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Abstract

Few studies have examined associations between different subcategories of cholesterol and cognitive function.
We examined relationships between total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density
lipoprotein cholesterol (LDL), triglyceride levels and cognitive performance in the Maine-Syracuse Longitudinal Study,
a community-based study of cardiovascular risk factors. Cross-sectional analyses were undertaken on data from 540
participants, aged 60 to 98 years, free of dementia and stroke. TC, HDL, LDL, and triglyceride levels were obtained.
Cognitive function was assessed using a thorough neuropsychological test battery, including domains of cognitive
function indexed by multiple cognitive tests. The cognitive outcomes studied were as follows: Visual-Spatial Memory and
Organization, Verbal and Working Memory, Scanning and Tracking, Abstract Reasoning, a Global Composite score, and
the Mini-Mental State Examination (MMSE). Significant positive associations were observed between HDL-cholesterol
and the Global Composite score, Working Memory, and the MMSE after adjustment for demographic and cardiovascular
risk factors. Participants with desirable levels of HDL (≥60 mg/dL) had the highest scores on all cognitive outcomes.
There were no significant associations observed between TC, LDL, or triglyceride concentrations and cognition. In older
individuals, HDL-cholesterol was related to a composite of Working Memory tests and for general measures of cognitive
ability when adjusted for cardiovascular variables. We speculate that persons over 60 are survivors and thus less likely to
show cognitive deficit in relation to TC, LDL-cholesterol, and triglycerides. Longitudinal studies are needed to examine
relations between specific cognitive abilities and the different subcategories of cholesterol. (JINS, 2014, 20, 961–970)
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INTRODUCTION

Associations between cholesterol and cognitive function are
not clearly understood. Understanding of this relationship
is made difficult by the fact that cholesterol is vital for
brain development and function (Dietschy & Turley, 2004;
Koudinov & Koudinova, 2001); yet in excess some choles-
terols are a risk factor for cardiovascular disease (CVD)
(Hillbrand & Spitz, 1997).
The liver produces 70 to 80% of the cholesterol and

triglycerides in the body. Large lipoproteins, called very low
density lipoproteins (VLDLs) carry cholesterol, triglycerides,
and proteins called apolipoproteins. The density of the

lipoproteins refers to the ratio of the lipid to protein, that is, a
high ratio corresponds to low density (Hillbrand & Spitz,
1997). The VLDLs travel through the blood stream releasing
triglycerides that provide energy to body tissues and are
consequently stored as fat. VLDLs become cholesterol-rich
low-density lipoproteins (LDL) as triglycerides are released.
This lipid subfraction is received by specialized LDL recep-
tors throughout the body for the manufacture and repair of
cell membranes and for the synthesis of steroid hormones and
bile acids. However, when receptor activity fails to meet LDL
concentrations, levels of the latter increase and are deposited
in the arteries, the atherosclerotic process, which may lead to
heart disease, myocardial infarction and stroke. Elevated
blood triglycerides have a dose-dependent association with
cardiovascular-related and all-cause mortality (Liu et al.,
2013). Thus LDL-cholesterol and triglycerides have been
termed in lay terms as “bad cholesterol.”
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In contrast, high-density lipoprotein cholesterol (HDL)
is related to lower prevalence of cardiovascular mortality
(Silbernagel et al., 2013) and incidence of coronary heart
disease (Tehrani et al., 2013). HDL-cholesterol serves to
remove excess cholesterol from the cells, and transports it
back to the liver to be disposed through the bile, thereby
preventing atherosclerosis and protecting the arteries (Felix-
Redondo, Grau, & Fernandez-Berges, 2013), in addition to
anti-inflammatory (Vaisar et al., 2007) and antioxidant
effects (Elsoe et al., 2012). Therefore, the balance of LDL
and HDL levels determines the degree of atherosclerotic
plaque formation and subsequent disease (Felix-Redondo
et al., 2013). Low HDL has been associated with decreased
hippocampal volume, a particularly vulnerable area of the
brain associated with neurodegenerative disease (Wolf et al.,
2004). Hence HDL is referred to as “good cholesterol”
(Hillbrand & Spitz, 1997).
Based on these mechanisms, it could be predicted that total

cholesterol (TC), LDL-cholesterol, and triglycerides (the
“bad cholesterols”) would be associated with lower levels of
cognitive performance given that risk factors that raise
the risk of heart disease and stroke are generally bad for
cognition (Waldstein & Elias, 2001, 2014). It may also be
predicted that “good cholesterol,” HDL-cholesterol, given its
anti-atherogenic properties (Nofer et al., 2002), may be
positively associated with cognitive performance. However,
the neuropsychology literature indicates that these relations
in the expected direction are not always observed.
A meta-analysis and review of 18 investigations examin-

ing cholesterol, dementia and cognitive decline, has indicated
an association between high midlife TC and lower cognitive
performance in late life (Anstey, Lipnicki, & Low, 2008). Of
five studies examining TC in relation to cognitive decline,
Anstey et al. (2008) report that two found higher TC to be
associated with a reduced risk of cognitive decline (Swan,
Larue, Carmelli, Reed, & Fabsitz, 1992; Wada et al., 1997),
while the other three found no associations (Kalmijn,
Feskens, Launer, & Kromhout, 1996; Karlamangla, Singer,
Reuben, & Seeman, 2004; Reitz, Luchsinger, Tang, Manly,
& Mayeux, 2005).
However, prospective studies with the Framingham Heart

Study (Elias, Elias, D’Agostino, Sullivan, &Wolf, 2005) and
the National Heart, Lung, and Blood Institute Twin Study
(Swan et al., 1992) have indicated associations between
increasing levels of TC and better cognitive performance.
Elias and colleagues (2005) studied nearly 1900 Framingham
Heart Study participants, free of dementia or stroke (mean
age of 67). TC measured four to 6 years previously
was positively related to attention and concentration, word
fluency, similarities and composite performance but not
learning or memory. Following adjustment for age, gender,
education, alcohol and CVD, having TC below 200 mg/dL
was associated with significantly higher odds for poor per-
formance on the cognitive composite measure. Other studies
have supported the Framingham findings; higher TC has
been associated with better performance on tests of proces-
sing speed and mental flexibility (Benton, 1995; Muldoon,

Ryan, Matthews, & Manuck, 1997; Swan et al., 1992). In
analyses based on the third National Health and Nutrition
Survey in over 4000 adults, higher TC was associated with
faster reaction time in men (Zhang, Muldoon, & McKeown,
2004). These findings indicate that higher serum cholesterol
may be associated with greater processing speed or cognitive
flexibility. Other studies have shown no association (Reitz
et al., 2005; Romas, Tang, Berglund, & Mayeux, 1999;
Zimetbaum et al., 1992) or shown TC to be risk factor for
lower cognitive performance and dementia (Desmond,
Tatemichi, Paik, & Stern, 1993; Notkola et al., 1998; Yaffe,
Barrett-Connor, Lin, & Grady, 2002). Two recent reviews
underscore the inconsistent findings in the literature (Muldoon
& Conklin, 2014; Schreurs, 2010).
One of the major issues in relating TC levels to cognitive

performance, and a possible reason for conflicting results
may be that examination of TC ignores the contributions of
the cholesterol components, for example, LDL, HDL, and
triglycerides. Fewer studies have related the individual cho-
lesterols to cognitive performance, and fewer yet have used a
comprehensive test battery.
When LDL and triglycerides have been related to cognitive

performance, conflicting results have emerged. Studies have
reported that high levels of LDL-cholesterol may be asso-
ciated with poorer cognitive performance (van den Kommer,
Dik, Comijs, Jonker, & Deeg, 2012), while others have shown
no association (Romas et al., 1999; Singh-Manoux, Gimeno,
Kivimaki, Brunner, & Marmot, 2008; Yoshitake et al., 1995).
Anstey et al. (2008) in their review, found no associations
between LDL and cognitive performance, dementia or cogni-
tive decline. Very few studies have specifically examined
levels of triglycerides in relation to cognition (Reynolds, Gatz,
Prince, Berg, & Pedersen, 2010; Singh-Manoux et al., 2008).
Singh-Manoux et al. (2008) found no association between
triglycerides and verbal memory performance, while Reynolds
et al. (2010) showed that lower triglyceride levels predicted
better verbal ability and perceptual speed.
Given the positive association between HDL and heart

health, it seems highly plausible that higher levels of HDL
may relate in a positive manner to global cognitive perfor-
mance. In the Whitehall II study, Singh-Manoux and collea-
gues (2008) examined lipoprotein lipid levels in relation to
short term verbal memory change over five years in middle-
aged adults (mean age of 55 years at baseline). At two distinct
time points, cross-sectional analyses showed positive asso-
ciations between HDL and a single test of verbal memory,
and furthermore, decline in HDL over the study period was
associated with decline in verbal memory performance. As
noted above, no significant associations were found between
TC or triglycerides and verbal memory performance in this
study (Singh-Manoux et al., 2008). However, only one
measure of cognition was used in the study, verbal memory
(indexed by only one test), so it is unknown whether general
cognitive performance or other cognitive domains may have
been affected by low HDL-cholesterol. In support, three other
studies have showed a positive association between HDL
measured in older age (≥50 years) and cognition, including
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memory (van den Kommer et al., 2012), motor speed (Mielke
et al., 2008), and verbal ability (Reynolds et al., 2008). In
contrast, the review by Anstey et al. (2008) concluded that
HDL was not associated with cognitive decline or impair-
ment. However, they point out that the small number of
studies reporting relevant data on HDL prevent strong con-
clusions being drawn with respect to these relations (Anstey
et al., 2008). More studies of HDL and cognitive function are
necessary and the essence of neuropsychology investigation
is that domains be defined by multiple indices of cognitive
performance.
Adding to the complexity of the relations between cho-

lesterol and cognition, reviews by Anstey et al. (2008) and
van Vliet (2012) indicate that associations between TC and
cognitive decline or lowered cognitive performance may be
age-dependent. The current literature suggests that high TC
in mid-life is associated with elevated risk of poor memory
and dementia late in life (Anstey et al., 2008), whereas when
measured after age 60, high TC may not be associated with
cognitive function or dementia risk, or may show a negative
association (Anstey et al., 2008; van Vliet, 2012; van Vliet,
Westendorp, van Heemst, de Craen, & Oleksik, 2010).
Despite the importance of relating mid-life cholesterol to late
life cognitive performance, it is also important to know
whether the individual cholesterols, and especially HDL, are
related to cognitive performance after age 60, and to inves-
tigate whether this is a global influence on cognition or more
specific.
The purpose of this study was to investigate the relation-

ship between TC, HDL- and LDL-cholesterol, and trigly-
cerides with multiple cognitive domains in stroke and
dementia-free individuals, 60 to 98 years of age, and to do
so with and without adjustment for cardiovascular risk
factors. A cross-sectional community-based sample from the
Maine-Syracuse Longitudinal Study (MSLS) was used, with
extensive data collected on multiple cardiovascular, lifestyle,
and health factors.
Given the conflicting results for TC, HDL-, and LDL-

cholesterol, and relatively few studies of triglycerides in the
literature, working hypotheses were generated based on
hypothesized mechanisms rather than the literature. The
study hypotheses were twofold: (1) higher LDL-cholesterol
and triglycerides would be related to lower levels of cognitive
performance; (2) higher HDL-cholesterol would be related to
higher levels of cognitive performance. We also examined
evidence for whether TC, LDL-, and HDL-cholesterol were
simply proxies for absence of CVD. Thus we estimated two
models, one with demographic risk factors and a second with
added cardiovascular risk factors.

METHODS

Participants

Community-living individuals participating in the Maine-
Syracuse Longitudinal Study were recruited from central
New York for studies of blood pressure, related risk factors,

and cognitive performance with no exclusions other than
institutionalization, diagnosed psychiatric disorder and alco-
holism. Participants for the present study were those that
returned for the sixth (2001–2006) study wave where exten-
sive data on cardiovascular risk factors and diseases, includ-
ing cholesterol values, were available for the first time (Elias
et al., 2006; Robbins, Elias, Elias, & Budge, 2005). Details of
initial study recruitment have been previously described
(Dore, Elias, Robbins, Budge, & Elias, 2008; Elias et al.,
2009, 2006; Robbins et al., 2005). Beginning with 574 indi-
viduals who met study criteria of at least 60 years of age,
participants were excluded for the following reasons: acute
stroke (n = 20), probable dementia (n = 9), and undertaking
dialysis treatment (n = 5), leaving 540 individuals included
in the final analyses. Acute stroke was defined as a focal
neurological deficit persisting for >24 hr and probable
dementia was defined by cognitive measures, medical
records and a multidisciplinary dementia review using the
National Institute of Neurological Diseases and Commu-
nicative Diseases and Stroke/ Alzheimer’s Disease and
Related Disorders (NINCDS-ADRDA) criteria (McKhann
et al., 1984). Dementia cases were excluded as we were
interested in examining relationships between cholesterol
and cognitive performance, but not in those with severe
cognitive impairment. This research was approved by the
University of Maine Institutional Review Board and
informed consent was obtained from all participants. All data
in this study were obtained in compliance with the Helsinki
Declaration.

Procedure

A blood sample was obtained following a fast from midnight
with blood draw between approximately 8 and 9 AM. Standard
assay methods were used (Elias et al., 2006) to obtain TC,
HDL, LDL, and triglycerides, in addition to fasting plasma
glucose, at Centrex Clinical Laboratories, New York. The
direct HDL-cholesterol method for the Poly-ChemTM Sys-
tem, enzymatic elimination assay for the in vitro determination
of HDL-cholesterol in human serum and plasma was used: Cat
NO HDL500 (3× 245 tests) Enzyme Reagent R1 (3× 50mL);
Enzyme Reagent R2 (3 × 20mL). Participants underwent a
brief medical examination and interview after a light breakfast.
Body weight was measured with participants wearing light
clothing to the nearest 0.1 kg, and height was measured with a
vertical ruler to the nearest 0.1 cm. Body mass index (BMI)
was calculated as weight in kilograms divided by height in
meters squared (kg/m2). Automated blood pressure measures
(GE DINAMAP 100DPC-120XEN, GE Healthcare) were
taken five times each in reclining, sitting and standing posi-
tions after a supine rest for 15min, and averaged for systolic
and diastolic blood pressure. Smoking status (cigarettes
smoked per week) was based on self-report from the Nutrition
and Health Questionnaire (Kroke et al., 1999), as was alcohol
consumption. Prevalent CVD was based upon self-reported
history of coronary artery disease, myocardial infarction,
congestive heart failure, transient ischemic attack, or angina
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pectoris, confirmed by medical records. Diabetes was defined
as fasting glucose level of ≥126 mg/dL, or being treated with
anti-diabetic medication. Depressed mood was assessed using
the Center for Epidemiologic Depression Scale (CES-D)
(Radloff, 1977), and the raw score (number of symptoms) was
used as a continuous variable. The foregoing measures were
obtained during interview and physical examination during the
morning visit, and cognitive measures were assed in the
afternoon after at least a 1 hr separation of the medical data
collection and cognitive testing.

Predictor variables: cholesterol

As triglycerides were skewed, this variable was log trans-
formed. All other lipoprotein variables were normally dis-
tributed. The predictor variables of interest were therefore
HDL-cholesterol, LDL-cholesterol, triglycerides (log), and
TC (all mg/dL).

Outcome variables: cognitive function

The MSLS neuropsychological test battery comprises 20
individual tests designed to measure a wide range of cogni-
tive abilities, and has been used in multiple studies examining
cardiovascular risk factors and cognitive performance (Dore
et al., 2008; Elias et al., 2006; Robbins et al., 2005). This
battery features four index scores: Visual-Spatial Memory
and Organization, Scanning and Tracking, Verbal Episodic
Memory, and Working Memory, based on factor analysis
(Elias et al., 2006). The Wechsler Adult Intelligence Scale
(WAIS) Similarities Test (Lezak, Howieson, & Loring,
2004), a measure of abstract reasoning, loaded on all com-
posite scores (factors) (Elias et al., 2006) and was thus used
separately. A Global Cognition Composite (index) score was
derived by averaging the Z-scores for all individual tests. The
tests used to define each composite are listed and described
completely in Supplementary Table 1, which are available
online. In addition, the Mini-Mental State Examination
(MMSE) (Folstein, Folstein, & McHugh, 1975), a global
measure of mental status widely used in the literature, was
also used. All cognitive outcomes are expressed in the same
unit of measurement, Z-scores.

Data Analysis

Independent sample t tests were performed to describe
the demographic and health characteristics of the sample,
comparing those with reduced HDL levels (<40 mg/dL for
males and<50 mg/dL for females) to those with normal HDL
levels (≥40 mg/dL for males and ≥50 mg/dL for females).
This comparison was made as HDL is our main cholesterol
variable of interest.
Levels of HDL, LDL, TC, and triglycerides were further

classified into groups based on the National Public Health
HDL guidelines (U.S. Department of Health and Human
Services, 2001). These groups were as follows: for HDL:
<40, 40–49, 50–59, ≥60 mg/dL; for LDL: <100, 100–129,

130–189, ≥190mg/dL; for TC: <200, 200–239, ≥240mg/dL;
and for triglycerides: <150, 150–199, 200–499, ≥500mg/dL.
Multivariate analysis of variance (MANOVA) (a step-down

protection procedure) (van der Laan, Dudoit, & Pollard, 2004)
was used to examine relationships between cholesterol
concentrations (HDL, LDL, triglycerides, TC) and cognitive
performance (Visual-Spatial Memory and Organization,
Scanning and Tracking, Verbal Episodic Memory, Working
Memory, Similarities, MMSE). All cognitive outcomes were
entered into the analyses simultaneously as dependent vari-
ables except for the Global Composite score, as the Global
Composite score is co-dependent on all the measures except
for the MMSE. ANOVA was used to examine relationships
between cholesterol concentrations and the Global Composite
score. In addition to MANOVA, the Bonferroni procedure
was used to protect against multiple comparisons, including
the Global Composite, alpha/number of observations where
alpha = 0.05.
Two covariate sets were used: (1) Basic model: adjusted

for age, gender, education (years), and ethnicity (African
American/other); (2) Extended model: Basic model + BMI
(kg/m2), smoking (cigarettes/week), alcohol consumption
(ounces/week), systolic blood pressure (mmHg), diabetes
(yes/no), CVD (yes/no), cholesterol medications (yes/no),
physical activity (MET-minutes/week), depressed mood
(CES-D raw score), and apolipoprotein E epsilon 4 (APOE
ε4, yes/no). The covariates included in the extended model
were selected based on two considerations: were clinically
and theoretically relevant and also related to both the pre-
dictor (HDL-cholesterol) and outcome (Global Composite
score) (alpha <0.05). Due to the potential importance of
APOE ε4 (Bender & Raz, 2012; Liu et al., 2010; Notkola
et al., 1998) this was also included in the extended model.
There were no analyses performed with all lipids in one
model because these are co-dependent variables. It is
important to present both the basic model and the extended
model because the comparisons between the two models
informs as to the mediating role of CVD on the cognitive
outcomes. A failure to see results for the extended model may
be interpreted as evidence that cholesterol is purely a proxy
for CVD.
In a final step, logistic regression analyses was performed

to obtain a measure of effect size, indicated by the categorical
regression coefficient when comparing the highest HDL
group (≥60 mg/dL) with the reference (lowest HDL group,
<40 mg/dL).
All statistical analyses were performed with PASW for

Windows® version 21.0 software (formerly SPSS Statistics
Inc., Chicago, IL).

RESULTS

Participant Characteristics

The sample comprised 222 males and 318 females, aged 60
to 98 years (mean, 71.4± 7.6 years). Table 1 describes the
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demographic and heath variables of the sample, according to
HDL level. Those with reduced HDL (27.4% of the sample)
had slightly fewer years of education, had a higher BMI
and fasting plasma glucose levels, and were more likely to
have CVD, diabetes, or hypertension, and be on cholesterol
medication (all p< .05).

HDL Levels and Cognition

The multivariate tests performed as protection against
multiple contrasts for multiple outcome variables were
statistically significant for both the basic model (F [Wilks’
lambda] = 3.12; p< .001) and extended models (F = 1.66;
p = .041). Thus we report the results of the univariate
analyses for each cognitive outcome.
The covariate adjusted mean (Z-scores) (and SE) based

on multivariable analyses for each cognitive outcome

considered separately are presented in Table 2 (basic and
extended models). P-values are adjusted via the Bonferroni
procedure. HDL was significantly and positively associated
with the Global Composite score, Visual-Spatial Memory
and Organization, Verbal Episodic Memory, Working
Memory, Scanning and Tracking, Similarities and the
MMSE, with adjustment for age, education, gender, and
ethnicity (p< .05). Those with “very good” levels of HDL
(≥60 mg/dL) had significantly higher scores on the Global
Composite, Visual-Spatial Memory and Organization,
Working Memory, Scanning and Tracking, Similarities and
the MMSE than those with “poor levels” of HDL (<40 mg/
dL) (all p< .05).
Positive relationships between HDL and the Global

Composite, Working Memory, and the MMSE remained
significant (all p< .01) with additional adjustment for BMI,
smoking, alcohol consumption, systolic blood pressure,

Table 1. Demographic and health characteristics of sample (N = 540)

All
N = 540

Low HDL n = 148
<40 mg/dL (males)
<50 mg/dL (females)

Normal HDL n = 392
≥40 mg/dL (males)
≥50 mg/dL (females)

Variable Mean SD Mean SD Mean SD p

Age (years) 71.4 7.6 71.0 7.5 71.5 7.6 .47
Education (years) 14.4 2.7 14.0 2.7 14.5 2.7 .032
Smoking (cigarettes/week) 4.8 30.0 8.6 44.9 3.3 21.8 .07
Alcohol (oz/week) 1.5 2.6 0.44 0.98 1.9 2.9 <.001
BMI (kg/m2) 28.6 5.1 30.6 5.7 27.9 4.6 <.001
Total cholesterol (mg/dL) 201.1 39.5 184.4 39.1 207.4 37.8 <.001
HDL cholesterol (mg/dL) 54.6 15.3 39.5 6.2 60.3 13.8 <.001
LDL cholesterol (mg/dL) 119.1 33.1 109.6 32.9 122.5 32.5 <.001
Triglycerides (mg/dL) 140.0 89.1 180.5 103.5 124.7 77.9 <.001
Glucose (mg/dL) 99.4 23.9 103.7 28.0 97.7 22.2 .009
Systolic blood pressure (mmHg) 137.0 20.9 139.7 20.4 136.0 21.0 .07
Diastolic blood pressure (mmHg) 70.5 9.7 71.8 9.6 70.0 9.7 .06
Physical activity (MET mins/wk) 538 383 486 383 560 381 .049
CES-D 7.1 6.1 8.2 6.3 6.8 6.0 .016

N % n % n %

Gender .08
Males 222 41.1 52 35.1 170 43.4
Females 318 58.9 96 64.9 222 56.6

Ethnicity .91
African American 19 3.5 5 3.4 14 3.6
Other 521 96.5 143 96.6 378 96.4

CVDb 112 20.7 41 27.7 71 18.1 .014
Diabetesc 80 14.8 38 25.7 42 10.7 <.001
Hypertensiond 390 72.2 134 90.5 256 65.3 <.001
Cholesterol medication 199 36.9 75 50.7 124 31.6 <.001
APOE ε4 carrier 136 25.4 40 27.0 96 24.7 .59

Note.APOE ε4 = apolipoprotein E epsilon 4; BMI = body mass index; CES-D = Center for Epidemiologic Studies Depression Scale; CVD = cardiovascular
disease; HDL = high density lipoprotein; LDL = low density lipoprotein; MET = metabolic equivalent; SD = standard deviation.
aHigher score indicates higher number of depressive symptoms.
bCVD was defined as present if there was self-reported history of coronary artery disease, myocardial infarction, congestive heart failure, transient ischemic
attack, or angina pectoris.
cDiabetes was defined as fasting glucose level of ≥126 mg/dL, or being treated with anti-diabetic medication.
dHypertension was defined as ≥140/90 mmHg.
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diabetes, CVD, cholesterol medications, physical activity,
depressed mood, and APOE ε4 status. With full adjustment,
those with HDL levels of 60 mg/dL or higher, performed
significantly better on the Global score, tasks of Working
Memory, and the MMSE, than those with HDL levels of less
than 40 mg/dL (all p< .05). All p-values reported are based
on the Bonferroni adjustment, p/the number of cognitive
outcomes.

LDL, TC, Triglyceride Levels, and Cognition

LDL, TC, and triglyceride levels were unrelated to cognitive
function in basic and extended models. The multivariate test
results (extended model) were as follows: TC: F = 0.63,
p = .82; LDL: F = 1.05, p = .40; and triglycerides:
F = 1.20, p = .26.

Sensitivity Analysis

Two sensitivity analyses were performed, examining the
relationship between two interaction terms with cognitive
function (Global Composite score): (1) HDL × age (in years),
and (2) APOE ε4 (yes/no) × HDL. Neither of these
interaction terms was associated with the Global cognitive
composite score (HDL × age: p = 0.35; APOE ε4 × HDL:
p = .40).

DISCUSSION

High density lipoprotein was positively associated with
multiple measures of cognitive performance in participants
aged 60 years or more. With adjustment for all the basic
covariates, cardiovascular risk factors and depressed mood,
HDL levels were significantly related to higher levels of
mean cognitive functioning in Working Memory, general
global cognitive ability (Global Composite score) and
general mental status (MMSE). There were no associations
observed between concentrations of LDL, TC, or triglycer-
ides and any measure of cognitive function for the basic
model or the extended model with cardiovascular covariates.
Our interpretation of these findings is consistent with other

studies of systemic risk factors (Waldstein & Elias, 2014),
whereby HDL is positively influencing general cognitive
performance. However, working memory performance was,
among the other cognitive abilities, of particular importance
to overall cognitive function. The present findings with
regard to HDL and memory function are consistent with other
studies (Reynolds et al., 2010; Singh-Manoux et al., 2008) in
terms of a positive relation between HDL and memory.
Singh-Manoux et al. (2008) only assessed short term verbal
memory using one test, but found that low HDL-cholesterol
levels were associated with higher odds of verbal memory
deficit. Reynolds et al. (2010) assessed verbal and spatial

Table 2. Multivariate adjusted mean (z-scores) (and SE) for each cognitive outcome across increment levels of HDL-cholesterol (N = 540)

HDL-cholesterol category

HDL <40 mg/dL
Poor, n = 76

HDL 40–49 mg/dL
Fair, n = 162

HDL 50–59 mg/dL
Good, n = 121

HDL ≥60 mg/dL
Very good, n = 181

Cognitive outcomea Modelb M SE M SE M SE M SE R2c
Effect
sizef p linear

Global Composite Basic − .324 .094 − .019d .064 − .099 .072 .220de .061 .367 0.54 <.001
Extended − .230 .101 − .026 .066 − .100 .075 .178de .068 .396 0.41 .006

Visual-Spatial Memory Basic − .144 .099 − .061 .067 − .105 .077 .183de .065 .294 0.33 .015
Extended − .086 .106 − .059 .069 − .105 .080 .173 .072 .324 0.26 .10

Verbal Memory Basic − .177 .109 − .036 .074 − .101 .085 .175 .071 .145 0.35 .019
Extended − .110 .122 − .063 .079 − .086 .091 .130 .082 .155 0.24 .17

Working Memory Basic − .452 .109 .025d .074 − .115 .085 .237d .071 .152 0.69 <.001
Extended − .400 .120 .011d .078 − .123 .090 .192d .081 .157 0.59 .001

Scanning Tracking Basic − .290 .097 .037d .066 − .001 .075 .088d .063 .330 0.38 .004
Extended − .195 .104 .033 .068 .006 .078 .060 .070 .348 0.26 .09

Similarities Basic − .287 .102 − .030 .069 − .080 .079 .198de .067 .257 0.49 <.001
Extended − .124 .112 .009 .073 − .086 .084 .107 .076 .267 0.23 .20

MMSE Basic − .430 .106 − .039d .072 − .032d .082 .237de .069 .198 0.67 <.001
Extended − .256 .113 − .002 .074 − .065 .085 .195d .076 .209 0.45 .006

Notes. HDL = high-density lipoprotein; MMSE = Mini-Mental State Examination.
aANOVA performed for Global Composite score; MANOVA included: Visual-Spatial Memory, Verbal Memory, Working Memory, Scanning Tracking,
Similarities, and MMSE.
bBasic model: adjusted for age, education, gender, ethnicity; Extended model: adjusted for Basic + BMI, smoking, alcohol, systolic blood pressure, diabetes,
CVD, cholesterol medications, physical activity, CES-D and APOE ε4.
cAdjusted R2 for multiple comparisons (Bonferroni).
dsignificantly different from HDL <40mg/dL group.
esignificantly different from HDL 50–59 mg/dL group.
feffect size is the categorical regression coefficient obtained from logistic regression analyses, comparing the highest HDL group (≥60 mg/dL) with the reference
(lowest HDL group, <40 mg/dL).
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abilities, working memory, and perceptual speed and found
that higher concentrations of HDL-cholesterol (and lower
triglycerides) predicted better maintenance of verbal ability
and perceptual speed, but in women only. In the present
study, there was a significant positive association between
HDL and the Verbal Memory composite in the basic model,
but significance was lost after full adjustment for the cardio-
vascular risk factors and disease variables. In contrast to
Singh-Manoux et al. (2008), we used a composite of scores
measuring verbal ability, and the tests were not the same as
those used in either investigation above (Reynolds et al.,
2010; Singh-Manoux et al., 2008). Differences in sample
characteristics may also contribute to the disparate findings.
For example, the mean age of participants in these two
studies at baseline was slighter younger (50–55 years) than in
the present study. Given issues of test purity (Rabbitt, 1997),
further studies examining what kind of memory is influenced
by HDL would be improved by indexing cognitive domains
using more than one test measure (Elias, Goodell, & Dore,
2012).
Thus, with adjustment for basic covariates, several

significant associations were seen, but many fewer remained
statistically significant with additional adjustment for the
cardiovascular risk factors and CVD. Based on these data,
we infer that HDL is not just a proxy for the absence of
cardiovascular risk or disease when the outcomes are global
cognition, global MMSE and the Working Memory compo-
site. For the extended (cardiovascular risk) model, R2 values
for the Global Composite score, MMSE, and Working
Memory were 0.40, 0.21, and 0.16, respectively; thus less of
the variance in cognition was explained by a specific domain,
Working Memory, as compared to global cognitive ability or
the MMSE. Magnitude of effect is reflected in the differences
between means for the highest and lowest HDL groups
(shown in Table 2). Effect sizes for the Global Composite,
MMSE, and Working Memory (extended models) were
Z = 0.41, 0.45, and 0.59, respectively. These are medium
to large effect sizes, and have significant implications for
cognitive functioning on a population level.
The positive relations between HDL and cognitive func-

tion are consistent with the mechanisms that relate lipids to
brain and cerebrovascular disease. Thus it is biologically
plausible that over 60 years of age, higher levels of HDL are
related in a positive manner to global cognitive performance.
Our study did not find any associations between LDL and

cognitive performance in persons over 60 years of age, with
adjustment for demographic factors or with the addition of
cardiovascular risk and disease variables. Previous studies
conducted with the same age groups have shown no associa-
tions (Reitz et al., 2005), positive associations (Henderson,
Guthrie, & Dennerstein, 2003), and negative associations
(Muldoon et al., 1997; Yaffe et al., 2002). A more recent
extensive, comprehensive review reflected the same pattern of
inconsistencies among findings in the general literature
(Muldoon & Conklin, 2014).
Our study did not find any associations between trigly-

cerides and cognitive performance in persons over 60 years

of age. No significant associations were found between tri-
glycerides and verbal memory performance in theWhitehall II
study (Singh-Manoux et al., 2008), while lower triglycerides
predicted better verbal ability and perceptual speed in women
in the Swedish Adoption Twin Study of Aging (Reynolds
et al., 2010), and better performance on WAIS scores in
another (Muldoon et al., 1997). Differences in methods and
samples may contribute to these discrepancies in findings.
With regard to the null findings in the present study, it may
be speculated that as persons become older they fall into
the survivor category where any adverse effects of LDL or
triglycerides may be less likely to be observed, and such
“surviving” individuals may be less susceptible to disease
and impairment.
Similarly, the null findings with regard to TC and cogni-

tion in persons 60 years and older in the present study
supports the speculation that TC becomes less important to
cognition once one survives to age 60. These null finding are
consistent with the recent review by Anstey et al. (2008), who
concluded that little evidence supports an association
between late-life TC and AD, or dementia. Furthermore, our
data on HDL offer an explanation for earlier Framingham
Heart Study findings (Elias et al., 2005), in which positive
associations between TC and multiple cognitive abilities
were observed. Only TC data were available in the
Framingham Study and, therefore, it is not possible to
determine to what extent positive relations between HDL and
cognitive functioning may have influenced this result.
Lifestyle and behavioral factors that influence cholesterol

metabolism, as well as cognitive function and the risk of
dementia, such as diet, may also help to explain the present
findings. Those with normal HDL levels were leaner, smoked
less and undertook more physical activity. Poor dietary
habits, and high dietary fat intake in particular, have been
associated with lower cognitive functioning in elderly sam-
ples (Kalmijn, Feskens, Launer, & Kromhout, 1997; Ortega
et al., 1997), although other demographic or premorbid
factors, such as intelligence or socioeconomic factors, may at
least in part explain these findings.

Strengths and Limitations

The study was cross-sectional, which does not allow any
conclusions regarding a causal relationship between choles-
terol levels and cognitive performance. We elected to exam-
ine whether cholesterol levels were associated with cognitive
performance in an older age range, which also precludes
conclusions about such relationships in younger persons. The
generalizabilty of the findings may also be limited as a
function of the low proportion of ethnic minorities in the
study sample.
Our study adds to the literature by examining other cognitive

abilities in addition to memory, including a comprehensive
number of potential confounders, and using a community-
based and dementia-free sample. It is important to examine
cognition in individuals without dementia, as the disease
itself may modify cholesterol levels (Solomon et al., 2007).
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We excluded persons with prevalent stroke, dementia and on
kidney dialysis. We also adjusted for multiple cardiovascular
risk factors, and other potential confounders, including the use
of cholesterol medications. Most importantly, and expanding
upon previous research, we have measured cognitive perfor-
mance using an extensive neuropsychological test battery,
including multiple cognitive domains and the MMSE.

CONCLUSIONS AND IMPLICATIONS

Higher concentrations of HDL-cholesterol were related
to better Working Memory performance, global cognitive
ability, and general mental status. While the adverse influ-
ence of “bad cholesterol” has received much attention, there
has been much less research on “good cholesterol” and this
study indicates that more is necessary. This study and others
suggest a focus on HDL, LDL, and triglycerides is much
more useful than a focus on TC alone.
Maintaining high levels of HDL are indicated to serve a

protective effect against neurodegenerative and vascular
diseases. Strategies such as the modification of lifestyle
behaviors that may increase HDL levels, such as consuming a
healthy, low fat diet and undertaking regular physical activity
should continue to be recommended. Our understanding may
be enhanced by future longitudinal studies examining rela-
tions between multiple cognitive abilities and the different
cholesterols, especially with the identification of multiple
domains of ability indexed by more than a single test (Elias
et al., 2012).
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