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Forest productivity is known to vary in response to annual fluctuations in climate.  By 

assessing how closely forest productivity tracks climate on an annual basis, we can gauge 

climate sensitivity for a given location.  However, our understanding of forest productivity 

is limited, in part, by the complex methods needed to measure annual stand-level 

productivity. The eddy covariance technique, whereby CO2 exchange (flux) is continuously 

measured at the canopy-atmosphere interface, has clarified our understanding of stand-

level carbon dynamics by addressing productivity and its response to climate fluctuations. 

Biometric approaches, where forest productivity is estimated from the annual growth of 

individual trees, can offer a more economical alternative to continuous CO2 flux 

measurements, while providing annual estimates of CO2 assimilation. However, attempts 

to link these measurements of productivity (i.e., CO2 flux and tree growth) have produced 

inconsistent results and demonstrated a need for further research. 

Using long-term forest inventory data paired with tree-ring data from a mixed-species 

conifer forest at the Howland Research Forest, central Maine, we developed annual 

estimates of productivity at species- and stand-levels. We used annual carbon mass 

increment (derived from tree-ring data and species-specific wood densities) per unit area 



 
 

as a measure of productivity because it allows direct comparisons with CO2 flux data. Our 

results demonstrated strong correlations between carbon mass increment and annual CO2 

flux measurements summarized from previous-year fall to current-year fall, an 

improvement from calendar year summaries. Further, our results suggest tree growth was 

lagged one year behind CO2 flux (i.e., assimilated CO2 was not allocated to growth until 

the following year) for about the first half of the time-series, but later became synchronized 

with current year assimilation. We suspect the shift to synchrony reflects the onset of 

above-average spring temperatures, which shifted carbon allocation from storage to 

current-year wood formation.  

We also explored the use of annual carbon mass increment as an alternative to traditional 

standardized tree-ring chronologies for assessing climate–growth relationships. Our 

approach allowed us to assess these relationships across three levels of organization: 

individual tree-, species-, and stand-levels. We believe this approach is preferable in 

complex mixed-species forests, as it provides insights unavailable from the traditional 

standardization approach, which is restricted to the species level. Our results 

demonstrated that stand-level growth was sensitive to a different set of climate variables 

than those affecting individual species. We documented previous summer precipitation 

(higher better) and spring temperature (warmer better) as the most influential variables 

affecting stand-level growth at Howland Forest. We conclude the use of carbon mass 

increment has a broad range of applications within studies of forest productivity, and we 

suggest that future studies using tree-ring data consider the potential benefits of 

converting to carbon-mass increment. The following thesis highlights the benefits of 

implementing annual carbon mass increments for the purpose of addressing a broad 

range of research questions. 
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PROLOGUE 

The emissions from fossil fuel use have increased global atmospheric carbon 

dioxide (CO2) concentrations and changed the chemistry of earth’s atmosphere. Many 

researchers are trying to find ways to mitigate the effects of the changing atmospheric 

CO2 concentrations. Increasing or maintaining forest productivity is one way to mitigate 

the effects of climate change by offsetting carbon emissions from burning fossil fuels 

(Malmsheimer et al. 2008). From 2000-2007, forests sequestered 4.0 ± 0.7 Pg C of the 

8.7 ± 0.8 Pg C / year in global carbon emissions from fossil fuels and land-use change 

(Pan et al. 2011). The extent to which forest management could further enhance carbon 

sequestration is still largely uncertain, partly due to a lack of consistent long-term forest 

productivity data. Understanding factors that could accelerate or suppress carbon 

sequestration would improve our ability to model forest contributions to CO2 sequestration 

in a changing climate.  

Forested ecosystems function as biological carbon sinks by assimilating and 

storing atmospheric carbon in plant biomass and soils (Grace 2004). The net mass of the 

carbon molecules converted to plant biomass per unit time and area is used as a measure 

of forest productivity. Forest carbon pools are dominated by biomass stored in plants, 

detritus, and soils. The loss of carbon from pools to the atmosphere is considered a carbon 

source (e.g. decomposition). We can monitor forest productivity using field measurements 

to track the mass change within carbon pools. The transfer of carbon from one pool to 

another is considered the carbon flux; we estimate the flux by quantifying the change in 

carbon pools over time.  

Associations between forest age and productivity are commonly used to infer the 

production efficiency of different forest systems. Net carbon sequestration after a large-

scale disturbance may take >15 years to change from a carbon source (to the atmosphere) 
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to a net carbon sink (Fahey et al. 2005). Following the source phase, rapid regeneration 

of many young trees results in a high initial rate of sequestration (Bormann and Likens 

1979). After the rapid growth phase forests are assumed to follow a decreasing trend of 

sequestration as they reach maturity (Gough et al. 2008; Amiro et al. 2010; Bradford and 

Kastendick 2010). Although total ecosystem carbon sequestration rates are expected to 

decrease as forested ecosystems reach old-age (Pregitzer and Euskirchen 2004), forests 

continue to be net carbon sinks by accumulating soil and deadwood stores instead of 

reaching a theoretical equilibrium (Harmon 2001; Luyssaert et al. 2008). Recent studies 

demonstrating larger trees sequester more carbon than smaller trees (Stephenson et al. 

2014), and complex forests becoming larger carbon sinks as they age (D’Amato et al. 

2011; Foster et al. 2014) may alter our perspective of old forest carbon dynamics.  

By combining forest inventory data, tree-ring reconstructions of productivity over 

time, and long-term eddy-flux data, this study offers a perspective of carbon dynamics 

from Howland Research Forest, a mature, mixed-species forest in central Maine, USA. 

Previous work reveals that the Howland forest has shown an increasing trend in carbon 

sequestration from 1996-2010 (Keenan et al. 2013). It remains a persistent carbon sink 

as a multi-strata forest with trees in excess of 300-years old. This site has a species 

composition similar to that of other forests of the region; as such, it could serve as a 

surrogate for other managed stands as they reach advanced developmental stages. We 

use this system to improve our understanding of forest carbon dynamics by quantifying 

and reporting the landscape-level carbon stocks stored in living trees, the magnitude of 

annual carbon sequestration using two concurrent methodologies, and the influence of 

climate on tree growth. 
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CHAPTER 1 : LINKING FOREST CARBON SEQUESTRATION WITH ANNUAL CO2 

FLUX 

1.1 Introduction 

Forests play an essential role in the global carbon cycle by removing CO2 from the 

atmosphere and storing it in tree biomass. Concerns over elevated atmospheric CO2 

levels have called for a better understanding of factors that influence tree biomass 

production, including sources of annual variability. At the level of forest stands, annual 

forest productivity is estimated primarily by tree growth (i.e., carbon assimilated to woody 

tissue) or eddy covariance (i.e., CO2 exchange between forest canopies and the 

atmosphere) measurements. Previous attempts to link these two measurements of forest 

productivity have yielded inconsistent results (Delpierre et al. 2016), perhaps due to yearly 

lags between atmospheric CO2 assimilation and structural growth (Gough et al. 2009). 

Discrepancies between the two could also result from varying carbon allocation strategies, 

in particular differential allocation to non-structural carbohydrates (storage for future use) 

vs. biomass production (structural growth) (Barford et al. 2001; Babst et al. 2013). The 

simultaneous use of tree-growth and eddy-covariance methods – particularly using 

lengthy time series – to further evaluate carbon allocation strategies would shed much 

light on the forest carbon cycle. 

 Tree growth is regularly inventoried for commercial forestry and ecological studies 

using repeated diameter measurements of sample trees. These repeated measurements 

can be used to estimate net primary productivity in any forest type (Clark et al. 2001). 

However, repeated tree measurements can be time intensive and costly. An alternative to 

repeated measurements in temperate and boreal systems is utilizing annual tree-ring 

records (derived from increment cores) to reconstruct previous tree diameters (Bakker 

2005). Annual diameter growth can then be converted to biomass growth by using 



2 
 

published allometric equations. This method has the potential to track annual stand-level 

forest productivity back decades, and more importantly does not require repeated field 

inventories.  

Stand-level forest productivity can also be estimated using the eddy covariance 

(flux) technique (Baldocchi et al. 1988). Flux towers constructed above tree canopies 

continuously measure net CO2 exchange at the canopy-atmosphere interface, with a 

footprint (i.e., detection radius) ranging from hundreds of meters to several kilometers 

(Baldocchi 2003). The method utilizes turbulent air currents (eddies) to measure the 

exchange of CO2 and other chemicals between ecological communities and the 

atmosphere. These exchanges are compiled to provide robust datasets capable of 

tracking year-to-year variability in forest productivity. As these datasets become more 

temporally robust, researchers can use flux records to track entire forest response to 

climate variability (Hollinger et al. 2004; Wharton and Falk 2016) and disturbance 

(Ueyama et al. 2011; Hicke et al. 2012), and to improve ecosystem carbon models 

(Richardson et al. 2010). However, establishing and maintaining eddy flux towers requires 

sizeable financial investment and creates many logistical challenges. As a result, flux sites 

are few in number, which limits the assessment of spatial variability in annual carbon flux. 

Naturally, we are led to ask if an analogous technique for estimating annual stand-level 

productivity, such as tree-ring analyses, could be used to clarify our understanding of 

forest carbon dynamics, including year-to-year associated variability.   

Several previous studies have combined the two metrics of productivity – eddy flux 

and tree-ring methods – to gain a more holistic view of carbon dynamics, yet critical gaps 

exist in our understanding of how these two metrics are linked on annual timescales. Eddy 

flux coupled with tree growth has been used to validate photosynthesis and transpiration 

rates (Catovsky et al. 2002) and to evaluate forest productivity response to climate (Grant 
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et al. 2009; Wharton and Falk 2016). Previous attempts to link year-to-year flux estimates 

with radial growth (Rocha et al. 2006; Zweifel et al. 2010) and carbon mass increment 

(Babst et al. 2013; Delpierre et al. 2016) have produced inconsistent results and thus call 

for additional research. Babst et al. (2013) demonstrate positive correlations between 

carbon increment and early season flux measurements (January-July), yet Delpierre et al. 

(2016) suggest the two metrics are uncorrelated on an annual basis.     

 The discrepancies between year-to-year tree growth and eddy flux measurements 

are likely due to temporary non-structural carbohydrate storage (Gough et al. 2009; Babst 

et al. 2013; Delpierre et al. 2016). Plants accumulate non-structural carbohydrates 

(primarily sugars and starch) via photosynthesis that can be mobilized and used for later 

growth or other plant functions (Chapin et al. 1990). Non-structural carbohydrates are 

critical for dormant season respiration and maintenance, and unused carbohydrates will 

often contribute to early season structural growth in the following season (Keel et al. 2006; 

Elgin et al. 2010; Mitchelot et al. 2011). Non-structural carbohydrate stores can last for 

several years; in some species they can remain in stemwood for over a decade 

(Richardson et al. 2013). As a result of carbohydrate storage, multi-year metrics of carbon 

mass increment, when compared to annual carbon mass increment, appear to be more 

strongly correlated with carbon flux data (Barford et al. 2001; Gough et al. 2008).  

The specific objective of this study was to characterize the year-to-year 

relationship between carbon mass increment (from tree ring series) and annual carbon 

flux (from eddy covariance measurements). We assessed how annual carbon 

sequestration changed over time using a mixed-species, multi-aged forest as our study 

system. We expect this study to provide a framework for tracking annual carbon 

sequestration using dendrochronological methods that can be used in future studies. Our 

work builds upon previous work by Babst et al. (2013) by examining the relationship in a 
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more complex system and over a longer time period. We had the benefit of using one of 

the longest available datasets for eddy flux in the USA (extending back to 1996) to 

compare with annual biomass growth (derived from tree-ring series). This long-term 

dataset allowed us to identify the relationship between the two methods and isolate 

potential lag-periods of tree growth. Biomass increments derived from tree-ring series 

could validate annual eddy flux summaries using simultaneous measurements of 

ecosystem productivity. These biomass increments could provide an alternative 

methodology for tracking ecosystem CO2 gain in systems without established flux 

systems, providing a more cost-effective alternative to flux measurements. 

1.2 Methods 

1.2.1 Site Description 

This study was conducted in the Howland Research Forest in central Maine, USA 

(Figure 1.1). The Howland Research Forest is widely recognized for its long-term research 

in forest ecosystem science (see Rustad 1994; Hollinger et al. 1999; Davidson et al. 2002; 

Richardson et al. 2009). The site was established in 1987 through a partnership between 

the University of Maine and International Paper. Collaborations between the US Forest 

Service, US Department of Energy, NASA, and the University of Maine have maintained 

an active research program focused on carbon and nutrient cycling. In 2007, the 220-

hectare site was purchased and permanently protected by Northeast Wilderness Trust.  

In total, the site maintains four eddy flux towers; two towers (the “main” and “west” 

towers) are located in a mature spruce–hemlock stand approximately 800 m apart 

(Hollinger et al. 2004). The site has the second longest running flux record in the US, 

dating back to 1996 (the longest belonging to Harvard Forest). These 20 years of data 

provide a time series long enough for robust analyses of relationships between CO2 flux 
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and various environmental variables. This long-term dataset is ideal for comparisons to 

biomass growth.  

A mature multi-aged spruce–hemlock forest comprises approximately 170 of the 

220 hectares owned by Northeast Wilderness Trust (outlined in yellow in Figure 1). The 

forest is dominated by red spruce (Picea rubens) and eastern hemlock (Tsuga 

canadensis), consisting of approximately 90% conifer, and 10% deciduous tree species. 

A summary of the species and stand descriptors of Howland Forest is presented in Table 

1.1, with additional information in Table A.1 of the Appendix.  Soils are spodosols, formed 

in well- to poorly-drained glacial till with very little elevational change. The climate is damp 

and cool, with average annual temperatures of 6.2°C and a mean annual precipitation of 

1148 mm (Daly et al. 2008). The site has evidence of previous logging (evenly distributed 

well-decayed cut stumps), but has been unmanaged for roughly a century. Compared to 

other stands of the region, this stand represents a highly complex system in both size and 

age distributions of trees. The site supports several remnant trees in excess of 300 years 

old, along with many standing dead trees, and pit-and-mound topography. 
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Table 1.1: Forest descriptors by species in the Howland Forest NASA plot (2015 
inventory). Species ranked by decreasing relative density. Additional information 
presented in Table 1.1Table A.1 of the Appendix. 

Species 
Relative 

density 

Relative 

basal area 

QMD* 

(cm) 

Red spruce (Picea rubens) 0.447 0.413 21.3 

Eastern hemlock (Tsuga canadensis) 0.278 0.276 22.1 

N. white-cedar (Thuja occidentalis) 0.108 0.086 19.8 

Red maple (Acer rubrum) 0.090 0.069 19.3 

White pine (Pinus strobus) 0.049 0.140 37.5 

Balsam fir (Abies balsamea) 0.021 0.006 11.7 

Yellow birch (Betula alleghaniensis) 0.004 0.007 28.5 

Paper birch (Betula papyrifera) 0.003 0.003 20.3 

*Quadratic mean diameter 

  A 3-ha permanent plot (150 × 200 m) whose center lies 240 m north of the main 

tower (Figure 1.1), was established in 1989 by the Laboratory for Terrestrial Physics at 

NASA’s Goddard Space Flight Center for remote sensing and ecosystem dynamics 

research (see Weishampel et al. 1994; Ranson et al. 2001; Sun et al. 2011). At that time, 

all living and dead plot trees 3.0 cm diameter and larger at breast height were mapped 

and measured (diameter and total height), recording ca. 7,800 stems. Each tree was 

tagged using a unique identification number for later re-measurement. This large mapped 

plot is subsequently referred to as the NASA plot. 
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Ong 
Figure 1.1: Howland Forest location map, showing the location of flux towers and the NASA plot. 
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1.2.2 NASA plot re-inventory 

In 2015 we re-mapped and re-measured all living and dead standing trees >10 cm 

diameter at breast height (DBH, 1.37 m) in the NASA plot. The mapping was conducted 

using 5-m wide belt transects running from the southern to the northern boundary (40 belt 

transects of 150 m). Each tree was identified by species, measured at breast height, and 

given an X-Y coordinate in relation to the southwestern corner. When necessary, previous 

tags were repositioned on trees at breast height. Matching trees to their original tag 

number was a challenge throughout mapping, and care was given to identifying trees with 

missing tags. Trees without original tags were labeled with write-on metal tags. In the case 

of an ingrown tree (one that achieved the minimum diameter threshold between 1989 and 

2015) or unknown tag, the tree was labeled with a new unique number.  

We assessed data quality by cross-referencing all tree’s original tag numbers, 

species, diameters, and X-Y coordinates to 1989 records. Field checks were conducted 

for trees with abnormal measurements (ca. 1% of trees), species (ca. 3%) and mortality 

(<1%) disagreements, and mismatched tag numbers. In some cases records were not 

available for 1989 trees (e.g., trees added along the perimeter and unknown interior trees, 

representing ca. 1% of trees). When the original (1989) diameters were not available, the 

1989 diameters were predicted using a linear regression based on species and diameter 

change from all other trees from that species. Trees with equal or slightly smaller current 

diameters than those recorded in 1989 were assumed to have zero growth, and therefore 

no increase in carbon mass.  

The 2015 tree dataset was georeferenced based on coordinates collected along 

the plot boundary with a Trimble GeoXT and external antenna. Plotting the 3-ha plot 

boundary, which was originally thought to be rectangular, revealed a parallelogram shape. 

To georeference individual trees, the raw X-Y coordinates were converted to UTM 



9 
 

coordinates in relation to plot-origin in the southwestern corner. The points were shifted to 

reflect the parallelogram shape (the north border shifted 9.86º from east to west). The 

entire plot was then shifted 9.79º counterclockwise to align the southern boundary on the 

Howland/Edinburg town line. Additional small adjustments were made to align individual 

trees to a LIDAR based digital surface model (aligning white pine canopies, clearly visible 

in the digital surface model).  The parallelogram shape results in a slightly smaller area 

than a rectangular plot with the same dimensions. We estimate the plot to be 2.96 ha when 

accounting for the parallelogram shape. Because the 1989 dataset was mapped with the 

same X-Y coordinates as the 2015 dataset, it was also georeferenced using the same 

procedure. 

Combined, the mapped datasets from 1989 and 2015 provide an ideal opportunity 

to track long-term mortality, ingrowth, diameter growth, and carbon pool change at the 

stand-level. These two inventories are used to estimate total tree carbon pool size in 1989 

and 2015, accounting for tree mortality and ingrowth. The total carbon mass of all trees 

was summed and expressed on a per-area basis to estimate carbon pool size (in Mg/ha). 

These data are useful for studying long-term forest dynamics, but cannot be used to track 

annual variability in carbon mass change. 

1.2.3 Carbon mass increment 

Annual carbon mass increment was estimated from increment cores collected from 

a 10% subset of trees on the NASA plot at the end of the growing season in 2015. The 

subset was selected in a random stratified (by species and diameter class, using 10-20, 

20-30, >30 cm classes) manner, resulting in 327 trees. Although no spatial constraints 

were placed on the selection process, the large number of trees selected ensured 

adequate spatial distribution throughout the plot (visually assessed; see Figure 1.4). The 

random subset is assumed to represent all living trees >10 cm DBH in the plot, ranging 
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from understory suppressed trees to overstory dominants.  The height, height to crown 

base, and canopy class were recorded for the subset. One core was extracted from each 

tree at breast height with a standard 5.2 mm increment borer (Häglof Company Group, 

Långsele, Sweden). Cores were transported to the dendrochronology laboratory at the 

University of Maine where they were air-dried and secured to wooden mounts. Cores were 

sanded and polished using increasingly fine sandpaper. Ring-widths were measured to 

the nearest 0.01 mm using a Velmex sliding stage (Velmex Inc., Bloomfield, NY, USA) 

with MeasureJ2X software (VoorTech Consulting, Holderness, NH, USA) and 

stereomicroscope. Cross-dating was performed using marker years, usually light or 

narrow rings, followed by statistical cross-dating using COFECHA software (Holmes 

1983). Numerous missing rings were identified and corrected in understory red spruce 

and eastern hemlock.  

Tree ring measurements were used to back-calculate historical diameters for every 

year since NASA plot establishment in 1989. Species-specific bark factors (Dixon and 

Keyser 2011) were used to estimate inside bark diameters in 2015. When possible, ring-

widths were adjusted so that cumulative ring width equaled half the inside bark diameter 

in 2015, following justification presented by Frelich (2002). This adjustment compensates 

for off-center piths, but is only possible if cores include or approach the pith (<15 mm) and 

are not affected by central rot. Ring-widths were sequentially subtracted from 2015 inside 

bark diameter to estimate each year’s diameter inside bark. Predicted bark thickness was 

then added back to each year’s inside bark diameters for use in allometric equations. 

Heights were also back-calculated using heights measured in 1989 and 2015. Annual 

height growth was assumed to reflect ring-width growth and was calculated by multiplying 

the total height growth by the ratio of ring-width to cumulative radial growth since 1989, 

similar to methods presented by Kariuki (2002).  
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Tree bole mass was estimated for each tree and each year from 1989 to 2015 

using three species-specific allometric equations: Honer, Taper, and Young (Honer 1967; 

Li et al. 2011; Young et al. 1989). Updated Honer equations from Li et al. (2011) were 

used for all conifer species, but original Honer equations, which have not been updated, 

were needed for hardwoods (representing less than 10% of trees). Taper equations were 

also from Li et al. (2011). The Honer and Taper equations use height and outside bark 

diameter to estimate inside-bark and outside-bark volume of the main stem. 

Corresponding heights and diameters for each year were used to estimate bole volumes 

with and without bark. The difference between predicted inside and outside bark volumes 

was used to estimate bark volume. Volumes were multiplied by species-specific wood and 

bark specific gravities (Miles and Smith 2009) to produce mass estimates.  

The advantage of using Young’s equations for carbon accounting is the ability to 

estimate whole tree dry mass directly, without the need to convert bole volume to mass, 

as required by the Honer and Taper equations (above).  Further, Young’s equations can 

produce dry mass estimates for the bole, branches, leaves, and coarse roots individually 

or as a whole. However, Young’s equations are considered less accurate because, unlike 

the Honer and Taper equations, they only use diameter outside-bark and do not require 

tree height. We compared mass estimates from Young’s stem-only equations to those 

produced by the Honer and Taper equations to test its applicability for our data.   

The dry mass estimates produced from the allometric equations were converted 

to carbon mass by multiplying by species-specific carbon ratios (Lamlom and Savidge 

2003). Carbon mass was summed for the cored trees, and the resulting time series reflects 

the year-to-year variability in carbon mass.  However, to express carbon mass increment 

on a per-hectare basis, we needed to extrapolate growth from sampled trees to that of the 

entire NASA plot.  
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Ring-width data from cored trees was used to estimate annual growth of the non-

cored trees, using a linear mixed-effects model. The fixed effects included 1989 diameter, 

radial growth since 1989, tree elevation (extracted from digital elevation model), and 

canopy class. The random effects were year nested within species, producing different 

intercepts for each combination. The annual ring widths thus predicted were then adjusted 

to match the cumulative field-measured growth from the two sampling periods. Diameters 

outside bark for all years were estimated using the same procedure as for cored trees. 

Despite using all available data to improve these ring-width models, annual productivity 

estimates from this modeling approach were distorted and problematic.  

 As an alternative approach, we scaled our cored-tree data to the plot-level based 

on the assumption that the randomly-selected cored trees adequately represent the entire 

tree population on the NASA plot. To this end, we estimated percent annual radial growth 

for each species across the same diameter classes used for stratification (i.e., 10-20, 20-

30, >30 cm). This approach assumes trees within the same species and diameter classes 

are growing similarly, which we believe is reasonable, given the relatively large number of 

cored trees (N=327) and the stratified random selection we employed to select them.   

 The annual biomass increment was thus calculated for every tree in the 2015 

inventory period based on predicted ring-widths using the latter method described above. 

Trees that died over the study period were not included because of unknown mortality 

dates. Trees that died were generally small-diameter (Table A.1 in the Appendix), 

presumably slow-growing suppressed trees, and thus contributed little to carbon mass 

increment. 
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1.2.4 Annual carbon flux 

CO2 flux was measured at a tower height of 29 m and summarized from 1 January 

1996 to 31 December 2015 as 30 minute averages in units of micromoles CO2 m-2 s-1. 

The flux system on the main tower consisted of a SAT-211/3K 3-axis sonic anemometer 

(Applied Technologies, Inc., Boulder, CO) and model LI-6262 fast response CO2/H2O 

infrared gas analyzer (LiCor Inc., Lincoln, NB). Air was ducted from the tower through 50 

m of 3.2 mm high-density polyethylene tubing, regulated by mass flow controllers at a rate 

of 4 L /min. The model LI-6262 analyzer was replaced with a LiCor model LI-7200 closed 

path analyzer in 2012. Tube length and flow rate remained unchanged. Detailed Howland 

flux procedures, including gap-filling and quality control can be found in Hollinger et al. 

(1999, 2004). Data were converted to grams of carbon per square meter and summarized 

by day. 

The annual carbon flux was first summarized for each year since 1996 as the 

cumulative net ecosystem exchange (g C m-2 yr-1). Tower based estimates of net carbon 

flux are typically reported in negative units, as they reflect a micrometeorological sign 

convention where flux from the atmosphere is negative. For comparison to biomass 

increment in trees, we report carbon flux from the forest pool perspective; carbon into the 

forest is accumulated to positive values, while carbon loss to the atmosphere is negative 

(as presented in Richardson et al. 2013).  

1.2.5 Linking carbon mass increment and annual carbon flux 

Yearly summaries of CO2 flux are typically summarized by calendar year. Calendar 

year summaries are practical for carbon accounting purposes or comparisons between 

sites, but this timeframe holds little biological significance. Several studies have avoided 

a mid-winter (calendar year) split by beginning the flux year in the previous year’s autumn 
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(Goulden et al. 1996; Pereira et al. 2007). Thomas et al. (2009) summarized carbon fluxes 

by hyrdo-ecological year to study flux response to drought. Here we adopt a similar 

approach for summarizing flux; however, we target the date at which stem growth 

terminates (i.e., end of growing season before leaf senescence). By incrementally shifting 

the date used to separate flux years and comparing the correlation between carbon mass 

increment and carbon flux at each shift, we determined the optimal shift for comparing the 

two metrics for these data. In theory, this should roughly correspond with the date trees 

stop allocating carbon to growth. 

1.3 Results  

1.3.1 NASA plot re-inventory 

 Locations of geo-referenced trees for the initial 1989 and current 2015 sampling 

periods are presented in Figure 1.2 and Figure 1.3, emphasizing the parallelogram plot 

shape. The points, representing individual trees, are overlaid on a LIDAR-derived digital 

canopy surface model, with lighter colors representing taller vegetation. Dark areas 

represent canopy gaps and generally align with the gaps in the mapped tree distribution. 

The tallest canopy heights captured from LIDAR align with mapped white pines, which are 

the tallest canopy trees in the NASA plot. The subset of trees randomly selected from the 

2015 inventory for coring is shown in Figure 1.4.  
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Figure 1.2: Locations for all NASA plot trees greater than 10 cm DBH in the initial 1989 
inventory. Point size is relative to tree diameter. The points are plotted over a LIDAR-
derived digital canopy surface model from 2015. 

 

Figure 1.3: Locations for all NASA plot trees greater than 10 cm DBH in the initial 2015 
inventory. Point size is relative to tree diameter. The points are plotted over a LIDAR-
derived digital canopy surface model from 2015. 



16 
 

 

Figure 1.4: Locations for all NASA plot trees selected for coring (2015) are shown with 
white border and black center. These trees represent a 10% stratified random selection 
by diameter class and species. 

  

 The size of the living tree carbon pool was estimated for both 1989 and 2015 

(Table 1.2 outlines the carbon storage change for all trees, and changes in species-level 

carbon storage are presented in Table A.2 in the Appendix). Specifically, tree growth, 

mortality and ingrowth (small trees that achieved 10 cm DBH between 1989 and 2015) 

were assessed to determine how the living carbon pool changed over the time period. 

Ingrowth (541 trees) exceeded tree mortality (507 trees) in the plot. Trees in the 1989 

dataset experienced 16.4% mortality over the 26-year period, or 0.6% per year, 

predominantly in the smaller diameter classes. Metrics for living trees and trees that died 

between the sampling period are presented in Table A.1 of the Appendix.  

  



17 
 

Table 1.2: Forest descriptors for all trees in NASA plot at establishment (1989) and re-
measurement (2015). Stem and whole-tree carbon mass were calculated using equations 
presented by Young et al. (1989). 

Forest descriptors Inventory 1989 Inventory 2015 

Trees per hectare ≥10 cm 1,044 1,055 

Basal area  (m2 / ha) 29.4 40.6 

Quadratic mean diameter (cm) 19.0 22.1 

Stem carbon mass (Mg / ha) 42.2 63.8 

Total tree carbon mass (Mg / ha) 72.8 108.0 

 

1.3.2 Carbon mass increment 

Stem mass estimates from the three allometric equations (Honer, Taper, and 

Young) through time were very closely related, yet differed as much as ca. 15% in 

magnitude (Figure 1.5). The Young equation produced stem carbon mass increments ca. 

5% greater than the Honer equation and ca. 10% less than the taper equation. This close 

relationship between the Young equation and the two height-based equations validates 

the use of Young’s equations for our study, despite the fact that it does not include tree 

height as a predictor. We thus estimated the total carbon mass increment from trees using 

Young’s complete tree equation (including stem, branches, leaves, and coarse roots). 
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Figure 1.5. Total stem carbon mass increment of 327 cored trees using the three 
allometric stem volume equations: Honer, Taper, and Young.   

 

The total plot-level annual carbon mass increment (scaled to the entire plot, using 

growth data from the subset of cored trees) showed marked fluctuations over the sampling 

period, ranging from 131.1 to 176.9 g C / m2 (Figure 1.6). The lowest carbon mass 

increments over this timeframe were in years 1994 and 1995, immediately preceding the 

flux tower establishment. The most productive year in terms of carbon mass was 2010.   
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Figure 1.6: Annual carbon mass increment predicted for the 3-ha NASA plot based on all 
trees ≥10cm. 

 

1.3.4 Annual carbon flux 

By incrementally shifting the dates used to define annual CO2 flux summaries, we 

determined the period with the strongest correlation with carbon mass increment. To 

illustrate the influence of shifting the start period for defining a flux year, the un-shifted 

calendar year flux is presented alongside one of the shifted time series representing 

annual flux summarized from previous year’s 1 September to the following 31 August 

(Figure 1.7).  
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Figure 1.7: Comparison between two annual flux summaries that differ with respect to 
how a CO2 flux year is defined. The solid line represents the standard approach 
(calendar year), and the dashed line represents a summary from previous September 
(pSEP) to current September (SEP).  

 

1.3.5 Linking carbon mass increment and annual carbon flux 

 Carbon mass increment series derived from increment cores was not well 

correlated with the annual carbon flux time series based on calendar year (r = 0.43). 

However, as the yearly flux summary was shifted (as above), the correlation improved 

dramatically (Figure 1.8). For example, we found that the correlation could be maximized 

(achieving a correlation of r=0.72) by defining a flux year as 23 August of the previous 

year to 22 August of the following year. Based on this result, and constrained by the need 

to later use monthly climate data to explore climate-growth relationships (Chapter II), we 

chose to summarize the annual carbon flux data from previous 1 September to the 
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following 31 August (r = 0.70), allowing us to better assess the year-to-year relationships 

with carbon mass increment (Figure 1.8).  

   

Figure 1.8: The correlation with carbon mass increment when annual flux starting dates 
are incrementally shifted into the previous year. The solid line represents correlation when 
incrementally shifted by day, and diamonds are correlation when shifted by month. The 
vertical dashed line illustrates the highest monthly correlation at 1 September (r=0.70). 
The prefix p refers to previous year. 

 

The mean annual carbon mass increment (derived from tree-ring series) since 

1996 was 152.1 ± 9.5 g C / m2 compared to 223.9 ± 49.0 g C / m2 of annual carbon flux 

based on eddy flux measurements. When plotted together on respective scales (Figure 

1.9), carbon mass increment and annual carbon flux demonstrate a strong visual 

association. However, the relationship is interrupted by a striking shift that occurred ca. 

2007. Prior to that shift, the carbon mass increment shows a distinct one year lag behind 

the annual carbon flux data (Figure 1.9), a pattern also recognized by Richardson et al. 

(2013). However, after ca. 2007, this relationship changes, with flux and carbon mass 
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increment becoming more synchronous. Comparisons between species-level carbon 

mass increment and annual carbon flux are presented in Figure A.1 of the Appendix. 

 

 

Figure 1.9: Comparison of carbon mass increment (derived from tree-ring series) and 
shifted annual carbon flux (eddy flux data) from previous year September to following 
September. The vertical dashed line represents a split into two time periods, time series 
(a) and time series (b), representing a shift from a one-year lag to synchrony in the 
series. 
 

By separating carbon mass increment in two segments (time series (a) = years 

1996-2007; time series (b) = years 2008-2015, Figure 1.9) we can determine the optimal 

annual flux period for each time series using the same shifting procedure as that presented 

in Figure 1.8. Shifting the annual flux period 16 months before growth begins (the 

September from two years prior) yields a year-to-year correlation as high as 0.95 for time 

series (a) (Figure 1.10). In contrast, if we shift time series (b) to the same period 16 months 

before, the correlation shows a negative correlation (r=-0.47). Alternatively, shifting the 

flux period back just 4 months for time series (b) to the previous September results in 
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another strong positive correlation (r=0.86). Data corresponding to wood formation in 1996 

and 1997 are unavailable if flux summaries are shifted 16 months.  

 
Figure 1.10: Correlation between carbon mass increment (derived from tree-ring series) 
and annual carbon flux (eddy flux data). The series are separated based on years of wood 
formation. Both flux summaries begin on 1 September, but correlations with series a 
(1998-2007) used flux summaries starting two Septembers before wood formation, while 
b (2008-2015) used flux starting the previous year’s September.  

 

1.4 Discussion 

1.4.1 Linking carbon mass increment and annual carbon flux 

We demonstrated that shifting the dates used to demarcate annual carbon flux 

summaries clarified the link between carbon mass increment and annual carbon flux. 

Using incremental daily shifts, we determined the optimal shift period for carbon flux data 

based on 20 years of tree growth. We chose to summarize flux from the previous year’s 1 

September to 31 August because this monthly cut-off showed the highest correlation with 
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carbon mass increment (optimal day cut-off is 23 August). Starting the flux summary in 

September corresponds with the cessation of radial growth and the end of latewood 

formation of cool-weather conifers of North America (Deslauriers et al. 2003; Thibeault-

Martel et al. 2008; Duchesne et al. 2012) and thus provides strong biological justification 

for this shift. That is, the shifted dates better represent the time period in which carbon flux 

is being allocated to a given year’s tree growth. This shift allowed us to identify the one-

year lag in growth and could similarly clarify relationships at other flux sites. 

 When plotted together, the first portion of the study period shows carbon mass 

increment with a clear one-year lagged time series behind annual carbon flux, followed by 

a dramatic shift to synchrony occurring ca. 2007 (Figure 1.9). We interpret the early lag 

period as evidence that a large portion of carbon assimilated by photosynthesis was not 

allocated to structural growth until one year later, a finding also reported by Richardson et 

al. (2013) from this same site. Specifically, the magnitude of the previous year’s flux 

reflected the amount of available storage that could be allocated to growth the following 

year. It is unclear if the lag was in response to some change in tree physiology, such as 

stress or reproductive effort. In unfavorable conditions (e.g., drought), stressed trees can 

allocate more carbohydrates to storage than to growth, maintaining reserves to improve 

chances of survival (Hartmann and Trumbore 2016). 

We suspect the shift to synchrony between carbon mass increments and the 

annual carbon flux measurements that took place ca. 2007 (Figure 1.9) reflects the onset 

of favorable early season conditions. During such conditions, current photosynthate could 

be immediately allocated to growth once translocated (Kozolowski 1992). This synchrony 

is emphasized by peaks of both measurements in years 2010 and 2012, both of which 

had early snow melt (unpublished site data) and above-average spring temperatures 

(Figure 2.9 in the following Chapter). These two productive years were interrupted by a 
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below-average year in 2011. Favorable spring conditions can cause an earlier onset of 

photosynthesis leading to increased annual productivity (Black et al. 2000; Hollinger et al. 

2004; Richardson et al. 2009). Wood formation is known to rely on a combination of new 

and old assimilates (Keel et al. 2006), but these ratios depend on a number of 

environmental factors. We suspect years with favorable early season conditions would 

have a higher ratio of new carbon than stored carbon being allocated to stem growth. In 

contrast, favorable late-season conditions would result in higher allocation to storage 

given that stem xylem tissue is not actively being produced at this time (Kuptz et al. 2011).  

On average, annual carbon flux at this site is a net sink until 7 November (day-of-

year 310) (Figure 1.11).  Because radial growth ceases in August or early September in 

this region (Deslauriers et al. 2003), photosynthate produced from September through 

early November cannot be allocated to stem growth until the following season. We suspect 

the majority of this late season photosynthate is allocated to storage (Kuptz et al. 2011) 

with lesser resources allocated to other plant functions such as cell wall thickening of 

latewood (Babst et al. 2013; Cuny et al. 2015), fine root development (Hendrick and 

Pregitzer 1993), or maintenance respiration (Ryan et al. 1997). In temperate and boreal 

regions, stored carbohydrates allow trees to begin structural growth as soon as conditions 

are suitable the following year (Barford et al. 2001; Gough et al. 2009). Carbohydrate 

storage also has important physiological functions within a tree, aiding in osmoregulation 

and increasing cold-weather hardiness (Hartmann and Trumbore 2016). Both conifer and 

hardwood species accumulate non-structural carbohydrates over the growing season; 

Dietz et al. (2014) speculate that trees reach their annual storage maximum just before 

the dormant season. 
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Figure 1.11: Representative annual time series of daily CO2 flux (blue circles) based on 
medians from 1996-2015 with smoothing spline. The green box represents the estimated 
season of wood formation based on data from Duchesne et al. 2012 (extended in spring).  

 

Of course tree growth is not entirely limited by carbon supplied from stored non-

structural carbohydrates (Körner 2003); limitations on growth also result from 

environmental or developmental factors. Wood formation is more temporally restricted 

than is photosynthesis on an annual basis.  Some trees may allocate 80% of a year’s 

growth from the end of May to mid-July (Deslauriers et al. 2003), reaching maximum 

growth rates with maximum day length (Rossi et al 2006; Duchesne et al. 2012). At 

Howland Forest, trees are fixing carbon for ca. 210 days on average based on flux tower 

data (Figure 1.11); however, radial growth is restricted to a much shorter time period. For 

example in the boreal forest of Quebec, albeit a cooler climate, the wood formation (i.e. 

from start of radial growth to end of cell wall thickening) was restricted to an average 

season length of 93 days from 2004-2010 (Duchesne et al. 2012). We likewise suspect 
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that wood formation at Howland Forest is restricted to smaller time frame than is 

photosynthesis. Because trees in cold climates are restricted by growing season length 

(Körner 2003), it may be beneficial to store carbohydrates until conditions are favorable in 

the following year (Hartmann and Trumbore 2016). 

We did not expect to find the shifts in annual carbon allocation strategies described 

above. Although individuals shift allocation patterns through development, and species 

are known to have distinct allocation patterns, (Kozolowski 1992), a shift in stand-level 

carbohydrate strategies is a novel finding to the best of our knowledge.  

1.4.2 Carbon pool change 

 Re-measuring the NASA plot, accounting for mortality and ingrowth, revealed a 

large increase in forest carbon mass since plot establishment in 1989. The number of 

trees (>10 cm), the quadratic mean diameter, and total biomass each increased from 1989 

to 2015. The mortality rate (0.6% per year) falls below published values for old-growth 

forests of the region (Fraver et al. 2009; Lorimer et al. 2001), and the number of trees that 

died was exceeded slightly by the number of ingrowth to the 10 cm diameter class. The 

carbon stored in living trees increased by 48% over the 26-year sampling period. Carbon 

dynamics of old forests are thought to reach a theoretical plateau in living carbon storage 

(stored in living trees and deadwood) (Bormann and Likens 1979; Law et al. 2003). 

Howland Forest does not appear to be near a plateau in carbon storage, indicated by the 

rapid accumulation of carbon mass in living trees. Without disturbance, we expect the 

carbon stocks will continue to increase through development, as has been shown in other 

studies of mature forests worldwide (D’Amato et al. 2011; Luyssaert et al. 2008; Pregitzer 

and Euskirchen 2004). 
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1.4.3 Implications for future studies 

 Although our data show strong correlations between the two metrics of 

productivity, our methodology yielded carbon mass increment that accounted for only 68% 

of the total annual carbon flux measurements over the sampling period. This discrepancy 

is likely a combination of conservative carbon estimation from trees (i.e. allometric 

equations do not account for fine root and litter production) and perhaps to carbon 

sequestered by saplings and understory vegetation. Fine root productivity may account 

for 200 - 300 g / m2 of dry mass (Cronan 2003; Finér et al. 2011), while litter production 

contributes another 230 - 400 g / m2 (unpublished site data).  These two pools alone can 

account for the discrepancy between carbon mass increment and annual carbon flux if we 

assume 50% carbon content in dry mass. One study accounted for 99% of carbon flux 

over a five-year period by accounting for all carbon pools, including fine and coarse roots, 

detrital inputs from woody debris and leaf-litter, and herbivory (Gough et al. 2009). It is 

unclear how these un-tallied carbon pools would affect the annual variability of carbon 

mass increment in our study, and whether they could further clarify the relationship with 

annual carbon flux. 

This finding stimulates a number of new and exciting questions. Can we 

demonstrate that a shift in allocation strategies is triggered by environmental cues? Do 

stands in temperate and boreal climates typically change allocation strategies several 

times in one tree’s lifespan? Can a lag in growth be an indication of stand-level stress? 

More research is needed to address these questions. 

1.5 Conclusions 

This project attempted to characterize the year-to-year relationship between 

carbon mass increment and annual carbon flux. Our results demonstrate compelling 
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evidence that a relationship exists between the two metrics of forest productivity, and that 

the carbon mass estimated from tree-rings can be traced to CO2 flux measurements from 

towers. However, year-to-year allocation strategies are subject to change based on 

physiological conditions of the trees. To the best of our knowledge, the trade-off between 

storage and growth allocation has never been illustrated at the stand-level. Our results 

suggest year-to-year changes in stand-level carbon allocation strategies. Allocation 

strategies may not remain constant through time because photosynthesis and wood 

formation are constrained by a different set of environmental conditions (Rossi et al. 2006; 

Körner 2015). Under periods of stress, trees may refrain from allocating non-structural 

carbohydrates to stem growth (i.e. storage) until the return of more favorable conditions 

(Klein et al. 2014). Non-structural carbon storage is most likely responsible for the 

discrepancies seen between CO2 flux and tree biomass increment from tree-rings (Babst 

et al. 2013; Gough et al. 2009), causing lags between CO2 flux and tree growth. The 

twenty-year record at Howland allowed us to observe a shift in usage of these stores.   

Our results suggest that the two metrics of forest productivity are measuring 

different tree responses to their environment. Carbon mass increment reflects the 

conditions for wood formation and available storage, while annual carbon flux is an 

indication of total ecosystem carbon storage change, both following different annual 

cycles. One is often an indication of the other, but not necessarily in the same year. Under 

this line of reasoning, we would suspect that the previous year’s climate affects the amount 

of stored carbohydrate available for growth, and the current year’s conditions affect the 

extent of wood formation. This reasoning could in part explain the correlation between 

radial growth and previous year’s climate variables often reported in tree-ring studies (e.g., 

Fritts 1976). Climate clearly influences both metrics of forest productivity used in our study, 

but it is unclear if environmental cues triggered the switch in allocation strategies 
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witnessed here. Additional studies on within-year growth, using electronic dendrometers, 

could help differentiate conditions that most strongly favor one productivity metric over the 

other.  

 In summary, we believe tree-ring derived carbon mass increment can be used as 

coarse proxy for long-term CO2 flux inferences, but should be interpreted with caution. 

This method is comparatively fast and less expensive, and provides valuable information 

on climate effects on wood formation. But when used to estimate annual carbon flux, one 

needs to consider the variability of allocation strategies within tree species and size 

classes.  
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CHAPTER 2 : TREE, SPECIES, AND FOREST-LEVEL GROWTH RESPONSE TO 

CLIMATE 

2.1 Introduction 

Forests are the largest carbon sinks in the terrestrial biosphere, and they provide 

ecological services by mitigating increasing atmospheric CO2 concentrations. However, a 

changing climate could affect forest productivity (Boisvenue and Running 2006) and 

species distributions (Iverson and Prasad 1998), potentially resulting in large annual 

changes in carbon sequestration. We currently have a limited understanding of forest 

productivity response to climate, particularly how stands (or species within complex 

stands) respond to changing climate. The impacts of climate change may alter the way 

we manage forested systems, particularly decisions made on species composition and/or 

age structure (Millar et al. 2007). In addition, models projecting future forest productivity 

sometimes misrepresent plant physiological response to climate (Richardson et al. 2012) 

and would therefore benefit from alternative perspectives of climate–growth relationships, 

particularly regarding multiple levels of organization (e.g., individual tree-, species- and 

forest-level). 

Climate–growth relationships in forest systems are dynamic and difficult to predict 

because of the large variability between trees. This complexity is due in part to 

independent tree species responses to climate (Drobyshev et al. 2013; Friedrichs et al. 

2009; Kipfmueller et al. 2010). Additionally, individuals within the same species can 

respond differently to climate depending on size (Mérian and Lebourgeois 2011), 

competition (Sánchez-Salguero et al. 2015), canopy position (Martin-Benito et al. 2008), 

and landscape position (Gewehr et al. 2014). Variations in soil drainage, stand density, 

and stand developmental stage can all affect resource (i.e. water, nutrient, and light) 

availability, therefore landscape and canopy positions regulate specific needs for 
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individual forest trees. Although climate is just one of many environmental factors affecting 

productivity (see Foster et al. 2016), it is often analyzed independently of these potentially 

confounding factors.  

Much of the previous work on climate–growth relationships has relied on 

dendrochronology (i.e. the study of annual tree rings) because such data provide long-

term replicated information with annual resolution. Tree-ring series are routinely 

standardized for dendrochronology studies, a process whereby long-term size- or age-

related growth trends are removed from individual tree-ring series, resulting in a 

dimensionless index of annual growth (Cook 1987). These standardized chronologies are 

then combined (within a species) to produce a single species-specific chronology (e.g. 

Biondi and Qeadan 2008).  The resulting chronology is used to investigate trends with 

climate variables using as many years as possible, and employing a variety of statistical 

analyses.   

Recent work has proposed an alternative to the traditional tree-ring analyses, 

namely the use of annual volume or biomass increments (also derived from tree-ring 

series; Bouriaud et al. 2005; Lara et al. 2013; Foster et al. 2014), which may provide a 

more holistic picture of forest growth, in part because it produces time series in standard 

units used by ecosystems ecologists. Further, carbon mass increments summed by 

species or by area (e.g., Mg / ha) conveniently account for tree size-related trends in ring 

widths without the need for standardization (Foster et al. 2016). That is, summing annual 

carbon mass increments from trees within a stand inherently weights trees based on their 

rate of mass accumulation: trees sequestering more carbon are thus more influential on 

stand-level growth. Stand-, or species-level carbon mass increment, in comparison to 

standardized chronologies, may be equally informative for assessing climate effects on 
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forests (see Foster et al. 2016). However, analyzing climatic effects on carbon mass 

increment using conventional dendrochronology analyses is an un-tested concept.  

Another standard procedure used by dendrochronologists involves sampling 

relatively large, presumably old trees that are limited by a particular resource of interest 

(e.g. water stress in an arid environment). The individuals are often non-randomly selected 

in environments that support fewer trees to avoid the confounding factors of tree-tree 

competition. These sampling strategies are designed to maximize the climate signal of 

interest, and by doing so they have provided invaluable insights into past climate variability 

(Lara and Villalba 1993; Sheppard et al. 2002).  While these techniques may be suitable 

for climate reconstructions, they likely do not capture the range of growth patterns of trees 

growing in typical forest systems (Carrer 2011, Foster et al. 2016). Assessing climate–

growth relationships for forest systems, particularly complex systems of multi-aged and 

mixed-species composition, requires a different methodology from that of conventional 

dendrochronology studies.  

The objective of this study was to explore an alternative tree-ring approach for 

climate–growth relationships intended for complex forest systems. This work was 

conducted at the Howland Research Forest, a multi-aged spruce–hemlock (Picea rubens–

Tsuga canadensis) forest of central Maine, USA. Our methodology differs in that 1) sample 

trees were stratified-randomly chosen to represent stand variability; 2) forest growth was 

estimated by summing carbon mass increments across the random selection, thereby 

producing species- and stand-level growth metrics. This methodology benefits from a 

relatively flexible unit of measure (i.e. annual carbon increment), which may be calculated 

at different levels of organization (e.g. tree-, species- and stand-level). Viewing forest 

growth at these various levels provides information on the dynamic nature of climate–

growth relationships, and it provides insights into the methods we use to analyze them.  
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2.2 Methods 

2.2.1 Site description 

Our study site, Howland Forest of central Maine, USA, is widely recognized for its 

long-term research in forest ecosystem science (see Rustad 1994; Hollinger et al. 1999; 

Davidson et al. 2002; Richardson et al. 2009). The site supports 170 hectares of mature 

mixed-aged spruce/hemlock forest, consisting of roughly 90% conifer, and 10% deciduous 

tree species (Hollinger et al. 1999). The most abundant species are red spruce (Picea 

rubens), eastern hemlock (Tsuga canadensis), northern white-cedar (Thuja occidentalis), 

white pine (Pinus strobus), and red maple (Acer rubrum).  

Howland is located in the transition zone between the eastern deciduous forest 

and the boreal forest in eastern North America (Seymour and Hunter 1992). The climate 

is damp and cool, with average annual temperatures of 6.2°C and a mean precipitation of 

1148 mm/year which is evenly distributed throughout the year (Figure 2.1). Soils are 

spodosols, formed in well- to poorly-drained glacial till with little change in elevation. The 

site has evidence of previous logging (evenly distributed well-decayed cut stumps), but 

has been unmanaged for roughly a century. Compared to other stands of the region, this 

stand represents a highly complex system in both size and age distributions of trees. The 

site supports several remnant trees in excess of 300 years old, along with many standing 

dead trees, and pit-and-mound topography. 
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Figure 2.1: Climate summary for Howland Forest, Maine from the interpolated PRISM 
gridded climate dataset from 1895-2105. 

 

2.2.3 Data collection  

We measured tree growth on a large mapped stem plot established by the 

Laboratory for Terrestrial Physics at NASA’s Goddard Space Flight Center for remote 

sensing and ecosystem dynamics research (see Weishampel et al. 1994; Ranson et al. 

2001; Sun et al. 2011). In 1989, all trees 3.0 cm and larger at breast height (DBH) were 

mapped and measured in the 3-ha forest plot (150 m x 200 m), recording ca. 7,800 stems. 

Each tree was tagged using a unique identification number. This large mapped plot is 

subsequently referred to as the NASA plot.  

In 2015 we re-measured all living and dead standing trees >10 cm at breast height 

(DBH, 1.37 m) in the NASA plot. We cored a subset of the re-mapped trees (ca. 10%), 

selected in a random stratified (by species and diameter class, using 10-20, 20-30, >30 

cm classes) manner, resulting in 325 trees (Table 2.1).  The selection reflected the size 
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distribution and abundance of each species in the NASA plot and represented trees across 

all canopy positions. We recorded the height, height to crown base, and canopy class for 

all trees in the subset. We extracted one increment core from each selected tree at breast 

height with a standard 5.2 mm (diameter) increment borer (Häglof Company Group, 

Långsele, Sweden). Cores were air-dried and secured to wooden mounts, then sanded 

and polished using increasingly fine sandpaper. We measured ring-widths to the nearest 

0.01 mm using a Velmex sliding stage (Velmex Inc., Bloomfield, NY, USA) with 

MeasureJ2X software (VoorTech Consulting, Holderness, NH, USA) and 

stereomicroscope. We performed cross-dating using species-specific marker years, 

usually light or narrow rings, followed by statistical confirmation using COFECHA software 

(Holmes 1983). 

Table 2.1: Species composition and sampling in the NASA plot. Total and Sampled refer 

to number of trees on the NASA plot.  

Species Total Sampled Percent Sampled 

Red spruce (Picea rubens) 1395 142 
10% 

Eastern hemlock (Tsuga canadensis) 868 88 
10% 

N. white-cedar (Thuja occidentalis) 336 35 
11% 

Red maple (Acer rubrum) 281 31 
11% 

White pine (Pinus strobus) 153 17 
11% 

Balsam fir (Abies balsamea)* 65 8 
12% 

Yellow birch (Betula alleghaniensis)* 13 2 
15% 

Paper birch (Betula papyrifera)* 12 2 
17% 

TOTAL 3123 325 10.4% 

*Excluded from individual species analyses due to low sample size 

 

Tree ring measurements were used to back-calculate historical diameters for every 

year since NASA plot establishment in 1989. First, we estimated inside bark diameters 

using species-specific bark factors (Dixon and Keyser 2011). When possible, we adjusted 

ring-widths so that cumulative ring-width equaled half the inside bark diameter in 2015, 
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following methods and justification presented by Frelich (2002). Adjusted ring-widths 

compensate for off-center piths, but is only possible if cores include or approach the pith 

(<15 mm) and are not affected by central rot. We sequentially subtracted ring-widths from 

2015 inside bark diameter to estimate each year’s diameter inside bark. We then added 

predicted bark thickness back to each year’s inside bark diameters for use in allometric 

equations. We also back-calculated heights using measured heights from 1989 and 2015. 

We assumed annual height growth reflected ring-width growth, and we calculated height 

increment by multiplying the total height growth by the ratio of ring-width to cumulative 

radial growth since 1989 (similar to methods presented by Kariuki 2002).  

We estimated tree bole-mass for each cored tree from 1989 to 2015 using the 

updated Honer equations from Li et al. (2011) for all conifer species. Original Honer 

equations (Honer 1967), which have not been updated, were needed for hardwoods 

(representing less than 10% of trees). The Honer equations use height and outside bark 

diameter to estimate inside or outside bark volume. Corresponding heights and diameters 

for each year were used to estimate bole volumes with and without bark. The difference 

between inside and outside bark volumes was used to estimate bark volume. Volumes 

were multiplied by wood and bark specific gravities presented for each species in Miles 

and Smith (2009). For comparison, standardized tree-ring chronologies were also 

developed along with carbon mass increment to test climate–growth relationships; tree-

ring series were standardized using dplR (Bunn 2008) using interactive detrending and a 

cubic spline with flexibility of 67 years for most trees.  

We chose the 26-year period for our analyses to coincide with the year of the NASA 

plot establishment (1989). We refrained from extending our analyses further back in time 

due to potential uncertainties in predicting whole forest carbon mass increment. We 

acknowledge potential uncertainties arising from (1) unknown growth of trees that died 
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prior to 2015, becoming more of a limitation as we extend further back in time, and (2) the 

spruce budworm (Choristoneura fumiferana) outbreak (ending mid-1980’s) confounding 

our analyses of climate-growth relationships.  

2.2.4 Tree-level analysis 

To test the tree-level climate response of each species, we developed a linear 

mixed-effects model with the response variable as tree-level annual carbon mass 

increment estimated from tree-ring series. To prevent model over-parameterization and 

avoid colinearity, we limited our predictors to two sets of climate variables. Climate 

variables included mean daily temperature and total precipitation, which were summarized 

for each season from 1988-2015 using the interpolated PRISM gridded climate dataset 

(Daly et al. 2008). Each season was characterized by three-month intervals beginning in 

the previous spring (pMAR-pMAY) to current fall (SEP-NOV), resulting in seven seasons 

for each climate variable. Tree-level variables included species, diameter, basal area, total 

stem mass, crowding, and elevation (a proxy for soils moisture), all of which are assumed 

to affect individual tree-level growth. All size metrics represent the previous year’s size, 

and the crowding index was based on the 1989 inventory. The influence of crowding was 

estimated for each tree from Hegyi’s (1974) index calculated from tree–tree distances and 

diameters, using a neighborhood radius of 10 m, as follows: 

 

 

where CIf is the crowding index for the focal tree; N is the number of neighbor trees; Sn 

and Sf are sizes of neighbor and focal trees; Distancenf is the distance (m) between the 

neighbor and focal tree. Elevation was extracted from a detailed (50-cm gridded) digital 

elevation model.  
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We evaluated candidate models using corrected Akaike’s information criterion 

(AICc) scores (subsequently referred to as AIC), which allowed us to determine which 

models were best supported by the data (Burnham and Anderson 2002). The seasonal 

climate variables and size variable that best fit the data were selected based on AIC values 

from others in the variable class. The selected variables from each variable class were 

tested along with crowding and elevation to determine the effect on the model. Each of 

the final variables was then tested for significant interactions with species and used to 

develop the final model. We used an autoregressive process to account for repeated 

measures from individual trees and temporal autocorrelation, expressed as ‘tag’ (i.e. 

unique tree identification) nested within year. The final model was also tested for spatial 

auto-correlation, and for meeting general assumptions of the mixed-effects model. 

2.2.5 Species and stand-level analyses 

Species and stand-level analyses were conducted using summed carbon mass 

increments from the cored trees. Our intent here was to determine how climate variability 

influences whole species growth (sum of carbon mass increments from individual 

members of that species) as well as the stand-level growth (sum of carbon mass increment 

from all individuals). Summed carbon mass increment maintains the signals from 

individual trees while homogenizing the effect of tree-level factors like size and crowding. 

We used bootstrapped response function analysis (see Biondi and Waikul 2004) to test 

species and stand-level response against eight climate variables (Table 2.2) for all months 

from the previous March to current September (except for growing degree days and 

snowfall, for which only applicable months were used). The PRISM gridded climate 

dataset (Daly et al. 2008) was used for monthly temperature and precipitation. Potential 

evapotranspiration was calculated using methods presented by Hargreaves and Samani 

(1982). Growing degree days were calculated using a baseline temperature of 5º C. 
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Monthly snowfall data was obtained through the NOAA Climatic Data Center (Menne et 

al. 2012) at the Millinocket airport station (approximately 48 km north of the research site). 

Stream flow from the Penobscot River at West Enfield was collected through the USGS 

National Water Information System from 1988-2015 (U.S. Geological Survey 2012). The 

full list of climate variables used for the analysis are presented in Table 2.2. 

Table 2.2: Climate variables used for species and stand-level analyses. 

Variable Abbreviation Units 

Average maximum daily temperature tmax °C 

Average mean daily temperature tmean °C 

Average minimum daily temperature tmin °C 

Growing degree days gdd degrees over 5°C 

Total monthly precipitation precip mm 

Total monthly snowfall snow mm 

Precipitation over potential evapotranspiration P/PET mm 

Streamflow (Penobscot River at Enfield) flow m3/sec 

 

2.3 Results 

2.3.1 Tree-level analysis 

Seasonal climate and size variables were selected based on AIC values compared 

to others within the same variable class, shown in Table 2.3. For both precipitation and 

temperature, values from the previous summer produced the strongest models, followed 

by previous fall precipitation and spring temperature from each class. Square root 

transformed stem mass was the best performing size variable, fitting the data better than 

other transformed and non-transformed size metrics.  
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Table 2.3: Variable selection within variable class (seasonal precipitation, seasonal 
temperature, previous year size). ∆AIC = model AIC difference from the top model. 

Variable Class / Variable ΔAIC 

Seasonal precipitation (precip)  

     Previous summer 0 

     Previous fall 65.6 

     Summer 119.0 

     Winter 183.0 

     Previous spring 235.9 

     Spring 246.3 

Seasonal temperature (temp)  

     Previous summer 0 

     Spring 64.6 

     Winter 72.4 

     Previous spring 124.7 

     Summer 136.8 

     Previous fall 159.2 

Previous year size (size)  

     √Stem mass 0 

     Stem mass  38.2 

     Diameter  68.8 

     √Basal area 68.8 

     √Diameter 70.9 

     Basal area  83.8 

 

 The best supported variables representing precipitation, temperature, and size 

(above) were then combined with crowding, and elevation to determine which were most 

suitable for the overall model (Table 2.4). Elevation contributed very little to the model, 

and was therefore excluded from further analysis. The four remaining variables 

(representing precipitation, temperature, size, and crowding) were meaningful predictors, 

and each showed significant interactions with species. We evaluated the full model by 

sequentially removing each variable and interaction from the model to determine the 

relative contribution (Table 2.5). The full final model was constructed using the four 

variables (representing precipitation, temperature, size, and crowding), each with species 

interactions. The model had a marginal r2 = 0.57 (representing the variance explained by 



42 
 

fixed factors) and a conditional r2 = 0.83 (representing the variance explained by random 

and fixed factors). The final model did not display spatial autocorrelation, and satisfied the 

assumptions of constant variance and independence. 

Table 2.4. Variable selection between variable classes. Variable abbreviations are shown 
in parentheses. ∆AIC = model AIC difference from the top model. 

Variables ΔAIC 

Previous summer precipitation (precip) 0 

Previous summer temperature (temp) 89.0 

√Stem mass (size) 115.3 

Hegyi crowding index (crowd) 197.5 

Elevation 234.1 

Null model 246.5 

 

Table 2.5: Model selection based on four variables and their interactions with species. To 
illustrate the relative contribution of each individual variable, each was removed from the 
full model (top row), and the AIC values are presented. ∆AIC = model AIC difference from 
the top model. 

Variables ΔAIC 

spp*size + spp*temp + spp*precip + spp*crowd 0 

spp*temp + spp*precip + spp*crowd 76.3 

spp*size + spp*temp + spp*precip 102.5 

spp*size + spp*precip + spp*crowd 179.6 

spp*size + spp*temp + spp*crowd 221.9 

spp 639.3 

  

 The effect of each variable × species interaction on carbon mass increment is 

plotted in Figure 2.2 through Figure 2.4, keeping the other variables in the model constant 

at their respective means. Note the size of the confidence interval is in part due to tree-to-

tree variability, but also reflects relative abundance (more common species had larger 

samples). Red spruce and eastern hemlock were the most abundant and therefore had 

the smallest confidence intervals.  
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 White pine not only showed dramatically greater growth, it responded to climate 

differently than did other species (Figure 2.2). White pine responded favorably to 

increases in previous summer temperature and precipitation. Other species either 

responded negatively (eastern hemlock and red spruce), or were indifferent to previous 

summer temperature (red maple and northern white-cedar). Red spruce and eastern 

hemlock both responded favorably to summer precipitation (as seen in white pine), but 

northern white-cedar and red maple again showed very weak associations. Based on this 

information alone, we would assume red spruce and eastern hemlock have similar 

summer climate preferences, while red maple and northern white-cedar both show 

indifference to previous summer climate. 

 

Figure 2.2: Model results depicting the effect of climate on carbon mass increment with 
other climate variable, size, and crowding held at their respective means. The shaded 
portions represent the standard errors from the fitted model. 

 

 As expected, our data show a positive association between stem mass (a size 

metric) and annual carbon increment (Figure 2.3). White pine accumulated carbon mass 
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faster than did any other species across all sizes. The model showed small eastern 

hemlocks had the slowest growth of any species, but the rate of carbon mass increment 

for this species increased with trees of higher mass, exceeding red spruce and northern 

white-cedar at large sizes. Red maple maintained relatively fast growth across sizes, 

increasing at a rate similar to that of red spruce.  

 

Figure 2.3: Model results depicting the effect of tree size (expressed as stem mass) on 
annual carbon mass increment, based on model simulations holding climate and 
crowding variables at their respective means. The shaded portions represent the 
standard errors from the fitted model. 

  

 Our data show a negative association between carbon mass increment and the 

Hegyi crowding index (Figure 2.4) for all species. At intermediate levels of crowding, 

eastern hemlock and red maple appear to be slightly less sensitive to crowding than are 

red spruce and northern white-cedar. The influence of crowding is emphasized in white 
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pine growth: trees displayed their enormous growth potential under low crowding but 

under high crowding, they were comparable to other species.  

 

 

Figure 2.4: Model results depicting the effect of crowding on carbon mass increment with 
climate variables and size held at their respective means. The shaded portions represent 
the standard errors from the fitted model. 

 

2.3.2 Species- and stand-level analyses  

Species-level carbon mass increment (presented in Figure 2.5) represents the 

relative contributions of each species to stand-level carbon sequestration. Species 

displayed different magnitudes of carbon mass increment and unique year-to-year 

variability. Red spruce represents the greatest proportion of stand-level carbon gain over 

much of the study period, which is not surprising given that this species represents roughly 

half of the sampled trees. In recent years, however, carbon mass increments for white 
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pine and eastern hemlock have at times surpassed red spruce increments. This trend is 

particularly striking for white pine: despite representing only 5% of the total stems, in recent 

years it has contributed to stand-level growth at a rate roughly equivalent to that of the two 

dominant species (Figure 2.6). We see prominent long-term trends for two most abundant 

species; eastern hemlock shows an overall increasing trend over the time series, while 

red spruce growth is declining. Additionally, the average annual carbon increment and 

variability for individual trees are presented in Figure A.3 and Table A.3 in the Appendix.  

 

Figure 2.5: Species-level carbon mass increment over the 25-year study period. Data 
represent summed carbon mass increments from a stratified random selection of trees. 
Note the decline in red spruce and increase in eastern hemlock. Fitted linear regression 
lines (dotted) shown to emphasize overall growth trends. 
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The summed carbon mass increment from all cored trees showed striking year-to-

year variability (Figure 2.6), exhibiting a steep decline in the early 1990’s followed by a 

gradual increase until 2010, and a small decline in recent years. This year-to-year 

variability was used to determine which climate factors have the largest effect on stand-

level carbon gain.  

 

Figure 2.6: Stand-level annual carbon mass increment estimated by summing 
increments from a stratified random selection of trees on the NASA plot. Fitted linear 
regression line (dotted) shown to emphasize overall growth trend. 

 

Results from species- and stand-level response function analysis for all climate 

variables clearly highlight the differential responses among species (Table 2.6, Figure 2.7, 

and Figure 2.8). Red spruce responded negatively to previous summer temperatures (i.e., 

lower growth with higher temperatures), and showed no significant responses to 

precipitation. Eastern hemlock, the second most abundant species, responded favorably 

to previous fall temperatures and winter precipitation (i.e., greater growth with higher 



48 
 

temperature and precipitation). White pine demonstrated a positive association with 

spring, and negative association with summer temperatures, but no monthly temperature 

variables were significant. Previous season precipitation (July and November) was 

positively associated with white pine growth. In general, previous-year growing-season 

climate variables were more influential on growth than were current-year variables.  

We compared results from our carbon mass increment approach to those of typical 

species-level dendrochronology techniques using chronologies developed from 

standardized ring width.  Visual comparisons between the two demonstrate similar high-

frequency variability, but standardized chronologies did not retain low-frequency variability 

present in carbon mass increment (Figure A.2 in the Appendix). Species-level response 

function analyses showed the two metrics had similar monthly relationships, but resulting 

significant response variables differed between the metrics. Significant variables from the 

ring-width response function analyses are presented in Table A.4 (in the Appendix). 
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Table 2.6: Species-level response function analysis summary (n=number of trees). The 

prefix p indicates previous year variable. 

 
n tmean tmax tmin gdd precip snow P/PET flow 

Red spruce  142 -pJUL -pJUL -pJUL -pJUL - - - - 

Eastern hemlock 88 +pOCT 
-pMAY 
+pOCT 

- - +FEB - - - 

White pine 17 - -pMAR - - 
+pJUL 
+pNOV 

- +pNOV -MAR 

N. white-cedar 37 -SEP +pMAY -SEP -SEP - - - - 

Red maple 31 - - +AUG +pMAY - - 
+pAUG 
+pDEC 

- 

Stand-level 325 +APR +JAN +APR +APR +pAUG - +pAUG - 

tmean: Average daily mean temperature 

tmax: Average daily maximum temperature 

tmin: Average daily minimum temperature 

gdd: Total growing degree days 

precip: Total precipitation 

snow: Total snowfall 

P/PET: Precipitation over potential evapotranspiration 

flow: Stream flow 
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Figure 2.7: Species-level growth response (based on carbon mass increments) to mean 
temperature (column 1) and precipitation (column 2) for all months from previous March to 
current September. Previous months in lower case; current months in upper case. 
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Figure 2.8: Stand-level growth response (based on cumulative carbon mass increment) 
to all climate variables. Previous months in lower case; current months in upper case. 
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2.3.3 Climate summary  

 Climate data used for the analyses above are summarized in Figure 2.9. The 

climate data indicated changing conditions for both precipitation and temperature. The 

seasonal precipitation showed an increasing trend for all seasons except spring, indicating 

the climate at Howland Forest is becoming wetter over time. All seasonal mean 

temperature series also display gradual increasing trends over the past 25 years.  

 

 

Figure 2.9: Climate trends at Howland Forest from 1989 to 2015 represented in total 
seasonal rainfall and seasonal mean daily temperature. Seasons were summarized in 
three month intervals, starting with winter summarized from previous December to 
February. 

 

2.4 Discussion 

In the current chapter, we explored methods to identify climate-growth 

relationships for individual trees, species, and an entire forest stand. Our analyses of 

individual trees demonstrated that two tree-level variables (i.e., size and crowding) 

contributed significantly to growth variability. We present species- and stand-level climate-
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growth relationships using carbon mass increment from a random and representative 

sample of the population. We tested monthly climate variables on carbon mass increment 

using response function analysis. Summing carbon mass increment from several trees 

homogenizes the influence of tree-level factors (i.e. crowding and size), and combines the 

total effects of climate signals, weighting trees based on their relative contributions to total 

carbon increment. We believe these analyses represent a valid and novel method for 

testing the effects of climate on stand-level growth. 

2.4.1 Tree-level analysis 

 The variable selection process suggested previous summer variables are the best 

seasonal climate predictors for modeling carbon mass increment from individual trees at 

Howland Forest. In the full model, previous summer precipitation was positively associated 

with growth of red spruce, eastern hemlock, and white pine. Other studies have 

demonstrated positive relationships between previous summer precipitation and growth 

of red spruce (Conkey 1979) and eastern hemlock (Cook and Jacoby 1977; Cook and 

Cole 1991). Previous summer temperatures had differential relationships among species; 

high temperatures were associated with lower carbon increment for spruce and hemlock 

but higher carbon increment for white pine. Warm temperatures have been shown to have 

damaging effects on red spruce productivity (Vann 1994; Day et al. 2000) and may reduce 

forest productivity of the entire region (Mohan et al. 2009). Neither previous summer 

climate variables demonstrated negative effects on northern white-cedar or red maple 

growth. Aside from their known complacency to climate, these species tended to grow in 

relatively wet areas within the plot, suggesting they are less prone to summer water 

limitation. While previous summer climate variables performed better than other seasonal 

summaries, they are clearly not the only climate variables affecting carbon increment. The 
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variable selection process also suggested previous fall precipitation and spring 

temperature, as they may be predictors worth further investigation. 

 Tree size was an important predictor for annual carbon mass increment, 

demonstrating that larger trees accumulate mass at a faster rate than smaller trees (as in 

Stephenson et al. 2014). Our data suggested stem mass is a better predictor than 

diameter or basal area at breast height. Many of the species used for this analysis are 

considered shade-tolerant, but each species demonstrated unique growth patterns 

according to size. Red spruce, eastern hemlock, and northern white-cedar are considered 

very shade-tolerant species (Baker 1949) capable of surviving long periods of suppression 

with very slow growth (Johnson and Abrams 2009). The ability to survive in the understory 

is apparent for these species, accumulating very little mass at small sizes (Figure 2.3). 

Red spruce and eastern hemlock showed periods of suppressed growth at small sizes, 

followed by increasing carbon accumulation at larger sizes. Eastern hemlock growth 

displayed the most prominent increase in growth with tree size, perhaps suggesting 

growth releases at earlier developmental stages at Howland Forest. Northern white-cedar 

tended to remain slow growing throughout all sizes, and had a large variability between 

trees. White pine and red maple had high initial and sustained growth rates. Emergent 

white pines showed notably fast biomass growth even at large sizes. Red maple, regarded 

a shade-tolerant hardwood, showed a fast initial phase of carbon gain and steady increase 

with increasing size.  These growth patterns, suggesting rapid growth following a period 

of suppression, reflect the ecology of the spruce dominated stands in the region, and 

compliment historical accounts of the species (Fajvan and Seymour 1993; Fraver and 

White 2005).  

 Our data indicated crowding had a negative effect on carbon mass increment for 

all species, but that sensitivity to crowding may vary between species. As expected, 
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incorporating spatially derived crowding information improves our model predictions 

(Canham et al. 2004, Fraver et al. 2013). Red spruce and eastern hemlock showed 

gradually decreasing carbon accumulation with increasing crowding, while northern white-

cedar showed a dramatic growth reduction beyond moderate levels of crowding. White 

pine appeared to be far more sensitive than other species to crowding, emphasized by the 

enormous growth potential under low crowding, followed by a steep decline as crowding 

increased. It is unclear what factors are driving the species differences in crowding 

response. In addition to species differences, the effect of crowding may also vary with 

climate variables (Sánchez-Salguero et al. 2015), below-ground factors (Canham et al. 

2004), species composition of neighbors (D’Amato and Puettmann 2004), and tree size 

(Das 2012). 

 Modeling the effects of climate in this manner allowed us to take advantage of a 

large number of sample years (8100+ tree rings) to test climate-growth relationships. The 

model allowed us to incorporate non-climatic data to account for additional variability 

between trees and therefore improve predictions. However, this type of model is restricted 

by the number of climate variables we can include, due to colinearity. In addition, 

interactions between variables add complexity and make model interpretation difficult. 

Although size and crowding variables provide interesting supplemental information, we 

refrain from detailed analysis comparing variable importance and additional interactions 

besides species.   

2.4.2 Species-level analysis 

The species-level contributions of carbon mass increment indicated a shift in forest 

carbon dynamics at Howland Forest over time. Based on the high abundance of red 

spruce, we expected the species to maintain the highest carbon mass increment 

throughout the time series. However, a decline in red spruce and increase in hemlock 



56 
 

resulted in a convergence with white pine carbon mass increments, suggesting these 

three species were roughly equal in annual carbon gain as of 2015 (Figure 2.5). White 

pine and red maple displayed relatively stable annual productivity with little evidence of 

increasing or decreasing trends. Northern white-cedar, similarly to red spruce, had a 

decreasing trend since 1990 (Figure A.2 in the Appendix). Projecting these long-term 

trends into the future suggests a potential shift in carbon sequestration dominance from 

red spruce to eastern hemlock at Howland Forest.  

The large annual carbon mass increment of white pine despite the small number 

of individuals was a striking finding. Although white pine was markedly less abundant than 

other trees species (representing only 5% of the stems), individuals on the NASA plot 

were the fastest growing in terms of diameter, basal area, and carbon mass. White pine 

has also shown an increasing number of tree sized individuals over the sampling period 

(1989-2015) shown in Table A.1 in the Appendix. If the large individual white pines 

maintain this growth rate, and others are recruited to dominant canopy positions, they will 

continue to contribute a substantial portion to stand-level carbon increment at Howland 

Forest. 

The annual carbon increment summaries were used to identify climate factors 

most strongly affecting carbon mass increment of each species (Table 2.6). Red spruce 

consistently responded negatively to previous July temperatures (the warmest month of 

the year). Other studies have demonstrated the negative growth response of red spruce 

to previous summer temperature (Conkey 1979). Eastern hemlock did not appear to be 

sensitive to previous summer temperature in the species-level analysis, but responded 

positively to previous October temperatures. The southerly distribution of eastern hemlock 

may indicate the species is more resistant to high summer temperatures than is red 

spruce. The relationship between eastern hemlock growth and October temperatures 
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could suggest the species takes advantage of cool late-season temperatures for 

photosynthesis (also higher light availability following leaf loss of deciduous tree species). 

It is unclear if gradually increasing trends in both summer and fall temperatures at Howland 

Forest (Figure 2.9) alone are responsible for the dramatic growth trends seen in red spruce 

or eastern hemlock, or if they are simply correlated with them over time. Climate clearly 

influences stand-level productivity (Keenan et al. 2014), and has been shown to 

differentially affect co-occurring species (Friedrichs et al. 2009; Miyamoto et al. 2010). 

Therefore it is possible climate has a role in the differential trends seen in species-level 

carbon accumulation. 

2.4.3 Stand-level analysis 

 The cumulative carbon mass increment for all species (Figure 2.6) showed 

significant positive responses to previous summer precipitation and early season 

temperature variables (Figure 2.8). Positive relationships with August precipitation and 

P/PET indicate trees may be periodically limited by water availability in summer. Water 

stress in trees may reduce current year photosynthesis rates, which could affect current 

and following year growth (Körner 2003). Prolonged periods of water stress can have 

lasting effects on tree growth, extending into the following year or several years later 

(Anderegg et al. 2015). Drought conditions may be responsible for the low productivity in 

1994 and 1995, as summers 1993-1995 displayed below average precipitation (Figure 

2.9).  

 Overall, stand-level productivity showed a slight increase over time, with the 

maximum carbon mass increment in 2010. April (mean daily, minimum daily, and growing 

degree days), and February (maximum daily) temperatures all showed significant positive 

relationships with stand-level productivity. The relationship with April temperatures are 

similar to previous studies suggesting cool-weather conifers are limited by spring 
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temperature (Rossi et al. 2008). The productive year in 2010 was an unusually warm 

spring, which supports the suggested relationship with April temperature. Further, data 

collected using the eddy-covariance technique have shown that above average spring 

temperatures have a positive effect on forest productivity at several New England forest 

types (Hollinger et al. 2004; Richardson et al. 2010; Keenan et al. 2014).  

2.4.4 Level summary  

 Results from across the three organization levels (individual trees, species, and 

the stand) reveal several consistencies in climate-growth relationships. Tree-level and 

stand-level analyses both potentially indicate a water limitation during the previous 

summer. The highest transpiration rates occur during the summer (Catovsky et al. 2002) 

and therefore this season exerts the highest water stress on trees. Water stress affects 

photosynthetic efficiency by causing partial stomata closure and reduced carbon 

assimilation (Zweifel 2006). We see that despite receiving relatively high rainfall (>1000 

mm / year), these species appear to be periodically limited by water availability. For this 

reason, the increasing summer precipitation trends (Figure 2.9) may have a positive effect 

on tree growth. 

 Tree-level and species-level analyses showed consistent negative growth 

response by red spruce to previous summer temperatures. Spruce sensitivity to high 

temperature has been documented for numerous Picea species (Wilmking et al. 2004; 

Miyamoto et al. 2010; Aakala and Kuuluvainen 2011), including red spruce specifically 

(Conkey 1979; Vann et al. 1994; Day et al. 2000) and the closely related black spruce 

(Walker and Johnstone 2014; Gewher et al. 2014; Girardin et al. 2015). These studies 

corroborate our finding that red spruce exhibited reduced growth when experiencing 

above-average temperatures. Red spruce may be the region’s first indicator of a forest 

change due to warming, and continued increase in summer temperatures would imply 
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continued decline of red spruce in the future. Species-level associations with previous 

summer precipitation are consistent for both tree- and species-level analyses, but species-

level relationships to previous summer temperature response are more tenuous between 

the two analyses.  

 Results from species- and stand-level analyses did not identify any shared 

statistically significant monthly climate variables, but the significant stand-level variables 

responded consistently (i.e. positive or negative response) across species-level analyses 

(Figure 2.7). Interestingly, the sum of all individual species responses (used to develop 

stand-level response) emphasized previous summer precipitation and spring temperature 

as the climate factors most broadly affecting individual tree growth. We may expect stand-

level productivity to be stabilized by species diversity (Isbell et al. 2015), making it less 

sensitive to climate than that revealed by species-level analyses. However, despite being 

stabilized by the combined growth of many species, we see significant growth responses 

to simple measures of temperature and precipitation at the stand-level.  

2.4.5 Potential limitations 

 Although we believe our sampling strategy is representative of the forest type at 

Howland, the carbon mass increment responses are heavily influenced by large trees. 

This natural weighting system was used to capture the annual variability in whole forest 

carbon sequestration. As we have shown, large trees accumulate disproportionately more 

mass than smaller trees (Figure 2.3), and therefore have a larger influence on landscape 

level carbon gain. Previous studies have shown that large diameter trees may have a 

higher water demand than small trees (Mérian and Lebourgeois 2011; D’Amato et al. 

2013). Our results, suggesting water stress could have a noticeable negative effect on 

stand-level tree growth, may be skewed by the effect on large trees. While these methods 
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may be useful in understanding stand-level carbon increment, they are not necessarily 

applicable for generalizations across individual trees.  

 The low number of individuals of several species may limit the interpretation of our 

results. Inferences regarding white pine in particular are somewhat limited due to the 

relatively low sample size. The large discrepancy between annual carbon mass increment 

of white pine and all other species makes this species particularly important in terms of 

carbon mass increment. Our tree-level analyses would benefit from a larger sample of 

white pine, and to a lesser extent red maple and northern white-cedar.  

 Finally, interpretation of our species-level results may have been influenced by 

long-term trends of carbon mass increment, potentially independent of climate. Eastern 

hemlock shows an increasing trend over the time-series, as fall temperatures have 

concurrently increased over the period. It is unclear whether the increase in eastern 

hemlock is caused by a change in temperature or some other stand attribute.  An age-

related increase or decline in stand level carbon increment could be problematic when 

testing climate relationships over long periods.  

2.5 Conclusions    

 Our methodologies explored the use of carbon mass increment as an alternative 

to traditional tree-ring chronologies to analyze climate–growth relationships. We 

implemented this technique to help clarify climate response of a multi-aged, mixed-species 

forest. We tested the applicability of annual carbon mass increment to detect climate 

response at the tree-, species-, and stand levels.  We believe annual carbon mass 

increment is more appropriate than traditional dendrochronological techniques in complex 

forest systems. By collecting a large unbiased sample, we tested whole forest sensitively 

to climate and observed long-term trends in forest productivity.  
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 Using carbon mass increment, we demonstrated stand-level growth can be 

sensitive to a different set of climate variables than those affecting individual species. We 

documented previous summer precipitation and spring temperature as the most influential 

variables affecting stand-level growth at Howland Forest. Deficits in previous summer 

(August) water availability may limit the efficiency of photosynthesis and affect the amount 

of non-structural carbohydrate storage available for the following season’s growth (Körner 

2003). A positive relationship between spring (April) temperature and stand-level carbon 

increment corroborates previous studies linking increasing spring temperatures to early 

leaf-out phenology (Morin et al. 2009, Polgar and Primack 2011) and higher annual carbon 

uptake (Black et al. 2000; Hollinger et al. 2004; Richardson et al. 2009, Keenan et al. 

2014). According to these studies, our explanations of stand-level response seem 

plausible, and have biological justification. Testing the applicability of this technique at 

other stands could provide further validation. 

 These and other long-term datasets at Howland Forest (see Chapter I) suggest an 

increasing trend in annual forest productivity. In forests not limited by water, climate 

change may have positive effects on forest productivity (see Boisvenue and Running 

2006). Increased productivity in most cases infers forest health, but our results suggest 

this increase may be occurring at the expense of reduced growth for certain species. That 

is, our study shows declines in red spruce and northern white-cedar growth since 1990. 

Under warming trends, we would expect red spruce growth decline due to its sensitivity to 

high-temperatures (Vann et al. 1994). The sensitivity of spruce has led to projected 

spruce–fir habitat declines resulting from climate change (Iverson et al. 2008). Slow-

growing species (i.e. red spruce, northern white-cedar) may have difficulty competing with 

relatively fast-growing species adapted to warmer climates. Our study demonstrates a 

divergence between species, suggesting declines in red spruce growth and increases in 
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eastern hemlock may be an early indication of a change occurring in species health of 

northern forests. 

 Maintained or increased stand-level productivity in lieu of species-level declines is 

possible due to a diverse mix of species with different climate-growth relationships. 

Maintaining high species diversity stabilizes ecosystem productivity by increasing 

resistance to climate extremes (Isbell et al. 2015). Climate conditions adversely affecting 

some species may have positive effects on others, resulting in higher stability and 

reliability of ecosystems (Naeem and Li 1997). Species diversity may become even more 

critical with increasing prevalence of insect pests and disease resulting from a changing 

climate (Dymond et al. 2014). We see evidence of productivity stabilization from our mixed 

species stand, illustrated by other species compensating for lower red spruce productivity, 

resulting in a relatively stable and even increasing stand-level productivity. If tree species 

diversity contributes to forest resiliency, within species variability may have a similar effect 

on stabilizing forest productivity in response to climate. Tree size and canopy position may 

provide heterogeneous climate response (as seen between species), and therefore 

provide additional stability to stand-level productivity. Using this reasoning, we would 

expect complex, multi-aged, multi-strata forests to be more resilient to climate change 

than even-aged stands.  

 In summary, Howland Forest’s increasing stand-level productivity shows little 

evidence of stress from recent temperature and precipitation trends. Instead, annual 

carbon gain appears to be increasing. However, analysis on the species-level suggests 

there may be underlying stressors causing long-term growth declines of certain species. 

If trends continue, and these stressors ultimately result in tree mortality, we may see 

sustained declines in stand-level production and increased carbon emissions from 

decomposition for many years. The future growth of red spruce may provide many 
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valuable clues into the effects climate change will have on this region’s ecological 

communities.    
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EPILOGUE 

 This study has succeeded in furthering our knowledge of forest carbon dynamics. 

We addressed the link between two prominent metrics of forest productivity (tree growth 

and CO2 flux) and demonstrated that trends in tree growth at times lag behind those in 

CO2 sequestration. We identified climate factors affecting woody biomass production, and 

explored novel strategies to test climate–growth relationships. However, more research is 

needed to fully understand mechanisms of tree carbon sequestration and storage, as well 

as factors affecting their year-to-year variability. Addressing carbon allocation on an 

annual basis is incredibly difficult because of transport, storage, and mixing of non-

structural carbohydrates. Exploration using methods mentioned below would help further 

our understanding of the physiological aspects of carbon allocation, and clarify the results 

we report. 

 Important knowledge gaps exist in understanding trade-offs between storage and 

growth, and how carbon allocation strategies change on an annual basis. Understanding 

within-year variability in tree growth as well as CO2 flux could reveal additional clues to 

the growth limitation theory, which states that growth is not necessarily limited by carbon 

supply, instead may be limited by suitable conditions for wood formation  (Körner 2003). 

We provide additional evidence that the yearly onset and termination of wood formation is 

cued by different environmental drivers than those controlling photosynthesis (Körner 

2015). However, we still do not know what controls the amount of resources allocated to 

storage, nor how allocation strategies differ between plant species (Hartmann and 

Trumbore 2016). Allocation to storage is expected to be mediated by nutrient and water 

availability, but the mechanisms for regulating carbon allocation are still poorly understood 

(Dietz et al. 2014). 
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 Determining age of non-structural carbohydrates from carbon isotope tracers (14C) 

can also clarify many questions we have about carbon allocation strategies (Epron et al. 

2012). Multiage reserves commonly contribute to normal tree functions, which suggest a 

mixing of stored and current-year fixed carbon (Hartmann and Tumbore 2016). The ability 

for non-structural carbohydrate stores to remain in trees for over a decade (Richardson et 

al. 2013) is somewhat problematic when attempting to link tree growth to specific 

timeframes of CO2 flux or climate data. Using isotopes to determine age of non-structural 

carbohydrates in newly assimilated tissue could clarify this topic (Keel et al. 2006). 

However, the nature of allocation patterns would suggest these relationships remain 

dynamic and difficult to generalize. 

 Finally, using diameter growth to estimate total tree growth (as we did in this study) 

does not account for variability in production of other plant biomass, including fine roots, 

needles/leaves, litter, or reproductive efforts. Various plant tissues likely require 

carbohydrate inputs at times of the year different than those required for diameter growth. 

Studies concerning specific climatic effects on needle production (Hennessey et al. 1992), 

fine root production (Finér et al. 2013), and reproductive effort (Roland et al. 2014; Moriera 

et al 2015) have shown that each sink responds to a specific set of climate drivers. The 

variability in resources allocated to these sinks, along with non-structural carbohydrate 

storage, clearly have an influence on the amount of resources available for diameter 

growth, and thus whole-tree wood production. Understanding these trade-offs would also 

be beneficial in understanding forest carbon allocation patterns. 
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APPENDIX: SUPPLEMENTAL INFORMATION 

 

Table A.1: NASA plot stand attributes by species. Data represents the number and size 
of living trees, trees that died, and ingrowth of trees (≥ 10 cm) between the two sampling 
periods (1989 and 2015). 

Species 
Living 
(tph) 
1989 

QMD 
(cm) 
1989 

Living 
(tph) 
2015 

QMD 
(cm) 
2015 

Mortality 
(tph) 

Mortality 
QMD 
(cm) 

Ingrowth 
(tph) 

Red spruce 521.3 19.1 471.3 21.3 98.0 14.4 48 

Eastern hemlock 269.9 18.3 293.2 22.1 24.7 15.6 48 

White pine 37.2 26.0 51.7 37.5 1.7 22.2 16.2 

N. white-cedar 112.8 18.1 113.5 19.8 18.2 15.3 18.9 

Red maple 78.0 16.0 94.9 19.3 12.5 14.2 29.4 

Balsam fir 14.9 13.7 22 11.8 14.9 16.6 22 

Yellow birch 4.1 26.7 4.4 28.5 0 n/a 0.3 

Paper birch 5.4 17.7 4.1 20.2 1.4 12.1 0 

Stand-level 1043.6 19.0 1055.1 22.1 171.3 14.9 182.8 

 tph = trees per hectare 

 QMD= quadratic mean diameter 
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Table A.2: Species-level carbon mass storage per hectare in the NASA plot living pool 
using Young’s equations (Young et al. 1989). Data represents storage from the initial 
mapping (1989) and re-measurement (2015), and average annual change. 

Species 
Living 1989 

(kg/ha) 

Living 2015 

(kg/ha) 

Mean CMI* 

(kg/ha) 
Change 

Red spruce 34,269.8 44,925.5 409.8 +31% 

Eastern hemlock 19,034.1 29,397.3 398.6 +54% 

White pine 7,372.4 17,581.8 392.7 +138% 

Northern white cedar 4,303.4 5,152.5 32.7 +19% 

Red maple 5,876.7 8,910.6 116.7 +52% 

Balsam fir 764.6 461.8 -11.6 -40% 

Yellow birch 952.3 1,077.7 4.8 +13% 

Paper birch 304.9 499.6 7.5 +64% 

TOTAL 72,878.2 108,006.9 1,351.1 +48% 

 *Mean CMI = average annual stand-level carbon mass increment 

 

 

 

 

 

 



78 
 

 

Figure A.1: Comparison of species-level carbon mass increment (derived from tree-ring 
series) and shifted annual carbon flux (eddy flux data) from previous year September to 
following September.  
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Figure A.2: Cumulative carbon mass increment (left column) compared to dimensionless 
tree-ring chronology (right column) plotted by species. 

 

 



80 
 

 

Figure A.3: Annual variability in species-level growth. The carbon mass increment (CMI) 
from the six most common species are presented. The error bars represent the standard 
error, and n is the number of trees used for each summary. 
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Table A.3: Summary of tree-level carbon mass increment (CMI) by species. Reported 
mass change (kg) in individual tree boles were calculated using the Honer (1967) 
volume equation.  

Species Average 
bole C mass 

Average 
CMI 

CMI SD* 
Maximum 

CMI 
Minimum 

CMI 

Red spruce 52.3 0.7 0.7 6.5 0.0 

Eastern hemlock 49.5 0.8 0.7 4.5 0.0 

White pine 163.2 4.1 3.7 17.4 0.0 

Northern white-cedar 29.6 0.4 0.3 1.8 0.0 

Red maple 56.4 0.9 0.7 4.5 0.0 

Balsam fir 7.4 0.3 0.2 1.3 0.0 

 *CMI SD = standard deviation of carbon mass increment 

 

 

Table A.4: Species-level response function analysis summary for standardized tree-ring 

chronologies (n=number of trees). The prefix p indicates previous year variable. 

 
n tmax tmean tmin gdd precip snow P/PET cfs 

Red spruce  142 -pJUL -pJUL -pJUL 
-pJUL, 
+AUG 

- - - - 

Eastern hemlock 88 
+JAN 
+FEB 

+FEB - - 
+pJUN 
+FEB  
+APR 

- +MAY - 

White pine 17 - +MAY - +MAY +pJUL - -pDEC -MAR 

N. white-cedar 37 -JUL +APR - - - - - - 

Red maple 31 
+pMAY 

MAY 
- +AUG +pMAY -MAY - -MAY - 
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