asterisk (**).  Effect size values are Eta Squared, using 
exposed treatment values as the reference values. 

Females Isolated 
Effect 

dF F-value p-value Significance  Effect Size 

Gen 1 1 vs 2 Exposure 1,55 0.19 0.67  0.23 

Gen 2 
 

3 vs 4 Exposure 1,72 0.59 0.45  0.01 

5 vs 6 Exposure 1,47 0.02 0.88  0.29 

3 vs 5 Lineage 1,61 0.07 0.79  0.13 

4 vs 6  Lineage 1,57 0.04 0.83  0.10 

3 vs 6 Both 1,47 2.59 0.11  0.32 

Gen 3 

7 vs 8 Exposure 1,50 2.12 0.15  0.03 

9 vs 10 Exposure 1,49 3.38 0.07 * 0.15 

7 vs 9 Lineage 1,49 0.49 0.49  0.10 

8 vs 10 Lineage 1,50 0.45 0.51  0.40 

7 vs 10 Bothz 1,49 5.16 0.03 ** 0.40 
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Figure 4.3: Individual size metric response trajectories across all generations for female 
mosquitofish.  Panel a) is total length (snout to tip of tail), panel b) is body depth (deepest 
portion of body), panel c) is caudal peduncle depth (slimmest portion of caudal region), and 
panels d) is weight.  Red colors (square points) are fish with exposed lineages (generation 1 
exposure treatment).  Blue colors (round points) are fish with non-exposed lineages.  Filled 
markers with solid lines are groups that were themselves exposed to predator cues in that 
generation, while open markers with dashed lines are groups from non-exposure treatments.  
Color and line scheme follows the pattern established in the breeding schematic Figure 4.1.     
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Body Size: Transgenerational Plasticity 

Generation two “daughters” of the generation one groups showed no significant 

interactions or fixed effects of Lineage (generation one parental exposure effect) or current 

Exposure on overall body size when assessed at a multivariate scale (Table 4.1).  That said, there 

was some modest evidence of a univariate Lineage effect for caudal peduncle depth (p=0.06), 

with non-exposed individuals from exposed parents having more slender caudal regions than 

those with non-exposed parents (groups 3 v 5; 4 v 6) (Figure 4.3c, Table D.1), though some 

comparisons were non-significant.  Females from generation two were significantly smaller than 

generation one females overall (Table 4.3), regardless of the individual’s exposure or lineage 

treatment.   

Table 4.3: MANOVA pairwise comparisons on size metrics across generations for female 
mosquitofish.   Model compares groups within each generation using the four size metrics, total 
length, body depth, tail peduncle, and weight.  Numbered group comparisons within 
generations references breeding schematic Figure 4.1.   Model was reduced using backwards 
selection. Significance (p<0.10) is represented with an asterisk (*), and highly significant values 
(p<0.05) are represented with a double asterisk (**).  Effect size values are Eta Squared, using 
exposed treatment values as the reference values. 

 dF F-value p-value Significance  Effect Size 

Gen 1 
and 

Gen 2 

1 vs 3 1,66 1.20 0.28  0.18 

1 vs 4 1,64 3.19 0.08 * 0.30 

2 vs 5 1,50 9.95 0.003 ** 0.21 

2 vs 6 1,48 15.44 <0.0001 ** 0.21 

Gen 1 
and 

Gen 3 

1 vs 7 1,53 18.75 <0.0001 ** 0.19 

1 vs 8 1,54 8.67 0.005 ** 0.10 

2 vs 9 1,50 33.51 <0.0001 ** 0.35 

2 vs 10 1,50 6.86 0.01 ** 0.02 

Gen 2 
and 

Gen 3 

3 vs 7 1,61 3.86 0.05 * 0.17 

4 vs 8 1,60 0.08 0.78  0.11 

5 vs 9 1,49 1.01 0.32  0.10 

6 vs 10 1,47 1.00 0.32  0.05 
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Generation three “granddaughters” of generation one grandparents again did not show 

multivariate support for a Lineage effect (Table 4.1).  As with generation two, generation three 

females were smaller overall than generation one females but were not significantly different in 

size at age than generation two fish for most paired comparisons (Figure 4.3, Appendix I).  By 

this final generation, the cumulative effects of combined grandparent, parent, and individual 

exposure or non-exposure (groups 7 vs 10) was significant, suggesting that weak intra-

generational and transgenerational effects might accumulate into overall larger group 

differences in size (particularly total length) across generations where exposures are consistent 

(Table 4.2; Appendix H).   

Body Shape: Intra-generational Plasticity 

Generation one females did not show significant overall effects of the current Exposure 

treatment on body shape in MANOVA when all relative warps were combined in a single 

analysis (Table 4.4).  However, examination of individual relative warps indicated that relative 

warp three (RW 3) did differ between exposed and non-exposed lineages (Figure 4.4b, Table 

D.3) with exposed individuals showing streamlining of body form in having a reduction in cranial 

features,  and a degree of narrowing of the caudal peduncle with the narrowest caudal region 

moved more anterior (Figure 4.5).  For generation two, the overall MANOVA a significant 

interaction between Exposure and Lineage (Table 4.4).  Based on subsequent pairwise MANOVA 

comparisons for exposed and non-exposed fish, that interaction was associated with a strong 

effect of current Exposure within the predator-exposed Lineage (groups 5 v 6) but no current 

Exposure effect in the Lineage with non-exposed parents (groups 3 v 4).    
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Table 4.4: MANOVA of 26 relative warps for three generations of female mosquitofish.   Lineage 
refers to the exposure treatment of the first generation relative (parent or grandparent).  All 
two-way interactions were included, interactions with non-significant terms (p>0.10) were 
removed.  Model was reduced using backwards selection. Significance (p<0.10) is represented 
with an asterisk (*), and highly significant values (p<0.05) are represented with a double asterisk 
(**).  Effect size values are Eta Squared, using exposed treatment values as the reference values. 

Females Effect dF F-value p-value Significance Effect 
Size 

Gen 1 Exposure 1,47 0.006 0.94  0.12 

Gen 2 
 

Exposure 1,119 11.95 0.0008 ** 0.11 

Lineage 1,119 0.37 0.55  0.10 

Exposure: Lineage 
Interaction 

1,119 5.54 0.02 ** 0.21 

Gen 3 
Exposure 1,101 0.31 0.58  0.03 

Lineage 1,101 0.06 0.81  0.03 
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Figure 4.4: Individual significant relative warp score trajectories for three generations of female 
mosquitofish.   Individual panels refer to descriptions from table 5.1.  Red colors (square points) 
are fish with exposed lineages (generation 1 exposure treatment).  Blue colors (round points) 
are fish with non-exposed lineages.  Filled markers with solid lines are groups that were 
themselves exposed to predator cues in that generation, while open markers with dashed lines 
are groups from non-exposure treatments.  Color and line scheme follows the pattern 
established in the breeding schematic Figure 4.1.     
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Figure 4.5: Morphometric visualizations based on DFA scores for generation one female 
mosquitofish.   Exposure DFA scores were based on the full RW set for all three generations.  
Red bars indicate exposed fish while blue bars indicate fish that were non-exposed.   
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Figure 4.6: Regression of relative warp visualizations and DFA biplots for generations two and 
three of female mosquitofish.   Visualizations were regressed against current Exposure 
treatment DFA scores (y-axis) and Lineage DFA scores (x-axis).  Biplots represent the average 
and 95% confidence intervals for each treatment group based on the Exposure and Lineage DFA 
scores.  Red colors (square points) are fish with exposed lineages (generation 1 exposure 
treatment).  Blue colors (round points) are fish with non-exposed lineages.  Filled markers with 
solid lines are groups that were themselves exposed to predator cues in that generation, while 
open markers with dashed lines are groups from non-exposure treatments.  Color and line 
scheme follows the pattern established in the breeding schematic Figure 4.1.     
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Body Shape: Transgenerational Plasticity 

As noted above, MANOVA of overall body shape of generation two daughters showed a 

significant interaction between Lineage and current Exposure (Table 4.4), suggesting that 

Lineage influences how Exposure effects are expressed and vice versa.  DFA visualization of this 

Lineage pattern suggests that the shape trend was significant (F1,120=26.60, p<0.0001) and was 

broadly toward greater streamlining in the predator exposed lineage, particularly in the region 

of the abdomen and posterior aspects of the caudal peduncle, with some reduction in head 

proportions (largely length)(Figure 5.6a).  Examination of pairwise MANOVAs within generation 

two supported that parental exposure to predators had a strong effect on their daughters that 

reared in the absence of predators (groups 3 v 5), but showed less of a difference for daughters 

that reared in the presence of predators (groups 4 v 6) (Table 4.5, Figure 4.4, Figure 4.6a).  

Examination of pairwise comparison for individual relative warps suggested most Lineage effects 

were tied to warps 1, 3, 5 and 8, which again show broad patterns consistent with streamlining 

in various portions of the body (Figure 4.5; Appendix K).  This is also consistent with the 

narrower caudal (tail) depth detected in our assessment of fish size. 

Generation three females did not show overall MANOVA support for either Exposure 

(carried through from generation 2) or Lineage effects in the full model (Table 4.4).  Likewise, 

none of the pairwise MANOVA comparisons within generation three (7 v 9, 8 v 10) supported a 

Lineage effect.  However, testing of Lineage and Exposure effects with DFAs that pooled within 

factor levels did provide some support of a Lineage effect (F1,101=39.87, p<0.001) (Figure 5.6b).  

Specifically, females again showed a significant effect of Lineage with predator-exposed 

grandparents streamlining via dorsal-ventral flattening of the thoracic and abdominal regions, 

cranium, and snout (Figure 5.6b).   
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Table 4.5: Within generation pairwise MANOVA comparisons for 26 relative warps for three 

generations of female mosquitofish.  Lineage refers to generation one exposure (parent or 

grandparent) and Exposure refers to current environmental conditions.  Significance (p<0.10) is 

represented with an asterisk (*), and highly significant values (p<0.05) are represented with a 

double asterisk (**).  Effect size values are Eta Squared, using exposed treatment values as the 

reference values. 

 

Discussion 

Female body size showed relatively little evidence of plasticity in response to predator 

cues at either intra- or inter-generational scales.  In contrast, there was broad evidence that 

predator exposure does influence body shapes of female mosquitofish in a fashion that 

generally favors streamlining of the body of the including reductions in head and body depth 

and a re-proportioning of the caudal peduncle to favor a somewhat longer and narrower profile.  

Individuals showed a mixture of intra-generational (current Exposure) and transgenerational 

(generation one Lineage) responses to parent and grandparent exposure, particularly in body 

shape showing reductions in cranial and body depths while longitudinally expanding the caudal 

region.  These patterns are interesting in suggesting that shape at age may be more responsive 

to predators than size at age.  I discuss these patterns of morphology with regards to what they 

Females Isolated 
Effect 

dF F-value p-value Significance  Effect Size 

Gen 1 1 vs 2 Exposure 1,47 0.006 0.94  0.12 

Gen 2 
 

3 vs 4 Exposure 1,71 1.55 0.22  0.13 

5 vs 6 Exposure 1,47 14.39 0.0004 ** 0.50 

3 vs 5 Lineage 1,61 4.84 0.03 ** 0.32 

4 vs 6  Lineage 1,56 0.92 0.34  0.26 

3 vs 6 Both 1,59 5.20 0.03 ** 0.30 

Gen 3 

7 vs 8 Exposure 1,50 2.91 0.09 * 0.20 

9 vs 10 Exposure 1,49 0.47 0.50  0.07 

7 vs 9 Lineage 1,49 1.46 0.23  0.06 

8 vs 10 Lineage 1,50 0.69 0.41  0.14 

7 vs 10 Both 1,49 0.40 0.53  0.07 
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might tell us about the relative importance of current versus ancestrally inherited predator cues 

for adaptive phenotypic plasticity in female mosquitofish. 

Body Size Does Not Express Plasticity 

 While it may be intuitive that size would influence predation risk, we did not detect 

significant intra-generational or transgenerational plasticity in size.  This outcome is consistent 

with my previous analysis of intra-generational plasticity for two species and both sexes of 

mosquitofish (Chapter 2, Arnett and Kinnison In Review).  Intra-generational size plasticity does 

occur in other fishes (Januszkiewicz and Robinson 2007), commonly to increase overall body size 

and surpass predator gapes (Cowan et al. 1996, Januszkiewicz and Robinson 2007).  However, 

even the largest mosquitofish are much smaller than the average gapes of their major 

predators, such as Largemouth Bass, so plastic increases in size are unlikely to yield much in the 

way of gape limitation benefits.  Conversely, modest increases in size could make individual 

mosquitofish more energetically valuable and thus attractive as food items for predators 

(Britton and Moser 1982, Schumann et al. 2012).  Along these lines, a plastic reduction in body 

size occurs in some prey taxa facing predator cues (Blanckenhorn 2000) and this has been 

attributed as a potential adaptation to reduce energetic transfer and foraging value of the prey 

relative to the effort expended by predators (Werner and Hall 1974, Goss-Custard 1977).   

However, in theory, plastic changes in size at age might also arise as a correlated 

response to plastic alterations in life history traits.  Individuals that mature at younger ages are 

expected to also generally mature at smaller sizes.  My experiments were not expressly 

designed to examine plastic responses in life history traits, and relatively little is known of the 

potential for such responses in poeciliid fishes in general (but see Stearns 1983a, Torres-Dowdal 

et al. 2012) because most work on life history variation on this group of fishes has emphasized 
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genetic trait divergence  (Reznick and Endler 1982, Stearns 1983a, 1983b, Ghalambor et al. 

2004).  Nonetheless, the lack of evidence for plastic effects of predators on size at maturity in 

my study might be considered indirect evidence that predator cues did not induce dramatic 

shifts in age at maturity.  However, this again begs the question of why not, particularly given 

that studies of population divergence in the wild have often emphasized the importance of such 

life history traits for fitness (Reznick and Endler 1982, Ghalambor et al. 2004). 

 One possibility is there may be constraints on the capacity for smaller (and earlier) size 

at maturation in the populations I studied.  Mosquitofish courtship and mating occurs almost 

immediately upon sexual maturation (Bisazza et al. 1989) and females are commonly harassed 

or coerced into mating (Bisazza et al. 2001, Dadda et al. 2008), resulting in individuals that are 

pregnant throughout most of their short sexually mature adulthood.  Given that fecundity is also 

strongly correlated with female size in fishes (Milton and Arthington 1983, Berglund et al. 1986, 

Herdman et al. 2004, Farley et al. 2015), and strongly capped by the number of embryos that a 

female can carry to term in live bearers, this could place selective restrictions on how small 

females can be and still produce sufficient numbers of offspring.  This might seem at odds with 

other studies of poeciliids that show interpopulation variation in life history traits like age at 

maturity and offspring number (Reznick and Endler 1982, Stearns 1983a, 1983b), but might not 

be when taking into account the population source of my fish which derived from a high-

predation environment containing bass and other predators.  Such a population might already 

be genetically predisposed to mature at the near limits for small size and early age, leaving less 

opportunity for intra- or transgenerational plasticity to further modulate these traits.  
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Multigenerational Plastic Responses of Body Shape 

Contrary to body size, I did detect evidence for body shape plasticity in mosquitofish 

toward more streamlined body configurations for fish experiencing direct or ancestral 

transmitted predator cues.  A streamlining pattern was most apparent for parental effects 

(generation 2) of predator exposure, but analogous morphological patterns were apparent in 

pooled DFA comparisons of third generation females from different lineages and in examination 

of individual relative warps for intra-generational plasticity.  Relative streamlining of body shape 

is a common phenotypic difference found in comparisons of wild populations living in the 

presence versus absence of predators (Langerhans et al. 2004, González and Gianoli 2004, 

Hendry et al. 2006, Fu et al. 2013).  The most common pattern noted for poeciliid fishes is a 

reduction in the area of the head, a reduction in the depth of the body in the region of the 

abdomen and anal fin, and an expansion in the relative area of the caudal region compared to 

the rest of the body.  These alterations are generally ascribed to predators driving selection and 

population evolution that favors hydrodynamic body shapes conducive to rapid escape from 

actual predator attacks (Langerhans et al. 2004, Dayton et al. 2005, Hendry et al. 2006, Borazjani 

2013), via increases in force generation and decreases in drag (Blob et al. 2008, Fu et al. 2013). 

Conversely, populations without fish predators have larger populations that experience more 

competition.  Under such conditions larger heads and deeper bodies might benefit individuals 

by permitting individuals to consume larger prey, including insects entering from terrestrial 

habitats (Chapter 5, Rowland et al. 2015) and store more energy reserves (Einen et al. 1998).  

I will note that there was a subtle difference between the plastic shape effects noted in 

the present study and these in prior investigations focusing on population divergence.  

Specifically, while other studies have often emphasized an increase in the depth or overall area 

of the caudal peduncle region in populations with predators, my findings often pointed toward a 
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reduction in the vertical depth of this region, with some mixed evidence for increases in other 

proportions.  Indeed, this was true for not just geometric morphometric assays, but also for 

some comparisons involving simple univariate comparisons of caudal peduncle depth.  

Nonetheless, the overall streamlining pattern associated with predators, that appears to be 

conserved across population comparisons, species and sexes, also appears to apply to plasticity 

both within (Chapter 2) and now among generations.  Indeed, this finding again supports my 

prior assertion (Arnett and Kinnison in Review, Chapter 2) that the severe hydrodynamic 

constraints (Domenici and Blake 1997) associated with effective escape from a predator attack 

strongly constrains the morphological axis along which phenotypes might be molded by the joint 

effects of adaptive divergence or plasticity in response to current or ancestral environments   

(Arnett and Kinnison In Review, Chapter 2).   

Integration of Multigenerational Plasticity Effects 

In this chapter I provide evidence that transgenerational plasticity occurs in morphology 

in response to predator cues, and in Chapter 4 I found that female mosquitofish also became 

less bold in the presence of parental and grandparental predator cues.  Indeed, for both types of 

traits, there was less support for intra-generational plasticity than transgenerational plasticity.  

The presence of such a pattern for two types of traits would in theory suggest that 

transgenerational cues of predator presence might often be more reliable indicators of 

predation risks for female mosquitofish than even an individual’s own narrower range of 

experiences.  Transgenerational cue reliability is not itself expected to vary with different traits, 

and so an integrated plastic response might be generally expected for behavior and 

morphology, and even other traits that I did not directly study (e.g., life history).  There is also 

reason to suspect integrated transgenerational plasticity on that grounds that mismatched 

behavioral and morphological responses could nullify one another.  For example, the 
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morphological benefits of a relatively streamlined and inconspicuous body shape could be 

undone if paired with the wrong types of bold behaviors that draw the attention of predators. 

Similarly, in the absence of predators, individuals that are too shy might not appreciate the 

potential competitive advantages of a large head and deep body.    

However, I do not think it is entirely clear from my analyses that such integration of 

transgenerational plasticity exists at the level of the phenotypes and genotypes of individuals.  

There were nuances across analyses to suggest a potentially more complex picture.  For 

example, transgenerational plasticity of morphology showed more of an interaction with an 

individual’s current exposure than behavior.  Also, transgenerational plasticity of behavior was 

more apparent at the scale of grandparent effects for behavior than for morphology.  Hence, 

while I think there is reason to expect possible integration of transgenerational plasticity across 

trait types, this remains to be rigorously tested.  My dataset includes assays of behavior and 

morphology for most of the same individuals, and thus might be used as a first-cut analysis of 

such integration in the form of phenotypic correlations.  However, a more rigorous analysis 

would look for genetic correlations, which is not possible with my dataset because I was unable 

to track siblings when they were split among exposure treatments.   

  



93 
 

CHAPTER 5: ECOLOGICAL IMPLICATIONS OF SEX RATIO, DENSITY, AND POPULATION SOURCE 

IN EASTERN MOSQUITOFISH (Gambusia holbrooki) 

 

Context Statement 

This chapter of my dissertation reflects a novel idea for how an often-neglected form of 

intraspecific trait variation might be important in shaping aquatic communities and ecosystems.  

Prior to the work described in this chapter, no studies had considered the combined ecological 

significance of sexual dimorphism and sex ratio variation.  It also represented the first time I, 

and the broader research team with which I collaborated, conducted a mesocosm experiment 

with wild mosquitofish.  The goal of the experiment was very ambitious, to consider not just sex 

ratio effects but to also contrast these with effects of population divergence and densities.  

Ultimately, we likely integrated more pieces than we should have, and there were some 

logistical shortcomings in this initial experiment that likely limited our inferences.  Nonetheless, 

this work provided insights and impetus to conduct a subsequent mosquitofish experiment, with 

a modified design, that proved very successful and indeed showed that sex ratio variation, 

combined with sexual dimorphism, can strongly shape community and ecosystem conditions in 

aquatic mesocosms.  That subsequent study was recently published in the Proceedings of the 

Royal Society B and is included as Appendix L.  While this chapter is largely written as a 

standalone study, I think it is useful for readers to also be aware of how the study rationale, 

design, and findings I present here were important to facilitating the broader team experiment, 

and also that some of my conclusions here are based on hindsight and my knowledge of those 

subsequent experimental outcomes. 
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Introduction 

 A growing body of literature suggests ways in which trait variation among populations 

can shape local ecological outcomes at population, community, and ecosystem scales (Kylafis 

and Loreau 2008, Pelletier et al. 2009, Bell and Gonzalez 2011, Palkovacs et al. 2011, Carlson et 

al. 2011).  In general, these studies have focused on trait variation associated with natural 

selection driving adaptations to local abiotic and biotic conditions.  But what about trait 

variation shaped by other modes of selection, such as sexual selection?  Is such variation 

ecologically irrelevant?  

 As I review below, sexual selection often gives rise to sexual dimorphism, which is in 

turn an overt component of phenotypic variation within populations of many organisms.  Sexual 

dimorphism is commonly studied with respect to the different reproductive roles of male and 

females, but such trait differences do not exist in a vacuum and there are good reasons to 

suspect that many of the overt differences between males and females, including differences in 

size and behavior, might influence their ecological roles in communities and ecosystems.  One 

consequence of such ecological difference is that males and females may experience different 

mortality risks and thus the sex ratios of wild populations can become markedly skewed in favor 

of one sex or the other depending on local conditions.  In combination, highly skewed sex ratios 

and ecological differences between males and females could lead to marked differences in 

communities and ecosystems.  In this chapter, I  provide background to support components of 

this theory and then experimentally consider how sexual dimorphism, through its potential 

combined effects on sex ratios and the ecological role of males and females, might be important 

in shaping community and ecosystem conditions.   
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Sexual Dimorphism and Sexual Segregation 

 Sexual dimorphism takes many forms.  It can be overt in the case of morphological 

differences between the sexes (Walker and Rypstra 2002, Drovetski et al. 2006, Stein et al. 

2008), or more cryptic in the case of physiological and behavioral differences (Walker and 

Rypstra 2002, Stein et al. 2008).  Size dimorphism is common in many species, with either males 

or females being the larger sex, depending on the importance of size for fecundity in females or 

for mate competition in males (Krüger 2005, Morbey and Guglielmo 2006, Santos et al. 2007, 

Lailvaux and Irschick 2007).  Such size dimorphism has been associated in several cases with 

different energetic needs and associated foraging strategies (Walker and Rypstra 2002, 

Drovetski et al. 2006, Kamilar and Pokempner 2008).  Although the most common perspective 

on such dimorphism is that it reflects the product of sexual selection on males and females, 

sexual dimorphism may also reflect some degree of specialization to alternate niches driven by 

natural selection.  Akin to models of sympatric speciation, competition for limited resources 

may drive disruptive selection on the sexes and favor the development of alternate phenotypes 

that  differ genetically in their niche preference and adaption (Slatkin 1984, Bolnick and Lau 

2008).  This ecological differentiation of the sexes based on competitive release is often referred 

to as “sexual segregation” (Bleich et al. 1997, Phillips et al. 2011).   

For example, when females are larger they often require a larger pool of resources 

(Kamilar and Pokempner 2008) and higher quality food (Wilkinson and Barclay 1997) to support 

their size and associated greater egg number or quality.  Such females tend to spend greater 

time foraging than males (Weimerskirch et al. 1997, Barclay et al. 2000).  In this case, males can 

be outcompeted for similar resources and this may act as a driver towards behavioral 

divergence and diet segregation (Phillips et al. 2011).  In this fashion, sexual dimorphism can 

lead to sexual niche segregation and character displacement akin to processes that have been 
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more extensively studied in the context of ecological speciation (Abrams 1986, Kie and Bowyer 

1999, Schluter 2000). It is not a large conceptual leap to suggest that sexual divergence in the 

intensity and the targets of consumption could in turn lead to different effects of males and 

females on their community and ecosystems.  

In fishes, sexual dimorphism is often witnessed as differences in size, with females often 

larger than males (Berglund et al. 1986, Parker and Parker 1992, Santos et al. 2007, Herler et al. 

2010), but differences in ornamentation, tissue allocation, life histories, and behavior are also 

very common.  Males tend to have longer fins, colored bodies with ornamented fins or scales, 

larger hearts, and a higher ratio of somatic to reproductive body mass (Hopkins et al. 1990, 

Santos et al. 2007), most commonly traits that facilitate intrasexual aggression and competition 

for females.  Females conversely have large livers and intestines (Santos et al. 2007), lending to 

increased nutrient partitioning efficiency from food to support a larger ratio of reproductive to 

somatic mass (Slatkin 1984).  From a life history perspective, males often mature at a younger 

size and age than females, largely due to the substantial increase in potential fecundity females 

appreciate from a longer period of growth and larger size (Bell 1980, Stearns 1992).  

Behaviorally, females of some species spend more time foraging in the relative safety of benthic 

and littoral habitats (Willacker et al. 2013), therefore accessing a different set of resources and 

habitat than their male counterparts.   

Sex Ratio Variation in Nature 

While it is interesting that males and females may have different ecological effects 

within their communities and ecosystems, those differential effects are not expected to be very 

important to geographic variation in community or ecosystem conditions where sex ratios are 

nearly always the same wherever the species occurs.  However, sex ratios of many ecologically 
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dominant species can vary widely among geographic locations (Table 2.1).  Such sex ratio 

differences might derive from sexual differences in habitat associations (Komdeur et al. 1997), 

dispersal or migratory patterns (Morbey 2002, Miller and Scarnecchia 2011, Nelson and Greeff 

2011), or intersexual competition (Byholm et al. 2002, Stein et al. 2008).   However, in many 

cases such differences in sex ratios are likely the result of differential mortality (Britton and 

Moser 1982), itself a potential consequence of niche dimorphism, that can lead to extremely 

skewed sex ratios depending on local environmental conditions.  In particular, local variability in 

predators and competitors, or the various food or other resources that males or females depend 

upon for survival, are expected to shape whether sex ratios strongly favor males or females 

(Table 5.1).  

A good example of this is many prey fish species.  Many prey fishes are differentially 

affected by fish versus avian predators.  Piscivorous fishes often target smaller prey individuals 

to overcome gape limitations and escape abilities tied to size (Nilsson and Brönmark 2000), 

whereas avian predators can be positively size selective due to the different mechanisms by 

which they capture prey (Britton and Moser 1982).  Hence, geographic variation in the relative 

prevalence of piscivorous fishes and birds could lead to very different patterns of net size 

selectively on prey fish and in turn drive skewed sex ratios in species with sexual size 

dimorphism (Britton and Moser 1982, Godin 1995).  Regardless of the exact mechanism, once 

sex ratios differ among sites, sexual dimorphism could, in principle, take on more importance as 

a factor shaping community and ecosystem conditions. 
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Table 5.1: Common variation in sex-ratio across taxa.  Included studies are field or natural 
populations studies finding variation in sex ratio across populations of a given taxa.  

 Class Sex Ratio 
(%Female) 

Sex Ratio 
Driver 

Species Source 

Fishes 79-97% Fishing Mycteroperca McGovern et al. 1998 

 
30-93% 

pH 
Apistogamma 

Roemer and Beisenherz 
1996 

 3-60% Predation Gambusia Britton and Moser 1982 

 
0-50% 

Regional 
Reproductive 
Strategies 

Plectropomus Adams et al. 2000 

 
5-70% 

Temperature 
Apistogamma 

Roemer and Beisenherz 
1996 

 
15-90%  

Temporal 
Variation 

Rhinomugil Mortuza and Rahman 2007 

 
20-99% 

 
Salmo 

Consuegra and García De 
Leániz 2007 

Herps 
20-75% 

Regional 
Mating 
Strategy 

Dendrobates Prohl 2002 

 32-57% Temperature Niveoscincus Wapstra et al. 2009 

 
0-100% 

Temporal 
Variation 

Chrysemys Bowden et al. 2000 

Aves 45-53% Density Parus Michler et al. 2012 

 
45-82% 

Maternal 
Condition 

Larus Nager et al. 1999 

 
20-70% 

Migration 
Distance 

Junco Ketterson and Nolan Jr. 1976 

 
0-100% 

Regional 
Mating 
Strategy 

Ficedula Ellegren et al. 1996 

 
32-58% 

Temporal 
Variation 

Falco Dijkstra et al. 1990 

 
20-100% 

Territory 
Quality 

Acrocephalus Komdeur et al. 1997 

Mammals 24-55% Competition Galago Clark 1978 

 35-51% 
Maternal 
Quality 

Cercus Kruuk et al. 1999 

 50-85%  Didelphis Austad and Sunquist 1986 

 20-96%  Equus Cameron and Linklater 2007 

 30-67% 
Resource 
Allocation 

Microtus McShea and Madison 1986 
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Trait Variation and Ecology 

A substantial body of literature on “community genetics” (reviewed in Whitham et al. 

2006) and “eco-evolutionary dynamics” (Pelletier et al. 2009, Schoener 2011) has emerged over 

the last decade demonstrating how intraspecific trait variation can have wide reaching effects 

on communities and ecosystems.  The majority of studies of such ecological effects in animals 

have centered on predator avoidance, life history, and trophic traits (Yoshida et al. 2003, 

Hairston Jr et al. 2005, Fussmann et al. 2007, Bailey et al. 2009, Palkovacs et al. 2009, 2011, Post 

and Palkovacs 2009).  Indeed, these various dimensions of divergence often co-vary and may be 

linked through a tradeoff between ability to successfully evade and reproduce in the presence of 

intensive predation versus the ability to compete with high densities of conspecifics where 

predation is less intense (Reznick and Endler 1982, Palkovacs et al. 2011).  For example, in 

poeciliid fish, like guppies (Poecilia reticulata), the intensity with which fish forage and the 

relative proportions of cranial features contributing their foraging efficiency varies inversely 

with streamlining of their caudal anatomy and associated predator escape performance 

(O’Steen et al. 2002, Langerhans and DeWitt 2004, Langerhans et al. 2004, Hendry et al. 2006, 

Palkovacs et al. 2011, Torres-Dowdal et al. 2012).  Experiments with guppies in stream 

mesocosms in turn show that such divergence has significant implications for community and 

ecosystem conditions, including algal biomass.  Experiments and models suggest this is driven in 

large part by a tendency for omnivorous guppies from low predation systems to consume more 

algae, with mixed support that guppies from different populations also recycle nutrients at 

different rates and ratios (Palkovacs et al. 2009, 2011, Bassar et al. 2010, 2012).     
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An Experimental Approach 

But how important are such sex ratio and sexual dimorphism effects?  Addressing this 

question in fully wild systems may be very difficult due to the challenge of isolating the indirect 

sex-ratio effects of environmental factors, like predators, from other direct or indirect effects of 

those environmental factors.  However, one way to gauge such importance would be to 

manipulate sex ratios independently of other environmental factors to assess sex ratio effects 

directly.  Such an experimental approach can also be used to compare and quantify the scope of 

sex-ratio effects against other factors, like density or presence/absence of a species, that are 

already known to have important effects on ecosystems (Kinnison et al. 2008, Palkovacs et al. 

2009, Post and Palkovacs 2009).   

Objectives 

 Given the preceding arguments, the relative importance of these characteristics in eco-

evolutionary dynamics is expected to be dependent, at least in part, on the degree to which the 

sexes differ in their foraging or metabolizing tendencies and associated per capita ecological 

effects on a system.  In order to understand the potential ecological significance of sex ratio 

variation, both the variation in sex ratio among wild populations and the magnitude of the sex 

ratio effect needs to be explored.  The objectives of this study were to: 1) evaluate potential 

trophic trait divergence between sexes or predation regimes that might contribute to 

community and ecosystem divergence, 2) assess whether the sex, predation regime, or density 

of mosquitofish contribute to ecological conditions in pond communities and ecosystems, and 3) 

quantify variation in sex ratios among natural pond systems to compare with mesocosm 

responses.  These objectives were accomplished through a combination of field surveys (natural 

sex ratio variation), a geometric morphometric analysis of body shape variation, and a factorial 

mesocosm experiment. 
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Study Species 

 

Gambusia holbrooki, and the very closely related species Gambusia affinis, are abundant 

and widespread throughout North America.  Collectively, these live-bearing poeciliid fishes are 

referred to as “mosquitofish”, and in combination they range from California east to North 

Carolina and from Mexico north to New Jersey (Lee and Burgess 1980).  Notably for the current 

study, Gambusia species are sexually size dimorphic, with females generally larger than males 

(Lee and Burgess 1980, Haynes and Cashner 1995).  In natural populations, sexes are born in 

roughly equivalent ratios (Krumholz 1948); however, females live longer and are hardier, with 

males spending substantial proportions of their energy on mating displays and attempted 

copulations (Giesel 1972).  As a result, stable populations of mosquitofish often tend to be 

skewed toward the female sex.  Alternatively, in systems with voracious predators, females may 

experience greater selective predation because they are larger and more nutritious prey, leaving 

such populations heavily male skewed (Britton and Moser 1982).   

Adaptive population divergence is well known in populations of mosquitofish, 

particularly in association with predation (Horth 2004, Langerhans and DeWitt 2004, Langerhans 

et al. 2004, Heinen-Kay and Langerhans 2013).  Phenotypic divergence between populations of 

mosquitofish and other closely related poeciliids includes morphology (Langerhans et al. 2004, 

Heinen-Kay and Langerhans 2013), physiology (Johnson and Belk 2001), and behavior (Endler 

1987, Abrahams and Dill 1989, Langerhans 2009).  Additionally, while mosquitofish are known to 

shoal in large groups (Magurran and Pitcher 1987, Dadda et al. 2009), there is substantial 

variation in the relative densities of these shoals (Agrillo et al. 2008, Dadda et al. 2009, Cote et 

al. 2012), oftentimes in association with probable predation risks (Magurran and Pitcher 1987, 

Winkelman and Aho 1993, Ward and Mehner 2010).   
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Also highly relevant for this study, mosquitofish are major ecological players in aquatic 

communities (Goodsell and Kats 1999, Matveev et al. 2000).  Gambusia species are voracious, 

generalist feeders that can very effectively deplete aquatic insect larvae and thus influence 

ecosystem pathways tied to these consumers (Goodsell and Kats 1999, Matveev et al. 2000).   As 

a result of this effect, mosquitofish have been used extensively for stocking and biocontrol, 

leading (inadvertently) to a near global spread in the range of this fish (Krumholz 1948, Lee and 

Burgess 1980, Vondracek et al. 1988, Haynes and Cashner 1995).   

Methods 

Natural Population Survey 

Nine pond sites containing mosquitofish populations were surveyed within a thirty mile 

radius from Morehead City, North Carolina (34.7278° N, 76.7467° W).  The sites were chosen to 

maximize the range of water quality, aquatic plant community (open to weedy), predation 

regime (presence or absence of predatory fishes), and other dominant environmental factors 

(e.g., human influence) that might jointly promote local adaptation and variation in ecological 

roles.   Photographs were taken of each study site to record local habitat conditions.  It was also 

recorded whether predators were visible in the system or are known indirectly (angler reports).  

Overt behavior of the mosquitofish at that site was also noted, including observations of habitat 

associations (pelagic or littoral), boldness during water disturbance, and swimming pattern 

(skittish or nonchalant).   

A minimum of 100 fish were captured and sorted by sex for each site using landing nets, 

excluding immature fish that did not display secondary sexual characters (i.e. anal fin, brood 

pouch).  After the fish were counted, they were released back into their source pond.  In 
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addition to the sex-ratio survey, one liter of water was collected at each site for chlorophyll a 

analysis to assess phytoplankton standing stocks.   

Experimental Groups 

Eastern mosquitofish for mesocosm experiments were obtained from the wild in the 

regions around Morehead City, North Carolina.  Two populations of mosquitofish were used in 

the mesocosm experiment.  One population was obtained from an uninhabited gated 

community, Bogue Watch (34°42’55”N, 76°58’13”W).  This population had likely evolved in the 

absence of predators for at least three decades.  The second population was collected from a 

heavily trafficked and disturbed drainage pond near the Morehead City Walmart (34°44’03”N, 

76°48’49”W).  This population is thought to have existed for >10 years and is under high 

predation pressure from locally stocked largemouth bass (Micropterus salmoides) and bluegill 

sunfish (Lepomis microchirus). This population also receives runoff from a large parking lot. 

These two populations were chosen to represent two extremes on the relative predation regime 

and mortality rate spectrum.  Individuals used in the experiment were size limited.  Male 

individuals were selected based on expression of gonopodia.  Females were chosen to closely 

match the smaller sized males so all individuals were similar in size.   

Experimental Design 

Experiments were performed between June 23rd and July 14th, 2011 at the Nicholas 

School for the Environment, a satellite school of Duke University that is located in the same 

region of North Carolina as our study populations.  The experimental layout was based on a 

three-factor design with sex ratio, source predation regime, and population density as the three 

factors.  Hence, mesocosm experiments were performed in forty-four Sterilite® containers filled 

with thirty-five gallons of water.  The containers were arranged in a nine-by-five grid on a 
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cement pad.  Each container received four liters of sandy substrate and four liters of lake 

benthos collected from one of the mosquitofish inhabited ponds used as a population source 

(Bogue Watch).  Following settling of the substrate, one liter of water filled with concentrated 

pelagic zooplankton from the same pond was added to each container.  Zooplankton were 

collected by sixty-five tows at zero to one meter in depth in a twelve centimeter plankton net.  

Lastly, two ceramic, unglazed tiles were added to the bottom of each tub as a standardized 

substrate to quantify periphyton growth (Bassar et al. 2010).   

The mesocosms were allowed to establish for one week before fish additions.  Fish were 

allocated based on population source, three densities, and seven sex ratios.  Given a mesocosm 

pool size, the final densities were a total of 4, 8, or 16 fish.  These densities were crossed with 

seven sex ratios, 0% female, 20% female, 40% female, 50% female, 60% female, 80% female, 

and 100% female.  Actual sex densities were rounded to the nearest whole fish using the round 

half-up method, with a minimum of one fish in all non-zero percent ratios (Table 5.2).  All 

resulting combinations of sex ratio and density were created for each of the two population 

sources.  After the fish introductions, all containers were covered with screens to help reduce 

extreme heat and drought conditions as well as potential bird predation. 

Sampling Methods 

Data were collected from each container on a weekly basis, including one sample before 

fish stocking.  Following the protocol from Harmon et al. (2009), dissolved oxygen was measured 

at different times of day and night using a YSI Model 55 meter to estimate primary production 

via respiration.  One liter of water was then collected and filtered through Whatman GF/F filters 

for each tank.  Each filter was wrapped in aluminum foil and immediately frozen until  
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Table 5.2: Mesocosm factorial design.   The design crossed three densities with seven sex-ratios 
and was replicated for the two source populations that derived from either a low predation or 
high predation habitat. 
 

 LOW 
PREDATION 
SOURCE 

0%  
Males 

20%  
Males 

40%  
Males 

50% 
Males 

60%  
Males 

80%  
Males 

100%  
Males 

Low Density 
(4) 

4 Females 3 Females 
1 Male 

3 Females 
1 Male 

2 Females 
2 Males 

1 Female 
3 Males 

1 Female 
3 Males 

4 Males 

Moderate 
Density (8) 

8 Females 7 Females 
1 Male 

5 Females 
3 Males 

4 Females 
4 Males 

3 Females 
5 Males 

1 Female 
7 Males 

8 Males 

High Density 
(16) 

16 
Females 

13 Females 
3 Males 

10 Females 
6 Males 

8 Females 
8 Males 

6 Females 
10 Males 

3 Females 
13 Males 

16 Males 

HIGH 
PREDATION 
SOURCE 

0%  
Males 

20%  
Males 

40%  
Males 

50% 
Males 

60%  
Males 

80%  
Males 

100%  
Males 

Low Density 
(4) 

4 Females 3 Females 
1 Male 

3 Females 
1 Male 

2 Females 
2 Males 

1 Female 
3 Males 

1 Female 
3 Males 

4 Males 

Moderate 
Density (8) 

8 Females 7 Females 
1 Male 

5 Females 
3 Males 

4 Females 
4 Males 

3 Females 
5 Males 

1 Female 
7 Males 

8 Males 

High Density 
(16) 

16 
Females 

13 Females 
3 Males 

10 Females 
6 Males 

8 Females 
8 Males 

6 Females 
10 Males 

3 Females 
13 Males 

16 Males 

 

chlorophyll analysis could be performed to estimate phytoplankton standing stocks (Rice et al. 

2012).  At the final collection time point, the unglazed tiles at the bottom of each mesocosm 

were also collected.  Tiles were scrubbed and rinsed with deionized water that was then filtered 

through Whatman GF/F filters and preserved in the same fashion as chlorophyll samples from 

the water column (Hauer and Lamberti 2007).    

One liter of water was filtered through forty-two micron mesh to isolate zooplankton 

before fish stocking and at each chlorophyll collection time point.  Zooplankton samples were 

preserved in 80% ethanol for later quantification of zooplankton abundance, size, and 

community structure.  After the final time point, the fish were removed from the mesocosms 

and recounted to determine any mortality.  All fish were euthanized with a lethal dose of MS-
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222 (>250mg L-1).  Individual fish were then photographed on their left side, with a size 

standard, before being frozen. 

Laboratory Methods 

Pelagic and periphyton chlorophyll filters were processed after four weeks of freezing.  

Chlorophyll concentrations were measured by extracting filters with 100% methanol in the dark 

for twelve to fifteen hours (Rice et al. 2012).  Samples were centrifuged and fluorescence was 

obtained on a Turner Designs 10-AU fluorometer that was calibrated against a standard 

chlorophyll solution.  Chlorophyll fluorescence was corrected for volume with the equation 

𝑐ℎ𝑙𝑎 = (𝐹𝑜 ∗ 𝑉𝑒)/𝑉𝑓, where Fo is the fluorometer reading, Ve is the volume of the extract, and Vf 

is the original filtered volume (Rice et al. 2012).  Periphyton chlorophyll was computed by 

modifying the Vf term to reflect the area of each tile instead of volume of water filtered.   

Zooplankton samples were washed with deionized water and loaded on a Ward acrylic 

counting wheel.  However, zooplankton samples contained few to no specimens in all 

treatments, including one fishless mesocosm created as a back-up.  This likely reflected 

population crashes from high temperature extremes associated with the small mesocosm sizes.  

As a result we could not further analyze these samples and they are not discussed.  However, 

mosquitofish survival was high in all treatments (96% overall) and offspring were present in 

many mesocosms by the end of the study, suggesting environmental conditions were acceptable 

for this species and they were able to consume pelagic, benthic and algae resources, even 

though pelagic resources were likely at very low densities. 

 A single longitudinal section was cut across stomach of each frozen fish for dissection 

and diet analysis.  Contents were analyzed under a dissecting microscope and all invertebrates 

or other food items (e.g., juvenile mosquitofish) were classified and counted.  Photographs of 
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fish were used to examine sizes and shape variation of males and females from the two 

different source populations.  Linear measurements of photographed fish traits were made 

using the program Image J (ver. 1.45s, Wayne Rasband).  Three measurements were taken on 

each fish, total length (snout to tip of the tail), body depth (straight vertical measurement from 

the deepest portion of the body), and tail peduncle (straight vertical measurement from the 

thinnest portion of the tail).  Geometric morphometric analysis of overall fish body shape was 

performed using the programs tpsUtil (ver. 1.55, F. James Rohlf and SUNY at Stony Brook) and 

tpsDig2 (ver. 2.17, F. James Rohlf and SUNY at Stony Brook).  Twelve fixed landmarks were used 

to assess fish shape (Figure 5.1, Appendix B), with landmarks focused around the cranium, the 

caudal area, and the dorsal and ventral fin insertions.  Landmarks were adapted from Palkovacs 

et al. (2011).   

Statistical Analysis 

In order to better understand population differences we looked at morphological 

divergence between two populations.  Morphometric data were analyzed using the tpsDig2 

landmark and centroid data points with tpsRelw (ver. 1.9, F. James Rohlf and SUNY at Stony 

Brook), allowing data to be rotated along major axes and scaled.  Principle component and 

partial warps are based on bending energy transformations of the thin plate spline grid.  A 

principle components analysis (PCA) was then performed on these partial warps in order to 

obtain the relative warps.  In order to visualize the shape differences captured by these relative 

warps, a discriminant function analysis (DFA) was performed on the relative warp data from TPS 

RELW.  The DFA scores were input in tpsRegr (ver. 1.40, F. James Rohlf and SUNY at Stony 

Brook), performing a linear regression analysis on the points using sex and population source as 

variable components and size as a covariate to obtain a depiction of morphological variation as 

a deformation grid.  Resulting deformations were exaggerated by four units to aid visualization.   
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Figure 5.1: Landmarks for mosquitofish body shape.    Landmarks a-d are cranial landmarks, e-h 
represent body depth and shape, and i-l are landmarks for caudal peduncle and tail shape.  
Landmarks m-n were used for eye size and position while the greyed marker was used as the 
eye centroid (non-landmark).    

Subsequently, we used the mesocosm experiment to explore the potential divergence in 

dietary preferences between the two populations.  Diet was analyzed using a Pearson’s Chi-

Square contingency table.  Additional Person’s Chi-Square goodness-of-fit tests were used on 

total dietary item counts across both sex and source predation regime, using size as a covariate, 

to isolate within population preferences and habitat bins.   

Lastly, mesocosm limnological variables were used to estimate differences in trophic 

interactions between the populations and compared these values to the surveyed natural 

populations.  Variables including pelagic chlorophyll, benthic chlorophyll, and dissolved oxygen 

were validated for normality and homoscedasticity.  Variables with ranges over an order of 

magnitude or more were log10 transformed.  Response variables were then analyzed using a 

mixed-model Multivariate Analysis of Covariance (MANCOVA) with population type as a fixed 

factor and both sex ratio and density as continuous covariates.  Size was used as a covariate, 

represented as biomass in the mesocosm models.  Interaction terms were included in initial 

models but were removed when not significant (p>0.05).  Individual treatment comparisons 

were made using an analysis of variance (ANOVA) on a reduced linear model.   

All statistics on mesocosm and fish data, including geometric morphometric scores for 

individuals, were performed on the R Programming Platform (Ver. 30101, R Core Team 2014), 
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using the libraries vegan (Oksanen Ver. 2.0), car (Fox and Weisberg Ver. 2.0), MASS (Ripley Ver. 

7.3), and heplots (Fox, Friendly, and Monette Ver. 1.0-1.6).   

Results 

Fish Morphology 

 Individual fish body shape was heavily dominated by sexual dimorphism.  Given the 

overwhelming effects of sex on shape, I further examined shape within each sex to better 

characterize the effects of population source and density.  Density did not have a significant 

effect on body shape for either sex (Table 5.3).  Population source had a significant effect on 

body shape for both sexes, accounting for 34% of body shape variation in males and 65% of 

body shape variation in females (Table 5.3).  Size had some additional shape effects, but 

explained 51% to 63% less than population source (Table 5.3).  Visualizations of discriminant 

functions of shape show that, regardless of sex, individuals from high predation environments 

consistently have more slender bodies and narrower caudal peduncles (Figure 5.2).  Specifically, 

in the high predation source population the dorsal-ventral depth at the abdomen and head was 

reduced (Figure 5.2a-b), particularly in males (Figure 5.2a), creating a more fusiform shaped 

body.  Additionally, the caudal peduncle was thinned dorsal-ventrally and lengthened 

longitudinally relative to other body regions. Conversely, the low predation source fish showed 

more dorsally oriented mouths and eye position than the high predation source fish, consistent 

with modest trophic divergence. 
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Table 5.3: MANOVA analysis on linear mixed models for body shape DFA scores.   Models are 
subset by sex to correct for overt sexual dimorphism.  Size covariate is centroid size.   

 Females Males 

Population 
Characteristic 

F- 
value 

p- 
value 

Sig. Proportion 
Variance 

F-
value 

p-
value 

Sig. Proportion 
Variance 

Source 601 <0.001 *** 0.65 237 <0.001 *** 0.34 

Density 0.71 0.53  0.01 2.75 0.07  0.03 

Size 20.9 <0.001 *** 0.11 18.8 <0.001 *** 0.11 

Source: Size 
Interaction 

    5.23 0.02 * 0.04 

  

 

 

Figure 5.2: Relative warp analysis of experimental fishes.   Scores are based on predation 
regime.  Shape deformations of 4 times the y axis (for visualization) are paired with individual 
scores from a discriminant function analysis.  Panels are grouped into females (a) and males (b).  
Left side of each axis depicts the low predation deformation and the right side represents the 
high predation deformation (4X exaggerated). 
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However, as suggested by the prior analyses including all fish, males and females 

showed some sex-specific differences with respect to their predation source.  In particular, 

males from predator-exposed populations have a decreased anal fin insertion angle with a 

shorter insertion surface.  Source differences in the anal fin insertion region were not apparent 

in female mosquitofish that do not use the anal fin as a reproductive organ in the same way as 

males.   

Fish Diets within Mesocosms 

Examination of the diets of individual fish from the different mesocosm treatments 

indicated that population source did have significant interacting effects with both the sex of the 

individual fish and the mesocosm sex ratio on individual fish diets (Table 5.4).  While male and 

female fish from the high predation source did not consume significantly different dietary items 

(χ2=0.694, p=0.40), male and female fish from the low predation source did (χ2=3.89, p=0.05) 

(Figure 5.3a, Figure 5.4).   Detailed analysis of diet by taxonomic group did not reveal any 

differences by sex (F1,9=1.31, p=0.24) or source population (F1,9=1.10, p=0.37) (Figure 5.4).   

The joint effect of sex ratio and source population diet appears non-linear.  Chi-Squared 

analysis reveals an interaction between diet and population source (χ2=17677, p<0.001).  

Splitting the analysis into the two population sources reveal source predation as a driver.  High 

predation source mesocosms with extreme sex ratios (mostly male or mostly female) tended to 

consume less benthic resources (fry omitted) than balanced sex ratios experiencing a more 

drastic change in diet (χ2=5.00, p=0.03), reducing benthic species up to 30% in the extreme sex 

ratios.  Conversely, low predation source mesocosms did not have a significant shift in diet when 

considered in isolation (χ2=0.00, p=1) (Figure 5.3b).   
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Table 5.4: Reduced MANOVA model expressing the effect of sex, predation regime, and density 
on fish diets.   Individual invertebrate diet items were grouped by broad classification (rotifers, 
arthropods, small crustaceans <0.5mm, large crustaceans >0.5mm, and snails) and expressed as 
total count.  Mosquitofish fry were excluded from analysis to avoid bias in mesocosms with a 
higher density of pregnant females.  Model was reduced using backwards model selection.   

Population Characteristic DF F-value p-value Sig. 

Sex 105 0.86 0.49  

Sex Ratio 105 0.37 0.83  

Source (predation regime) 105 0.34 0.83  

Density 105 1.47 0.22  

Sex: Source Interaction 105 3.81 0.006 ** 

Sex Ratio: Source Interaction 105 2.81 0.03 * 

 

 

 

 

Figure 5.3: Percent of benthic items in stomach content of all individual mesocosm 
mosquitofish.   Percent is based on total number of fish with identifiable stomach content items, 
not including cannibalism of young fry.  Figures show percent benthic species for a) sex, b) sex 
ratio, and c) density. 
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Figure 5.4: Diet analysis of individual fish from the mesocosm experiment.   Stomach contents 
were identified to class or lower.  Diet is broken down by sex and predation regime, showing 
content as a percent of the whole diet for the group.  Asterisks represent significant 
comparisons.   

Unlike sex and sex-ratio, that influenced fish diets through interactions with population 

source, density did not have a significant effect on dietary composition for either high predation 

(χ2=1.20, p=0.55) or low predation (χ2=1.87, p=0.39) sources (Figure 5.3c).   

Mesocosm Conditions 

 Mesocosm data provided evidence for effects of both population source and overall 

densities of individuals (Table 5.5).  In particular, the high predation treatments had marginally 

higher respiration rates (F1,12=3.93, p=0.07) at higher densities, but not at the lowest densities 

(F1,11=0.078, p=0.78), while water column (F1,40=0.014, p=0.90) and periphyton (F1,40=0.16, 

p=0.69) chlorophyll did not significantly differ by population treatment (Figure 5.5b, d, f).  Sex 

ratio had no significant effects on any mesocosm response variable (Figure 5.5a, c, e).   
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Figure 5.5: Response variable results from the mesocosm experiment for high predation (solid 
line) and low predation (dashed line) groups.  Relationships of water column chlorophyll a to sex 
ratio (a) and density (b).  Similarly, the relationships of benthic chlorophyll a to sex ratio (c) and 
density (d).  Finally, the relationship of mesocosm respiration to sex ratio (e) and density (f).  
Points refer to sample average and error bars are standard error. 
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Table 5.5: Reduced MANOVA model expressing the effect of sex, source predation regime, and 
density on mesocosm environment.   Density was measured by count and the size covariate was 
estimated biomass.  Environmental conditions include respiration, water column chlorophyll a, 
and periphyton chlorophyll a.  Model was reduced using backwards model selection.   

Population Characteristic DF F-value p-value Sig. 

Sex Ratio 33 0.53 0.73  

Source (predator regime) 33 3.82 0.02 * 

Density 33 14.74 <0.001 *** 

Biomass 33 1.66 0.27  

 

Natural Population Survey 

Sex ratios varied from 14% to 49% males and differed significantly between ponds with 

and without strong piscivory risk (F1,7=46.09, p<0.001).  Specifically, ponds with fish predators 

tended to have more even sex ratios, whereas those without predators were biased in favor of 

females.  The MANOVA indicated that pond limnological conditions were correlated with the 

presence of mosquitofish predators and to a further marginal degree with sex ratios (Table 5.6).  

Pelagic chlorophyll a showed the strongest response to predators and sex ratios, by three orders 

of magnitude (Table 5.7).  Higher levels of chlorophyll a were associated with low predation 

ponds and tended to increase with more-balanced sex ratios for both population types (Figure 

5.6).  However, there was little overlap in sex ratio for high and low predation ponds and so the 

relative effects of sex ratio and predation risk may not be fully independent. 
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Table 5.6: Full MANOVA model expressing the effect of sex ratio and predation regime on 
natural pond environmental conditions.   Model includes pelagic chlorophyll a, general water 
quality, and amount of plant material.   

Population 
Characteristic 

DF F-value p-value Sig. 

Sex Ratio 3 6.76 0.08 . 

Predation 3 10.43 0.04 * 

Ratio: Exposure 
Interaction 

3 1.98 0.30  

 

 

Table 5.7: Effect sizes from the full MANOVA model of sex ratio and predation regime on natural 
pond environmental conditions. 

Environmental 
Parameter 

Sex Ratio Predation Sex Ratio : Predation 
Interaction 

Chlorophyll a 1979 8388 4883 

Water Quality  3.1 0.77 0.12 

Plant Material 1.6 2.9 1.1 

 

 

 

Figure 5.6: Pelagic chlorophyll a concentrations of the nine natural population survey sites.   
Sites were categorized by count estimated sex ratio and the clear presence/absence of 
predation either by observation or known stocking.  
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Discussion 

Our study shows that sex ratios do vary in the wild and that variation is, at least in part, 

associated with local predator regime.  Moreover, predator regime and, to a lesser extent, sex 

ratio are correlated with pond limnology in natural systems, particularly chlorophyll a 

concentrations.  However, experimentally we found little indication that sex ratio directly affects 

communities, although there was evidence that male and female mosquitofish do display a 

degree of dietary niche divergence.  By comparison, population source had some effects on 

ecosystem conditions that varied with fish density.  However, the population source effects on 

mesocosm conditions are not likely to be attributable merely to source effects of individuals, 

because diet often depended on source population, sex, and sex ratios that interacted in a 

complex fashion.  Nonetheless, fish from different predator environments did differ appreciably 

in body morphology, and did so in a fashion that was most consistent with specialization to 

predator regime, and perhaps to some degree with trophic specialization.   

Population Source Shapes Morphology 

Adaptation to predator regime has the potential to alter a wide variety of physical and 

behavioral traits in prey organisms (Reznick et al. 1996a, Langerhans et al. 2004, Pruitt et al. 

2012).  Evolution of size and shape can mitigate predation risk (Välimäki et al. 2012) through 

effects on overall speed (Chapman et al. 2007), or facilitate burst speeds during predator 

evasion (Langerhans et al. 2004).  Both males and females from the high predation source 

population showed an anterior-posterior expansion and a dorsal-ventral streamlining in shape, 

consistent with adaptation to predator evasion; whereas low predation males and females 

showed more robust cranial features with higher eye and mouth positons consistent with 

investment in traits that may aid prey consumption and competitiveness, particularly of pelagic 

or surface prey.  Hence, morphological differences between the populations were consistent 
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with theoretical expectations along a predator evasion versus competitiveness tradeoff (Walker 

1997, Blob et al. 2010, Palkovacs et al. 2011).   Such morphological adaptations to predator 

regime are particularly widely supported for poeciliid fishes (Langerhans et al. 2004, Hendry et 

al. 2006).  Such body shapes in poeciliids and other fishes may support a wide variety of anti-

predator defenses including increased burst speed (Langerhans and DeWitt 2004, Langerhans et 

al. 2004), increased escape velocity (Ingley et al. 2014), and reduced predator consumption 

preference (Dingemanse et al. 2009).  A very sizeable literature also supports the importance of 

cranial anatomy and eye position for trophic specializations across a large diversity of taxa 

(Walls et al. 1993, Motta et al. 1995, Pierce et al. 2009, Cooper et al. 2010, Herrel et al. 2010) 

with a generally conserved pattern of more dorsal position of the mouth and eyes being 

associated with greater pelagic or surface-oriented feeding (Wikramanayake 1990, Pouilly et al. 

2003).   

Effects of Sexual Segregation and Sex Ratios on Ecosystems 

Although the most common perspective on sexual dimorphism surrounds its role in 

sexual selection and mating systems (Berglund et al. 1986, Székely et al. 2004), sexual 

dimorphism may also take the form of sexual segregation and reflect some degree of 

specialization to alternate ecological niches to reduce competition via natural selection and 

character displacement (Erlinge 1979, Wolf et al. 2005).  For example, here females are the 

larger sex and in many systems this has been associated with different reproductive and 

energetic needs and associated foraging strategies (Walker and Rypstra 2002, Drovetski et al. 

2006, Kamilar and Pokempner 2008).   Where sexual niche dimorphism is tied to differences in 

diet and foraging behavior, it may not only reduce competition between the sexes but expand 

foraging effectiveness and species niche breadth overall (Selander 1966, Krüger 2005, Santiago-

Alarcon and Parker 2007, Stein et al. 2008, Breed et al. 2009, Nebel and Thompson 2011, Cooper 
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et al. 2011).  Moreover, such sexual segregation is not limited to feeding behaviors and can 

extend to habitat use and preference as well (Drovetski et al. 2006, Pincheira-Donoso et al. 

2009) with a whole suite of additional effects to ecosystems.   

It is not a large conceptual leap to suggest that differences in the intensity and patterns 

of consumption by males and females might influence community and ecosystem conditions 

where sex ratios vary.  That said, this finding merits some critique.  The mesocosms in this study 

may not have been well-suited to detecting such effects given the depauperate zooplankton 

communities.  Such a die-off could drastically limit the degree that sexual dimorphism and its 

ties to sexual niche segregation could elicit a cascading response under varying sex ratios.  

Indeed, a subsequent mesocosm experiment based on a modification of this study’s design did 

find strong sex ratio effects on trophic cascades in mesocosms with healthy zooplankton 

populations (Appendix A).  Studies that are focused on the cascade potential of mosquitofish 

indicate that the effects of mosquitofish are primarily in the pelagic cascade (Hargrave 2006, 

Castro and Gonçalves 2011, Fryxell et al. 2015).  Although the benthic algae standing stock 

showed no response to mosquitofish treatments, the predominantly benthic diets of 

mosquitofish in the present study suggests they may have been very constrained in their 

foraging and the results of the current study should be weighed in light of those constraints.   

Top-Down Pressures: Predation Exaggerates Sex Diet Preferences 

Regardless of population source, male and female mosquitofish have separate diet 

preferences and these preferences are affected by population predation history.  Males from 

the low predation source consumed significantly more pelagic species, while high predation 

pressure source males consume relatively more benthic species.  Female mosquitofish however, 

showed the opposite trend, with high predation sources consuming proportionately more 
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pelagic items than their low predation source counterparts.  Such differences in diet choices 

related to sex could again be attributed to a degree of sexual segregation.  Differences in dietary 

needs (Klimley 1987), energetic needs (Sims et al. 2001), uneven predation risk (Croft et al. 

2009), and sexually biased aggression (Darden and Croft 2008) have been shown to lead the 

preference divergence in other fishes.  

Pelagic food items are often of higher nutritional value and better energy transfer 

efficiency (Rowland et al. 2015) with more items such as copepods, cladocerans, and insects 

filling the diet.  With higher nutritional needs, perhaps it is not surprising that females from a 

high predation source would increase the relative amount of these high quality prey to offset 

the reduced foraging time that often accompany predation risk (Roberts 1996), while at the 

same time meeting the nutritional needs of their indeterminate growth and internally 

developing offspring.  In addition, females will often avoid locations with males to avoid sexual 

aggression and increased courtship (Dadda et al. 2005, Darden and Croft 2008), that reduce the 

female’s ability to feed (Dadda et al. 2008).  Conversely, males have determinate growth, 

suggesting their reproductive success is less dependent on size and so they may opt for safer 

benthic resources in the presence of predators, particularly if females out-compete them for 

pelagic resources.   

However, these explanations do not make clear why the two sexes should switch their 

relative preferences so completely when derived from a low predation source.  Perhaps males 

from low predation environments are more competitive for pelagic prey resources, or females 

from such highly competitive environments are more apt to take advantage of a greater diet 

breadth.  Diet is unlikely to be associated with individual size.  Males and females were 
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approximately size matched at the beginning of the experiment.  Post-experimental sizes were 

used as a covariate in diet analysis and was not a significant contributing factor.   

Balanced sex ratios (40-60% female) result in more benthic resource use than extreme 

sex ratios (0-20% and 80-100% female).  This effect is significantly exaggerated for the high 

predation source.  Once again, it seems likely that some degree of intraspecific competition may 

be a driving force.  Following that there is potential for high quality and better energy transfer in 

pelagic food items, it seems sensible that fish might generally be biased towards the higher 

quality food source (Edwards 1983, Grant and Scholes 2006) and perhaps more so in extreme 

ratios where intersexual competition is greatly reduced.  However, at balanced sex ratios 

intersexual competition is strongest and sexual segregation most strongly favored, pushing 

some individuals toward more benthic diets to reduce competition or avoid sexual harassment 

(Klimley 1987, Sims et al. 2001, Phillips et al. 2011).  However, the overall high use of benthic 

resources in this study suggests some constraints on diet so the present results should be 

interpreted cautiously in light of such limitations. 

Density Shapes Mesocosms but not Diets 

Mosquitofish achieve high population densities and shoal in large numbers in many in 

systems with few predators (Magurran and Pitcher 1987, Dadda et al. 2009).  Moreover, prior 

studies with mosquitofish, like many other studies of trophic cascades, show that population 

densities can have strong cascading effects (Hurlbert and Mulla 1981). As a result, it is not 

surprising the number of individuals in my treatments had a strong effect on chlorophyll a 

concentrations in my mesocosms.   Here, I found a clear correlation between increasing density 

of mosquitofish and increase in chlorophyll a (both benthic and pelagic) and respiration, 
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consistent with trophic cascade.  I also found some weak evidence that adaptation to high 

predation conditions may exaggerate these density effects, though not significantly.   

Since all mesocosms experienced a zooplankton community crash within the first week, 

the effects of fish number may be more mediated in our results by bottom-up mechanisms tied 

to nutrient cycling.  Consistent with this, I did not find any support that treatment densities 

influenced the diets of mosquitofish.  Given the small size of mosquitofish, they tend to 

metabolize at a relatively high rate, and thus nutrient turnover rates through the mosquitofish 

pool may be relatively high (Brown et al. 2004).  Certainly it is well established that fish 

excretion contains a high (relative) amount of biologically available nutrients (Allgeier et al. 

2013), so mosquitofish act as nutrient converters, quickly and efficiently converting plant and 

animal material into “new”, biologically available fuel for the ecosystem.  As the density of 

mosquitofish increased in mesocosms, the amount of material recycled and available to algae 

may have also increased (Vanni et al. 1997).   

Natural Systems: Predation Drives Top-Down Cascades and Sex Ratios 

 Presence or absence of top predators is known to drive top-down trophic cascades 

(reviewed in Carpenter et al. 2010).  In our system, mosquitofish represent an intermediate 

consumer link between piscivorous top predators and zooplankton.  I found that low predation 

ponds had the capacity for larger standing stocks of chlorophyll a, which is expected if absence 

of top predators permits mosquitofish to more effectively graze zooplankton that would 

otherwise limit algal biomass.  This could happen if absence of predators permits larger 

densities of mosquitofish (reviewed in Heithaus et al. 2008) or greater unabated foraging (Cerri 

and Fraser 1983, Roberts 1996).  Additionally, larger numbers of mosquitofish could also recycle 

more nutrients (primarily phosphorus) (Vanni et al. 1997), contributing to some bottom-up 
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reinforcement.  We were not able to assess mosquitofish density in these ponds, however, due 

to the restricted amount of sampling time at many sites.  Nonetheless, most studies of poeciliid 

fishes support that population densities are notably lower in areas with fish predators (Reznick 

and Endler 1982, Nowlin et al. 2006, Richardson et al. 2006, Zandonà et al. 2011) and that was 

consistent with my anecdotal observations.   

In addition, predation also appears to influence sex-ratio, with the main effect of 

predators appearing to push the strongly female-biased sex ratios of low predation ponds 

towards a more even sex ratio in systems with fish predators.  This is consistent with prior 

studies suggesting a predominance of females in populations without predators, due to greater 

energy investment and riskier behavior of males leading to shorter lifespans (Giesel 1972, 

Reznick et al. 1996a, Reznick and Bryant 2007).  With a sexually dimorphic system such as 

mosquitofish, larger individuals are almost exclusively females (Krumholz 1948) so this outcome 

suggests potential positive size selection by predators (Britton and Moser 1982).  The presence 

of predators might also weaken the competitive effects of females on the growth and survival of 

remaining males, through influences on female behavior and overall population densities (Walsh 

and Reznick 2008, Välimäki and Herczeg 2012).  Regardless of the mechanism, the higher ratio 

of females to males in low predation ponds, combined with greater zooplankton grazing 

capacity of those large females, is expected to reinforce any density-mediated trophic cascades 

of predators (Hambright 1994, Layman et al. 2005, Nieoczym and Kloskowski 2014).  Larger 

individuals can also increase the recycled nutrients in a system (McIntyre et al. 2008, El-Sabaawi 

et al. 2015), again supplementing top-down effects with some bottom-up contributions.   
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Conclusions 

Mosquitofish are a sexually dimorphic species with many documented examples of 

skewed sex ratios in the wild despite a fifty percent birth ratio (Krumholz 1948, Giesel 1972, 

Britton and Moser 1982, Fryxell et al. 2015).  Although sexual segregation has been shown in a 

variety of other species with sexes divergent in feeding structures (Berner et al. 2010, 

Christiansen and Harris 2012), food choice (Negovetic and Jokela 2000, Kamilar and Pokempner 

2008), and habitat choice (Kie and Bowyer 1999, Croft et al. 2009), these studies have not 

examined how sex ratios interact with dimorphism to shape local communities and ecosystems.   

The present study provided little if any direct support for community and ecosystem of 

effect of sex ratio variation.  Population source and densities were much more important to 

variation in ecological conditions.  That said, the findings of this study should be taken in light of 

evidence that pelagic zooplankton resources were very likely limiting and that a subsequent 

experiment affording of such a resource (Fryxell et al. 2015) showed clear support for cascading 

effects of sex ratio variation on pelagic food webs.  Variation in fish size was also much more 

constrained at the initiation of the this experiment than in the subsequent experiment, which 

may have further limited the capacity to detect strong ecological effects of sex ratio variation 

tied to sexual size dimorphism.  

 Nonetheless, the current study did provide some support for sexual diet segregation 

and morphological differences between the sexes dominated all other sources of shape 

variation.  I also found evidence consistent with effects of source population type on diet 

(interacting with sex and sex ratios) and morphological differences between populations 

consistent with a hypothesized tradeoff of shape features favoring predator escape and 

competitive ability.  Work is now underway to better understand the functional and 
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evolutionary basis for a general tradeoff between predator escape and competitive ability in the 

context of the implications of such a tradeoff for evolutionary contributions to trophic cascades 

in systems with and without mosquitofish predators. 
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APPENDIX A: GEOMETRIC MORPHOMETRIC LANDMARK DESCRIPTIONS 

 

Adapted from Palkovacs et al. 2011. 

 

 

Body landmarks used in shape analysis: a) tip of snout, b) premaxilla, c) superior posterior 

extent of cranium, d) inferior posterior extend of cranium, e) anterior extent of dorsal fin 

insertion, f) posterior extent of dorsal fin insertion, g) anterior extend of anal fin insertion, h) 

posterior extent of anal fin insertion, i) superior tip of caudal peduncle, j) inferior tip of caudal 

peduncle, k) superior edge of caudal fin insertion, l) inferior edge of caudal fin insertion, and o) 

eye centroid. 

Eye landmarks used in eye size: m) posterior edge of ocular socket and n) anterior edge of ocular 

socket. 
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APPENDIX B: UNIVARIATE BEHAVIORAL RESPONSES WITHIN AND AMONG GENERATIONS FOR 

MALE AND FEMALE MOSQUITOFISH 

 

Table B.1: Female univariate behavioral responses within generational groups.   Linear mixed 

effects model on groups based on Figure 3.2.  Effect size is exposed treatments or lineages 

relative to non-exposed.   

  Behavior df F-value p-value Significance Effect size 

Gen 1 1 vs 2 

Lag Time 1,54 1.42 0.24  -0.39 

Exploration 1,54 1.80 0.18  0.45 

Safe% 1,54 1.29 0.26  -0.37 

Danger% 1,54 0.12 0.73  0.18 

Gen 2 

3 vs 4 

Lag Time 1,66 0.60 0.44  0.18 

Exploration 1,66 0.05 0.83  -0.05 

Safe% 1,66 0.003 0.96  0.01 

Danger% 1,66 1.18 0.28  -0.26 

5 vs 6 

Lag Time 1,47 0.00 0.99  0.00 

Exploration 1,47 0.18 0.89  0.04 

Safe% 1,47 0.06 0.81  0.07 

Danger% 1,47 0.09 0.77  -0.08 

3 vs 5 

Lag Time 1,58 0.46 0.50  0.26 

Exploration 1,58 3.63 0.06 * -0.49 

Safe% 1,58 2.06 0.16  0.37 

Danger% 1,58 6.81 0.01 ** -0.67 

4 vs 6 

Lag Time 1,54 0.08 0.77  0.08 

Exploration 1,54 2.19 0.14  -0.39 

Safe% 1,54 2.65 0.10  0.43 

Danger% 1,54 3.29 0.07 * -0.53 

3 vs 6 

Lag Time 1,56 0.93 0.34  0.25 

Exploration 1,56 3.28 0.08 * -0.48 

Safe% 1,56 3.28 0.08 * 0.48 

Danger% 1,56 7.77 0.007 ** -0.73 
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Table B.1 CONTINUED 

  Behavior df F-value p-value Significance Effect size 

Gen 3 

7 vs 8 

Lag Time 1,40 9.08 0.005 ** 1.02 

Exploration 1,40 0.29 0.59  -0.30 

Safe% 1,40 2.12 0.15  0.45 

Danger% 1,40 1.16 0.29  -0.40 

 
9 vs 10 

 

Lag Time 1,44 0.48 0.49  0.12 

Exploration 1,44 0.00 0.98  0.08 

Safe% 1,44 0.61 0.44  -0.29 

Danger% 1,44 2.27 0.14  -0.38 

 
7 vs 9 

 

Lag Time 1,36 12.48 0.001 ** 1.14 

Exploration 1,36 4.59 0.04 ** -0.77 

Safe% 1,36 7.36 0.01 ** 0.87 

Danger% 1,36 2.10 0.16  -0.46 

 
8 vs 10 

 

Lag Time 1,48 0.52 0.47  0.15 

Exploration 1,48 1.12 0.29  -0.23 

Safe% 1,48 0.01 0.89  0.02 

Danger% 1,48 2.15 0.15  -0.37 

 
7 vs 10 

Lag Time 1,39 10.95 0.002 ** 0.53 

Exploration 1,39 2.41 0.13  -0.21 

Safe% 1,39 1.46 0.23  0.04 

Danger% 1,39 7.43 0.01 ** -0.56 
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Table B.2: Male univariate behavioral responses within generational groups.   Linear mixed effects model 

on groups based on Figure 3.2.  Effect size is exposed treatments or lineages relative to non-exposed. 

 

  Behavior df F-value p-value Significance Effect size 

Gen 1 1 vs 2 

Lag Time 1,48 4.82 0.03 ** -0.63 

Exploration 1,48 7.21 0.01 ** 0.72 

Safe% 1,48 8.74 0.005 ** -0.78 

Danger% 1,48 1.31 0.26  0.36 

Gen 2 

3 vs 4 

Lag Time 1,46 0.04 0.84  0.15 

Exploration 1,46 0.56 0.46  -0.23 

Safe% 1,46 0.01 0.91  0.03 

Danger% 1,46 0.48 0.49  -0.20 

5 vs 6 

Lag Time 1,34 0.27 0.60  0.17 

Exploration 1,34 1.20 0.28  0.36 

Safe% 1,34 0.24 0.63  -0.16 

Danger% 1,34 2.98 0.09 . 0.57 

3 vs 5 

Lag Time 1,46 0.04 0.84  0.15 

Exploration 1,46 0.56 0.46  -0.23 

Safe% 1,46 0.01 0.91  0.03 

Danger% 1,46 0.48 0.49  -0.20 

4 vs 6 

Lag Time 1,41 0.67 0.42  0.25 

Exploration 1,41 1.47 0.23  0.39 

Safe% 1,41 1.65 0.21  -0.41 

Danger% 1,41 5.15 0.03 ** 0.69 

3 vs 6 

Lag Time 1,45 0.86 0.36  0.34 

Exploration 1,45 0.27 0.61  0.14 

Safe% 1,45 0.33 0.57  -0.13 

Danger% 1,45 1.97 0.17  0.43 

Gen 3 

7 vs 8 

Lag Time 1,42 0.01 0.95  -0.02 

Exploration 1,42 0.00 0.97  0.01 

Safe% 1,42 0.24 0.63  -0.15 

Danger% 1,42 0.21 0.65  0.16 

 
9 vs 10 

 

Lag Time 1,37 0.22 0.64  -0.20 

Exploration 1,37 9.01 0.005 ** 0.97 

Safe% 1,37 7.05 0.01 ** -0.88 

Danger% 1,37 0.71 0.41  -0.21 

 
7 vs 9 

 

Lag Time 1,45 0.02 0.88  -0.04 

Exploration 1,45 1.97 0.17  -0.47 

Safe% 1,45 0.55 0.46  0.32 

Danger% 1,45 0.03 0.87  0.02 

 
8 vs 10 

 

Lag Time 1,34 0.81 0.37  -0.29 

Exploration 1,34 1.88 0.18  0.50 

Safe% 1,34 1.52 0.23  -0.44 

Danger% 1,34 0.97 0.33  -0.37 

 
7 vs 10 

Lag Time 1,45 1.06 0.31  -0.23 

Exploration 1,45 3.91 0.05 * 0.72 

Safe% 1,45 5.59 0.02 ** -0.77 

Danger% 1,45 0.41 0.52  -0.19 
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Table B.3: Female univariate behavioral responses among generational groups.   Linear mixed effects 

model on groups based on Figure 3.2.  Effect size is early generation to relative later generation.   

  Behavior df F-value p-value Significance Effect size 

Gen 1 
and  

Gen 2 

1 vs 3 

Lag Time 1,62 0.11 0.74  -0.08 

Exploration 1,62 1.30 0.26  0.28 

Safe% 1,62 0.39 0.53  -0.16 

Danger% 1,62 1.04 0.31  0.25 

1 vs 4 

Lag Time 1,60 0.26 0.61  0.10 

Exploration 1,60 0.67 0.42  0.22 

Safe% 1,60 0.24 0.62  -0.14 

Danger% 1,60 0.00 0.98  -0.01 

2 vs 5 

Lag Time 1,50 4.20 0.05 * 0.58 

Exploration 1,50 6.22 0.02 ** -0.68 

Safe% 1,50 4.42 0.04 ** 0.57 

Danger% 1,50 6.92 0.01 ** -0.71 

2 vs 6 

Lag Time 1,48 4.07 0.05 * 0.56 

Exploration 1,48 6.00 0.02 ** -0.68 

Safe% 1,48 6.37 0.02 ** 0.70 

Danger% 1,48 8.41 0.006 ** -0.81 

Gen 1 
and  

Gen 3 

1 vs 7 

Lag Time 1,43 0.65 0.42  -0.60 

Exploration 1,43 0.29 0.59  0.49 

Safe% 1,43 0.88 0.35  -0.49 

Danger% 1,43 0.01 0.91  0.17 

 
1 vs 8 

 

Lag Time 1,52 5.54 0.02 ** 0.27 

Exploration 1,52 0.19 0.67  0.13 

Safe% 1,52 0.83 0.37  -0.02 

Danger% 1,52 2.54 0.12  -0.23 

 
2 vs 9 

 

Lag Time 1,46 6.32 0.02 ** 0.75 

Exploration 1,46 5.90 0.02 ** -0.70 

Safe% 1,46 6.76 0.02 ** 0.74 

Danger% 1,46 2.86 0.09 * -0.50 

 
2 vs 10 

 

Lag Time 1,49 9.74 0.003 ** 0.82 

Exploration 1,49 4.66 0.04 ** -0.56 

Safe% 1,49 1.43 0.24  0.34 

Danger% 1,49 12.84 <0.0001 ** -0.95 

Gen 2 
and  

Gen 3 

3 vs 7 

Lag Time 1,49 3.53 0.07 * -0.56 

Exploration 1,49 0.44 0.51  0.19 

Safe% 1,49 1.49 0.23  -0.36 

Danger% 1,49 0.09 0.77  -0.09 

 
4 vs 8 

 

Lag Time 1,56 0.44 0.51  0.17 

Exploration 1,56 0.07 0.79  -0.07 

Safe% 1,56 0.21 0.65  0.12 

Danger% 1,56 0.25 0.62  -0.23 

 
5 vs 9 

 

Lag Time 1,45 0.13 0.72  0.11 

Exploration 1,45 0.01 0.93  -0.01 

Safe% 1,45 0.13 0.72  0.10 

Danger% 1,45 0.40 0.53  0.17 

 
6 vs 10 

 

Lag Time 1,46 0.71 0.41  0.22 

Exploration 1,46 0.00 0.95  0.03 

Safe% 1,46 0.76 0.39  -0.26 

Danger% 1,46 0.21 0.65  -0.13 
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Table B.4: Male univariate behavioral responses among generational groups.   Linear mixed effects model 

on groups based on Figure 3.2.  Effect size is early generation to later generation.   

  Behavior df F-value p-value Significance Effect size 

Gen 1 and  
Gen 2 

1 vs 3 

Lag Time 1,52 4.23 0.04 ** 0.55 

Exploration 1,52 1.03 0.32  -0.27 

Safe% 1,52 0.87 0.35  0.25 

Danger% 1,52 0.02 0.88  0.04 

1 vs 4 

Lag Time 1,48 8.15 0.006 ** 0.79 

Exploration 1,48 5.37 0.03 ** -0.55 

Safe% 1,48 4.46 0.04 ** 0.52 

Danger% 1,48 0.72 0.40  -0.24 

2 vs 5 

Lag Time 1,42 19.31 <0.0001 ** 1.37 

Exploration 1,42 15.72 <0.0001 ** -1.20 

Safe% 1,42 11.42 0.002 ** 1.01 

Danger% 1,42 1.70 0.20  -0.48 

2 vs 6 

Lag Time 1,41 48.93 <0.0001 ** 2.11 

Exploration 1,41 7.68 0.008 ** -0.84 

Safe% 1,41 9.02 0.005 ** 0.91 

Danger% 1,41 0.15 0.70  0.12 

Gen 1 and  
Gen 3 

1 vs 7 

Lag Time 1,49 3.52 0.07 * 0.52 

Exploration 1,49 3.62 0.06 * -0.30 

Safe% 1,49 5.95 0.02 ** 0.45 

Danger% 1,49 0.15 0.70  -0.11 

 
1 vs 8 

 

Lag Time 1,38 2.51 0.12  0.50 

Exploration 1,38 2.56 0.12  -0.27 

Safe% 1,38 2.75 0.12  0.27 

Danger% 1,38 0.04 0.85  0.06 

 
2 vs 9 

 

Lag Time 1,43 10.65 0.002 ** 1.00 

Exploration 1,43 23.86 <0.0001 ** -1.51 

Safe% 1,43 26.48 <0.0001 ** 1.52 

Danger% 1,43 1.01 0.32  -0.42 

 
2 vs 10 

 

Lag Time 1,43 23.29 <0.0001 ** 1.27 

Exploration 1,43 2.51 0.12  -0.47 

Safe% 1,43 3.15 0.08 * 0.53 

Danger% 1,43 4.95 0.03 ** -0.65 

Gen 2 and  
Gen 3 

3 vs 7 

Lag Time 1,55 0.20 0.66  -0.12 

Exploration 1,55 0.002 0.96  0.01 

Safe% 1,55 0.52 0.47  0.19 

Danger% 1,55 0.30 0.58  -0.14 

 
4 vs 8 

 

Lag Time 1,40 0.97 0.33  -0.30 

Exploration 1,40 0.28 0.60  0.27 

Safe% 1,40 0.23 0.64  -0.21 

Danger% 1,40 0.38 0.54  0.29 

 
5 vs 9 

 

Lag Time 1,36 0.76 0.39  -0.29 

Exploration 1,36 0.37 0.54  -0.15 

Safe% 1,36 2.11 0.16  0.42 

Danger% 1,36 0.03 0.87  0.08 

 
6 vs 10 

 

Lag Time 1,35 10.54 0.003 ** -1.06 

Exploration 1,35 1.07 0.31  0.37 

Safe% 1,35 0.82 0.37  -0.32 

Danger% 1,35 5.17 0.03 ** -0.75 
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APPENDIX C: GEOMETRIC MORPHOMETRIC ANALYSIS OF RELATIVE WARPS FOR THREE 

GENERATIONS OF FEMALE MOSQUITOFISH.    

 

RW Negative Value Visualization Positive Value Visualization 

1 
  

 Longitudinal expansion of the caudal region on the ventral side 

 Ventral positioning of eyes 

 Ventral flattening of snout 

2   
 Longitudinal expansion of the caudal region on the ventral side 

 Ventral lowering of snout and eyes 

 Dorsal-ventral flattening of the snout and cranium 

3 
  

 Anterior positioning of dorsal fin 

 Longitudinal reduction in caudal region 

 Dorsal side expansion of cranium 

4  
 

 Dorsal expansion of cranium and thoracic and abdominal region 

 Artificial bend of individuals 

5 
  

 Ventral and dorsal body depth expansion 

 Ventral and dorsal expansion of cranium 

 Ventral positioning of eyes 

6 
 

 
 

 Dorsal-ventral expansion of cranium and caudal peduncle 

 Ventral expansion of thoracic region and overall body depth 

Figure C.1: Negative and positive visualizations for the first fifteen relative warps of three 
generations of female mosquitofish.  Exaggerations are from the sample extremes to the 
negative and positive directions.  Descriptions are written for the positive visualizations from 
negative references.   
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RW Negative Value Visualization Positive Value Visualization 

7 
  

 Dorsal-ventral cranial expansion 

 Anterior-posterior narrowing of cranium 

 Dorsal-ventral flattening of dorsal fin insertion 

 Narrowing of caudal peduncle. 

8   

 Anterior-posterior narrowing of the ventral cranial edge 

 Body depth narrowing 

 Dorsal fin insertion posteriorly shifted 

9 
  

 Flattening of dorsal and ventral cranial edges 

 Anterior-posterior cranial expansion on dorsal edges 

 Dorsal-ventral lower jaw expansion 

10   

 Ventral positioning of eyes 

 Dorsal-ventral flattening of ventral cranial edge 

 Expansion of anal fin anterior-posteriorly 

11 
  

 Anterior-posterior expansion of eye 

12 
  

 Dorsal positioning of eye 

 Dorsal-ventral reduction of lower jaw 

 Flattening of the snout 

 Dorsal-ventral slimming of caudal peduncle 

 

Figure C.1 CONTINUED 

  



159 
 

RW Negative Value Visualization Positive Value Visualization 

13 
  

 Ventral flattening snout 

 Dorsal positioning of eye 

 Dorsal-ventral expansion of caudal peduncle 

14   
 Anterior-posterior expansion of dorsal fin 

 Dorsal positioning of eye 

15   
 Body depth reduction on the ventral side 

 Reduction in the angle of the anal fin 

 

Figure C.1 CONTINUED 
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Table C.1: ANOVA on the 26 relative warps for three generations of female mosquitofish.   Due 

to capacity of program to detect detailed changes between specimens, significance levels of 

≤0.0001 were used.   
 

 dF F-value p-value Significance 

RW1 1,252 15.67 0.0001 * 

RW2 1,252 4.95 0.03  

RW3 1,252 25.77 <0.0001 * 

RW4 1,252 0.88 0.35  

RW5 1,252 15.49 0.0001 * 

RW6 1,252 0.04 0.84  

RW7 1,252 5.29 0.02  

RW8 1,252 22.38 <0.0001 * 

RW9 1,252 0.08 0.78  

RW10 1,252 14.19 0.0002  

RW11 1,252 0.10 0.76  

RW12 1,252 0.06 0.81  

RW13 1,252 0.03 0.85  

RW14 1,252 13.39 0.0003  

RW15 1,252 0.49 0.48  

RW16 1,252 2.94 0.09  

RW17 1,252 0.13 0.72  

RW18 1,252 2.80 0.10  

RW19 1,252 0.46 0.50  

RW20 1,252 0.40 0.53  

RW21 1,252 4.59 0.03  

RW22 1,252 4.20 0.04  

RW23 1,252 0.01 0.92  

RW24 1,252 4.58 0.03  

RW25 1,252 0.003 0.96  

RW26 1,252 1.04 0.31  
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APPENDIX D: UNIVARIATE MORPHOLOGICAL RESPONSES WITHIN AND AMONG GENERATIONS 

FOR MALE AND FEMALE MOSQUITOFISH.    

 

 

 

 Table D.1: Within generation pairwise comparisons of size metrics for three generations of 
female mosquitofish.  Effect sizes are Cohen’s d with non-exposure treatment or lineage as the 

baseline value. 

  Behavior df F-value p-value Significance Effect size 

Gen 1 1 vs 2 

Total Length 1,55 0.19 0.67  0.15 

Body Depth 1,55 2.53 0.12  -0.18 

Tail Peduncle 1,55 0.02 0.88  0.05 

Weight 1,55 2.54 0.12  0.49 

Gen 2 

3 vs 4 

Total Length 1,72 0.59 0.45  -0.18 

Body Depth 1,72 0.17 0.69  -0.09 

Tail Peduncle 1,72 0.18 0.67  -0.10 

Weight 1,72 1.07 0.31  -0.21 

5 vs 6 

Total Length 1,47 0.02 0.88  0.01 

Body Depth 1,47 4.30 0.04 ** -0.42 

Tail Peduncle 1,47 0.03 0.86  0.01 

Weight 1,47 1.95 0.17  -0.22 

3 vs 5 

Total Length 1,61 0.07 0.80  -0.23 

Body Depth 1,61 0.41 0.53  0.16 

Tail Peduncle 1,61 3.69 0.06 * -0.45 

Weight 1,61 0.28 0.60  -0.10 

4 vs 6 

Total Length 1,57 0.04 0.83  0.02 

Body Depth 1,57 0.00 0.98  -0.15 

Tail Peduncle 1,57 1.33 0.25  -0.25 

Weight 1,57 0.87 0.36  -0.12 

3 vs 6 

Total Length 1,59 0.04 0.83  -0.24 

Body Depth 1,59 0.78 0.38  -0.23 

Tail Peduncle 1,59 4.57 0.04 ** -0.43 

Weight 159 0.37 0.54  -0.37 
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Table D.1 CONTINUED 

 

  Behavior df F-value p-value Significance Effect size 

Gen 3 

7 vs 8 

Total Length 1,50 2.12 0.15  0.30 

Body Depth 1,50 2.81 0.10  0.31 

Tail Peduncle 1,50 0.07 0.80  0.06 

Weight 1,50 2.43 0.13  0.33 

 
9 vs 10 

 

Total Length 1,49 3.38 0.07 * 0.30 

Body Depth 1,49 0.53 0.47  0.09 

Tail Peduncle 1,49 0.37 0.55  0.06 

Weight 1,49 1.51 0.23  0.19 

 
7 vs 9 

 

Total Length 1,49 0.49 0.49  0.14 

Body Depth 1,49 0.12 0.73  -0.07 

Tail Peduncle 1,49 1.36 0.25  -0.29 

Weight 1,49 0.01 0.91  -0.02 

 
8 vs 10 

 

Total Length 1,50 0.45 0.51  0.11 

Body Depth 1,50 0.87 0.36  -0.21 

Tail Peduncle 1,50 0.92 0.34  -0.24 

Weight 1,50 0.23 0.63  -0.13 

 
7 vs 10 

Total Length 1,49 5.16 0.03 ** 0.41 

Body Depth 1,49 0.27 0.61  0.05 

Tail Peduncle 1,49 0.38 0.54  -0.18 

Weight 1,49 1.62 0.21  0.18 
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Table D.2: Among generation pairwise comparisons of size metrics for three generations of 
female mosquitofish.  Effect sizes are Cohen’s d with earlier generations as the baseline value.   

  Behavior df F-value p-value Significance Effect size 

Gen 1 and  
Gen 2 

1 vs 3 

Total Length 1,66 1.20 0.28  -0.21 

Body Depth 1,66 5.17 0.03 ** -0.52 

Tail Peduncle 1,66 0.19 0.66  0.13 

Weight 1,66 0.21 0.65  -0.07 

1 vs 4 

Total Length 1,64 3.19 0.08 * -0.31 

Body Depth 1,64 10,18 0.002 ** -0.63 

Tail Peduncle 1,64 0.01 0.93  0.04 

Weight 1,64 2.05 0.16  -0.24 

2 vs 5 

Total Length 1,50 9.95 0.003 ** -0.65 

Body Depth 1,50 2.53 0.12  -0.28 

Tail Peduncle 1,50 3.05 0.08 * -0.09 

Weight 1,50 6.70 0.01 ** -0.66 

2 vs 6 

Total Length 1,48 15.44 <0.0001 ** -0.70 

Body Depth 1,48 17.97 <0.0001 ** -0.82 

Tail Peduncle 1,48 3.19 0.08 * -0.36 

Weight 1,48 14.23 <0.0001 ** -0.91 

Gen 1 and  
Gen 3 

1 vs 7 

Total Length 1,53 18.75 <0.0001 ** -0.64 

Body Depth 1,53 20.26 <0.0001 ** -0.76 

Tail Peduncle 1,53 0.91 0.34  -0.20 

Weight 1,53 18.19 <0.0001 ** -0.58 

 
1 vs 8 

 

Total Length 1,54 8.67 0.005 ** -0.35 

Body Depth 1,54 9.01 0.004 ** -0.42 

Tail Peduncle 1,54 0.79 0.38  -0.16 

Weight 1,54 4.52 0.04 ** -0.24 

 
2 vs 9 

 

Total Length 1,50 33.51 <0.0001 ** -1.09 

Body Depth 1,50 20.55 <0.0001 ** -0.90 

Tail Peduncle 1,50 8.76 0.005 ** -0.67 

Weight 1,50 27.01 <0.0001 ** -1.36 

 
2 vs 10 

 

Total Length 1,50 6.86 0.01 ** -0.48 

Body Depth 1,50 7.96 0.007 ** -0.57 

Tail Peduncle 1,50 4.46 0.04 ** -0.48 

Weight 1,50 13.08 <0.0001 ** -0.92 
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Table D.2 CONTINUED 

  Behavior df F-value p-value Significance Effect size 

Gen 2 and  
Gen 3 

3 vs 7 

Total Length 1,61 3.86 0.05 * -0.74 

Body Depth 1,61 0.68 0.41  -0.21 

Tail Peduncle 1,61 2.68 0.11  -0.39 

Weight 1,61 1.90 0.17  -0.66 

 
4 vs 8 

 

Total Length 1,60 0.08 0.78  -0.06 

Body Depth 1,60 2.35 0.13  0.19 

Tail Peduncle 1,60 0.09 0.76  -0.21 

Weight 1,60 3.21 0.08 * 0.02 

 
5 vs 9 

 

Total Length 1,49 1.01 0.32  -0.24 

Body Depth 1,49 4.28 0.04 ** -0.46 

Tail Peduncle 1,49 0.94 0.34  -0.23 

Weight 1,49 3.95 0.05 * -0.43 

 
6 vs 10 

 

Total Length 1,47 1.00 0.32  0.08 

Body Depth 1,47 0.84 0.36  0.08 

Tail Peduncle 1,47 0.00 0.96  -0.13 

Weight 1,47 0.58 0.45  0.02 
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Table D.3: Within generation pairwise comparisons of significant relative warps for three 
generations of female mosquitofish.   Effect sizes are Cohen’s d with non-exposure treatment or 
lineage as the baseline value.   
 

  RW df F-value p-value Significance Effect size 

Gen 1 1 vs 2 

RW 1 1,47 0.01 0.94  -0.11 

RW 3 1,47 3.66 0.06 * -0.55 

RW 5 1,47 2.11 0.15  -0.43 

RW 8 1,47 0.01 0.94  0.07 

Gen 2 

3 vs 4 

RW 1 1,71 1.54 0.22  0.8 

RW 3 1,71 3.64 0.06 * -0.38 

RW 5 1,71 0.61 0.43  -0.16 

RW 8 1,71 4.46 0.04 ** -0.47 

5 vs 6 

RW 1 1,47 14.39 0.0004 ** 1.07 

RW 3 1,47 1.07 0.31  0.30 

RW 5 1,47 0.20 0.66  -0.13 

RW 8 1,47 6.58 0.01 ** 0.73 

3 vs 5 

RW 1 1,61 4.84 0.03 ** -0.24 

RW 3 1,61 7.74 0.007 ** -0.99 

RW 5 1,61 6.13 0.02 ** -0.39 

RW 8 1,61 1.84 0.18  -0.34 

4 vs 6 

RW 1 1,56 0.92 0.34  0.50 

RW 3 1,56 0.05 0.83  -0.18 

RW 5 1,56 2.07 0.16  -0.38 

RW 8 1,56 0.05 0.02 ** 0.89 

3 vs 6 

RW 1 1,59 5.20 0.03 ** 0.81 

RW 3 1,59 1.65 0.20  -0.56 

RW 5 1,59 7.32 0.009 ** -0.50 

RW 8 1,59 5.27 0.03 ** 0.55 

Gen 3 

7 vs 8 

RW 1 1,50 2.91 0.09 * -0.34 

RW 3 1,50 1.39 0.24  0.30 

RW 5 1,50 7.63 0.008 ** 0.76 

RW 8 1,50 0.43 0.51  -0.15 

 
9 vs 10 

 

RW 1 1,49 0.47 0.50  0.19 

RW 3 1,49 0.88 0.35  0.23 

RW 5 1,49 1.52 0.22  -0.34 

RW 8 1,49 0.10 0.76  -0.03 

 
7 vs 9 

 

RW 1 1,49 1.46 0.23  -0.33 

RW 3 1,49 1.12 0.30  0.17 

RW 5 1,49 1.41 0.24  0.33 

RW 8 1,49 0.47 0.50  0.18 

 
8 vs 10 

 

RW 1 1,50 0.69 0.41  0.21 

RW 3 1,50 0.27 0.61  0.15 

RW 5 1,50 6.70 0.01 ** -0.71 

RW 8 1,50 0.91 0.35  0.22 

 
7 vs 10 

RW 1 1,49 0.40 0.53  -0.11 

RW 3 1,49 2.52 0.12  0.38 

RW 5 1,49 0.03 0.87  -0.05 

RW 8 1,49 0.11 0.74  0.12 

 



166 
 

Table D.4: Among generation pairwise comparisons of significant relative warps for three 
generations of female mosquitofish.  Effect sizes are Cohen’s d with earlier generations as the 

baseline value.   

  RW df F-value p-value Significance Effect size 

Gen 1 and  
Gen 2 

1 vs 3 

RW 1 1,59 4.64 0.04 ** 0.41 

RW 3 1,59 19.54 <0.0001 ** 1.21 

RW 5 1,59 8.23 0.006 ** -0.87 

RW 8 1,59 5.24 0.03 ** -0.59 

1 vs 4 

RW 1 1,56 10.10 0.002 ** 0.61 

RW 3 1,56 5.28 0.03 ** 0.71 

RW 5 1,56 16.37 0.0002 ** -1.07 

RW 8 1,56 9.37 0.003 ** -0.87 

2 vs 5 

RW 1 1,49 4.11 0.05 * 0.55 

RW 3 1,49 7.02 0.01 ** 0.73 

RW 5 1,49 11.08 0.002 ** -0.91 

RW 8 1,49 7.25 0.01 ** -0.71 

2 vs 6 

RW 1 1,47 23.94 <0.0001 ** 1.37 

RW 3 1,47 10.86 0.002 ** 0.92 

RW 5 1,47 12.51 0.0009 ** -0.99 

RW 8 1,47 0.57 0.45  -0.21 

Gen 1 and  
Gen 3 

1 vs 7 

RW 1 1,46 12.80 0.0008 ** 0.65 

RW 3 1,46 0.46 0.50  0.06 

RW 5 1,46 22.38 <0.0001 ** -1.37 

RW 8 1,46 5.29 0.03 ** -0.65 

 
1 vs 8 

 

RW 1 1,47 5.16 0.03 ** 0.34 

RW 3 1,47 3.99 0.05 * 0.54 

RW 5 1,47 9.76 0.003 ** -0.90 

RW 8 1,47 5.95 0.02 ** -0.69 

 
2 vs 9 

 

RW 1 1,49 6.56 0.01 ** 0.70 

RW 3 1,49 10.75 0.002 ** 0.71 

RW 5 1,49 5.65 0.02 ** -0.65 

RW 8 1,49 3.19 0.08 * -0.49 

 
2 vs 10 

 

RW 1 1,49 8.91 0.004 ** 0.79 

RW 3 1,49 15.94 0.0002 ** 1.03 

RW 5 1,49 14.15 0.0005 ** -1.03 

RW 8 1,49 3.00 0.09 * -0.48 

 

  



167 
 

Table D.4 CONTINUED 

  RW df F-value p-value Significance Effect size 

Gen 2 and  
Gen 3 

3 vs 7 

RW 1 1,61 0.01 0.91  0.29 

RW 3 1,61 5.64 0.02 ** -0.78 

RW 5 1,61 9.40 0.003 ** -0.53 

RW 8 1,61 0.29 0.59  -0.18 

 
4 vs 8 

 

RW 1 1,59 6.91 0.01 ** -0.32 

RW 3 1,59 0.13 0.72  -0.22 

RW 5 1,59 1.23 0.27  0.28 

RW 8 1,59 0.33 0.57  0.09 

 
5 vs 9 

 

RW 1 1,49 0.83 0.37  0.25 

RW 3 1,49 0.31 0.58  0.14 

RW 5 1,49 0.55 0.46  0.21 

RW 8 1,49 1.33 0.26  0.32 

 
6 vs 10 

 

RW 1 1,47 4.91 0.03 ** -0.63 

RW 3 1,47 0.15 0.70  0.11 

RW 5 1,47 0.01 0.94  -0.02 

RW 8 1,47 3.88 0.05 * -0.39 
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Manuscript Abstract 

 Sex ratio and sexual dimorphism have long been of interest in population and 

evolutionary ecology, but consequences for communities and ecosystems remain untested. Sex 

ratio could influence ecological conditions whenever sexual dimorphism is associated with 

ecological dimorphism in species with strong ecological interactions. We tested for ecological 

implications of sex ratio variation in the sexually dimorphic western mosquitofish, Gambusia 

affinis. This species causes strong pelagic trophic cascades and exhibits substantial variation in 

adult sex ratios. We found that female-biased populations induced stronger pelagic trophic 

cascades compared to male-biased populations, causing larger changes to key community and 

ecosystem responses including zooplankton abundance, phytoplankton abundance, 
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productivity, pH, and temperature. The magnitude of such effects indicates that sex ratio is 

important for mediating the ecological role of mosquitofish. Because sex ratio variation and 

sexual dimorphism are common features of natural populations, our findings should encourage 

broader consideration of the ecological significance of sex ratio variation in nature, including the 

relative contributions of various sexually dimorphic traits to these effects. 

Keywords 

Sexual dimorphism, trophic cascade, mosquitofish, Gambusia, freshwater ecology 

Introduction 

Sex ratio variation is a longstanding theme in evolutionary biology. Fisher [1] famously 

theorized that natural selection should maintain 1:1 sex ratios by continuously favoring the rare 

sex, thereby always returning skewed sex ratios to equality. In nature, skewed sex ratios are a 

common observation across the tree of life, and explanations include differential mortality rates 

for males and females [2], inbreeding and local competition for mates [3], endocrine-disrupting 

environmental pollutants [4,5], and adaptive maternal effects that allow differential investment 

in male or female offspring [6–8]. Despite the attention paid to the causes of sex ratio variation 

in nature, and in some cases its consequences for population growth [9], theory and tests of its 

effects on communities and ecosystems are lacking. This lack of attention may in part owe to a 

presumption that the sexes of most species are ecologically equivalent in their effects on 

communities and ecosystems. 

However, many species show marked sexual dimorphism in body size and other traits 

related to ecological function. Sexual size dimorphism has the potential to influence resource 

use because prey capture is size-dependent [10] and body size influences overall feeding rates 

[11]. Body size and physiology also influence rates of nutrient excretion [12], which have 

important effects for ecosystem processes [13]. Males and females can also be dimorphic in 
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behavioral or morphological traits, affecting resource use [14]. The widespread observations 

that sex ratios vary in nature, and that males and females often differ in key ecological traits, 

suggest that sex ratio variation may have impacts on communities and ecosystems. These 

effects may be particularly prevalent when sex ratio variation is present in ecologically 

important species, such as keystone, foundation, dominant, or invasive species.  

 

Figure E.1: Sex ratio variation over part of the present day range of mosquitofish (Gambusia 
affinis and G. holbrooki).   These species are both widely introduced for mosquito control and 

were grouped together into a single species until 1988 [55]. Therefore, data for both species are 

presented. Yellow represents the approximate present day range of mosquitofish, while green 

hatching represents their native range (modified from [56], with supplemental data from 

[28,57]). Their range is likely to be larger than presented due to the unreported nature of 

historical transplantations. For studies reporting more than two sex ratios (within a region or in 

a single location through time), two pie charts were plotted representing the most female-

biased and most male-biased sample taken. Data and sources are reported in Table S1. 

 

We examined the ecological consequences of sex ratio variation in the western 

mosquitofish (Gambusia affinis). Mosquitofish (G. affinis and its congener G. holbrooki) are small 

(< 6 cm) livebearing fishes (Poeciliidae), which lack sexual dimorphism in age and size at 

maturity [15], but show pronounced sexual size dimorphism (Fig. 1) due to differences in post-

maturation growth rates. Empirical tests show female mosquitofish display higher feeding rates 

per unit body size [16,17] and typically show greater niche breadths, with a notable preference 
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for prey of larger body sizes [18,19]. Females also spend relatively more time foraging when in 

the presence of other females compared to when in the presence of males [20,21]. In addition 

to these dimorphic foraging characteristics, the relatively large size of females could increase 

overall nutrient excretion rates for the same density of fish in female-biased populations 

compared to male-biased populations, which could in-turn affect primary production [13]. As a 

result of these sex-specific tendencies, we predict that female-biased populations induce 

stronger pelagic trophic cascades compared to male-biased populations. We expect these 

effects to be strong because mosquitofish play a major role in aquatic ecosystems by altering 

invertebrate communities and driving strong trophic cascades that can even change abiotic 

conditions, including light penetration and nutrient dynamics [22,23]. 

 We performed a pond mesocosm experiment to test this prediction. The experiment 

was conducted in California (USA), where the western mosquitofish was introduced in 1922 and 

has since been spread by mosquito vector control districts (MVCD’s) as a means of disease 

control [24], most notably West Nile Virus [25]. We obtained fish for our experiments from the 

Sacramento-Yolo MVCD (Elk Grove, CA, USA). This district alone stocks about one million 

mosquitofish annually over an area of about 5,000 hectares of agricultural fields, wildlife 

refuges, and private lands in Sacramento and Yolo Counties, California [26]. Mosquitofish were 

historically introduced for the same purposes elsewhere and are today one of the most 

widespread and abundant freshwater fishes in the world ([27], Fig. 1). Their strong negative 

consequences for native fauna across their global range has resulted in their being listed as one 

of the world’s 100 worst invasive species by the IUCN [28]. 

Mosquitofish sex ratios vary substantially across their present-day range (Fig. 1). The 

mechanism of sex determinism is chromosomal, and primary and secondary sex ratios have 

rarely been found to differ from 1:1 (but see [8]). Therefore, sex ratio variation has primarily 
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been attributed to differential postpartum mortality induced by a variety of physiological and 

ecological mechanisms, including temperature, salinity, seasonality, and interactions with other 

species. Predation may be a particularly important driver. For example, avian predators prefer 

females over males, leading to sex ratio estimates as high as 97% males in some locations [29]. 

Female-biased populations are more common, and are often attributed to the greater longevity 

of females (often > 6 months) relative to males (often < 6 months) [30]. Therefore, mosquitofish 

are a relevant system to understand whether sex ratio variation shapes ecological effects 

because they are dimorphic, ecologically important, and show substantial sex ratio variation 

across their global range. 

Materials and Methods  

Design 

We created a 6x6 array of experimental pond mesocosms (1136 L Rubbermaid® stock 

tanks) on a level field on the grounds of Long Marine Laboratory at the University of California, 

Santa Cruz. Each mesocosm was layered with 19 L of sand and filled with dechlorinated 

municipal water. We inoculated each mesocosm with 4 L of thoroughly homogenized sediment 

from Westlake Pond (Santa Cruz, CA) to introduce nutrients and benthic communities.  After the 

sediment settled (~5 days) a cinderblock (9.3 x 19.0 x 39.3 cm3) was placed in the center of each 

mesocosm for habitat cover, and the water was inoculated with a homogenized plankton 

community comprised of multiple horizontal plankton tows (80 µm mesh) at Westlake Pond.  

Experimental fish were obtained from the husbandry facility operated by the 

Sacramento-Yolo MVCD. Fish at or above the approximate size at maturity were sex-sorted 

before being assigned to treatments. Fish were identified as adult males if they had evidence of 

a gonopodium and as adult females if they were larger than the smallest adult male and lacked 

evidence of a gonopodium [31]. Our experiment thus incorporated the normal range of sexual 
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size dimorphism, as well as other aspects of dimorphism, inherent to the species. We then 

counted out sex ratio treatments of 0, 25, 50, 75, and 100 percent males at a density of 12 

individual fish per mesocosm. We chose this density because it is consistent with stocking 

densities used by MVCD’s and is within the range of densities used in similar experiments 

[22,23].  Our design included a fishless reference treatment, yielding a grand total of six 

treatments, each with six replicates. Treatments were assigned to the mesocosm array using a 

latin-squares random number generator. Fish were introduced to the mesocosms on March 31, 

2014, one week after adding plankton to the pond communities. On the same day, we placed 

two unglazed ceramic tiles (2.8 x 4.3 cm2) on the cinderblock in each mesocosm to measure 

periphyton accrual. A 1.27 cm mesh bird-netting was used over all mesocosms throughout the 

experiment to prevent catastrophic avian and mammalian disturbance, meanwhile allowing for 

exposure to all other natural physical, chemical, and biological elements, including oviposition 

by insects and amphibians. 

Sampling 

Mesocosms were sampled two and four weeks after fish introduction for various pelagic 

responses including zooplankton abundance, phytoplankton abundance, primary productivity 

and respiration, pH, temperature at dusk, and water nutrient concentrations. Zooplankton 

samples were taken from a 1 L depth-integrated water sample filtered through 80 µm mesh and 

preserved in 80% ethanol. All zooplankters were thereafter counted and identified to the lowest 

taxonomical distinction possible at 100x magnification. Phytoplankton abundance was 

estimated as the pelagic chlorophyll a concentration in 1 L of water. Water was filtered through 

a 0.7 µm glass microfiber filter (Whatman® GF/F) and the filters frozen for less than four weeks 

when we extracted the chlorophyll a with 90% acetone for 24 hours at 2° C [32]. The 

concentration of chlorophyll a in the acetone was then measured fluorometrically on a Trilogy 
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Laboratory Fluorometer (Turner Designs®) using the Turner Designs non-acid module. 

Ecosystem respiration (ER), net primary productivity (NPP), and gross primary productivity (GPP) 

were estimated using diel change in dissolved oxygen measured at dawn, dusk, and the 

following dawn, using a handheld sonde (YSI® Pro 2030) as in [33]. Responses are reported in 

units of dissolved oxygen concentration (mg/L) change over time. ER is, by convention, reported 

with negative values which represent the decrease in dissolved oxygen with increasing 

respiration. Pond temperature and pH were measured with a handheld sonde (Oakton® PTTestr 

35). To determine water nutrient concentrations 50 mL water samples were taken from 5 cm 

below the surface of each mesocosm, filtered through 0.7 µm glass microfiber filters 

(Whatman® GF/F), and frozen. A week later the water samples were thawed and analyzed for 

soluble reactive phosphorous (PO4) and nitrate+nitrite (NOx) concentrations on a flow injection 

analyzer (Lachat® QuickChem) following standard methods [32].  

At the end of the experiment (April 28, week 4), we collected samples for benthic 

community composition, snail abundance, periphyton accrual, and larval amphibian abundance. 

While mosquitofish primarily feed on pelagic food resources [15], their use of benthic resources 

has also been observed to cause changes to benthic communities [22].  Benthic community 

composition was determined from invertebrate counts taken from an 18 cm diameter benthic 

core in a common central location of each mesocosm. The dry mass of the dominant benthic 

invertebrate group, Chironomidae (nonbiting midges), was then determined after drying at 60° 

C for 48 hours. All snails (Planorbidae and Physidae) were then picked from each mesocosm, 

counted, and then dried and weighed in the same manner as the chironomids above. Periphyton 

tiles were scrubbed and rinsed into a filter apparatus and then filtered through a 0.7 µm glass 

microfiber filter (Whatman® GF/F). The filters were frozen and then analyzed for chlorophyll a 

as in the phytoplankton abundance estimation above. Larval Pacific tree frogs (Pseudacris 
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regilla) were counted in mesocosms where they were present, euthanized using an overdose of 

tricaine methanesulfonate (MS-222), and dry mass obtained using methods above. 

On April 29, we captured all fish from each mesocosm and ran excretion trials to 

estimate mesocosm-level fish N and P excretion. Fish within a mesocosm were temporarily held 

in a 10 L floating tub until all fish were captured. Thereafter, all fish from a given mesocosm 

were introduced to a 2 L Nalgene® bottle filled with 1.5 L of dechlorinated city water, and 

floated in their respective mesocosm for 30-60 minutes. In fishless treatments, a Nalgene® 

bottle was floated in the same manner with the same water, however without any fish added. A 

water sample was then taken from each bottle as in the NOx and PO4 measurements above, 

and its ammonium (NH4) and PO4 concentrations were determined using the same 

instrumentation and standard practice [32]. Excretion rate was calculated for all fish treatments 

as the concentration measured in each tank minus the mean-fishless concentration, all divided 

by the excretion trial time length. After the excretion assay, we euthanized experimental fish 

using an overdose of MS-222. Fish were then dried and weighed as above. 

Analyses 

 At the end of the experiment we discovered that four fish had been initially 

misidentified to sex and three individuals had died (0.8% overall mortality). No fish in the even 

sex ratio treatment died nor were misidentified to sex, so to avoid dropping replicates, we 

combined the 0% and 25% male treatments into a single ‘female-biased’ treatment (N=12 

replicates) and the 75% and 100% male treatments into a single ‘male-biased’ treatment (N=12 

replicates). We then ran two separate but identical analyses to determine the differences 

between 1) the male-biased treatment versus the female-biased treatment, representing the 

ecological effects of sex ratio variation and 2) the fishless treatment versus the ‘even’ (50:50 

female:male) treatment, representing the ecological effects of addition of mosquitofish as 
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occurs in the context of an introduction or invasion. Mosquitofish introduction is known to have 

very strong impacts on most of the ecological variables measured, and the main purpose of this 

latter analysis was to provide a frame of reference effect size to better interpret the relative 

importance of sex ratio effects.  

 We employed MANOVA of repeated measures for pelagic (time series) responses. 

Treatment and Time x Treatment interaction effects were of primary interest. Treatment effects 

were also tested independently for each time point using student’s t-tests, after checking for 

equality of variances using Levene’s test (α = 0.05) [34]. If Levene’s test was significant for a 

given response, then Welch’s t-test for unequal variances was used [35]. Bonferroni corrections 

were implemented for interpretation of significance for the two non-independent t-tests 

performed on time-series data (i.e. those performed at both times separately). Benthic 

responses, excretion rates, and fish biomass were measured once at the end of the experiment, 

and thus were analyzed using t-tests as above. Analyses were performed in JMP® Pro (11.2.0) 

and R Programming Environment (3.1.2) [36]. Zooplankton abundance data were log10(x+1) 

transformed in order to meet assumptions of normality of residuals. A summary of all the above 

statistical tests is provided in Table S2.  

Calculations of effect size (Cohen’s d, where d=(M1 - M2)/spooled , spooled =√[(s 12 + s 22) / 2], 

M=mean, and s=standard deviation) [37] were used to compare sex ratio effects to the effect of 

mosquitofish intoduction. For pelagic responses, which were measured twice, we used data 

from the sampling time point showing the greatest sex ratio effect. Post hoc path analyses were 

used to explore the strength of potential causal linkages among response variables. These 

analyses were performed on standardized data in R with the package ‘lavaan’ [38]. Lastly, we 

examined whether total fish biomass explained variation in important pelagic responses within 

grouped sex ratio treatments using simple linear regression.  



177 
 

Results 

 Female-biased treatments had lower abundances of crustacean zooplankton 

(dominated by Daphnia, Bosmina, Sida, and calanoid copepods) than male-biased treatments 

(F1,22=11.620, P=0.003). Rotifer abundance (dominated by the family Brachionidae) did not differ 

between sex ratio treatments (F1,22=1.069, P=0.312). Female-biased treatments had higher 

phytoplankton abundance (F1,22=3.953, P=0.059) and higher rates of NPP (F1,22=4.819, P=0.039), 

ER (F1,22=12.315, P=0.002), and GPP (F1,22=9.441, P=0.006). Although the Sex Ratio effect was 

nonsignificant for pH (F1,22=2.084, P=0.163) and temperature (F1,22=2.698, P=0.115), the Time x 

Sex Ratio interaction effects were significant (pH: F1,22=4.400, P=0.048, temperature: F1,22=9.333, 

P=0.006). Overall these results suggest that female-biased populations induced stronger pelagic 

trophic cascades when compared with male-biased populations by driving a relative decrease in 

crustacean zooplankton abundance, an increase in phytoplankton abundance, and an increase 

in ecosystem production and respiration (Fig. 2). Concentrations of NOx and PO4 were not 

influenced by Sex Ratio (NOx: F1,22=0.021, P=0.887, PO4: F1,22=1.742, P=0.201) or the Time x Sex 

Ratio interaction (NOx: F1,22=0.078, P=0.783, PO4: F1,22=2.046, P=0.167). The t-tests performed 

to analyze pelagic response trends at each time separately were in general support of results 

from the MANOVA of repeated measures. Pelagic responses, other than crustacean zooplankton 

abundance, were significant at week 2 but not at week 4 (Table S2).  

Benthic invertebrate samples were dominated by chironomid larvae (98% of all 

organisms counted). Sex ratio had no effect on their abundance (t22=0.164, P=0.871), total mass 

(t22=0.499, P=0.622), or mean individual mass (t22=0.154, P=0.879). Mean individual snail mass 

was larger in female-biased treatments (mean=0.061 g, S.D.=0.025) than male-biased  
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Figure E.2: Impacts of mosquitofish sex ratio on the strength of various components of the 
pelagic trophic cascade (mean ± SE).  Ponds with female-biased sex ratios had relatively lower 

densities of crustacean zooplankton, higher densities of phytoplankton, higher net primary 

productivity (NPP), higher pH, and higher temperature. P-values are reported for the Sex Ratio 

and Time*Sex Ratio effects from the MANOVA of repeated measures. 

  



179 
 

treatments (mean=0.045 g, S.D.=0.013) (Welch’s t14.83=1.883, P=0.040), but there were no 

differences in overall snail abundance (t22=1.189, P=0.247) or biomass (t22=0.242, P=0.811). 

Periphyton accrual was not affected by sex ratio (t22=1.243, P=0.227).  

Female-biased treatments had a mean fish biomass of 1.877 g (S.D.=0.1707) and 

excretion rates of 4.470 µg N per minute (S.D.=1.0197) and 0.485 µg P per minute (S.D.=0.4430), 

while male-biased treatments had a mean fish biomass of 0.962 g (S.D.= 0.2454) and excretion 

rates of 1.807 µg N per minute (S.D.=0.4667) and 0.132 µg P per minute (S.D.=0.3445). These 

differences were significant for biomass of mosquitofish (t22=10.602, P<0.001) and excretion 

rates for both N (t22=8.225, P<0.001) and P (t22=2.178, P=0.040). 

Amphibian eggs were deposited in at least one replicate of each treatment within the 

first week of fish introduction. However, larval amphibians were only recovered in three 

replicates of the fishless treatment at week 4. The biomass of tadpoles in those replicates 

ranged from 0.051 g to 0.289 g. 

Mosquitofish addition (relative to fishless conditions) affected all pelagic responses 

except for NOx concentration (Table S2, Fig. S1). Mosquitofish addition also had no effect on the 

number of snails (t10=0.282, P=0.784) and chironomids (t10=0.772, P=0.458), the mean individual 

snail mass (t10=0.444, P=0.667) and the mean individual chironomid mass (t10=1.031, P=0.327), 

or the overall snail mass (t10=0.005, P=0.996) and overall chironomid mass (t10=1.367, P=0.202). 

Periphyton accrual was higher in the mosquitofish addition treatment (mean=0.172 µg/cm2, 

S.D.=0.1229) than the fishless (mean=0.049 µg/cm2, S.D.=0.0158) treatment (t10=2.433, 

P=0.035). 

Upper effect sizes were calculated on week 2 data for all pelagic responses except for 

zooplankton abundance, which was performed on week 4 data. Sex ratio effect sizes for all 

significant responses were “large” (i.e. greater than 0.8, [37])(Fig. 3). Interestingly, although sex-
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ratio effects were less than half those of mosquitofish introduction (presence versus absence) 

female-biased sex-ratio effects nearly always reinforced introduction effects (Fig. 3). Path 

analyses were performed to investigate the drivers of phytoplankton abundance, NPP, and snail 

size across all treatments. We found that phytoplankton abundance at week 2 across all 

treatments with fish was affected by fish excretion rather than by crustacean zooplankton 

abundance (Fig. S2). NPP was found to be driven by direct effects of both temperature and 

phytoplankton abundance (Fig. S3).  Snail size was related to the number of females present in a 

mesocosm, but not significantly related to temperature or the amount of primary production 

(Fig. S4). Linear regressions of significant pelagic responses on biomass were not significant 

(α=0.10) in any case (Table S3). 

 

Figure E.3: Comparisons of upper sex ratio effect sizes to effect sizes of mosquitofish 
introduction at an even sex ratio.   Significance symbols from t-tests (p <0.10⁺, p <0.05*) (Table 

S2) are based on unadjusted p-values for benthic responses and Bonferroni-adjusted p-values 

(i.e. 2 x p) for Pelagic responses since they were measured twice. Effects going in the same 

direction (positive or negative) indicate that female-biased treatments exacerbated the effects 

of mosquitofish introduction relative to male-biased treatments. 
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Discussion 

Mosquitofish are a globally introduced freshwater fish showing pronounced sexual and 

ecological dimorphism and widespread variation in adult sex ratios (Fig. 1, [15,31]).  Female 

mosquitofish are larger than males, prefer larger food items [18,19], exhibit higher feeding rates 

[16,17], and spend more time foraging in the presence of other females [20,21]. We therefore 

predicted that female-biased populations would induce stronger trophic cascades than male-

biased populations. Our results show that female-biased populations also exhibit higher 

nitrogen and phosphorous excretion rates, as expected given the sexual size dimorphism, which 

could also lead to an increase in trophic cascade strength.  

Consistent with this prediction, we found that experimental ponds with female-biased 

populations had reduced crustacean zooplankton abundances and increased phytoplankton 

abundances relative to ponds with male-biased populations (Fig. 2). Female-biased ponds had 

higher water temperatures, likely caused by the increase in turbidity associated with increased 

phytoplankton abundance, which can increase the absorption of solar heat energy [39]. Female-

biased ponds also had higher NPP and pH compared to male-biased ponds. Increases in NPP can 

be attributed to both the increase in pond temperature and the increase in phytoplankton 

abundance (Fig. S3). Pond pH increases when primary production reduces the amount of 

dissolved carbon dioxide, shifting the equilibrium in the aqueous carbonate system [40]. While 

the large effect of mosquitofish introduction on pond temperature and pH has been noted in 

the past [22,41], our results suggest that sex ratio has a surprisingly large role mediating the 

magnitude of these effects (Fig. 3).  

Early on in our experiment (week 2), the effect of sex ratio for trophic cascades was 

clear, despite relatively modest effects of sex ratio on crustacean zooplankton abundance. 

Excretion is known to play a large role in contributing to trophic cascades [43], and thus, 
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treatment differences in excretion could have driven this early cascade (Fig. S2). This trend may 

additionally highlight the importance of behavioral changes induced by perceived threats of 

predation [42]. In this case, zooplankton could have reduced their foraging rates to a greater 

extent in female-biased treatments relative to male biased treatments.  Later in our experiment 

(week 4) the cascading effects of sex ratio diminished, while zooplankton effects greatly 

strengthened. It is possible that proliferation of grazing-resistant forms of phytoplankton led to 

the observed reduction in trophic cascade strength through time (Fig. 2, Fig. S1, [43]) or that 

these patterns represent natural cycling of zooplankton and phytoplankton abundances.  

Mosquitofish are typically consumers of pelagic and epipelagic resources [15]. However, 

mosquitofish may also consume benthic food resources, especially in the littoral zone. In our 

experiment, mosquitofish introduction did not decrease chironomid density, which may be due 

to greater resources available in the pelagic zone of our artificial pond mesocosms. Indeed, the 

only significant effect of mosquitofish on benthic resources (P=0.04) was for snails. Snails are 

not a major diet item, yet there is evidence that they are occasionally consumed, especially by 

large females [44]. Surprisingly, sex ratio influenced the average individual size of snails while 

fish introduction had no effect on snail size. Predation is known to plastically induce higher 

growth rates in snails [45]. Female-biased mesocosms had larger snails than male-biased 

mesocosms, which could be the result of faster growth rates of snails in response to the 

presence of snail-consuming females. Alternatively, both the higher temperatures and the 

relatively high rate of primary production in ponds with female-biased sex ratios could have led 

to faster snail growth. Path analysis suggests that the number of females present had a larger 

effect on snail size than did temperature or NPP (Fig. S4); however, the mechanism driving this 

effect remains unclear. 
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Mosquitofish have been introduced worldwide throughout the past century for 

mosquito biocontrol purposes, resulting in unintended consequences for native biodiversity. 

Their negative impacts on amphibians and native fishes have been the subject of extensive 

study (reviewed in [15]). In our experiment, amphibians deposited eggs in all treatments, but 

larval amphibians were found only in mesocosms lacking mosquitofish. The introduction of 

mosquitofish into historically fishless habitats (e.g. isolated springs) has led to declines in native 

invertebrates as well [46]. Because of these global impacts, mosquitofish have been nicknamed 

the ‘plague minnow’ [47] and identified as one of the world’s 100 worst invasive species [48]. 

Where mosquitofish have invaded, population control efforts are commonly employed to 

mitigate such negative consequences. Traditional methods of mosquitofish removal such as the 

use of minnow traps may selectively remove females due to their larger body size [20]. A 

recently described control method proposes to use ‘Trojan sex chromosomes’ to control 

mosquitofish abundance by generating females that can only produce male offspring, with the 

goal of creating male-biased populations in order to lower reproductive output and increase the 

probability of local extinction [46]. Our results suggest that control measures that reduce the 

relative abundance of females may have added benefits for aquatic communities and 

ecosystems since it is the females that cause the strongest ecological effects. 

Our experimental design sought to control fish density while allowing for natural 

variation in biomass associated with sexual size dimorphism. Controlling density was necessary 

because density strongly influences behavior of these social fish [49,50].  At the same time, 

including the effects of sexual size dimorphism was important because it is a principal 

expression of sexual dimorphism in mosquitofish, a widespread form of dimorphism in general, 

and theoretically important due to its effects on consumption and excretion. Biomass and sex 

ratio were strongly collinear in our experiment (Fig. S5), suggesting sexual size dimorphism is 
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indeed an important component of our findings, but it is important to recognize that our study 

design does not preclude effects of other forms of ecological dimorphism. Indeed biomass 

variation from size dimorphism did not explain a significant amount of variation in pelagic 

responses within treatments (Table S3). Moreover, one might predict some amount of sex ratio 

effects tied to other ecological aspects of sexual dimorphism. Empirical evidence suggests 

females have higher feeding rates than males per unit body size [16,17] and spend more time 

feeding when in the presence of other females [20,21]. In addition, mosquitofish size 

dimorphism is largely related to differences in post-maturation growth rates. Since excretion 

rates are determined partly by instantaneous growth rate [51], it is likely that there exists some 

size-specific sexual dimorphism in excretion rates. Future investigation of sex-ratio effects might 

thus profitably employ study designs to isolate and estimate the ecological effects of size- and 

non-size components of sexual dimorphism. 

Conclusions 

Our work demonstrates that sex ratio variation in ecologically important species 

showing sexual dimorphism can lead to marked ecological effects. This study adds to a growing 

literature suggesting that intraspecific variation may be important for shaping ecology [52–54]. 

Indeed, sexual dimorphism is one of the most common and well-known forms of intraspecific 

trait variation in the wild and many populations in nature show marked demographic 

differences in sex ratios from the commonly assumed expectation of 1:1 [2–5,7]. As such, we 

suggest that sex ratios may be a common driver of community and ecosystem variation across a 

wide diversity of organisms and habitat types. We recommend future investigations into other 

study systems where there is known sexual dimorphism in functional traits, where the focal 

species is ecologically important (e.g. keystone species, invasive species, dominant species), and 

where there is substantial sex ratio variation in the wild. Subsequent work with size dimorphic 
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species should aim to isolate biomass-dependent and biomass-independent sex ratio effects. 

Such work can further inform our understanding of the ecological importance of one of the most  
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