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  We explored the capabilities of additive manufacturing  using a photo-

cured jetted material 3D printer to manufacture a milli-microfluidic device with direct 

application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis 

tests.  A continuous  microbioreactor for microalgae culture was  CAD designed  and 

successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a 

support material.  The microreactor was made up of 2 parts including the bioreactor itself 

and a microchannel network  for culture media fluids and microalgae.  Both parts were 

assembled to form a single unit.  Additional optical  and auxiliar  components were added. 

An external  photodetection system platform helped to read light information coming 

from the bioreactor, related to microalgae growth and production of Carotenoids.  



 

 

 Several tests were carried out to check manufacturing quality, behavior of 

microalgae inside microreactor, quality of light based data coming from meauring system 

and comparison of microalgae culture operation using (flasks) and  microbioreactor. 

 Growth of microalgae inside the microreactor was unsuccessful and several 

hypothesis may explain the lack of cell replication, from low CO₂ content to 3D 

photopolymer incompatibility with cell environment. Further improvements related to 

gas exchange, specially CO₂, microalgae retention system,  high irradiance for light 

stressing tests and  material biocompatibility need to be addressed in future works. From 

a mechanical point of view it was demonstrated the 3D fabricated microreactor it is 

possible and that  it has promising advantages compared to other microfabrication 

processes that involve complexity in the design, longer manufacturing time, more 

expensive and sophisticated manufacturing techniques as well as specialized operators 

and designers.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Background and problem definition. 

 Biotechnological methodologies and instruments have been affected positively by 

the advantages of microelectronics and microfabrication techniques in general. Complex 

process automation and miniaturization of different types of sensors can be integrated in 

spaces that in the past was impossible to achieve. 

 Automatic control also has been applied to areas such as clinical microbiology, 

where one of the major hurdles is the manual processing of specimens. In comparison to 

chemical specimens, microbiological specimens are much more complex [30]. Application 

of automation in clinical microbiology, for example automated inoculation of samples, 

has been shown to be superior to manual inoculation with regard to pathogen recovery 

[31].  Automation enables a higher degree of standardization, which may be beneficial 

not only in terms of cost-effectiveness, but also in terms of gaining diagnostic quality [32]. 

 In biotechnology laboratories tasks such as the screening of new bioactive 

compounds produced by genetically modified microorganisms, or determining optimal 

microbial strain growth parameters are typically carried out using tools such as test tubes, 

shake flasks and bench bioreactors. These are time-consuming and labor-intensive 

methods. 
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Currently, microtiter plates manipulated by robotic systems are being used as a front line 

tool in the biotechnology industry, sometimes employing integrated sensors. These 

microtiter plates can  accommodate  working culture volumes ranging from 0.1 to 3 mL. 

Temperature is easily controlled in microtiter plates but implementation of online pH and 

DO (dissolved oxygen) measurement in microtiter plates using optical methods has been 

partially successful. Restrictions imposed by working with certain microbial species at low 

pH, for example with yeasts at pH 5 driving optical sensors out of their preferred 

measurement range [1].  

 It is important to remark that most of present devices mentioned before, for 

example, microtiter plates used as tools for cell culture, are the type of batch culture. 

There is a real need for high throughput devices that can handle continuous culture at 

small scale, since a continuous culture is an important tool to determine the response of 

microorganisms to their environment and to produce the desired products under optimal 

environmental conditions. 

  A bioreactor is an apparatus used to carry out specific bioprocesses, and examples 

may include fermenters or enzyme reactors [3]. 

 Microbioreactors may resemble conventional bioreactors but their design 

requires re-thinking, since the behavior of materials, fluids for example, become 

dominated by surface tension, fluidic resistance and capillary forces at micrometer to 

millimeter length scale. Heat transfer phenomena in micro scale applications, may render 

stabilization of temperature challenging. 
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 Microbioreactors can support low cost high throughput biochemical tests, in 

contrast to their macroscale counterparts, and they are  beginning to find a  wide range 

of applications in various fields such as drug discovery, high throughput bioprocessing, 

single cell analysis, stem cell research, genetic analysis among others [2].  

Restrictions related to space, power, weight and material safety in spacecrafts 

make microbioreactors suitable tools to run continuous cell cultivation and different 

types of  research essays in this type of environment [10]. 

 Applications in bioprocess operations such as fermentation, where high value 

products like antibiotics, enzymes, vaccines and therapeutic proteins are produced in 

large scale would get a direct benefit in the starting phase of these processes where 

identification of best inoculum or best production conditions could be obtained by 

multiple, simultaneous parallel tests in a microreactor. 

 Betts et al. [12] concluded that most of the  challenges to overcome in the 

development of  microreactor systems is the variability of the tasks having to be 

performed and the difficulty of a single system to be able to satisfy all requirements. For 

example, in a growth medium development a need for parallelism is a priority in the 

device design whereas detailed strain characterization would require high degree of 

instrumentation for each bioreactor.  

 Development of precision micro-to milli-scale fluidic devices that are rapidly 

configurable and scalable is an area of much current interest [27] which is applicable to 

microreactors. 
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 Fluidic devices, depending on their dimensions can be classified as nano (1–100 

nm), micro (100 nm to 1 mm) or millifluidics (1–10 mm) [26]. 

 If  we want to be rigorous in the definition, this work deals with a device built using 

dimension scales in the very limit of micro to milli fluidics.  Even though this device is in 

this intermedial area,  we will present the theoretical background focused to fluid 

behaviour and properties in the microfluidic area. 

 According to Pasirayi et al. [2] Microfluidics bioreactors are fabricated using at 

least one of the following microfabrication techniques: 

1.1.1 Photolitography 

 Photolithography allows high precision and reproducibility but requires a clean 

rooms and high capital infrastructure and high initial capital investment. 

1.1.2 Soft Lithography 

 Soft lithography is based in the use of soft elastomers  such as PDMS 

(Polydimethylsiloxane). This technique requires a template that will create the 

microfluidics patterns when PDMS is added and cured on the surface of this structure. 

This template may be created using photolithography or other technique that allow the 

creation of patterns in solid substances, the surface topography of which can be 

transferred to PDMS with spatial resolution in the micrometer to nanometer range [4]. 

As mentioned earlier, if  photolithography is used for template production, the use or 

acquisition of specialized and costly equipment needs to be considered. 
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1.1.3  Hot Embossing 

 Hot Embossing involves the application of heat and pressure over a polymer 

substrate. A master mold, created in a complete separated process, is used to imprint  

features such as microfluidic channels into this surface. Specialized equipment is required 

for the application of the correct temperature and pressure . The microstructures created 

with this technique have high fidelity and aspect ratio in the nano and micro scale ranges. 

Materials like PMMA and polycarbonates can be used as polymer substrate [5]. 

1.1.4 Micro-Injection Molding 

 Micro-Injection Molding uses polymer material melted to liquid state that is 

injected into a mold. 

 This process is executed inside the injection molding machine where the polymer 

hardens after a  cooling period  and can be removed from the mold. 

 The high cost of mold fabrication is one of the drawbacks of this technique, but it 

permits the replication of thousands of microstructures or devices (composed or not 

composed) at low cost [6]. 

1.1.5 Direct Milling 

 Direct milling uses hard materials like PMMA, polycarbonates or some metals as 

substrates. It is a mechanical process that uses computer numerical control (CNC) to move 

and control the position of the milling device. There are drawbacks related to tension and 

stress in the material but at the same time the material is not exposed to degrading 
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factors such as heat, different type of radiation and chemicals used in other type of 

microfabrication processes, for example, in Photolithography. 

 There is a search for simpler  and less cost- or time-consuming methods and 

techniques for the manufacturing of microfluidics devices. 

 Concidering new manufacturing methods, that until recently were not available, 

could now be used to design and manufacture microfluidic bioreactor systems on-site in 

a biological-biotech laboratory, rather than depending on an external manufacturing 

facility  or common micro fabrication infrastructure and highly specialized equipment. 

 Additive manufacturing or three-dimensional printing (3D printing) technology is 

opening new possibilities in microdevice manufacturing. 

 In the past 3D printing has been used primarily for basic prototyping but its use 

for finished devices is increasing according to new technical advances in micro optical 

devices, optoelectonics and  the reduction of material-equipment costs. 

 3D printing has been perceived as a technique with limited resolution, and not 

very useful in microfluidics fabrication, but the development, for example of Digital Micro 

Mirror Devices, has permitted resolution in the range of 50 µm in new affordable 3D 

printers [7]. 

 The need for a rapid, reliable, simple and less expensive manufacturing method 

for a parallel microfluidic bioreactor, especially for users who are not involved in 

conventional microfabrication, is real. 3D printing could satisfy this need if 
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microbioreactor chambers, microchannels and additional components created with this 

technology meet the specifications required for cell culture and analysis. 

 Micro devices 3D drawings design files, easily downloaded in a laboratory 

computer may be available and for instance, a parallel-multi chamber microfluidics 

reactor,  could be fabricated within hours and the micro device could be running biotests 

the same day in the laboratory. All this without using standard microfabrication 

techniques requiring sophisticated equipment and specialized personnel. 

1.2. Project scope   

 This project is based on the thesis that a micro-milli fluidic bioreactor can be 

fabricated using simple, rapid, inexpensive and reliable additive manufacturing (3D 

printing), and that this device can be used to study microalgal growth and 

biosynthesis.   

 The fabricated microdevice should be capable of continuous culture and  real 

time data acquisition, using the microalgae Dunaliella sp  as a test microorganism.  

 Different tests will be carried out to assess the fabricated device respect to 

limits of design and possibilities  as a real microorganism growing tool. 

Bioprocess parameters like growing rate and carotenoid production yield under 

stressing and normal environments may be evaluated using this microdevice. 
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CHAPTER 2 

 

THEORETICAL FOUNDATIONS 

 

2.1. Overview of Micro-Milli fluidics bioreactors  

 Novel microbial cell cultivation technologies can enable high throughput 

screening and tests of new bioactive compounds,  selection of useful strains for industrial 

bioprocess optimization and new methods for accelerating research in microbial 

physiology.  

 At present, microtiter plates represent one of the standardized tools in robot-

assisted high throughput screening with microbial cells. Multiwell plates of up to 1536 

wells are readily available and methods to control and monitor temperature, dissolved 

gases, pH, and mixing, for example, have been developed.  The development and 

integration of new sensors and control capabilities into micro-bioreactors is the current 

challenge.  

 Culture of microorganisms in microplates is performed in a batch mode and so  

this technique presents a limitation for simulation of a continuous macro-culture. 

2.2.  Bioreactors and Microbioreactors 

 Bioreactors are devices in which biological processes, such as cell expansion, 

differentiation, or tissue formation on 3D scaffolds, can proceed under tightly controlled 

environmental conditions, involving gas exchange, nutrients, and metabolites, and 

application of molecular and physical regulatory factors [15]. Bioreactors may be 
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dedicated to mass production or they may be used to identify optimal physical/chemical 

parameters for the production of a specific product, such as a bioactive compound, or the 

most suitable microorganism for mass production. This process of identification can be 

carried out in small scale reactors where initial cost, labor, time and parameter control 

can be optimized easily. 

 At present, traditional scale up from a small volume test bioreactor to a larger 

volume production is highly empirical and is applicable only if there is no change in the 

controlling regime during scale up, particularly if the system is only reaction or transport 

controlled [33]. 

 The main elements in the majority of liquid medium bioreactors are: culture 

chamber, systems for agitation, gas exchange and pumping, culture medium, waste 

reservoir, sensors and a control system. Batch, semi-batch fed and continuously fed 

bioreactors are the most common.  Batch systems provide a single dose of nutrients in 

the medium for cell growth. In semi-batch fed, cells are allowed to grow for a period of 

time until the early stationary phase, at this point a fraction of the culture is harvested 

and the reactor is replenished with fresh medium. In continuously fed bioreactors, culture 

media is added at constant rate, resulting in a constant harvest of cells at the outlet of 

the reactor. 

 Bench scale bioreactors are important tools for cell cultivation for process 

optimization because it is possible to obtain rich sets of culture data by allowing a greater 

number of parameters to be tested and making use of  sophisticated measurement and 
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control instrumentation.  These devices still have limitations in terms of simple 

sterilization, assembly, cleaning, sensor calibration, and  the number of parallel 

experiments that can be run, due  to  relatively large volume of these reactors [11]. 

 An ideal microbioreactor would resemble a conventional bioreactor, but the 

fluidic system would be on the <100 µm length scale, entering into what is considered the 

microfluidic regime. 

 As the length scale of the microbioreactor decreases, the surface to volume ratio 

increases. As a consequence, fluidic dynamics are dominated by surface tension, fluidic 

resistance and capillary forces. Diffusive mixing becomes more important than 

turbulence, convective mixing, and gravitational forces [34]. 

 The microbioreactor may combine the parallelism obtained with a microplate, 

with the improved capabilities of sensing and control for each culture chamber. It may 

also have the potential for use in continuous culture, rather than conventional batch 

mode, promoting rapid, cost effective comparison  of growth/production conditions. It 

follows that design aspects such as material compatibility, mechanical forces, dissolved 

oxygen, pH, pCO2, temperature, fluidic paths, a range of physicochemical factors, and 

both sensing and control elements, must be addressed to provide the cells or organisms 

with the optimum environment for growth and/or production.  

 The majority of research in microbioreactors has focused on their application in: 

microbial bioprocessing, stem cells, single cells, drug development and cytotoxicity [2]. 
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2.2.1.  Microfluidic devices 

 Microfluidics involves fluid flows over the <10 µm length scale. Precise control and 

manipulation of liquid or gases, commonly with femtoliter to microliter precision are 

performed through miniaturized conduits with different geometries and practical 

function [23].  

 In theory, microfluidic devices, among them, new types of microreactors could 

be built  with advantages such as low power consumption, portability, small volume of 

reagents and samples, besides the advantages of working at similar length and time 

scales of cells, where short distances results in the reduced transport times of mass and 

heat which is ideal for local transport of growth factors secreted by growing cells in the 

cell’s microenvironment [2].  

 Inside a microfluidic microreactor the fluid flow is laminar, which is ideal for 

analysis as cells can be exposed to controlled chemical gradients and their biochemical 

and morphological responses studied in vitro [24].  

 Length scales of structures inside a microfluidic microbioreactor would have 

similar  dimensions of eukaryotic and prokaryotic cells, for example, allowing diffusion of 

oxygen and carbon dioxide in a manner similar to that in tissues [25] .  

 Fluidic, mechanical, electronic and optical systems can be integrated into a single, 

multifunctional microreactor platform.  As mentioned earlier, there are four main 

microfabrication processes for microfluidic-millifluidic microreactors, these are: soft 

lithography, hot embossing, micro-injection molding and direct milling. At present, none 



12 

of these methods is easily accessible to non-specialized personnel outside of the 

microfabrication field, mainly because all of these methods require expensive fabrication 

equipment and facilities, in addition to highly skilled technical personnel. 

 Soft lithography, based on polydimethylsiloxane (PDMS,) is the most frequently 

used technique for microfluidic systems but requires master molds that are typically 

made by photolithographic, micromilling or e-beam lithographic techniques. 

 In this work we explore the possibilities and limitations of building a milli-

microfluidic microreactor platform for microalgal growth and biosynthesis of 

biocompounds, using as a test microorganism the green microalga Dunaliella.sp and a 

manufacturing method based in additive manufacturing technique, commonly referred 

as  3-dimensional printing (3D printing) . 

2.3.  Additive Manufacturing 

 Additive manufacturing (AM) is a technique for creating 3D objects consisting of 

adding layer upon layer of a material, such as special types of organic polymers in liquid 

state, mixed with photocuring agents, fused polymers or metal powders.  One way to 

classify additive manufacturing technologies is by the raw material used to create the 

layers. 
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At present there are four  types of raw material  that are commonly used: 

(1) liquid polymer, (2) discrete particle, (3) molten material, (4) solid sheet. 

2.3.1 Liquid polymer 

 One of the types of liquid polymers used today are liquid photopolymers, which 

are deposited in layers and  the curing process of these layers is activated by a source of 

energy, for example a laser or by a high resolution display based on a digital micromirror 

device (DMD). 

2.3.2  Discrete particle (DP) systems 

 Based on the deposition of a fine powder layer that after the application of energy 

(e.g. laser) or a chemical treatment to bind the particles together, a solid layer is created.  

2.3.3 Molten material systems (MMS) 

 Raise the temperature to levels at which the structural materials reach their 

melting point and flow through a delivery system to create a layer of material. A well 

known system of this type is fused deposition modeling (FDM), in which the material to 

be fused is extruded through a nozzle that delivers it in a controlled manner. 

2.3.4 Solid sheet systems (SSS) 

 Based on the addition of layers (for example paper coming from a continuous roll) 

that is cut in patterns and the layers are bonded with a heat-activated resin embedded in 

the paper. 
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 Additive manufacturing comprises 7 process categories that are in accordance 

with ASTM/ISO standardization: 

2.3.5 Vat Photopolymerization 

 Liquid photopolymer is cured by selective application of energy in a specific 

region. 

2.3.6 Powder Bed Fusion 

 Material powder is selectively fused using a source of energy, for example a laser 

or electron beam. 

2.3.7 Material Extrusion 

 A nozzle extrudes and delivers material in specific regions, creating structural 

patterns. 

2.3.8  Material Jetting 

 Inkjet printing of material (e.g., photopolymer) through production of tiny 

droplets of liquid UV-curable photopolymer. Fine layers accumulate on the build tray to 

create a precise 3D model.  Printers of this type may have the option to include additional 

materials with different characteristics (e.g., mechanical or color). A support material  also 

may be required to avoid the collapse of structures and patterns when the design includes 

cavities or empty spaces inside the structure. This gel-type support material is typically 

removed with pressured water and discharged after the completion of the whole 

structure. 
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2.3.9  Binder Jetting 

 A roller is used to spread a layer of powder onto a build platform. The mechanical 

system ensures that the bed is filled with a layer of packed powder. A print head applies 

a liquid binder to create a cross section of the object on the powder. In this case the 

powder is the medium and would be the equivalent of a paper in a inkjet printer. The 

process is repeated and a new powder layer is applied with the correspondent dispensing 

of liquid binder on the specific areas for creating the structure. Support material is not 

required in this process. 

2.3.10 Directed Energy Deposition 

 Delivery of energy and material at the same time through a single deposition 

device. 

 The use of additive manufacturing in bioengineering applications has been 

growing steadily in the past years because its inherent advantages, including the ability 

to make optimized and very complex customized parts that are useful in biological 

environments, such as dental prosthetics and tissue engineering. 

 3D printing has been applied in microfluidics, either as a tool for manufacturing 

PDMS templates, or fabrication of complete polymerized micro/millifluidics devices.  

 3D Reactionwares (refers to devices that combine both reactor and reagent, 

catalytic or architectural control of the reaction outcome).  Chemical synthesis [8], 
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chambers, templates for PDMS LOC devices [7], micromixers, gradient generators, droplet 

extractors, and isotachophoresis devices, have been successfully built.[9] 

 Some of these later devices could be fabricated in 12-20 minutes with a material 

cost of 0.48-1.00 US$.  Lee et al [11] have devised a new method  for detection of  

pathogenic bacteria in food using a novel  3D-printed helical microchannel, and  Au et al 

[16] have integrated 3D-printed  automatic control devices to other microfluidic devices. 

2.4 Dunaliella sp 

             The green microalga Dunaliella sp was chosen as a test organism to explore the 

advantages and limitations of a microfluidic bioreactor built using an additive 

manufacturing technique as a tool for exploring algal growth/biocompound production 

conditions.  Growth rate and carotenoid production by Dunaliella species were 

parameters used to report algal activity in the microreactor. These data speak to material 

biocompatibility, fluidics design, sensing-detection and the capacity of the  microreactor 

itself to act as an effective tool for studying microalgae.  

 Dunaliella sp  is a biflagellated  unicellular algae classified under Chlorophyceae, 

Volvocales and includes marine and fresh water species. Dunaliella cells are ovoid, 

spherical, pyriform, fusiform or ellipsoid with size varying from 5 to 25 µm in length and 

from 3 to 13 µm in width [47].     Dunaliella  sp present one large chloroplast with single-

centered starch surrounded by a pyrenoid, vacuoles, nucleus and nucleolus. A 

polysaccharide cell wall is absent and the microalga is enclosed by a thin elastic plasma 

membrane covered by a mucous surface coat [17].  This microalga has can tolerate 
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sudden changes in solute concentration as well as varied light irradiance (potentially a 

stress condition) and nutrient availability [18]. 

2.4.1    Salinity 

 Changes in the salinity of the extracellular environment cause changes in the 

volume of the cell, which are accomodated by the lack of a cell wall.  Dunaliella sp 

responds to salt stress by massive accumulation of glycerol, enhanced elimination of Na+ 

ions and accumulation of specific proteins [35] to compensate for changes in the osmotic 

pressure of its environment that could be lethal for other species of microalgae.  

Dunaliella sp can adapt to extreme environments (stress environments) that range 

from salinities lower than seawater (0.1M NaCl or 0.5844 g/L) to saturated salt solutions 

(5M NaCl or 292.2 g/L) [37]. 

2.4.2    Light irradiance and Carotenoids 

 Damaging high light irradiance is compensated-for by synthesis of high 

intracellular  concentrations of carotenoids [19].  Carotenoids constitute a class of 

terpenoid pigments that are derived from a 40-carbon polyene chain. This molecular 

structure gives carotenoids a distinctive molecular structure and associated chemical 

properties, including light-absorption that aids photosynthesis and facilitates life in the 

presence of oxygen.  Hydrocarbon carotenoids are denoted as carotenes, but this group 

gives rise to a derivative group denoted as xanthophylls which contains oxygen in the 

form of  hydroxyl moieties or/and oxygen acting as a bridge in epoxides [48].  
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Some examples of carotenes are: lycopene,  beta-carotene, and alpha-carotene. 

Examples of xanthophylls are:   Lutein, cantaxanthin, astaxanthin, violaxanthin, 

fucoxanthin, zeaxanthin, and neoxanthin. 

Experiments using different levels of light irradiance to induce stress have been 

reported, and these resulted in varying levels of intracellular carotenoids. For example, 

Fazeli et al [21] used 50 µmol/m²s as normal irradiance and 150 µmol/m²s as the stressing 

irradiance, while Kleinegris et al [36] used 206 µmol/m²s as normal irradiance and 1672 

µmol/m²s as stress irradiance. 

When Dunaliella salina cells are light stressed, they produce higher levels of 

carotenoids. The green cells, the pigment of which is dominated by the chloroplast, begins 

to turn orange.  The chloroplast shrinks, chloroplast membranes decrease in size, and 

carotenoid-containing lipid globules are formed. This color change was clearly evident by 

light microscopy with 1672 µmol/m²s as a stress irradiance  [36]. 

  Carotenoids autofluorescens in solution has been demonstrated [38]. Kleinegris 

et al [36] have obtained fluorescence in the range of 505–530 nm with exitation 

wavelengths of 450, 488 and 510 nm. This autofluorescens property could be used in 

some manner to measure  intracellular production. 
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CHAPTER 3 

 

METHODS 

 

3.1. Microreactor conceptual design  

 Simplicity, applicability to continuous culture, physicochemical and biological 

requirements for the normal growth and stress of microalgae, nature of microalgal 

tests, materials costs and equipment availability  were taken in consideration in the 

design of the microreactor for Dunaliella culture. 

Figure 3.1 is a conceptual representation of the device. 

 Microalgae must be retained inside of the culture chamber when media is being 

injected into the chamber.  A 1 µm pore mesh was therefore used to retain the  

microalgae. 

The temperature of the chamber was to be controlled automatically by external 

resistive heating elements placed and covered by a flattened plastic ribbon that could 

be cut to the size of the microdevice and placed on the top of the reactor.  This idea was 

ultimately rejected because the heat produced by LEDs ( RGB led and UV led) was not 

negligible and these could serve as a heat source for reaching a culture temperature 

suitable for normal microalgaal growth. 

 Carbon dioxide (CO₂) and nutrients could be supplied along  culture media 

directly through microchannels to the culture chamber. 
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 A Red-Green-Blue color LED pointing to the culture chamber was the main 

source of light and played three different roles in the light system: (1) as light for normal 

growth conditions, (2) as a stressor for inducing physiological changes inside of the 

algae, and (3) as part of the analytical system for measuring turbidity (optical density, 

OD) or fluorescence. 

 A second source of light was a UVA LED, which was also directed into the culture 

chamber but from the opposite side from the RGB LED This UV light provided stress 

illumination for experiments involving light-mediated stress. 

 Turbidity measurements in each microchamber were based on light scattering, 

requiring the light from the RGB Led  to be collimated prior to entry into the chamber, 

reducing undesired noise in detector photodiode positioned at a 90 degree angle with 

respect the RGB LED. 

 Since microlagae  carotenoid fluorescence and light scattering are measured at 

90 degrees with respect to blue and green light incident light, respectively, two possible 

detector locations were tested. One sensor was located at the bottom of the reactor via 

an aperture in the chamber sealed by a window consisting of a glass slide. Here, the 

photodetector was mounted on an external circuit board facing the bottom window. 

The second location was an optical fiber that exended directly to the microchamber 

through a specially made cavity and the fiber was coupled to an external photodetector. 

 The same window for the bottom photosensor can also be used for microscopy 

when direct observation of the culture is desired. 
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 A microalgae agitation system, was designed to provide  adequate exchange of 

nutrients and gases, good light exposure and removal of waste material.  Its function 

depends on the hydrodynamic forces stemming from the flow of fresh media coming at 

the bottom outlet inside the chamber.  

 The microreactor structure consists of two parts that can be disassembled to 

accomodate changing the microalgae retention mesh or for cleaning procedures, 

allowing the reactor to be reused for different tests. 

 

 

 

 

 

Figure 3.1 Microreactor conceptual design. Culture Medium oOutlet (M.OUT); Microscopy Light Window 

(MLW); 1 µm pore polymer mesh (µMESH); Photopolymer part A (P.A); Photopolymer part B(P.B); UV Led 

(UVL); Red Green Blue LED (RGBL); UV Light Window (UVLW); Reactor Chamber (R); Collimator Lens (CL); 

Culture Media Inlet (M.IN); Microscopy-Photodetector Window (M/D.W); Glass Slide (GS). 
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3.2. Device design and fabrication 

3.2.1 Microreactor design 

 The device as mentioned before, was formed by two main parts, A and B (upper 

and lower parts, respectively), see Figures 3.3 and 3.4.  

These parts were designed using the computer-aided design (CAD) software for 

Windows 8, Solid Edge ST6 (Siemens 2013. 

 CAD 3D design files were transformed from STL files into 3D modeling slices  

using Stratasys Objet Studio Software (Windows 8). 3D modeling slices include the 

information for support and building material. Using the same software the CAD 

designed parts were aligned and placed in an optimal position before continuing with 

the next building steps.  

 The design took into account cavities for fast and easy insertion and removal of 

RGB and UV LEDs. RGB LEDs consisted of 3 semiconductor color devices inside of a 

single LED  with a  5 mm clear epoxy case and spectral outputs centered at 620, 515 and 

480 nm (Ultra bright red, green and blue, respectively (LEDRGBE, Thorlabs Inc, Newton, 

New Jersey, USA). UV LEDs (Ultra Bright Deep Violet Led, LED370E, Thorlabs Inc, 

Newton, New Jersey, USA) also had a  5 mm clear epoxy case and the spectral output 

peak is at 375 nm.  We planned to use a collimator lens to increase the efficiency of the 

microalgae cell density detector.  
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 Collimating lenses are optical lenses that help to make parallel the light (coming 

from the RGB LED in this case) that enters the meter setup, in our case, the 

microchamber and the photodetector at 90 degrees. With this type of lens is possible to 

control field of view, collection efficiency, spatial resolution, configure illumination and 

collection angles for sampling. RGB LED light was collimated using a 5.2 mm diameter 

molded plastic aspheric lens (Thorlabs Inc, Newton, New Jersey, USA) to minimize noise 

and maximize the the microalgae-scattered light signal that is received by the 

photosensor at the bottom of the microchamber window (at 90 degrees from the RGB 

LED collimated beam). The effective focal length of the lens for light collimation 

optimization is given by the equation: 

 

 Where f is the focal length of the lens (mm),  Ф  is the collimated light beam 

diameter (mm) and ѳ is the  RGB LED divergence angle.  In this case f = 9.85 mm,  Ф = 

3.46 mm, ѳ =19.9 °.  Figure 3.2 shows an ideal representation with a single source of 

light and does not consider that  the three semiconductor color dies inside the  RGB 

LEDs had some degree of eccentricity relative to the longitudinal axis. 

 

 

 

                                      Figure 3.2  RGB Led Light collimation using an aspheric lens. 

f = (Ф/2) / tan (ѳ/2) 

 

 

 

ѳФ

f 
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 The reactor design includes a rectangular cavity, see figure 3.6,  between the 

microreactor chamber and the RGB LED, for the collimator lens installation. 

The collimator lens was glued to the lateral chamber window to avoid leakage of 

liquid growth medium. Sealing was accomplished using UV-curable clear optical 

adhesive (NOA60, Norland Products, Cranbury, NJ, USA) 

 After the lens was sealed to the lateral window, a photopolymer cover was used 

to cover this cavity and to avoid light escape and interference with the adjacent scattered 

light photodetector, see Figure 3.6. 

 The UV LED also required a lateral window in the microchamber to transmit light 

into the medium and the microalgae. This window was created by injecting UV curable 

clear optical adhesive (NOA60, Norland Products, Cranbury, NJ, USA) through one small 

slot between the UV LED and the microreactor lateral window.  Leakage of adhesive into 

the microchamber itself before the adhesive was completely cured was prevented using 

an external UV light source. 

 Parts A and B are assembled after placing a 1.0 micron mesh (Nylon, Nitex) screen 

cloth between them. Microreactor outputs R1, R2 and R3, see figure 3.3, were covered 

by the mesh, filtering the culture media entering into the chamber containing the 

microalgae. Each microreactor output, and Nylon mesh, was sealed with clear silicone 

sealant (Loctite® Clear Silicone waterproof sealant), taking care to avoid obstruction of 

the outputs, but isolating each reactor output to avoid media cross contamination.  
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 Part A, filtering mesh and Part B were assembled in one unit and screws were used 

to affix the parts to one another. 

At the bottom of the reactor, a glass slide was glued to the polymer flat surface using 

Clear Silicone to prevent media leakage, and at the same time making sure that the 

bottom microreactor window for microscopy and photodetection was not obstructed, 

see figure 3.6 

 

Figure 3.3  Three chambered microreactor array CAD design, top view. Photopolymers: parts A and B 

(left and right, respectively). Part A is mounted on top of part B, placing a 1 micron mesh  between both 

flat parts. (M.CO) culture media collector; microchannel (M); Culture Media outlet (M.OUT); UV Led 

insertion (UV); Red Green Blue Led insertion (RGBL); Culture Media Inlet (M.IN); Reactor chambers 1,2 

and 3 respectively (R1-R2-R3). 
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Figure 3.4    Microreactor array (3 chambers) lateral views. Photopolymer part A  (top) and photopolymer 

part B (bottom). Part A is mounted on top of part B. Culture Media inlet (M.IN); Culture Media outlet 

(M.OUT); UV Led insertion (UVL); Red Green Blue Led insertion  (RGBL). 

 

 The culture media is injected into the media inlet and flows through a 1 mm 

diameter microchannel to the bottom of the microchamber (see Figure 3.5) producing 

microalgae agitation and mixing of media from the bottom to the top for adequate 

nutrient distribution, gas transfer and maintenance of microalgae in suspension. Media 

and microalgae, lifted from microchamber bottom, are filtered by the mesh placed 

immediately before the media collector area, which leads to the media outlet through a 

1 mm microchannel. 

 The culture media collector area (MCO) (see figures 3.3 and 3.5) is sealed from the 

external environment using a 3.0 mm diameter,  4 mm long clear light pipe as a plug (see 

figure 3.7 (MLW)). This plug was sealed to the photopolymer material using UV curable 

clear optical adhesive (NOA60, Norland Products, Cranbury, NJ, USA). 
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The transparency of the plug on the top of the media collector area helps as a  light 

source entrance to permit observation using an inverted microscope. 

Figure 3.5   Microreactor array lateral view (1 chamber view only). Photopolymers: parts A and B (top and 

bottom respectively). Culture Media outlet (M.OUT); UV Led insertion (UVL); Red Green Blue Led insertion 

(RGBL);Reactor Chamber (R); Culture Media Inlet (M.IN); Microscopy-Photodetector Window (M/D.W); 

culture media collector (M.CO); microchannel (M). 

 

 After fabrication, culture media inlets and outlets (see Figure 3.6; M.IN and 

M.OUT) were threaded using a tapping tool for the installation of tubing adapters (thread 

to hose barb adapter, 1/8" NPT(M) to 1/16" ID , Cole Parmer  Instrument Company LLC). 
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Figure 3.6   Microreactor array 3 dimentional design bottom view.  Photopolymer parts B and A (left and 

right respectively). Culture Media outlet  (M.OUT); UV Led insertion (UVL); Red Green Blue Led insertion  

(RGBL); Reactor Chamber (R); Culture Media Inlet (M.IN); Microscopy-Photodetector Window (M/D.W); 

culture media collector (M.CO); microchannel (M); UV light window  (UVLW); Collimator lens placed at 

lateral chamber window (CL); Lens cavity (L.C); Cavity Cover for light leaking (CC). 

 

 

 

 

 

 

Figure 3.7   Microreactor array 3-dimensional design top view. Photopolymers: parts B and A (left and right 

respectively). Notch for placing  part A on top  (N)  ( 1 micron mesh between parts A and B); Reactor inlet  

(R.I); Reactor outlet (R.O); Microscopy Light window (MLW). 
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3.2.2 Microreactor fabrication 

 A 3D printer Objet30 Pro (Stratasys, Polyjet Technology USA-Israel) (20.000 US$) 

was used for the microreactor fabrication, see figure 3.8. The printer can be used for high-

end rapid prototyping with a build resolution: X-axis: 600 dpi; Y-axis: 600 dpi; Z-axis: 900 

dpi and accuracy of 0.1 mm. With 2 printing heads 3D structure layers are created by 

jetting tiny droplets of liquid UV-curable photopolymer and support material. A nontoxic 

support material (Stratasys, Polyjet Technology USA-Israel) gel-like photopolymer is also 

required for avoiding the collapse of structures and patterns. The support material is 

washed out using pressured water after the building process is complete. 

 The thickness of the printed layer is 28 µm with printing speeds of 120 cm³/hr for 

opaque material and 60 cm³/hr for clear material. 

The printer  is 82.5 × 62 × 59 cm  in size and weighs 106 kg. The tray (where the 3D 

structure is built) is 300 × 200 × 150 mm. 

 

 

 

 

 

    

Figure 3.8.  3D 

printer Objet30 

Pro 



30 

 Even though three identical reaction chambers were planned for the complete 

reactor, as proof-of-concept only one chamber was manufactured and prototyped (see 

Figures 3.9 and 3.10) before expanding and manufacturing  a  3-chamber device.  

 

 

 

 

 

 

Figure 3.9  Single microreactor, (part B). Screw mounting hole (SMH); Fiber optics insertion (FO). 

 

 

 

 

 

Figure 3.10  Single microreactor (part A). Screw mounting hole (SMH). 

 

 This one chamber prototype incorporated a fiber optic inserted at 90 degrees to 

the horizontal chamber axis (source of light axis) (see Figure 3.9.) 
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In this design the optical fiber should have reached the microculture chamber and direct 

scattered light to an external RGB clear photodetector array to act as a fluorescence and 

scattered light detector (for intracellular carotenoids and turbidity, respectively) as an 

alternative to the original design in which the same RGB clear photodetector array 

detector at the bottom of the chamber was used (see figure 3.6 (M/D.W). In this way it 

couldbe determined which  detection method was perferred. 

 For the first and second prototype, the material used in device fabrication was 

Durus™ White, which is a proprietary material, the composition of which is based on a 

mixture of Isobornyl acrylate, acrylate oligomer, acrylic monomer and a photoinitiator,  

and ultimately mimics the physical properties of polypropylene (PP). 

For one chamber prototype, 45 g of photopolymer material was used, with a cost of  0.9 

US$/g and 17 g of support material with a cost of 0.4 US$/g. 

For both prototypes (either  Durus™ or Vero ™ material) the building time was 1 hour 49 

minutes.  

 

 

 

 

 

 

 

Figure 3.11  Reactor parts A and B 

prototypes. Photopolymer material 

Durus™ White.  Culture Media Outlet 

(M.OUT);  Culture Media Inlet (M.IN).  
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 Support material that adhered to surfaces on the structure was washed out using 

water under pressure. This was accomplished on exposed surfaces or surfaces where 

mechanical force of the water treatment was sufficient to wash out this material. 

 After pressure washing the structures, the parts were placed in  ultrasonic bath 

for 10 min at 80 C°. A subsequent pressure  washing step was performed to rinse out any 

remaining debris. 

 In the case of internal structures, specially microchannels of 1 mm in diameter 

(see Figure 3.15 (M)) it was not possible to remove support material using the pressurized 

water procedure specially because the force of the water was not strong enough to 

penetrate and scrub the walls of these internal 1 mm microchannels.  To clean these more 

effectively, the structure was warmed up to 80 C° in a water bath for 10 minutes and then 

a  1 mm rigid wire was inserted into the culture media inlet, reaching the microchannel 

elbow.  This was sufficient to push the gel-like support material out through the reactor 

inlet (see Figure 3.7 (R.I).)  To completely clear the channel, the same procedure was 

executed in the opposite direction, inserting the wire into the reactor inlet in the direction 

of the elbow, and again pushing material out through the culture media inlet. This 

procedure was carried out several times until the microchannel was completely cleared. 

After this cleaning procedure a syringe was used to inject water through the channel 

several times to remove any remaining debris. 

  The reactor was then dried and female threads were tapped into the polymer 

material for the insertion of male tubing adapters. 
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Figure 3.12 Preassembled part A and B showing 

internal features.  Culture Media Outlet (M.OUT); 

Culture Media Inlet (M.IN); Red Green Blue Led 

insertion  (RGBL); Microscopy Light Window 

(MLW). 

 

Figure 3.14  Part B, top 

view, internal features.  

Culture Media Inlet 

(M.IN); Microscopy Light 

Window(MLW); 

Microchannel(M); 

Reactor Outlet (R.O); UV 

Led insertion (UVL); Red 

Green Blue Led insertion 

(RGBL); Fiber optics 

insertion (FO). 

 

Figure 3.13 Part A internal features. 

Culture Media Outlet  (M.OUT); 

Microscopy Light Window (MLW); 

Microchannel(M). 
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 In the case of photopolymer material Durus™ White, when the RGB LED is active, 

light is transmitted through the whole assembled microreactor structure(see Figure 3.16.)  

This is a problem for light scattering and carotenoids fluorescence measurement, since 

the light detected at 90 degrees at the bottom of the microchamber through the 

Microscopy-Photodetector Window (M/D.W) should ideally only come from light 

scattered by cells suspended in the media. 

  This is also a potential problem for a multi-chamber design in which three micro 

culture chambers are built in the same structure, permitting three experiments 

employing different light intensities or photoperiods to be carried out. In this case the 

light intensity or a photoperiod sequence of one chamber could interfere with that of an 

adjacent chamber. 

 

 

Figure 3.15 Part B, bottom view, 

internal features. (M.IN)  Culture 

Media Inlet; (M) Microchannel; (UVL) 

UV Led insertion; (RGBL) Red Green 

Blue Led insertion; (M/D.W) 

Microscopy-Photodetector Window; 

(UVLW) UV light window; (CL) 

Collimator lens placed at lateral 

chamber window. 
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Figure 3.16 Part A and B assembled with a glass slide on the bottom. Top and bottom view (left and right, 

respectively) and  internal features. Red Green Blue Led insertion (RGBL); Microscopy-Photodetector 

Window (M/D.W); Cavity Cover for light leaking (CC); Fiber optics (f); Glass slide (G.S). 

 

To solve his problem a third prototype was built using a Vero™ Black material (see 

Figure 3.17),  also a proprietary plastic (Stratasys, Polyjet Technology USA-Israel). This 

is an  opaque material that mimics acrylonitrile butadiene styrene (ABS). The main 

constituents of this material are:  acrylic monomer, isobornyl acrylate, phenol, 4,4'-

(1-methylethylidene)bis-, polymer with (chloromethyl) oxirane, 2-propenoate, 

diphenyl-2,4,6-trimethylbenzoyl phosphine oxide, acrylic acid ester, m- and p-xylenes, 

propylene glycol monomethyl ether acetate, n-butyl acetate, carbon black, and 

ethylbenzene.  

 

 

 

 

 

 

  

 

Figure 3.17  Third reactor prototype  built 

using photopolymer Vero™ Black. Culture 

Media Inlet  (M.IN); culture media collector 

(M.CO); Culture Media Outlet (M.OUT);  1.0 

micron nylon (Nitex) mesh screen (µMESH). 

Microreactor mounted on glass slide. 
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3.2.3  Microreactor final assembly 

  In the third prototype printed using Vero™ Black (opaque material), any support 

material, particularly that left inside of the microchannels,  was rinsed out using the same 

washing procedure used for Photopolymer material Durus™ White. After a final rinse, 

part A and B were dried using a pressurized air pistol. 

  The aspheric collimator lens was placed and cemented to the photopolymer 

material, at the same time sealing the reactor lateral window from media leakage (see 

Figure 3.18)  using UV-curable clear optical adhesive (NOA60, Norland Products, 

Cranbury, NJ, USA), then a cover made specifically for this application was placed over the 

cavity to avoid additional light leakage. Using clear silicone (Loctite® Clear Silicone 

waterproof sealant), the glass slide was affixed to the flat bottom of the reactor, sealing  

all possible leaking points including the micro chamber bottom window. 

 

 

 

 

 

 

 

 

Figure 3.18 Microreactor bottom view. Third and final prototype showing RGB led, lens cavity and 

collimator lens system. Collimator lens (CL); Microscopy-Photodetector Window (M/D.W); UV Light 

Window (UVLW); Cavity Cover (CC); Glass slide (G.S). 
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 After attachment of the cavity cover (see Figure 3.18 C), a small amount of light 

leakage  through the cavity cover rim and part of the cavity cover itself,was detected. This 

problem was avoided by applying black tape to the light leakage area on the glass slide. 

The same modification was made with the UV light window. 

 A 10 mm x 7 mm 1.0 micron nylon mesh (Nitex) screen cloth rectangle was cut and 

placed on top of the reactor outlet hole, located immediately before the media collector 

in part A, so that the mesh layer separated part A and B, filtering the culture media and 

not permitting the microalgae to escape from the microchamber. Figure 3.17 shows the 

mesh and some remains of clear silicone  (Loctite® Clear Silicone waterproof sealant) after 

the reactor assembly was opened to expose the components. 

The mesh was glued and sealed to the surface using clear silicone (Loctite® Clear 

Silicone waterproof sealant), being careful not to obstruct the culture chamber outlet, 

but putting enough sealant to stop any lateral leaking between part A and B when they 

are put together. The reactor outlet (R.O) was covered by the mesh (see Figures 3.7 and 

3.17) and this outlet needed to be aligned perfectly with the media collector (MCO) and 

Microscopy Light Window (MLW) (seefigure 3.19.) The mechanical design allowed this 

alignment to be performed as soon as part A and B were mounted correctly. 
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Figure 3.19 (A) Final assembled  prototype. Culture Media Outlet  (M.OUT);  Culture Media Inlet  (M.IN); 

Microscopy Light window (MLW). (B) Blue color at MLW coming from the RGB LED iluminated reactor 

chamber ( for example, blue exitation for carotenoid fluorescence). 

 

3.2.4 Microreactor light control-light scattering and fluorescence detection system 

 To test the microreactor a data acquisition and control system was built (see 

Figure 3.20.) 

 The main idea was to have control over independent photoperiods and day and 

night cycles for microalgal culture in each chamber. In addition, there would be control 

over the intensity of light either for providing physiological stress for the microalgae or 

for normal growth conditions.There is alsocontrol of scattered light photosensors for 

microalgae density measurement  and carotenoid detection in each culture chamber. 
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 RGB LEDs in each chamber provided illumination for normal algal growth and for 

inducing stress responses. Additionally, a UV LED in each chamber was provided to 

augment the light-induiced stressing effect. RGB LEDs were also used to provide the light 

source for light scattering measurements, working in specific color modality (green or 

blue), as required. For measurement of cell concentration, for example, green light 

scattered by the cells in the microreactor chamber could be correlated to a change in light 

intensity detected by the photosensor located at 90 degrees with respect of the source 

of light. Furthermore, measurements (using blue exitation) of endogenous microalgal 

fluorescenc could also be detected using this 90 degree geometry. 

 There are 3 photosensors mounted in a external test platform (see Figure 3.21 A.) 

Each photosensor is a TCS3200 (TAOS INC, Texas, USA) programmable light-to-frequency 

integrated circuit with an 8 × 8 photodiode array  with a total size of 1 mm X 1 mm (light 

sensitive area). Each TCS3200 is capable of converting the intensity of light of three 

different colors (red, green, blue) in a square signal with frequency proportional to light 

intensity (irradiance). This square signal is read by NI myDAQ counter input. Frenquency 

information (corresponding to light irradiance) is displayed in two different ways: using a 

LabView software based oscilloscope or a file data storing application also created using 

LabVIEW software. 
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Figure 3.20 Microreactor light scattering-optical density and fluorescence detection system. The 3 

photosensors array is mounted in a platform under the 3 microreactor device.  
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A microreactor with a single complete chamber (mounted on photosensor 1) was 

fabricated. The 3 photosensor platform could accomodate 3 chambers,  and so two of the 

photosensors, for chambers 2 and 3 were not used, but were available for future devices. 

The microreactor device was mounted and aligned with its Microscopy-

Photodetector window (M/D.W) and glass slide facing down (see figure 3.18 A, and 3.21 

C)  The TCS3200, with its 1mm by 1mm window, was mounted in an external platform, 

aligned and oriented toface upward, toward the M/D Window at the bottom of the 

microreactor. When the microreactor glass slide is mounted and aligned on top of the 

photosensor array some unwanted light entered from the external environment through 

the gap between the glass slide and the photosensor array printed circuit board.  This gap  

 

Figure 3.21 Photosensors array platform. (A) Photo sensors integrated circuits for each 

microchamber 1-2-3  (PHO1/2/3). (B) Enclosed photo sensors integrated circuits  using  punctured 

black rubber  lateral light protection; glass slide  (GS) aligned and resting on photosensor 1 (PHO1). 

(C) micro chamber reactor prototype  aligned with photosensor 1. (D) Microreactor fixing rod   

(M.R.F.) after photosensor alignment. Rod mounted and fixed at each end , pressing down the 

reactor against photosensor. 
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was due to the photosensor case thickness.  To avoid light contamination that could affect 

the scattered light readings, black rubber material glued in layers was placed around the 

photosensor to reduce lateral incoming light (see figure 3.21 B.) 

After the microreactor was carefully aligned with the photosensors, a frame set 

up with the help of a metal rod (see figure 3.21 D), pushing the microreactor down from 

the top of it, helped to keep the reactor in a fixed position  without altering the alignment 

and causing problems with  photosensors readings. 

Light  for both growing and stressing the microalgae was provided by 3-color RGB 

LEDs to produce white light, but the intensity of this light was varied depending of stress 

and growing cycle. 

Cell concentration measurements in the microchamber using scattered light were 

carried out using only the green LED, with spectral output centered at 515 nm. 

For fluorescence detection only the blue LED was used, with a spectral output centered 

at 480 nm. 

Control/data acquisition for the-LEDs-photosensor array control system was 

controlled by NI MyDAQ hardware and NI LabVIEW software (National Instruments 

Corporation, Austin, TX, USA). 

Light intensity of LEDs, (UV and RGB) was  controlled manually, but automatic 

activation and deactivation of each color in the RGB led was software-controlled for 

growth, stress and detection sequences. 
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Timing control for day-night cycles, cell density and fluorescence measurement, 

multiplexing signals for photodetectors array control and data acquisition between the 3 

chambers was executed  with the control software. 

The measurement system worked essentially in a serial mode.   For microculture 

chamber 1 the measurement sequence started with cell concentration using light 

scattering, then a fluorescence  measurement sequence was executed for the same 

chamber. The same two sequences of measurement,as mentioned earlier were 

repeated for microchambers 2 and 3.  Each of these sequences has its own respective 

LED color and data acquisition sequence. 

When measurement sequences for all of the micro chambers is finished, the 

period for normal growth light dose or stress light dose can be applied. After a period of 

light exposure is finished, the measurement sequence for the 3 chambers is repeated. 

The measurement cycle is repeated each 30 minutes and it takes 3 seconds per 

chamber. 

3.3. Testing the microbioreactor 

A number of tests were carried out to characterize microreactor performance. Three 

types of tests were performed: 

o Macro tests: Tests were carried out using conventional macro methods with 

Dunaliella sp  using culture flasks and a standard bench spectrophotometer. 
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o Microreactor fluidic system tests: Potential microalgal damage due to hydrodynamic 

forces, microchannel clogging, microalgae retention in the culture chamber, and agitation 

was assessed. 

o Microreactor bioassay possibilities tests: The applicability of  the microreactor as an 

effective biotest tool was assessed using microscopy and a microreacto-integrated optical 

system for measurement of microalgal growth rate and carotenoids. Conventional macro 

scale methods of flask-based culture were used as a reference. 

These experiments were conducted to estimate time and materials required, costs, labor, 

and equipment as well as to identify technical problems inherent to conventional  culture 

systems and thus having points of reference to compare the microreactor performance. 

3.3.1. Macro tests 

3.3.1.1 Specific Growth Rate in Culture Flasks 

Dunaliella tertiolecta ( CCMP1320, Bigelow, National Center for Marine Algae and 

Microbiota) was cultivated using filtered, UV-treated water from Taunton Bay, Franklin, 

Maine, at the Center for Cooperative Aquaculture Research, University of Maine. 

Water pumped from Taunton Bay was treated using a 6-step process: 

1. Sand filtration to retain particles greater than 100 microns. 

2. UV light treatment with an industrial reactor (Trojan UV logic series, Aquafine 

Corporation) at an intensity  of 13 mW/cm ². 

3. Mechanical filtration through a 10 micron cartridge filter. 
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4. UV light treatment with reactor AST-120-2 (Emperor Aquatics). 

5. Mechanical filtration through a 0.2 micron cartridge filter. 

6. UV light treatment with an Emperor Aquatics 02040 reactor. 

Shake flasks of  500 mL filled with 250 mL of the water purified as above, heat-treated for 

15 minutes at 100°C,  allowed to cool for 5 hours, and Guillards’s 1975 F/2 Formulation 

(Proline Water Conditioner, part  A and B, from Aquatic-Eco Systems, Inc. Apopka, FL) 

added to each flask, 40 µL part A - 40 µL part B. 

Flasks were inoculated with vegetative microalgae to achieve an initial cell density 

of 222500 cells mL⁻¹. Cells were counted  using a brightfield light microscope and 

haemocytometer (Hausser Scientific, Inproved Neubauer 0.100 mm  depth) (see Figure  

3.22)  Salinity was measured  (Extech Instrument, refractometer RF20) and found to be 

35 ppt  . 

Flasks were injected with 0.45 µm filtered air (FTFE-Membrane, Whatman) for 

agitation and the for the introduction of CO₂ into the culture media.  Cultures were 

incubated for 9 days at 22˚C  under a  light irradiance of 60  µE/m²s (14.23 Wmˉ² 

considering 400-700 nm, PAR correlation of approximately 1800 µE/m²s = 427 Wmˉ²),  

with a day-night cycle of  18 hours-6 hours respectively  (Light meter, LI 250, LI-COR, USA).  

Cell concentration was determined every 48 hours, using  a haemocytometer and the light 

microscope.   
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The specific growth rate of the flask-grown microalgae was determined  from the 

exponential phase of algal growth using the following equation:  

μ = ln (N₂/N₁)/( T₂ - T₁) 

 where μ is the specific growth rate (h⁻¹), N₂ and N₁  are cell concentrations at times T₂ 

and T₁ respectively. 

 

 

 

 

 

 

3.3.1.2 Culture Flask Carotenoid Extraction Test 

3.3.1.2.1 Before  stress cycle 

Dunaliella salina  used in this experiment was donated by Dr. Gary Wikfors from 

NOAA, Biotechnology Branch.  Three 500 mL shake flasks labeled  s1, s2 and s3   were  

filled with 250 mL of purified seawater. 

Flasks were then heat-treated for 15 minutes at 100°C and allowed to cool for 5 

hours. Guillards’s 1975 F/2 Formulation (Proline Water Conditioner, part  A and B, from 

 

Figure 3.22  Set up for macro culture 

flask specific growth rate test. 

Dunaliella tertiolecta  flasks A, B and 

C with same initial cell density: 

222500 cell mL⁻¹.  Flasks were 

incubated for 9 days at 22˚C  under a  

light irradiance of 60  µE/m²s (14.23 

Wmˉ², PAR correlation) with a day-

night cycle of  18 hours-6 hours, 

respectively. 
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Aquatic-Eco Systems, Inc. Apopka, FL) was then added to each flask, 40 µL part A - 40 µL 

part B. 

3.3.1.2.2 Osmotic stress 

Salinity was measured with a refractometer (Extech Instrument, refractometer 

RF20), and the salinity of sea water media in the flasks measured 32 ppt. The medium in 

flasks s1, s2 and s3 was adjusted to 120 ppt, 170 ppt and 220 ppt NaCl, respectively . 

After salinity adjustments, the 3 flasks  were inoculated with vegetative 

Dunaliella salina  that had been previously acclimated and grown with salinity of 120 

ppt. Cells in the inoculum were counted using the brightfield microscope and a 

haemocytometer (Hausser Scientific, Improved Neubauer 0.100 mm  depth).  Cell 

density information was used to obtain the desired final concentration in the flasks. 

The starting cell density  for the three flasks was 304166 cells mL⁻¹ (see Figure 3.23 A.) 

3.3.1.2.3 Light irradiance stress 

Culture Flasks were incubated for 7 days at 23˚C  under a  light irradiance of 380  

µE/m²s (90.14 Wmˉ², PAR correlation) under continuous illumination  (Light meter, LI 

250, LI-COR, USA). Flasks were shaken manually once a day.  The cell density  in each 

flask was determined every 48 hours by cell counting in the haemocytometer. 
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3.3.1.2.4 Pigment extraction and analysis 

At the start of the culture period (day 0) and at the end of stress period (day 7) samples 

of 4 mL were taken from each microalgae flask s1, s2 and s3. Each of  these samples 

were concentrated by centrifugation at 5000 rpm for  5 min.. The liquid phase was 

extracted after centrifugation and the remaining cell pellet was mixed with 4 mL of 

acetone/water (80:20 v/v). The mixture was vortexed for 3 minutes to improve pigment 

extraction. 

An additional centrifugation at 5000 rpm for 5 minutes was carried out and only 

the liquid phase was extracted from the tubes and placed in new glass 10 mL containers 

in preparation for spectrophotometry  This last process was carried out under illumination 

at  very low light intensity to minimize photopigment damage (see Figure 3.23 B). The 

pigment extraction protocol is based on that of  Lichtenthaler [20], which also details 

equations used for quantitative determination of total chlorophylls and carotenoids after 

solvent extraction and spectrophotometric data (Hatch Odyssey DR 2500 

Spectrophotometer). 

Absorbance measurements were acquired at 663.2 nm; 646.8 nm and  470 nm 

and repeated for each 4mL extraction sample  coming from flask s1, s2, s3. 

These absorbance were used as input into the following equations to determine the 

relative quantities of chlorophylls and carotenoids. 
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                                                   Ca = 12.25 A663.2  – 2.79 A646,8 

                                                   Cb = 21.50 A646.8 – 5.10 A663,2 

                                                   C x+c = (1000 A470 – 1.82 Ca  – 85.02Cb) / 198  

Where Ca and Cb are Chlorophyll a and b concentrations respectively (µg/mL of extract 

solution), C x+c is  total  carotenoid concentration (µg/mL of extract solution), A is the 

absorbance reading at the wave length indicated by the subscript. 

 

 

 

 

 

 

Figure 3.23 Dunaliella salina culture under osmotic and light irradiance stress. (A) 7 day period, 

23˚C, continuous  light irradiance of 380  µE/m²s (90.14 Wmˉ², PAR correlation), S1,S2,S3 with 

salinities: 120 ppt, 170 ppt and 220 ppt respectively ; (B) Pigment extraction after stress period in 

10 mL containers for spectrophotometric analysis.  

 

3.3.2 Microreactor fluidic system tests 

Prior to the microfluidic tests, the microreactor was washed  4 times with 

deionized water, injecting water through the inlet port twice using a  1/16 inner diameter 
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-1/8 outer diameter Tygon R-3603 plastic tube (1.58 mm  and 3.1 mm OD) and twice 

through the outlet port, being careful to completely empty the fluidic system. Deionized 

water was injected using a 10 mL syringe (BD, Franklin lakes, NJ) connected to the tubing.  

The reason for injecting deionized water from both the inlet and the outlet was the need 

to rinse the microalgae retention mesh located inside the reactor. 

The same procedure before was used for the reactor disinfection using 95% 

ethanol  instead of deionized water, and having 40 seconds as a retention time for each 

ethanol injection to increase disinfection contact. Sterile deionized water was used to 

rinse the chamber 4 times, both from inlet and outlet, and then the microreactor was 

rinsed with sterilized sea water in preparation for fluidic tests. 

3.3.2.1    Microalgae damage test 

This test was designed to observe the response of microalgae to hydrodynamic 

forces inside microchannels and culture chamber, and to monitor any cell damage due 

to shear and pressure changes, as well as potential aggregation and resulting channel 

blockage. 

 A 50 mL of sample was withdrawn from a 250 mL  Dunaliella tertiolecta flask 

culture. Cells were counted  using the light microscope and a haemocytometer (Hausser 

Scientific, Inproved Neubauer 0.100 mm  depth). Using sterilized sea water media, cell 

density was adjusted to reach a value of 300000 cells mL⁻¹.  An image of initial cell 

morphology was acquired from a 50 µL sample on a glass slide from this adjusted 



51 

concentration, using an inverted microscope (Nikon Eclipse Ti) with integrated camera 

and imaging software (Spot imaging solutions, Diagnostic Instruments, Inc). 

Another sample of 500 µL from the same dilution of 300000 cells mL⁻¹  was 

injected into the chamber inlet at a rate of 5 µL min⁻¹ using a 10 ml syringe (BD, Franklin 

lakes, NJ) and the syringe pump (New Era pump systems Inc, NE-300) through the 1.58 

mm ID plastic tubing. 

Again, microscopic images and real time observations were acquired from the bottom 

microchamber window  to compare the cell morphology before inoculation and after 

the cells arrived in the microchamber (see figure 3.24). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 .Microreactor different tests set up. 

Microreactor mounted on photosensors platform 

connected to Syringe pump  (S.P); Media inlet 

tubing (M.I.T); Media outlet tubing (M.O.T) (media 

disposed in a small container and if required, 

collected for cell morphology or counting). 
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3.3.2.2   Microchamber retention mesh and agitation system effectiveness test 

This test was performed to observe microalgal retention by the mesh located at 

microchamber outlet and also to evaluate the efficacy of cell agitation resulting from the 

incoming media of flow at the bottom of the chamber.  The inlet, outlet and microreactor 

were rinsed 4 times  with deionized water, followed by sterilized sea water to ensure that 

all microalgal residue from the previous experiment was removed., A 50 mL sample was 

taken from a 250 mL   Dunaliella tertiolecta flask culture and adjusted to a cell density of 

2000000 cells/mL.   

Cells were counted  using light microscopy and haemocytometer (Hausser 

Scientific, Inproved Neubauer 0.100 mm  depth) and dilutions adjusted using sterilized 

sea water medium. A 500 µL sample of the same dilution of 2000000 cells mL⁻¹  was 

injected into the chamber inlet at a rate of 5 µL min⁻¹ using a 10 ml syringe(BD, Franklin 

lakes, NJ) and the syringe pump (New Era pump systems Inc, NE-300) through the 1.58 

mm ID plastic tubing.  Samples were collected at the outlet of the microreactor and cells 

were counted in the haemocytometer. The same configuration for the microalgal 

damage test (syringe pump-microreactor), was used for this test (Figure 3.24). 

Incoming media passing through the micro chamber bottom inlet and channel blockage 

were monitored. 

3.3.2.3     Surface retention test 

Using one of the semitransparent material prototypes, a cross section of one of 

the internal microchannels is exposed using a cutting plane parallel to the direction of 
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the pipe. This physical cut was made using a grinding tool (Dremel, Racine, WI, variable, 

speed rotary tool), exposing the internal surface of the microchannel for close 

examination and testing. The material was thoroughly rinsed with distilled water after 

the grinding process.   

  Images of the rinsed and dried cross section were obtained with a stereo 

microscope (Leica EZ4D) (see figure 3.25).  The exposed section was inoculated with 30  

µL  of microalgae taken directly from the original 250 mL   Dunaliella tertiolecta flask 

culture. The surface tension of the fluid kept the exposed surface of the micropipe wet 

even when it was held upside down for inspection in the inverted  microscope.  

Microscopic images of microalgae on the surface of the exposed microchannel, and also 

on the surface of one of the inlets were obtained for further analysis. 

 

 

Figure 3.25   Exposed microchannel (EX.M.P). Left and right figures (longitudinal and cross section, 

respectively ) show different views of a 1 mm diameter microchannel internal surface obtained by 

grinding the material until reaching  microchannel depth. The microchannel surface was inoculated with 

microalgae to observe fluid and microalgal  behavior. 
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3.3.3 Microreactor biotests 

The objective of these tests was to determine the potential for using the  

microreactor as a tool for microalgal biotests, either employing microscopy or the 

integrated optical detection system in the microreactor for measurement of optical 

density and fluorescence. 

Before microreactor tests could be performed, several parameters were adjusted, 

including automatic diurnal photoperiod sequence, light intensity for normal growth and 

detection, sequences of green and blue illumination for activation, measurement 

protocols, and photodetector activation and reading status for each of the chambers. 

3.3.3.1  Scattering calibration and response to cell density 

The cell density (cell mL⁻¹) measuring system, based on scattering of green (515 

nm) light,  was calibrated  as follows: 

Using a serial dilution procedure four suspensions of Dunaliella tertiolecta at 

different concentrations were prepared using pure culture media and cells obtained from 

a culture at the end of its exponential growing phase,.  

Suspensions contained:  1996000,  1068000,  636000, 364000 and  0 cell mL⁻¹. 

Samples were stored in test tubes. The microreactor was cleaned and prepared using the 

procedure described in 3.3.2.   

After cleaning procedure, the reactor was mounted  and aligned on the 

photosensor array platform, covering any other extra source of light than the one coming 
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from the microchamber, and using the threaded rod to keep the reactor in a fixed position 

regardless of movement in the media tubing, avoiding misalignment of the photosensor 

(see Figures 3.21(B) and 3.21 (C)).  

140 µL samples of each microalgal suspension were injected into the 

microreactor.  The reactor was flushed with clean culture medium prior to injection of 

each sample.  Green light alone was activated and the signal frequency from the 

photosensor was measured using a data acquisition system and a simulated oscilloscope, 

both controlled via LabView (National Instruments, Austin, Texas, USA).  This photosensor 

generates pulse frequency that is proportional to irradiance of scattered light. 

3.3.3.2   Microscopy calibration and cell density measurement 

After scattered light calibration, remaining algal cells were flushed out with fresh 

media.  The reactor was moved from the photosensor platform to an inverted microscope 

(Nikon Eclipse Ti- SR, Japan- RT3 CCD digital camera, SPOT imaging).  Using the same 

Dunaliella tertiolecta samples prepared for scattered light tests, 140 µL of each sample 

was injected into the microreactor. 

Microscopic images of each sample were taken using a 20X objective  . The 

microscope was focused at the half-way point between the bottom of the culture 

microchamber and the top of the microreactor (1 micron mesh) to a have acquire a 

representative image of the microalgae in the microchamber (see figure 3.26).  

Standardized image region dimensions (frames) were used for visual cell counting 

(cells/frame) to create a calibration with sample density (cells mL⁻¹).   
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3.3.3.3   Microreactor specific growth rate test 

The microreactor was disassembled and microreactor parts A and B were washed 

and debris were flushed out by injecting deionized water . A new retaining 1 micron mesh 

was installed.  Parts A, B and mesh were assembled, sealed using clear silicone  (Loctite® 

Clear Silicone waterproof sealant) and allowed to cure for 24 hours.  Ethanol (95%) was 

 

 Figure 3.26 Microscopy calibration for cell concentration determination. (A) Microreactor 

placed on inverted microscope. Objective 20x facing microscopy-photodetector window at 

the bottom of the glass slide; (B) Light source entering from top of the reactor (MLW); (C) 

standard calibration. image of Dunaliella tertiolecta cells in the microchamber (standard 

frame used for cell counting). 
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used to disinfect the microchamber by, injecting it into inlet and outlet.  Four consecutive 

rinses were executed, then deionized water was injected into the inlet and outlet.  

Seawater medium was prepared using the same method as in 3.3.1.1, but in this 

case just one 500 mL flask was  filled with 250 mL for sterilization and the  Guillards’s 1975 

F/2 Formulation was added using 105 µL part A - 105 µL part B. 

Regular CO₂  present in the air  was added to the culture media flask by injecting 

filtered air  (0.45 µm filter), for reducing potential contamination. 

Initial readings of temperature, pH, salinity, O₂ and CO₂ were taken after 6 hours 

of air injection into the media flask. 

The microreactor was mounted and aligned on the photosensor platform. The 

RGB LED control system was adjusted for a photoperiod of 18 hours of light/6 hours of 

darkness with Irradiance of 40 μE mˉ²sˉ¹ (E = 6.023x10²³ quanta, 9.48 Wmˉ² PAR 

correlation) using red and blue light. 

140 µL  of  Dunaliella tertiolecta from a culture flask in the exponential growing 

phase were  injected into the reactor  microchamber at rate of 5 µL min⁻¹ using a 10 ml 

syringe (BD, Franklin lakes, NJ) and the syringe pump (New Era pump systems Inc, NE-

300) through the 1.58 mm ID plastic tubing.  After the microalgal sample was injected, a  

new 10 ml syringe was used to inject 70 µL of seawater medium (day 0), taken from the 

500 mL aerated  flask at a rate of  5 µL min⁻¹. Observations of cells were made with a light 

microscope using a 10 X objective (Nikon Labophot, Japan).  The microreactor was then 

moved to the inverted microscope.  Images were acquired using a 20X objective  . The 
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microscope was focused half way between the bottom and the top of the culture 

microchamber  to obtain a standard image frame for cell counting (cells/frame) for cell 

density correlation (cell mL⁻¹). Additional images using  4X and 40X objectives were 

acquired. 

The microreactor was moved back to the photosensor platform and the 

Inlet/outlet fittings were connected  to their respective micropump and disposal lines. 

The photoperiod of 18 hours of light/6 hours of darkness with Irradiance of 40 μE mˉ²sˉ¹  

was activated and photosensor measurements for cell density correlation were acquired.  

Temperature in the reactor was regulated basically by the LED  heat  (at 40 μE 

mˉ²sˉ¹, 9.48 Wmˉ² PAR correlation) and room stable temperature maintained by air 

handling unit with automatic heating and colling features.  The resultant temperature was 

previously checked to be within the normal growing range for Dunaliella sp. [21] [22]. 

Each 24 hours, the same cycles of microscopy observations, standard pictures, pumping 

of new media (nutrients, CO₂, N among others) and light intensity measurements were 

performed.  

For each trial new culture media with nutrients were added to the microreactor 

using doses of:  10, 20, 40, 40 µL for days 1,2,3 and 4 respectively, with a pumping rate of 

5 µL min⁻¹. 

After the first microreactor trial, several additional trials were performed to find 

conditions for the optimal growth rate, using the same data acquisition cycles and 

protocols as the original trial.  
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CHAPTER 4 

 

RESULTS 

 

4.1  Microreactor manufacturing 

 A single chamber microreactor was successfully built and tested (see figure 4.1). 

The microdevice consisted of two photopolymer-assembled main pieces, A and B,  both 

fabricated using an additive manufacturing process (3D printing) based on a UV curable 

jetted photopolymer material and a nontoxic support material.  The culture 

microchamber had a capacity of  70.33 µL and was built with two light windows on each 

side, one for normal growing/stressing light conditions and the other for UV  light used 

for inducing stress. These windows were 3.46 mm in diameter and internal cylindrical 

channels were 1 mm in diameter. The material chosen for the reactor was Vero™ Black 

(supplier?) since it eliminated excessive light transmittance, which affected the scattered 

light detection system. 

 The device was 60 mm x 21.9 mm x 19 mm, weighing 49 gm (considering only 

photopolymer material) and was manufactured in 1 hour and 49 minutes. 

The device cost, including photopolymer and support material, for pieces A and B was 

47.30 $USD. 
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 Major challenges in the fabrication and assembly processes were the cleaning of 

support material from microchannels and the sealing of windows to prevent culture 

media leakage.  

  Cleaning of the microchannels was achieved by pushing support material out with 

a wire of the same diameter as the microchannel, since water jetting and hot water 

sonication were unable to remove this material. Microchannel internal surface quality 

after this cleanning is addressed below.  The UV window was sealed using optical cement 

and the growth/stress light (RGB LED) window was sealed using a collimator lens and 

optical cement. The quality and strength of the optical cement/photopolymer material 

joint was not subject to leakage. 

Figure 4.1 Bottom views. Design and print of first semi transparent material prototype, figures A and 

B respectively, showing 1.45 mm (radious) window for photodetection and microscopy and 2 windows 

of 3.46 mm in diameter, one for UV stress light (UVLight) and the other for  stress/growth RGB light 

(G.S Light). Microchamber (orange) (M.C); Fluidic microchannel (F.M.C). Final device was identical but 

it was built using black material (Vero™ Black).  
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 Assembling of part A, the retaining micromesh, part B, screws and bottom glass 

slide was simple and straightforward, but the curing time for clear silicone (24 hours) used 

for sealing the micromesh with part A-B, and for the glass slide at the bottom, extended 

the time required before the reactor would be ready for use. 

4.2  Macro test results 

4.2.1  Specific growth rate 

Dunaliella tertiolecta was cultivated in shake flasks for 9 days  . 

Cell concentration data are presented in Figure 4.2  which represents the mean of the 

cell density in the three flasks. An interval from day 2 to day 8 was used for calculation 

of net specific growth rate ( μ ) using the equation specified in 3.3.1.1.  μ was 0.01 h⁻¹ 

and the doubling time (Ln2/ μ) was  69.3 hours. 
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4.2.2  Carotenoids extraction 

Three flasks of Dunaliella salina  were cultured according to the protocol in 3.3.1.2 

for a period of  7 days under different high salinities: 120 ppt, 170 ppt and 220 ppt and  

one high light irradiance level, for comparing intracellular carotenoid production and the 

effects of different stressing environments.  For each flask, initial and final cellular 

concentration and carotenoid content (using solvent extraction method and 

spectrophotometry) were obtained (see Figures 4.3, 4.4 and 4.5.) 

 Figure 4.2 Dunaliella tertiolecta, flask culture. The plot represents the mean value of cell 

concentration in three flasks,   A, B and C, inoculated to the same initial cell density: 222500 cells mL⁻¹. 

The flasks were incubated for 9 days at 22˚C, salinity 35 ppt,  under a  light irradiance of 60  µE/m²s 

(14.23 Wmˉ² PAR correlation) with a day-night cycle of  18 hours-6 hours, respectively. 
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Figure 4.3 Dunaliella salina cultured during 7 day stress period in flasks. Cell concentration after growing 

under high irradiance of 380  µE/m²s (14.23 Wmˉ² PAR correlation)  and high salinity conditions (120, 170 

and 220 ppt) at 23˚C. 

 

 

 

  

 

 

Figure 4.4 Carotenoid production in Dunaliella salina after  7 day stress period. High irradiance 

of 380  µE/m²s (90.14 Wmˉ², PAR correlation)  and different high salinity conditions (120, 170 

and 220 ppt) at 23˚C. 
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Figure 4.5   Final Carotenoid concentration (pico grams cellˉ¹) in Dunaliella salina flask culture.7 

day stress period with high irradiance of 380  µE/m²s   (90.14 Wmˉ², PAR correlation)  and high 

salinity conditions (120, 170 and 220 ppt) at 23˚C. 

 

4.3 Microreactor  tests 

4.3.1  Microalgae damage test 

Two images of Dunaliella tertiolecta were obtained to assess possible damage 

caused by excessive pressure or fluid shear force during injection into the microreactor 

chamber through the microchannels. The first image was obtained from a  microalgal 

sample placed on a microscope slide  before pumping microalgae from the same culture 

with a syringe pump, into the microchamber at a rate of 5 µL min⁻¹ using a 10 ml 

syringe. The second image of the inside the microchamber was acquired,from the 

bottom window. 
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No apparent abnormalities (disrupted cells for example) between the pre-

injected and post-injected microalgae were observed. See figure 4.6  

 

 

 

 

 

 

Figure 4.6   Images of Dunaliella tertiolecta  cells.  Before and after (A and B respectively) being pumped 

into the microchamber. Pumping rate: 5 µL min⁻¹, using a 10 ml syringe. 

 

4.3.2 Retention mesh and agitation system 

Microalgae at a density of 2 × 106 cells ml⁻¹ were pumped into the 

microchamber, using a 10 ml syringe mounted on the pump and set to a dispense rate 

of 5 µL min⁻¹.  At the same time,at the microreactor outlet culture medium was 

collected and observation and counting of cells was carried out to check for cell leakage. 

    Cells were observed at the outlet media, therefore cells were not 100% 

retained by the 1 µm mesh.    
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The percentage of micromesh capacity for retention of Dunaliella sp was 

calculated as follows: 

 

 

 Where C in is microalgal concentration at the inlet port, V in is the volume of media 

pumped taking the starting point when the medium has already crossed the 1 µm mesh 

at the reactor and is present at the outlet port, but has not yet been delivered, Cout is the 

microalgal concentration in the sample obtained at the outlet port and Vout is the volume 

collected at the outlet port. The value found for retention was 36.3%. 

 The agitation system, based in the incoming flow of media at one side of the 

bottom of the reactor, was observed but not quantified. The incoming medum moved the 

surrounding cells in the incoming flow area at the bottom but hydrodinamic forces were 

not able to cause a complete change in cell´s positions in the whole chamber volume, 

particularly those at the bottom of the reactor touching the glass slide window. 

This behavior corresponds with theory in microfluidics expressing difficulties in agitation 

processes in laminar flow characterized by Reynolds numbers Re less than 2300. 

Pumping rates of 10, 20, 35 and 50 µL min⁻¹  were selected.  

Considering that the microculture chamber is a  2.9 mm diameter cylinder, and 

the  flow direction is from bottom to top, we obtained Reynolds numbers for flow rates  
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from 10 to 50 µL min⁻¹ using the following formula: 

 

where D is hydraulic diameter, V is the fluid velocity based in the cross section of the 

pipe, ρ is fluid density and µ is dynamic viscosity. Table 4.1 shows the values obtained. 

Here we can see that values for Re are extremely low confirming that  of flow media in 

the chamber is laminar. 

 

Table 4.1  Reynolds for media flow inside the microchamber at different flow rates. 

Calculations assumed sea water salinity of 31 ppt and temperature 27°C. 

 

4.3.3 Surface Retention 

Different pictures were taken to check possible cell retention by the photopolymer 

surface and also to check the quality of this surface for this type of application. The 

quality of this surface also could be affected, to some extent, by the method for 

extraction of support material after the printing process. A small amount of cell 

retention was observed but not quantified. 

Re =  D x V x ρ

       µ

µL minˉ¹ Re

10 0.08

20 0.16

35 0.28

50 0.4
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Figure 4.7   Surface retention test using Dunaliella tertiolecta  cells.  (A) Microreactor inlet for microalgae 

and culture media showing section enhanced in B; Microchannel (MP); (B) Microchannel circular section 

picture taken without the plastic threaded tubing connector; Microchannel  section (MPS) showing 

Dunaliella tertiolecta  cells inside the channel floating in the media; 3D printer photopolymer surface 

details (PS); (C) Microchannel longitudinal cut, cells can be seen floating inside of it; (D) Microalgae cells 

(M.C) retained by the internal inlet surface cavities created by deposition of photopolymer layers in the 

3D manufacturing process. 

 

4.3.4 Light scattering measurement 

Changes in signal frequency  from the photodetector array system  located at the 

microreactor bottom window were detected when 6 samples of  different microalgae cell 

concentrations were injected into the chamber. Changes in frequency were proportional 

to light irradiance at 515 nm. Scattered light coming from the reactor was detected at 90 
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degrees with respect to the light source and correlated with changes in microalgal cell 

concentrations. Light irradiance was expressed as relative intensity and this value was 

proportional to the cell concentration inside the chamber. 

 

 

 

 

 

 

 

Figure 4.8   Scattered light detection system for cell density measurement using Dunaliella tertiolecta.  

Photodetector array frequency signal proportional to scattered light (intensity). Light source: Green LED 

515 nm. Lack of correlation between relative intensity  and microalgae concentrations  higher than 20x10⁵ 

mlˉ¹ is observed. 

 

4.3.5 Microscopy and cell density  

A correlation curve was built between microscopy counting using a standard 

frame area for each sample and values of cell concentration from the same samples 

obtained by haemocytometer counting. This calibration curve was lineally adjusted to 

be used for further microscopy counting directly from the reactor bottom window. 

 

0.00
0.06 0.06 0.06

1.00

0.29

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

R
e
la

ti
v
e

 I
n
te

n
s
it
y

Cell concentration  ( cell x 10⁵ mlˉ¹)



70 

 

 

 

 

 

 

 

Figure 4.9   Dunaliella tertiolecta  microscopic images and cell counts. 20x objective and  standard image 

frame (area: 251313 µm²). The linear equation is used for further cell concentration measurements. 

 

4.3.6 Specific Growth rate 

Eight Dunaliella tertiolecta  growth tests were carried out using the microreactor  as a 

culture device. None of the eight tests showed signs of cell replication in the 

microchamber, and all of them showed fast progressive population decline.  

3 growth tests showed the longest period for reaching minimum population or survival 

after 2 and 4 days (cells at the bottom of the microchamber with low motility were 

observed).   
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The calibrated growth curve using the standard image frame from 4.3.5 was used for  

microalgae counting and assessment of microreactor culture chamber. 

 

 

 

 

 

 

 

 

Figure 4.10   Microreactor growth tests using Dunaliella tertiolecta. Cell counting was performed using a 

20x microscope objective, standard image frames and the calibration equation. Three tests shown here 

indicate no signs of cell replication and instead display a progressive decline of cell population in the 

microchamber. Salinity was adjusted to 48 ppt  and 31 ppt to test any possible effects on survival. 
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CHAPTER 5 

 

DISCUSSION 

 

5.1  Microreactor fabrication 

 A 3D-printed microreactor measuring 40 mm X 21.9 mm X 19.03 mm was 

successfully fabricated. Some of the device’s internal structures fall within the 

microfluidic domain while other features were of larger dimensions.  The fluidic system 

was composed of microchannels 1 mm in diameter and the culture media was pumped 

into the microreactor at rates in the range of microliters. The 70.33 µL microculture 

chamber was successfully sealed to eliminate fluid leakage between the two LED access 

windows (UV and RGB LEDs) and the glass slide bottom window. The  1 µm mesh on the 

top of the chamber allowed exchange of culture media while retaining the majority of 

microalgal cells. 

 The presence of support material in the 3D printer fabrication process was a 

limiting factor in creating sub-millimeter scale enclosed structures, specifically 

microchannels for media inlet and outlet. Support material could not be removed from 

inside of 1 mm width microchannels by jetting water under pressure  even if the 

fabricated device was pre-treated in a heated ultrasonic bath.  Microchannels were 

ultimately freed from support material using a stiff wire to push the material out of the 

channel.  It has been reported that the 3D printing process can be carried out without 

support material in enclosed designs, such as 800 μm diameter circular channels [9], but 

this process was not attempted in the present work.  
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A support material that is soluble in solutions of NaOH has been recently released by 

Stratasys under the trade-name SUP706. This option could be more effective for creating 

smaller microchannels, but the removal step is limited by diffusion [39]. 

 The final microreactor device color was black to reduce light  interference in 

the light scattering-based cell concentration measuring system.  At the same time 

one disadvantage of this color was that it did not allow direct observation of fluid 

flow.  The final microreactor design permitted assembly and disassembly for 

cleaning, disinfection and retention mesh replacement. 

5.2 Macro tests 

 Macro tests using microalgal cells in flasks provided points of reference for tests 

in microchambers.  The basic goals of microreactor fabrication were the reduction of size, 

materials ( hardware, nutrients, culture media, etc.), time, and labor, for carrying out 

cultivation and testing of microalgal cultures. 

 Dunaliella tertiolecta was cultured in flasks during a 9 day period at 22˚C  and 

under a  light irradiance of 60  µE/m²s (14.23 Wmˉ² PAR correlation) with a day-night cycle 

of  18 hours-6 hours, respectively, reaching a specific growth rate of μ = 0.01 h⁻¹ and 

doubling time = 69.3 hours.  Carotenoids were extracted from Dunaliella salina after 

stressing the cells by exposure to different salinity and light conditions over a 7 day 

period.  
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 Maximum intracellular carotenoid concentrations correlated with the maximum 

tested salinity, 220 ppt, and exposure to light at 380  µE/m²s (90.14 Wmˉ², PAR 

correlation)  and 23˚C.  In both cases, microalgae population growth occurred and 

carotenoids were produced in concordance with past reports. 

5.3  Microalgae damage 

 No apparent cell damage was observed after injection of microalgal cells into the 

culture chamber. During normal injection of culture media using the fluidic pump and 

after cells were placed inside the chamber, a cyclical and short increase/decrease in 

pressure was observed by microscopy via the reactor bottom window. In this way a 

sudden burst was created, moving the cells apart after reaching a pressure peak. A 

plausible explanation for this phenomenon was that an accumulation of cells at the top 1 

µm mesh, pushed by the ascending flow from the bottom inlet, was blocking the normal 

medium flow until a peak where the pressure is released and the media could flow again 

to the outlet, initiating this pressure cycle again.  

5.4  Retention mesh and agitation system 

 Nylon retention mesh with openings of 1 µm, did not retain 100% of the 

microalgae. Dunaliella sp lacks a rigid cell wall and has an average size of 5 to 25 µm in 

length and from 3 to 13 µm in width and it can change its shape from rod to ovoid 

according to environmental conditions. Nevertheless, the reason that cells escape from 

the chamber is not clear. Two different hypotheses may explain this, one is the 

imperfections in the putative 1 µm mesh, with pore or openings sizes different to 
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manufacturer specifications statement and the other refered to plasticity of Dunaliella sp 

due to the lack of a cell wall with the possibility of being squeezed through mesh 

imperfections when the culture is injected and the pressure inside the chamber is 

increased.  Inspection of the mesh under the microscope shows small areas with  irregular 

construction of the Nylon matrix ( see Figure E.1.). 

 Detailed measurements were taken using the same microphotograph of Figure 

E.1. but from other larger areas of it, and also using lengths measurements based in the 

standard obtained equivalent to: 134 pixels = 100 µm. We obtained 16 measurements at 

ramdom locations giving an average pore area of: 74.7 µm², with pores as large as 137 

µm² and as small as 24.5 µm². 

 We were able to see that the pores were not round but rectangle and square 

shaped of different sizes. We need to concider that for Dunaliella cells passing through 

the mesh facing the mesh by its length, for example 10 µm, the pore at least should be 

78.5 µm² if we think in a round pore. If the cell faces the mesh by its width, for example 

5 µm, the pore should be at least 19.6 µm², also thinking in a round pore. Besides this last 

observation, we obtained an average mesh pore density of 11 pores/ 49218.6 µm². The 

microchamber outlet is 1,9 mm in diameter and the mesh is mounted here, covering an 

area of 2835287 µm² with 633 pores inside of it. 

 This simple observation gave a strong support to the  mesh irregular size porosity 

hypotheses, as a cause of the mesh low cell retention capacity of 36.3% 
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 Reynolds numbers associated with flow at different rates are summarized in Table 

4.1 and these confirmed that culture media flow inside the microreactor was laminar. 

Future designs would require an agitation system to overcome the lack of mixing and the 

ineffective agitation provided by incoming flow at the bottom of the microchamber. 

Increasing fluid velocity to increase Re in this case might not be practical since the 

turbulent flow needed for good agitation also will increase hydrodynamic forces that can 

give rise to cell damage.  Adding more inlets might solve the problem to an extent, but 

the fundamental flow regime will remain laminar. Also, agitation is based on the influx of 

culture medium and some tests may not require medium replacement or circulation. An 

alternative independent agitation system would be an important addition to this design. 

5.5  Surface Retention 

 Internal surfaces of the microchannels and  structures created with  3D printer  

used in this work have a high degree of rugosity that can be problematic since processes 

such as disinfection, and flushing of debris, cells and other remaining material become 

difficult when the surface contributes to the retention of microscopic material.  

 The surface rugosity is likely to result from a combination of the support material 

and the characteristic and intrinsic material additive technique used in 3D printing.  A 

support material extraction method that is effective in regions such as microchannels and 

internal walls, and that can be carried out with minimal mechanical deformation of the 

polymer material, is desired. In the present study this method was not ideal.  Cells were 

present in areas surrounded and protected by polymer material, making their removal 
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difficult. In Figure 4.7,  images B and D were acquired from the inlet area, and this area 

was highly accessible to water jet cleaning, therefore most of the support material should 

have been removed.  On the microchannel internal surface,  image 4.7 C, the adherence 

of debris on the internal walls suggests that residual support material remained even 

though it should have been flushed out using the high pressure water jet.  A new support 

material chemical extraction method or the elimination of support material from the 

fabrication of microchannels or enclosed microstructures in the 3D printing process 

should be considered. 

5.6  Optical measurement and methods for promoting algal stress 

5.6.1 Light scattering measurement and microscopy 

 Cell density in the microchamber was measured by detection of scattered light 

with a photosensor held at 90 degrees to the incident illumination with 515 nm green 

light. The intensity of light reaching the photodetector should have been proportional to 

cell concentration. The light impinging on the photodetector was detected and the signal 

transformed to a square wave signal with a frequency proportional to light intensity.  The 

obtained values of frequency, maximum and minimum testing different cell 

concentrations were in a 0.95 Hz range. The measurement of scattered light was not 

straightforward, since unwanted light coming either from reflection on the glass slide or 

from light leakage at the photosensor window touching the glass slidem which masked 

the weak signal from the scattered beam. A collimator lens was used to focus the 
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divergent light beam from the RGB LED into the chamber, improving photodetection 

efficiency, which was necessary for reading light scattering by the microalgal cells. 

 Even with this improvement in light intensity reading, it was not sufficient to 

provide a broader range reading.  The gap between the photosensor window and the 

glass slide helped in bringing light from unwanted sources and for solving this, black 

rubber was positioned around the photosensor, sealing the gap with the glass slide and 

avoiding this external unwanted light. Photosensor resolution was once again increased 

in some degree.  

 Fiber optics were not tested for conducting light to the scattered light sensors. 

Circular channel for passing this fiber to the microchamber was successfully created. 

 The bottom window was also used for microscopy observation and allowed 

inspection and counting of microalgae using a standarized image frame-based system as 

a backup method for the scattering-based cell density measurement.  Both techniques 

accurately measured cell density.  Since microalgal growth could not be maintained over 

a period of time sufficient to allow measurable changes in cell density measurable by light 

scattering the automatic cell density measuring system was not tested over the entire 

several day growing period. 

5.6.2 Light irradiance for stress induction 

 The culture system was designed to produce stress in Dunalliela sp by exposure to 

high light irradiance, as well as by salinity increase, resulting in stimulation of carotenoid 

production. Ideally the stressing light photon flux  density is in the range of 200-1200 μE 
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mˉ²sˉ¹ (47.4 Wmˉ²- 284.6 Wmˉ² , PAR correlation) for carotenoid production [19]. In the 

present system the maximum photon flux reached when using the  RGB LED was 115 μE 

mˉ²sˉ¹ (27.28 Wmˉ², PAR correlation) inside the microchamber. When a photon flux  

meter sensor touched the RGB LED epoxy lens, values as high as 1084 μE mˉ²sˉ¹ (257.14 

Wmˉ², PAR correlation) were measured but  in the case of the  microdevice, the RGB LED 

light  had to travel through the focal length f = 9.85 mm and a collimator lens, used as a 

window in the chamber, until it reached the microalgae with a value of 115 μE mˉ²sˉ¹ 

(27.28 Wmˉ², PAR correlation).  In the macro experiment with flask cultures light 

intensities of 380  µmol mˉ²sˉ¹ (90.14 Wmˉ², PAR correlation) were achieved as a light 

stressing condition.  Other factors that contributed to the reduction in photon flux in the 

microreactor was the decrease in diameter of the window through which light passed  

into the microchamber. In this case the RGB LED was 5 mm in diameter and the 

microchamber window, where the lens is mounted, was 3.46 mm in diameter. 

 To increase the efficacy of stressing light, a 375 nm UV LED was  mounted facing 

the RGB LED from the opposite side of the microchamber. This LED worked well from a 

functional and control point of view but its ability to produce a stress response in 

Dunaliella sp was not tested because of problems with culture growth and stability over 

time.  In general it can be seen that use of light for stress factor is a challenge if high  

photon flux levels, in the range of 200-1200 μE mˉ²sˉ¹ (47.4 Wmˉ²- 284.6 Wmˉ² , PAR 

correlation), are desired in small areas and volumes.  Fiber optics were considered as a 

conduit for stress-inducing illumination but photon fluxes achieved without a collimator 

lens, using the RGB LED as the source of light for the fiber, were in the range of 12  μE 
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mˉ²sˉ¹ (2.84 Wmˉ² PAR correlation) which was far below the intensity required to stress 

Dunalliela sp. 

5.7  Specific growth rate and microreactor environment parameters 

 Specific growth rate was not determined in the microreactor environment 

because stable reproduction of microalgae was not achieved. Different hypotheses may 

be proposed to explain the failure of the microalgae to reproduce in the microdevice.  

Microalgae growth tests used red and blue light with a photon flux density together of  40  

μE mˉ²sˉ¹ (9.48 Wmˉ², PAR correlation) , reaching 27 °C because of the heat produced by 

the RGB LED. 

 Dunaliella tertiolecta has been grown effectively in the range of 12 to 28 °C [28]. The 

salinity was adjusted to 31 ppt and 48 ppt in different experiments to determine whether 

this influences  the growth rate decline but no data supporting this was found. 

 CO₂ was added to new culture medium by constant  aeration of a new media flask 

through a sterile 0.45 μm filter.  

 Microalgae grew well in flasks (macro culture) using CO₂ in air, in this case the flask 

is always receiving a new dose of CO₂ through the air pump,  but it is not clear that it was 

enough CO₂ for the microreactor culture since pumping syringe was loaded with culture 

media  once ( media originally coming from the aerated flask) and no additional  CO₂ was 

added to this media. At the end, the CO₂ received by the microreactor had to come from 

the one contained inside the syringe. 
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 No direct dissolved concentration reading inside the microchamber was available.  

As mentioned in 5.3, poor agitation played an important role in gas and nutrient transport 

to the cells, which could have been a contributing factor in the absence of cell replication.  

By microscopy it was possible to see cells moving away from the incoming media inlet at 

the bottom of the chamber close to the glass slide window, but this flow did not mix the 

entire microchamber, i.e. cells at not exposed to mixing did not move, and so did not 

encounter a better exchange of nutrients and necessary gases.  

 Among the 3 culture trials in  Figure 4.9 , the one at 31 ppt which reached 200000 

cell mlˉ¹ at day 2 (green line), is the only trial in which the culture medium had a pH under 

7 (6.88) and this was product of a direct small dose of pure CO₂ injection in the culture 

media flask before pumping into the microchamber. This direct injection of CO₂ was 

performed to stimulate cell replication in the culture and to determine whether the lack 

of CO₂ was a reason for poor growth in the cell population. Buffer solutions were never 

added to the culture media. Direct injection of CO₂ into the culture media in future 

experiments will require the addition of a pH buffer to avoid a dramatic decreases in pH. 

 Theoretical concentration of CO₂ inside the microchamber sea water media was 

calculated. In the experiment for microalgae growth rate inside the microreactor, the CO₂  

came from a syringe loaded with fresh seawater media and nutrients. This CO₂ and fresh 

new media came from a flask fed with air and the flask had a ventilation to atmosphere . 

The application of Henry´s Law in this case would be at 1 atm  (1.0132 bar). 
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According to previous reports of Dunaliella tertiolecta semi continuos culture [50] 

we have considered a value of  CO₂ consumption rate  = 110 mg L⁻¹ d⁻¹ (0.00127 mg L⁻¹ 

sec⁻¹).  For CO₂ solubility in sea water we have taken in consideration the table from Al-

Anezi et al [49] (see Apendix H). This table gives a value for Henry´s Law coefficient = 29.3 

mol mˉ³ barˉ¹ ( 25 ˚C, S = 35 ppt, CO₂ partial pressure = 0.0003 bar (note that with rising 

CO2 in the atmosphere, the partial pressure may be closer to 0.0004)  resulting a 

concentration of  CO₂ = 0.4 mg Kg⁻¹ (sea water). Using density of seawater = 1023.37 Kg 

mˉ³ (25 ˚C, S = 35 ppt) and the volume of microchamber we obtained  0.00003 mg CO₂/ 

70.33 µL (0.426 mg L⁻¹). 

From this point we can see that 0.426 mg L⁻¹ / 0.00127 mg L⁻¹ sec⁻¹ (consumption 

rate) gives us a value equivalent to 5.59 minutes. This last value is a strong support for 

the CO₂ deficiency as a leading cause for microalgae growth failure, since at that rate of 

CO₂ consumption it would have been necessary to pump 70.33 µL of new media each 5.59 

minutes. In the  real experiment the highest dose of new media/day was 70 µL and from 

here is easy to see the CO₂ depletion problem. 

 Polymer material used by the 3D printer for building the last prototype (Vero™ 

Black)  is labeled, according to the manufacturer, as intermediate (better) according to a 

3 level classification (good, better and best) with respect to biocompatibility. 

Even with this ´´better´´ classification of the polymer,  the sensitivity of cells to this 

material is unknown  from this work and if this material has effects on  the normal growth 

of microalgae is also unknown.   
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 Some information included in a recent work [29], shows that Vero Clear (almost 

the same polymer material used in our experiment, except without pigmentation) was 

used in a 3D printed microfluidic device and is reported that the material "supports 

adhesion and growth of endothelial cells, but incorporation of cells into a fluidic channel 

yielded minimal cell adherence and poor viability over a 24 h period ".  Further work must 

be carried out to characterize any possible effects of  Vero Black 3D polymer material on 

microalgae  growth and if the material was a contributing factor to the failure of the 

microalgae to replicate. 

 Most proprietary resins for use with commercial 3D-printers have not been 

assessed for their biosafety and biofunctionality at this writing [39]. For future work, we 

note that good biocompatibility potential candidates for 3D printing  have been used for 

myocyte encapsulation, like hydrogel matrices made with polyethylene-glycol-diacrylate 

[40][41], poly-ethylene-glycoldimethacrylate[42], gelatin methacrylate [43][44], 

hyaluronic acid [45] and functionalized methacrylic alginates  [46]. 

 One of the disadvantages of using the type of 3D printing polymer in this work, 

compared to the very well known PDMS, is that the photopolymer used here does not 

diffuse gases like CO₂, N₂, O₂ in the same way as PDMS which permits diffusion of these 

gases  without major problems at different permeability coefficients according to the gas 

nature. This is a disadvantage for the photopolymer in comparison to PDMS since for 

example, we needed to find other way to supply CO₂ to the microalage inside the 

microchamber. 
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 A possible future solution for this would be the integration of PDMS into a hybrid 

structure composed of 3D printing polymer as the base material and exposing part of the 

PDMS surface directly to the microculture chamber as a gas transfer layer, allowing good 

CO₂ exchange, for example. Part of the challenge here would be the tight bonding 

between PDMS and the 3D printer polymer. 

 Loctite® Clear Silicone waterproof sealant was used for sealing  microchamber 

bottom window with the glass slide and also for sealing the micromesh at the 

microreactor top outlet when part A and B were assembled. This type of sealant uses an 

acetoxy tin condensation reaction for curing silicone at room temperature.  This process 

produces acetic acid during curing, which should have been removed when the reactor 

went through the cleaning and disinfection process, before the reactor was used. This 

point needs to be addressed in future work to minimize any possible effects of the acid 

on the cells. 
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CHAPTER 6 

 

CONCLUSIONS 

 

 We explored the use of a commercially available 3D printer for the fabrication of 

a  microbioreactor for microalgal culture and testing.  The microbioreactor device was 

successfully built using the additive manufacturing technique with an Objet 30 Pro 

(Stratasys, Polyjet Technology USA-Israel) employing jetted UV-cured photopolymer.  The 

microbioreactor device was  40 mm X 21.9 mm X 19,03 mm (width × depth × height) and 

contained a microchannel network for culture media and cell inoculum flow, a 

microculture chamber for microalgal growth and stress testing, and a semi-integrated 

photodetection system for measuring optical density and intrinsic fluorescence of 

microalgal cultures. 

 Forty five  g of photopolymer material were used, at a cost of 0.90 US$/g and 17 

g of support material at a cost of 0.40 US$/g. Fabrication time was 1 hour and 49 minutes.  

From an economic point of view, and putting aside photopolymer and support material 

costs mentioned before, the microbioreactor was built with a 3D printer that has an 

average market cost of $US 20,000 and this can not be considered inexpensive if other 

milli-microfluidic devices have been reported to have been built with 3D printers in the 

range of $US 2,000 [9], but this cost can be relative if the 3D printing equipment not 

necessarily belong to a unique department in a production facility and it is shared with 

other processes. 



86 

 The microculture chamber itself was not able to maintain a growing population of 

microalgal cells, and the cause of this finding still unknown. Several hypotheses may 

explain the lack of growth. One of the strongest hypotheses predicts that the low content 

of CO₂ in the culture medium and inside the culture chamber limited algal growth. 

The CO₂ hipotheses was supported also by calculation of CO₂ solubility in the 

microchamber, equivalent to 0.426 mg L⁻¹  and that would last for only 5.59 minutes 

inside the microchamber for an average Dunaliella tertiolecta CO₂ consumption rate. 

 Another related problem could have been insufficient agitation from medium 

entering from the bottom of the microchamber, which did not allow ideal distribution of 

nutrients and gases.  PDMS may provide advantages when compared with the 

photopolymer material used in this work, particularly with respect to gas exchange. 

 Potentially, work in hybrid systems containing a mix of PDMS and photopolymer 

structures might help solve  gas exchange problems.  

 Device assembly of photopolymer structures, is relatively simple, but inclusion of 

external components such as microlens for light collimation, a bottom glass slide, 

micromesh and reactor windows add a significant amount of complexity to the fabrication 

process that extends well beyond the 3D printing process.  Internal microchannels and 

microchamber surfaces show unwanted cell retention, rendering  them less than ideal for 

disinfection and device reuse. 
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 The use of support material in enclosed structures like microchannels complicates 

the cleaning process and an alternative method such as 3D printing without support 

material, might be very beneficial for future work. 

 The microalgae retention system was 36.3% effective, therefore a better system 

for avoiding escape of microalgae from microchamber in continuous culture needs to be 

addressed in any future work, considering the observations that support the mesh 

irregular size porosity hypotheses, as a cause of the mesh low cell retention capacity of 

36.3%. 

 Semi-integration of the optical measuring system and light control was possible, 

but  further tests of the measuring system in continues microalgae growing cycles need 

to be done. Irradiances in the range of 380  µE/m²s (90.14 Wmˉ², PAR correlation), the 

intensity used in the flask stress experiment, was impossible to obtain in the 

microchambers using the RGB LED in the present microreactor configuration.  Alternative 

methods to increase stressing light irradiance in the range of 1000 µE/m²s (237.2 Wmˉ², 

PAR correlation) for optimal carotenoid production biotests are required. Any increase in 

irradiance needs to take in account the increase of heat in the microbioreactor and the 

way to control the normal temperature range for the microorganism. 

 3D printing offers great potential in the development of microfluidics applications. 

Development of new 3D printed photoplymer materials that may have some properties 

similar to PDMS in the gas exchange aspect or a biomechanical or biochemical 

resemblance  with natural biological enviroments like the ones found in specific cellular 
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tissues can help in the application of 3D printing techniques to create microenvironments 

for cell and microorganism tests. 

According to initial thesis statement:  A micro-milli fluidic bioreactor can be 

fabricated using simple, rapid, inexpensive and reliable additive manufacturing (3D 

printing), and that this device can be used to study microalgal growth and biosynthesis,  It 

can be stated that further improvements are required and since no demonstration of 

microalgal growth and biosynthesis was achieved,  the statement has not been 

demonstrated completely and future work must address the observations related to a 

lack of cell replication in the microreactor. 

 From a purely mechanical point of view, it is possible to build the milli-microfluidic 

bioreactor rapidly, simply and reliably using 3D printing and this was demonstrated in this 

work.  The initial investment cost is high in this case, compared to other 3D printers in the 

market, but the manufacturing process cost is still relatively low compared with labor, 

specialized personnel, equipment, time, and energy used invested in other 

microfabrication processes. Finally, it is evident that the reduction of culture media, 

materials, equipment and labor in tests for microalgae may be reduced substantially by 

using a microbioreactor with microalgal tests in  flask cultures. 
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                   APPENDIX A: MICROREACTOR SPECIFIC GROWTH RATE TESTS DATA 
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             APPENDIX B: MACRO CULTURE TESTS (FLASK) DATA 
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   APPENDIX C: PHOTOSENSOR  AND MICROSCOPY AREA CALIBRATION 
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APPENDIX D: CAROTENOIDS PRODUCTION UNDER STRESS IN MACRO TESTS 

(FLASKS) CULTURE (Dunaliella salina). 
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APPENDIX E: MICROALGAE RETENTION MESH . 

 

 

Figure E.1   Cell retention mesh microscope view. Different pores defined by Nylon single threads crossing 

configuration.  Threads delimited in the picture by green lines forming a matrix. The matrix is made up of a 

first layer of parallel threads on top of a second layer of parallel threads at 90 degrees, one respect the 

other. (A) Pore area showing different pore sizes respect to other areas; pore (each small red circle delimit 

a pore) (P); Nylon thread and direction (TH). 
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APPENDIX F: VIEWS OF MICROALGAE INSIDE MICROCHAMBER AND RETAINING MESH 

AT THE TOP OF IT. 

 

Figure F.1   Views of Microalgae inside Microchamber and Retaining Mesh. (A) Cells floating inside 

microchamber; (B) Cells at the bottom of microchamber, touching glass slide and not being able to be 

removed or agitated by incoming media flow; (C) upper area  view of microchamber taken from bottom 

window,  before reaching the micromesh for algae retention (micromesh Nylon fibers can be noticed). 
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APPENDIX G: SIGNAL COMING FROM PHOTODETECTOR SENSOR. 

 

Figure G.1   Measuring signal frequency coming from photodetector array. Scattered green light detected 

at 90 degrees due to different turbidity levels, related to microalgae density inside the microchamber. In 

this case frequency is directly proportional to increases in light irradiance. 
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 APPENDIX H: CO₂ SOLUBILITY IN SEA WATER 

 

Table H.1  CO₂ SOLUBILITY IN SEA WATER (Al-Anezi et al [49]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure H.1   CO₂ solubility in sea water. (Al-Anezi et al [49]) 
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