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Can a cake be divided amongst people in such a manner that each individual is

content with their share? In a game, is there a combination of strategies where

no player is motivated to change their approach? Is there a price where the

demand for goods is entirely met by the supply in the economy and there is no

tendency for anything to change? In this paper, we will prove the existence of

envy-free cake divisions, equilibrium game strategies and equilibrium prices in

the economy, as well as discuss what brings them together under one heading.

This paper examines three important results in mathematics: Sperner’s lemma,

the Brouwer fixed point theorem and the Kakutani fixed point theorem, as well

as the interconnection between these theorems. Fixed point theorems are central

results of topology that discuss existence of points in the domain of a continuous

function that are mapped under the function to itself or to a set containing the

point. The Kakutani fixed point theorem can be thought of as a generalization of

the Brouwer fixed point theorem. Sperner’s lemma, on the other hand, is often



described as a combinatorial analog of the Brouwer fixed point theorem, if the

assumptions of the lemma are developed as a function. In this thesis, we first

introduce Sperner’s lemma and it serves as a building block for the proof of the

fixed point theorem which in turn is used to prove the Kakutani fixed point

theorem that is at the top of the pyramid.

This paper highlights the interdependence of the results and how they all are

applicable to prove the existence of equilibria in fair division problems, game

theory and exchange economies. Equilibrium means a state of rest, a point

where opposing forces balance. Sperner’s lemma is applied to the cake cutting

dilemma to find a division where no individual vies for another person’s share,

the Brouwer fixed point theorem is used to prove the existence of an equilibrium

game strategy where no player is motivated to change their approach, and the

Kakutani fixed point theorem proves that there exists a price where the demand

for goods is completely met by the supply and there is no tendency for prices to

change within the market.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

In this paper, we introduce and prove three important results in mathematics,

namely Sperner’s lemma, the Brouwer fixed point theorem and the Kakutani

fixed point theorem. In addition, we present applications of these results in the

social sciences.

These three results are interdependent and the topics are developed in a manner

that the combinatorial result, Sperner’s lemma, is introduced first and it serves

as the main tool in the proof of the Brouwer fixed point theorem, which in turn is

the basis for the proof of the Kakutani fixed point theorem. This interconnection

runs deeper than merely an aid in proving the theorems. Sperner’s lemma can

be thought of as a combinatorial analog to the Brouwer fixed point theorem, and

the Kakutani fixed point theorem can be seen as an extension of the Brouwer

fixed point theorem from point-valued functions to set-valued functions.

In a way, all three results allow us to prove the existence of a fixed point for

continuous functions, that is, a point that maps to itself under that function. In

the case of Sperner’s lemma, we do not work with an explicit function. Instead,

Sperner defined a labeling on simplices and Sperner’s lemma accounts for the

existence of at least one "point" in the set (a sub-simplex in the simplex) with the
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same labeling as the whole set (simplex). We discuss the concepts of simplex

and sub-simplex in the next section.

Another reason we chose to present these three results is that they all can be

applied to model human behavior and choices. In this paper, we look at their

application to the fields of economics and game theory. Economics is the study

of problems of choice, that is, how to allocate scarce goods and resources so as to

maximize welfare, growth or other objectives. Game theory, on the other hand,

though often considered a branch of economics, focuses more on strategies and

outcomes. However, both economics and game theory study human behavior,

and one of the main ideas studied in these fields is that of equilibrium, a state of

rest where counteracting forces balance. We find that fixed point theorems have

interesting applications in determining the equilibria and distributions in social

sciences.

We use Sperner’s lemma to prove the existence of an envy-free division in a

distribution of goods. Fair-division problems have long been discussed in

economics, and using this lemma, we can guarantee that a division exists where

each person is content with her/his share and no one has a tendency to envy

another person for their share. This idea can be equated to that of a Nash

equilibrium in game theory, where each participant is content with the strategy

they choose and has no motivation to change it, given the strategies of the other

participants of the game. We use the Brouwer fixed point theorem to prove the

existence of such an equilibrium in non-cooperative games and look at example

games. Finally, we use the Kakutani fixed point theorem to prove the existence

of an equilibrium in an economic system where m consumers are endowed

with a fixed supply of n goods that they can exchange amongst themselves. It is

2



not obvious that equilibrium exists in such an exchange economy; however, the

theorem allows us to prove that values can be structured in a manner that each

player’s demand can be met, given the supply.

In the next chapter, we state and prove Sperner’s lemma in one, two and n

dimensions and look at its application in a fair-division problem, addressing the

envy-free division of a cake. In the following chapter, we state and prove the

Brouwer fixed point theorem in one, two and n dimensions using Sperner’s

lemma for the latter two cases. Furthermore, we apply the Brouwer fixed point

theorem to prove the existence of a Nash equilibrium in game theory. In the last

chapter, we state and prove the Kakutani fixed point theorem in one and n

dimensions, followed by a discussion of its application to prove that an

equilibrium exists in an exchange economy.

There are many, essentially equivalent for each, versions of Sperner’s lemma, the

Brouwer fixed point theorem, and the Kakutani fixed point theorem in the

mathematics literature. The versions we present are adapted for the setting as

we develop it here.

Before we delve into the theorems and their applications, we need to familiarize

ourselves with some definitions and theorems that will form the background for

the work presented in subsequent chapters. We assume that the reader is

familiar with introductory topology, analysis and linear algebra. In this section,

we introduce and state the basic concepts and results that we use in the main

part of this paper.

3



1.1 Background

Much of the work we do in this paper involves simplices in Euclidean space. It

will be helpful to look at some definitions that will be of use to us and that will

make the concepts clearer.

Definition. An n - simplex S is the convex hull in Rm, with m ≥ n+ 1, of

n+ 1 geometrically independent points v0, v1, ...., vn. We call v0, v1, ...., vn the

vertices of the simplex S.

Note that the points v0, v1, ...., vn ∈ Rm are geometrically independent if the

vectors −−→v0v1, −−→v0v2, ..., −−→v0vn are linearly independent. So a 1 - simplex is a line

segment in R2, a 2 - simplex is a triangle in R3, a 3 - simplex is a tetrahedron

in R4, and so on.

Definition. The standard n - simplex σn in Rn+1 is the convex hull of the points

(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1). The points (1, 0, ..., 0), (0, 1, ..., 0), ...,

(0, 0, ..., 1) are the vertices of σn.

Note that if x = (x0, x1, ..., xn) ∈ σn, then 0 ≤ xi ≤ 1 for all i and
n∑
i=0

xi = 1. More generally, if S is an n - simplex with vertices v0, v1, ...., vn

and x ∈ S, then we can express x uniquely as

x = α0v0 + α1v1 + ... + αnvn

for αi ∈ R such that αi ≥ 0 for all i ∈ {0, 1, ..., n} and
n∑
i=0

αi = 1.

Definition. Let S be an n - simplex with vertices v0, v1, ...., vn. Let f be a function

defined on {v0, v1, ...., vn} such that f(vi) = wi ∈ Rm. Then the linear

extension of f is the function f : S → Rm defined so that if x =
n∑
i=0

αivi,

then f(x) =
n∑
i=0

αiwi.
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Throughout the paper, we will be working with subdivisions of simplices.

Before we define what is meant by subdivision of an n - simplex, let us

understand the terms face and facet of an n - simplex.

Definition. An m - face of an n - simplex S is the m - simplex formed by m + 1

vertices out of the n + 1 vertices of S.

Definition. An (n− 1) - face of an n - simplex is called a facet. In other words, a facet

is an (n−1) - simplex formed by n vertices out of the n + 1 vertices of an n - simplex.

By giving a specific name to the (n− 1) - faces of an n - simplex, we are

distinguishing them from the other faces in our discussion. We can see that an

n - simplex has n + 1 distinct facets. For instance, the two facets of a 1 -

simplex are the two end points of the line segment. The three facets of a 2 -

simplex are the three sides of the triangle. The four facets of a 3 - simplex are the

four triangular faces of a tetrahedron and so on.

Definition. A subdivision of an n - simplex S (Figure 1.1) is a collection of subsets

of S, each an n - simplex, called a sub-simplex of S, such that:

1. The union of all the sub-simplices is S.

2. Any two sub-simplices either do not intersect or have an intersection that is a

common face.

Figure 1.1. An example of a subdivision of a 2 - simplex S

5



A subdivision of a 2 − simplex is called a triangulation. Note that in Figure 1.1,

if we subdivide each small triangle in a manner similar to how S is subdivided,

we obtain another subdivision of S with triangles whose diameter is 1

6
of

those in the initial subdivision. In this manner, we can construct sequences of

subdivisions whose sub-simplex diameters go to zero in the limit. Such

sequences will be of benefit to us in limiting arguments we make in the paper.

Another important notion we work with is continuity. In topological spaces, we

say that a function f is continuous if pre-images of open sets under f are open.

For functions mapping between Euclidean spaces, there are various equivalent

definitions, including the traditional ε − δ definition. We use the definition of

continuity of functions that is as follows.

Definition. If D ⊂ Rn and f : D → Rm , then f is continuous if for every

sequence (xj) in D converging to x ∈ D, the sequence (f(xj)) converges to f(x).

So far, we have been talking about point-valued functions. However, both in the

application of Sperner’s lemma and for the Kakutani fixed point theorem, we

work with set-valued functions. Let us first understand what is meant by a

set-valued function and then define continuity for such functions.

Definition. Given sets X and Y, a set-valued function is a function

f : X → P(Y ) where P(Y ) is the power set of Y. Thus, for each x ∈ X, its image

f(x) is a subset of Y .

Continuity for set-valued functions is a natural extension of the definition of

continuity for point-valued functions.
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Definition. Assume X ⊂ Rm and Y ⊂ Rn. A function f : X → P(Y ) is

continuous if for every pair of convergent sequences xn → x in X and yn → y in

Y such that yn ∈ f(xn) for all n, it follows that y ∈ f(x).

1.2 Important Results

The following results are straightforward convergence results that will be of use

to us. We also state and prove a lemma that will be useful to us in the proof of

the Brouwer Fixed Point Theorem.

Theorem 1.1. If D ⊂ Rn is closed and bounded, and (xn) is a sequence in D, then (xn)

has a convergent subsequence.

Theorem 1.2. Let (xn) and (yn) be sequences in Rn. If (xn) → x, and

| xn − yn | → 0, then (yn) → x.

Theorem 1.3. If f : D → R is continuous, (xj) → x in D, (aj) → a in R

and f(xj) ≤ aj for all j, then f(x) ≤ a.

Lemma 1.1. Let σn be the standard n - simplex in Rn+1 and let x, y be points in

σn. If xi ≤ yi for all i ∈ {0, 1, ..., n}, then x = y.

Proof. Let σn be the standard n - simplex in Rn+1. Let x = (x0, x1, ..., xn) and

y = (y0, y1, ..., yn) be points in σn such that xi ≤ yi for all i. Suppose x 6= y.

Then there exists at least one j ∈ {0, 1, ..., n} such that xj 6= yj. This means

xj < yj.

7



However since x, y ∈ σn,

n∑
i=0

xi =
n∑
i=0

yi = 1.

This means that there exists k ∈ {0, 1, ...., n} such that xk > yk. This is a

contradiction since xi ≤ yi for all i. Thus, there is no j ∈ {0, 1, ...., n} such

that xj 6= yj. Therefore, x = y.

8



CHAPTER 2

SPERNER’S LEMMA AND FAIR DIVISION

Emanuel Sperner (1905 - 1980) was a German mathematician who received

much recognition for his contribution to topology, analytic geometry, algebra

and matrix theory. He is best known for two results, namely Sperner’s theorem

and Sperner’s lemma, that he developed at an early age of 22 years. He was

awarded a doctorate with distinction for his thesis titled Neuer Beweis für die

Invarianz der Dimensionszahl und des Gebietes in 1928. Sperner’s lemma was

written as a part of his thesis, and later he used it to give a simple proof of the

Lebesgue covering theorem and the invariance of dimension and domain

theorems. This lemma gained popularity among topologists, and B. Knaster, C

Kuratowski, and S Mazurkiewicz used it to prove the Brouwer fixed point theorem

[1]. Later applications of the Sperner’s lemma came up in fair division problems,

including a recent one by Francis Edward Su [2] who used it to calculate

envy-free rent division.

2.1 Sperner’s Lemma

In this chapter, we focus on Sperner’s lemma and its applications to fair-division

problems. In the next chapter, we use it to prove theorems that help us

9



understand the topological connections to economics and game theory. The idea

outlined by the lemma is very intuitive, especially in dimensions one and two. In

higher dimensions, it is more difficult to visualize, however the idea is exactly

the same, as we shall see. We discuss the one-dimensional and two-dimensional

cases next and then separately provide proofs of the one-dimensional,

two-dimensional and n - dimensional cases.

The one-dimensional case is as follows. If we write down 0’s and 1’s in a single

line with at least one of each, it is obvious that at least once a 0 is written next to

a 1. Moreover, if we start and end with the same number, clearly the number of

times a 0 comes next to a 1 is even since we switch between 0 and 1 an even

number of times to make sure we end with the number that we started with.

Similarly, if we start with a 0 and end with a 1 (or vice-versa), the number of

times a 0 comes next to a 1 is odd.

We can extend this idea to two dimensions using a main triangle T that has

vertices distinctly labeled 0, 1, and 2. Suppose we have a triangulation of T

and we were to label the sub-triangle vertices with the numbers 0, 1, or 2

following the single rule that sub-triangle vertices on a side of the main triangle

T are not labeled with the number on the main triangle vertex opposite to that

side. Then we find that no matter how we label the sub-triangles, we end up

with at least one sub-triangle with all its vertices distinctly labeled 0, 1, and 2.

In fact, we always end up with an odd number of such triangles. Two examples

of this idea can be seen in the Figure 2.1, where sub-triangles labeled with 0, 1,

and 2 are highlighted.

10



Figure 2.1. A look at the two-dimensional Sperner’s Lemma

It might be interesting to take it up as an exercise to try to find some labeling that

does not give an odd number of sub-triangles with vertices distinctly labeled

0, 1, and 2. You will find that it is not possible to do so. We prove this idea in

this chapter as the two-dimensional Sperner’s lemma.

Before we discuss the idea in higher dimensions, let us state and prove the one-

dimensional and two-dimensional versions of Sperner’s lemma.

2.1.1 One-Dimensional Sperner’s Lemma

Here we consider the one-dimensional Sperner’s lemma. The lemma asserts that

in an n - tuple of 0s and 1s, the number of times a 0 comes next to a 1 is even if

we start and end with the same number and odd if we start and end at different

numbers. Formally, we have:

Lemma 2.1. (The One-Dimensional Sperner’s Lemma)

For n ≥ 2, in an n - tuple (a1, a2, ..., an) of 0s and 1s, the size of the set

{ j | aj−1 6= aj } is even if a1 = an and odd if a1 6= an.

11



Proof. We prove the lemma using induction. Let Jn denote the set

{ j | aj−1 6= aj } for an n - tuple (a1, a2, ..., an) of 0s and 1s, and let | Jn |

represent the size of the set.

Base Case (n = 2) : When a1 = a2 , the possible 2 - tuples are (0, 0) and

(1, 1) . In both these cases, | J2 | is 0 which is even. When a1 6= a2 , the

possible 2 - tuples are (0, 1) and (1, 0). For both cases, | J2 | = 1 , which is an

odd number. Hence, the lemma holds for n = 2.

Induction hypothesis: In a k - tuple (a1, a2, ..., ak) of 0s and 1s,

| Jk | =

 even a1 = ak,

odd a1 6= ak.

Now consider the (k + 1) - tuple (a1, ...ak, ak+1).

Case I: a1 = ak+1

1. If a1 = ak, then | Jk | is even (by the inductive hypothesis). Since

a1 = ak and a1 = ak+1, this means ak = ak+1. Thus, k + 1 /∈ Jk+1.

Then Jk+1 = Jk and hence | Jk+1 | is even.

2. If a1 6= ak, then Jk is odd (by the inductive hypothesis). Since

a1 = ak+1 and a1 6= ak, this means ak 6= ak+1. Thus, k + 1 ∈ Jk+1.

Then Jk+1 = Jk ∪ {k + 1} and hence | Jk+1 | = | Jk+1 | +1. Therefore,

| Jk+1 | is even.

Case II: a1 6= ak+1

1. If a1 = ak , then | Jk | is even (by the inductive hypothesis). Since

a1 6= ak+1 and a1 = ak, we get ak 6= ak+1. Therefore, k + 1 ∈ Jk+1. So

Jk+1 = Jk ∪ {k + 1} and | Jk+1 | = | Jk+1 | + 1. Thus, | Jk+1 | is odd.
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2. If a1 6= ak , then Jk is odd (by the inductive hypothesis). Since

a1 6= ak+1 and a1 6= ak, it follows that ak = ak+1. Thus k + 1 /∈ Jk+1.

This implies Jk+1 = Jk and hence | Jk+1 | is odd.

Hence we can conclude that

| Jk+1 | =

 even a1 = ak+1

odd a1 6= ak+1

Thus, if the lemma holds for n = k, then it holds true for n = k + 1. By the

process of induction, we can conclude for all n that in an n-tuple (a1, a2, ...an)

of 0s and 1s, the size of the set { j | aj 6= aj+1 } is even if a1 = an and odd if

a1 6= an. With this, the proof of one-dimensional Sperner’s lemma is

complete.

2.1.2 Two-Dimensional Sperner’s Lemma

The one-dimensional Sperner’s lemma is crucial to understanding and proving

Sperner’s lemma in two dimensions. However, first let us outline what we mean

by some of the terms.

Assume that we have a triangulation of T and that the vertices of the

sub-triangles are labeled with 0, 1, or 2. Then an edge of T or of a

sub-triangle of T is called an (a0, a1) edge if its endpoints are labeled with a0

and a1. Moreover, a triangle in T is called an (a0, a1, a2) triangle if its vertices

are labeled a0, a1 and a2.

For the purpose of the discussion, the regions associated with the triangulation

of T are the interiors of the sub-triangles and the exterior of T .
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Definition. A triangulation of a triangle T with all of its sub-triangle vertices labeled

with 0, 1, or 2 is said to have a Sperner labeling if the sub-triangle vertices are

labeled according to the following rules (refer to Figure 2.2):

1. T is a (0, 1, 2) triangle,

2. Sub-triangle vertices on a side of T are not labeled with the same number as the

T vertex opposite to that side.

Figure 2.2. A Sperner Labeling

If a triangulation of T has a Sperner labeling, then by property (2) of the

labeling, all the sub-triangle vertices on the side of T that is opposite to the T

vertex labeled 2 are labeled with either 0 or 1. By the one-dimensional

Sperner’s lemma, that side has an odd number of (0, 1) sub-triangle edges. Also,

by property (2), there are no (0, 1) sub-triangle edges on the other two sides of

T. Thus, there is an odd number of (0, 1) sub-triangle edges on the boundary of T .

There is another concept that we need to define before we can state and prove

Sperner’s lemma, namely, p-paths.
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Definition. A permissible path or p-path is a path going from one region to another

region such that (refer to Figure 2.3):

1. It begins in a (0, 1, 2) sub-triangle or in the exterior of T ,

2. It ends in a (0, 1, 2) sub-triangle or in the exterior of T ,

3. It passes from one region to an adjacent region only through a (0, 1) sub-triangle

edge,

4. It does not pass through a (0, 1) sub-triangle edge more than once.

Figure 2.3. An example of a p-path

A collection of p-paths in T is called complete if for every (0, 1) sub-triangle

edge, there is a unique path in the collection that crosses it. It is not difficult to

show that p-paths and complete collections of them exist.

Assume we have a complete collection of p-paths. Since the collection of p-paths

is complete, every (0, 1) edge is crossed by some p-path. And therefore, every

(0, 1, 2) sub-triangle is visited by a p-path. This enables us then to "count" all

(0, 1, 2) sub-triangles in T . We can now use the concepts we have recently

outlined to state and prove Sperner’s lemma in two dimensions.
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Lemma 2.2. (The Two-Dimensional Sperner’s Lemma)

If a triangulation of a triangle T has a Sperner labeling, then there exists at least one

(0, 1, 2) sub-triangle in T. Moreover, there is an odd number of such sub-triangles.

Proof. Given a triangulation of a triangle T labeled with a Sperner labeling, we

show the existence of an odd number of (0, 1, 2) sub-triangles by working with

p-paths through T. Assume we have a complete collection of p-paths.

For any sub-triangle in T, the number of (0, 1) edges can be 0, 1 or 2 as we

can see in Figure 2.4 below. Here, (0, 1) edges of a sub-triangle are highlighted.

Figure 2.4. Number of (0, 1) edges in a sub-triangle is 0, 1 or 2

Note that if a sub-triangle has no (0, 1) edge, then no p-path meets it. If a

sub-triangle has exactly one (0, 1) edge, then a p-path that meets it must begin

or end in that sub-triangle, and that sub-triangle is a (0, 1, 2) triangle.
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Furthermore if a sub-triangle has two (0, 1) edges, then every p-path that enters

it also leaves it.

There are three types of p-paths in the collection (Figure 2.5):

1. Type I: p-paths that begin and end inside T. This means the path begins

and ends inside two distinct sub-triangles with exactly one (0, 1) edge in

each. Thus, each p-path of this type accounts for two (0, 1, 2)

sub-triangles. Also, note that such a p-path crosses an even number

(possibly none) of (0, 1) edges on the boundary of T .

2. Type II: p-paths that begin and end outside T. Each p-path of this type

does not account for any (0, 1, 2) sub-triangles and crosses an even

number of (0, 1) edges on the boundary of T .

3. Type III: p-paths that begin inside T and end outside T or vice-versa.

Each p-path of this type accounts for one (0, 1, 2) sub-triangle and crosses

an odd number of (0, 1) edges on the boundary of T .

Figure 2.5. Types of p-paths

Let ni denote the number of paths of Type i. Let the total number of (0, 1)

sub-triangle edges on the boundary of T be denoted by nE and the total

number of (0, 1, 2) sub-triangles in T be denoted by nT . From the above
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discussion we know that Type I and Type II p-paths together account for an even

number of (0, 1) sub-triangle edges on the boundary of T and each Type III

p-path accounts for an odd number of (0, 1) sub-triangle edges on the

boundary of T.

Then for some α, β, γ ∈ Z≥ 0 :

nE = 2αn1 + 2βn2 + (2γ + 1)n3. (2.1)

Moreover, each Type I p-path accounts for two (0, 1, 2) sub-triangles and each

Type III p-path accounts for one (0, 1, 2) sub-triangle. Type II p-paths account

for no (0, 1, 2) sub-triangles. Then we get that:

nT = 2n1 + n3. (2.2)

As we already saw, there is an odd number of (0, 1) edges on the boundary of

T ; i.e. nE is odd. Then by Equation 2.1, n3 is odd. It follows from Equation 2.2

that nT is odd. In other words, there is an odd number of (0, 1, 2) sub-triangles

in T.

The completeness of the collection of p-paths in T ensures that every (0, 1, 2)

sub-triangle is included in the count. Thus there is an odd number of (0, 1, 2)

sub-triangles in T. This guarantees there is at least one (0, 1, 2) sub-triangle in

T and the proof of the two-dimensional Sperner’s lemma is complete.

Let us now look at Sperner’s lemma in dimension n.
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2.1.3 n-Dimensional Sperner’s Lemma

In the previous sections, we showed that Sperner’s lemma holds for the

one-dimensional and two-dimensional cases. The proof of Sperner’s lemma in

dimension n is very similar to the proof of the two-dimensional Sperner’s

lemma. However, before we state the lemma in n - dimensions, we need some

vocabulary to visualize and understand it better. Building upon the definitions

in the introductory chapter on simplices, faces, facets and subdivisions, here we

introduce some more terminology.

Assume we have a subdivision of an n - simplex S and that the vertices of

sub-simplices of S are labeled with numbers from {0, 1, ..., n}. A facet in S is

called an (a0, a1, ..., an−1) facet if its vertices are labeled a0, a1, ..., an−1. Also an

n - simplex in S is called an (a0, a1, ..., an) simplex if its vertices are labeled

a0, a1, ..., an.

As before, the regions associated with the subdivision of S are the interiors of

the sub-simplices and the exterior of S. Note that a subdivision that subdivides

a simplex also subdivides all the facets of the simplex. Then a sub-facet refers to

a facet of a sub-simplex, and the collection of all the sub-facets that lie on a facet

F of S gives a subdivision of F.

Definition. Given a subdivision of an n - simplex S with sub-simplex vertices in S

labeled with any number from the set {0, 1, ..., n}, the subdivision is said to have a

Sperner labeling if the sub-simplices are labeled according to the following rules:

1. S is a (0, 1, ..., n) simplex,

2. The vertices of sub-simplices on a facet of S do not have the same label as the

vertex opposite the facet.
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Assume we have a subdivision of S with a Sperner labeling. Note that the

(0, 1, ..., n− 1) facet of S is opposite the vertex of S labeled n and by (2), all

the sub-facet vertices that lie on the (0, 1, ..., n− 1) facet are not labeled n. Also,

by (2), we have that no other facet of S has (0, 1, ..., n− 1) sub-facets. Thus, on

the boundary of S, (0, 1, ..., n− 1) sub-facets lie only on the (0, 1, ..., n− 1) facet

of S.

As in the two-dimensional case, our proof of the n - dimensional Sperner’s

lemma uses p-paths, defined as follows:

Definition. A p-path in an n - simplex is defined as a path that:

1. begins in a (0, 1, ..., n) sub-simplex or outside S,

2. ends in a (0, 1, ..., n) sub-simplex or outside S,

3. crosses from one region to an adjacent region only through a (0, 1, ..., n− 1)

sub-facet,

4. crosses each (0, 1, ..., n− 1) sub-facet exactly once.

Just like in the case of a two-dimensional simplex, a collection of p-paths is

complete if every (0, 1, ..., n− 1) sub-facet is crossed by a unique path in the

collection. It is not difficult to see that complete collections of p-path exist. As in

the two-dimensional case, p-paths allow us to count the total number of

(0, 1, ..., n) sub-simplices in S.

We are now ready to state and prove the n - dimensional Sperner’s lemma.

20



Lemma 2.3. (Sperner’s Lemma)

For each n = 1, 2, ..., there exists an odd number of (0, 1, ..., n) sub-simplices in a

subdivision of an n - simplex S that has a Sperner labeling.

Proof. We will prove by induction on n that given a subdivision of an n -

simplex S and a Sperner labeling of the subdivision, there exists an odd

number of (0, 1, ..., n) sub-simplices in S. The base case n = 1 follows from

the one-dimensional Sperner’s lemma that we proved before (see Lemma 2.1).

The induction hypothesis is that the lemma holds for n− 1, that is, for

subdivided (n− 1) - simplices with a Sperner labeling. With that assumption,

we will prove the result for n - simplices. So assume we have a subdivision of an

n - simplex S with a Sperner labeling.

By induction, the (0, 1, ..., n− 1) facet of S has an odd number of (0, 1, ..., n− 1)

sub-facets. Since on the whole boundary of S, (0, 1, ..., n− 1) sub-facets lie only

on the (0, 1, ..., n− 1) facet of S, the total number of (0, 1, ..., n− 1) sub-facets

on the boundary of S is odd.

Assume now that we have a complete collection of p-paths for the subdivision of

S. A sub-simplex inside S may have no (0, 1, ..., n− 1) sub-facets, in which case

no p-path meets it. If a sub-simplex has at least one (0, 1, ..., n− 1) facet, then

there are two possibilities for the label on the remaining vertex:

1. If the remaining sub-simplex vertex opposite the (0, 1, ..., n− 1) sub-facet

is labeled n, the sub-simplex is a (0, 1, ..., n) simplex and it has exactly one

(0, 1, ..., n− 1) sub-facet. Then, a p-path either begins or ends in this

sub-simplex.
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2. If the remaining sub-simplex vertex opposite the (0, 1, ..., n− 1) sub-facet

is labeled with any number other than n, that is any number from

{0, 1, ..., n− 1}, then it has exactly two (0, 1, ..., n− 1) sub-facets and it is

not a (0, 1, ..., n) sub-simplex. Furthermore, a p-path enters and leaves the

sub-simplex.

Like the two-dimensional case, there are only three types of p-paths possible:

1. Type I: p-paths that begin and end in two distinct (0, 1, ..., n)

sub-simplices. Thus, a Type I p-path guarantees the existence of two

(0, 1, ..., n) sub-simplices and crosses an even number of (0, 1, ..., n− 1)

sub-facets on the boundary of S (each time it exits S, it does so through a

(0, 1, ...., n− 1) sub-facet and it must return to S through another).

2. Type II: p-paths that begin and end outside S. This type of path gives no

(0, 1, ..., n) sub-simplices and crosses an even number of (0, 1, ..., n− 1)

sub-facets on the boundary of S (each time it enters S, it does so through

a (0, 1, ..., n− 1) sub-facet and it must exit S through another).

3. Type III: p-paths that begin inside a (0, 1, ..., n) sub-simplex and end

outside S or vice-versa. Each Type III p-path gives exactly one (0, 1, ..., n)

sub-simplex and crosses an odd number of (0, 1, ..., n− 1) sub-facets on the

boundary of S.

Let ni denote the number of p-paths of Type i. Let the total number of

(0, 1, ..., n− 1) sub-facets on the boundary of S be denoted by nF and the total

number of (0, 1, ..., n) simplices in S be denoted by nS.

Then from the above discussion, we know that each Type I and Type II p-path

accounts for an even number of (0, 1, ..., n− 1) sub-facets on the boundary of S
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and each Type III p-path accounts for an odd number of (0, 1, ..., n− 1)

sub-facets on the boundary of S. So for some α, β, γ ∈ Z≥ 0 :

nF = 2αn1 + 2βn2 + (2γ + 1)n3. (2.3)

Moreover, each Type I p-path accounts for two (0, 1, ..., n) simplices in S and

each Type III p-path accounts for one (0, 1, ..., n) simplex in S. Type II p-paths

give no (0, 1, ..., n) simplices in S. Then:

nS = 2n1 + n3. (2.4)

As we already saw, there is an odd number of (0, 1, ..., n− 1) sub-facets on the

boundary of S; i.e., nF is odd. Then by Equation 2.3, n3 is odd. It follows

from Equation 2.4 that nS is odd. In other words, there is an odd number of

(0, 1, ..., n) simplices in S. The completeness of the collection of p-paths in S

ensures that every (0, 1, ..., n) simplex is included in the count. Thus there is an

odd number of (0, 1, ..., n) simplices in S.

Hence, Sperner’s lemma holds for the n - dimensional case, assuming the

(n − 1) dimensional case, and by induction on n, we get that for all n, the

Sperner labeling of a subdivision of an n - dimensional simplex S gives an odd

number of (0, 1, ..., n) sub-simplices in S.With that, the proof of the

n -dimensional Sperner’s lemma is complete.

Now that we have established Sperner’s lemma for all dimensions, let us

examine its application to fair-division problems, a branch of economics that has

gained prominence in the last half-century. In the next chapter, we will be using

this lemma to prove the Brouwer fixed point theorem, which in turn has various

applications in social sciences.
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2.2 Envy-Free Division in Economics

Economics is a behavioral science and in essence, it studies the problem of choice,

namely how to allocate resources, goods (or desirables) and bads (or

undesirables) in an economy. Distribution is basically a fair-division problem,

where fairness depends upon the outcome desired. For instance, the goal of

distribution may be to maximize social welfare or minimize negative

externalities (like pollution). Economists have been grappling with these

problems for centuries. Lately, there has been a growing focus on achieving

envy-free distribution in which each individual feels satisfied with their share and

does not vie for another individual’s share. Envy-free distribution sounds ideal

since it minimizes discontent and so maximizes happiness, however the

challenge lies in measuring a quality like envy in order to be able to make

considerations about it.

Many approaches have been proposed by mathematicians and economists who

have constructed models that lead to approximately envy-free distribution.

However, it was only after the development of Sperner’s lemma that the

existence of an envy-free division was established, keeping in mind certain

assumptions. When we talk about fair division of goods, it is difficult to

guarantee envy-free distribution as each individual vies for the best piece, and

here it has to be noted that the term "best" is subjective, depending on individual

preferences. Similarly, fair distribution of bads is difficult as every individual

wants the least share in it. A division which satisfies everyone simultaneously

seems hard to attain, yet as we shall see, Sperner’s lemma guarantees the

existence of such a division. To prove the existence of a fair distribution of

goods, we are going to use the approach used by Francis Edward Su in [2] who

attributed it to Forest Simmons.
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2.2.1 Cake-Cutting Dilemna

When a cake is divided between two people, fair division is possible using a

single cut if one person gets to cut the cake into two pieces while the other

person gets to choose the piece. This process motivates the first person to cut the

cake in a manner that she/he is indifferent between the two pieces and the

second person’s choice does not really affect them. Also, the second person gets

to choose the piece first so they will not envy the other person’s piece. In this

manner, an envy-free distribution can be achieved.

Is it possible to have an envy-free division of the cake between three people? It

does not seem obvious, yet given certain assumptions, there exists such a

division as we shall see in the approach given by Simmons. We have a cake

which is to be cut into three pieces using two cuts as shown in Figure 2.6.

Figure 2.6. Using two cuts to cut a cake into three pieces of size x1, x2, and x3

There are many ways in which these two cuts can be made. A set of cuts is

completely defined by the size of the three pieces it generates. We assume that

the total size of the cake is 1. Then a cake-cut is defined as a point (x1, x2, x3)

where xi is the size of the ith piece, such that

0 ≤ xi ≤ 1 ∀ i ∈ {1, 2, 3}, (2.5)

3∑
i=1

xi = 1. (2.6)
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Let the three individuals be denoted by A, B and C. Plotting all possible

cake-cuts, we find that the space T of cake-cuts is the standard 2 -simplex in

R3. The coordinates of the vertices of T are (1, 0, 0), (0, 1, 0) and (0, 0, 1).

We shall now make some general assumptions that form the base of the model

we are constructing.

Assumptions:

1. People are rational and their choice for a piece or pieces for a cake-cut

depends only on which piece(s) they prefer the most and not on other

people’s choices. Note, this means that a person always chooses at least

one piece for each cake-cut.

2. People are hungry and so they always choose some piece over no piece, i.e.

a piece of any size is chosen over a piece of size 0.

3. The set of choices is closed, i.e., if an individual chooses a piece for a

convergent sequence of cake-cuts, the individual chooses that piece at the

limiting cake-cut.

Note that a piece is not necessarily chosen based on its size. A person may prefer

a particular piece of cake because it has more candy flowers on it or more

chocolate or some such reason. The only assumption that is made about piece

size is that nobody chooses pieces of size 0.

Given the above assumptions, it is possible to find at least one cake-cut where

each individual prefers a different piece, and this gives us the envy-free partition

we desire. We establish this formally in what follows.
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Definition. For α = A, B, and C, and x = (x1, x2, x3) ∈ T, let Cα(x) be a

subset of {1, 2, 3}. We call the set-valued function Cα a choice function for person

α if:

1. Cα(x) 6= ∅ for all x ∈ T.

2. For all x = (x1, x2, x3), if xi = 0, then i /∈ Cα(x).

3. Cα is continuous.

Note that the three properties of a choice function in the above definition reflect

the corresponding assumptions listed previously. Also, if i ∈ Cα(x) for a

choice function Cα, we say that person α chooses piece i at cake-cut x.

Lemma 2.4. There exist arbitrarily fine triangulations of T with vertices labeled

A, B, and C such that each sub-triangle has vertices distinctly labeled A, B, and, C.

Figure 2.7. An example of arbitrarily fine triangulations of T

Proof. Given T with the vertex (1, 0, 0) labeled A, vertex (0, 1, 0) labeled B,

and vertex (0, 0, 1) labeled C, join the mid-points of AB, BC, and CA to

form a triangle and label these midpoints as C, A and B respectively (refer to

Figure 2.7). As we observe, each sub-triangle has vertices distinctly labeled
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A, B and C. We can continue to further divide each sub-triangle with vertices

distinctly labeled A, B and C into finer and finer sub-triangles and label them

as outlined above.

In this manner, for each n ∈ N, we have a triangulation Tn of T into

equal-sized equilateral sub-triangles such that the side lengths of the

sub-triangles go to 0 as n becomes infinite. Furthermore, each sub-triangle has

vertices labeled A, B, and C.

Then, the existence of the desired envy-free partition is established via the

following:

Theorem 2.1. Let CA, CB, CC be choice functions on T. There exists x ∈ T and

distinct α, β, γ among A, B, C such that 1 ∈ Cα(x), 2 ∈ Cβ(x), and

3 ∈ Cγ(x). Thus, at x ∈ T, each person can have a piece of cake that they choose.

Proof. Assume we have a sequence of labeled triangulations of T as described

in Lemma 2.4. Consider a triangulation Tn of T. Since each point in T

represents a cake-cut, we can create a new secondary labeling of the

triangulation using 1’s, 2’s, and 3’s such that if the vertex v is labeled with

person α, then we give it a secondary label i such that i ∈ Cα(v).

We claim that the labeling is a Sperner labeling (Figure 2.2). This is because no

one chooses a piece of size 0. So we can see that:

1. At the vertices, the only piece chosen (by any of the three - A, B or C) is

1 at (1, 0, 0), 2 at (0, 1, 0), and 3 at (0, 0, 1). Hence, the vertices are

labeled accordingly, and T is a (1, 2, 3) triangle.
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2. Now consider the side of T connecting the vertices (1, 0, 0) and (0, 1, 0).

All sub-triangle vertices on that side have coordinates (x1, x2, 0). At such a

cake-cut, none of A, B or C chooses piece 3. Therefore, no sub-triangle

vertex on that side is labeled with 3, that is, with the label on the vertex

(0, 0, 1) opposite to that side. Similarly, we can see that no vertex on the

side of T connecting the vertices (1, 0, 0) and (0, 0, 1) is labeled 2 and no

vertex on the side of T connecting the vertices (0, 1, 0) and (0, 0, 1) has

the label 1. Thus, vertices of sub-triangles on a side of T will not have the

same label as the vertex of T opposite to the side.

Thus, the labeling is a Sperner labeling. By Sperner’s lemma (Lemma 2.2), there

is at least one (1, 2, 3) sub-triangle in the triangulation Tn of T .

Each triangulation of T yields at least one (1, 2, 3) sub-triangle. For the

triangulation Tn, we denote that sub-triangle by Tn. The vertices of Tn are

labeled A, B, C and have the secondary labeling 1, 2, 3. For now, assume A

is labeled 1, B is labeled 2, and C is labeled 3. We denote the overall

labeling on such Tn by A1B2C3.

This means that at one vertex of Tn, A chooses piece 1 in that cake-cut, at

another vertex B chooses piece 2 for that cake-cut, and for the last vertex C

chooses piece 3 for that cake-cut. Note that this is not yet our desired envy-free

division because these are three different cake-cuts and not a single one where

A, B, and C choose distinct cake pieces. However, since we get smaller and

smaller (1, 2, 3) triangles for finer and finer triangulations, we can reach this

desired cake-cut through a limiting argument we use below.
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Note that there are six choice distributions possible for each Tn:

A1B2C3, A1B3C2, A2B1C3, A2B3C1, A3B1C2, A3B2C1

Since there are finitely many choice distributions and infinitely many Tn, at least

one choice distribution must repeat infinitely often. Without loss of generality,

assume it is A1B2C3; i.e., A chooses piece 1, B chooses piece 2 and C

chooses piece 3 at different vertices of Tn. Then for each of these sub-triangles,

take the vertex labeled A. They result in a sequence: v1, v2, v3, ... . Since this is

a sequence in a closed and bounded space T, it must have a sub-sequence that

converges to a point, say v. Since the size of sub-triangles of T becomes smaller

and smaller as n becomes infinite, the distance between the three vertices of the

triangles tends to 0. Thus, the corresponding sub-sequences of B and C

vertices also converge to v (by Theorem 1.2). At this limit point v, since the

choice functions are continuous, A chooses piece 1, B chooses piece 2 and C

chooses piece 3. Thus, v represents a cake-cut of T such that A, B, and C

prefer distinct pieces of the cake.

Hence, we are able to find at least one point in T, i.e. at lease one cake-cut, that

gives an envy-free division of the cake. With that, the proof of the theorem is

complete.

Note that a similar method can be adopted to find an envy-free division for

n + 1 individuals, using the n - dimensional Sperner’s lemma in the same way

that the two-dimensional lemma was used here.
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CHAPTER 3

THE BROUWER FIXED POINT THEOREM

In this chapter, we state and prove the Brouwer fixed point theorem, a theorem

of topology that was given in the 1912 publication Über Abbildung Von

Mannigfaltigkeiten [3] by the Dutch mathematician L. E. J. Brouwer. This theorem

was inspired by the work done by French mathematician Henri Poincaré [4] in

the field of differential equations [5]. The Browuer fixed point theorem proves

the existence of fixed points for certain continuous functions. First let us define

what is meant by a fixed point of a (point-valued) function.

Definition. For any set X, a fixed point of a function f : X → X is a point x∗

such that

f(x∗) = x∗.

The knowledge of existence of fixed points for a function has various

applications in social sciences (as well as other fields, though we are not

discussing them in this paper). One such application is to prove the existence of

equilibrium strategies for games, an important topic of discussion in game

theory. In this chapter, we will use the Brouwer fixed point theorem to prove the

existence of Nash equilibria for non-cooperative games. In the next chapter, we

will use the Kakutani fixed point theorem to prove the existence of general

equilibria in economics.
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3.1 The Brouwer Fixed Point Theorem

Let us begin by formally stating and proving the Brouwer fixed point theorem in

one, two, and n dimensions. Just as in the case of Sperner’s lemma, the

Brouwer fixed point theorem in one-dimension is fairly intuitive. It can be easily

proved using the Intermediate Value theorem. For dimensions two and higher,

we use the corresponding Sperner’s lemma to prove the theorem. In particular,

the proof of the two-dimensional Brouwer fixed point theorem provides greater

understanding of the proof in higher dimensions.

3.1.1 The One-Dimensional Brouwer Fixed Point Theorem

The standard 1 - simplex is a line-segment in R2 given by

y = 1 − x ; x ≥ 0 , y ≥ 0.

This is homeomorphic to the line-segment

y = 0 ; 0 ≤ x ≤ 1.

Thus, it is enough to prove the Brouwer fixed point theorem for functions

mapping [0, 1] to [0, 1]. Let f : [0, 1]→ [0, 1] be continuous. Intuitively it is

clear that the graph of f must intersect the line y = x at some point (see

Figure 3.1), and this point is a fixed point of f since f(x) = x at such a point.

We will formally prove the one-dimensional Brouwer fixed point theorem using

the Intermediate Value theorem from calculus.
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Figure 3.1. The idea behind the One-Dimensional Brouwer Fixed Point Theorem

Theorem 3.1. Every continuous function f : [0, 1]→ [0, 1] has a fixed point.

Proof. Let f : [0, 1]→ [0, 1] be a continuous function. Note that f(0) ≥ 0 and

f(1) ≤ 1. Define g(x) = f(x) − x for all x ∈ [0, 1]. Since f is continuous,

g is also continuous. Moreover, g(0) ≥ 0 and g(1) ≤ 0. Then by the

Intermediate Value theorem, there exists at least one point c ∈ [0, 1] such that

g(c) = 0. This implies f(c) − c = 0. Therefore f(c) = c, and c is a fixed

point of f.

Hence, there exists at least one fixed point of f : [0, 1]→ [0, 1]. Thus, the

Brouwer fixed point theorem holds for dimension one.

3.1.2 The Two-Dimensional Brouwer Fixed Point Theorem

Just like in the case of Sperner’s lemma, the proof of the n-dimensional Brouwer

fixed point theorem is very similar to the proof of the theorem in dimension two.

Since it is easy to visualize a 2 - simplex in R3 , we will first look at the

two-dimensional Brouwer fixed point theorem and then proceed to prove the
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theorem in dimension n. Note that the standard 2 -simplex, T, is the

equilateral triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). The Brouwer

fixed point theorem is applicable to any space homeomorphic to T, for instance,

any 2 - disk in the plane.

Figure 3.2. A point x ∈ T

Let x = (x0, x1, x2) be a point in T . For the purpose of the proof, define the

regions associated with x as below:

1. R0(x) := {y ∈ T | y0 < x0},

2. R1(x) := {y ∈ T | y0 ≥ x0 ; y1 < x1},

3. R2(x) := {y ∈ T | y0 ≥ x0 ; y1 ≥ x1 ; y2 < x2}.

Figure 3.3. Regions associated with a point x ∈ T
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Figure 3.3 depicts the three regions for an arbitrary point x ∈ T. Before we

state and prove the Brouwer fixed point theorem in two dimensions, here are

some easily seen properties of these regions.

Lemma 3.1. For any point x ∈ S,

1. R0(x), R1(x), R2(x) are mutually disjoint.

2. R0(x) ∪ R1(x) ∪ R2(x) = T − {x}.

3. Cl (R0(x)) ∩ Cl (R1(x)) ∩ Cl (R2(x)) = {x}.

4. R0((1, 0, 0)) = S − {(1, 0, 0)} ,

R1((0, 1, 0)) = S − {(0, 1, 0)} ,

R2((0, 0, 1)) = S − {(0, 0, 1)}.

5. R2((x0, x1, 0)) = R1((x0, 0, x2)) = R0((0, x1, x2)) = ∅.

We do not prove Lemma 3.1. Instead we can see these relationships in the

figures as follows: Parts (1) and (2) are illustrated in Figure 3.3 ; Part (3) is

demonstrated in Figure 3.4; Part (4) is represented in Figure 3.5 ; and Part (5) is

illustrated in Figure 3.6.

Figure 3.4. {x} = Cl (R0(x)) ∩ Cl (R1(x)) ∩ Cl (R2(x))
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Figure 3.5. Regions associated with the vertices of S

Figure 3.6. Regions associated with a point on a side of S

Next we introduce an important limit relationship for the regions.

Lemma 3.2. For j = 0, 1, 2 ; if (xn) → x, (yn) → y, and xn ∈ Rj(yn) for all

n, then x ∈ Cl (Rj(y))

The proof for this lemma is straightforward and it follows directly from

Theorem 1.3.

Let us now formally state and prove the two-dimensional Brouwer fixed point

theorem using the above lemmas.
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Theorem 3.2. Let T be the standard 2-simplex in R3. Every continuous function

f : T → T has a fixed point.

Proof. Given the standard simplex T , let f : T → T be an arbitrary continuous

function. Let T1,T2, .... be triangulations of T where each Ti+1 is generated

by further triangulating sub-triangles formed under Ti for all i . Also assume

that as i increases and tends to ∞ , the diameter of subdivision simplices tends

to 0.

If some sub-triangle vertex of T (over all triangulations) is a fixed point of f ,

then we are done. Now assume that no sub-triangle vertex v for any of the

triangulations of T is a fixed point of f . In other words, f(v) 6= v over all

vertices v in all triangulations of T . Since f(v) 6= v, parts (1) and (2) of

Lemma 3.1 imply that f(v) lies in exactly one of R0(v), R1(v), R2(v).

Label the vertex v with j if f(v) ∈ Rj(v). Then all sub-triangle vertices in T

are labeled with the numbers 0, 1, or 2 . Now by Lemma 3.1,

R0((1, 0, 0)) = S − {(1, 0, 0)}. This means f((1, 0, 0)) ∈ R0((1, 0, 0)) . Thus,

(1, 0, 0) is labeled 0 . Similarly, (0, 1, 0) is labeled 1 and (0, 0, 1) is labeled 2 .

(See Figure 3.5.) Hence T is a (0, 1, 2) triangle.

Figure 3.7. T is a (0, 1, 2) triangle
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Furthermore, sub-triangle vertices on a side of T do not have the same label as

the vertex opposite the side. For instance, vertices on the side of T connecting

the vertices (1, 0, 0) and (0, 1, 0) are not labeled 2. This is because a

sub-triangle vertex v on that side has the coordinates (x0, x1, 0). Then,

R2(v) = ∅ by Lemma 3.1, so f(v) /∈ R2(v), and hence v is not labeled 2.

Therefore, each triangulation Ti has a Sperner labeling (Figure 2.2). By

Sperner’s lemma, there exists at least one (0, 1, 2) sub-triangle in each

triangulation of T .

For each triangulation Ti, choose a (0, 1, 2) sub-triangle Ti. Let vik denote the

vertex of the sub-triangle Ti that is labeled k. By our labeling,

f(vik) ∈ Rk(v
i
k). (3.1)

Consider the sequence (vi0) over all i . This is a sequence in a closed and

bounded space T, and hence, it must have a convergent subsequence. For

simplicity, assume the sequence itself converges. Let (vi0) → V as i → ∞

where V ∈ T. By continuity of f, we get that f(vi0) → f(V ). Furthermore,

since f(vi0) → f(V ) and f(vi0) ∈ R0(v
i
0), it follows by Lemma 3.2 that

f(V ) ∈ Cl (R0(V )). (3.2)

Also, the sequences of vertices of Ti labeled 1 and 2 converge to V since the

distance between the sub-simplex vertices tends to 0 as i → ∞ . Hence,

(vi1) → V and (vi2) → V (by Theorem 1.2). As before, by continuity of f and

Lemma 3.2, we get:

f(V ) ∈ Cl (R1(V )) and f(V ) ∈ Cl (R2(V )). (3.3)
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Combining 3.2 and 3.3, we get that:

f(V ) ∈ Cl (R0(V )) ∩ Cl (R1(V )) ∩ Cl (R2(V )). (3.4)

By Part (3) of Lemma 3.1, this means f(V ) = V. Thus, V is a fixed point of f.

So if no subdivision vertex is a fixed point of f, then some other point in T is.

Hence, the proof of the Brouwer fixed point theorem in two dimensions is

complete.

3.1.3 The n - Dimensional Brouwer Fixed Point Theorem

Let us prove the Brouwer fixed point theorem for the standard n - simplex S in

Rn+1. Note that if the theorem applies to the n - simplex, then it extends to all

spaces that are homeomorphic to the simplex, for instance, the closed unit ball

Bn in Rn where Bn = { x ∈ Rn : | x | ≤ 1 }.

Theorem 3.3. Let S be the standard n - simplex in Rn+1. Then every continuous

function f : S → S has a fixed point.

Proof. Given the standard n -simplex S in Rn+1, we want to show that every

continuous function f : S → S has a fixed point. Let S1,S2, ... be subdivisions

of S where each Si+1 is generated by further subdividing sub-simplices

formed under Si for all i. Assume that the diameter of sub-simplices tends to

0 as i → ∞.

Let f : S → S be an arbitrary continuous function. If some sub-simplex vertex

(over all subdivisions Si ) is a fixed point of f, then we are done. Now assume
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none of the sub-simplex vertices for any subdivision is a fixed point of f. In

other words, f(v) 6= v over all vertices v in all subdivisions Si of S.

For any x = (x0, x1, ..., xn) ∈ S, let

f(x) = f(x0, x1, ...., xn) = (f0(x), f1(x), ..., fn(x)).

Assume x is not a fixed point of f. So (x0, x1, ..., xn) 6= (f0(x), f1(x), ..., fn(x)).

Then by Lemma 1.1, there exists some k ∈ {0, 1, ..., n} such that fk(x) < xk.

Label the point x with the number p such that

p = min { k = 0, 1, ..., n | fk(x) < xk}.

Note that the n+1 vertices of S have the coordinates (1, 0, ..., 0), (0, 1, ..., 0) , ...,

(0, 0, ..., 1). Since these vertices of S are not fixed points (as assumed before),

then according to the labeling, they must be labeled 0, 1, ..., n respectively. For

example, with f(0, 0, 1, ..., 0) = (a0, a1, ..., an), we have 0 ≤ a0, 0 ≤ a1, and

a2 < 1 (the latter holds because otherwise we would have a fixed point). So

(0, 0, 1, 0, ..., 0) is labeled with 2. Thus, S is a (0, 1, ..., n) simplex.

Now fix a subdivision Si of S. Consider the vertex of S with 1 in the jth

entry. Then by our labeling, this vertex is labeled j. Let x be a point on the

facet opposite this vertex. Clearly, xj = 0. Then since fj(x) ≥ 0 , it follows

that x is not labeled j. Therefore, over all subdivisions Si, no sub-simplex

vertex is labeled j on the facet opposite the S vertex labeled j . Hence, each

subdivision Si has a Sperner labeling.

Therefore by Sperner’s lemma, there exists at least one (0, 1, ..., n) sub-simplex

in S . Choose a (0, 1, ..., n) sub-simplex Si from each sub-division Si.
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Let vik be the vertex of Si labeled k . Consider the sequence (vi0) over all i.

Then this sequence, in a closed and bounded space S, must have a convergent

subsequence. For simplicity, assume the sequence itself converges. Let vi0 → v∗

as i → ∞ where v∗ is a point in S. Then the sequences formed by the other

vertices (vi1), (v
i
2), ..., (v

i
n) also converge to v∗ since the distance between the

sub-simplex vertices tends to 0 as i → ∞ (by Theorem 1.2). We claim that the

limiting point v∗ ∈ S is actually a fixed point of f .

To prove the claim, let the point v∗ = (v∗0, v
∗
1, ..., v

∗
n). Let vik,m denote the mth

coordinate of vik. Note that for all k and i,

(vik,0) → v∗0, (vik,1) → v∗1, ..., (vik,n) → v∗n. (3.5)

Now vik has the label k. Then, by the labeling, we must have

fk(v
i
k) < vik,k. (3.6)

Thus, from Equations 3.5 and 3.6 and Theorem 1.3,

fk(v
∗) ≤ v∗k for all k.

By Lemma 1.1, we have that

fk(v
∗) = v∗k for all k.

Hence,

f(v∗) = v∗.

In other words, v∗ is a fixed point of f. So if no subdivision vertex is a fixed

point of f, then some other point in S is. Therefore, the Brouwer fixed point

theorem holds for all n-dimensions (n ∈ N).
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3.2 Using the Brouwer Fixed Point Theorem to Prove the Existence of Nash

Equilibria for Non-Cooperative Games

Equilibrium is often defined as a state of rest, where all counteracting forces

balance. In game theory, equilibrium means a state where all players are content

with the strategy they employ and have no reason to change it, given the

strategies of the other opponents. One of the main questions in game theory is to

determine whether equilibrium is attainable, and if so, what strategy must one

employ in a game in order to achieve it. John Nash proved the existence of

equilibria in a finite non-cooperative game using the generalized Kakutani fixed

point theorem, and later he presented a more straightforward proof of the same

using the Brouwer fixed point theorem [6]. In this section, we will first introduce

game theory and what is meant by an equilibrium in a finite non-cooperative

game. Then we will use the Brouwer fixed point theorem to prove the existence

of equilibria. Further, we will see its application in example games that we

introduce.

3.2.1 Introduction to Game Theory

The formal establishment of game theory as a field of study is credited to the

1944 publication Theory of Games and Economic Behavior by mathematician John

von Neumann and economist Oscar Morgenstern [7]. However, the roots of this

science can be traced as far back as two thousand years. The Babylonian

Talamud, the basis of all codes of Jewish laws and ethics, has the oldest known

reference to what is now referred to as the theory of cooperative games [8]. Even

the Spanish conquest of the Aztecs reflects the subtle use of game theory in

military tactics, when the Spanish conqueror Cortes scuttled his ships so that his
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military did not mutiny and flee back and also, to induce fear into the minds of

the Aztec people. As it happened, his strategy was successful and he won the

conquest [9]. It is an age-old question whether or not a situation necessarily has

an "outcome" that maximizes the welfare of everyone, given the choices made by

each person involved. And so the formal theory of games emerged to find

answers to these conundrums.

To begin with, a game is an interaction between participants of the game,

defined by a set of rules. Participants of a game are called players and these

players are responsible for making decisions, or choices, that determine the

outcome of the game. Note that the final outcome of the game is determined by

the combination of choices made by all players. A move is an action taken by a

player in a game. A non-cooperative game is a game without any coalition or

communication between the players that can influence their decision. Thus, in a

non-cooperative game, each player acts independently and tries to maximize his

or her own objective.

In this paper, we will focus our attention on single-move non-cooperative games

with finite players and finite choices for each player. Let us look at an example

two-player game. Suppose the two players are player X and player Y. The

game is played by having each player make exactly one move. In this game, each

player is asked to throw either a nickel or a quarter into a hat. The players make

the move simultaneously and cannot communicate their choice with the other

player beforehand. The final outcome of the game depends upon the rules of the

game and the choices made by both the players.

For instance, suppose the game rule was that if the coins match, player X gets

the coin player Y played (in addition to getting back the coin she/he played)
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and if the coins do not match, player Y gets both player X’s coins (in addition

to getting back the coin she/he played). Then depending upon the coin each

player chooses to put into the hat, either player X earns a profit or player Y

earns a profit. Note that the players do not know what the other player chooses.

However, it is safe to assume that, knowing the rules of the game, they both are

fully aware of all possible outcomes of the game and the question here is - What

are the best choices for each player when playing the game?

We are interested in examining the situation where a game is played multiple

times. Given the possible outcomes, the question is, what are the best overall

strategies the players can employ so that they can maximize their gains or

minimize their losses?

Let the ith player have ni available choices in the game. In our example, let N

and Q represent the choice of playing a nickel and of playing a quarter,

respectively. Then there are two choices available to each player, {N,Q}.

When a player makes the same choice for a move in every play of the game, the

player is said to have a pure strategy. A pure strategy of a player is independent

of the pure strategies of other players. In our example, if player X plays N all

the time, this strategy can be written as (1, 0) to indicate that player X plays

only N and never plays Q.

A player’s strategy set is the set of all the pure strategies of the player. Let the

strategy set of the ith player be { pi,τ | τ = 1, ...., ni}. Note that each pure

strategy pi,τ is written as an ni - dimensional vector, that is, pi1 = (1, 0, ..., 0),

pi,2 = (0, 1, ..., 0), ..., pi,ni
= (0, 0, ..., 1). In our example, as we saw, the strategy

44



set of player X is {p1,1, p1,2} where p1,1 = (1, 0) and p1,2 = (0, 1). Similarly,

the strategy set of player Y is {p2,1, p2,2} where p2,1 = (1, 0) and p2,2 = (0, 1).

In general, playing a pure strategy is not an ideal tactic for a player because

making the same choice in every play of the game allows other players to guess

the player’s strategy and use that knowledge to maximize their own payoff at the

expense of this player. Instead, each player generally uses amixed strategy. This

means that the player assigns probabilities to the pure strategies available to

her/ him in order to incorporate an ambiguity in their decision making and

keep the other players guessing. Mixed strategies model real life situations since

they allow players to deviate from a fixed path, accounting for the human

decision-making element.

For player i, let si denote a mixed strategy where she/he plays the available ni

choices with differing probabilities over a large number of plays of the game. Let

the probability associated with the τ th choice be ατ . Clearly, each ατ ≥ 0 and

ni∑
τ=1

ατ = 1. (3.7)

Then we can represent this mixed strategy si as the n - tuple (α1, ..., ατ , ..., αni
).

Each mixed strategy si can be thought of as a linear combination of the pure

strategies of player i, written as

si =

ni∑
τ=1

ατpi,τ (3.8)

where ni = number of choices available to the ith player,

ατ = probability associated with the τ th choice, and

pi,τ = pure strategy of the ith player to play the τ th choice.
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It is obvious that there are infinitely many mixed strategies available to each

player, even when the strategy set is finite. By Equations 3.7 and 3.8, we can see

that the set of all possible mixed strategies for a player forms an (ni − 1) -

simplex Si whose vertices represent the pure strategies for that player. Thus, a

mixed strategy of a player is a point in the vector space formed by the span of all

the pure strategies of that player.

Again, referring back to our example of the two-player, two-choice game, we see

that the mixed strategies for player X is the set of points on the line segment in

R2 connecting p1,1 to p1,2. Similarly, the mixed strategies for player Y is the set

of points on the line segment in R2 connecting p2,1 to p2,2.

Let s = (s1, ..., sn) denote the n-tuple of mixed strategies of the n players.

Since each si is a point in a vector space spanned by the pure strategies of the

ith player, s can be geometrically understood as a point in the vector space that

is the product space of all vector spaces formed by the span of pure strategies of

each player. In our example, s = (s1, s2) ∈ R4, where s1 ∈ R2 is a mixed

strategy of player X and s2 ∈ R2 is a mixed strategy of player Y.

Each n - tuple of mixed strategies (s1, ..., sn) has an associated payoff,

π = (π1, ..., πn) that represents the outcome of the game if the players were to

choose that mixed strategy combination. Here, πi denotes the payoff for the ith

player, and it is determined, not only by the move made by the ith player, but

also by the moves of the other players. Thus, πi, the payoff to the ith player, is

a function of mixed strategies of all players,

πi (s) = πi (s1, ..., si, ..., sn).
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Since a mixed strategy for a player is a linear combination of the player’s pure

strategies and each player’s payoff depends not only on the choice made by them

but also on the choices made by other players, it is natural to assume that each

payoff function πi (s) is a linear combination of the payoffs associated with the

pure strategies of each of the players. That is, each payoff function is a linear

function of the payoffs corresponding to the pure strategies of all players, pi,τ

(where i = 1, ..., n and τ ranges from 1, ..., ni for each i ).

Definition. A Nash equilibrium is a strategy combination s such that the strategy

si chosen by the ith player maximizes the player’s payoff when the strategies of the other

players’ are assumed fixed. Thus, (s1, ...., sn) is a Nash equilibrium if for all i,

πi (s1, ...., si−1, si, si+1, ...., sn) = max
s ∈ Si

{πi (s1, ...., si−1, s, si+1, ...., sn)}. (3.9)

This equilibrium is known alternately as the best response equilibrium since "no player

can improve his expectation by changing his choice, the others being held fixed" [10].

In 1950, John Nash proved the existence of a Nash equilibrium for an n - player

finite-choice non-cooperative game using the generalized Kakutani fixed point

theorem [11]. However, in 1951, he published an alternate proof in the paper

Non-Cooperative Games that in his words was a "considerable improvement over

the earlier version and is based directly on the Brouwer theorem" [6]. Our

objective is to give a detailed perspective of how the Brouwer fixed point

theorem helps establish the existence of a Nash equilibrium for a 3 - player, 3 -

choice non-cooperative game. The method of proof carries over to n players

where each has ni choices in a game. Later, we will work out the algorithm to

find a Nash equilibrium for our two-person game outlined earlier in this section.
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3.2.2 Nash Equilibrium for 3 - Player, 3 - Choice Non-Cooperative Game

Assume we have a game with three players {1, 2, 3}, and assume that each

player has exactly three choices ai, bi and ci they can make for their move. Let

us represent the pure strategy vectors of the ith player by {Ai, Bi, Ci}. Here,

Ai = (1, 0, 0) represents the pure strategy of player i to make the choice ai one

hundred percent of the time. Similarly, Bi = (0, 1, 0) and Ci = (0, 0, 1). Thus

each player has a 2 - simplex of mixed strategies, given by:

Ti = {αAi + βBi + γCi | α, β, γ ≥ 0, α + β + γ = 1}. (3.10)

Here, α, β, γ represent the various frequencies (probabilities) at which each

choice ai, bi, ci is played by the ith player.

Each player has a payoff function πi : T1 × T2 × T3 → R. As discussed

previously, we assume that the payoff function of the ith player is linear on each

Ti. For instance,

π1 (αA1 + βB1 + γC1 , s2, s3) = απ1 (A1 , s2, s3)+ βπ1 (B1 , s2, s3)+ γπ1 (C1 , s2, s3).

(3.11)

As a consequence, for fixed s2 and s3, one of the following must hold:

1. The maximum of π1 occurs at a single vertex of T1,

2. The maximum of π1 occurs all along an edge of T1,

3. The maximum of π1 occurs over all of T1, i.e., π1 is constant on T1.

Similar statements can be made for the maximum of π2 (for fixed s1 and s3)

and for the maximum of π3 (for fixed s1 and s2).
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Note that (s1, s2, s3) is a Nash equilibrium if

π1 (s1, s2, s3) = max
s ∈ T1

{π1 (s, s2, s3)},

π2 (s1, s2, s3) = max
s ∈ T2

{π2 (s1, s, s3)},

π3 (s1, s2, s3) = max
s ∈ T3

{π3 (s1, s2, s)}.

(3.12)

The ideas of "perturbation" and "improvement" that we introduce next will assist

us in our proof of the existence of Nash equilibria. Now, for α′, β′, γ′ ≥ 0, if

we adjust a mixed strategy si ∈ Ti by relative amounts α′, β′, γ′ towards the

pure strategies Ai, Bi, Ci, the resulting mixed strategy s′i, defined as

s′i =
si + α′Ai + β′Bi + γ′Ci

1 + α′ + β′ + γ′
∈ Ti (3.13)

is called the perturbation of si by [α′, β′, γ′].

Define

IA1 (s1, s2, s3) = max {0, π1(A1, s2, s3) − π1(s1, s2, s3)}. (3.14)

We call IA1 the A1−improvement of π1. It measures by howmuch the payoff of

Player 1 increases, if any, by switching from mixed strategy s1 to pure strategy

A1, given that Players 2 and 3 continue to use mixed strategies s2 and s3,

respectively. We similarly define IB1 , IC1, IA2, IB2, IC2, IA3, IB3, and IC3 .

Theorem 3.4. (s1, s2, s3) is a Nash equilibrium if and only if IAi
= IBi

= ICi
= 0

for i = 1, 2, 3.

Proof. Clearly, if IAi
= IBi

= ICi
= 0 for all i, this means the payoff each

player receives from the mixed strategy si is maximum, given that the other

players’ strategies are fixed. Hence, (s1, s2, s3) is a Nash equilibrium.
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Now, let us assume that (s1, s2, s3) is a Nash equilibrium. We want to show that

IAi
= IBi

= ICi
= 0 for all i. Without loss of generality, let us assume the

strategies of players 2 and 3 are fixed as s2 and s3 respectively. (s1, s2, s3) is

a Nash equilibrium, so by Equation 3.12, we know that

π1 (s1, s2, s3) ≥ π1 (A1, s2, s3),

π1 (s1, s2, s3) ≥ π1 (B1, s2, s3),

π1 (s1, s2, s3) ≥ π1 (C1, s2, s3).

Hence, by equation 3.14, IA1 (s1, s2, s3) = IB1 (s1, s2, s3) = IC1 (s1, s2, s3) = 0.

We can make similar arguments for players 2 and 3. Thus (s1, s2, s3) being a

Nash equilibrium implies that for all i,

IAi
(s1, s2, s3) = IBi

(s1, s2, s3) = ICi
(s1, s2, s3) = 0.

Therefore, we conclude that (s1, s2, s3) is a Nash equilibrium if and only if

IAi
= IBi

= ICi
= 0 for i = 1, 2, 3.

Theorem 3.5. A Nash equilibrium exists for a 3-player, 3-choice, non-cooperative game.

Proof. For (s1, s2, s3) ∈ T1 × T2 × T3, let s′i denote the perturbation of si by

[IAi, IBi, ICi,] in Ti for i = 1, 2, 3. Then,

f (s1, s2, s3) = (s′1, s
′
2, s
′
3) (3.15)

defines a continuous function f : T1 × T2 × T3 → T1 × T2 × T3. Since

T1 × T2 × T3 is homeomorphic to the 6-dimensional closed ball, it follows by the

Brouwer fixed point theorem that f has a fixed point (s∗1, s
∗
2, s
∗
3).
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We claim that (s∗1, s
∗
2, s
∗
3) is a Nash equilibrium and we prove this by showing

that at (s∗1, s
∗
2, s
∗
3), we have IAi

= IBi
= ICi

= 0 for i = 1, 2, 3.

Note that since (s∗1, s
∗
2, s
∗
3) is a fixed point of f,

f(s∗1, s
∗
2, s
∗
3) = (s∗1, s

∗
2, s
∗
3). (3.16)

Then, by Equation 3.13, for each i,

s∗i =
s∗i + IAi

Ai + IBi
Bi + ICi

Ci
1 + IAi

+ IBi
+ ICi

. (3.17)

Let us consider the payoffs for player 1, keeping the strategy choices of players

2 and 3 fixed as s∗2 and s∗3. In T1 , without loss of generality, we may assume

that

π1 (A1, s
∗
2, s
∗
3) ≤ π1 (B1, s

∗
2, s
∗
3) ≤ π1 (C1, s

∗
2, s
∗
3). (3.18)

We divide the analysis into three distinct cases:

1. π1 (A1, s
∗
2, s
∗
3) = π1 (B1, s

∗
2, s
∗
3) = π1 (C1, s

∗
2, s
∗
3),

2. π1 (A1, s
∗
2, s
∗
3) = π1 (B1, s

∗
2, s
∗
3) < π1 (C1, s

∗
2, s
∗
3),

3. π1 (A1, s
∗
2, s
∗
3) < π1 (B1, s

∗
2, s
∗
3) ≤ π1 (C1, s

∗
2, s
∗
3).

We consider each case separately.

Case I : π1 (A1, s
∗
2, s
∗
3) = π1 (B1, s

∗
2, s
∗
3) = π1 (C1, s

∗
2, s
∗
3).

By linearity of the payoff function over T1, the payoff of player 1 is constant

over T1. Thus, IA1 = IB1 = IC1 = 0.
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Case II : π1 (A1, s
∗
2, s
∗
3) = π1 (B1, s

∗
2, s
∗
3) < π1 (C1, s

∗
2, s
∗
3).

Since the payoff function is linear over T1, the payoff of player 1 is constant and

minimum along the edge of T1 that connects the two pure strategy vertices A1

and B1. Hence, IA1 = IB1 = 0. Then, by Equation 3.17,

s∗1 =
s∗1 + IC1C1

1 + IC1

. (3.19)

Now, s∗1 is a mixed strategy and can be represented as

s∗1 = α∗A1 + β∗B1 + γ∗C1 , where α∗ + β∗ + γ∗ = 1. (3.20)

Thus, in Equation 3.19,

α∗A1 + β∗B1 + γ∗C1 =
α∗A1

1 + IC1

+
β∗B1

1 + IC1

+
(γ∗ + IC1) C1

1 + IC1

.

Since A1, B1, and C1 are independent vectors, we have

α∗ =
α∗

1 + IC1

, β∗ =
β∗

1 + IC1

, γ∗ =
γ∗ + IC1

1 + IC1

. (3.21)

Here there are two sub-cases:

1. If either α∗ or β∗ is non-zero, then 1 + IC1 = 1, so IC1 = 0.

2. If both α∗ = β∗ = 0, then γ∗ = 1 and s∗1 = C1 = (0, 0, 1). Then, by

definition (as seen in Equation 3.14), IC1 = 0.

Thus, in Case II, we get IA1 = IB1 = IC1 = 0.
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Case III : π1 (A1, s
∗
2, s
∗
3) < π1 (B1, s

∗
2, s
∗
3) ≤ π1 (C1, s

∗
2, s
∗
3).

Linearity of the payoff function over T1 implies that the payoff of player 1 is

minimum for the pure strategy A1. Hence, IA1 = 0. By Equation 3.17,

s∗1 =
s∗1 + IB1B1 + IC1C1

1 + IB1 + IC1

. (3.22)

As before, s∗1 is a mixed strategy and can be represented as in Equation 3.20.

Thus,

α∗A1 + β∗B1 + γ∗C1 =
α∗A1

1 + IB1 + IC1

+
(β∗ + IB1)B1

1 + IB1 + IC1

+
(γ∗ + IC1)C1

1 + IB1 + IC1

.

Since A1, B1, C1 are independent vectors, we have

α∗ =
α∗

1 + IB1 + IC1

, β∗ =
(β∗ + IB1)

1 + IB1 + IC1

, γ∗ =
(γ∗ + IC1)

1 + IB1 + IC1

. (3.23)

Again, there are two sub-cases here:

1. If α∗ 6= 0, then 1 + IB1 + IC1 = 1 . Hence, IB1 + IC1 = 0. Since IB1

and IC1 are non-negative, this forces IB1 = IC1 = 0.

2. If α∗ = 0, then by Equation 3.20, β∗ + γ∗ = 1. This means that s∗1 is on

the segment connecting B1 and C1. Since π1 (B1, s
∗
2, s
∗
3) ≤ π1 (C1, s

∗
2, s
∗
3),

it follows by the linearity of the payoff function over T1 that on the

segment, the payoff of player 1 is minimum for the pure strategy B1.

Hence, IB1 = 0. Then by equation 3.23, we have

β∗ =
β∗

1 + IC1

, γ∗ =
(γ∗ + IC1)

1 + IC1

. (3.24)

Now β∗ can be zero or non-zero.
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(a) If β∗ 6= 0, then 1 + IC1 = 1 and hence, IC1 = 0.

(b) If β∗ = 0, then γ∗ = 1 in Equation 3.20. In other words,

s∗1 = C1 = (0, 0, 1). As before, IC1 = 0 by definition.

Hence, in Case III, we have IA1 = IB1 = IC1 = 0.

Summarizing over all three possible cases, we conclude that

IA1 (s
∗
1, s
∗
2, s
∗
3) = IB1 (s

∗
1, s
∗
2, s
∗
3) = IC1 (s

∗
1, s
∗
2, s
∗
3) = 0. (3.25)

The same argument holds for players 2 and 3 , and therefore,

s∗i =
s∗i + IAi

Ai + IBi
Bi + ICi

Ci
1 + IAi

+ IBi
+ ICi

implies that IAi
(s∗1, s

∗
2, s
∗
3) = IBi

(s∗1, s
∗
2, s
∗
3) = ICi

(s∗1, s
∗
2, s
∗
3) = 0 for i = 1, 2, 3.

Thus, by Theorem 3.4, (s∗1, s∗2, s∗3) is a Nash equilibrium.

Note that this proof can be extended to establish existence of a Nash equilirium

for n players in a non-cooperative game where the ith player has τi pure

strategies.

3.2.3 Example of a 2 - Player, 2 - Choice Game

Working with our example of a 2 - player game that we have been referring to,

let us look at an algorithm that will enable us to determine Nash equilibria for

the game.

Recall that the two players X and Y had two choices each {N,Q}. Also, the

pure strategies for players X and Y are {p11, p12} and {p21, p22} respectively.
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Suppose X chooses to play N with probability p. Since there are only two

choices available to player X, it means that player X chooses Q with the

probability 1 − p. Similarly, player Y chooses N with probability q and Q

with probability 1 − q. So the mixed strategies of players X and Y are

(p, 1 − p) and (q, 1 − q), respectively.

For each combination of strategies of the two players, there is an attached payoff.

Tabulating all this data gives us the payoff matrix for the game. Any entry in the

matrix, written as (π1, π2), shows the payoffs to the two players given the choice

combination. Note that π1, and π2 depend upon the choices made by both

players X and Y. In this paper, we will limit ourselves to examining two

example games and the Nash equilibria in each case.

3.2.3.1 Game I

As we saw before, suppose the game rule is that if the coins match, player X

gets player Y ’s played coin and if the coins do not match, player Y gets both of

player X’s coins. Then the payoffs, or profits here, will be given by:

Available Player Y

Choices N Q

Player X
N (5,−5) (−30, 30)

Q (−30, 30) (25,−25)

Table 3.1. Payoff matrix I

Here, the entry (5,−5) means that if player X plays N and player Y also

plays N, then the payoff to player X is 5 cents and to player Y is −5 cents

(that is, player Y loses 5 cents).
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To find a Nash equilibrium, we begin by examining the payoffs to each player

when they play pure strategies and the other player can play any mixed strategy.

In our example, the payoff for player X from choosing to play the pure strategy

p11 = (1, 0) (that is, play a nickel every time) depends upon the probability q

that player Y chooses to play N and the probability 1 − q that player Y

chooses strategy Q. Thus the payoff for player X from choosing the pure

strategy p11 is given by:

π1 = (5)q + (−30)(1 − q) = 35q − 30 . (3.26)

By the same argument, the payoff for player X from choosing the pure strategy

p12 is given by:

π1 = (−30)q + (25)(1 − q) = 25 − 55q . (3.27)

If we graph both these equations (Figure 3.8), they intersect at q∗ =
11

18
. We

claim that this is the Nash equilibrium strategy for player Y, that is, to play a

nickel 11 out of 18 times.

Figure 3.8. q∗ =
11

18
is a Nash equilibrium strategy
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Let q0 <
11

18
be fixed. Given this mixed strategy for player Y, all possible

payoffs for player X lie on the part of the line q = q0 between the two pure

strategy payoff lines of player X. Given that player Y is playing mixed strategy

(q0, 1− q0), player X’s best response then is to play the pure strategy

p12 = (0, 1). This does not yield a Nash equilibrium strategy, however, because

if player X plays pure strategy p12, player Y will maximize her/his payoff by

playing the pure strategy p21 = (1, 0), and not playing (q0, 1− q0).

So a Nash equilibrium does not occur when player Y plays mixed strategy

(q0, 1− q0) with q0 <
11

18
. A similar argument shows there is no Nash

equilibrium possible when player Y plays mixed strategy (q0, 1− q0) with

q0 >
11

18
either. Note that when player Y plays the mixed strategy (q∗, 1− q∗)

with q∗ =
11

18
, all mixed strategies for player X provide the same payoff, so in

this case, the payoff to player X is maximized with every choice of mixed

strategy. Thus, π1 is maximized at mixed strategy
(
11

18
,

7

18

)
for player Y, that

is, when player Y chooses to play the nickel 11 out of every 18 games.

A similar analysis yields that when player X plays the mixed strategy(
11

18
,

7

18

)
, the payoff for player Y is maximized for every choice of mixed

strategy for player Y.

It follows that the Nash equilibrium for the game is at the mixed strategy

combination

s =

( (
11

18
,

7

18

)
,

(
11

18
,

7

18

) )
.
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3.2.3.2 Game II

Suppose the game rule is that if the coins played by the two players match, each

player gets twice the amount they put in. If they do not match, the coins are

exchanged, that is, each player gets the coin played by the other. Then the

payoffs will be given by:

Available Player Y

Choices N Q

Player X
N (5, 5) (20,−20)

Q (−20, 20) (25, 25)

Table 3.2. Payoff matrix II

When we analyze the best response of each player to the strategies chosen by the

other player, we find that there are two pure-strategy Nash equilibria for this

game. This is because if player Y plays N all of the time, then player X

receives maximum payoff by playing N all the time as well, and vice versa.

Thus, the pure strategy combination ((1, 0), (1, 0)) is a Nash equilibrium.

By a similar argument, there is also a pure strategy Nash equilibrium at

((0, 1), (0, 1)), having both players play Q all of the time. Thus, the two

pure-strategy Nash equilibria for this game are at (p11, p21) and (p12, p22). Note

that in Game I, there are no pure strategy Nash equilibria since there is no pure

strategy combination that is a mutual best response to the other players’ strategy.

By an analysis similar to the one we did for the first example, we find that the

game has a mixed strategy Nash equilibrium at

s =

((
1

6
,
5

6

)
,

(
1

6
,
5

6

))
.
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There is a notion of stability for Nash equilibria. We don’t address it formally

here but in a 2 - player game, a Nash equilibrium is stable if when either player

makes a small change in strategy, the other player has no incentive to change

her/his strategy and the player who made change is then compelled to return to

playing the strategy at Nash equilibrium that they deviated from. On the other

hand, a Nash equilibrium is unstable if a small change in strategy by one player

induces the other player to make a major change in her/his strategy.

In our example game, Game II, we can see that the pure strategy Nash equilibria

are stable. For instance, if the two players are playing with Nash equilibrium

strategy combination (p11, p21) and player Y chooses to play Q instead of N,

player X will continue to play N as she/he is actually getting a higher payoff

with the change. Player Y on the other hand will lose 20 cents instead of

earning 5 cents and will be forced to revert to the original strategy of playing N

all the time. Also, by a similar argument, it can be seen that the mixed strategy

Nash equilibrium for this game is unstable since even a small change in strategy

by one player will create responses that will cause both players to move away

from that Nash equilibrium strategy to one of the pure strategy Nash equilibria.

Clearly, depending on the game rules and the resultant payoffs, equilibrium

strategies for games will vary. It is an interesting exercise to determine the Nash

equilibria for different games and examine their stability.
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CHAPTER 4

THE KAKUTANI FIXED POINT THEOREM

Another theorem with important economic applications is the Kakutani fixed

point theorem given by Shizuo Kakutani in 1941 as a generalization of the

Brouwer fixed point theorem [12]. Though it is not as intuitive as the Brouwer

fixed point theorem since it deals with set-valued functions and hence is more

difficult to visualize, the theorem found popularity in mathematical economics,

especially after John Nash used it to prove the existence of equilibrium points in

n player games [11]. In this paper, we use the Brouwer fixed point theorem to

prove the Kakutani fixed point theorem and then use the latter to prove the

existence of equilibria in a pure exchange economy.

Before that, let us first understand what is meant by fixed points of set-valued

functions.

Definition. For a set-valued function, f : X → P(X), a fixed point is a point that

is mapped to a set containing itself. In other words, x is a fixed point of f if

x ∈ f(x).
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4.1 The Kakutani Fixed Point Theorem

Recall that the Brouwer fixed point theorem proves the existence of fixed points

for point-valued functions. We will see in the subsequent sections that the

Kakutani fixed point theorem asserts the existence of fixed points for set-valued

functions. As we proceed, we will find that the former theorem is helpful in

understanding and proving the latter. Let us begin by stating and proving the

Kakutani fixed point theorem in one dimension.

4.1.1 The One-Dimensional Kakutani Fixed Point Theorem

Theorem 4.1. Let f : [0, 1] → P([0, 1]) be a continuous function such that for every

x ∈ [0, 1], the image f(x) is an interval in [0, 1]. Then there exists x ∈ [0, 1] such

that x ∈ f(x) .

[Note: we assume that for each x in [0, 1] , its image is an interval [a, b], (a, b],

[a, b), or (a, b) in [0, 1]. The importance of this assumption will become clear in

the proof.]

Proof. Let n ∈ N be arbitrary. Subdivide [0, 1] into n sub-intervals of equal

width
[
j

n
,
j + 1

n

]
where 0 ≤ j ≤ n − 1. For each j

n
, where j = 0, ..., n,

pick a point qj,n ∈ f

(
j

n

)
.

Define a point-valued function gn : [0, 1] → [0, 1] such that

gn

(
j

n

)
= qj,n

and gn maps linearly on each sub-interval
[
j

n
,
j + 1

n

]
(See Figure 4.1).

61



Figure 4.1. An example of constructing gn for n = 20

Note that gn is a point-valued continuous function mapping [0, 1] → [0, 1].

Then by the one-dimensional Brower fixed point theorem, gn has a fixed point

xn.

Suppose xn ∈
[
in
n
,
in + 1

n

]
. Then

xn = αn

(
in
n

)
+ (1 − αn)

(
in + 1

n

)
for some αn ∈ [0, 1]. (4.1)

Since gn is a linear function on sub-intervals, we have

gn(xn) = αn

[
gn

(
in
n

)]
+ (1 − αn)

[
gn

(
in + 1

n

)]
. (4.2)
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Recall that

gn

(
in
n

)
= qin,n and gn

(
in + 1

n

)
= qin+1,n

are chosen such that

qin,n ∈ f

(
in
n

)
and qin+1,n ∈ f

(
in + 1

n

)
.

Thus, by Equation 4.2, we get

gn(xn) = αn qin,n + (1 − αn) qin+1,n . (4.3)

Now, xn is a fixed point of gn and hence, by Equation 4.3,

xn = gn(xn) = αn qin,n + (1 − αn) qin+1,n . (4.4)

Combine the sequences (xn) , (αn) , (qin,n) , and (qin+1,n) into a sequence

(xn , αn, qin,n , qin+1,n) in [0, 1] × [0, 1] × [0, 1] × [0, 1]. This is a sequence in a

closed and bounded space, so it has a convergent subsequence. Just like we did

before, for simplicity, assume that the original sequence converges. So assume

(xn) converges to x ∈ [0, 1] , (qin,n) converges to q0 ∈ [0, 1] , (qin+1,n)

converges to q1 ∈ [0, 1] and (αn) converges to α ∈ [0, 1].

We claim that x is a fixed point of f , that is, x ∈ f(x). To prove the claim, we

begin by taking the limit in Equation 4.4 in order to obtain

x = α q0 + (1 − α) q1. (4.5)

Note that, by Theorem 1.2,(
in
n

)
→ x and

(
in + 1

n

)
→ x
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since xn ∈
[
in
n
,
in + 1

n

]
and the length of the sub-intervals

[
in
n
,
in + 1

n

]
goes to

0. Also, since qin,n → q0 and qin,n ∈ f

(
in
n

)
, it follows by the continuity of f

that

q0 ∈ f(x).

Similarly, q1 ∈ f(x). Since f(x) is an interval in R , it follows that

αq0 + (1 − α)q1 ∈ f(x). (4.6)

In other words, x ∈ f(x) as claimed. Hence, x is a fixed point of f, and the

one-dimensional Kakutani fixed point theorem is proved.

4.1.2 Kakutani Fixed Point Theorem in n Dimensions

Generalizing the one-dimensional result, we have the following n - dimensional

Kakutani fixed point theorem.

Theorem 4.2. Given the standard n - simplex S and a continuous set-valued function

f : S → P(S) such that f(x) ⊂ S is convex for all x ∈ S, then f has a fixed

point in S.

Proof. Let f : S → P(S) be a continuous function such that f(x) is a convex

subset of S for all x ∈ S.

As we did before for an n - dimensional simplex, take finer and finer

subdivisions S1,S2, ....,Si, .... such that the diameter of sub-simplices goes to 0

as i → ∞. Let V = {vi,1, ...., vi,ni
} be the set of all of the vertices of the

sub-simplices of S in the ith subdivision.
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Define fi : S → S such that fi(vi,j) ∈ f(vi,j) for all j and such that fi

extends linearly over sub-simplices. Note that fi is a continuous point-valued

function mapping S to itself. Thus, by the n-dimensional Brouwer fixed point

theorem, fi has a fixed point xi in S.

Since xi lies in some sub-simplex in the ith subdivision of S, it can be expressed

as:

xi = αi,0wi,0 + ....+ αi,nwi,n (4.7)

where wi,0, ...., wi,n ∈ V are the vertices of the sub-simplex containing xi, each

αi,k ∈ [0, 1], and
n∑
k=0

αi,k = 1. (4.8)

Let fi(wi,k) = ui,k. Since wi,k ∈ V, by definition of fi, it follows that

ui,k ∈ f(wi,k).

From Equation 4.6, we get that

fi(xi) = αi,0fi(wi,0) + ....+ αi,nfi(wi,n) = αi,0ui,0 + ....+ αi,nui,n (4.9)

since fi is a linear function on subsimplices in Si. Moreover, we know that xi

is a fixed point of fi and so, fi(xi) = xi. Thus,

xi = αi,0ui,0 + ....+ αi,nui,n. (4.10)

We have sequences indexed by i : (xi) in S, (αi,k) in [0, 1] for each k, (ui,k) in

S for each k. By our usual convergence arguments, we can find sub-sequences

of each of these sequences converging simultaneously to limits for each. For

simplicity, we assume that the above sequences themselves converge.
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So assume xi → x ∈ S, αi,k → αk ∈ [0, 1] for each k, and ui,k → uk ∈ S

for each k. We claim that x is a fixed point of f. That is, x ∈ f(x).

First note that xi is in the subdivision simplex with vertices wi,0, ...., wi,n and

the subdivision simplices have diameters that go to 0 as i becomes infinite. It

follows, by Theorem 1.2, that each sequence (wi,k) also converges to x as

i → ∞.

So for each k, ui,k ∈ f(wi,k), ui,k → uk, and wi,k → x. By the continuity of

f, it follows that uk ∈ f(x) for all k.

Furthermore, taking the limit as i → ∞ in Equations 4.8 and 4.10, we obtain

n∑
k=1

αk = 1 (4.11)

x = α0u0 + ....+ αnun (4.12)

where αk ∈ [0, 1] for all k . Thus, since each uk ∈ f(x), and f(x) is convex, it

follows that x ∈ f(x).

Hence, x is a fixed point of f and we have proved the Kakutani fixed point

theorem for dimension n.
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4.2 An Application of the Kakutani Fixed Point Theorem to Equilibrium in

Economic Models

Recall that an equilibrium is a state of rest where opposing forces balance. In

economic models, equilibrium in a goods market refers to a point where the

supply of goods meets the demand for them. At this stage, there is no tendency

within the market for the price to change. Thus, the balance of demand and

supply remains undisturbed at equilibrium, unless affected by external forces.

In this section, we use the Kakutani fixed point theorem to show the existence of

equilibria in a pure exchange economy, that is, an economy where there is no

production.

Let us assume the economy is a pure exchange economy. All economic agents

are consumers and have an initial endowment of goods. Thus, the total amount

of each good in the economy is fixed and consumption depends upon initial

endowments as well as exchange (trade) between consumers.

Suppose there are m consumers and n goods in the economy. Each consumer

is endowed with a bundle of goods. Let the bundle of goods owned by the ith

person be

bi = (bi1, b
i
2, ..., b

i
n)

where bij represents the quantity of good j that the ith consumer has.

Since there is no production, the supply of goods in the economy is fixed and

can be found by summing up the bundles of goods owned by each consumer. So

the fixed supply vector is

s = (s1, s2, ..., sn) where sj =
m∑
i=1

bij for all j = 1, ..., n. (4.13)
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Each good has a relative price or value, pj, associated to it. We assume these

prices are non-negative (pj ≥ 0) and are normalized to sum to 1

(
that is,

n∑
j=1

pj = 1

)
. In the latter sense, they are relative prices.

We call the vector p = (p1, p2, ..., pn) a price vector. The set of all price vectors

forms an (n− 1)− simplex, S ∈ Rn with vertices (1, 0, ..., 0), (0, 1, ..., 0), ...,

(0, 0, ..., 1).

In an exchange economy, the wealth of the ith consumer, wi, is completely

determined by the value of the goods owned by her/him. It is defined by

wi = bi · p. (4.14)

A demand vector for the ith individual is of the form

d i(p) = (d i
1 (p), d

i
2 (p), ..., d

i
n(p))

where dj
i is the demand for good j by the ith consumer and it is a function of

the prices of all the goods in the economy. In our analysis, we are making the

reasonable assumption that the demand for a good by a consumer is not a fixed

amount but can be within a range. This means that the consumer has a

minimum and maximum amount of the good that she/he wants. However,

since the wealth of every consumer is fixed (it depends upon the initial

endowment), when a consumer demands more of one good, they automatically

have to demand less of another good. Therefore, the budget constraint coupled

with the range of preferences of the ith consumer gives rise to a set of demand

vectors, Di(p), from which she/he can choose, corresponding to a given price

vector, p. That is,

Di(p) = { d i(p) | d i(p) = (d i
1 (p), d

i
2 (p), ..., d

i
n(p)) }. (4.15)
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We call Di(p) the demand set (for consumer i at price p). Given that each

consumer cannot demand more than they can afford, the value of each demand

vector equals the wealth of the consumer. Thus, for each d i ∈ Di(p),

d i · p = bi · p . (4.16)

Each Di(p) is set valued. Given the price p, Di(p) represents the different

bundles of goods the ith consumer can afford and would be equally happy

possessing; in other words, she/he would be indifferent between these bundles.

We assume that the mapping from p to the set Di(p) is continuous, reflecting

that a small change in p should result in only a small change in the demand.

Given any two demand vectors v1 and v2 in the set Di(p), we claim that the

consumer can afford any linear combination of the two demand vectors, that is

any v such that

v = t v1 + (1− t) v2 ; t ∈ [0, 1].

To prove this claim, we get from Equation 4.16 that

v1 · p = bi · p = v2 · p

and therefore, using Equation 4.14,

v · p = t v1 · p + (1− t) v1 · p = t bi · p + (1− t) bi · p = bi · p = wi.

Thus, the consumer can afford any linear combination of two demand vectors.

We assume that if the consumer prefers two bundles of goods, then the

consumer will be equally happy with a linear combination of the two bundles.

By this assumption, any linear combination of two demand vectors is also a

demand vector at price p. In other words, we assume that each Di(p) is convex.
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The assumption that Di(p) is a convex set will come in useful later in

establishing the premise for the Kakutani fixed point theorem, as we will see.

For a given price, p, the aggregate demand in the economy can be found by

summing up all possible individual demands over all consumers. Thus, we

define the overall demand by

D(p) =

{ m∑
i=1

d i | d i ∈ Di(p) for all i

}
. (4.17)

Since each Di(p) is a convex set, we can see that D(p) is convex in Rn.

The excess demand for a good is the difference between its demand at a given

price and the supply. Thus, excess demand is a function of price. For a price p,

the excess demand is the set

E(p) = { e | e = d − s ; d ∈ D(p) }. (4.18)

Note that E(p) ⊂ Rn is a convex set, since the supply vector s is fixed and

D(p) is a convex set for each p.

In Equation 4.16, summing over all m consumers, we get that for each

d ∈ D(p),

p · d = p · s . (4.19)

Thus, for each e ∈ E(p),

p · e = 0. (4.20)

Geometrically speaking, each e ∈ E(p) is orthogonal to p in Rn. This is

known as the Walrasian law [13] in general equilibrium theory. This means the

value of excess demand in the economy is always zero, whether or not there is
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equilibrium in the economy. So, the sum of values of excess demand across all

goods must be zero; that is, if positive excess demand exists for some goods,

then negative excess demand must exist for other goods to balance it out due to

budget constraints.

Equilibrium in the economy exists at a price p for which there exists d ∈ D(p)

such that dj ≤ sj for all j = 1, 2, ..., n. At this price, the overall demand for

each good is not more than the supply of that good in the economy and so the

demand can be met. Thus, there will be no tendency for the price to change

within the market and the economy would be at rest. This price p is called an

equilibrium price vector for the economy. We use the Kakutani fixed point

theorem to show the existence of a price equilibrium vector for an economy such

as the one described above.

Theorem 4.3. Assume we have a pure exchange economy with n goods and m

consumers. Further assume we have p, Di(p) and s = (s1, ..., sn) as defined above.

In particular, assume Di(p) is set-valued and continuous and such that Di(p) is

convex. Then there exists an equilibrium price vector for the economy.

We prove Theorem 4.3 through a series of results below. To begin, for each

e ∈ E(p), let f(e, p) ∈ Rn define a price tendency vector whose jth

component is

fj(e, p) =
max {pj + ej, 0}
n∑
j=1

max {pj + ej, 0}
. (4.21)

Thus, fj(e, p) represents the tendency of the price of good j to change if there

is excess demand for the good in the economy at price p. It reflects the idea that
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if there is excess demand for a good, then the relative price of it increases. Note

that fj(e, p) is only a tool we use in the proof of Theorem 4.3 and is not

necessarily of direct importance in the economy.

We need to check that f(e, p) is defined. In other words, we need to show that
n∑
j=1

max {pj + ej, 0} 6= 0.

Lemma 4.1. For each e ∈ E(p), there exists j such that pj + ej > 0.

Proof. By Equation 4.20,

(p + e) · p = p · p > 0.

Since the dot product (p + e) · p is positive, and pj ≥ 0 for all j, there exists

j such that pj + ej > 0.

By Lemma 4.1, for a given p, f(e, p) is defined for all e ∈ E(p) since the

denominator is non-zero. By definition of f(e, p), it follows that f(e, p) ∈ S.

Then, for a price p, the set of all the price adjustment vectors, F (p), is given by

F (p) = { f(e, p) | e ∈ E(p) } ⊂ S. (4.22)

Therefore F : S → P (S) defines a set valued function. Since E(p) is convex

in Rn, it is not difficult to see that F (p) is a convex set in S for each p. Also, it

is not difficult to show that F is continuous since each mapping p to Di(p) is

continuous.

Thus, the assumptions of the Kakutani fixed point theorem are satisfied, and it

follows that there exists a fixed point p∗ ∈ S. By definition of fixed point,

p∗ ∈ F (p∗).
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In other words,

p∗ = f(e∗, p∗) for some e∗ ∈ E(p∗). (4.23)

Then by Equation 4.21, for all j = 1, 2, ..., n,

p∗j =
max {p∗j + e∗j , 0}
n∑
j=1

max {p∗j + e∗j , 0}
. (4.24)

We want to show that p∗ is an equilibrium price vector. In order to prove that,

we will begin by stating and proving a simple lemma that will help us.

Lemma 4.2.
n∑
j=1

max {p∗j + e∗j , 0} = 1.

Proof. Let k =
n∑
j=1

max {p∗j + ej, 0}. We claim that for all j,

p∗j e
∗
j = (k − 1) p∗j p

∗
j .

Clearly, this equation is true if p∗j = 0. Consider the case p∗j > 0. Then by

Equation 4.24,
max {p∗j + e∗j , 0}

k
= p∗j > 0.

It follows that p∗j + e∗j > 0 and k p∗j = p∗j + e∗j .

Hence e∗j = (k − 1) p∗j , and therefore p∗j e
∗
j = (k − 1) p∗j p

∗
j . Since this holds

for all j, we conclude that

p∗ · e∗ = (k − 1) p∗ · p∗.

However, p∗ · p∗ > 0 and by Equation 4.20, p∗ · e∗ = 0. Therefore,

k − 1 = 0 and hence, k = 1.
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Lemma 4.2 will help us in our objective of showing that p∗ is an equilibrium

price vector.

Theorem 4.4. p∗ is an equilibrium price vector.

Proof. Since p∗ is a fixed point of F, p∗ = f(e∗, p∗) for e∗ = d∗ − s in E(p∗)

where d∗ ∈ D(p∗). Hence,

d∗ = e∗ + s. (4.25)

We want to show that d∗j ≤ sj for all j = 1, 2, ...,m, and therefore p∗ is an

equilibrium price vector.

By Lemma 4.1,
n∑
j=1

max {p∗j + e∗j , 0} = 1. Then by Equation 4.24, for all

j = 1, 2, ..., n,

p∗j = max {p∗j + e∗j , 0}. (4.26)

For each j, we have two possibilities:

1. p∗j = 0 :

Then, in Equation 4.26, max {p∗j + e∗j , 0} = 0. Therefore, e∗j ≤ 0.

By Equation 4.25, d∗j = e∗j + sj, and hence d∗j ≤ sj

2. p∗j > 0 :

Then, in Equation 4.26, p∗j = p∗j + e∗j . Therefore, e∗j = 0.

By Equation 4.25, d∗j = e∗j + sj, and hence d∗j = sj.

Thus, d∗j ≤ sj for all j = 1, 2, ..., n. Hence, the fixed point p∗ of the function

F is an equilibrium price vector.

Via the results above, we have now proven Theorem 4.3.
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Thus, the Kakutani fixed point theorem allows us to establish the existence of a

price equilibrium in a pure exchange economy. Since the price equilibrium

vector is a fixed point of the function F (p) as defined above, it is possible to

have an equilibrium price vector where the economy is at rest and there is a

demand vector at that price that is met by the supply.
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