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 Catchment urbanization has deleterious effects on freshwater resources and 
aquatic communities in small stream ecosystems. In the State of Maine, many streams 
have been negatively affected by urbanization and are in need of management and 
restoration. Impervious cover (IC), i.e., any surface that impedes water infiltration into 
the ground, can serve as a measure of watershed urbanization. Recent studies conducted 
in Maine have indicated that stream biotic community structure and function begin to 
decline at impervious cover levels of approximately 1 to 15%. This wide range presents a 
challenge to regulatory agencies and watershed managers charged with protecting stream 



 

quality to avoid costly restoration efforts. In this research, we employed three statistical 
analyses to identify spatially-explicit watershed characteristics associated with climate, 
geology, and land use/land cover that affect stream vulnerability to urbanization. First, a 
Kruskal-Wallis one-way analysis of variance was used to discriminate watershed 
characteristics associated with macroinvertebrate and algal sample data classified into 
high and low vulnerability categories. Next, a logistic regression analysis was applied to 
predict attainment of stream regulatory standards based on macroinvertebrate and algal 
sample data combined with watershed biophysical parameters. Finally, a Bayesian 
network was developed to predict stream vulnerability to urbanization using an expert-
informed model structure. Results from the three approaches identified a number of 
watershed parameters that are associated with the vulnerability of streams to impairment 
from urbanization stress. The Kruskal-Wallis analysis indicated that watersheds with 
higher amounts of well-draining soils, deeper water tables, and fewer wetlands are less 
likely to become impaired at a given value of IC. The logistic regression models provided 
evidence that watersheds with an intact riparian buffer, a shallow aquifer, soils resistant 
to erosion, few wetlands, and shallower soils are more likely to attain their regulatory 
standards and are thus less vulnerable to urbanization. The Bayesian network shared a 
number of similarities with the two statistical analyses in terms of important watershed 
parameters. Overall, results of the three analyses indicated that stream vulnerability tends 
to increase with a higher percentage of agriculture and wetlands in the watershed and to 
decrease with a higher percentage of forested or natural buffers and percent resistant 
surfaces in the watershed. The ultimate goal of this research was to identify specific 
streams that are at risk of becoming impaired by future development. This goal was 



 

achieved by integrating the results of the three-step vulnerability analysis with earlier 
work that created spatially-explicit development suitability indices for two major 
watersheds in Maine. Areas likely to face future degradation were identified as 
watersheds in the top quartile of vulnerability that coincide with areas highly suitable for 
development are likely to face future degradation. We highlighted the locations of these 

-  and provided resource managers and policy makes with a tool that can 
be used to prioritize and guide the protection of vulnerable streams in the Maine 
landscape.  
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CHAPTER ONE: 
STREAM VULNERABILITY IN A CHANGING 

LANDSCAPE  AN INTRODUCTION 
 
 According to the Maine Department of Environmental Protection (MEDEP), the 

life consistent with a specific statutory water classification of AA, A, B, or C (MEDEP 
2009). Thus, if a Class A stream is designated as impaired, it no longer supports the 
natural community of aquatic organisms expected for that stream category. With 2,300 
miles of Maine streams and rivers classified by the U.S. EPA as 303(d) impaired status, 
the State is obligated by the 1972 Clean Water Act to restore these degraded waterways, 
despite the fact that restoration will cost millions of dollars. As an example, restoration of 
Long Creek in Portland, Maine, is projected to cost $14 million (FB Environmental 
Associates, 2009), and yet this is only one of the 30 federally-registered 303(d) urban-
impaired streams in the state (Maine IC TMDL 2012).  

The manifestations of stream impairment most commonly seen throughout the 
state are high nutrients and eutrophication, elevated E. coli fecal coliform, and biotic 
assemblages indicative of degradation (EPA 2010). These symptoms are associated with 
agricultural runoff, industrial discharge, municipal sewage, and urban stormwater runoff 
(EPA 2010). While point-source pollutants such as industrial discharge and municipal 
sewage can be minimized through regulation, agricultural and urban runoff are 
widespread nonpoint source pollutant stressors whose effects are more challenging to 
ameliorate. With increasing urbanization across the landscape, stream quality generally 



2 
 

decreases when impervious cover (IC)  i.e., any surface such as a road, parking lot, or 
roof that impedes water infiltration into the soil  approaches or exceeds 10% of the area 
in a watershed (Schueler et al. 2009). In fact, Maine watersheds with IC values > 6% 
have been shown to exhibit marked declines in aquatic insect diversity that are indicative 
of ecological degradation (Morse et al. 2006). Unfortunately, many of the available 
options for reducing contamination and stress associated with urbanization are 
impractical for widespread use due to political and economic constraints. As a result, it is 
in the interest of municipalities, public agencies, policy makers, and land owners to 
develop a more proactive approach to sustaining aquatic resources by identifying streams 
that are most at-risk of becoming impaired in the future and targeting these waterways as 
priorities for conservation protection and/or smart growth land-use planning strategies.

We envision that the next generation of impaired streams in Maine will include 
those that experience future development in their watersheds in combination with 
watershed characteristics that are associated with low resistance or high vulnerability to 
degradation from land-
ecosystem to maintain structure and function in response to increasing stressors. Several 
watershed characteristics have been shown to contribute to stream resistance. For 
example, the presence of wetlands has been associated with a decrease in nutrients, 
toxins, and sediments entering streams (Johnston et al. 1990, Jordan et al. 2011, Marton 
et al. 2014); calcareous bedrock in a watershed increases acid neutralizing capacity 
(ANC) in streams and prevents acidification (Sullivan et al. 2007, USGS 1989); and 
shallow slopes decrease the flashy flows associated with impervious cover by allowing 
better water infiltration and groundwater recharge.   
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Conversely, some features in a landscape may make streams more vulnerable to 

system, subsystem, or system component is likely to experience harm due to exposure to 
a hazard, either a perturbation or 
agricultural lands causes a smaller change in species richness (i.e., lower vulnerability) 
compared with urbanization of forests, because degradation has already occurred on the 
former farmlands (Cuffney et al. 2011). Based on these and other studies, it can be 
hypothesized that whereas streams are generally adversely affected by stressors 
associated with urbanization in a watershed, the vulnerability of streams to urbanization 
varies as a function of differing watershed and environmental characteristics. 

 In this investigation, statistical and modeling approaches were used to explore the 
relationships between spatially-explicit landscape characteristics and metrics of stream 
biotic integrity in order to predict which Maine streams are more likely to become 
degraded due to future development in the watershed. Previous research efforts aimed at 
predicting the potential vulnerability, resistance, resilience, or sensitivity of streams have 
included: (1) studies using expert opinion to define vulnerability based on channel 
characteristics (Besaw et al. 2009); (2) ranking streams according to vulnerability to 
future climate change based on network connectivity and habitat heterogeneity (Anderson 
et al. 2013, McCluney et al. 2014); (3) examining factors associated with resistance and 
resilience to flooding in Oregon (Pearsons et al. 1992); and (4) observing effects of 
natural watershed disturbance such as fire on stream resistance and resilience (e.g., Vieira 
et al. 2004).   
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Cuffney et al. (2011) conducted one of the few studies focused on examining how 
landscape characteristics affect stream macroinvertebrate responses to urbanization. In a 
comparison of nine major watersheds in the U.S., they found that the condition of biotic 
assemblages degraded more rapidly per unit area of urbanization as mean annual 
precipitation increased in the watershed, and that the response of aquatic 
macroinvertebrates to urbanization was more sensitive to temperature, precipitation, and 
agriculture than was algal response. 

 The objectives of this research were to: (1) develop spatially-explicit models 
based on environmental data, stream biotic metrics, and expert knowledge in order to 
predict the potential vulnerability of streams in the Maine landscape to future 
urbanization stress; and (2) assess the spatial distribution of at-risk or vulnerable streams 
in relation to alternative futures modeling projections of areas in Maine that are most 
likely to experience future development pressures and urbanization stress (Meyer et al. 
2014). In combination, these results are expected to provide a valuable tool for land use 
planners and watershed managers to use in prioritizing vulnerable streams for protection, 
developing sustainable management strategies to prevent degradation and loss of biotic 
integrity, and avoiding expensive restoration costs.  

   

 

     



5 
 

LITERATURE REVIEW 
Effects of Catchment Attributes on Stream Condition 

There is a large body of scientific literature that focuses on the causes of stream 
impairment and the interactions between landscape attributes and their effects on 
downstream water quality. Williams et al. (2004) examined a river basin in 
Massachusetts and found that nitrate, chloride, sulfate, and acid neutralizing capacity 
(ANC) had positive, mostly exponential relationships with increasing urban and 
agricultural area, while dissolved organic nitrogen (DON) and dissolved organic carbon 
(DOC) had positive, exponential relationships with increasing amount of wetlands and 
open water. In a study by Allan et al. (1997), there was a negative correlation between 
agricultural area and habitat quality and biotic integrity in a Midwestern catchment, while 
forested riparian area exhibited a positive correlation with those response variables. 
Sediment concentrations during low flows were higher in areas of greater agriculture. 
Their model indicated that an increase in forested land cover would result in dramatic 
declines in runoff, suspended sediment, and nutrient yields.  

Strayer et al. (2003) used empirical models to evaluate the effects of land cover in 
the Mid-Atlantic region on nitrate, species richness of fish and macroinvertebrates, cover 
of aquatic plants, and riparian vegetation. Land cover, dam density and point-source 
pollution were the most significant variables in the model. Of the land cover variables, 
cultivated and urban land were associated with signs of degradation  e.g., high N, low 
fish species richness, high proportion of exotic fish, and low macroinvertebrate species 
richness  while wetlands, forest, and pastoral land were associated with desirable 
stream quality traits such as high fish species richness, low percentage of non-native fish, 
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and low N. In contrast to results reported by Williams et al. (2004), they found that their 
predictive power was lower in smaller watersheds and that wetlands exhibited a negative 
relationship with total nitrogen.  

In a study by Jones (2001), the amount of agriculture, riparian forests, and 
atmospheric nitrate deposition consistently explained a high proportion of the variation in 
model predictions of nitrogen, phosphorous and sediment in streams of the Mid-Atlantic 
states. Poff et al. (2006) assessed hydrologic change in response to land use across the 
U.S. With increasing urban area, peak flows increased, minimum flows increased in some 
regions and decreased in others, duration of near-bankfull flows declined, and flow 
variability increased. Response to agriculture was less pronounced, although minimum 
flow decreased, near-bankfull flows increased and flow variability declined. The effects 
of dams were largely consistent across regions, with a decrease in peak flows, an increase 
in minimum flows, an increase in near-bankfull flow durations, and a decrease in flow 
variability.  

Wang et al. (2001) reported that urbanization in Wisconsin watersheds 
consistently caused degraded streams, whereas agricultural watersheds exhibited more 
variable responses. Forested stream riparian area, non-agricultural vegetated land, and 
open water/wetland cover were good predictors of stream condition and all increased 
stream quality. 

Vander Laan et al. (2013) examined the effects of mining, agriculture, 
urbanization and hydrologic modification on in-stream stressors and biological condition 
in streams throughout Nevada. The stressors they addressed were total dissolved solids as 
measured by electrical conductivity, nutrient enrichment, trace-metal contamination and 
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flow alteration. They reported that agricultural land area, mine density, and urban area in 
a watershed were the best predictors of stream biological condition. Measures of 
precipitation, elevation, and temperature best predicted arsenic levels, while urban area, 
precipitation, elevation, hydrologic stability scores and mine density predicted Cu and 
Zn. 

It is apparent that across a broad range of conditions and regions, agriculture and 
urban areas have potentially large effects on many aspects of stream water quality and 
biotic integrity. As such, the strongest predictors of stream condition are often based on 
variables associated with agriculture, urban area, wetlands, and forests. Dams and mines 
have also proven to be important predictors in cases where they have been studied. 
Environmental variables such as elevation and annual precipitation have not been 
considered in many studies, which limits our ability to draw conclusions about the 
influence of these variables on stream conditions. This is problematic because some of 
the patterns that are attributed to land cover variables may be partially explained by 
spatial correlation with environmental or climatic variables. For example, in the State of 
Maine urban area is largely located in warmer regions. As a whole, previous studies 
indicate that although relationships between land cover and in-stream variables are 
dynamic and vary from region to region, anthropogenic impacts and stressors universally 
affect stream condition either directly through urban and agricultural runoff or indirectly 
through removal of forests and wetlands.  
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Effects of Catchment Urbanization on Water Quality 
Many studies have exclusively looked at the effect of urban areas on stream water 

quality. Urbanization causes changes in the hydrology, chemistry and biology of stream 
ecosystems, with symptoms that include flashy hydrographs, elevated nutrients and 
contaminants, changes in channel geomorphology, reduced biotic richness, and higher 
levels of pollution-tolerant species (Walsh et al. 2005, Coles et al. 2012, Paul and Meyer 
2001, Chadwick et al. 2006, Roy et al. 2005). The flashiness caused by IC in a watershed 
causes hydraulic disturbance to biota, channel incision and bank erosion. Even summer 
rain events of only a few millimeters can cause overland flow that transports chemicals 
and heated water to streams, causing stress to biota (Walsh et al. 2005).  

The impervious cover model (ICM) was proposed by Schueler (1994) to describe 
the amount of degradation that occurs in a stream with increasing percent impervious 
cover in its watershed. This model is prescribed for first- through third-order streams with 
no point source pollution or dams in their watershed. In a meta-analysis of 65 recent 
papers studying impervious cover related to water quality, Schueler et al. (2009) found 
that 69% of studies confirmed or reinforced the ICM. The average threshold at which 
degradation was initially detected was 7% IC. Some researchers reported a secondary 
threshold around 20%, a level of IC at which most indicators declined.  

In Maine, evidence suggests that stream water and habitat quality begin to decline 
at a threshold value of 6% IC in a catchment, with a marked decrease in species richness 
and intolerant taxa of aquatic insects beyond that value (Morse et al. 2003). Interestingly, 
Schueler et al. (2009) concluded that IC is not the best predictor of stream quality when it 
exceeds 10% of the watershed. Beyond 10%, forest cover, road density, or crop cover 
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may have better predicting power. In addition, patterns of stream macroinvertebrate 
abundance can be variable at low levels of IC due to inter-site differences in nutrients and 
organic compounds (Wright 1995). Algal communities generally respond to increasing 
urbanization with an initial increase, followed by a decrease at higher levels of urban IC 
(Coles et al. 2012). Given the variability of results among studies of stream quality at low 
values of watershed IC, Schueler et al. (2009) proposed a new version of the ICM that 
takes the shape of a cone  i.e., at low values of IC, water quality indices vary 
substantially while at higher values of IC, water quality is universally poor. This 
conceptual approach implies that at low values of IC, some streams may be more 
resistant to degradation than others a finding significant for this study.  

  In an exhaustive study of the physical, chemical and biological response of 
streams to increasing urban area in nine drainages associated with major U.S. 
metropolitan areas, Coles et al. (2012) found varying stream responses to urbanization. 
Nitrogen, chloride, insecticides and polycyclic aromatic hydrocarbons (PAHs)  
compounds associated with incomplete combustion of gas  increased with urban 
development in most study regions. The increase in nutrients and herbicides was more 
limited in watersheds where predevelopment land cover was agriculture, as compared to 
forested catchments, due to higher initial ambient concentrations in the former. The rate 
of decline in the number of sensitive macroinvertebrates species was steeper in 
watersheds where predevelopment land cover type was forest versus agriculture or even 
grasslands, owing to the high sensitivity of macroinvertebrate assemblages in forested 
catchments. Pollution-sensitive diatoms typically were present at rural sites and 
decreased with urban development, implying that agriculture does not especially damage 
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diatom assemblages. The most consistent geomorphic responses of streams to increasing 
urban area were changes in the size, shape, and sediment composition of channels. The 
study also found that chloride concentrations increased with increasing urban area in all 
nine study areas, even in warm areas and across all seasons, indicating that multiple 
factors besides road salt may be involved.  

As a whole, previous studies indicate that as urban area or IC increases beyond a 
certain threshold, stream water quality declines. However, the rate of degradation and the 
IC threshold are variable, suggesting that differences in watershed or environmental 
characteristics may influence the rate of impairment, as well as the IC value at which 
observable impairment begins to occur.  

 

Effects of Wetlands on Stream Water Quality 
The National Wetlands Inventory of the U.S. Fish and Wildlife Service contains

records for most wetlands in the United States. In this dataset, freshwater wetlands in 
Maine are grouped into three types: forested/shrub, emergent, and ponds (Table 1.1). 
Forested wetlands are the dominant wetland type in the state (87% of total wetland area), 
followed by emergent (10%) and ponds (3%). Altogether, wetlands comprise 
approximately 10% of the land area in Maine.   
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Table 1.1. Major wetland types in Maine. Table lists the acreage and percent of total land 
cover in the state by wetland type. From the National Wetlands Inventory (USFWS, 
2014). 
Wetland Type Area (acres) Percent of Total 

Land Cover 
Percent of Total 
Freshwater 
Wetlands 

Forested/Shrub 1,770,000 8% 87% 

Emergent 206,000 0.9% 10% 

Pond 58,000 0.2% 3% 

 

Results from multiple studies indicate that the effect of wetlands on downstream 
water quality is variable. Johnston et al. (1990) indicated that stream proximity to 
wetlands was related to a decrease in inorganic suspended solids, fecal coliform, specific 
conductivity and nutrients. Yavitt et al. (2006), however, found that water flowing out of 
a small, in-stream wetland was only slightly higher in Na+, NH4+ and ANC and slightly 
lower in H+ and dissolved inorganic carbon (DIC) than water flowing into it; in 
comparison, Ca2+, Mg2+, K+, organic Al, Cl-, NO3-, SO42- and SiO2 were unchanged. In a 
review of wetlands worldwide, mean nitrogen removal efficiency was 47% overall and 
25% for latitudes above 50 degrees (Jordan et al. 2011). Because of this, it is expected 
that wetlands within a watershed would tend to decrease nitrogen concentration in 
downstream waters. Indeed, many studies support the idea that wetlands are able to retain 
nutrients, especially N and P, and export DOC (Jordan et al. 2011, Marton et al. 2014, 
Bowden 1987, Saunders and Kalff 2001, Strayer et al. 2003). Yet in contrast, Gorham et 
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al. (1998) found that streams draining catchments in Nova Scotia with greater than 50% 
wetlands had significantly higher total dissolved nitrogen, higher DOC, and lower pH. 
Fitzhugh et al. (1999) reported that wetlands retained sulfate, especially during the 
growing season, which led to increased ANC in downstream waters. In general, wetlands 
can affect nutrient concentrations, total suspended solids, pH, and ANC in downstream 
waters, but the direction and magnitude of change vary from region to region.  

It is likely that there are environmental factors that influence whether wetlands 
have more or less of an effect on streamwater. For example, Walker et al. (2012) found 
flow-weighted slope (FWS) to be a better predictor of water chemistry than wetland type 
and total watershed area. Wetlands in areas with high FWS are narrower in width and 
thus water residence times are shorter as water moves more quickly through the system. 
Wetlands in areas with low FWS have the opportunity to exert more of an influence on 
water chemistry as water residence times are higher in shallow slopes, thereby decreasing 
dissolved oxygen, increasing temperatures and dissolved organic carbon, increasing the 
ratio of NH4+ to dissolved inorganic nitrogen, and lowering the ratios of dissolved 
inorganic nitrogen to total nitrogen and PO43- to total phosphorous. Flow-weighted slope 
is a landscape characteristic that can be derived from remotely-sensed elevation data, and 
therefore is a useful metric for determining potential effects of wetlands at a landscape 
scale. 
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Influence of Riparian Forest Buffers on Stream Water Quality 
Riparian forests are essential in maintaining the structure and function of stream 

ecosystems.  For example, headwater streams with intact riparian forest cover benefit 
from subsidies of organic material from leaf-litter (Vannote 1980); maintain a consistent 
temperature as a result of shading from the forest canopy and the base flow of cool 
groundwater (Gregory et al. 1991); and are protected by riparian vegetation that prevents 
bank erosion as well as riparian soil that filters out sediments and nutrients (Peterjohn and 
Correll 1984). Weller et al. (1998) modeled riparian areas and found that wider forest 
buffers are more efficient in removing nutrients, and that buffers of variable width are 
less efficient because stream segments without sufficiently wide buffers allow large 
amounts of nutrients to enter the stream.  

Other studies have shown that riparian buffers may have mixed effects on stream 
quality parameters. Hession et al. (2003) reported that forested riparian zones in urban 
catchments positively affected channel geomorphology, concentrations of bioavailable 
nutrients, and algal biomass. However, macroinvertebrates, fishes, and diatoms were 
better predicted by the urban density gradient than the riparian buffer variable. Steedman 
(1988) found that when comparing urban, forested, and riparian forest areas, only urban 
and forested area were reliable predictors of an index of biotic integrity (IBI). 
Furthermore, at high levels of IC, riparian forests no longer offset the damaging effects of 
urbanization (Schueler et al. 2009). The mitigating effects of riparian forests may be 
compromised in many cases by channel incision from erosion, a lower water table 
associated with impervious cover, and pollutants entering from the uplands through piped 
drainage (Walsch et al. 2005).  
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Agricultural Effects on Downstream Water Quality
Agriculture is the largest cause of stream impairment in the U.S. (USOTA 1995). 

Many studies have found that increases in agricultural cover in a watershed are associated 
with a decline in stream water quality, especially as a result of increased nutrients which 
can lead to eutrophication, declines in macroinvertebrate communities, and fish kills 
(e.g., Carpenter et al. 1998). Hydrologic variation from agriculture, although less 
pronounced than that for urbanization, is associated with decreased abundance and 
diversity of intolerant species (Poff et al. 2006). Percent agricultural area is positively 
correlated with total dissolved solids and nutrients in stream water and is negatively 
related to biologic indicators of stream health (Vander Laan et al. 2013).  

In Maine, percent agricultural area is positively correlated with nitrate, calcium, 
sulfate, magnesium, and chlorine, and is negatively correlated with DOC (Cronan et al. 
1999). Quinn et al. (1997) compared agricultural and forested catchments and found that 
streams draining the former received more light, were warmer, had smaller amounts of 
woody debris, and had higher nutrient levels and algal biomass. Similarly, in a study by 
Wang et al. (1997), agricultural area was negatively correlated with biotic indices and 
habitat quality, while forest cover had a positive relationship with these variables. 
Clearly, agriculture has consistent, negative effects on stream water quality across all 
regions of the U.S., including the study region. 
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Geology and Acid Neutralizing Capacity (ANC): 
Stream acidification is of particular concern in the Northeast because of the high 

rate of acidic deposition from the surrounding regional airshed (Driscoll et al. 2001). 
Bedrock and soil composition can affect acid neutralizing capacity (ANC) in streams, 
thereby making them less susceptible to acidification (Sullivan et al. 2007, USGS 1989). 
Kaplan et al. (1981) found soils to be more influential than bedrock on stream pH and 
alkalinity in the Northeast and Mid-Atlantic U.S. Herlihy et al. (1993) found that acidic 
streams and streams with low ANC in the mid-Appalachian Mountains were almost all 
located in upland forested catchments with base-poor bedrock. In a study by Nelson et al. 
(2009), the pH, conductivity, ANC, and concentrations of calcium, magnesium and 
ammonium in streamwater were higher in basins with mixed crystalline and sedimentary 
bedrock than in basins with only crystalline bedrock. As such, these studies provide 
evidence that both bedrock and soil composition in a watershed can affect streamwater
characteristics.  

 

Using Landscape Characteristics to Predict and Classify Stream Condition 
Many investigators have created models based on interactions of landscape 

variables and stream water quality to predict physical, biological or chemical conditions 
in streams. Carlisle et al. (2009) found riparian land cover, road-stream intersections, 
elevation, soil content, soil permeability, depth to water table and percent agricultural 
land cover to be among the best spatial variables to predict biological condition of 
streams in the Eastern U.S. Bedoya et al. (2011) used in-stream and off-stream variables 
to predict the IBI (index of biotic integrity) score for sampling locations throughout Ohio. 
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Variables with the best predicting power were the area of hay/pasture and deciduous 
forest, low intensity development and open urban area within a 100-m buffer, and percent 
area of woody wetlands and deciduous forest within a 30-m buffer. Total stream 
connectedness i.e., the proportion of connected length to the total basin network 
length and the number of dams were also among the most powerful predictive 
variables. Sullivan et al. (2007) used a geologic classification system based on capacity to 
increase streamwater ANC along with other landscape variables to predict the locations 
of acid-sensitive and acid-impacted streams in a watershed in the Southern Appalachian 
Mountains. Their logistic regression model found percent siliceous bedrock, percent 
forested area, elevation, and watershed area to be the best predictors of stream ANC 
throughout their study area. Jager et al. (1990) took a different approach to predicting 
stream ANC in another part of the Appalachian Mountains using a technique called 
cokriging. This method uses the assumption of spatial autocorrelation to interpolate point 
measurements over a designated area. Here, evenly-spaced stream ANC measurements 
along with elevation predicted ANC in un-sampled streams with a mean standard error of 
0.286, which reflects good accuracy.  

Another modeling approach involves classifying regions based on similar 
landscape characteristics in order to prioritize conservation efforts or to understand 
interactions among land use variables and water quality. Esselman et al. (2011) built a 
model relating fish IBI to anthropogenic disturbance variables such as percent urban or 
agricultural area in the watershed, population density, road density, dams and mines, and 
used this model to calculate a cumulative disturbance index for each watershed 
throughout the United States. Merovich et al. (2013) classified segment-level watersheds 
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(segments between confluences) based on their predicted water chemistry in a mine-
impacted region in the central Appalachians. They related landscape information such as 
elevation, drainage area, coal geology, mining intensity, surficial geology, and land use to 
water chemistry and macroinvertebrate biotic integrity and used this model to predict the 
locations of other mine-impacted streams. Mining intensity and distance to mining and 
coal type were the dominant predictors. Preston (2000) developed Hydrological Response 
Units (HRUs) for the State of Maryland that represent regions of similar land cover, soil 
type, slope and geology. This type of classification allowed for more efficient and 
thorough sampling of water quality parameters in the state. Clearly, there are a variety of 
approaches and objectives that have been applied to model streamwater  watershed 
interactions. 

Predicting Future Stream Conditions  
The central question motivating this research is whether we can predict future 

stream conditions in response to land-use change, and do so before such development 
occurs in order to avoid expensive stream mitigation costs. Similar studies have 
addressed this issue in other ways, namely through alternative futures scenarios. Van 
Sickle et al. (2004) used four alternative future scenarios to predict the biological 
condition of streams in  River basin for the year 2050. Their models 
related current land cover amounts to five different biotic indices of stream condition and 
used this relationship to predict future stream biological condition given varying amounts 
of land cover predicted by their alternative future scenarios.  Agriculture and 
development within a 120m buffer of the stream were primary driving variables in each 
model, while gradient, elevation, stream power, area, distance to watershed divide and 
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longitude comprised the next grouping of best predictors. The alternative future scenario 
with the highest probability of high stream quality was their conservation scenario, which 
included steps to restore and protect ecosystems.  

Santelmann et al. (2004) used similar methods to predict changes in water quality 
in two predominantly agricultural watersheds in Iowa using alternative futures scenarios. 
Their Water Quality Scenario had the largest positive impact on future water quality by 
calling for policy changes in water quality standards, widening riparian buffers, and 
strengthening best management practices (BMPs) to mitigate stormwater runoff.  

Turak et al. (2011) predicted future stream biodiversity under different 
management scenarios in Australia. They developed a regression model to predict a 
stream  macroinvertebrate biotic index using anthropogenic disturbance variables such 
as extractive industries, point sources, infrastructure, land use and impoundments, as well 
as natural features such as elevation, slope and precipitation. Ten different management 
strategies were evaluated by refitting the model with new land cover percentages to 
reflect each strategy.  For example, sustainable grazing replaced over-grazed areas, and 
the model was then used to predict biological condition of the stream under that 
management scenario. In this way, they were able to forecast the potential effects of 
management strategies and identify watersheds in which those strategies would be most 
effective. Much like this research, these applications of alternative futures scenarios help 
to predict the future of streams in order to address strategies that will be effective in 
avoiding or mitigating impairment.  

Another component of predicting future condition of streams involves looking at 
climate forecasts, and considering how streams have responded to climate change in the 
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past. Since the 1970s, the Northeast has seen an increase of 0.25°C/decade in mean 
annual temperatures and 0.7°C/decade in winter temperatures (Hayhoe et al. 2007). 
Climate projections predict that the Northeast will receive about 15% more precipitation 
in the winter, but this increase will be seen as more winter rain than snow (Palmer et al. 
2009). These changes will decrease winter snow depth and snow cover and will reduce 
the length of ice cover, as well as cause earlier peak spring stream flow, earlier bloom 
dates, extended growing seasons, more frequent droughts, increased water temperature,
and extended low-flow periods in the summer (Hayhoe et al. 2007).  

Climate change is expected to have a large effect on the timing of events, which 
may have serious implications for aquatic biota whose life stages are dictated by changes 
in temperature and stream flow (Hayhoe et al. 2007). Furthermore, because each river has 
its own unique flow regime that harbors a unique suite of biota, climate trends that alter 
that regime will change the native structure of the ecosystem (Palmer et al. 2009).  

When changes due to climate are coupled with changes due to human impact 
(e.g., development and increased IC), stream ecosystems are further threatened. Nelson et 
al. (2009) explored the combined potential effects of climate change and urbanization on 
stream hydrology, geomorphology and temperature and used this to predict future fish 
IBI. They found that most fish species were affected by climate change, and that adding 
urbanization stress increased the total percent of stressed fish species by 50 to 75%.  
Similarly, Castillo et al. (2014) used a scenario analysis to determine that a major 
estuarine watershed in Texas is likely to be more threatened by climate change than by 
land-use change, although localized effects of land-use change can significantly damage 
smaller aquatic ecosystems.  
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Resistance, Resilience and Sensitivity Studies  
Predicting the potential resistance, resilience or sensitivity of streams is a new 

research area that has not yet been explored in depth. Besaw et al. (2009) used reach- and 
watershed-level stream parameter data and expert opinion to cluster streams into seven
groups of sensitivity to geomorphic adjustment based on stream characteristics such as 
geology, vegetation, current stressors and geomorphic condition. They argued that if a 
stream is currently in adjustment, e.g., incising or aggrading, it is at greater risk of further 
adjustments given additional stressors.  

Anderson et al. (2013) examined all stream networks in the Northeast and Mid-
Atlantic for their potential resilience by considering factors that would contribute to 
maintaining a full spectrum of biodiversity despite changing ambient conditions. Their 
assumption was that connected regions with high variability in habitat and temperature 
allow for refuges where species can remain during times of stress, making them 
resistant/resilient to disturbanc

ed upstream by headwaters or a dam 
and downstream by a dam or the ocean. They scored the networks for their 
resistance/resilience based on seven key metrics: network complexity (number of stream 
and lake size classes in a network), length of connected network, number of gradient 
classes in the network, number of temperature classes in the network, degree of natural 
cover in the floodplain, and the cumulative extent of impervious surfaces in the 
watershed.  

McCluney et al. (2014) expressed a similar view of resistance and resilience. 
They argued that decreases in habitat heterogeneity would decrease ecosystem resistance 
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because of the portfolio effect  i.e., the idea that having more species makes a system 
more stable. Because of this, local ecosystems may be sensitive to degradation, but whole 
macrosystems can be resistant and resilient if they have a high level of habitat 
heterogeneity. Factors that modify macrosystem dynamics, like dams and extensive urban 
area, will have large impacts on whole-basin resistance/vulnerability. The authors also 
made the point that an intermediate amount of connectivity is best for resilience as it 
allows species to move about and recolonize after a disturbance, but also does not let 
disturbances affect the entire system. Similarly, Pearsons et al. (1992) found that habitat 
complexity of streams is a major factor in resistance and resilience to flooding for fish 
assemblages in a basin in eastern Oregon. Finally, Vieira et al. (2004) found that streams 
draining catchments in which there has been a fire have less resistance and resilience in 
response to flash floods.  All of the preceding studies used different methods to determine 
stream resistance or resilience, but no studies have used the interactions between 
landscape characteristics and stream biotic conditions to predict stream vulnerability to 
land-use change. 
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CHAPTER TWO: 
RELATIONSHIPS BETWEEN WATERSHED BIOPHYSICAL 

CHARACTERISTICS AND STREAM RESPONSE  
TO URBANIZATION 

INTRODUCTION 
 
administered by the Department of Environmental Protection (MEDEP), is a stream 
water quality monitoring program that assesses the ecological condition of 
macroinvertebrate and algal communities for all streams in Maine, with the intent of 
sustaining the biotic integrity of aquatic resources. This biomonitoring program 
(BIOMON) uses the aquatic taxa measured in these community samples to derive 
approximately 30 variables or metrics that are used in a discriminant analysis statistical 
model to determine attainment of biological criteria described in the  water 
classification regulations.  

 The output of the statistical model places the stream sample into one of four 
classes  AA, A, B, or C (Table 2.1)  that range from pristine, non-disturbed conditions 
(i.e., AA), to lower quality degraded status. A final class of non-attainment (NA) is used 
to designate a degraded biological community that does not meet a minimum standard 
(i.e., Class C). Each stream in Maine is assigned a statutory class of either AA/A, B or C, 
and is therefore held to different environmental expectations (Table 1). For example, if a 
stream is assigned to statutory Class A, but attains only Class B standards based on 
current monitoring data, it is assessed as not meeting its environmental goal and is 
therefore in need of restoration.  
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Table 2.1. Statutory classes and Maine's narrative aquatic-life and habitat standards for 
rivers and streams. Source: Maine Revised Statutes: Title 38, Chapter Three, Sections 
464-465.  

Class Biological Standard 
AA Habitat shall be characterized as natural and 

free flowing. Aquatic life shall be as naturally 
occurs.  

A Habitat shall be characterized as natural. 
Aquatic life shall be as naturally occurs.  

B Habitat shall be characterized as unimpaired. 
Discharges shall not cause adverse impacts to 
aquatic life. Receiving water shall be of 
sufficient quality to support all aquatic species 
indigenous to the receiving water without 
detrimental changes in the resident biological 
community. 

C Habitat for fish and other aquatic life. 
Discharges may cause some changes to aquatic 
life, provided that the receiving waters shall be 
of sufficient quality to support all species of 
fish indigenous to the receiving water and 
maintain the structure and function of the 
resident biological community.  

 

 In a recent MEDEP study, these classifications were used to examine differential 
stream responses to urbanization (Danielson et al. In Press). Results indicated that the 
percent watershed IC at which a stream becomes vulnerable to impairment varies with 
each class (Figure 1.1). Most AA/A streams pass the threshold into non-attainment at 
between 1% and 3% IC. For streams in statutory Class B, this range is between 3% and 6 
% IC, and the threshold for statutory Class C is 10% to 15% IC. Danielson et al. (In 
Press) nerable to 
negative impacts from IC. Some streams may maintain healthy aquatic communities at 
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greater % IC than the ranges shown above because of stream or watershed factors that 
mitigate negative impacts of development. In contrast, other streams have stream or 
watershed characteristics that make them more vulnerable and less resilient to 

characteristics that formed the basis of the research investigation described in this 
chapter. 

 
Figure 2.1. Impervious cover vulnerability ranges from Danielson et al. (In Press). These 
ranges represent the percent impervious cover at which attainment of statutory class is 
less likely.  

 In this study, statistical analyses were performed to examine the relationships 
between watershed environmental parameters and stream responses to urbanization stress 
in the Maine landscape. Our objective was to determine whether there are specific spatial 
variables related to land use/land cover, soil properties, geologic conditions, and 
climate/geography that can be used to identify the distribution of streams that are more or 
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pass the threshold into non-attainment at a percent IC value lower than the DEP 
impairment threshold described above and in Figure 2.1. As such, non-attaining streams 
with low percent IC levels are considered 

at manage to attain their statutory class at percent IC 
levels 

impairment.  

 This interplay between urbanization stressors, watershed characteristics, and 
stream vulnerability has important implications for communities, landowners, and 
regulatory agencies. Planning development with stream health in mind can save tens of
millions of dollars in restoration costs, as well as maintain the structure and function of 
biotic communities living in these fragile aquatic ecosystems. Surface water is the main 
source of drinking water in Maine, and therefore it is essential to protect this resource 
(Mockrin et al. 2014). Watersheds that are more vulnerable to urbanization stress can be 
prioritized for conservation, or steps can be taken to mitigate the effects of development 
on the stream ecosystem through Best Management Practices (BMPs) and Low Impact 
Development (LID).  

 Stormwater BMPs are strategies that can be installed around development to 
effectively remove pollutants, cool the stormwater, protect the stream channel, and 
dampen the flood surge (MEDEP 2013). Low Impact Development is a site-based 
strategy to protect the hydrologic cycle usually disturbed during development (MEDEP 
2013). Both strategies can be applied to new or already existing developed areas. 
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However, retrofitting established development is often costly, giving even more incentive 
to plan development in a way that minimizes impacts to stream health.  

 In general, our research is intended to help communities and regulatory agencies 
identify which watersheds are more likely to become impaired with poorly managed 
development and are therefore in need of LID, BMPs, or land conservation. Additionally, 
we will better understand which watersheds might be able to withstand higher amounts of 
urbanization before impairment, giving alternative options for developers.  

 

METHODS 
Stream Water Quality Data 
 Stream biotic community data collected during 2003  2013, inclusive, were 

collects a suite of physical, chemical and biological data at fixed stream locations 
throughout the entire state. This wide range of sample dates was used to maximize the 
number of samples included in the analysis. The year 2003 is when MEDEP took over 
regulation of streams in Maine, and 2013 is the most recent year with available sample 
data. Stream sites are sampled from July through September on a 5-year rotation, with a 
primary focus on macroinvertebrate and algal taxa, and biotic community composition. 
Sample data are the same as those used in Danielson et al. (In Press) in order to maximize 
our ability to compare their results to ours.  

 Macroinvertebrates such as mayfly (Ephemeroptera) and stonefly (Plecoptera) 
larvae were collected by MEDEP using rock bags, whereas algae were collected from 
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cobbles and small boulders (Danielson et al. 2011, 2012, Davies and Tsomides 2002). 
Sample data were excluded from this study if the watershed exceeded 125 km2, if the 
sample data were somehow compromised during collection, or if a stressor other than 
urbanization (e.g., agriculture or a significant point source) was suspected to be the 
primary driver of stream degradation.  

 From an initial dataset of 388 streams, our screening process left a total of 108 
sample sites with macroinvertebrate community data, and 88 sites with algal community 
data (Figure 2.2). Only one sample date was used for each site, and the most recent 
sample date was chosen. Sample sites ranged from minimally disturbed to highly 
urbanized, and ranged in size from 0.35 km2 to 118 km2. The attainment class of each 
stream (i.e., AA/A, B, C, or NA) was determined by MEDEP through a statistical 
decision model that used 30 variables describing the sampled biotic community (Davies 
and Tsomides 2002). These attainment classes were used in our statistical models and 
analyses because they represent a synthesis of all 30 community variables, and are the 
basis from which regulatory decisions are made as to whether or not a stream is impaired. 
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Figure 2.2. Watershed study sites and sample attainment class.  

Watershed Biophysical Variables 
 
vulnerability to urbanization, we consulted with a range of experts who specialize in 
urban watershed management, aquatic ecology, and/or aquatic disturbance indicators. 
More information about the process of expert elicitation is provided in Chapter Three. 
Once the final variables listed in Table 2 were selected, spatial GIS layers were processed 
in ArcMap 10.0 (ESRI 2010). All layers were projected into UTM 19N. Impervious 
cover as of 2007 was mapped for most of the state at a 1-m scale. For watersheds without 
full coverage of IC data at the 1-m scale, 5-m data based on 2004 imagery were used and 
linear regression was used to estimate 2007 IC at 1-m resolution (see Danielson et al. in 
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press). Most layers were summarized at the watershed scale, the riparian scale (defined as 
a 100-m buffer on each side of the stream), and the point scale (defined as one km 
upstream of the sample site within the 100-m buffer) (Figure 2.3).  

Figure 2.3. Schematic representation of the three landscape scales used in the analysis. 
These scales are: (1) whole watershed; (2) 100-m buffer on each side of the stream; and 
(3) the point buffer, which includes one km of the 100-m buffer upstream from the 
sample site.  
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 Percent Agricultural Area was defined as MELCD 2004 Cultivated Crops land 

classes:  Deciduous Forest, Evergreen Forest, Mixed Forest, Grassland/Herbaceous, 
Scrub/Shrub, Wetland Forest, Wetlands, Recent Clearcut, Light Partial Cut, Heavy 

2004 cover classes Deciduous Forest, Evergreen Forest, Mixed Forest, Recent Clearcut, 
Light Partial Cut, Heavy Partial Cut, and Regenerating Forest. Percent Nonpoint Sources 
was derived from MELCD 2004 Developed Open Space and Cultivated Crops. 

 These MELCD 2004-derived variables were processed by reclassifying to 
Boolean raster layers (e.g., a value of 1 for classes of interest, value of 0 for all others). 
Then zonal statistics were applied to sum the number of pixels within each watershed. 
Percent area was derived by dividing the sum of pixels of the land cover class by the total 
number of pixels in the watershed, and multiplying by 100.  

  
Wetland Inventory (NWI). Percent wetland area is the Wetland category of the NWI, 
while Percent Acidic Wetlands is the Wetland category with the qualifying class of "a," 
which denotes an acidic wetland. These vector layers were converted to 5-m Boolean 
rasters and processed in the same manner as the MELCD variables described above.   

 Stream/Road Intersections were created by using the Intersect tool in ArcMap to 
get points where the MEGIS road layer intersected with the NHDPlus V2 flowlines. 
Points were summarized for each watershed, and then divided by total watershed area to 
arrive at a density metric. Dams were acquired through MEGIS, and subsequently 
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summed by watershed for a count metric. Slope was derived from USGS 10-m DEM. 
Average July Maximum Temperature and average summer precipitation were provided 
by the 14-km PRISM climate raster. Data for the years 2009 through 2013 were 
averaged, and then zonal statistics were applied to arrive at an average value for each 
watershed.  

 The dichotomous variable Buffering Capacity was created from the Northeastern 
Aquatic Habitat Classification System (NEAHCS) maintained by The Nature 
Conservancy (Olivero and Anderson 2008). This dataset assigns each stream in the 
NHDPlus V2 network to one of three categories: acidic, low buffered; neutral, 
moderately buffered; and calcareous, highly buffered. Highly buffered and moderately 
buffered categories were considered 'Buffered' and assigned a value of 1, while the acidic 
category was considered not buffered and assigned a value of 0.  

 The Drains-to-Ocean variable was proposed by one of the experts we consulted. 
The rationale is that small watersheds that drain directly into the ocean are more 
susceptible to impairment from urbanization (and other stressors) because they have a 
lower chance of being recolonized from downstream. This dichotomous variable was 
created by visually selecting BIOMON watersheds that drain directly into the ocean and 
assigning them a value of 1, and giving all other watersheds a value of 0. Nearest Healthy 
Stream was determined by creating watershed centroids inside the NHDPlus V2 
catchments, then removing those associated with watersheds with over 7% IC (Morse et 
al. 2006). Watershed centroids were created using the Polygon to Point tool in ArcMap. 
The Nearest tool was then applied to BIOMON watersheds to determine the distance 
(km) to the nearest NHDPlus V2 catchment centroid. 
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 The Percent Resistant Surfaces variable was created with the help of an expert 
who selected the following categories of the Maine Geological Survey (MGS) surficial 
geology layer as resistant to erosion: bedrock, ribbed moraine, stagnation moraine, till, 
and thin drift. The layer was then converted to a 5-m pixel raster and summarized in the 
same way as the MELCD variables. Sand/gravel aquifers were downloaded from MGS 
and summarized the same way as the MELCD variables to determine the percent area. 
Longitude and latitude of sample sites were provided by MEDEP.  

 A critically important factor in understanding stream resilience to urbanization is 
groundwater input. Because groundwater is not available as a GIS spatial layer, we 
instead used proxy variables. In an attempt to approximate groundwater input into the 
stream, we used the variable Depth-to-Water Table from the NRCS Web Soil Survey 
(USDA NRCS 2012). We reasoned that stream sites with shallow water tables were more 
likely to receive groundwater inputs. Along with three other variables that relate to 
groundwater input  Percent Sand/Gravel Aquifers, Percent A or B Soils, and Soil 
Depth Depth-to-Water Table should help the signal of groundwater input to be 
observable in the analysis.  

 Depth-to-Water Table and the other soil variables  Percent A or B Soils, Percent 
D Soils, K Factor (i.e., erosion coefficient), and Soil Depth (i.e., depth-to-soil restrictive 
layer)  were derived from USDA NRCS web soil survey data. Layers were extracted 
from the Soil Data Viewer tool installed in ArcMap 10.0 for all Maine counties, and then 
stitched together using the Merge tool. After conversion to 5-m pixel raster layers, soil 
variables were processed the same way as the MELCD variables. The variables Percent A 
or B Soils, Percent D Soils, K Factor (i.e., erosion coefficient), and Soil Depth (i.e., 
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depth-to-soil restrictive layer) are not commonly found in analyses of watershed-stream 
interactions. We included these variables because we predict that soil drainage plays a 
major role in stream response to urbanization. Percent A or B soils and Percent D soils 
refer to the hydrologic group classification assigned to the soil column by the USDA 
Natural Resource Conservation Service. Soils are classified into the categories A through 
D in order of decreasing drainage capacity. While it is logical that better draining soil 
would increase stream health due to dampened flood surges during precipitation events 
and increased effectiveness of BMPs, other theories posit that development on poorly-
draining soils would not cause a large change in the stream hydrograph and therefore the 
aquatic system would not be as greatly affected (MEDEP 2013).  

 The erosion coefficient (K factor) was included in the study because it indicates 
the capacity for siltation into the stream and bank incision. We used the K factor 
averaged for the whole soil profile within a 60 m buffer of the stream. This variable 
should give us an idea of how prone the soil adjacent to the stream is to erosion. The K 

erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation 
(USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average 
annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates 
are based primarily on percentage of silt, sand, and organic matter and on soil structure 
and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other 
factors being equal, the higher the value, the more susceptible the soil is to sheet and rill 

The K Factor is low for soils high in clay because of their resistance to 
erosion, but it is also low for soils high in sand and coarse materials because their 
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infiltration capacity reduces surface flow (USDA NRCS 2012). The K factor is high for 
soils with high silt content due to their susceptibility to erosion. Thus, this variable 
represents an increased risk of erosion and siltation.  

 

Statistical Analysis 
 Two statistical analyses were applied to the dataset: logistic regression and 
Kruskal-Wallis one-way analysis of variance. Logistic regression was used to predict 
stream attainment class, while Kruskal-Wallis tests helped to determine which watershed 
characteristics are associated with more- or less-vulnerable sites. Logistic regression 
models predict the probability of a dichotomous response variable attaining one of its two 
states, using one or more independent variables. Predictor variables can be either 
categorical or continuous, and do not need to be normally distributed (Hosmer and 
Lemeshow 2001). The Kruskal-Wallis test is a non-parametric method of testing 
differences in sample distributions. In this test, the null hypothesis is that the medians of 
the distributions are the same. All statistical analyses were conducted using version 3.1.2 
of the R Statistical Computing Software (R Core Team 2014).  

 The Kruskal-Wallis rank test was used to determine which watershed 
characteristics are associated with stream sample data that were classified into either low 
or high vulnerability categories.  High vulnerability sites are those that do not attain A, B, 
or C at IC values at or below the higher value of the DEP vulnerability thresholds. Low 
vulnerability sites are those that do attain A, B, or C at IC values greater than the lower 
value of the vulnerability thresholds (Figure 4). More specifically, sites with low 
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vulnerability are those that attain A at greater than 1% IC, attain B at greater than 3% IC, 
or attain C at greater than 10% IC. Sites with high vulnerability are those that do not 
attain A at 3% IC or lower, do not attain B at 6% IC or lower, or do not attain C at 15% 
IC or lower. For example, sites with low vulnerability are those that attain A at greater 
than 1% watershed IC, attain B at greater than 3% IC, or attain C at greater than 10% IC 
(Figure 2.4). Sites with high vulnerability are those that fail to attain Class A at less than 
3% IC, fail to attain B at less than 6% IC, or fail to attain C at less than 15% IC.  

Figure 2.4. Definition of high and low vulnerability sites. High vulnerability ranges are 
displayed in red while low vulnerability ranges are displayed in green.  

 For most variables, median values of watershed characteristics were compared at 
three scales: the whole watershed, the riparian scale of 100-m on either side of the 
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stream, and the point scale at the first kilometer of the 100-m buffer upstream of the 
sample site. Variables that were only measured at the watershed scale are Percent IC, 
Watershed Area, Percent Lake Area, July Maximum Temperature, Summer Precipitation, 
Buffering Capacity, Drains-to-Ocean, and Nearest Healthy Stream. Variables measured 
only at the buffer scale are Dams and Stream/Road Intersections. Longitude and Latitude 
were recorded only for the sample site.  

 Logistic regression was used to predict stream attainment class using spatial 
watershed characteristics at all three landscape scales. Six separate logistic models were 
created  three for macroinvertebrates, and three for algae. The first model for each 
predicts whether a stream attains Class A, the second model predicts whether a stream 
attains Class B, and the third model predicts whether a stream attains Class C.  

 Macroinvertebrates and algae were modeled separately because they are likely to 
respond differently to watershed characteristics. For example, we expect algae to be more 
sensitive to siltation and nutrients, while macroinvertebrates would be more sensitive to 
flood disturbances (Cuffney et al. 2011). For both macroinvertebrate and algal models, 
30% of the streams were removed randomly to use as a validation set, and the models 
were then created using the remaining data.  

 Prior to model generation, we screened variables for multicollinearity and found 
that many were highly correlated (i.e., Pearson correlation coefficient > 0.8). To avoid 
multicollinearity, we removed variables from the analysis until there was no correlation 
greater than 0.8. Models were created using forward selection, entering each variable one 
at a time and keeping variables with a p-value less than 0.2 in the model. After forward 
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selection, variables with a p-value greater than 0.05 were removed, leaving only variables 
significant at the 95% confidence level. Models were screened for their significance (p-
value), explanation of variance (R2), and area under the Receiver Operating 
Characteristic (ROC) curve. The area under the ROC curve describes the goodness-of-fit 
for a model with a binary outcome, where a value closer to 1 indicates better model fit. 
For each independent variable, the intercept coefficient, the standard error, p-value, Wald 
statistic, and odds ratios were reported. 

 

RESULTS  

Kruskal-Wallis Rank Tests 
 For macroinvertebrate samples, seven sites fell into the high vulnerability 
category and 27 sites fell into the low vulnerability category (Figure 2.5). Among sites 
with low vulnerability, variables with significantly higher median values (p<0.05) were 
Percent A or B Soils, Depth-to-Water Table, July Maximum Temperature, and Summer 
Precipitation (Table 2.3). All variables were only significant at the whole watershed 
scale, except Depth-to-Water Table which was also significant at the buffer scale. Among 
these sites, Percent A or B Soils and Depth-to-Water Table were correlated at 0.69, which 
may indicate that only one or the other is important in determining vulnerability.  For 
sites with high vulnerability, variables with significantly higher median values were 
Percent Agricultural Area, Percent D Soils, Percent Wetlands, Longitude, and Latitude. 
Percent D Soils were significant at all three scales, and Percent Wetlands were significant 
at both the watershed and buffer scale. Percent Agricultural Area was only significant at 



39 
 

the watershed scale.  Longitude and Latitude were correlated at 0.66, which may signify 
that only one or the other is important in determining vulnerability.  

Figure 2.5. Distribution of high and low vulnerability sites for algae and 
macroinvertebrate sample types.  
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Table 2.3: Results of Kruskal-Wallis rank tests between high and low vulnerability 
macroinvertebrate sites. Variables with significantly different medians (p<0.05) are 
shown with the median for low vulnerability sites (Median Low Vuln Sites) and high 
vulnerability sites (Median High Vuln Sites), the Kruskal-Wallis statistics (KW Stat) and 
p-value.  

 

Variable A or B soils (%)
Depth to water 

table (cm)
July Maximum 

Temperture (oC)
Summer 

Precipitation (in)
Median Low 

Vuln Sites 30.2 166.8 26.5 28.1
Median High 

Vuln Sites 6.2 128.8 25.4 26.4
KW Stat 5.29 5.29 8.02 5.56
p-value 0.02 0.02 0.005 0.02

Median Low 
Vuln Sites  - 185.5  -  - 

Median High 
Vuln Sites  - 184.1  -  - 
KW Stat  - 7.09  -  - 
p-value  - 0.01  -  - 

Variable
Agricultural Area 

(%) D Soils (%) Wetlands (%) Longitude (DD)
Median Low 

Vuln Sites 2.4 24.1 6.1  - 
Median High 

Vuln Sites 4.7 67.1 13.8  - 
KW Stat 4.42 8.02 7.54  - 
p-value 0.035 0.005 0.006  - 

Median Low 
Vuln Sites  - 29.3 13.9  - 

Median High 
Vuln Sites  - 74.2 33.4  - 
KW Stat  - 9.8 9.27  - 
p-value  - 0.0015 0.002  - 

Median Low 
Vuln Sites  - 26.9  -  - 

Median High 
Vuln Sites  - 48.3  -  - 
KW Stat  - 6.21  - 6.64
p-value  - 0.0126  - 0.01

Macroinvertebrate Samples
Higher distribution among low vulnerability sites

Higher distribution among high vulnerabilty sites

Watershed 
Scale

Watershed 
Scale

Buffer Scale

Buffer Scale

Point Scale
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 Based on algal monitoring data, 13 sites fell into the high vulnerability category 
and 20 sites were placed in the low vulnerability category. Sites with algal data had fewer 
significant differences in median values for watershed characteristics compared with the 
macroinvertebrate sites (Table 2.4). Summer Precipitation had a significantly higher 
median value for sites with low vulnerability, whereas Percent Agricultural Area had a 
significantly higher median value for sites with higher vulnerability. Summer 
Precipitation was only measured at the watershed scale, and Percent Agricultural Area 
was only significant at the watershed scale. 

Table 2.4: Results of Kruskal-Wallis rank tests between high and low vulnerability algae 
sites. Only one landscape scale is displayed because no others had significantly different 
variable distributions. Variables with significantly different medians (p<0.05) are shown 
with the median for low vulnerability sites (Median Low Vuln Sites) and high 
vulnerability sites (Median High Vuln Sites), the Kruskal-Wallis statistics (KW Stat) and 
p-value.  

 

Variable
Median Low 

Vuln Sites
Median High 

Vuln Sites KW Stat p-value
Summer Precipitation (in) 28.12 27 4.27 0.038

Variable
Median Low 

Vuln Sites
Median High 

Vuln Sites KW Stat p-value
Agricultural Area (%) 1.15 2.63 5.84 0.015

Algae Samples
Watershed Scale

Watershed Scale

Higher distribution among low vulnerability sites

Higher distribution among high vulnerability sites
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  Results of the Kruskal-Wallis analysis presented in Tables 2.3 and 2.4 provide a 
basis for determining which watersheds may be more or less vulnerable to urbanization 
stress. Low vulnerability watersheds are expected to have approximately 30% A/D soils, 
a Depth-to-Water Table of 167 cm or more, agriculture area less than 2.4%, Percent D 
Soils less than 24, and wetland area less than 6%. In contrast, highly vulnerable 
watersheds are expected to be those that have less than 6.2% A or B soils, a Depth-to-
Water Table of 128 cm or less, agricultural area more than 4.7%, more than 67% D soils, 
and wetland area more than 13.8%.  

 

Logistic Regression  
 Macroinvertebrate Analysis 
 The macroinvertebrate model of attaining A had an R2 of 0.77 (p <0.0001), an 
area under the ROC curve of 0.96, and predicted the attainment class of the 36 validation 
sites with a success rate of 80%. This model contained four variables besides IC that were 
significant: Percent Wetland Area, Percent Agricultural Area, Percent Sand/Gravel 
Aquifers, and Percent Resistant Surface (Table 2.5). Percent IC, Percent Wetlands, and 
Percent Agricultural Area were associated with a decrease in the probability of attaining 
Class A, whereas Percent Sand/ Gravel Aquifer Area as well as Percent Resistant Surface 
at the point scale were associated with an increase in probability of attainment.  
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Table 2.5. Logistic regression results for macroinvertebrate samples. Three models are 
displayed: attainment of Class A, attainment of Class B or better, and attainment of Class 
C or better. For each model, p-value, area under ROC curve (C), R2, and confusion 
matrix of model validation are given. Significant variables are displayed with beta 
coefficients, standard error (S.E.), Wald Z statistic, p-value, and odds ratio. Variables 
with negative coefficients and odds ratios less than one indicate the variables are 
associated with a decrease in probability of attaining that statutory class. 

  

Macroinvertebrate Attainment Models
Attaining A R2=0.77 C=0.956 p<0.0001

Coefficient S.E. Wald Z p-value Odds ratio
Intercept 3.38 1.55 2.19 0.03  - 
IC (%) -0.98 0.36 -2.70 0.01 0.73
Wetlands (%) -0.27 0.10 -2.66 0.01 0.92
Agriculture (%) -0.12 0.05 -2.31 0.02 0.99
Aquifer (%) 0.10 0.04 2.82 0.00 1.03
Resistant Substrate - point scale (%) 0.03 0.01 2.39 0.02 1.02

Observed
Class A B or Below
A 12 2 14
B or Below 5 17 22
totals 17 19 36 80% correct

Attaining A or B R2=0.78 C=0.955 p<0.0001
Coefficient S.E. Wald Z p-value Odds ratio

Intercept 0.17 1.45 0.12 0.91  - 
IC (%) -0.33 0.14 -2.42 0.02 0.73
Natural Area - point scale (%) 0.05 0.02 2.40 0.02 1.04

Observed
Class A or B C or Below
A or B 21 0 21
C or Below 1 14 15
totals 22 14 36 97% correct

Attaining A, B, or C R2=0.74 C=0.97 p<0.0001
Coefficient S.E. Wald Z p-value Odds ratio

IC (%) -0.14 0.05 -2.68 0.01 0.93
Forest - buffer scale (%) 0.08 0.03 2.33 0.02 1.06

Observed
Class A, B, or C N
A, B, or C 24 2 26
N 3 7 10
totals 27 9 36 86% correct
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 The logistic model for predicting attainment of Class B or better contained only 
two significant variables: Percent IC and the Percent Natural Area at the point scale. This 
model had an R2 of 0.78 (p< 0.0001), an area under the ROC curve of 0.95, and predicted 
attainment class of the 36 validation sites with a success rate of 97%. Percent IC was 
associated with a decrease in the probability of attaining B or better, while Percent 
Natural Area at the point scale increased the probability of attainment. Because these two 
variables were correlated (-0.63), Percent IC may be the main driver in this model.  

 The macroinvertebrate model predicting attainment of Class C or better exhibited 
an R2 of 0.74 (p<0.0001), area under the ROC curve of 0.97, and predicted attainment of 
the validation sites with a success rate of 86%. The two variables that were significant in 
this model were Percent IC (-0.14, p=0.01) and Percent Forested Area at the buffer scale 
(0.08, p=0.02). Percent IC is associated with a decrease in the probability of attaining C 
or better, while Percent Forested Area at the buffer scale is associated with an increase in 
probability of attaining C or better. 
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 Algal Analysis 
 The logistic model that used algal monitoring data to predict whether a stream site 
attains Class A produced an R2 of 0.74 (p<0.0001), an area under the ROC curve of 0.94, 
and predicted attainment of Class A for the validation sites with a success rate of 97%. 
These metrics all indicate good model fit and prediction success (Table 2.6). Variables 
associated with a significant decrease in the probability of attaining Class A were Percent 
IC (-0.52, p=0.04), Percent Agricultural Area (-0.43, p=0.01), and the erosion coefficient, 
or K Factor (-0.29, p=0.01). Logistic variables associated with a significant increase in 
the probability of attaining Class A were Percent D Soils (0.06, p=0.03) and Percent 
Resistant Surface at the point scale (0.04, p=0.01).   
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Table 2.6. Logistic regression results for algal samples. Two models are displayed: 
attainment of Class A and attainment of Class B or better. For each model, p-value, area 
under ROC curve (C), R2, and confusion matrix of model validation are given. 
Significant variables are displayed with beta coefficients, standard error (S.E.), Wald Z 
statistic, p-value, and odds ratio. Variables with negative coefficients and odds ratios less 
than one indicate the variables are associated with a decrease in probability of attaining 
that statutory class. 

 

 

Algae Attainment Models
Attaining A R2=0.74 C=0.94 p<0.0001

Coefficient S.E. Wald Z p-value Odds Ratio
Intercept 7.75 3.44 2.25 0.02  - 
IC (%) -0.52 0.25 -2.05 0.04 0.53
Agriculture (%) -0.43 0.16 -2.65 0.01 0.73
K Factor -0.29 0.11 -2.55 0.01 0.79
D Soils (%) 0.06 0.03 2.19 0.03 1.06
Resistant Substrate - point scale (%) 0.04 0.01 2.62 0.01 1.06

Observed
Class A B or Below
A 8 1 9
B or Below 0 20 20
totals 8 21 29 97% correct

Attaining A or B R2=0.81 C=0.97 p<0.0001
Coefficient S.E. Wald Z p-value Odds Ratio

Intercept 10.39 3.83 2.71 0.01  - 
IC (%) -0.48 0.20 -2.43 0.02 0.62
Soil Depth (cm) -0.06 0.02 -2.35 0.02 0.97

Observed
Class A or B C or Below
A or B 13 2 15
C or Below 2 12 14
totals 15 14 29 83% correct
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 The algal model for predicting attainment of Class A or B contained only two 
variables that were significant   Percent IC (-0.48, p=0.02) and Soil Depth (-0.06, 
p=0.02)  and both were associated with a decrease in the probability of attaining Class A 
or B. The model had an R2 of 0.81(p<0.0001), an area under the ROC curve of 0.97, and 
predicted the attainment of the validation sites with a success rate of 83%.  

 The final algal logistic model for predicting attainment of Class C or better could 
not be validated. Given that only six of the 58 sites did not attain C or better, there were 
insufficient data to create a reliable model. For exploratory purposes, a model was 
created using the entire dataset of 88 sample sites. The only significant variable in this 
model was Percent IC (-0.28, p<0.0001), which was associated with a decrease in the 
probability of attaining Class C or better.  

 

DISCUSSION AND CONCLUSION 
 Results from both the logistic regressions and the Kruskal-Wallis paired 
comparisons provided some discrimination among the watershed and environmental 
variables that might be expected to influence stream vulnerability. Based on both 
macroinvertebrate and algal BIOMON data, variables associated with low vulnerability 
and higher probability of attaining statutory class were Percent Sand and Gravel 
Aquifers, Percent Resistant Surface at the point scale, Percent Natural Area at the point 
scale, Percent Forested Area at the buffer scale, Percent A or B Soils, Depth-to-Water 
Table, July Maximum Temperature, and Summer Precipitation (Table 2.7).   
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 Variables associated with not attaining statutory class and/or high vulnerability 
were Percent IC, Percent Wetlands, Percent Agricultural Area, K Factor, Soil Depth, 
Longitude, and Latitude. Many of these variables correlate with and reflect the spatial 
distribution of sample sites, as indicated by the differences in Longitude and Latitude 
between high and low vulnerability sites. There is a clear geographic separation between 
sites that attain their statutory class (many of which are located in the southwestern 
portion of the state where summer temperatures and precipitation are higher on average), 
and those that do not attain (which tend to be concentrated in the northeastern portion of 
the state in a region associated with relatively high Percent Agricultural Area) (Figure 
2.5).  
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Table 2.7. Summary of significant watershed variables. Variables (and units) that are 
correlated with macroinvertebrate and algal indicators of stream health and integrity are 
listed based on their influence on attainment of statutory classes and/ or their effect on 
vulnerability.  

Macroinvertebrates 
Variables associated with attainment and/or low vulnerability 

Logistic Regression Kruskal-Wallis 
Aquifer (%)   A/B Soils (%) 
Resistant Surface - point scale (%) Depth-to-Water Table (cm) 
Natural Area - point scale (%) July Maximum Temperature (oC) 
Forest - buffer scale (%) Summer Precipitation (in)  

Variables associated with not attaining, and/or high vulnerability 
Logistic Regression Kruskal-Wallis 

Wetlands (%)  Wetlands (%) 
Agriculture (%)  Agriculture (%) 
    D Soils (%) 
    Longitude (DD) 
    Latitude (DD) 

Algae 
Variables associated with attainment and/or low vulnerability 

Logistic Regression Kruskal-Wallis 
D Soils (%)   Summer Precipitation (in) 
Resistant Surface - point scale (%)     

Variables associated with not attaining, and/or high vulnerability 
Logistic Regression Kruskal-Wallis 

K Factor     Agriculture (%) 
Soil Depth (cm)      
Agriculture (%)       
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 A number of variables associated with Soil Depth and drainage properties varied 
independently of the geographic gradients described above. Soil variables associated with 
a decrease in vulnerability included:  Percent Resistant Surface, Percent A or B Soils, 
Depth-to-Water Table, and Percent Sand/Gravel Aquifers.  Sand/gravel aquifers at the 
watershed scale decrease stream vulnerability because these hydrogeologic features serve 
as a reliable source of groundwater. A higher Percent A or B Soils allows increased soil 
infiltration, which leads to cooling and filtering of drainage water before it enters the 
stream (Poff et al. 2006). In addition, the presence of well-draining soils allows IC 
remediation efforts such as infiltration ponds to be more effective (MEDEP 2013). A 
higher percentage of surfaces resistant to erosion, especially at the point scale, indicates 
that the stream bed is less likely to be affected by flood episodes.  

 Percent Natural Area at the point scale and Percent Forested Area at the buffer 
scale are highly correlated with IC (-0.85 and -0.89, respectively), and they tend to have 
the opposite effect on attainment and vulnerability compared to IC. Prior research has 
demonstrated the important role that intact riparian areas serve in maintaining aquatic 
community structure and function (e.g., Jones 2001, Wang et al. 2001, Vannote 1980, 
Gregory et al. 1991). As a result, we would expect an inverse relationship between the 
percent riparian forested buffer and stream vulnerability. Several significant variables in 
the models were more difficult to interpret. In the macroinvertebrate logistic regression of 
attaining Class A, Percent Wetland Area is associated with a decrease in the probability 
of attainment. Additionally, in the Kruskal-Wallis tests, Percent Wetland Area was 
significantly higher among macroinvertebrate high-vulnerability sites.  
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 Wetlands can serve as a stabilizing hydrologic and chemical buffer, as well as a 
modifier of stream habitat conditions. The potential influence of wetlands depends in part 
on their scale, type, and location.  

 There are several ways in which wetlands may contribute to stream vulnerability. 
In Chapter One, a review of literature regarding wetland effects on downstream water 
quality indicated that wetlands may have a positive effect on water quality by decreasing 
inorganic suspended solids, fecal coliform, specific conductivity and nutrients (Johnston 
et al. 1990), and by retaining nutrients and increasing DOC (Jordan et al. 2011, Marton et 
al. 2014, Bowden 1987, Saunders and Kalff 2001, Strayer et al. 2003). However, other 
researchers found very little change in nutrients and ANC between water flowing into 
and out of wetlands (Yavitt et al. 2006). Finally, some studies concluded that wetlands 
increased dissolved nitrogen and DOC, and decreased pH (Gorham et al. 1998). 

 In light of these previous studies, it is plausible that wetlands in our study 
watersheds exerted a negative effect on attainment of stream Class A.  Where they are 
present, riparian wetlands may correspond with altered inputs of detritus, more solar 
input and algal NPP, or oxygen depletion of drainage inflows to the stream, any of which 
could affect aquatic insect assemblages. Where acidic fens drain into streams, the 
dystrophic acidic conditions may alter the biotic community so that it differs from the 
reference forested baseline community composition. Moreover, the anoxic soils and 
sediments of wetlands and beaver impoundments may be a source of sulfide derived from 
microbial sulfate reduction, and this may act as a stressor for aquatic biota.  
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 Soil-related variables that are associated with an increase in vulnerability are K 
Factor and Soil Depth. We expect K Factor to increase stream vulnerability because it 
increases with soils that are more prone to erosion and subsequent siltation of 
downstream waters (USDA NRCS 2012). It is counterintuitive that increasing Soil Depth 
would negatively affect the algal community, but this variable is positively correlated 
with IC (0.60), as well as negatively correlated with percent natural and forested area      
(-0.76 and -0.75, respectively); therefore, Soil Depth could be confounded by the urban-
to-natural gradient of the sample sites. Deeper soils may also correspond with increased 
sediment loading to streams from channel incision of deep soil deposits, and possible 
temporal delays in the delivery of winter road salt stress to streams (i.e., most salt 
leaching occurs in spring when biota are more vulnerable, rather than in late winter). In 
addition, if deeper soils correlate with agricultural land use, it may be the farm activities 
on deep soils that degrade streams. A final possibility is that deeper soils may be 
composed of a thick marine deposit of silt and clay (i.e., low permeability) overlaying 
porous glacial till, so that the two-layer soil acts more like a thin soil that delivers 
hydrologic quickflow to streams. Furthermore, this variable is weak in the model (odds 
ratio 0.97), and therefore is not highly influential.  

 The variable Depth-to-Water Table was included in the analysis to serve as a 
proxy for groundwater input. In our results, a shallower water table at both the watershed 
and buffer scale was associated with high vulnerability sites based on the Kruskal-Wallis 
tests. This is counterintuitive in one sense, because a higher water table would indicate 
more groundwater input into the stream. However, this variable may be behaving 
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similarly to Soil Depth, creating quick flow along shallow flow paths during precipitation 
events, which can generate more hydrologic disturbance in the stream channel. 

 Another variable, Percent D Soils, had a differential enigmatic relationship to 
macroinvertebrates and algae.  Based on macroinvertebrate data, there was a large 
difference in median Percent D Soils between low and high vulnerability sites at all three 
scales (6.1 vs. 13.8 at the watershed scale, 13.9 vs. 33.4 at the buffer scale, and 26.9 vs. 
48.3 at the point scale, respectively), indicating that an increase in the area of D soils is 
associated with higher vulnerability and non-attainment. On the other hand, Percent D 
Soils was significant in the algal model of attaining Class A and had a positive coefficient 
(0.06) and an odds ratio above 1 (1.06). This indicates that Percent D Soils increased the 
probability of attainment of Class A in the algal model. Why might poorly drained D 
soils be correlated with attainment and low vulnerability in some cases, but correlate with 
high vulnerability in other cases?  

 Cuffney et al. (2011) reported that algae are sensitive to siltation and nutrients, 
while macroinvertebrates are susceptible to flood disturbances. As a result, differences in 
habitat requirements between the two communities may play a role in explaining the 
differential responses of these two biotic indices. In general, landscape analyses 
examining the effects of watershed characteristics on stream water quality focus 
primarily on anthropogenic variables, with additional consideration of simple natural 
variables such as riparian area, elevation, or precipitation (e.g., Esselman et al. 2011, 
Jones 2001, Poff et al. 2006, Wang et al. 2001). Because of this, there is very little 
research investigating the effects of poorly draining soils on downstream water quality. 
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 We might expect streams surrounded by D soils to be flashier in terms of 
hydrology and perhaps warmer in summer because of increased shallow, rapid flow 
contributions to overall stream discharge. These conditions create an in-stream stress 
regime that may negatively affect macroinvertebrate communities. On the other hand, D 
soils are characterized by having a high percentage of clay and therefore are more 
resistant to erosion and subsequent sedimentation of downstream waters. This can create 
more stable banks, as well as decrease siltation of the water column, allowing for better 
health of algal communities. Finally, because D soils cause more overland flow and a 
flashier hydrograph following precipitation events, the stream channel may be more 
accustomed to this flow regime and thus less affected by the addition of impervious 
surfaces as compared to streams in well-draining watersheds. Taken together, uncertainty 
remains regarding the effect of D soils on stream response to urbanization, and more 
research is needed to determine the effect of poorly draining soils on stream vulnerability.

 In general, it appears that sites with lower vulnerability are able to remain at 
higher attainment classes despite high IC levels if they have well-draining soils, low 
erosion capacity, high groundwater input, resistant stream bed substrate, and intact 
riparian buffers. Streams with higher vulnerability to IC stress tend to be associated with 
watersheds containing wetlands, more shallow poorly-draining soils, more erodible soils, 
and a higher percentage of agricultural area. 

 We would be remiss if we neglected to mention the error associated with multiple 
comparisons. The Kruskal-Wallis rank test was used to compare distributions of 27 
variables, most of which are measured at three spatial scales, resulting in approximately 
80 tests. As the number of tests increases, the likelihood of type I error increases. This is 



55 
 

because random errors accumulate with repetitive testing and it then becomes more likely 
that the two groups being compared will appear to differ in terms of at least one variable. 
While we did not correct for the error associated with multiple comparisons, we are 
confident in the results of the Kruskal-Wallis rank tests because they are largely 
consistent with the logistic regression results, and they make logical sense based on the 
literature.  

  Results of this study provide a conceptual basis for an initial assessment of stream 
vulnerability to ongoing and future development activities in Maine. In combination with 
results presented in the next chapter, this research can help municipalities, landowners, 
regulators and land-use planners to guide land use practices in such a way as to minimize 
negative stream impacts and to avoid the need for costly stream restoration.  
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CHAPTER THREE: 
PREDICTING STREAM VULNERABILITY TO URBANIZATION STRESSORS 

USING A BAYESIAN NETWORK MODEL PARAMETERIZED  
WITH EXPERT KNOWLEDGE 

INTRODUCTION 
 When a drop of rain hits the ground, it follows a path through a watershed and 
eventually makes its way to a stream or river. Throughout the journey, the drop of water 
interacts with different components of the watershed. For example, it can pass across an 
agricultural field and pick up soil and fertilizer, or wash over a parking lot and collect oil 
residues. Once it reaches a stream, the drop of water that is now contaminated from 
human land use in the watershed can affect the biological community living in the 
stream.  

 Almost universally, anthropogenic changes in a watershed have the potential to 
exert negative effects on a stream  community. However, all streams are not 
created equal; some have the capacity to withstand higher amounts of human-induced 
land use change than others. This is because watersheds can have natural built-in 
buffering capacity or resistance/resilience factors such as an intact forest on either side of 
the stream or wetlands which help buffer flows and filter out sediments and toxins. In this 
chapter, a network modeling approach was used to explore the influence of watershed 
resistance and resilience factors on the vulnerability of streams to anthropogenic stressors 
associated with urbanization.   
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Differing Responses of Watersheds to Increases in Urban Area 
 
interconnected suite of stressors and responses that accompany urban development in a 
watershed. In an effort to provide a conceptual framework for understanding this 
phenomenon, Schueler (1994, 2009) proposed the impervious cover model (ICM) to 
describe the amount of degradation that occurs in a stream with increasing urbanization 
in the surrounding watershed. Impervious cover (IC) is any surface that impedes 
movement of precipitation into subsurface flow; thus, IC includes roads, roofs, and 
parking lots. In Maine, evidence suggests that beyond a threshold value of ~ 6% 
impervious cover in a catchment, stream water and habitat quality begin to decline, with 
an associated decrease in aquatic species richness and intolerant taxa in the 
macroinvertebrate community (Morse et al. 2003). IC, however, is not always the best 
predictor of stream quality, especially when there is less than 10% IC in the watershed. 
At these low IC levels, forest cover, road density or crop cover may have better 
predictive power (Schueler et al. 2009).  Furthermore, Wright (1995) reported that 
patterns of aquatic insect abundance can vary at low levels of IC due to site-specific 
factors related to nutrients and organic compounds.  

 Given the observed variability of stream quality at low values of watershed IC, 
Schueler et al. (2009) proposed a new version of the ICM that resembles the shape of a 
cone (Figure 3.1). In that model, water quality varies substantially at low values of IC, 
whereas stream quality is more consistently degraded at higher values of IC. As such, the 
ICM reflects our understanding that some streams may be more sensitive or resistant to 
degradation than others, especially at low values of IC.  
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Figure 3.1. Response of stream quality with increasing percent watershed impervious 
cover. From Schueler et al. (2009).  

 Because the thresholds of IC at which streams exhibit symptoms of impairment 
differ among watersheds, we hypothesize that there are watershed characteristics that 
either ameliorate or enhance the effects of urbanization on water quality. For example, 
the presence of wetlands has been associated with a decrease in exports of nutrients, 
toxins, and sediments to streams (Johnston et al. 1990, Jordan et al. 2011, Marton et al. 
2014). Calcareous bedrock in a watershed increases acid neutralizing capacity (ANC) in 
streams and helps to prevent acidification and biotic stress (Sullivan et al. 2007, USGS 
1989). Shallow slopes decrease the flashy flows associated with impervious cover and 
allow water to infiltrate into the ground. Alternatively, some aspects of a landscape may 
make streams more vulnerable to degradation. If we can begin to identify and to 
understand the primary watershed characteristics associated with stream resistance to 
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degradation, it may be possible to predict which streams are more vulnerable to future 
land-use changes and to avert future impairment.  

 

Bayesian Networks in Ecological Applications 
 Traditional statistical methods struggle to tease apart which aspects of 
urbanization negatively affect stream biota and water quality. In this research, a Bayesian 
network (BN) was used to explore the causal web of interacting factors that account for 
stream vulnerability to the urban stress syndrome. Bayesian networks, also known as 
probability networks or Bayes nets, are statistical tools that represent systems based on 
interactions among variables leading from primary causes to a specific outcome (Chen 
and Pollino 2012). BNs are increasingly being applied to ecological research problems, 
where they are advantageous because of their ability to: (1) model systems despite 
uncertainty and missing data; (2) be updated with additional knowledge as it becomes 
available; (3) incorporate sub-models into the larger model framework; and (4) 
incorporate different types of data, including qualitative, quantitative and expert-derived 
data (Chen and Pollino 2012, Marcot et al. 2001, Uusitalo 2007).  

 Bayesian networks have been used to assess population viability of at-risk fish 
and wildlife (Marcot et al. 2001), for land suitability analyses (Meyer et al. 2014, Chow 
and Sadler 2010), for adaptive management decisions (Nyberg et al. 2006), and for water 
quality predictions (Reckhow 1999). McCloskey et al. (2011) used BNs in combination 
with GIS data layers, empirical data, and expert knowledge in order to identify areas of 
potential conflict between land-
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Kashuba et al. (2012) used expert-derived BNs to examine the relationships linking urban 
development to physical, chemical, and biological conditions in a stream. 

 Because BNs can be effective in helping to visualize complex ecological 
processes, the modeling process itself can be very informative, highlighting areas in 
which understanding is not complete and identifying areas that need more research 
(Gaddis and Voinov 2008, Marcot et al. 2001). By explicitly acknowledging the inclusion 
of subjective analysis, BNs provide a practical and transparent way to quantify the 
uncertainty associated with the inevitable subjectivity in ecological modeling (Krueger et 
al. 2012). 

 In situations in which the system is too complex or there is insufficient data to 
create a BN, the use of expert- or stakeholder-derived knowledge is common and is 

modeling or stakeholder knowledge to 
fill in data gaps, participatory modeling has several advantages. First, it creates buy-in 
from stakeholders who help to generate the model and consequently have more trust in 
the final product (Gaddis and Voinov 2008). Additionally, the process of participatory 
modeling creates a network of individuals who share similar concerns, creating a stronger 
platform from which to initiate change in a system (Krueger et al. 2012). Finally, a 
diverse group of experts can provide data that were not previously known or available. 
Moreover, some experts know the feasibility of management strategies the model 
proposes while others can provide anecdotal evidence that may be the only data available 
for some specific factors or processes (Gaddis and Voinov 2008).  
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Study Objectives 
 The objective of this research was to create an expert-derived Bayesian Network 
that uses spatially-explicit watershed characteristics as causal variables to predict the 
probability that a stream will become degraded in response to land-use change and 
urbanization. The investigation focused on the following related question: Can we predict 
the hypothetical future condition of streams in response to land-use change, but before 
the land-use change occurs? Other related studies have addressed this issue using 
alternative futures scenarios in Oregon (Van Sickle et al. 2004) and Iowa (Santelmann et 
al. 2004), and exploring the influence of different management scenarios on streams in 
Australia (Turak et al. 2011). This research is intended to provide a tool for ranking 
watersheds throughout the State of Maine based on their vulnerability to urbanization, so 
that prospective development can be diverted from susceptible watersheds to other 
watersheds that are less likely to become degraded by land-use change. In this way, local 
governments will be able to allow urban expansion while protecting stream health and 
minimizing municipal tax burdens associated with stream restoration.  

 

METHODS 
Study Area 
 As the most northeastern state in the U.S., Maine is characterized by cold winters, 
mild summers, and is dominated by forested land cover (80%), wetlands (10%), 
agriculture (5%), and human development (5%). Maine has an east-to-west and south-to-
north gradient of human development, with most development focused on the coast and 
in the warmer southern region of the state, but tapering off towards the north and west.
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Most agriculture is concentrated in the northeastern part of the state, while the western 
mountains and the northwestern portion of the state are primarily working forests or 
protected forest land. Although currently Maine has a relatively sparse population, 
development has been increasing substantially and is predicted to continue increasing. 
The US Forest Service Forests on the Edge (FOTE) research indicated that four major 
watersheds in Maine are ranked at the top of the list for watersheds expected to 
experience substantial development growth on private forests (Stein et al. 2006, Stein et 
al. 2009, Mockrin et al. 2014).  Preliminary data from the most recent study indicated that 
housing density is expected to increase within major watersheds in Maine by up to 48.6% 
on private, non-industrial land, with development concentrated in the more southern and 
coastal regions of the State (Figure 3.2).  
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Figure 3.2: Maine primary land use/land cover, with major watersheds outlined to 
indicate projected housing increase on private forest land. Housing data based on 
Mockrin et al. (2014) and land cover from MELCD 2004.  

 

Expert Elicitation, Data Processing, and Model Creation 
 Expert Recruitment 
 The BN was created with the guidance and participation of nine experts who were 
recruited from a list of Maine professionals in the fields of watershed management, 
stream ecosystem monitoring, environmental engineering and stormwater management, 
or stream ecosystem research. It was our goal to recruit participants with a wide range of 
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expertise and views in order to develop a holistic understanding of the processes driving 
stream impairment in the state (Krueger et al. 2012). For the purposes of BN model 
development, experts are individuals who have detailed or specialized knowledge gained 
through experience, education, or training regarding the system in question (Kuhnert et 
al. 2010). A person who researches streams or works with streams frequently would be 

was not biased by any factor such as age or gender. Eight of the nine experts on our 
research team have devoted most of their careers to the study and management of streams 
in Maine, and all experts possess extensive knowledge of stream ecology. Recruitment 
was done using an initial email and follow-up phone calls (Appendix A).  

 

 Initial Expert Elicitation, Variable Identification and Model Structure 
 A large body of research describes techniques to elicit expert judgments 
effectively and with minimal bias. Expert elicitation can be done directly, by asking 
experts about values or criteria to use in the model, or indirectly, by compiling 
information from broad survey questions answered by experts (Martin et al. 2011). There 
are several different complications that can arise in expert elicitation, including 
motivational bias, overconfidence, dominance of one or more members of the group, 
polarization within the group, and group think (agreeing on an answer in the interest of 
finishing the task or not wanting to raise a contrary view; Martin et al. 2011, Low Choy 
et al. 2009). To avoid some of these issues, experts can be made aware of the potential for 
bias (Low Choy et al. 2009) and experts can work together but report their answers 
individually (Martin et al. 2011). Throughout the BN development, it is important that the 
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process and goals are clear to the experts, so the elicitation can be as accurate as possible 
(Low Choy et al. 2009). When necessary, experts can be asked to explain their answers 
when they voice counter-intuitive views or outlying opinions (Low Choy et al. 2009).  

 In this study, expert elicitation began with a four-hour long focus group during 
which participants learned the goal of our research, the motivation for creating an expert-
derived BN (Low Choy et al. 2009), our definition of stream vulnerability, and the basic 
principles of the Bayesian modeling process. We then asked participants to list all of the 
factors that they believe influence or govern stream vulnerability to urbanization in the 
State of Maine. Equipped with that list, spatial data layers were acquired that either 
directly represented the factor, or served as a proxy variable when no direct data were 
available. This then set the stage for construction of an alpha level model based on 
Marcot (2006).  

 The first step in BN model development was to create an influence diagram 

probabilities of different combinations of those variables that lead to the probability of a 
final ecological response outcome (Marcot et al. 2006). BNs consist of nodes describing 
categorical or discretized continuous variables, and links that connect the interacting 
variables. Nodes with incoming links (child nodes) have conditional probability tables 
(CPTs) that describe the probability of different outcomes occurring given all the possible 
combinations of the various input nodes (parent nodes). Parent nodes have prior 
distributions based on data or expert opinion; in our case, the distributions were based on 
spatial GIS data. Given that model parsimony is an important consideration in creating a 
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BN, Marcot et al. (2006) suggested limiting the number of parent nodes linked to any 
child node to three or fewer, and the number of levels of the model to four or fewer.  

 

 Processing Catchment Data 
 The National Hydrography Dataset (NHD) Version 2 (USGS 2012) was used as 
the watershed layer in this analysis. This dataset represents watersheds and sub 
watersheds at the reach scale, starting at headwater streams and spanning the whole 
stream length by reach-scale subcatchments. Because the watersheds are nested and 
overlap each other down the stream network, preprocessing of the catchments was 
necessary. Catchments were separated into three groups: headwater catchments, reach-
scale catchments, and adjoint catchments that span the entire upstream area of the reach-
scale catchment (Figure 3.3).  

 Adjoint catchments were created using ArcHydro Tools in ArcMap 10.0 (ESRI, 
Redlands, CA). Spatial variables were transformed to 30m pixels and were then 
summarized for each group of catchments using the Raster package in R. Summarized 
data for each adjoint catchment were then combined with summarized data for the reach-
scale catchment, and headwater catchments and reach-scale catchments were recombined
for analysis. An upper size limit of 125 km2 was chosen because catchments larger than 
this were assumed to be inherently less vulnerable to urbanization stress due to their 
dilution capacity. This decreased the number of catchments from approximately 67,000
to 23,554. Collection of each spatial variable included in the model is described in greater 
detail later in this chapter.  
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Figure 3.3. Diagram of the process of summarizing watershed information for reach-scale 
watersheds using adjoint catchments.  

 
 Discretization and Conditional Probability Tables 
 BNs are limited in their ability to use continuous data; therefore, all continuous 
data must be separated into two or more different classes through a process called 
discretization  (Chen and Pollino 2012). Discretization of continuous variables can 

cause a number of complications in the BN development process. Choosing the number 
of states and the discretization values is challenging, and differences in these values can 
lead to large differences in the model output, so it is best to base the discretization on the 
numerical distribution of the input data in order to minimize error (Uusitalo 2007). In 
discretizing our continuous variables, the summaries for each spatial variable across all 
watersheds were presented to the experts with suggestions for cutoff values (Appendix 
B). Through iterative emails and phone calls, all experts registered their opinions for 
optimal cutoff values, and variables were ultimately classified into no more than three 
states as per Marcot et al. (2006).  
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 Surveys containing the BN influence diagram and all conditional probability 
tables were given to the experts to complete (Appendix C). CPT surveys were 
administered in small group meetings or one-on-one with the principal investigator (PI). 
During the meetings, the PI explained the model objectives again and helped to guide the 
experts through the process of completing the complex CPTs. The CPTs depicted each 
possible unique combination of the input variables and provided a 1  5 scale for ranking 
the unique combinations based on their potential contribution to stream vulnerability 
from urbanization stressors (Table 3.1).  

 Below each CPT, a comment section was provided where each expert was asked 
"What assumptions are you making about the interactions of these variables in affecting 
vulnerability to this stressor? Do you have other thoughts or comments?" This 
information helped the PI to determine whether the CPTs were filled out correctly, where 
experts had differing opinions, and where experts had comments about variables or 
variable interactions.  
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Table 3.1. Example of a CPT survey table. Here the distinct states of the variables well-
draining soils and drainage area are given a value between 1 and 5, with 1 being least 
vulnerable to salt stress and 5 being most vulnerable to salt stress.  

  
Probability of Vulnerability to 
Salt Stress 

Well-draining Soils Drainage Area (km2) 
Less 

Vulnerable  
More 

Vulnerable 

> 30% 
> 5 1 2 3 4 5 

0 - 5 1 2 3 4 5 

10 - 30 % 
> 5 1 2 3 4 5 

0 - 5 1 2 3 4 5 

< 10% 
> 5 1 2 3 4 5 

0 - 5 1 2 3 4 5 
 

 To help in visualizing the meaning of the values between one and five, Figure 3.4 
was shown to the experts. It was assumed that a value corresponding to 3 on the 
regression curve between stream water quality and impervious cover represented the 
average response of a stream to watershed urbanization. Values of 1 and 2 represented 
streams that are less disturbed in response to impervious cover, and are therefore below 
the curve. Values of 4 and 5 represented streams that become degraded with less 
impervious cover in their watersheds, and thus are more vulnerable to urbanization.  

 Throughout the survey, care was taken to keep this spectrum of "good" to "bad" 
ranging from 1 to 5 in order to minimize confusion. Within the small groups, discussion 
was encouraged but experts were asked to write their answers separately in order to 
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minimize group bias (Martin et al. 2012, Low Choy et al. 2009). In most cases, surveys 
were not finished in the time allotted and were returned after several weeks.  

 

Figure 3.4. Conceptual image of Likert ranking of stream vulnerability adapted from 
Schueler et al. (2009).  

 In order to convert the 1 to 5 Likert scale into probability distributions, methods 
from Meyer et al. (2014) were followed. Likert scores were converted to probability 
values by first taking the median of all expert responses. The median was chosen to 
minimize the influence of outlying expert responses. Then these summarized Likert 
values were converted to a probability range using the scale shown in Table 3.2. In order 
to account for some of the variation in expert responses, the coefficient of variation (CV) 
was used for Likert values between 2.8 and 3.2 for three-state nodes. If the median of 
expert responses fell in this range and the CV was low, then there is high confidence that 

ely, if the 
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experts did not agree, which results in a high CV, then there is low confidence that the 

across all three states.  

Table 3.2. Conversion of median values of expert responses on the Likert scale to state 
probabilities for two- and three-state nodes.  

 
 

 The model structure and conditional probability values were entered into the 
modeling software Netica (version 5.12, 2013, Norsys Software Corporation, Vancouver, 
British Columbia). Netica allows each watershed to be processed individually, and 
predicts a final probability of vulnerability. This final BN takes spatial data compiled for 
Maine watersheds, discretized at the values agreed upon by the experts, and runs through 

Min. Max. CV Low Medium High
1 1.3 100 0 0

1.3 1.6 75 25 0
1.6 2.2 50 50 0
2.2 2.8 25 75 0
2.8 3.2 < 0.15 0 100 0
2.8 3.2 0.15 - 0.3 25 50 25
2.8 3.2 > 0.3 33 34 33
3.2 3.8 0 75 25
3.8 4.4 0 50 50
4.4 4.7 0 25 75
4.7 5 0 0 100

1 1.8 100 0
1.8 2.6 75 25
2.6 3.3 50 50
3.3 4.2 25 75
4.2 5 0 100

Stakeholder Likert         Score State Probabilities

Three-State 
Nodes

Two-State 
Nodes
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the CPTs that are based on expert judgment to give a value for probability of 
vulnerability to urbanization for each watershed.  

 

Sensitivity Analysis and Model Validation 
 A sensitivity analysis was performed on the BN model in an effort to rank the 
variables based on their predictive power in the model (Gaddis and Voinov 2008) and to 
determine the direction of influence for each variable. Sensitivity analysis is a function 
built into Netica that assigns a value of variation reduction to each variable and node in 
the model, ranking them from most important variable or node to least important. This 
gives us insight into the main drivers of stream vulnerability, and can help determine the 
agreement between the model and the input of the experts.  

 An important part of making any model is validation. Bayesian networks, 
however, are often difficult to validate and in many cases are not validated at all. 
Validation techniques include using actual data (Allan et al. 2011), consulting with an 
expert panel (Meyer et al. 2014), or simply using the sensitivity analysis (Aguilera et al. 
2011). In many cases, BN model validation is skipped entirely (Aguilera et al. 2011). In 
this research, model validation was done using two techniques. First, the samples in the 
high and low vulnerability categories used for the Kruskal-Wallis rank test in Chapter 
Two were run through the model to get vulnerability scores. We assumed that, if our 
model is representing vulnerability to urbanization correctly, samples in the high 
vulnerability category would be in either quartile 3 or 4 the quartiles of highest 
probability of vulnerability to urbanization. Samples in the low vulnerability category 
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would fall into either quartile 1 or 2, indicating that they have a low probability of 
vulnerability.  

 Another approach was taken to ascertain model agreement with attainment of 
statutory class expectations. Every stream in Maine is expected to attain a statutory class 
of AA/A, B, or C, in order of decreasing habitat quality and aquatic community 
composition (38 M.R.S.A Section 464 et. seq.). We expected that samples with lower 
than the MEDEP impervious cover vulnerability thresholds (Figure 2.1; Danielson et al. 
in press) that are not attaining will be in either quartile 3 or 4 of the BN vulnerability 
range. Similarly, samples that still attain their statutory class at higher than the 
vulnerability threshold will be in the lowest two vulnerability quartiles, indicating low 
vulnerability. In combination, the two validation approaches provided a way to test the 
model accuracy in a robust way.  

 

RESULTS 
Variable Selection 
 With assistance and feedback from the nine members of the focus group, 26 
watershed variables were chosen for use in the model (Table 3.3). Unlike the variables 
used in the analysis described in Chapter Two, spatial variables used for this analysis 
were all rasters of 30m pixels. Instead of MELCD 2004 land cover data, 2011 National 
Land Cover Dataset (NLCD) 30m pixel information was used for land use/land cover 
information. Each variable was measured at only one scale most variables were 
measured at the whole watershed scale, although some were measured at a 30 m or 60 m 
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riparian buffer scale. One variable, Percent Resistant Surfaces, was measured in a 30 m 
riparian buffer at the reach-scale of each catchment.  

 Percent Agricultural Area was defined as the NLCD 2011 Cultivated Crops land 
cover category. Percent Natural Area is NLCD 2011 Deciduous Forest, Evergreen Forest, 
Mixed Forest, Grassland/Herbaceous, Sedge/Herbaceous, Woody Wetlands and 
Emergent Herbaceous Wetlands land cover classes. Percent Forested Area is NLCD 2011 
Deciduous Forest, Evergreen Forest, and Mixed Forest classes. Percent Nonpoint Sources 
is NLCD 2011 Developed Open Space and Cultivated Crops. These NLCD 2011-derived 
variables were processed by reclassifying to Boolean raster layers, using a value of 1 for 
classes of interest, value of 0 for all others. Then zonal statistics in R was applied to sum 
the number of pixels in each watershed. Percent area was derived by dividing the sum of 
pixels of the land cover class by the total number of pixels in the watershed and 
multiplying by 100.  

  Percent Lake Area was created by extracting the Lake class of the National 
Wetland Inventory (NWI). Percent Wetland Area is the Wetland category of the NWI, 
while the variable Percent Acidic Wetlands is the Wetland category designated with the 
qualifying class of "a", which denotes an acidic wetland. These vector layers were 
converted to 5m Boolean rasters and were processed in the same manner as the NLCD 
variables described above.   
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 Stream/Road Intersections were created by using the Intersect tool to get points 
where the MEGIS road layer intersected with the NHDPlus V2 flowlines. Points were 
summed for each watershed, and were then divided by total watershed area to obtain a 
density metric. Dam locations were acquired through MEGIS, and were then summed by 
watershed for a count metric. Slope was derived from a USGS 10 m DEM. Average July 
Maximum Temperature and Average Summer Precipitation were obtained from the 14km 
PRISM climate raster. Data for the years 2009-2013 were averaged and then zonal 
statistics was applied to get an average value for the watershed.  

 The dichotomous variable Buffering Capacity was created from the Northeastern 
Aquatic Habitat Classification System (NEAHCS) produced by The Nature Conservancy 
(Olivero and Anderson 2008). This dataset assigns each stream in the NHDPlus V2 
network to one of three categories: acidic, low buffered; neutral, moderately buffered; 
and calcareous, highly buffered. Highly buffered and moderately buffered categories 
were considered  and were assigned a value of 1, while the acidic category was 
considered not buffered and was assigned a value of 0.  

 The variable Drains to Ocean was proposed by an expert we consulted who has 
observed that small watersheds that drain directly into the ocean have a lower chance of 
being recolonized from downstream, and therefore are more susceptible to impairment 
due to urbanization. This dichotomous variable was created by visually selecting 
catchments that drain directly into the ocean, assigning them a value of 1, and giving all 
other watersheds a value of 0. Nearest Healthy Stream was determined by creating the 
centroids of the NHDPlus V2 catchments, and then removing those associated with 
watersheds with over 7% IC (Morse et al. 2006). The Nearest tool was then applied to all 
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headwater catchments to obtain the distance in kilometers to the nearest catchment 
centroid. This was calculated for headwater streams only because we assume stream 
reaches lower in the network will be recolonized with downstream drift. Percent 
Resistant Surfaces was created with the help of an expert who selected the following 
categories of the MGS surficial geology layer as resistant to erosion: bedrock, ribbed 
moraine, stagnation moraine, till, and thin drift. The layer was then converted to a 30m 
pixel raster and was summarized in the same way as the NLCD variables. Percent 
Sand/Gravel Aquifers were downloaded from MGS and were summarized the same way 
as the NLCD variables to obtain the percent area.  

 

Model Structure 
 Spatial variables in the model were organized on the basis of their direct or 
indirect effect on stream vulnerability in relation to nine stress categories, including:  
flashiness, low base flow, sedimentation, heat, DO, nutrients, salt (chloride), acid, and 
toxins. Because it is important to keep CPTs simple, some individual stressors were 
separated into two intermediate nodes that organized spatial variables into either 
contributors or mitigators of that particular stressor. For example, because heat stress has 
five spatial variables that potentially contribute to vulnerability, this would create a CPT 
too large to be easily interpreted by the experts. Two variables were considered 
mitigators groundwater input and percent forested riparian area while the other three 
variables air temperature, small drainage area, and retained water were considered 
contributors. The nine stress categories were aggregated into one of two major stress 
regimes based on whether their contribution to vulnerability was likely to be exerted 
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through chemical or physical stress (Figure 3.5). A third section of the influence diagram 
was added to represent the variables that influence resilience, which is the capacity of a 
watershed to recover from stress or a stress event. Spatial variables included in this 
category are those that contribute to potential recolonization of the stream after a 
disturbance event. The output of these three collective nodes vulnerability to physical 
stress, vulnerability to chemical stress, and resilience were combined in the final node 
that predicts the overall probability of vulnerability to urbanization stress.  

 In some cases, not all experts agreed on including certain stressors. In these cases, 
the stressor remained in the model and experts were informed that they could chose to 
weigh that stressor less than the others in the respective conditional probability table. For 
example, all experts considered precipitation to be an important variable, but the range of 
precipitation summarized for all watersheds across the state was small enough that many 
experts decided not to consider this variable as important when filling in the Contributors 
to Flashiness Stress node.  
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 The definition of the groundwater variable was a source of difficulty. Despite its 
role as one of the most important variables affecting stream ecosystem health, there is no 
reliable spatial layer that represents groundwater inputs across the State of Maine. To 
circumvent this obstacle, experts were consulted about proxy variables that could be used 
to estimate groundwater input into streams. As a result, three variables were chosen: 
Percent Sand/Gravel Aquifer at the riparian scale, Soil Depth, and the combined Percent 
A, B, A/D, and B/D Soils. This last variable is moderately different than the variable 
Percent A or B soils and was compiled through the NRCS Web Soil Survey the same way 
as the other soil variables, described above. Besides the area of soils classified in 
hydrologic groups A and B, we added the classes A/D and B/D which describe well-
draining soils with water tables higher than 50 cm (USDA NRCS 2012). We assume 
well-draining soils with high water tables are likely to add groundwater into streams. To 
combine the three variables, a CPT was created and was completed by all the experts. In 
every part of the influence diagram where groundwater was a parent node, the CPT 
combining the three variables was used.   

 

Model Results Vulnerability to Urbanization Stress  
 Vulnerability scores are the output of the final node in the Bayesian network. The 
output is the probability of vulnerability; therefore, it represents the likelihood that the 
stream is highly vulnerable. Low probability of vulnerability indicates that based on our 
model the stream has low vulnerability. High probability of vulnerability indicates that 
the stream is highly vulnerable. These probability values are therefore a vulnerability 
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he spatial distribution of watersheds grouped into the four 
different vulnerability quartiles is displayed in Figure 3.6.  

 

Figure 3.6. Vulnerability scores for 23,554 reach-scale catchments displayed by quartile 
(from lowest =1 to highest = 4) for the State of Maine. County boundaries are shown in 
black.  
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 The distribution of vulnerability scores is semi-normal with an average 
vulnerability score of 55.61, indicating that there are more watersheds with high 
vulnerability than low vulnerability (Figure 3.7). The range of vulnerability is broken into 

 quartiles. Low vulnerability is a vulnerability score 
in quartiles one and two, or less than the median (57.19). High vulnerability are those 
watersheds with a vulnerability score greater than the median, which are in quartiles three 
and four.  

Figure 3.7. Range of vulnerability scores as well as values for minimum, median, mean, 
maximum, and quartiles. The red box is the range of values considered high vulnerability
and the green box is the range of values considered low vulnerability. 
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Sensitivity Analysis 
 Sensitivity analysis shows the order of importance of variables in determining the 
final probability of high vulnerability (Marcot 2006). In Netica, the variance reduction 
tool gives a value for each input variable and node that indicates its influence on the final 
model output (Figure 3.8). In order to determine the direction of influence of each 
variable and node, each node was set to its highest state while all others remained 
unchanged, and the direction of change in the probability of high vulnerability was 
recorded. If the probability of being highly vulnerable decreased when the variable was 
set to its highest state, that variable was considered to increase stream resistance to 
degradation. In this analysis, model variables that increased the probability of 
vulnerability were termed "negative" variables, while variables that decreased the 
probability of vulnerability were termed "positive" variables.  
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Figure 3.8. Variance reduction and direction of influence of input variables and child 
nodes. Positive variables and nodes those that decrease the probability of 
vulnerability are shown in boxes. All other variables and nodes increase the probability 
of vulnerability. 
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 Based on the variance reduction sensitivity analysis, the most influential variables 
in the model were Upstream Buffer, Drains-to-Ocean, Percent Crops, Forested Buffer, 
Watershed Area, and Presence of a Sand/Gravel Aquifer. Least important variables were 
Percent Retained Water, Summer Precipitation, Percent D Soils, and Resistant Substrate. 

  Upstream Buffer, Riparian Forest, Watershed Area, and Presence of Sand/Gravel 
Aquifers decreased the probability of vulnerability (positive variables), while Drains-to-
Ocean and Percent Agricultural Area caused an increase in probability of vulnerability 
(negative influence). Upstream Buffer combines two factors that can influence biotic 
communities: the degree to which a riparian zone is intact, and the length of upstream 
network from which organisms can drift downstream to re-colonize a stream reach after a 
disturbance event.  

 Forested buffers have been shown in myriad studies to be an effective mitigator of 
stream stress (e.g., Peterjohn and Correll 1984, Weller et al. 1998). Decreasing stream 
vulnerability with increasing watershed size is an underlying assumption of this study, 
and this variable is the third most important of the positive variables in the model. The 
variable Presence of Sand/Gravel Aquifers in the 60m stream buffer was added to the 
model because of its potentially large influence on groundwater input. To paraphrase one 
expert's opinion of this variable, although the aquifers do not exist in the majority of the 
watersheds, where they do intersect a stream they can make all the difference in 
resistance to urbanization stress. The fact that these variables emerged as having the 
greatest positive effect on stream resistance to degradation in our model indicates another
noteworthy agreement with the expert opinion.  



86 
 

 The variable Drains-to-Ocean was proposed by one expert because in his personal 
experience monitoring streams in Maine, small streams that discharge directly into the 
ocean are incapable of handling much urbanization in their catchments. He ascribed this 
to the fact that organisms cannot migrate upstream from larger stream reaches that are 
less vulnerable, because they are absent when a stream drains into the nearby ocean. 
Although the inclusion of this variable was not proposed by more than one expert, it 
emerged as the most influential negative variable in the model. This is both because it is 
located close to the final output node in the model so its influence is not diluted by 
multiple conditional probability nodes, but also because experts agreed that it can have a 
large effect on recolonization potential.  

 Agricultural area is a well-documented stressor (e.g., Allan et al. 1997), and 
therefore it makes sense as one of the most influential negative variables. In some cases, 
however, the variable was not interpreted by the experts as negative due to the increased
stress it may cause to downstream ecosystems. In the experience of many of the experts, 
agricultural area is often among the first areas to be developed. Therefore, the variable 
Percent Agricultural Area was scored in the CPT as negative because it represented area 
suitable for, and likely to be, developed.  

 The most influential child nodes were Vulnerability to Physical Stress, 
Vulnerability to Chemical Stress, and Resilience, because they are directly linked to the 
Overall Vulnerability node. After these nodes, Vulnerability to Heat Stress, Vulnerability 
to DO Stress, Vulnerability to Base Flow Stress, and Vulnerability to Flashiness Stress 
were most influential in affecting Overall Vulnerability. This corresponds to the 
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sentiment of the experts, who generally agree that these stressors are the most important 
in affecting stream biotic communities. 

 

Model Validation  
 Model validation was performed through two different techniques in order to gain 
a robust understanding of how our results compare with real-world stream condition and 
response to urbanization. The first technique compared model results with the high and 
low vulnerability sample categories used for the Kruskal-Wallis rank test presented in 
Chapter Two. The second technique investigated how well our model predicts attainment 
of a stream's expected statutory class using 108 macroinvertebrate samples collected by 
MEDEP that were used in the logistic regression presented in Chapter Two.  

 

 Validation using High and Low Vulnerability Categories  
  Algal and macroinvertebrate sample data were categorized into "Low" and "High" 
vulnerability categories based on the impervious cover vulnerability thresholds from 
Danielson et al. (In Press) as well as their attainment class based on the MEDEP 
discriminant analysis of 30 biotic community variables. Sites with low vulnerability are 
those that attain A at greater than 3% IC, attain B at greater than 6% IC, or attain C at 
greater than 15% IC. Sites with high vulnerability are those that do not attain A at less 
than 1% IC, do not attain B at less than or equal to 3% IC, or do not attain C at less than 
10% IC (Figure 3.9). 
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Figure 3.9. Definition of high and low vulnerability sites. The range of high vulnerability 
sites is shown in red and the range of low vulnerability sites is shown in green.  

 Thirteen algal samples fell into the high vulnerability category and 20 fell into the 
low vulnerability category. Seven macroinvertebrate samples fell into the high 
vulnerability category and 27 fell into the low vulnerability category. To validate the 
model, these High and Low vulnerability sample sites were run through the BN to get 
their vulnerability scores. Vulnerability scores are broken into four quartiles, as described 
in Figure 3.6. We hypothesized that high vulnerability sites should fall into quartiles 3 or 
4, while low vulnerability sites should fall into quartiles 1 or 2 (Table 3.4).  
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Table 3.4. BN model validation based on high and low vulnerability categories. Data is 
from algal and macroinvertebrate samples used in Kruskal-Wallis analysis. 

 Macroinvertebrates Algae 
 High Low High Low 

Number in category 7 27 13 20 
Number Correct  4 14 2 11 
Percent Correct 57.1 51.9 15.4 55.0 

 

 Based on this validation technique, the model performs poorly. For 
macroinvertebrates, high and low vulnerability categories fall into the appropriate 
quartile about 50% of the time. For algal samples, the low vulnerability sites fell into the 
lower two vulnerability quartiles 55% of the time, while only 15% of the high 
vulnerability sites fell into the two highest vulnerability quartiles.  

  
Model Validation with Statutory Classes 

 The second validation technique places 108 MEDEP macroinvertebrate samples 
into categories based on the DEP vulnerability ranges and the statutory class they are 
expected to attain (Table 3.5). We expected that samples should not attain their statutory 
class at IC values greater than the vulnerability threshold, or they should be in one of the 
two lowest vulnerability quartiles. This is because we define low vulnerability as the 
ability of a stream to withstand development pressure past the IC impairment threshold. 
Similarly, we expect that samples should attain their statutory class at IC values lower 
than the DEP impairment threshold, or should be in one of the two highest vulnerability 
quartiles. This is consistent with our definition of high vulnerability being the impairment 
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of a stream with low development pressure, specifically percent watershed IC less than 
the DEP impairment threshold. 

Table 3.5. Model validation table of IC impairment thresholds by statutory class vs. 
quartile of vulnerability. Statutory classes A, B and C are shown broken into their 
respective vulnerability thresholds based on Danielson et al. (in press), as well as each 
quartile of vulnerability.  

 

 The only difference in this validation approach is that it considers the statutory 
class the stream is expected to attain, whereas the first approach looks simply at the 
attainment class of the sample taken at the stream and does not consider statutory class. 
Other than that, the validation is similar in the definition of low and high vulnerability as 
well as the cutoff values of IC (Figure 3.9). A sample is accurately classified if it is not 
attaining its statutory class at an IC value less than the higher DEP threshold and it falls 
in quartile 3 or 4 of vulnerability. A sample is also accurately classified if it is attaining 
its statutory class at an IC value greater than the lower DEP threshold and it falls in 
quartile 1 or 2 of vulnerability. If the sample is not attaining at high values of IC or still 
attaining at low values of IC, it is responding exactly how we would expect and therefore 

<1 1-3 >3 <3 3-6 >6 <10 10-15 >15 TOTAL
number not attaining 0 1 1 3 0 21 0 1 5 32
number in Q1 0 1 0 2 0 0 0 0 0 3
number in Q2 0 0 0 0 0 2 0 0 0 2
number in Q3 0 0 0 1 0 3 0 0 0 4
number in Q4 0 0 1 0 0 16 0 1 5 23
number attaining 12 9 2 30 14 5 2 0 2 76
number in Q1 6 3 1 18 6 2 0 0 0 36
number in Q2 2 3 1 8 6 1 1 0 0 22
number in Q3 1 3 0 4 1 1 0 0 0 10
number in Q4 3 0 0 0 1 1 1 0 2 8

108

StatClass B StatClass CStatClass A
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is medium vulnerability. Here we are only testing the high and low vulnerability, so we 
ignore those sites.   

 This validation technique can tell us multiple things about our model. There are 
32 streams that are not attaining their statutory class, compared with 76 streams that are 
attaining their statutory class. Only three streams are not attaining their statutory class at 
an IC value lower than the threshold, and the model classified one of these into the 
correct quartiles of vulnerability  i.e., quartile three or four (Table 3.6). Nine streams 
were attaining at higher than the IC threshold value, and the model classified five of them 
into the correct quartiles of vulnerability i.e., quartile one or two. Overall, the results of 
this second validation test were generally similar to results from the first validation test 
described earlier. 

Table 3.6. Results of second validation technique incorporating statutory classes 

  
Is attaining, high IC 
(should be in Q1 or Q2) 

Not attaining, low IC 
(should be in Q3 or Q4) 

Total Number 9 3 
Number in correct quartile 5 1 
Percent in correct quartile 56 33 

 

 It is interesting to note that Table 3.5 also provides another perspective on the 
validity of the model, if we focus on the 27 out of 32 non-attaining streams that are above 
the IC threshold for their statutory class. Twenty-five of these high IC streams are in the 
3rd or 4th quartile of vulnerability, which means that vulnerability and IC are convergent 
rather than divergent for these streams. As such, one or both factors may contribute to the 
lack of attainment. Although it may seem obvious that the streams are not attaining 
because they are in watersheds above the IC threshold, this may or may not be the 
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complete explanation. It is possible that some or all of the streams are only non-attaining 
at that IC level because they are also in the highest vulnerable category. We cannot 
conclude that the DEP model for IC is sufficient to explain the pattern and we cannot 
discount the possible influence of vulnerability. Thus, we have 25 out of 32 streams 
where both metrics are consistent in that: (1) the IC is high enough to be a stress; and (2) 
the watershed is in the most vulnerable category for responding adversely to the IC stress. 

 

DISCUSSION AND CONCLUSION 
 A major advantage of expert modeling is the ability to gain a better understanding 
of the state of knowledge surrounding the model topic (Chen and Pollino 2012, Marcot et 
al. 2001, Uusitalo 2007). Throughout our modeling process, we encouraged discussion 
among experts about all the variables and our model structure. In some cases, experts had 
opposing views about the effect of a variable on stream vulnerability to urbanization, and 
our modeling process helped to clarify and oftentimes resolve these debates. 

 A focus of discussion throughout the modeling process was the effect of well-
draining soils (i.e., Percent A or B Soils vs. Percent D Soils) on vulnerability to 
urbanization. Some experts argued that well-draining soils allow infiltration of water 
surrounding urban IC, which tends to increase stream health. Others thought that a 
watershed with poorly draining soils supports a stream that is naturally exposed to flashy 
flows, so the difference in hydrologic disturbance due to urbanization is not as large as a 
watershed with well-draining soils. This debate caused CPT surveys to be filled out 
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differently depending on which opinion the expert held, and it is clear from the summary 
in Figure 3.10 that some CPTs were more controversial than others.  

 

 

Figure 3.10. Average standard deviation of responses to CPTs for all child nodes in the 
BN. Greater standard deviation of responses indicates less agreement among experts. 

 It is clear that this BN network model contains a large amount of uncertainty that 
reflects the state of knowledge and the range of perspectives among our focus group 
panel of experts. While this leads to results that are less conclusive, it is enlightening 
nonetheless to discuss the sources of uncertainty. Child nodes with large standard 
deviations of CPT survey responses are areas in which experts are uncertain about the 
effect of the input variables on the vulnerability related to that node. For example, the 
table with the highest average standard deviation is Vulnerability to Salt Stress (sd = 1.2), 
indicating there was little agreement among the experts about how the input variables 
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affect stream vulnerability to chloride contamination. Figure 3.5 lists the input variables 
to each child node and Table 3.1 shows the CPT for the Vulnerability to Salt Stress node.  
Vulnerability to Salt Stress has two input variables: Percent A or B Soils and Watershed 
Area. All experts agreed that increased drainage area would decrease vulnerability to 
chloride stress due to larger dilution capacity. Experts disagreed on the effect of well-
draining surfaces. Five experts argued that increased amounts of well-draining soils 
would increase vulnerability, because chloride contaminated snow melt can seep into 
groundwater and be released into streams during summer months. The other four experts 
argued that well-draining soils would decrease stream vulnerability. No consensus could 
be reached. This shows us an area of research that should be more thoroughly explored.   

 The model validation process indicated that the BN predicts stream vulnerability 
at a success rate of about 50%. Many complications arose during the modeling process 
that could have affected the accuracy of the final model. Firstly, our definition of 
vulnerability was hard to grasp for many experts. This led to groups of experts 
understanding the model differently than others, causing confusion and inconsistency. 
Another problem that arose was domination of one voice over others. While we 
attempted to account for this by initiating discussion among experts and then having each 
person write his or her own separate response, some expert opinions still dominated. 
Furthermore, ease of use was a priority in designing the CPT survey, but some experts 
still were confused. We mitigated this problem by working in small groups to fill out the 
CPTs and by reviewing the responses and communicating with experts when responses 
seemed unintended or counterintuitive. Additionally, because the CPTs covered 27 pages 
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and required 419 Likert-scale responses, expert exhaustion became a problem. It could be 
the case that experts filled out CPTs later in the survey with more haste and less care.  

 The model structure itself lacks a robust quantification of uncertainty among 
expert responses. While the coefficient of variation is used to break probability 
distributions among Likert scores around 3 (Table 3.2), a better way of converting Likert 
scales to probability distributions would quantify uncertainty around all values, 1 through 
5. Other options are available to convert expert opinion to CPT responses that may be 
more appropriate than employing the Likert scale (Gaddis and Voinov 2008). Finally, 
Bayesian networks, while appropriate in many cases, are not universally applicable. They 
are strong in their capacity to synthesize many variables and include expert opinion, but 
there are many drawbacks to this modeling technique. Discretizing continuous variables 
is largely guess work, and in general it would be preferable to use the continuous variable 
instead of distinct states.  

 Bayesian networks are advantageous in their ability to facilitate learning (Marcot 
2006), and we can ask in what ways the model can be changed in order to increase 
prediction success. As illustrated in Figure 3.7, there are several nodes characterized by 
high uncertainty among expert responses. These nodes require further research to fully 
understand how the variables interact to affect vulnerability to urbanization.  

 On the whole, this modeling process was informative and enlightening, but was 
not as successful as we had hoped in predicting stream vulnerability to urbanization 
especially when compared to the statistical results presented in Chapter Two. Despite 
this, the modeling process was productive in identifying gaps in our understanding of 
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watershed vulnerability to urbanization stressors, and helped to create a discussion among 
nine experts and university researchers who would not otherwise be communicating and 
jointly exploring this topic in such depth.  
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CHAPTER FOUR: 
INTEGRATING MODELS OF STREAM VULNERABILITY AND URBAN 

DEVELOPMENT SUITABILITY TO PREDICT THE LOCATIONS  
OF AT-RISK STREAMS IN MAINE 

INTRODUCTION 
 The goal of this research was to identify the next generation of impaired streams 
by creating a modeling framework that relates spatial watershed variables to metrics of 
stream degradation in order to describe the potential vulnerability of Maine streams to 
impairment in response to future development. The premise of this study is that streams 
at risk of future impairment are those that will experience new development in their 
watersheds and which have attributes associated with high vulnerability to degradation 
from urbanization. This final chapter presents an integration of three key aspects of this 
investigation: (1) a summary and synthesis of the results of the stream vulnerability 
statistical analysis and BN model; (2) an introduction and overview of the alternative 
futures land use suitability model developed by Meyer et al. (2014); and (3) a synthesis 
that identifies the intersection of high-vulnerability watersheds with watersheds having 
the highest suitability for future development. Using those integrated components, it was 
possible to create a map that predicts the locations of watersheds with streams that are at 
risk of impairment based on their probability of vulnerability and suitability for future 
development. It is our hope that the results of this research will provide valuable 
guidance for land use planners and conservation organizations in their efforts to protect 
vulnerable streams and to direct future development to watersheds that are less sensitive 
to degradation associated with urbanization. 
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SYNTHESIS OF WATERSHED VULNERABILITY MODELS 
 Previous chapters used various statistical methods to determine watershed 
characteristics that affect stream vulnerability to urbanization stress. Kruskal-Wallis one-
way analysis of variance, logistic regression, and an expert-derived Bayesian network 
identified a host of variables that increase or decrease stream vulnerability, as well as 
some variables that did not affect vulnerability despite our expectations to the contrary. A 
synthesis of these techniques is presented here in an effort to understand general trends 
across the different methodologies. In addition, we compare the empirical vs. expert-
derived results to better understand the capacity of BNs to predict stream vulnerability in 
the absence of stream sample data (Table 4.1).  
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Table 4.1. Comparison of key variables that influence stream vulnerability. For each 
statistical analysis Kruskal-Wallis rank tests, logistic regression, and the BN plus (+) 
marks indicate that the variable decreases vulnerability; minus (-) marks indicate the 
variable increases vulnerability. The variables Latitude and Longitude were not included 
in the Bayesian network, and the variable Upstream Buffer was only included in the 
Bayesian network. These are indicated with "NA".  

Important Variables 
Important in 
Kruskal-Wallis 
Analysis 

Important in 
Logistic 
Regression 

Important in 
BN 

Drains to Ocean     - 
Agricultural Area (%) - - - 
Forested Buffer (%)   + + 
Watershed Area (km2)     + 
Presence of a Sand/Gravel Aquifer   +   
Nearest Healthy Stream (km)     - 
Natural Buffer (%)   + + 
Dams (count)     - 
Stream/Road Intersections (density)     - 
Stream Gradient/Slope (%)       
Resistant Surfaces (%)   + + 
A or B Soils (%) +     
Depth-to-Water Table (cm) +     
Temperature (oC) +     
Precipitation (in) +     
Wetlands (%) - -   
D Soils (%) - +   
K Factor   - - 
Soil Depth (cm)  -  
Longitude (DD) -  NA 
Latitude (DD) -  NA 
Upstream Buffer (km2) NA NA + 
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As shown in Table 4.1, there were six variables that were found to be significant 
as positive or negative influences on vulnerability by either two out of three or three out 
of three of the statistical and modeling approaches. All three methods identified 
agriculture as a key factor associated with increases in vulnerability. The logistic 
regression and BN network models both agreed that forested buffers, natural buffers, and 
resistant surfaces were associated with decreases in vulnerability. Finally, both the 
Kruskal-Wallace and logistic regression approaches identified wetlands as an important 
factor associated with increased vulnerability, whereas the BN network and logistic 
regression both targeted the erosion index (K factor) as a parameter associated with 
increased vulnerability. 

Variables that were important in the Bayesian network only but were not 
significant in the statistical analysis were Drains-to-Ocean, Watershed Area, Nearest 
Healthy Stream, Dams, Culverts, and Stream Gradient/Slope (Table 4.1).  

During the BN modeling process, our panel of experts debated the effect of well-
draining vs. poorly-draining soils on stream vulnerability. According to the statistical 
analysis in Chapter Two, well-draining soils decreased stream vulnerability. Due to the 
uncertainty among our experts, however, this variable was not significant in the Bayesian 
network. Further research is needed to determine the effect of soil drainage, but evidence 
in Chapter Two suggests that this variable is indeed important and well-draining soils are 
likely to decrease stream vulnerability.  

Many studies suggest that land cover such as agriculture, wetlands, urban area and 
forests are the best predictors of stream condition (e.g., Wang et al. 2001, Vander Laan et 
al. 2013, Bedoya et al. 2011). Dams and mines were also important predictors in those 
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studies that included them (e.g., Poff et al. 2006, Esselman et al. 2011). Environmental 
variables such as elevation and precipitation are not considered in some of the studies, 
which makes it difficult to draw conclusions about the influence of these variables across 
studies and regions. This is problematic because some variations that are attributed to 
land cover may be partially explained by spatial correlation with environmental or 
climatic variables (Allan 2004, King et al. 2005). Collectively, these studies suggest that 
although the relationship between land cover and in-stream variables is dynamic and 
varies from region-to-region, anthropogenic impacts universally affect stream condition 
either directly through urban runoff or indirectly through removal of forests and 
wetlands. Our results from both analyses align with these previous findings. 

 Other studies have sought to use landscape characteristics to predict empirical 
measurements of stream water quality such as nutrient loading or biotic community 
attributes. Instead, our analyses sought to predict the more abstract idea of stream 
vulnerability, which combines both the current state of the stream and its surrounding 
watershed, as well as likely future responses to urbanization. While the approach is 
important in determining the locations of at-risk streams and what variables contribute to 
watershed response to urbanization, it made the analysis difficult for several reasons.  

First, a challenge for many landscape ecology studies is the common presence of 
spatial autocorrelation between many geographic variables (King et al. 2005). In our 
analyses, many variables were correlated. This creates problems with interpretation, and 
identifying causal variables that directly vs. indirectly affect stream vulnerability to 
urbanization. In addition, explaining the concept of vulnerability to our expert panel was 
challenging. Some experts interpreted vulnerability to urbanization as predicting which 
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watersheds were more likely to be developed, causing them to overemphasize the percent 
agricultural area variable as important. The logic is that watersheds with high amounts of 
agriculture are more likely to be developed, based on the professional experience of the 
experts who have witnessed this phenomenon.  

Furthermore, many experts were unhappy that the model output of the Bayesian 
network was a range of vulnerability scores  an output that is oftentimes difficult to 
interpret. Many experts suggested that we use a more empirical definition, such as the 
probability that a stream will drop below its attainment class given some increase in 
impervious cover. While our output node does not give this level of detail  instead it 
gives the probability of vulnerability to urbanization on a scale of 0 to 100  our model 
validation process and comparison with development suitability does. We incorporate 
four analyses to better understand the whole story: (1) IC vulnerability ranges from 
Danielson et al. (In Press); (2) our vulnerability scores based on expert guidance; (3) 
BIOMON stream attainment classes based on stream biotic community data; and (4) 
development suitability maps from Meyer et al. (2014). Altogether, this creates a robust 
understanding of landscape characteristics that contribute to stream vulnerability, while 
identifying streams across Maine that are at-risk for future impairment.  

 

PREDICTING FUTURE DEVELOPMENT 
 Meyer et al. (2014) used Bayesian networks to incorporate stakeholder knowledge 
and over 100 geospatial data layers in order to predict the probability of suitability for 
four different land uses across two major watersheds in Maine  the 1-million-hectare 
Lower Penobscot River Watershed (LPRW), and the 640,000-hectare Casco Bay and 
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Lower Androscoggin Watershed (CBLA). Land use suitability for development, 
conservation, agriculture, and forestry was determined at 30m x 30m pixel resolution. 
using a BN co-created by stakeholders and experts from all four user groups. 

Results of the modeling process are available through the Maine Futures 
Community Mapper (MFCM) (www.MaineLandUseFutures.org). MFCM is an online 
mapping tool that not only makes it easy for various stakeholders to perform an initial 
assessment to identify land suitable for particular needs, but also allows lands to be 
identified that are suitable for more than one land-use type  e.g., lands that have the 
potential to cause conflicts in the future. For example, conservationists can identify land 
that is highly suitable for both development and conservation, and work to conserve these 
lands before development pressures mount. Conversely, land that is suitable for 
conservation but is not suitable for development may warrant less-urgent protection 
efforts given the limited likelihood of development. In addition, areas of compatibility 
can be identified where coalitions of supporters might find common ground. An example 
might be lands that are highly suitable for conservation, forestry and agriculture. In such 
areas, development can be viewed as a common threat, and a variety of non-development 
interests could conceivably work together to provide options for maintaining land for 
forestry, agriculture and/or conservation. 

 One of our final objectives was to compare our stream vulnerability scores with 

Both watersheds exhibit a strong forest-to-urban land use spectrum, and contain lands 
identified as being among the most likely to experience major development pressures in 
future years (Mockrin et al. 2014). Within both watersheds, substantial areas were found 
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by Meyer et al. (2014) to be suitable for development (Figure 4.1). For the purpose of this 
analysis, we used the top quartile of development suitability to identify watersheds 
containing streams at risk of future impairment due to development. For example, of the 
836,015 hectares of land in the LPRW that are classified as being available for 
development (i.e., land that is not already developed or conserved), 41,768 hectares or 
4% are highly suitable for development. Of the 648,973 hectares of land available for 
development in the CBLA watershed, 244,616 hectares or 38% are highly suitable. 

Figure 4.1. Casco Bay/Lower Androscoggin (CBLA) and Lower Penobscot River 
Watershed (LPRW) study areas. Development suitability is displayed by quartile, with 
quartile 4 representing areas with the highest probability of suitability for development.
Areas in white are unavailable for development (e.g., conserved land). 
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IDENTIFYING AT-RISK STREAMS 
 In forecasting the future of streams, it is important to consider not only the current 
human impacts that are affecting the stream but also future anthropogenic changes that
the stream is likely to face. In this final step of our investigation, our vulnerability 
predictions were combined with the development suitability projections reported by 
Meyer et al. (2014) for the LPRW and CBLA watersheds. In this research, we asked the 
question, "If all lands within a watershed that are highly suitable for development are 

water resources?"  We overlaid the development suitability maps on our stream 
vulnerability map output to find watersheds with large amounts of land suitable for 
development and high probabilities of vulnerability to urbanization stress.  

 

Intersection of Development Suitability and Stream Vulnerability 
 Results from the Bayesian network vulnerability analysis in Chapter Three 
yielded a probability of vulnerability to urbanization for 23,554 watersheds across the 
State of Maine. In order to compare these results to development suitability by Meyer et 
al. (2014), watersheds were extracted that fell in the CBLA and LPRW study areas. From 
this subset of catchments, those with vulnerability scores in the highest quartile (>62.9, n 
= 1394) were selected for analysis. For these catchments, percent area suitable for 
development was calculated from the results of Meyer et al. (2014), using the same 
methods as described in Chapter Three (Figure 4.2).  
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Figure 4.2. Study areas with catchments in the top quartile of vulnerability. Colors reflect 
percent area suitable for development.  

 

Baseline of Current Impaired Streams 
 Before proceeding with predictions of streams facing future impairment, we first 
examined current baseline conditions of impaired or at-risk streams in Maine. Impervious 
cover was estimated for the catchments using 2004 5m pixel impervious cover data 
(MELCD 2004). The regression equation from Danielson et al. (In Press) was applied, 
estimating the percent of impervious cover from the 2007 1m measurements. Using the 
2007 1m percent IC estimates, highly vulnerable watersheds (top quartile) with greater 
than 6% watershed IC were identified. These selection criteria follow from the results of 
Morse et al. (2006), who found that at this level of percent IC most indicators begin to 
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decline, and also correspond with the more recent MEDEP IC threshold associated with 
streams that no longer attain A or B statutory classes (Danielson et al. In Press). Overall, 
there were 166 catchments that met our criteria of high vulnerability and percent IC > 
6%, and these were predicted to be currently impaired and were defined as the baseline 
conditions of impaired streams (Figure 4.3).
 

Figure 4.3. Catchments in the top quartile of vulnerability that currently have greater than 
6% IC (n=166). Also shown are current urban impaired streams watersheds from the 
Maine IC TMDL (2012).  

 Currently, Maine has 30 streams listed as 303 (d) urban-impaired streams (Maine 
IC TMDL 2012), and 29 of these are located in the LPRW and CBLA study areas. We 
used the GIS layer associated with these watersheds and compared it to our watersheds 
that are in the top quartile of vulnerability and that also have over 6% IC. Although one 
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urban-impaired watershed is outside our study area, our map identified 23 of the 29 
remaining impaired streams  a success rate of 79%.  

 

At-Risk Streams 
 In order predict which streams are at risk of future impairment, we used 6% IC as 
our threshold for impairment.  However, the algorithms for converting development to IC 
generally indicate that only 25-80% of developed land can be classified as IC (Danielson 
2015).  In order to account for this, we took the current IC and then added percent area 
suitable for development divided by two (assuming about half will be actual IC), to arrive 
at an estimate for future IC levels. Those watersheds with future IC levels greater than 
6% and high vulnerability (quartile 4) were classified as at-risk streams (n=415; Figure 
4.4). 
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Figure 4.4. "At risk" watersheds. These watersheds exhibit both high vulnerability 
(quartile 4) and a high potential future IC, where percent area suitable for development 
divided by two plus current IC is greater than 6% (n = 415). 

 The streams in Figure 4.4 are those likely to face future urbanization levels that 
exceed the 6% IC threshold used by the State of Maine to indicate the onset of 
impairment of aquatic life (Danielson et al. In Press, Morse et al. 2006). These areas are 
also likely to be highly vulnerable to urbanization based on the results of the vulnerability 
analysis presented in Chapter Three. These watersheds are prime candidates for 
conservation, implementation of Best Management Practices, or special zoning 
restrictions that can mitigate deleterious effects on aquatic life in the stream (MEDEP 
2013).  
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DISCUSSION 
   Our comparison of watershed vulnerability with development suitability 
revealed several watersheds that will likely be impaired in the future in the absence of 
steps taken to mitigate development impacts. This analysis can be used not only to guide 
development away from vulnerable watersheds, but can also be used to identify 
watersheds that are less likely to be negatively affected by development  i.e., areas more 
suitable for future growth. This allows developers, municipalities and other decision-
makers to plan proactively for development that will likely avoid the expensive costs of 
stream restoration. Moreover, the combined results of Chapters 2 and 3 indicate which
watershed characteristics are likely to increase or to decrease the probability of 
vulnerability, and highlight those watershed characteristics that require further research to 
fully understand their effects on stream vulnerability to urbanization.   

This area of research faces many inherent challenges.  Factors such as covariation 
of anthropogenic and natural gradients in the landscape; the existence of multiple, scale-
dependent mechanisms; nonlinear responses; and the difficulties of separating present-
day from historical influences all complicate the ability to relate landscape characteristics 
to water quality (Allan 2004, King et al. 2005). The nature of watershed land cover is 
such that variables are non-independent, so that as one land cover type increases in area, 
another decreases. Walsch et al. (2005) note that because urban areas and riparian 
degradation tend to co-vary, their effects are obscured.  

To demonstrate the problem of collinearity, King et al. (2005) removed the 
overwhelming effect of cropland on nitrate-N and revealed underlying correlations of 
nitrate-N with wetlands and development. Further, they found that the strong correlation 
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between cropland and macroinvertebrate composition was reduced when development 
and wetland variables were removed, indicating that the lack of development and 
wetlands had more of an effect than the presence of cropland. In addition, Vander Laan et 
al. (2013) pointed out that natural variability will cause different water chemistries and 
biotic conditions among reference sites across a landscape.  

The finite availability of spatial data further limits our analytical capabilities. 
Many landscape characteristics that affect stream water quality are not available as spatial 
data, or are not available for the entire geographic region or at a sufficient scale to be 
useful. For example, groundwater connectivity to streams is important in regulating 
stream temperature, a necessary aspect of resistance and resilience, but this is not 
available as spatial data throughout the State of Maine. Proxy variables were used to 
account for this, but it is unclear whether they sufficiently represented groundwater input 
into streams.   

Another unanswered question about watershed analysis is at what distance, if any, 
a landscape variable stops being influential in stream water quality. Some evidence 
suggests that the strongest effect is seen when landscape variables are measured within a 
buffer of the stream or in small watersheds versus large (Strayer et al. 2003, King et al. 
2005), which suggests that proximity to the stream gives a stronger effect. For example, 
Wang et al. (2001) found that impervious cover had a much stronger correlation with 
biotic indicators than other land cover variables within a 1.6 and 3.2 km radius. The slope 
of the relationship was steeper in the 1.6 km buffer, indicating that the proximity of urban 
area to the stream plays a role in the amount of degradation that occurs. Beyond a 3.2km 
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radius the relationship with imperviousness was weaker and the amounts of agriculture, 
woodland and water-wetland were more influential.  

Steedman (1988) found land-use immediately upstream of the sample location to 
be more influential than land use measured at the watershed scale. On the other hand, 
some studies have concluded that landscape variables measured for the whole watershed 
have better predictive capacity than measurements from a stream buffer. Hunsaker and 
Levine (1995) discovered that using land cover within a 400m buffer around streams in 
an Illinois watershed had a weaker relationship between land use and water quality than 
at the watershed scale. Similarly, Bedoya et al. (2011) measured land cover variables 
within the whole watershed, within 30- and 100m buffers, and within a 3.2 km length 
upstream of the sample location, and predictive power was best at the whole watershed 
scale. Williams et al. (2004) also reported that land cover in the entire basin was a better 
predictor than using various sizes of buffers.  

Strayer et al. (2003) measured variables at three spatial extents the whole 
watershed, within a buffer, and within a radius from the sample site and there were 
significant predictors in each one, indicating the need to look at multiple spatial scales. 
King et al. (2005) noted that developed land had more of an effect closer to the stream 
where threshold values were lower (18-23%) than threshold values for the entire 
watershed (21-32%). They found that sites with high IBI scores that had moderate 
percentages of developed land in their watersheds had little to none of it within the 250m 
buffer. However, many low-quality sites had substantial development in their catchments 
but only low amounts in the 250m buffer, which would lead to inaccuracies in model 
prediction if only the 250m buffer was used. These results elucidate the importance of 
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incorporating several spatial scales in landscape watershed analysis. We did our best to 
account for this by including three spatial scales in the logistic regression and Kruskal-
Wallis analyses, as well as consulting with experts on the preferred scale at which to 
measure variables for the Bayesian network. 

Land cover classification and threshold values introduce difficulty into the 
analysis as well. The most robust spatial land cover dataset for the country is the National 
Land Cover Dataset (USDA 2011), which provides 27 land cover classes. As this level of 
detail is too high for large-scale analysis, we must group the classes into larger land cover 
groups. Different studies choose to do this in different ways, which may influence the 
results. Williams et al. (2004) used landcover subclasses such as high vs. low intensity 
development, but found that this did not have better predicting power than using an 
overall development class. In a study by King et al. (2005), cultivated land had a large 
impact on stream N while pasture had none, indicating the need to separate these two 
agricultural variables. Clearly, care must be taken in choosing how to group land cover 
classes in a meaningful manner.  

Determining threshold values the point at which a large change in an ecosystem 
occurs due to a small change in a specific driver can be difficult as well. Dodds et al. 
(2010) highlight the risk associated with defining threshold values in a system. In some 
cases, nonlinearity can be confused with the existence of a threshold value. For example, 
a system that alternates between two steady states in a sine-wave fashion may be 
diagnosed as having a threshold value when only one part of the wave is detected. The 
challenge of identifying thresholds is further confounded by the fact that climate and 
anthropogenic stressors are causing continuous change, so a threshold may be identified 
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for a system using recent data but that threshold will likely change in the future. 
Furthermore, the response of an ecosystem component to exceeding a threshold could 
have a lag over time, meaning that we cannot detect that the threshold has already been 
passed.  

Finally, many studies have found that there is a threshold around 6-10% IC where 

ssemblages are already degraded due to 
legacy effects of past land use or the presence of highly sensitive species, and that 
defining a threshold value is risky due to natural variability among watersheds. Also, 
because new construction causes spikes in sediment and nutrients, a system on the verge 
of exceeding the threshold may see substantial reduction in species richness or abundance 
due to a large disturbance pulse (Dodds et al. 2010).  

 

CONCLUSION 
In 2001, Kates et al. defined sustainability science as 

human needs while preserving the life-
sustainability science was barely beginning to take form. Now, sustainability is a term 
that has become so ubiquitous it has almost begun to lose meaning. Despite this, the 
urgency to implement sustainability has increased as burgeoning human populations 
threaten natural systems and exploit increasingly more resources from the Earth. In this 
research, a landscape approach to sustainability was emphasized, looking at a broad scale 
to determine what can be done to keep our waterways healthy and capable of providing 
ecosystem services for generations to come (Wu 2013). Wu (2013) noted that 
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ract most acutely, and 
thus the composition and configuration of a landscape both profoundly affect, and are 

vulnerability analysis, as sustainability often coincides with low vulnerability and high 
resilience (Wu 2013, Kates et al. 2001).  

Turner et al. (2003) argue that vulnerability analyses must take a place-based 
approach, and incorporate the multiple interacting stressors and the sensitivity of the 
system to those stressors. They further propose that these analyses should identify the 
complexities of the system, incorporate both quantitative and qualitative information, and 
develop metrics and models that can measure vulnerability (Turner et al. 2003).  

In our research we attempted to accomplish all of these goals through the 
implementation of a Bayesian belief network coupled with our analysis of empirical data. 
In addition, multiple spatial scales were considered, incorporating the importance of 
hierarchical ecological structure. Equipped with the results of our study, land-use 
planners and managers throughout the State of Maine can more effectively choose 
landscape designs that divert or modify land-use change from watersheds with vulnerable 
streams. 

Further, policy makers can implement regulations in watersheds with vulnerable 
streams, obligating developers to use BMPs and other mitigating strategies in order to 
avoid the high cost of restoration in the future. Sustainability science seeks to find 
harmony between human needs and ecosystem health, and emphasizes that viewing the 
world as a coupled human and natural system allows us to understand how our actions 
affect the natural world which we all depend upon for our livelihoods (Wu 2013). We 
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live in a time when streams are becoming impaired, but by understanding how 
watersheds modulate stream response to stressors, we can design proactive management 
plans that balance our need for development while keeping our precious water resources 
safe for generations to come.   
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APPENDIX A:  
INITIAL EXPERT RECRUITMENT EMAIL 

Dear <Insert Name Here> 
 the advisement of Drs. Chris Cronan and Rob 
Lilieholm at the University of Maine and I am writing to request your assistance with 
research being conducted in conjunction with the Sustainability Solutions Initiative (SSI). 
Our current research is investigating relationships between land use and stream 
impairment in Maine. We are planning to hold a focus group in April where we work 
with experts like yourself to create a model relating land cover variables with stream 
response to land-use change.  
Attached to this email is an information sheet describing our research and the details of 
the 4-hour focus group we are planning to hold in April. The goal of the focus group is 
to create a model that describes the response of streams in Maine to land-use change.  
Given your expertise related to streams in Maine, we would greatly appreciate your input 
in creating the model. The commitment we are asking you to make involves: 
 1.    One 4-hour focus group from 9 am to 1 pm (we will be providing lunch) in which 
we will work together to: 
 a)    Identify landscape characteristics affecting stream susceptibility to degradation from 
development; 
 b)    Arrange these factors in a hierarchical model; and 
 c)    Determine thresholds at which to break-up continuous variables incorporated into 
the conceptual model (e.g. 'steep slope' = slopes > 6%). 
 2.    After the focus group, you will be asked to respond to a brief emailed survey that 
will further aid us in developing our model. 
We may also make intermittent contact with you after the focus group to gather further 
information for calibrating the model via email, phone, or letter. 
I hope you will consider participating in our study. We expect it will be a fun, 
informative experience for all participants. We will announce the meeting location when 
we determine one that is most convenient for all those attending. If you are able to attend, 
please follow this link to enter the dates in April that you are available:  
http://whenisgood.net/BBNfocusgroupUMaine 
Please read over the attached Information Sheet and Informed Consent Form, and I 
look forward to your reply. 
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APPENDIX B:  
VARIABLE DESCRIPTIONS AND CUTOFF VALUES 

Vulnerability to Physical Stressors: This submodel determines the vulnerability of 
a watershed to the physical stress of urban development. The number of states is 
shown in parentheses after the variable name.  

1. Vulnerability to Sediment Stress-  
 Soil erodibility: K factor averaged for the whole soil profile within a 60 m buffer of 

the stream. This variable should give us an idea of how prone the soil adjacent to the 
susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six 
factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal 
Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet 
and rill erosion in tons per acre per year. The estimates are based primarily on 
percentage of silt, sand, and organic matter and on soil structure and saturated 
hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors 
being equal, the higher the value, the more susceptible the soil is to sheet and rill 
range (not the distribution) of our data up into three equal parts.  

o  0.01  0.05 
o  0.06  0.09  
o  0.1  0.14 

 

 
Figure B.1. Histogram of Soil Erodibility.  
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Table B.1. Distribution of Soil Erodibility. 

Soil Erodibility 
Min  1st 

Q Med Mean 3rd 
Q Max 

0.7 4 5.2 5.7 7 13.3 
 Intact/Natural Riparian zone: the percent of the riparian zone (60 m on either side of 

the stream) with National Land Cover Dataset (NLCD) 2011 land use classification 
as forest, shrubland, herbaceous, or wetlands. 

o  0  50% 
o  50  80% 
o  >80% 

 
Figure B.2. Histogram of Percent Natural Area.  
Table B.2. Distribution of Percent Natural Area. 

Intact/Natural Riparian Zone 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 74 94 84 99 100 
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 Cultivated land: the percent of the entire watershed area classified by the NLCD 

 
o  0  5% 
o  > 5% 

 
Figure B.3. Histogram of Percent Agricultural Area.  
Table B.3. Distribution of Percent Agricultural Area. 

Cultivated Land 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 0 0 2 1 88 
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2. Vulnerability to Heat Stress: the vulnerability of a stream to heat stress associated 
with watershed urbanization. 

a. Contributors 
 Air Temperature: maximum July air temperature in degrees Fahrenheit averaged 

over five years, 2009 to 2013. We assigned the first state to be the 1st quartile, the 
second state to be the 2nd and 3rd quartiles, and the third to be the 4th quartile. 

o  < 76 
o  76  80 
o  > 80 

 
Figure B.4. Histogram of Maximum July Air Temperature.  
Table B.4. Distribution of Maximum July Air Temperature. 

Air Temp 
Min  1st 

Q Med Mean 3rd 
Q Max 

11.9 24.7 25.7 25.5 26.3 28.25 
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Drainage Area: measured in square kilometers. We assigned the 1st category to be 
watersheds that are likely to dry up during summer low flows.  The upper limit for 
drainage area was set to 125 square kilometers. 

o  < 1 
o  1  10 
o  > 10 

 
Figure B.5. Histogram of Watershed Area.  
Table B.5. Distribution of Watershed Area. 

Drainage Area 
Min  1st 

Q Med Mean 3rd 
Q Max 

0.5 2.5 6.2 16 18 125 
 
 
 
 

 
 Retained water: Percent watershed area with National Wetland Inventory 

data into each state.  
o  0  6% (33.33% of all watersheds) 
o  6  14% (33.33% of all watersheds) 
o  > 14% (33.33% of all watersheds) 
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Figure B.6. Histogram of Retained Water.  
Table B.6. Distribution of Retained Water. 

Retained Water 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 4.7 9.5 11.5 16.2 100 
 

 
b. Mitigators 
 Groundwater: Unfortunately, there is no reliable spatial data for shallow 

groundwater in the State of Maine. In order to get some sense of groundwater input 
into streams, we are working on a linear regression to predict summer stream 
temperature data for 114 watersheds using soil characteristics that might indicate a 
groundwater signal. Variables included in the model are percent of total watershed 
area with soils in hydrologic group A, percent of total watershed area with soils in 
hydrologic group D, average percent sand, percent of total watershed area with sand 
and gravel aquifers, percent of total watershed area with surficial texture that is sand 
and gravel, and percent of total watershed area with surficial texture that is mostly 
till, boulders and gravel. With this linear model we will make two states, 

o More 
o Less 
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Riparian Forest: the percent of the riparian zone (60 m on either side of the stream) 
with NLCD 2011 land use classification as forest, shrubland, herbaceous, or 
wetlands. 

o  0  40% 
o  40  75% 
o > 75% 

 
Figure B.7. Histogram of Percent Forested Riparian Zone.  
Table B.7. Distribution of Percent Forested Riparian Zone. 

Riparian Forest 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 60.6 80.2 74 91 100 
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3. Hydrologic factors, vulnerability to flashiness 
a. Contributors: 
 Stream/road intersections: Number of stream/road intersections per square kilometer. 

The cutoff value of 0.3 was chosen because it is the mean of the distribution.  
o  0  0.5  
o > 0.5 

 

 
Figure B.8. Histogram of Stream/Road Intersection Density. 
Table B.8. Distribution of Stream/Road Intersection Density. 

Stream/road Intersections 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 0 0.08 0.27 0.34 12.4 
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Precipitation: The sum of May through October precipitation averaged over five 
years, 2009 to 2013. We assigned the first state to be the 1st quartile, the second state 
to be the 2nd and 3rd quartiles, and the third to be the 4th quartile. 

o < 27 
o 27  29 
o > 29  

 
Figure B.9. Histogram of Average Summer Precipitation.  
Table B.9. Distribution of Average Summer Precipitation. 

Precipitation 
Min  1st 

Q Med Mean 3rd 
Q Max 

14 27.5 28.2 28.4 29 43 
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b. Mitigators: 
 Groundwater  
 Retained Water:  
 Slope: average slope of the whole watershed, in percent rise. 
o  < 1% 
o  1  4.5% 
o 4.5  20% 
o > 20% 

 
Figure B.10. Histogram of Area-Weighted Slope.  
Table B.10. Distribution of Area-Weighted Slope. 

Slope 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 4.2 6 7.2 8.9 53.2 
 

 Substrate:  
o Erodible 
o Resistant 
 Poorly Draining Soils: Percent of total watershed area with soils classified in 

Hydrologic Group D. These soils are defined by the USDA NRCS: 
 
assigned to one of four groups according to the rate of water infiltration when the 
soils are not protected by vegetation, are thoroughly wet, and receive precipitation 
from long-duration storms. The soils in the United States are assigned to four groups 
(A, B, C, and D). The groups are defined as follows: 
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Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly 
wet. These consist mainly of deep, well drained to excessively drained sands or 
gravelly sands. These soils have a high rate of water transmission. 
Group B. Soils having a moderate infiltration rate when thoroughly wet. These 
consist chiefly of moderately deep or deep, moderately well drained or well drained 
soils that have moderately fine texture to moderately coarse texture. These soils have 
a moderate rate of water transmission. 
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist 
chiefly of soils having a layer that impedes the downward movement of water or 
soils of moderately fine texture or fine texture. These soils have a slow rate of water 
transmission. 
Group D. Soils having a very slow infiltration rate (high runoff potential) when 
thoroughly wet. These consist chiefly of clays that have a high shrink-swell 
potential, soils that have a high water table, soils that have a claypan or clay layer at 
or near the surface, and soils that are shallow over nearly impervious material. These 
soils have a very slow rate o  

o  0  25% (1st Quartile) 
o  25  50% 
o  > 50%  

 

 
Figure B.11. Histogram of Percent D Soils.  
Table B.11. Distribution of Percent D Soils. 

Poorly Draining Soils  
Min  1st 

Q Med Mean 3rd 
Q Max 

0 25 43 45 65 100 
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4. Hydrologic factors- vulnerability to low base flow 
 Wetlands: Percent of total watershed area with National Wetland Inventory 

 
o  0  10% 
o  10  20% 
o  > 20%  

 
Figure B.12. Histogram of Percent Wetlands.  
Table B.12. Distribution of Percent Wetlands. 

Wetlands 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 3.5 6.9 9.1 12.5 100 
 

 Groundwater  
 Drainage Area  
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Lakes: Percent of total watershed area with National Wetland Inventory waterbodies 
 

o  0% (median) 
o  0.01  10% 
o  > 10 %  

 
Figure B.13. Histogram of Percent Lake Area.  
Table B.13. Distribution of Percent Lake Area. 

Lakes 
Min  1st 

Q Med Mean 3rd 
Q Max 

0 0 0 2.4 2.1 100 
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Vulnerability to Chemical Stressors: This submodel determines the vulnerability 
of a watershed to the chemical stress of urban development. The number of states is 
shown in parentheses after the variable name. 

1. Vulnerability to Salt Stress: 
 Drainage area: measured in square kilometers. 
o  0  5 
o  > 5 
 Good soil drainage/deep soils: Percent of total watershed area with soils classified in 

Hydrologic Group A or B. These soils are defined by the USDA NRCS: 
 soil groups are based on estimates of runoff potential. Soils are 
assigned to one of four groups according to the rate of water infiltration when the 
soils are not protected by vegetation, are thoroughly wet, and receive precipitation 
from long-duration storms. The soils in the United States are assigned to four groups 
(A, B, C, and D). The groups are defined as follows: 
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly 
wet. These consist mainly of deep, well drained to excessively drained sands or 
gravelly sands. These soils have a high rate of water transmission. 
Group B. Soils having a moderate infiltration rate when thoroughly wet. These 
consist chiefly of moderately deep or deep, moderately well drained or well drained 
soils that have moderately fine texture to moderately coarse texture. These soils have 
a moderate rate of water transmission. 
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist 
chiefly of soils having a layer that impedes the downward movement of water or 
soils of moderately fine texture or fine texture. These soils have a slow rate of water 
transmission. 
Group D. Soils having a very slow infiltration rate (high runoff potential) when 
thoroughly wet. These consist chiefly of clays that have a high shrink-swell 
potential, soils that have a high water table, soils that have a claypan or clay layer at 
or near the surface, and soils that are shallow over nearly impervious material. These 

 
o  0  10% 
o  10  30% 
o  >30%  
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Figure B.14. Histogram of Percent A or B Soils.  
Table B.14. Distribution of Percent A or B Soils. 

 
Well-Draining Soils 

Min  1st 
Q Med Mean 3rd 

Q Max 
0 0 5.6 14.3 22.6 100 
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2. Acid Stress: current amount of acid stress the stream is experiencing. 
 Acid Wetlands: Percent of total watershed area with wetlands in the National 

 
o 0 %(median) 
o > 0.1% 

 
Figure B.15. Histogram of Percent Acidic Wetlands.  
Table B.15. Distribution of Percent Acidic Wetlands. 

Acidic Wetlands 
Min  1st Q Med Mean 3rd Q Max 

0 0 0 0.8 0.5 95 
 

 Stream Buffering Capacity: based on The Nature Conservancy Northeastern 
Aquatic Habitat Classifications.  
o Buffering: 

 
o Not Buffering:  
 Groundwater:  

 
3. Vulnerability to Toxic Stress: The tolerance of the watershed to increased toxic 
load associated with urbanization  
 Cultivated land:  
 Wetlands:   
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4. Vulnerability to DO Stress: 
 Wetlands: e.  
 Lakes:  
 Stream Gradient: average slope, in percent rise, of the 60m stream buffer. 
o  > 5% 
o  3 - 5%  
o < 3% 

 
Figure B.16. Histogram of Stream Gradient. 
Table B.16. Distribution of Stream Gradient. 

Stream Gradient 
Min  1st Q Med Mean 3rd Q Max 

0 2.3 3.9 4.7 5.9 64.9 
 

 Heat Stress: The output of the Heat Stress node described above.  
o Low 
o High 
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5. Vulnerability to Nutrient Stress: The degree to which a watershed can 
withstand the increase in nutrients associated with urbanization.  
 Nonpoint nutrient sources: 

could contribute fertilizer nutrients to streams.  
o  0  5% (3rd Quartile) 
o  > 5% 

 
Figure B.17. Histogram of Nonpoint Nutrient Sources.  
Table B.17. Distribution of Percent Nonpoint Nutrient Sources.  

Nonpoint Nutrient Sources 
Min  1st Q Med Mean 3rd Q Max 

0 0 1.3 4.2 5.2 88 
 

 Good soil drainage/deep soils:  
 Riparian Forest: the percent of the riparian zone (60 m on either side of the 

stream) with NLCD 2011 land use classification as forest, shrubland, herbaceous, or 
wetlands. 
o 0  80% 
o > 80% 
 Wetlands:  
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Ecological Vulnerability to Urbanization- This final node represents the output of the 
entire model. The value given by this node will be the vulnerability score for the 
watershed in question.  We expect that a watershed that is given a high score for 
vulnerability and that currently has urban area should be degraded.  
1. Resilience 
 Aquatic connectivity: 
o Culverts: number of stream/road intersections per square kilometer.  
  0  0.1 
 0.1  1  
  > 1  

 
Figure B.18. Histogram of Culvert Density. 
Table B.18. Distribution of Culvert Density. 

Culverts 
Min  1st Q Med Mean 3rd Q Max 

0 0 0.08 0.27 0.34 12.4 
o Dams
distribution.  
  0 
  1  
  > 1 
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Figure B.19. Histogram of Dam Count. 
Table B.19. Distribution of Dam Count. 

Dams 
Min  1st Q Med Mean 3rd Q Max 

0 0 0 0.14 0 15 
 Proximity to nearest stream: this variable is measured for headwater streams only. 

It is the distance from the centroid of the headwater stream watershed to the nearest 
centroid of any other watershed. This represents the potential for recolonization across 
catchments. The cutoff of 1.5km is approximately the mean of the distribution.  
o  0  1.5 km 
o  > 1.5km 

 
Figure B.20. Histogram of Nearest Healthy Stream.  
 Drains directly into ocean: binary variable indicating whether the small catchment 

(< 50 km2) drains directly into the ocean.  
o Yes 
o No 
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Area of upstream forested buffer: the area of the upstream riparian zone (60 m on 
either side of the stream) with National Land Cover Dataset (NLCD) 2011 land use 
classification as forest, shrubland, herbaceous, or wetlands. We used this in order to 
which were identified in earlier steps of the modelling process as important to resilience. 
This composite variable represents the potential for downstream drift of organisms from 
healthy areas upstream. For larger catchments this value will be higher. This value will 
also be high for medium-sized watersheds with fully intact riparian buffers. 
o 0  0.5 (median) 
o 0.5  2 (3rd quartile) 
o > 2 

 
Figure B.21. Histogram of Upstream Forested Buffer.  
Table B.20. Distribution of Upstream Forested Buffer.  

Upstream Forested Area 
Min  1st Q Med Mean 3rd Q Max 

0 0.3 0.6 1.9 0.9 70 
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APPENDIX C:  
CONDITIONAL PROBABILITY TABLES SURVEY 

 The next step of the Bayesian network modelling process is to rank the unique 
combinations of input variables based on their likelihood of contributing to the state 
defined by the node. We do this using conditional probability tables (CPTs). For 
example, the Vulnerability to Salt Stress CPT is given below. A score of 1 through 5 is 
given based on the probability that a watershed with those unique characteristics will be 
vulnerable to the salt stress associated with urbanization. A score of 1 indicates a low 
likelihood of vulnerability and a score of 5 indicates a high likelihood of vulnerability.  
For each CPT, please use your expert judgment to rank the combinations of the input 
variables. We also provide space under each CPT to write comments; we would 
especially like to hear the assumptions you are making about how the variables interact to 
affect vulnerability. 
Table C.1. Vulnerability to Salt Stress CPT. 

  
Probability of Vulnerability to 

Salt Stress 
Well-draining Soils Drainage Area (km2) 

Less 
Vulnerabl

e   
More 

Vulnerabl
e 

> 30% > 5 1 2 3 4 5 
0 - 5 1 2 3 4 5 

10 - 30 % > 5 1 2 3 4 5 
0 - 5 1 2 3 4 5 

< 10% > 5 1 2 3 4 5 
0 - 5 1 2 3 4 5 

What assumptions are you making about the interactions of these variables to affect vulnerability 
to salt stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
   
Thanks for sharing your time and expertise with us!
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Vulnerability to Physical Stressors- This submodel determines the vulnerability of a 
watershed to the physical stress of urban development. The number of states is shown in 
parentheses after the variable name.  

 
       

Figure C.1. BN influence diagram for vulnerability to physical stressors.  
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1. Vulnerability to Sediment Stress. The vulnerability of a stream to sediment stress 
associated with watershed urbanization. 
Table C.2. Vulnerability to Sediment Stress CPT. 

 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to sediment stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
_______________________________________________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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1. Vulnerability to Heat Stress- the vulnerability of a stream to heat stress associated with 
watershed urbanization. 
a. Contributors- factors that might contribute to stream heat stress from watershed 
urbanization.  
Table C.3. Contributors to Heat Stress CPT. 
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What assumptions are you making about the interactions of these variables to affect vulnerability 
to heat stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
b. Mitigators- factors that might mitigate stream heat stress from watershed urbanization. 
Table C.4. Mitigators to Heat Stress CPT.  

  
Probability of Mitigating Heat 

Stress 

Riparian Forest Groundwater 
Less 

Vulnerabl
e   

More 
Vulnerabl

e 
>  70 % of 60 m buffer is forested More 1 2 3 4 5 

Less 1 2 3 4 5 
40 -70 %  More 1 2 3 4 5 

Less 1 2 3 4 5 
< 40 %  More 1 2 3 4 5 

Less 1 2 3 4 5 
 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to heat stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
 



158  

c. Combining Mitigators and Contributors for Heat Stress: In the CPT below, we 
combine the output of the heat contributors and the heat mitigators node to get one value for 
vulnerability to heat stress.  

 
Figure C.2. Combining mitigators and contributors for heat stress.  
Table C.5. Vulnerability to Heat Stress CPT. 

  
Probability of Vulnerability to 

Heat Stress 
Mitigators Contributors 

Less 
Vulnerabl

e 
  

More 
Vulnerabl

e 

High 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Med 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

 
What assumptions are you making about the interactions of these input nodes to affect 
vulnerability to heat stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
___________________________How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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2. Vulnerability to Flashiness Stress- the vulnerability of a stream to changes in timing 
and amplitude of peak flow during a precipitation event associated with watershed urbanization. 
a. Contributors: factors that might contribute to stream flashiness stress from watershed 
urbanization. 
Table C.6. Contributors to Flashiness Stress CPT.  

  
Probability of Contributing to 

Flashiness Vulnerability 
Stream/Road 
Intersections Precipitation (inches per year) 

Less 
Vulnerabl

e   
More 

Vulnerabl
e 

> 0.5 per km2 
> 29 1 2 3 4 5

27 - 29 1 2 3 4 5
< 27 1 2 3 4 5

 0  0.5 per km2 
> 29 1 2 3 4 5

27 - 29 1 2 3 4 5
< 27 1 2 3 4 5

 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to flashiness stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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Table C.7. Mitigators to Flashiness Stress CPT.  
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Combining Mitigators and Contributors: In the CPT below, we combine the output of the 
flashiness contributors and the flashiness mitigators nodes to get one value for vulnerability to 
flashiness. We added poorly draining surfaces to this table because opinions of the experts differ 
on whether it should be included as a mitigator or a contributor.  

 
 

Figure C.3. Combining mitigators and contributors for vulnerability to flashiness. 
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Table C.8. Vulnerability to Flashiness Stress CPT. 

   
Probability of Vulnerability to 

Flashiness 
Poorly Draining 

Surfaces Mitigators Contributors 
Less 

Vulnerabl
e 

  
More 

Vulnerabl
e 

>50 % 

High 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Med 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

25 - 50 % 

High 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Med 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

< 25 % 

High 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Med 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High 1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 
 

What assumptions are you making about the interactions of these input nodes to affect 
vulnerability to flashiness stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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3. Vulnerability to Low Base Flow: the vulnerability of a stream to a decrease in base flow 
associated with watershed urbanization. (See Next Page) 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to low base flow? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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Table C.9. Vulnerability to Low Base Flow. Continued on next page. 

 
 
 
 
 
 
 
 

Groundwater Lakes Wetlands Drainage area (sq km)
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5

Probability of vulnerability to low 
base flow

Percent of 
total area > 

10 

0 - 10 %

0

Less 
Vulnerable

More 
Vulnerable

Percent of total area 
>20

10 - 20 %

< 10%

Percent of total area 
>20

10 - 20 %

< 10%

More

Percent of total area 
>20

10 - 20 %

< 10%
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Groundwater Lakes Wetlands Drainage area (sq km)

Probability of vulnerability to low 
base flow

Less 
Vulnerable

More 
Vulnerable

> 10 1 2 3 4 5
1 - 10 1 2 3 4 5

<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5
> 10 1 2 3 4 5

1 - 10 1 2 3 4 5
<  1 1 2 3 4 5

0

Percent of 
total area > 

10 

0 - 10 %

< 10%

Less

Percent of total area 
>20

10 - 20 %

< 10%

Percent of total area 
>20

10 - 20 %

< 10%

Percent of total area 
>20

10 - 20 %
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4. Overall Physical Vulnerability: The vulnerability of a stream to physical stressors associated 
with watershed urbanization.  
Table C.10. Vulnerability to Physical Stress CPT.  

 
What assumptions are you making about the interactions of these variables to affect overall 
stream vulnerability to physical stressors? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
________________________________________________________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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Vulnerability to Chemical Stressors- This submodel determines the vulnerability of a 
watershed to the chemical stress of urban development. The number of states is shown in 
parentheses after the variable name. 

Figure C.4. BN influence diagram for vulnerability to chemical stressors. 
 
 
1. Vulnerability to Salt Stress- We already did this one! 
 

 
 
\ 
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2. Acid Stress- current amount of acid stress the stream is experiencing.
Table C.11. Vulnerability to Acid Stress CPT.  

   
Probability of Acid 

Stress 
Acid 
Wetlands 

Buffering 
Capacity Groundwater 

Less 
Acidic   

More 
Acidic 

> 0.1% 
Buffering   High 1 2 3 4 5 

Low 1 2 3 4 5 
Not Buffering High 1 2 3 4 5 

Low 1 2 3 4 5 

0% 
Buffering   High 1 2 3 4 5 

Low 1 2 3 4 5 
Not Buffering High 1 2 3 4 5 

Low 1 2 3 4 5 
 
What assumptions are you making about the interactions of these variables to affect acid stress? 
Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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3. Vulnerability to Toxic Stress- The vulnerability of a stream to increased toxic load 
associated with watershed urbanization. Both salt stress and acid stress can affect vulnerability to 
toxics, but this will be considered in the overall chemical vulnerability CPT.  
Table C.12. Vulnerability to Toxic Stress CPT.  

  
Probability of Vulnerability to 

Toxics Stress 
Cultivated Land Wetlands 

Less 
Vulnerabl

e   
More 

Vulnerabl
e 

Percent total area > 5 
Percent of total area > 20  1 2 3 4 5 

10 - 20 % 1 2 3 4 5 
< 10 % 1 2 3 4 5 

0 - 5 % 
Percent of total area > 20  1 2 3 4 5 

10 - 20 % 1 2 3 4 5 
< 10 % 1 2 3 4 5 

 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to toxics stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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4. Vulnerability to DO Stress- The vulnerability of a stream to decreased concentrations of 
dissolved oxygen associated with watershed urbanization (see next page). 
 
 
What assumptions are you making about the interactions of these variables to affect vulnerability 
to DO stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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Table C.13. Vulnerability to DO Stress CPT. Continued on next page. 
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Vulnerability 
to Heat Stress Lakes Wetlands Stream Gradient

Probability of Vulnerability to DO 
Stress

Less 
Vulnerable

More 
Vulnerable

> 5% 1 2 3 4 5
3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5
> 5% 1 2 3 4 5

3 - 5% 1 2 3 4 5
< 3% 1 2 3 4 5

Low

Percent of total 
area > 10 

0 - 10 %

0%

Percent of total area > 20 

10 - 20 %

< 10 %

Percent of total area > 20 

10 - 20 %

< 10 %

Percent of total area > 20 

10 - 20 %

< 10 %
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5. Vulnerability to Nutrient Stress- The vulnerability of a stream to increased 
concentrations of  
Table C.14. Vulnerability to Nutrient Stress CPT.  
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What assumptions are you making about the interactions of these variables to affect vulnerability 
to nutrient stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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6. Overall Vulnerability to Chemical Stress: The vulnerability of a stream to chemical 
stressors  
Table C.15. Vulnerability to Chemical Stress CPT.  
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What assumptions are you making about the interactions of these input nodes to affect 
vulnerability to chemical stress? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
 
 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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Ecological Vulnerability to Urbanization- This final node represents the output of the entire 
model. The value given by this node will be the vulnerability score for the watershed in question.  
We expect that a watershed that is given a high score for vulnerability and that currently has 
urban area should be degraded.  

Figure C.5. Combining submodels to obtain overall vulnerability to urbanization.  
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1. Connectivity: Stream connectivity in regards to recolonization potential. 
Table C.16. Connectivity CPT.  

  Connectivity 
Culverts Dams 

More 
Connected   

Less 
Connected 

> 1 Per square 
kilometer 

> 1 1 2 3 4 5 
1 1 2 3 4 5 
0 1 2 3 4 5 

0.1 - 1 
> 1 1 2 3 4 5 
1 1 2 3 4 5 
0 1 2 3 4 5 

 < 0.1 
> 1 1 2 3 4 5 
1 1 2 3 4 5 
0 1 2 3 4 5 

 
 

What assumptions are you making about the interactions of these variables to affect connectivity? 
Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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2. Recolonization potential/resilience: The likelihood of a stream to recover after a 
disturbance  
Table C.17. Recolonization CPT. 
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What assumptions are you making about the interactions of these variables to affect 
recolonization potential/resilience? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
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3. Overall Ecological Vulnerability to Urbanization Stress: Way to go, you made it to 
the last CPT! This table compiles all the previous variables and nodes to give the overall 
vulnerability of a stream to watershed urbanization stress.  
Table C.18. Overall vulnerability CPT. 

   
Probability of Vulnerability to 

Urbanization Stress 
Physical 

Vulnerability 
Chemical 

Vulnerability Resilience 
Less 

Vulnerabl
e 

  
More 

Vulnerabl
e 

High 

High 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Medium 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Medium 

High 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Medium 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 

High 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Medium 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 

Low 
High  1 2 3 4 5 

Medium 1 2 3 4 5 
Low 1 2 3 4 5 
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What assumptions are you making about the interactions of these variables to affect overall 
stream vulnerability to urbanization? Do you have any other thoughts or comments? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________ 
How confident are you about your answers on this table?  

1 2 3 4 5 
Less           More 
 

 
 
 
 
 
 
 
 
 

Thank you! You totally rock. 
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APPENDIX D:  
IRB REVIEW BOARD ACCEPTANCE LETTER 
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