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The University of Maine has developed concrete filled fiber-reinforced polymer 

(FRP) tubes (CFFTs) for use in bridge construction. A finite element model was 
previously developed to analyze these buried arch structures during construction, service 
live load, and ultimate load. Two shortcomings in that model include how the load 
distribution method and the soil reaction due to construction and service loads are 
modeled. There were two objectives to this research: to make a user-friendly software 
package to analyze a variety of buried arch structures and to improve the existing model 
to better predict the soil-structure interaction. Prototype software was developed 
complete with a graphical user interface using the existing model to allow engineers a 
tool to analyze a variety of materials, arch geometries, and soil conditions to predict the 
effect of diverse load cases. Changes to the model were planned to improve the model’s 
ability to capture the response of the soil due to arch deformation and produce more 
efficient arch designs. A Boussinesq stress distribution was used in the model to predict 
the dispersal of the load through the soil. Load distribution was investigated and 
compared to a previous experimental work and soil-continuum models to gain insight on 



 
 

 
 

the shortcomings of the existing load distribution model used in the analysis. The existing 
model used a horizontal soil-spring configuration with a nonlinear load-deflection 
relationship. Three changes to the soil-springs in the existing model were considered: 
radial soil-springs, friction angle soil-springs, and a three spring system. These alternative 
soil-spring models were implemented in place of the existing horizontal soil-springs and 
the arch internal moments and deflections were compared to the existing model and 
experimental results.
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CHAPTER 1  
INTRODUCTION 

1.1. Background 
Concrete filled fiber reinforced polymer (FRP) tube (CFFT) arches are seeing 

increased use as the main structural member in bridges since their development at the 
University of Maine (Walton 2015 c, Bannon 2007). A straightforward model was 
developed by Clapp and Davids (2011) to analyze soil-structure interaction of these 
buried arch structures. The model used small deformation and nonlinear, overburden- and 
deformation-dependent springs to represent soil reactions. Walton et al. (2015 a,b,c) 
tested a scaled version of the CFFT bridges and improved the previous model by 
implementing large deformations and more sophisticated foundations models. The 
existing soil-spring model is illustrated in Figure 1.1 and shows the arch, soil-spring, and 
foundation elements. A coarse mesh is shown for clarity. This method of using a 2-D 
finite element model using soil-springs is computationally efficient, resulting in shorter 
run times, and also yields comparable results to more advanced methods of modeling 
soils, such as 2-D nonlinear continuum models.  

 
Figure 1.1 Existing Soil-spring Model (Walton 2015 c) 
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The two objectives of this thesis were to develop user-friendly prototype analysis 
software and improve model response in comparison to experimentally gathered 
moments and deflections to produce more efficient arch designs. The Existing Model, as 
improved by Walton (2015 c), was a research tool, and was not intuitive to use. The 
prototype software package will allow engineers to analyze buried arch structures of 
various geometric and material properties through an intuitive user interface. While the 
Existing Model adequately predicted the arch response during certain load steps (e.g. 
backfilling and apex service loading), improvements should be made to improve model 
results for all load cases to obtain more realistic response.  

1.1.1. Chapter Overviews 
This thesis consists of six chapters. Chapter 2 contains background information; 

Chapter 3 addresses the development of the prototype software; Chapter 4 addresses the 
improvements being made; Chapter 5 contains model results and comparisons to previous 
modeling and experimental work; and Chapter 6 contains a summary and 
recommendations for future work. 

1.1.2. Chapter 2. Background Information 
Chapter 2 contains the essential background information that was the basis of the 

model improvements and the prototype software. Information is given on the basic 
assumptions of the model such as the Boussinesq live load distribution, National 
Cooperative Highway Research Program (NCHRP) Report 343s (Barker et al. 1991) 
nonlinear soil load-deformation relationship, and a summary of the experimental and 
simulation work conducted by Walton et al. (2015 a,b,c). 
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1.1.3. Chapter 3. Development of Prototype Analysis Software 
Chapter 3 details the development of the prototype analysis software for 

analyzing the buried arch structures. This chapter details the assumptions made by the 
analysis software to decrease the computational cost and increase software efficiency. 
The model used in the prototype software was compared to the Existing Model’s 
predictions as well as the experimental results gathered from Walton (2015 c). Further 
studies on the prototype software included a mesh convergence, a parameter analysis on 
sensitivity of results to soil parameters, and the effect of varied lift heights. 

1.1.4. Chapter 4. Existing Model and Methods for Improvement 
Chapter 4 critically examines the Existing Model’s live load distribution model 

and details planned improvements by changing the orientation of the soil-springs. The 
Boussinesq model is widely used to predict soil stresses on buried structures, though it 
assumes an infinite, linear elastic soil-continuum. The stress distribution model does not 
account for any obstructions in the soil, the change in soil elasticity with depth, or soil 
arching, situations that can possibly affect the stress distribution on a buried structures. 
To assess these factors, experimentally observed pressures were compared to pressures 
predicted by the Boussinesq distribution as well as a simple elastic finite element model 
that simulates the soil-structure interaction. 

Four different options were considered to improve the predictions of the current 
soil-spring model: a Three Spring Model, Radial Spring Model, and a Friction Angle 
Spring Model. The Three Spring Model added friction between the soil and the arch 
based on Coulomb retaining wall design. Three soil-springs were attached to each arch 
node and the soil reaction was interpolated between the springs depending on the arch 
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deformation. Error was introduced into the model by interpolation between the three soil-
springs, and a study was conducted to quantify this error. The Radial and Friction Angle 
Spring Models included angled springs that give the soil the ability to restrain the arch in 
the vertical directions. The Radial Spring Model orients the soil-springs radially away 
from the arch, and the Friction Angle Spring Model orients the soil-springs at the soil’s 
characteristic friction angle, determined experimentally by Walton et al. (2015 a). 

1.1.5. Chapter 5. Results 
Chapter 5 contains comparisons between the results of the improved model 

detailed in Chapter 4 and the model predictions from Walton et al. (2015 b). 
Additionally, comparisons of model predictions and the experimental results gathered by 
Walton (2015 a) during the scale bridge tests are also presented. Each model was subject 
to the same load cases applied to the experimental scale bridge. The main structural 
arches in the models were made of steel to facilitate convergence and ensure the accuracy 
of critical experimental results. 

Load cases included staged backfilling, service live loads applied at various 
positions over the center 60% of the span, and an ultimate live load applied at the apex. 
The backfill loading simulated the unsymmetric soil installation typically seen for buried 
arch structures. Lifts of consistent height were applied to alternating sides of the arch 
until the specified height of soil was achieved. The service load simulated a scaled HL-93 
tandem typically used to design bridges applied as uniform strip loads at discrete 
locations along the span of the arch. Service Live Load results were calculated to only 
include the response of the structure to the service live load; the backfilling results were 
subtracted from the total load effect due to the backfilling and live load. The ultimate 
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load case featured an apex strip load that increased in magnitude until an irrecoverable 
loss in capacity of the arches was reached. Internal arch moments are the typically the 
critical design values for CFFT arches. Moment distributions along the span are 
presented for all load cases as well as moments at the apex, foundations, and shoulders 
during backfilling. 

1.1.6. Chapter 6. Conclusions 
Chapter 6 contains a summary and conclusions for each of the previous chapters 

as well as recommendations for future work.  
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CHAPTER 2  
BACKGROUND INFORMATION 

2.1. Introduction 
This chapter introduces the concepts and ideas used in this research which 

include: soil-spring models, retaining wall design, and Boussinesq load distribution. In 
addition, previous experimental and modeling work discussed by Walton et al. (2015 
a,b,c) was built upon and improved in later chapters. 

2.2. Modeling Soils and Soil Structure Interaction 
An effective way to model Soil Structure Interaction (SSI) is by using soil-spring 

models to capture the reactive forces and stresses acting on buried structures from the 
soil. Soil-spring models are also known as p-y models and have been used in applications 
such as piles (Reese and Wang 2006), retaining walls (Chen et al. 2010, Wang et al. 
2013), and integral abutment bridges (Faraji 2001) to calculate critical design values. 
Soil-springs have been modeled as linear (Rani and Prashant 2014) or nonlinear (Barker 
et al. 1991, Faraji 2001, Chen et al. 2010). Previous buried arch modeling has 
implemented horizontal (Walton 2015 b) and radial (Bannon 2009) soil-springs. 

In retaining wall design, reactive forces from the soil are calculated based on the 
movement of the retaining wall relative to the soil mass (Das 2011). To calculate the 
horizontal stress on a vertical retaining wall, the vertical stress due to the soil and the 
applied load is multiplied by the ratio of horizontal soil stress to vertical soil stress called 
the coefficient of lateral earth pressure (K). K values differ depending on the in situ soil 
state stress categorized into three cases: at-rest, active, and passive. For an at-rest soil 
state, which indicates that the wall is not moving relative to the soil, typical K values for 
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uncompacted granular fill are 0.3-0.5 (Barker et al. 1991) while compacted fill can be 
assumed to have a K value of 1 (Clough 1990). As a wall moves away from the soil, the 
soil enters an active soil state, lowering the K value and therefore the horizontal stress 
acting on the wall. Similarly, as a wall moves toward the soil, the soil enters a passive 
soil state, increasing the K value and the horizontal stress acting on the wall. Clough 
(1990) developed a K-deflection relationship that describes the horizontal stress on the 
wall as a nonlinear relationship dependent on the amount of movement into and out of the 
soil. This is further described in Chapters 3 and 4. 

Two methods used to calculate the active and passive pressures were developed 
by Rankine and Coulomb (Barker et al. 1991, Das 2011) for granular cohesionless soils. 
The Rankine method to calculate the horizontal pressures assumes there is no friction 
between the soil and the wall, therefore a vertical wall will see only horizontal pressure. 
The Coulomb method assumes friction acts between the soil and the wall at the soil-wall 
friction angle (δ). Both methods assume a linear shear failure plane in the soil and the full 
shear strength of the soil is activated to counter the movement of the wall. 

2.3. Load Distribution  
Boussinesq Theory is a method to calculate the vertical stresses in soil by 

assuming the soil is linear elastic, homogeneous, and isotropic (Holtz  et al. 2011). 
Although soil is not linear elastic, homogeneous, or isotropic, the Boussinesq method for 
calculating vertical soil stress is commonly accepted by engineers. Westergaard theory is 
used to calculate stress assuming discrete layers in the soil; however this method was not 
pursued since it would introduce complications in calculating stresses within the existing 
model.  
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2.4. Review of Previous Work by Walton et al. 
Walton et al. (2015 a) conducted scale buried arch laboratory experiments and 

developed advanced finite element simulations to predict the response of these structures. 
The work completed by Walton et al. (2015 a,b) sets the groundwork for the research in 
this project. Data received through the experimental work was used as a baseline on 
which to base model improvements developed as part of this research were compared. 
Further, Walton et al. (2015 b) developed nonlinear soil-spring finite-element modeling 
strategies that were the basis for the models of this study. Walton’s experimental program 
and an introduction of the developed model are explained in detail in the following 
sections. 

2.4.1. Experimental Work 
Four half-scale arch configurations were tested at the Advanced Structures and 

Composites Center at the University of Maine. The structures were made of three parallel 
arches set in concrete footings and topped with decking made of plywood. The arches 
were made of either plate steel or concrete filled composite tubes. The shell of the 
composite tubes were made of Fiber Reinforced Polymers (FRP) made of two layers of 
E-glass resulting with a laminate thickness of 1.9 mm, which were then filled with 
concrete to make the main structural members, a concrete-filled FRP tube (CFFT). Three 
phases of testing occurred to replicate the loads the structure would possibly see in the 
field: a staged backfill, service live loading, and loading to ultimate failure. 

2.4.1.1. Soil Box 
A self-reacting soil box was constructed in the Advanced Structures and 

Composites Center at the University of Maine to contain the soil. The soil box had inner 
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dimensions of 12.2 m long, 2.3 m wide, and 3.6 m deep. The walls were made of 100 mm 
by 100 mm rough sawn lumber supported vertically by 200 mm by 200 mm rough-sawn 
soldier beams. One end of the soil box was made of a modular vertical reaction wall that 
acted as a fixed boundary. The soil box was lined with low friction plastic to minimize 
friction between the soil and the timber walls.  

2.4.1.2. Soil 
Soil used for backfill was a scaled version of the typical soil used for backfilling 

CFFT arches. Soil classification typically used for fill for CFFT bridges is well-graded 
with 10% fines (e.g., passing the #200 sieve) and a maximum particle size less than 75 
mm (Walton et al. 2015 a). To scale down the soil for the experiment, the maximum 
grain size was reduced to less than 25 mm to match a typical lift height scaled to 200 
mm. Backfill soil was tested and classified as AASHTO A-1-a to A-1-b. The soil had an 
average of 37% gravel (particles 6.4 mm and larger), 61% sand, and 1% fines (passing 
the #200 sieve). The soil had an average dry density of 2.2 Mg/m3. The soil friction angle 
was measured between 42 and 44 degrees. Water content in the soil was measured 
between 2.5% and 7% with most specimens in the 3.5% to 4.5% range. 

2.4.1.3. Arches 
Two circular-segment arch geometry bridges were tested in the lab, a 1.2 m rise 

arch and a 2.3 m rise arch characterized ‘short’ and ‘tall’ respectively for the remainder 
of this thesis. Both arches spanned 20 feet. Two bridges of each geometry were 
constructed: one of steel and one of CFFT. Each bridge was comprised of three arches. 
Solid rectangular sections of grade 50 steel were designed to have the same stiffness as 
the CFFT member under service loading. The short steel arch cross-section was 50 mm 
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by 50 mm and the tall arch steel cross-section was 38 mm by 100 mm, oriented in weak 
axis bending. The steel sections were also designed to stay in the linear elastic region of 
the stress-strain relationship during service loading. The yield stress was determined 
experimentally to be 350 MPa. To scale the CFFT arches, the diameter was decreased 
from a typical 300-380 mm to 114 mm. The thickness of the shell was 1.9 mm and was 
made up of two layers of E-glass, an inner layer with a bias angle of ±75 degrees and an 
outer layer with a bias angle of ±25 degrees. 

The three arches were cast into the center of a single footing at either end. The 
footings were supported by the lab’s concrete reaction floor with a layer of OSB and two 
layers of low-friction HDPE pads between the footings and the concrete floor. The layers 
of low-friction material were included to reduce the effect of shear transfer between the 
footing and the concrete floor, mimicking the effect of piles supporting the arch 
foundations. A tie was used during backfilling and a selection of service load tests, to 
support the arches from collapse, allow the arches to be self-reacting, and minimize the 
foundation spread. The ties represented the resistance the footings would have seen 
between the footing and the soil under the footing. 

2.4.1.4. Decking 
Wooden decking spanned the three arches at a spacing of 760 mm on center. The 

decking was designed as a continuous span, supported by each of the three arches. The 
overhang at each end was designed so that the deck would have theoretically no rotation 
at the arches under a uniform load. The stiffness of the decking was designed to be 
intermediate between that of concrete and FRP decking typically used in CFFT 
construction.  
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2.4.1.5. Instrumentation 
The bridges were instrumented with over 100 sensors, most of which were 

distributed at 1/8th points along the arch length. Each arch was equipped with strain 
gauges at these points along the arc length at the top, bottom, and center of the sections to 
allow axial forces, moments and curvatures to be calculated in post processing. Total 
Pressure Cells (TPCs) were positioned during backfilling to capture the soil pressures in 
different directions. For the tall steel arch, TPCs were positioned to capture the horizontal 
and vertical pressures on half of the arch and radial pressures on the other half. Due to 
difficulties placing the pressure cells accurately during the tall steel arch test, pressure 
cells were placed in horizontal and vertical directions only for the short steel and both 
CFFT arch tests. TPCs were also placed behind each footing to gather the horizontal 
footing thrust. Deflection was measured using a combination of string pots and LVDTs to 
measure horizontal and vertical movement at these same points along the arch as well as 
the top and bottom of the footings for the short arch to capture footing rotations. 

2.4.1.6. Loading Cases 
The arch bridges were subjected to three load cases similar to the conditions seen 

in the field, backfill, service live load, and ultimate load phases. The backfill phase 
consisted of applying soil lifts of equal height to alternating sides of the arch to replicate 
the typically asymmetric construction. For all arches the lift height was 200 mm and each 
lift was compacted using a vibratory plate compactor. The tall steel arch was retested 
with un-compacted soil due to the dry soil density being relatively high and was the only 
arch to be tested with un-compacted soil. 
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Service loads were applied to the arches equally using an HSS 8x6x½ box beam 
spanning the inner width of the soil box transverse to the arch span with the 152 mm (6 
in) side of the HSS in contact with the soil. The applied load was based off a scaled 
version of the AASHTO HL-93 tandem which was simplified to a line load. The resulting 
scaled load was 48 kN but was doubled to 84 kN since the first set of live load testing did 
not produce substantial deformation of the arches. The load was applied to the inner 60% 
of the arch span, starting at the apex and alternating from the north and south sides in 
increments of 20% of the span. Service live loads were applied to the Apex, 60% North, 
60% South, 40% North, 40% South, 20% North, 20% South, and a retest was done at the 
Apex. The live load locations are shown in Figure 2.1. Service loading was applied to 
alternating sides of the arch to limit the effect of side sway that would have occurred if 
the load had been moved incrementally from one side of the span to the other. Load was 
ramped from a preload of 2.2 kN to 84 kN over the course of 3 minutes, held for 3 
minutes and ramped back down to the initial preload over 3 minutes. This cycle was 
repeated 3 times to allow for data collection of the locked in effects. 

 
Figure 2.1 Live Load Application Positions 
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Ultimate load was defined as the irrecoverable loss in capacity of the arch. 
Ultimate load was initially tested using the box beam at the apex for the tall steel arch. 
During testing, the actuator caused a bearing failure in the cover soil and traveled through 
70% of the apex soil cover before the test concluded. Subsequent ultimate load tests 
included a timber mat under the load beam to replicate pavement and spread the load. 

2.4.2. Simulation 
Two models were developed by Walton et al. (2015 b) to simulate the 

experiments conducted in the lab: a soil-continuum model and a soil-spring model. The 
soil-spring model developed by Walton herein is referred to as the ‘Existing Model’. The 
models focused on the SSI between the arch and the soil due the loading conditions. 
ABAQUS Explicit was used to develop the soil-continuum model. The soil-spring model 
was developed in MATLAB (2014). 

2.4.2.1. Soil-Spring Model 
The soil-spring model developed by Walton et al. (2015 b) was the basis for the 

continuing effort to improve the analysis of composite buried arch structures. Code was 
written in MATLAB (2014) to model a 2-D singular arch. Loading consisted of three 
main phases, similar to experimental loading cases. In order, the analysis solved the 
model for self-weight and backfilling, service live load, and ultimate load at the apex of 
the arch. The solver in the model was an iterative Newton’s solver that minimized the 
residual force until buckling (ultimate analysis), at which point a Riks-Wepner solver 
(Crisfield, 1991) was utilized. Initially, the model assumed small deformations, but upon 
further investigation, the effect of large axial arch forces through small deformations 
created additional moment that the small deformation solver did not include, called the P-
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delta effect. Large deformations were implemented by Walton et al. (2015 b) and the new 
member forces were computed using updated nodal locations, which gave predictions 
that were much more consistent with experimental results. 

2.4.2.1.1. Soil-Springs 
The Existing Model represented the soil as horizontal soil-springs attached to 

each arch node based on the assumption that there was an infinite soil mass horizontally 
outward from the arch to push into. Pore pressure was assumed to be zero when 
calculating vertical stresses in the soil; therefore the effective stress was equal to the total 
stress. The spring force depended on the vertical stress in the soil, the coefficient of 
lateral earth pressure (K), and the tributary area of each soil-spring equal to the vertical 
projection of the arch element multiplied by the arch spacing. The springs were based on 
a Rankine model for use in retaining wall design. Rankine theory for retaining wall 
design assumes that the wall is frictionless and the soil is granular with no cohesion to 
calculate active and passive soil reaction forces. 

Soil-springs depended on a nonlinear K-deformation relationship described in 
NCRHP (1991), which defined active and passive soil states depending on the wall 
movement relative to the soil. As the wall moves into the soil mass, the soil enters a 
passive soil state. Similarly, as the wall moves away from the soil, the soil enters an 
active soil state. The movement of the arch had a nonlinear relationship with the 
coefficient of lateral earth pressure. As the soil enters an active state the coefficient of 
lateral earth pressure decreases and results in a lower horizontal force. As the soil enters a 
passive soil state the coefficient of lateral earth pressure increases to give a higher 
horizontal force. Soil was assumed to be compacted to replicate the conditions of the 
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experiment, and the at-rest K was equal to 1, meaning that the vertical and horizontal 
stresses acting on the arch from the soil were identical. Each soil-spring was also 
independent of other soil-springs, allowing soil-springs adjacent to one another to be in 
completely different soil states. This was not completely realistic since friction in the soil 
between each node will shed stresses and affect the stress of nearby soil. 

2.4.2.1.2. Arch Elements 
Arch elements were defined as 2-D Euler-Bernoulli beam elements with a 

nonlinear moment-curvature relationship. Coupons were tested using stock from which 
the arches were made to get the stress-strain relationship, then the moment-curvature 
relationship to accurately model the response of the arch. Each arch typically had 80 arch 
elements throughout the span, which aligned the gauges used experimentally in the arch 
and in the soil to nodes of the arch to allow for better comparison. 

Modeled CFFT arch structural members were also used in the analysis. A material 
model developed by Burgueño (2001) was used to calculate the nonlinear moment-
curvature relationship of the CFFT members by applying a curvature to a section of the 
structural member and solving for equilibrium. The Burgueño model accounts for the 
different material properties of the FRP shell and the self-consolidating concrete fill. This 
research primarily focuses on the steel arch to limit the amount of nonlinearities present 
in the model. 

2.4.2.1.3. Foundation 
Initially, the arch was assumed to be fixed at the top of the foundation. It was 

found during backfilling and live loading that the foundations had undergone appreciable 
rotation and movement. The updated foundation elements were modeled as stiff beam 
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elements with soil-springs in the horizontal and vertical directions to capture the soil 
response due to foundation thrusts and rotations. Horizontal soil-springs acting on the 
foundation were identical to the horizontal springs acting on the arch. Vertical soil-
springs acting on bottom of the foundation were stiffer to support the weight of the 
system. 

2.4.2.1.4. Backfilling 
Backfilling the arch bridge with soil was simulated in the model by installing 

‘lifts’ representing soil weight and geometry to alternating sides of the arch then solving 
for equilibrium. As each lift was installed, newly covered soil-springs were activated and 
the nodal deformation was saved as the soil-spring’s zero position. The spring’s zero 
position was the deformation in the spring for it to be considered at-rest with a lateral 
earth coefficient of 1. Lifts were installed in equal heights on alternating sides of the arch 
until the grade was at the apex. Then each successive lift was applied over the whole arch 
system to the specified apex cover depth. 

2.4.2.1.5. Live Load Application 
Live load was applied as a strip load 152 mm wide to the surface of the backfilled 

soil. The load was applied to the same locations as in the experimental regime: Apex, 
60% North, 60% South, 40% North, 40% South, 20% North, and 20% South. For each 
location the load was tested, arch member forces and deformations were reset to the end 
of backfill so that the previous live load did not have an effect on the current load step. 
The live load was applied incrementally to facilitate convergence.  

Live load was distributed throughout the soil using a Boussinesq model for soil 
stress distribution due to a uniform rectangular load at the surface. For this 2-D analysis 



17 
 

 
 

the model assumed that the stress due to the live load was the same over the tributary 
spacing of the arch. 

2.4.2.1.6. Ultimate Load 
Ultimate load was applied using a strip load at the apex. The load was increased 

in small increments until the arch starts to undergo significant deformations that hinder 
convergence. At this point the solver switched from a Newton solver to a Riks-Wepner 
solver that has a better ability to solve relatively fast moving, large deformation systems. 
When the load applied was too high and a solution cannot be found, the load increment 
was halved and the solver tries again with the new load. 

2.4.2.2. ABAQUS Continuum Model 
The soil-spring model did an adequate job at quickly calculating the arch internal 

forces, but was unable to capture the true stresses in the soil. A soil-continuum model 
was developed by Walton et al. (2015 b) in ABAQUS Explicit. This model was much 
more computationally intensive than the soil-spring model and was used as a research 
tool only, with limited applications for widespread use. The soil-continuum model used a 
realistic material model for the soil. A tensionless soil-continuum was applied in lifts to 
the steel arch to get a look at the stress distribution inside the soil mass. Soil failure was 
included in the model as a Mohr-Coulomb Failure criterion. The soil was modeled as 
three-noded triangular elements to match the curvature of the arch. The arch was modeled 
as a two dimensional beam element with material properties taken from coupon level 
tests of the material in the arch. The foundation was modeled as a stiff continuum. The 
arch was linked to the foundation to enable moment transfer at the arch base. Soil was in 
contact with the arch and the foundation with a hard normal behavior and a penalty 
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tangential with a frictional coefficient of 0.6 (NAVFAC 1986). The soil-continuum 
model had two phases, backfilling and service live load. The backfilling phase was a 
complex series consisting of creating the new soil lift and installing it, solving for 
equilibrium, then creating a new assembly using the final solution from the previous lift 
and iterating until the end of backfilling. Service live load was applied using beam 
impactor elements at the surface of the backfilled soil.  

2.4.3. Conclusions 
The current soil stress distribution model may be inadequate for use during 

service and ultimate load analyses. The Boussinesq model assumes a continuous soil with 
uniform material properties not seen in a buried arch structure. Also, the actual soil 
stresses are redistributed due to the movement of the flexible arch due to intergranular 
frictional forces.  

The two objectives of this research were to improve the soil-spring model and to 
create prototype software to allow these models to be used easily by other engineers. The 
experimental and simulation work, particularly the soil-spring model, that Walton et al. 
(2015 a,b) has conducted were the basis for the continued research presented here. There 
is work to be done to improve the soil-spring model. Walton et al. (2015 a,b,c) had 
recommended several aspects to investigate such as the live load distribution and soil-
spring orientation that will ideally improve the model response and more accurately 
simulate these buried arch structures. The model was also highly specialized and 
inconvenient to be used as everyday analysis software. Results gathered from the 
experimental and simulation work from Walton et al. (2015 a,b,c) were compared to the 
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work presented in this thesis, and are denoted as “Experiment” and “Existing Model” 
when appropriate.  
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CHAPTER 3  
DEVELOPMENT OF A USER-FRIENDLY ANALYSIS TOOL 

3.1. Introduction 
As detailed in the previous chapter, a viable method for analyzing soil-structure 

interaction for buried CFFT arches is a nonlinear soil-spring model. The software 
developed by Walton et al. (2015 b), defined as the Existing Model in Chapter 2 and 
described in more detail in Chapter 4, took this approach. However, the Existing Model 
was developed as a research tool, and thus incorporates a flexible sophisticated boundary 
condition simulation method needed to capture the response of a range of test specimens. 
Further, the Existing Model was not user-friendly, but relied entirely on text-based input 
and gives text-based output. The analysis software developed as part of this project was 
named CBAS Design. It is a tool that allows an engineer to analyze a composite buried 
arch structure using the underlying finite element analysis model developed by Walton et 
al. (2015 b), i.e. the Existing Model, with some simplifications. Users are able to select 
different materials, geometries, soils, and analysis parameters to define a range of linear 
elastic or nonlinear buried arch structures. Predefined composite FRP layups are available 
that are representative of FRP typically used in the field. Further, CBAS Design 
incorporates a highly interactive user interface for model generation and result 
interpretation. 

3.2. Overview of CBAS Design 
Analysis of the structure proceeds in one or two phases, depending on the user’s 

objective. The first phase is the soil backfilling to a specified apex crown depth. 
Backfilling process allows for different soil types and compaction levels. Application of 
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an additional distributed load is the optional second phase. Application of loads is 
possible through discrete patches or as a surcharge.  

The user is allowed to change parameters of the structural properties, load 
configuration, and analysis conditions. These three fields correspond to pages in the 
CBAS Design UI. The first page ‘Structure Properties’ is shown in Figure 3.1. 

 
Figure 3.1 Screenshot of CBAS Design Structure Properties Page 

The structural properties field allows the user to specify the type of material used 
for the arches, including linear elastic materials or concrete-filled FRP tubes with 
predefined layups, diameters, and concrete strengths that exhibit nonlinear moment-
curvature response. Arch geometry is defined by span, rise, and spacing. Boundary 
conditions are applied at the base of the arch as either fixed or pinned on both ends. Soil 
parameters are also entered in this page. A range of crown depth and lift heights can be 
selected for an analysis. Characteristic soil properties such as friction angle and density 
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allow the user to define different types of soils for backfilling. Soil compaction level is 
predicted using NCHRP deflection-stiffness curves for soils with different friction angles. 
The level of soil compaction adjusts the NCHRP curve response to simulate the effect of 
different soil compactions. A denser soil would reach a fully active or passive soil under 
less deformation than a loosely compacted soil. 

The software has the ability to analyze the structure using a small or large 
deformation solver. In a small deformation solver, the forces are not recalculated for the 
new nodal positions due to the assumption that the nodal displacements are small. In the 
arches under compression, there is a high axial component of the member force. The 
axial force and nodal displacement generates an additional moment on the member not 
captured by a small deformation solver, known as the P-delta effect. The large 
deformation solver tracks the nodal positions as the structure deforms and allows these 
increased moments and deflections to be taken into account. 

After the completion of the soil lift phase up to eight patch loads of different size 
can be applied to the top of the backfilled soil simultaneously. These patches can be 
different sizes and occur at different locations on the span of the arch in the x and z 
directions. It is possible to analyze a structure under only backfilling loads if the user is 
only interested in a construction load case. In addition to this, it is possible to apply a 
uniform surcharge over the whole structure. This is applied in the same step as any 
patches. While a surcharge can be used to represent additional soil cover, all patches are 
still applied at the original top of backfill. 
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For more detailed information on the variables and their limits along with a guide 
on how to install and use CBAS Design refer to the CBAS Design User’s Manual in 
Appendix A. 

3.3. Assumptions in the Model 
To increase efficiency of the software and decrease calculation time relative to the 

Existing Model, several assumptions were made. This solver used a finite element 
approach to modeling the arch using two types of elements. Two dimensional beam 
elements were used for the arch members, while horizontal axial spring elements 
represented the soil. Soil pressures were distributed over a tributary width equal to the 
arch spacing and were supported only by arch elements. All soils were assumed to have 
an at rest lateral earth pressure coefficient (Ko) of 1, consistent with that of compacted 
soils (Clough, 1990). 

Soil was modeled as springs that contribute to the horizontal restraint in the 
system. Only granular soil material was modeled in the software and soil cohesion was 
not included. Applied loads were distributed through the soil using Boussinesq theory for 
stress distribution. Boussinesq theory assumes an elastic, homogeneous, infinite soil mass 
below the applied load. This was not the case when calculating the applied vertical 
stresses at the arch, however Boussinesq is a widely accepted approach to approximate 
the stresses on buried structures as previously discussed. 

Test analyses were run on the software to gauge the CBAS Design’s reliability for 
each of the twelve predefined layups. These test models had spans of 3, 7.6, 12.2, and 
18.3 meters with span-to-rise ratios of 2, 3.5, 5, and 6 resulting in 192 different models. 
For each analysis the following were identical: the large deformation solver was used, the 
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arch was discretized with 40 elements, arch boundaries were fixed against displacement 
and rotation, there was a 610 mm apex soil depth and lift heights were 200 mm, the soil 
density was 2.4 Mg/m3, arch spacing was 762 mm, the soil friction angle was taken as 44 
degrees, and the first soil compaction curve corresponding to dense granular material was 
used. The analysis was able to run for most cases, and was able to alert the user in the 
three situations where a converged solution could not be found in either the backfill 
sequence or the application of the patch load. Analyses where the solver failed to find a 
solution were all situations with a span of 18.3m and a span-to-rise ratio of 3.5. CBAS 
Design predicted a sideway failure for these load cases. In the event that the software was 
unable to find a solution, the user was notified and given tips to facilitate convergence on 
subsequent analyses. 

3.4. Verification of Soil-Spring Design Software 
Results for both steel arches tested experimentally by Walton et al. (2015 a) were 

compared against predictions from nearly identical models created with CBAS Design 
and the Existing Model. Models in CBAS Design and in the Existing Model only differed 
by the boundary conditions applied to the base of the arch as well as CBAS Design’s 
neglect of the decking over the arches. CBAS Design assumes a fixed boundary, 
restraining all translation and rotation, while the Existing Model defined the arch footing 
as a stiff linear elastic footing supported by soil-springs in both the horizontal and vertical 
directions. This allowed the Existing Model to capture footing rotation that more closely 
resembled the experiment. Both models were discretized using 80 arch elements with 
identical properties for both the steel arch and the soil. Lifts were set at 200 mm for both 
models and an apex crown depth of 610 mm. The Existing Model and CBAS Design 
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included identical simulated line loads to the apex of the structure: a patch 152 mm wide 
and 21.3 m long with a total force of 834 kN. The longer patch in the model more closely 
represented a strip load than the load applied during the experiment. Moment and 
displacement effects for both the tall and short bridges due to backfilling and apex load 
were investigated in the following sections. Apex load effects were the total effect of 
apex service load and backfilling minus the effect of backfilling. The shoulder of an arch 
was defined as the location where the peak moment offset from the apex occurred and the 
location was roughly halfway between the arch apex and foundation. 

3.4.1. Tall Arch Comparison 
The tall arch had a span of 6.1 m and a rise of 2.3 m and 610 mm of soil cover 

over the apex. Moments and vertical displacements of the arch predicted by both models 
were compared to the experimental results and can be seen in Figure 3.2 through Figure 
3.5. Model results were presented continuously along the span while experimentally 
gathered values appear at discrete points to represent the gauge’s location along the span. 

3.4.1.1. Backfilling  
Backfilling moments were taken at the end of backfilling for each model. Both 

models gave similar results throughout the arch length. For the tall arch, CBAS Design 
predicted a 4% higher shoulder moment compared to the Existing Model and a 17% 
higher shoulder moment than experimental results, seen in Figure 3.2. Moments at the 
apex due to backfilling from both models were enveloped by the moments measured 
experimentally by the three tall steel arches with compacted soil and with loose soil, and 
both the Existing Model and CBAS Design predicted the same apex moment within 1%. 
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Tall arch model moments at the footing were within 2% of the experimental value 
on the left side but the models over-predicted the footing moment on the right side. CBAS 
Design predicted a footing moment 35% higher than the experiment, while the Existing 
Model predicted a footing moment 45% higher than experimental. Both models over-
predicted the maximum vertical deflection at the apex compared to experimental results 
(Figure 3.3). Experimental results could indicate that the deflection followed the same 
trend as the models but was shifted by about -5 mm.  

 
Figure 3.2 Tall Arch Backfill Moments 

 
Figure 3.3 Tall Arch Backfill 

Displacements 

3.4.1.2. Apex Service Load 
The moments and displacements comparisons between the Existing Model, CBAS 

Design, and experiment due to an apex service load are illustrated in Figure 3.4 and 
Figure 3.5. Predictions of apex moment due to a line load for both models of the tall arch 
were within 2% of experimental moments. The maximum negative moment at the 
shoulder was over-predicted by 2% for the CBAS Design and 7% for the Existing Model. 
Footing moments were over-predicted by both models. CBAS Design uses an absolute 
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boundary condition, restricting all rotation and resulting in a 300% higher footing 
moment. The Existing Model allowed some footing rotation, but still predicted a footing 
moment 200% higher than experimentally observed. Vertical deflections, seen in Figure 
3.5, due to the line load were also over-predicted almost everywhere along the arch span 
by both models. 

Figure 3.4 Tall Arch Apex Load 
Moments 

Figure 3.5 Tall Arch Apex Load 
Displacements 

3.4.2. Short Arch Comparison 
The short steel structure had a span of 6.1 m, a rise of 1.2 m, and 610 mm of soil 

cover over the apex. Moments and vertical deflections predicted by the Existing Model 
and CBAS Design were compared to results from the experiment. CBAS Design and the 
Existing Model did a better job at predicting the backfilling moments and vertical 
displacements for the short arch than for the tall arch model.  

3.4.2.1. Backfilling 
Backfill moments for the short arch are shown in Figure 3.6. Apex moments were 

under-predicted by about 10% by both models. At 75% of the span, the Existing Model 
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predicted the moment 2% above experimental and CBAS Design predicted a moment 1% 
above experimental. Moments were under-predicted compared to the experiment at 12% 
and 87%  of the span, the most extreme being the side loaded first (87%), with moments 
measured 50-55% higher than the models predicted. Footing moments were over-
predicted due to the restraint assumed by the models, predicting high moments not seen 
in the experimental results. However, the over-prediction by CBAS Design was greater 
due to its inability to account for rotation of the arch at the footing. Vertical 
displacements in Figure 3.7 were predicted by the CBAS Design to be 44% higher than 
experimental and predicted by the Existing Model to be 27% higher.  

 
Figure 3.6 Short Arch Backfill Moments 

 
Figure 3.7 Short Arch Backfill 

Displacements 

3.4.2.2. Apex Service Load 
Apex service load moments were captured within 5% at the apex for both the 

Existing Model and CBAS Design shown in Figure 3.8. Shoulder moments due to the 
apex service load were over-predicted and shifted away from the center of the arch by 
both models. Vertical deflections can be seen in Figure 3.9. Apex vertical deflections 
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were under-predicted by both models. CBAS Design predicted a deflection 10% less than 
experimental and the Existing Model predicted a deflection 20% less than experimental 
seen in Figure 3.9. 

Figure 3.8 Short Arch Apex Load 
Moments 

Figure 3.9 Short Arch Apex Load 
Displacements 

3.4.3. Simulation Test Structure 
To consistently verify CBAS Design in the following studies, a simulation test 

structure was designed as a buried arch structure representative of bridges in the field 
today. The following parameters were used for all studies except the parameter under 
investigation: the test structure was a 12.2 m span and 3m rise arch, giving a span-to-rise 
ratio of approximately 4 (typical for buried arch FRP construction); the FRP layup used 
had 3 glass layers in the longitudinal direction with a 304 mm diameter tube; and the 
concrete compressive strength was taken as 34.5 MPa. Lifts were applied in 200 mm 
increments to a crown depth of 610 mm. Soil parameters were taken from the previously 
described experiments: a dense granular material with a friction angle of 44 degrees and a 
density of 2.4 Mg/m3. A screenshot of the structure when entered into CBAS Design can 
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be seen in Figure 3.10. Arch internal moments were compared between different models 
in each study since it is typically the controlling factor in design. Concrete filled FRP 
tubes are efficient in axial compression and shears are relatively small. 

 
Figure 3.10 Test Structure entered into CBAS Design 

3.4.4. Mesh Convergence Study 
To study mesh refinement, the same model was run using CBAS Design with an 

increasing number of elements. Each large deformation model used the same 
structural parameters and loading. Models were created for 20, 40, 60, 80, 160, and 

320 arch elements. Apex moments were compared between each model to study 
convergence in  

Table 3.1 and a visualization of the error in Figure 3.11. The table below shows the 
predicted apex moments due to backfill and apex patch loading and the error relative to 
the 320 element model. For both load conditions, the 60 element model predicted 
moments within 0.5% of the 320 element model. When 40 elements were used the error 
increases slightly, resulted in an error within 1.5% when compared to the 320 element 
model. The default value used in CBAS Design was 40 elements to balance accuracy and 
runtime. 
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Table 3.1 Mesh Convergence 

 Number of Elements 
20 40 60 80 160 320 

Backfill Moment (kN·m) -13.898 -13.959 -13.880 -13.953 -13.917 -13.904 
Backfill Error (%) -0.041 0.400 -0.165 0.354 0.094 0 

Patch Moment (kN·m) 14.626 12.701 12.539 12.544 12.544 12.536 
Patch Error (%) 16.671 1.316 0.026 0.066 0.066 0 

 

 
Figure 3.11 Error for varying number of elements, Mesh Convergence 

3.4.5. Small vs. Large Deformation 
The large deformation solver can take into account the P-delta effect produced by 

the high axial loads acting through the element displacements. Moments were studied 
using the test structure described above to analyze the difference between small 
deformation and the large deformation solver. The moments predicted by these analyses 
are shown in Figure 3.12 and Figure 3.13. A 7% difference in predicted moment occurred 
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at the apex during backfilling and a 5% difference at the shoulders with the large 
deformation solver predicting a higher moment. During an applied patch load, peak apex 
moment from the large deformation solver was higher than the small deformation solver 
by 6% and shoulder moment was higher by 14%. A large deformation solver is 
recommended, since it accounts for additional moment caused by the axial forces through 
the deformation of the arch elements. 

 
Figure 3.12 Small vs Large Deformation 

Backfill Moments 

 
Figure 3.13 Small vs Large Deformation 

Apex Load Moments 

3.4.6. Sensitivity to Soil Parameters 
Different soil parameters were applied to the test structure in three different 

models, to study the effect of soil type on the moment. The first model contained soil 
with a friction angle of 44 degrees and a dense soil compaction level, the second model 
contained soil with a friction angle of 37 degrees and a medium soil compaction level 
while the third contained soil with a friction angle of 30 degrees and a loose soil 
compaction level. For each soil type, a soil density of 2.4 Mg/m3 was used. Though 
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unrealistic, this ensured consistency between the three models. Moments predicted by 
each of the three models can be seen in Figure 3.14 and Figure 3.15. 

Apex backfill moments due to the loose soil were 4% higher than medium soil 
and 14% higher than dense soil. Shoulder moments showed a higher sensitivity to soil 
type. Loose soil resulted in moments at the shoulder that were 20% higher than medium 
soil and 37% higher than dense soil. The increase in moment can be explained by the 
decrease in lateral restraint caused by the looser soils. This extra movement allowed the 
arch to deflect more than during the dense and medium case, causing an increase in the 
moment within the arch elements. 

 
Figure 3.14 Effect of Different Soil 

Compaction, Backfill Moments 

 
Figure 3.15 Effect of Different Soil 
Compaction, Apex Load Moments 

The results indicate the response expected of soils with different compaction 
levels. A looser soil allows the arch to deflect into and away from the soil before higher 
soil reactions are achieved, this allows for more curvature within the beam element and 
therefore a higher internal moment. 
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3.4.7. Effect of Different Lift Heights 
The test structure was analyzed using alternating lifts of 51 mm, 203 mm, and 610 

mm and a model with lifts applied evenly to both sides in 51 mm lifts to find the effect of 
different lift heights on the final moments from backfilling. Moments predicted for the 
final step in backfilling are shown in Figure 3.16. A notable difference was that for a 
larger lift height, the moment at the end of backfilling became more asymmetric, and 
shoulder moments increased by almost 10% in both cases when compared to the 
symmetrically loaded 51 mm lift model. The alternating 51 mm lift model predicted a 
more symmetric response due to a more even loading. Lateral earth pressure coefficients 
for each of the models in Figure 3.17 show the increasingly asymmetric response for the 
taller lift heights. At about 30% offset from the apex, lateral earth pressures became 
uniform for all lifts heights regardless of whether the lifts were alternating or symmetric. 
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Figure 3.16 Effect of Different Lift 

Heights, Backfill Moments 

 
Figure 3.17 Effect of Different Lift 
Heights, Horizontal Earth Pressure 

Coefficient 

3.5. Summary and Conclusions 
As part of the continuing effort to make concrete filled composite buried arch 

technology more efficient and easier to design, prototype software was developed for the 
analysis of buried arch structures using a simplified version of the soil-spring research 
model developed by Walton et al. (2015 b). The software, called CBAS Design, is a 2-D 
finite element analysis solver that simulates the backfill sequence and the application of 
any additional loads at the top of backfill. Verification of the software was done by 
comparison with the experimental results of Walton et al. (2015 a) and previously 
developed models (Walton et al. 2015 b) to ensure the accuracy of the features provided 
in CBAS Design. Load distribution through the soil and mesh refinement has been 
considered, including the effects of large and small deformations. Parametric studies have 
examined the sensitivity of the model to changes in soil parameters and different lift 
heights. Appendix A contains the CBAS Design user manual and documentation. 
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CHAPTER 4  
PROPOSED IMPROVEMENTS TO THE EXISTING MODEL 

4.1. Introduction 
This chapter describes the Existing Model to identify aspects that could be 

improved. Two components of the model, the live load distribution and the soil-spring 
orientation, were discussed. The live load distribution due to an applied load at different 
locations along the span was compared with the experimental pressures and a finite 
element model to identify weak points. Three soil-spring orientations were examined 
based on the improvements that each offers over the original Existing Model detailed in 
Chapter 2. 
4.2. Assessment of Load Distribution Model 

The Existing Model used a Boussinesq stress distribution (Holtz et al. 2011) to 
calculate the effects of loads acting on the soil surface. The Boussinesq model assumes 
that the soil is an infinite, isotropic, linear elastic material. These simplifications limit the 
accuracy of the Boussinesq model, but the method is reasonable and widely used to 
calculate the vertical stresses on buried structures. This section focuses on assessing the 
load distribution model by comparing it to experimental data and finite element model 
results.  

Two 2-D finite element models for this analysis were created in ABAQUS (2011) 
to capture the stresses in the soil due to gravitational and service loading. The first model 
simulated the conditions of the Boussinesq stress distribution. Stresses in the soil due to 
applied load were calculated using influence factors that depend on the shape of the 
applied load and the relative location of the point of interest. This model simulated the 



37 
 

 
 

Boussinesq stress distribution by using the assumptions of Boussinesq theory that the soil 
is idealized as a linearly elastic, homogeneous continuum. Boussinesq theory assumes a 
semi-infinite half-space while the FE model is bounded, however, given the size of the 
modeled FE domain the effect of the boundaries was expected to be minimal. This model 
represented a soil mass the size of the soil box built for the experimental testing by 
Walton et al. (2015 a) using three-noded plane-strain elements with large deformations 
considered and unit plane strain thickness. Vertical stresses predicted by the model were 
virtually identical to stress calculated using Boussinesq influence factors, as expected.  

The second model simulated soil-structure interaction using a simplification of the 
arch-soil system to capture the effect of a flexible arch in the soil. The soil was defined 
using three-noded plane-strain elements with large deformations considered and unit 
plane strain thickness. The rectangular steel arch sections were modeled using the same 
height, while the widths were divided by the spacing of the arch to keep the sections 
consistent with the unit soil thickness. Both the tall and short arches were modeled to get 
a notion of the vertical stresses calculated in each case. Both models used 25.4 mm three-
noded triangular elements (classified as CPE3 elements) to represent the soil and, where 
applicable, 640 beam elements (classified as B21 elements) to represent the steel arch. 
The mesh for both models for the tall arch is illustrated in Figure 4.1 and Figure 4.2. 

 
Figure 4.1 Simulated Boussinesq Model Mesh 
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Figure 4.2 Soil Structure Interaction Mesh 

4.2.1. Description of the Finite Element Models 
For all models, the soil was modeled as linear elastic with an elastic modulus of 

27.6 MPa, a Poisson’s ration of 0.3, and a density of 2.2 Mg/m3. An elastic modulus of 
27.6 MPa was consistent with Petersen et al. (2010) for a granular soil at a depth of 0.3 to 
1.5 m. Two models were created to calculate the vertical stresses due to a surficial load to 
a simulated infinite soil mass. Tall and short soil masses had a height equal to the height 
of backfilling above the arch-foundation interface, 2.9 m for the tall system and 1.8 m for 
the short system.  

The SSI model included the contact effect of the linear elastic soil on the steel 
arch. Contact was defined as ‘hard’ contact in the direction normal to the soil surface and 
a frictional coefficient of 0.6 (NAVFAC 1986) was used in the direction tangent to the 
soil surface. In these models, the only parts in the assembly were the soil and the steel 
arch; foundations and ties were neglected. The steel was modeled as linear elastic with an 
elastic modulus of 200 MPa and a Poisson’s ratio of 0.3. The beam sections were 
consistent with the experimental program for each arch. Fixed boundary conditions apply 
to the base of the arch to simulate a fixed restraint at the arch-foundation interface.  

Though the Boussinesq distribution method was used to describe effect of 
surficial loads in soil only, the simulated Boussinesq model in this study includes the 
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effect of gravity for the backfill load case only. To get a more accurate measure of the 
soil structure interaction, gravity was applied to initially deform the steel arch before the 
service loads were applied. The effect of gravity was then subtracted from the total 
vertical stresses to determine vertical stress due to the live load. This was done for the 
SSI model and repeated for the simulated Boussinesq model for consistency. 

The models were linear elastic and were not intended to exactly replicate the 
conditions present during the experiment. Backfilling the structure in asymmetric lifts 
introduced nonlinear aspects to the system and locked in arch displacements for 
subsequent lifts and loads. A more accurate model to determine load effects throughout 
the soil would include nonlinear materials for the soil, a lift sequence, and foundation 
elements with the same boundary conditions present in the model similar to the soil-
continuum model developed by Walton et al. (2015 b). 
4.2.2. Model Comparisons to Experimental Results 

Vertical stress in the soil was compared between a simulated Boussinesq and SSI 
model as well as the experimental pressure data. The vertical stress distribution for the 
Boussinesq and the SSI model can be seen in Figure 4.3 and Figure 4.4. These figures 
show the combined effect of gravity of the soil mass and the applied service load. 
Vertical stresses were taken from the approximate location of the pressure cells in the soil 
(Walton et al. 2015 a) near the arch to ensure an accurate comparison. 
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Figure 4.3 Simulated Boussinesq Soil Stress Due to an Apex Load 

 
Figure 4.4 SSI Soil Stress Due to an Apex Load 

Vertical soil stresses for the short and tall arches were compared in the following 
sections for the end of backfill, apex service load, 20% south offset load, 40% south 
offset load, and 60% south offset load. 
4.2.2.1. Backfill Results 

Backfill pressures for the short arch can be seen in Figure 4.5. Apex pressure was 
under-predicted when calculated using the Boussinesq model by 2.2% and over-predicted 
by the SSI model by 14%. Both models calculated approximately double the pressure 
immediately to the side of the apex. Footing pressure was over-predicted by both models, 
at 0% of the arch span, the models calculated similar values of 139% and 142% above the 
measured value.  
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Figure 4.5 Short Arch Backfill Vertical Pressure 

Vertical soil pressures for the tall arch were measured only for half of the arch 
seen in Figure 4.6. The vertical pressures in the tall arch were poorly represented by both 
models, under-predicted at the quarter point and over-predicted at the apex. The apex 
pressure was the opposite in magnitude of the calculated pressure from both models. 

 
Figure 4.6 Tall Arch Backfill Vertical Pressure 
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4.2.2.2. Apex Service Load Results 
Vertical pressures in the soil due to an apex load for the short arch can be seen in 

Figure 4.7. The apex pressure was under-predicted by approximately 50% using the 
Boussinesq model and 37% using the SSI model. The pressures immediately to the side 
match the values predicted by the Boussinesq model but the pressures at and below the 
shoulders of the arch were higher than the Boussinesq model. The offset pressures were 
closer to what was predicted in the SSI model.  

 
Figure 4.7 Short Arch Apex Service Load Vertical Pressure 

Figure 4.8 shows the vertical pressures for the tall arch. The data showed a trend 
that looks similar to the Boussinesq distribution, but the pressure measured just offset 
from the apex was roughly triple the Boussinesq value. The jumps in pressure 
immediately offset from the apex seen in the SSI model were not seen in the 
experimental data due to the high spacing of the pressure sensors and the absence of 
pressure cells in the vertical direction on half of the arch. 
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Figure 4.8 Tall Arch Apex Service Load Vertical Pressure 

4.2.2.3. Offset Service Load Results 
Vertical pressures in the soil for the short arch during the offset service load cases 

can be seen in Figure 4.9 through Figure 4.11. In the 20% offset load case the 
experimental data suggested a distribution of stresses similar to the SSI model. The 
magnitude of the maximum pressure seen experimentally was closely predicted by the 
SSI model but was offset, whereas the Boussinesq model calculated the pressure at the 
location of the pressure cell within 3%. The measured vertical stress at the footing on the 
side of the load falls between the Boussinesq pressure and the SSI model. On the opposite 
footing the vertical stress seen experimentally was under-predicted by both models, 
however the Boussinesq model predicted a negligible pressure while the SSI model 
predicted a pressure 63% of the measured value. 

At 40% offset loading the experimental data followed a trend shown in the SSI 
model. The shoulder pressures measured were within 2% of the SSI model but were over-
predicted by the Boussinesq model by 30%. The maximum pressure calculated from the 
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Boussinesq model was not seen in the experimental data or the SSI model. This could be 
attributed to soil arching. The footing moment measured in this case was better predicted 
by the SSI model, though it was still under-predicted by 20%. 

The 60% offset loading case showed a trend closer to the Boussinesq model rather 
than the SSI model. The SSI model sheds the stress away from the point of the load and 
towards the base of the arch. The maximum measured pressure was under-predicted by 
both models. The SSI and Boussinesq model predicted a pressure magnitude 33% and 
72% respectively, of the measured value at the point of the load. The footing pressure on 
the opposite side of the load was better represented by the SSI model with a predicted 
pressure 88% of the measured value. 

 
Figure 4.9 Short Arch 20% Offset Service Load Vertical Pressure 
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Figure 4.10 Short Arch 40% Offset Service Load Vertical Pressure 

 
Figure 4.11 Short Arch 60% Offset Service Load Vertical Pressure 

Vertical soil stresses for the tall arch due to offset loads can be seen in Figure 4.12 
through Figure 4.14. In the 20% offset case the peak pressure seen in both models was 
not seen in the experimental data. The measured values for the apex and immediately 
next to the apex were over-predicted by both models, while the other locations were 
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under-predicted. The shoulder gauges suggest that the real stress distribution was similar 
to the one seen in the SSI model. 

In the 40% offset load case, the stress at the point of the load was predicted within 
4% in the SSI model and over-predicted by the Boussinesq model by 35%. As in the 20% 
load case, the stress due to the load could have been shifted toward the foundation, 
consistent with the SSI model. 

Experimentally measured pressure values during the 60% offset load case 
followed the SSI model more closely than the Boussinesq mode. The apex and off-apex 
pressures were low, but the shoulder pressures were substantial. The quarter span 
pressure was under-predicted by both models, where the SSI and Boussinesq models 
calculated a pressure 62% and 81% of the measured values respectively. 

 
Figure 4.12 Tall Arch 20% Offset Service Load Vertical Pressure 
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Figure 4.13 Tall Arch 40% Offset Service Load Vertical Pressure 

 
Figure 4.14 Tall Arch 60% Offset Service Load Vertical Pressure 

4.2.3. Load Distribution Conclusions 
The Boussinesq method is an accepted stress distribution model used by engineers 

to determine the vertical stresses at different depths in soil. In general, the experimentally 
gathered pressures tend to follow the trend shown in the SSI model more closely than the 
Boussinesq model. To improve the SSI model, a more realistic soil material could be 
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used as well as the addition of a backfilling lift sequence. It may be worth investigating 
other soil distribution models for implementation in the soil-spring model to get a more 
accurate response. If a similar experiment were to be conducted, more pressure cells 
should be used to capture the vertical stresses due to the load throughout the span of the 
arch. 
4.3. Existing Soil-Spring Model  

The Existing Model simulated the soil reaction force using horizontal soil-springs. 
Arch elements were modeled as beam elements with a bending stiffness calculated using 
the method detailed by Burgueño (2001). The elastic soil-springs used a nonlinear load 
deflection relationship, detailed in NCHRP Report 343 (Barker et al. 1991), to calculate 
the force exerted by each spring. The Existing Model can be seen in Figure 4.15, where a 
coarse mesh is shown for clarity.  

 
Figure 4.15 Existing Model (Walton 2015 c) 

The Existing Model used Rankine theory for retaining wall design, assuming a 
frictionless contact between the soil and a vertical wall to calculate a horizontal reaction 
from the soil. For each analysis step, the model calculated the soil-spring force and 
stiffness by first taking the deflection (Δspring) of the horizontal soil-spring attached to the 
arch node and calculating an effective lateral earth pressure coefficient (Ksoil) based on 
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the NCHRP load deflection relationship. Soil friction angle affects the load deflection 
relationship and was considered. The lateral earth pressure response due to horizontal 
movement of soils with 44, 37, and 30 degree friction angles are shown in Figure 4.16. 
As a surface moves away from the soil mass, the soil enters an active soil state, shown as 
a negative deflection. A passive soil state is the movement of a surface towards the soil 
mass, shown as a positive deflection. A higher friction angle soil that is compacted 
requires less movement to activate fully passive and active soil states, than a lower 
friction angle soil that has not been compacted during backfilling. The NCHRP 
relationship was shifted across the horizontal axis so that the at rest coefficient of lateral 
earth pressure is equal to 1, a typical value used for compacted soil (Clough et.al 1990). 
This was consistent to the experimental conditions used during Walton’s (2015 a) 
experimental regime and theoretically improved model accuracy. 

 
Figure 4.16 Soil Response Predicted Using NCHRP (Barker et al. 1991) 
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Force and stiffness were calculated using the lateral earth pressure for each 
spring. The force in the spring was calculated as the product of the vertical soil pressure, 
the lateral earth pressure coefficient, and the tributary area of the soil-spring. The 
tributary area (dA) for a current two dimensional analysis was the transverse spacing of 
the arches multiplied by the vertical projection of the arch element attached to the soil-
spring. The vertical projected area of an arch element at any angle of orientation (α) for a 
horizontal soil-spring can be seen in Figure 4.17. Note that in Figure 4.15, the apex node 
does not have a soil-spring attached to it because the vertical projected area of an arch 
node at the apex was essentially zero leading to a small or zero soil force. Due to the 
element sizes in the model being relatively small (1/80th of the arc length), the absence of 
one spring does not affect the results noticeably.  

=  ∗ ∗  
Equation 1 

Tangent stiffness (S) of the soil-spring was calculated as the slope of the force-
displacement relationship at the current horizontal displacement (Δspring) and at a small 
distance (dΔ) away from Δspring, which was approximated using a numerical derivative. 
Each soil-spring contributed only axial stiffness. 

=   (Δ + Δ) − (Δ )
Δ  

Equation 2 
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Figure 4.17 Horizontal Spring and Projected Arch Area 

4.4. Proposed Modifications to the Existing Model 
While the Existing Model adequately predicted the response of the arch system 

during backfilling and apex loadings (Walton et al. 2015 a), model accuracy decreased 
when the arch was subject to loads offset from the arch apex. It was clear that changes to 
the model were required to achieve a more accurate response during all load cases. 
Walton et al. (2015 a,b,c) also recommended including the effect of friction between the 
soil-springs and the arch as a method to better capture the soil response. This will result 
in angled soil-springs, the inclusion of which will add vertical confinement as well as 
simulate arch-soil friction, two additions to the model that Walton et al. (2015 b,c) 
expects will increase accuracy of the soil-spring model. 

Three options were considered in this study: a Three Spring Model, Radial Spring 
Model, and a Friction Angle Spring Model. 

The Three Spring Model was an adaptive model that accounts for the friction 
between the soil and the arch using a Coulomb soil force model and changes the direction 
of the soil reaction depending on the movement of the arch at each node. Each arch node 
was connected to three soil-spring elements to represent at-rest soil conditions as well as 
active and passive soil states. The at-rest soil-spring was horizontal and the active and 
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passive soil-springs were angled at the soil-wall friction angle (±δ). As the arch moves 
into or away from the soil, the corresponding soil-spring will activate and provide the soil 
reaction at the angle of that soil state. 

The Radial Spring Model oriented each soil-spring radially away from the arch to 
capture the normal pressure of the soil against the arch decking. It was predicted that 
aligning the springs in this direction will better simulate the reaction of the soil against a 
low friction decking material. 

The Friction Angle Spring Model oriented each soil-spring in the same direction, 
the characteristic soil friction angle. Each of these three modeling approaches is 
explained in greater detail in the following sections. 
4.4.1. Implementation of Angled Soil-springs 

The addition of angled soil-springs allowed the soil-spring model to capture 
vertical constraining effects of the soil. The lack of vertical constraint in the system was 
mentioned as a possible cause for the inaccuracy of the model by Walton (2015 c). In the 
case of offset live loads, the Existing Model over-predicted both the vertical displacement 
of the arch into the soil as well the lateral earth pressure coefficient (Ksoil) of the soil near 
the apex. Walton (2015 c) stated that this was likely linked to the absence of vertical soil 
confinement and frictional force between the arch and the soil. Movement of the arch at 
the shoulders due to applied service loads was primarily perpendicular to the arch. Near 
the shoulders and apex, this means that the arch displacements contain a vertical 
component that was unrestrained by the existing horizontal soil-springs. 

Angled soil-springs used the same NCHRP load displacement relationship that 
was used for horizontal soil-springs. The lateral earth pressure coefficient depends on the 
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relative displacement of the arch in the direction of the soil-spring. The angled spring 
models incorporated the Rankine model used by the Existing Model, calculating the soil 
reaction assuming it acts on a projection of the arch element perpendicular to the soil-
spring. To implement angled soil-springs in the model, two major changes were made to 
correctly calculate the reactive force of the soil-spring: the projected area of the arch 
element that was perpendicular to the soil-spring was used, and the arch node’s deflection 
in the direction of the soil-spring was used to determine K. These changes allowed the 
model to accurately determine the reactive force and stiffness of a soil-spring at any 
orientation. The projected area for an angled soil-spring can be seen in Figure 4.18. 
Radial soil-springs act normal to the arch element, therefore in Figure 4.18 angles α and β 
were equal and the arch projection was equal to the arch element.  

 
Figure 4.18 Angled Spring and Projected Arch Area 

4.4.1.1. Radial Springs 
One instance of angled soil-springs that was considered to improve the soil-spring 

model was the reorientation of each of the horizontal springs to the radial direction. 
Bannon (2009) used radial soil-springs to model a CFFT buried arch bridge. The Radial 
Spring Model, shown in Figure 4.19, applied a force normal to the arch at each element 
and considered the spring as acting on the total tributary area of an arch element, as 
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opposed to the vertical projection of the arch element used in the existing horizontal 
spring model. Radial soil-springs added mostly horizontal restraint at the supports and 
vertical restraint at the apex, possibly addressing the issue of the Existing Model 
deflecting more at the shoulders and apex than the experiment. The tributary area for a 
radial spring was the spacing of the arches by the length of the arch element. This may 
give the model the confinement required to simulate more realistic soil pressures at the 
shoulders and apex of the arch. 

 
Figure 4.19 Radial Spring Model 

4.4.1.2. Friction Angle Springs 
Another option to implement angled soil-springs was to angle each soil-spring in 

the same direction. The Friction Angle Spring Model oriented each spring at the soil 
friction angle, which Walton (2015 a) experimentally determined to be 44° for the 
backfill soil used in the laboratory buried arch tests, shown in Figure 4.20. The springs 
oriented in this direction were intended to simulate the reactive force of the soil in the 
direction of the friction angle of the soil used in the experiment. 
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Figure 4.20 Friction Angle Spring Model 

4.4.2. Three Spring Model 
The Three Spring Model, drawn with a coarse mesh in Figure 4.21 and at the 

nodal level in Figure 4.22, calculated a reactive force for three springs and aligns the 
resultant of the soil reaction by multiplying each spring by a ratio that depends on the 
relative horizontal displacement (Δx) of the arch at the node. In vertical retaining wall 
design using a Coulomb soil model, the soil reaction force orientation and magnitude 
depend on the relative horizontal displacement of the wall. The soil reaction was oriented 
at +δ, the soil-wall friction angle, when the wall moves away from the soil in an active 
soil state, and the reaction was oriented at –δ when the wall moves into the soil in a 
passive soil state. To model this, active and passive soil-springs were oriented at +δ and –
δ from horizontal. Typically values of δ range from around a one-third to two-thirds of 
the soil friction angle (Das, 2011). 

The Existing Model calculated the reaction force of the soil based on a vertical 
projection of the arch element moving horizontally relative to the soil. The Three Spring 
Model calculated the soil reaction using the same vertical projection of the arch area seen 
in Figure 4.17, and the horizontal movement of the adjoining arch node for all three 
springs for each node. This was consistent with the retaining wall design methods used in 
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the Existing Model and adapted to fit with the Coulomb model. Horizontal wall 
movement dictates the lateral earth coefficient for all springs. Fully-active and fully-
passive values of deflection are defined as the solid vertical lines in Figure 4.23, Δp is 
shown as the passive soil state deflection limit. Using these limits, the ratio of the relative 
displacement to the limit of the active or passive soil state was calculated in Equation 3 
through Equation 5.  

 
Figure 4.21 Three Spring Model 

 
Figure 4.22 Three-Spring Model Arch Node, Soil-springs, and Deflection 
The ratio (γ) was calculated for each of the springs in the three spring system and 

multiplied by the spring’s axial force. Therefore if the arch was moving into the soil, then 
only the at-rest and passive soil-springs were restraining the node and the active soil-
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spring did not contribute to the system. An active soil state was defined here as the arch 
moves away from the soil (-) and passive was defined as the arch moves into the soil (+). 

 
Figure 4.23 Soil-spring Deflection Limits 

Values for γ in active and passive springs were calculated as the relative 
horizontal soil-spring movement divided by the soil limit state associated with the 
movement direction. For each spring group there were two cases, the arch moving into 
the soil and the arch moving out of the soil. The ratios for the two cases were calculated 
differently and are shown in Equation 3 and Equation 4. 
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If: 
∆   ≥ ∆ ≥  0, the soil is entering a passive soil state. 

= ∆
∆   

, = 0 

Equation 3 
If: 
∆   ≤ ∆ ≤  0, the soil is entering an active soil state. 

= 0, =  ∆ /∆    
Equation 4 

At-rest springs ratio are the difference between one and the above ratio. 
= 1 −     1 −  

Equation 5 
Figure 4.24 illustrates the percentage of spring engagement as the node moves 

from a zero deflection to the deflection limit. These ratios were multiplied by the 
calculated applied force for each of the respective springs. Since the spring stiffness was 
calculated using the forces of the springs, the stiffness was scaled by γ for each spring in 
the three spring system (see Equation 2). This allowed the soil reaction magnitude to be 
nearly the same as the horizontal soil-spring model’s soil reaction while also including 
the effects of friction between the arch and soil. 



59 
 

 
 

 
Figure 4.24 Spring Interpolation for Three Spring Model 

4.4.2.1. Modification to the Three Spring Model 
The Three Spring Model as originally implemented with linear interpolation 

between soil regimes (described in 4.4.2 of this thesis) was unable to find a solution for 
the entire analysis for either arch geometry. Soil-spring interpolation was suspected to be 
the reason. To explore this further, a different routine was implemented into the Three 
Spring Model to calculate the percent of engagement for each soil-spring at the node 
using a quadratic interpolation rather than the previously used linear method. The new 
method of calculating the ratio γ is defined in Equation 6 through Equation 8Error! 
Reference source not found.Error! Reference source not found.. This soil-spring 
interpolation method rapidly changed the distribution of the force applied by the soil-
springs from the at-rest spring to the angled soil-spring when displacements were small 
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and as the displacement neared the soil deflection limit the majority of the soil reaction 
force was coming from the angled soil-spring. 

If: 
∆   ≥ ∆ ≥  0, the soil is entering a passive soil state. 

= − ∆
∆   

+ 2 ∆
∆   

, = 0 

Equation 6 
If: 
∆   ≤ ∆ ≤  0, the soil is entering an active soil state. 

= 0, =  − ∆
∆   

+ 2 ∆
∆   

 

Equation 7 
The at-rest spring ratio was calculated from the movement and that associated 

deflection limit. 

= ∆
∆   

− 2 ∆
∆   

+ 1 

Equation 8 
Equation 6Error! Reference source not found. through Equation 8Error! Reference 
source not found. are illustrated in Figure 4.25 where the spring engagement was 
dependent on the normalized deflection at the arch node over the soil deflection limit. 
The angled spring in the figure refers to the angled soil spring being activated by the 
movement. For example, if the arch moves into the soil the passive spring is being 
activated and the deflection limit refers to the passive deflection limit described in 4.4.2. 
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Figure 4.25 Quadratic Spring Interpolation in the Three Spring Model 

4.4.2.2. Error in Three Spring Method 
It was important that the three soil-springs do not apply a resultant force 

significantly different from the force applied by a single spring in the existing horizontal 
spring model. A study was conducted to assess the error due to the added springs in the 
Three Spring System. The case of the arch moving into the soil was investigated at one 
arch node as the deflection moved from fully at-rest to fully passive. 

The nodal soil-springs seen in Figure 4.22 go through a horizontal displacement 
(Δx). Based on the load deflection curve in Figure 4.23, a lateral earth pressure coefficient 
and force were calculated as detailed above for the at-rest soil-spring at the deflection 
(Δx). Each soil-spring for the node was set equal to the force ( ) calculated and 
multiplied by the respective γ value based on the relative deflection. In this case where 
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the arch is moving into the soil, the active soil-spring contributed nothing and the at-rest 
and passive soil-springs were multiplied by non-zero γ values. The applied force was then 
calculated as the magnitude of the resultant for all three springs, seen in Equation 9 
through Equation 11. 

The horizontal and vertical resultants due to the two activated springs, at-rest and 
passive, were calculated as shown in Equation 9 and Equation 10. The resultant of the 
horizontal and vertical forces applied by the two soil-springs to get the resulting soil 
reaction force was calculated in Equation 11. 

=  + ( ) 
Equation 9 

=  ( ) 
Equation 10 

  = +  
Equation 11 

Figure 4.26 shows the force due to the group of springs versus one horizontal 
spring normalized over the force applied by the horizontal spring in the one spring 
system. Two different soil-wall friction angles (δ) were considered, 20° and 30°, as a 
typical range of values for soil on wood (Barker et al. 1991). As the deflection moved 
from fully at-rest to fully passive, the error started at zero and was at a maximum at a 
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deflection halfway between the two soil state limits. This error was 3.1% for δ = 20°, and 
6.7% for δ = 30°.  

 
Figure 4.26 Normalized Spring Force vs Relative Deflection 

4.4.3. Implemented Modifications to the Model 
The Radial Spring Model, Friction Angle Spring Model, and the Three Spring 

Model were implemented in the soil-spring model. The Radial Spring Model and Friction 
Angle Spring Model were added due to the vertical restraint provided by each model’s 
angled soil-springs. It was anticipated that the angled soil-springs would better predict the 
vertical soil pressures and arch displacement as the model nears the top of the arch. The 
Three Spring Model was a unique solution that considers movement of the arch 
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throughout loading cases when orienting the soil-springs and realistically applies the 
reactive soil force in the direction calculated when using a Coulomb model for soil. 
4.5. Conclusions 

This chapter discusses an analysis of the Existing Model’s live load distribution as 
well as methods used to modify the Existing Model to improve model performance. The 
Existing Model used a Boussinesq load distribution model to predict the force on the arch 
due to live loads. Vertical pressures gathered from the tested scale arches show that the 
Boussinesq model poorly calculated the effect of the load away from the location of the 
load. Other soil distribution methods should be investigated to improve the accuracy of 
the model. 

Three alternatives to the soil-spring orientation were discussed: the Three Spring 
Model, Radial Spring Model, and the Friction Angle Spring Model. The Existing Model 
was not able to capture any vertical soil restraint using horizontal soil-springs. These 
alternatives to the soil-spring model orient the soil-springs so that the resulting spring 
force simulated vertical and horizontal soil restraint. By using a Coulomb soil model, the 
Three Spring Model included the effect of friction between the soil and the arch. This 
alternative interpolated between three soil-springs depending on the relative movement of 
the arch at that node to simulate the soil in active and passive states.  
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CHAPTER 5  
MODEL PREDICTIONS AND COMPARISONS WITH EXPERIMENTAL 

RESULTS 

5.1. Introduction 
This chapter focuses on the comparison between the alternative soil-spring 

models detailed in the previous chapter. Short and tall arch models were compared with 
the scaled experimental test moments and displacements for each phase of the analysis: 
backfilling, service live loading, and ultimate loading.  

5.2. Model Description 
The base model in this research simulated response of the half scale experimental 

steel arch built and tested by Walton et al. (2015 a). The steel arches were chosen due to 
the ease and accuracy of computing internal arch stress resultants from the 
experimentally measured strains. The arch cross section was selected to best replicate the 
horizontal pressure of a full scale arch; this was explained in more detail by Walton 
(2015 c). The main structural member of the short arch was a 50 mm by 50 mm curved 
steel bar and the tall arch was a 38 mm by 100 mm steel bar oriented so that the arch will 
be in weak axis bending. Under service loading these arches were designed to remain 
linear elastic. 

Soil in the soil-spring model mimicked the backfill soil used in the lab 
experiments, which was tested by Walton et al. (2015 a,c) and the parameters were 
entered into the model. The soil used in the lab had a bulk density of 2.2 Mg/m3 and an 
internal soil friction angle (ϕ) of 44° assuming a dense compaction level. The reaction 
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force of the soil-springs in the model was defined by the NCHRP (Barker et al. 1991) 
load deflection relationship explained earlier in this report. 

The models analyzed in this report will be compared to the Existing Model as 
well as the data gathered from experiments conducted and designed by Walton et al. 
(2015 a,c). The models used for comparisons were the Radial Spring, Friction Angle 
Spring, and the Three Spring Models. The soil-wall friction angle (δ) used for the Three 
Spring Model was 25° as an average for the typical values of the soil-wall friction angle 
for soil on wood for both the short and tall arches. Moments along the span control the 
design in the arches as they are efficient axial members and are subject to small shear 
forces. According to Walton et al. (2015 b) the controlling load cases were apex and 
shoulder moment during backfilling, apex moment due to apex live load, and shoulder 
and footing moment due to a 60% offset service load. Arch response under these load 
cases and others were examined in the following sections. Three Spring Model results 
using the modified quadratic interpolation routine were presented. The Three Spring 
Model using the linear spring interpolation method was only able to calculate results for 
two load cases: short arch backfilling and short arch apex service loading. The results for 
these two load cases were presented as a comparison between the two interpolation 
routines, the Existing Model, and the experimental moments. 

5.3. Backfilling Response for the Short Arch 
The buried arch structure underwent a significant locked-in moment due to 

backfilling that can control design in some cases. For all models, a consistent lift height 
of 200 mm was applied to alternating sides of the arch to analyze the replicate the un-
symmetric construction backfill sequence seen in the field. Backfilling continued to a 
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final an apex soil cover of 610 mm for a total height of soil above the arch-foundation 
interface of 1.83 m. The Existing Model did an adequate job at capturing the apex and 
shoulder moments at the end of backfilling while over-predicting the moments at the arch 
foundation interface.  

All model variations predicted a peak or plateau in moment at the apex when the 
backfill lifts were around shoulder height, when backfilling was roughly 85% complete, 
consistent with experimental results showing the maximum moment occurring several 
lifts before the end of backfilling. Moments at the apex, foundation, and shoulder during 
backfill can be seen in Figure 5.1 through Figure 5.3, respectively. The angled spring 
models also predicted a drop in moment at the apex after the maximum was reached, 
similar to the drop seen experimentally. The Existing and Three Spring Models show a 
moment plateau after the backfill reaches the shoulders. Results taken at the shoulders 
were located halfway between the arch apex and the foundation. Moments due to the 
final lifts were seen in the Existing and Three Spring Model to have an almost negligible 
effect on the apex moment, where both angled spring models saw a reduction in the 
negative moment. 

The maximum moment was seen experimentally as 2.1 kN·m, higher than the 
maximum moment seen in any of the models. The maximum moment predicted by the 
Radial Spring Model was closest to experimental results at 1.8 kN·m, approximately 8% 
below the measured value at lift 19. The final backfilling moment varied for each model. 
The Three Spring Model resulted in a moment that varied less than 5% from the Existing 
Model throughout backfilling. Moments throughout backfilling predicted by the Radial 
Spring Model and the Friction Angle Spring Model were greater than those computed by 
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the Existing Model until lift 20, then the moment for those models at the apex dropped 
while the Existing and Three Spring Models continue to build moment. Apex moment at 
the end of backfill was approximately 30% less than the experimental for the Friction 
Angle Spring Model, 38% less than the experiment for the Radial Spring Model, and 
10% less than the experiment for both the Existing and Three Spring Models. 

 
Figure 5.1 Short Arch Backfilling Moments at Apex 

Foundation moments during backfilling, shown in Figure 5.2, were over-predicted 
by each model for the majority of backfilling. The models predicted almost triple the 
measured response during backfill when the backfill soil height was at the shoulders of 
the arch near lift 18. The Friction Angle Spring Model predicted the smallest maximum 
moment of 140% higher than the experiment and the Radial Spring Model predicted the 
largest maximum moment of 190% higher at lift number 18. The Existing and Three 
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Spring Model both ended backfilling with roughly a 60% higher moment than found 
experimentally. The angled spring models predicted a drop in negative moment at the 
foundation after peaking at lift 18. The Radial Spring Model predicted the final backfill 
moment seen experimentally within 0.1% and the Friction Angle Spring Model under-
predicted the final backfill moment within 10%. 

 
Figure 5.2 Short Arch Backfilling Moments at Foundation 

Moments at the shoulder (Figure 5.3), located halfway between the arch apex and 
foundation, were much closer to experimental values when compared to the foundation 
moments during backfill. The maximum moment was predicted by the Three Spring 
Model during backfilling at 30% higher than the experimental moment. The Existing and 
Three Spring Models both predicted a small drop in shoulder moment after peaking at lift 
18, also seen experimentally at lift 20 while the Radial and Friction Angle Spring Models 
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predicted a drop in moment equal to 25% and 42% of the maximum moment. The Three 
Spring Model and the Existing Model over-predicted the final moment by 10% and 6% 
respectively, while the Radial Spring and Friction Angle Spring Model under-predicted 
the final moment by about 25% each. 

 
Figure 5.3 Short Arch Backfilling Moments at Shoulder 

Moments along the span at the end of backfilling can be seen in Figure 5.4. The 
models followed the same trend, showing a negative moment at the footings and apex, 
and a positive moment at the shoulders. The moments at the shoulder, footings, and apex 
of the arch control design during backfilling. The Existing and Three Spring Model better 
predicted the controlling moments while the Radial and Friction Angle Spring Models 
predicted lower moments at almost all locations along the arch span. The Existing and 
Three Spring Models also predicted a more symmetric response compared to the Friction 
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Angle and Radial Spring Models, which could signify that the angled soil-springs are 
more susceptible to the un-symmetric backfilling. The highest experimentally determined 
moment post backfill was located at the arch-foundation interface at 2.9 kN·m, the 
Existing and Three Spring Models over-predicted the moment by 38% while the Radial 
and Friction Angle Spring Models under-predicted the moment by 14% and 25% 
respectively. Apex moments were under-predicted by all models: 11% by the Existing 
Model, 10% by the Three Spring Model, 32% by the Friction Angle Spring Model, and 
40% by the Radial Spring Model. 

 
Figure 5.4 Short Arch End of Backfill Moment 

Figure 5.5 illustrates the moment distribution along the span due to backfilling 
calculated from the Existing and both iterations of the Three Spring Model. The original 
soil-spring model employing the linear interpolation routine is marked as the ‘Linear 
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Interp’ while the modified Three Spring Model employing the quadratic interpolation 
routine is marked ‘Quadratic Interp.’ Moments along the span varied little between the 
Existing and Three Spring Models, differing less than 1% from the apex moment 
predicted by the Existing Model. The apex moment was under-predicted by less than 
10% from the experimental value by each model. The shoulder moment near 25% of the 
arch length showed the most variation from the Existing Model, 5% for the original 
Three Spring Model and 9% for the modified Three Spring Model. 

 
Figure 5.5 Short Arch End of Backfill Moment, Three Spring Model Comparison 

The vertical component of the deflection at each node in the arch can be seen in 
Figure 5.6. Multiple data points at the same location indicate the movement in each of the 
three arches in the experiment. Each model generally followed the same deflected shape, 
the apex moving upward and the shoulders moving downward due to the stepped 
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backfilling. Apex displacement was well predicted by the Existing and Three Spring 
Models. Experimentally, the shoulder experienced the highest displacement but was 
under-predicted by all models: 55% by the Existing Model, 56% by the Three Spring 
Model, 70% by the Radial Spring Model, and 72% by the Friction angle Spring Model.  

 
Figure 5.6 Short Arch End of Backfill Vertical Displacement 

5.4. Backfilling Response for the Tall Arch 
Backfilling lifts were placed for an apex soil cover of 610 mm for a total height of 

soil above the arch-foundation interface of 2.9 m. Moments throughout the backfill 
analysis for the completed tall arch models can be seen in Figure 5.7 through Figure 5.9. 

The tall arch moment response during backfilling at the apex is shown in Figure 
5.7. Each model other than the Existing and Three Spring Model predicted a peak 
moment during backfilling and then a drop in the negative moment. The Existing Model 
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disagreed and continued to build moment to the end of backfilling. Maximum moment 
predicted by the Radial and Friction Angle Springs were within 1% of the measured 
moment. The drop in negative moment measured was 19% while the Radial Spring 
Model predicted a 40% drop and the Friction Angle Spring Model predicted a 30% drop 
at the apex.  

 
Figure 5.7 Tall Arch Backfilling Moments at Apex 

Measured foundation moments, shown in Figure 5.8, generally fell between the 
Existing and the two angled spring models until lift 25 then again from lift 30 to the end 
of backfilling. The Existing Model predicted a peak moment during backfill 70% higher 
than the measured moment, then the moment was reduced to within 7% at the end of 
backfill. The four models predicted a similar drop in negative moment after hitting a peak 
during backfill of approximately 2.7 kN·m. 
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Figure 5.8 Tall Arch Backfilling Moments at Foundation 

Experimental tall arch shoulder moments, shown in Figure 5.9, are generally 
between the responses predicted by the Existing and angled spring models past lift 23. 
The experimental moments followed the trend of the Radial Spring Model until the 
moment peaked at the shoulders then while the Radial Spring Model lost moment, the 
moment in the experiment continued upward then plateaued. The final moment at the end 
of backfill matched better with the Existing Model, only over-predicting by 6%, while the 
Radial Spring and Friction Angle Spring Models under-predicted the final moment by 
33% and 39% respectively.  
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Figure 5.9 Tall Arch Backfilling Moments at Shoulder 

Tall arch moments at the end of backfilling, shown in Figure 5.10, follow a 
similar trend to what was seen in the short arch moments, negative at the apex and 
footing and positive at the shoulders. All models predicted an un-symmetric response but 
the peak shoulder moment appeared on opposite sides when comparing the Existing and 
angled spring models. The Friction Angle Spring Model predicted the apex moment 
within 2%, while the Radial Spring Model under-predicted the moment by 20% and the 
Existing Model over-predicted by 62%. Apex moment was over-predicted 66% by the 
Three Spring Model. At the shoulder near 25% of the span the Three Spring Model 
predicted an 8% higher moment due to backfilling. The Three Spring Model predicted a 
left footing moment 14% higher than the Existing Model. 
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Figure 5.10 Tall Arch End of Backfill Moment 

Tall arch vertical displacement at the end of backfill is shown in Figure 5.11. The 
Existing Model over-predicted the displacement at the apex by 50% and under-predicted 
the displacement at the shoulders by 25%. The Radial and Friction Angle Spring Models 
better predicted the apex displacement, within 6% and 8.5% respectively. The angled 
springs restrained the tall arch from moving vertically more than the Existing Model due 
to the orientation of the soil-springs, leading to an apex displacement similar to what was 
seen experimentally.  
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Figure 5.11 Tall Arch End of Backfill Vertical Displacement 

5.5. Live Load Response of Short Arch 
The service live load analysis mimicked the load applied to the experimental 

arches. After backfilling, the arches were subject to a point load of 84 kN applied at 
multiple locations within the center 60% of the span starting with the apex then 
alternating the load position in 10% of the span increments. In the following sections, the 
moment and vertical displacement response due to live load only from each model were 
examined, where live loading at the apex, 10% of the span from the apex, 20% of the 
span from the apex, and 30% of the span from the apex were considered.  

5.5.1. Apex Service Live Load 
Figure 5.12 illustrates the moment distribution along the arc length of the span in 

response to an apex service load for the short arch. The apex moment was predicted by 
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the Three Spring Model to within 1% of the experimentally derived moment. All models 
predicted the apex moment to within 11% of the experimental value. The Radial Spring 
Model best predicted the shoulder moments on both sides of the arch where the other 
models over-predicted the experimental moment at the shoulder at 25% of the span by 
approximately double. At the right footing, all models generally predicted the moment 
well, however on the left side, the Existing and Three Spring Model over-predicted the 
footing moment where the measured value was small.  

 
Figure 5.12 Short Arch Apex Service Load Moments 

Apex service load moments for the short arch calculated from the two iterations 
of the Three Spring Model are illustrated in Figure 5.13. Apex moment was captured by 
the original Three Spring Model to within 1% of the experimentally seen moment. The 
modified Three Spring Model over-predicted the experimental apex moment by 6% and 
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the Existing Model under-predicted the apex moment by 8%. The Existing Model 
calculates the smallest negative peak shoulder moment at 30% of the arc length, the 
original Three Spring Model predicted a negative moment 17% higher moment than the 
Existing Model, and the modified Three Spring Model predicted a moment 40% higher 
than the Existing Model at that point.  

 
Figure 5.13 Short Arch Apex Service Load Moment, Three Spring Model 

Comparison 
Figure 5.14 illustrates the vertical displacement for the short arch due to apex 

service loading. For the short arch the Three Spring Model predicted the apex 
displacement within 2%, and the Existing Model was within 5%. The angled spring 
models over-predicted the displacement at the apex by 6% for the Radial Spring Model 
and 37% for the Friction Angle Spring Model.  
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Figure 5.14 Short Arch Apex Service Load Vertical Displacement 

5.5.2. 20% Offset Service Live Load 
Moments along the span due to an offset service load 20% of the distance 

between the apex and the left footing are shown in Figure 5.15. The Three Spring Model 
was unable to converge to a solution for this and the following offset load cases and were 
omitted from these discussions. For the short arch, the peak moment was predicted within 
2.5% by each model. Shoulder moments at 25% of the span were well predicted by each 
model within 9% of experimental results. The right footing moment was captured by each 
model within 0.3 kN·m. Since the moment was small, a percentage difference would 
inadequately demonstrate the comparison. On the left side, the footing moment was over-
predicted by all models, but best captured by the Radial Spring Model within 0.2 kN·m.  
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Figure 5.15 Short Arch 20% Offset Service Load Moments 

Vertical displacement for each model due to a 20% offset service load can be seen 
in Figure 5.16. The maximum short arch displacements predicted by the Existing and 
Radial Spring Model agreed with each other well and was predicted to be 28% higher by 
the Friction Angle Spring Model.  
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Figure 5.16 Short Arch 20% Offset Service Load Vertical Displacement 

5.5.3. 40% Offset Service Live Load 
Figure 5.17 illustrates the moment distribution due an offset service load 40% of 

the distance between the apex and the foundation. The angled spring models predicted an 
overall lower moment along the span of the short arch and matches with more of the 
critical experimental values than the Existing Model. The peak moment to the left of the 
apex was captured within 2.5% of the measured moment while the Existing Model over-
predicted the moment by 27%. The negative moment peak to the right of the apex was 
over-predicted by the Existing Model by double while both angled spring models were 
within 1% of the moment at that point. Both footing moments were better predicted by 
the angled spring models while the Existing Model predicted more negative moment than 
seen experimentally. 



84 
 

 
 

 
Figure 5.17 Short Arch 40% Offset Service Load Moments 

Vertical displacement response for the 40% offset service load is illustrated in 
Figure 5.18. The Existing Model predicted 23% more movement at the left shoulder than 
the Radial Spring Model and 46% movement than the Friction Angle Spring Model. The 
Existing Model predicted more than double the vertical displacement into the soil on the 
opposite shoulder than the other models and experimental value. The angled spring 
models predicted less displacement into the soil on the side of the arch opposite the load 
application, at about 60% of the arc length, than seen experimentally, 36% for the Radial 
Spring Model and 67% less for the Friction Angle Spring Model.  
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Figure 5.18 Short Arch 40% Offset Service Load Vertical Displacement 

5.5.4. 60% Offset Service Live Load 
Figure 5.19 illustrates the moment distribution along the span for a 60% offset 

service load. The peak positive experimental moment was over-predicted by the Existing 
Model by 25% while the angled spring model predictions were enveloped by the 
moments seen experimentally. Apex moments for the angled spring models also matched 
well with experimentally seen moments, while being over-predicted by the Existing 
Model by 1-1.5 kN·m. Footing moments were generally better predicted by the angled 
spring models. The left footing moment seen experimentally was over-predicted by all 
models, 120% greater by the Radial Spring Model, 160% greater by the Friction Angle 
Spring Model, and 300% greater by the Existing Model. The angled spring models 
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predicted lower moments at the apex and the shoulder on the side of the arch opposite the 
load compared to the Existing Model.  

 
Figure 5.19 Short Arch 60% Offset Service Load Moments 

Vertical displacements, seen in Figure 5.20, for the short and tall arches show the 
arch displacement due to the 60% offset load. Short arch displacements matched with the 
angled spring models better at most points. The Existing Model significantly over-
predicted the downward displacement at the point of the load and the upward 
displacement into the soil to the right of the apex.  
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Figure 5.20 Short Arch 60% Offset Service Load Vertical Displacement 
Error for each model was calculated as the ratio of the two-norm of the difference 

in moment seen experimentally and the model results over the two-norm of the vector of 
experimental moments at the locations of the gauges along the span. The ratios are 
presented as percentages in Table 5.1 for each model and each load case. ‘NA’ marks the 
load cases for which the model did not find a solution. The error was used to evaluate 
each model’s relative performance.  

At the end of backfilling the Existing Model performed the best with the smallest 
error of 46.6%, both Three Spring Model iterations followed closely with less than 2% 
additional error. The Radial Spring Model predicted the smallest error during the apex 
service load case, less than half the error calculated by the second best performing model, 
the Friction Angle Spring Model. The Radial Spring Model also predicted the smallest 
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error during the 60% offset service load case with an error of 64.2% followed by the 
Friction Angle Spring Model with 70.9%. For the remaining offset service load locations 
of 20% and 40% the Friction Angle Spring Model resulted in the lowest error followed 
within 3% by the Radial Spring Model. 

Table 5.1 Error of Each Model Moment Results, Short Arch 

 Existing Radial Friction 
Three Spring 

(linear) 
Three Spring 
(quadratic) 

Backfilling 46.6% 52.6% 62.3% 47.4% 48.4% 
Service Apex 37.9% 17.1% 34.4% 43.4% 51.1% 

Service 60% Offset 117.4% 64.2% 70.9% NA NA 
Service 40% Offset 129.4% 86.7% 83.8% NA NA 
Service 20% Offset 75.0% 65.8% 62.8% NA NA 

 
While the model alternatives showed improvement over the Existing Model 

during service load cases, a single model did not stand out clearly as the best option. For 
the short arch configuration, the Radial Spring Model had the lowest average error for 
each load case, with an average error of 57.3%. The Friction Angle Spring Model 
followed with an average error of 62.8%. The average error shown here tends to illustrate 
how the models performed for the service load cases since the service load cases out-
number backfilling in this analysis. Since the error was shown as a magnitude, over- and 
under-prediction appears the same.  

5.6. Live Load Response of the Tall Arch 
The following sections compared the moment and vertical displacement response 

due to just the live service load at the apex and offset load locations similarly to the 
previous section. 
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5.6.1. Apex Service Live Load 
Apex service live load results are shown in Figure 5.21. The apex moment was 

well predicted by the Existing Model within 5% of the experimental value and was over-
predicted by 15% by the modified Three Spring Model. The maximum measured 
shoulder moment due to apex loading was over-predicted by the Radial Spring Model by 
28% and under-predicted by the Existing and Friction Angle Spring Model by 42% and 
60% when compared to the experiment. As with the short arch, the footing moments on 
the right side due to an apex load were generally captured well by each model. The 
footing moment on the left side was over-predicted again by the Existing Model and 
captured within 2% by the Radial Spring Model. The experimentally seen moment to the 
left of the apex was better predicted by the Three Spring Model, under-predicting the 
moment by 10%. 
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Figure 5.21 Tall Arch Apex Service Load Moments 

Figure 5.22 illustrates the vertical displacement for the tall arch due to apex 
service loading. The models followed a similar trend in the deformed shape. Each model 
over-predicted the apex displacement compared to the measured value. The Friction 
Angle Spring Model predicted a negative peak at 25% of the span not seen in the other 
models. 
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Figure 5.22 Tall Arch Apex Service Load Vertical Displacement 

5.6.2. 20% Service Offset Live Load 
Moments along the span due to an offset service load 20% of the distance 

between the apex and the left footing are shown in Figure 5.23. Predicted moment 
distributions by each model indicate a peak to the left of the apex that was not captured 
by the gauge configuration. However, model predictions of peak moment vary by nearly 
20%. Peaks in moment near the right shoulder was over-predicted by each model but due 
to the peaks not lining up with the experimental data, it was unknown which model better 
predicted the maximum negative moment. The Three Spring Model calculated the highest 
peak in moment to the left of the apex 32% higher than the Existing Model. 
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Figure 5.23 Tall Arch 20% Offset Service Load Moments 

Vertical displacement for each model due to a 20% offset service load can be seen 
in Figure 5.24. The tall arch maximum predicted displacements by each model within 4% 
of each other near 40% of the arch span. The models did not agree with the magnitude of 
the displacement between the apex and the shoulder opposite the load. 
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Figure 5.24 Tall Arch 20% Offset Service Load Vertical Displacements 

5.6.3. 40% Service Offset Live Load 
Figure 5.25 illustrates the moment distribution due a 40% offset service load. The 

tall arch response shows that the Existing and Friction Angle Spring Models predictions 
fell between the two peak positive moments derived from the experiment while the 
Radial Spring and Three Spring Model over-predicted this peak moment by 24% and 
13%, respectively. The Radial Spring Model predicted a higher moment at the apex than 
was measured. The left footing moments were better predicted by the angled spring 
models and over-predicted by the Existing Model while the opposite was true for the 
right footing moment. 
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Figure 5.25 Tall Arch 40% Offset Service Load Moments 

Vertical displacement response for the 40% offset service load is illustrated in 
Figure 5.26. The tall arch was generally predicted to have less vertical displacement than 
the short arch. Experimental values were small and gauges were not present at the peaks 
so an adequate analysis of the performance of the spring models was difficult. 
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Figure 5.26 Tall Arch 40% Offset Service Load Vertical Displacements 

5.6.4. 60% Service Offset Live Load 
Figure 5.27 illustrates the moment distribution along the span for a 60% offset 

service load. For the tall arch, the peak moments appear in different locations along the 
span for each model. The angled spring models predicted a peak close to 35% of the span 
from the left support while the Existing Model predicted the peak to be closer to 25% of 
the span from the left support. The left footing experimentally had a small moment which 
was captured by the angled spring models, and the Existing and Three Spring Model 
over-predicted the left footing experimental moment by approximately 0.5-1 kN·m.  
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Figure 5.27 Tall Arch 60% Offset Service Load Moments 

Tall arch displacements were smaller than the short arch, seen in Figure 5.28. The 
Friction Angle Spring Model predicted a peak less than 5% smaller than the measured 
maximum displacement. The Radial Spring and Existing Models over-predicted the 
vertical displacement by 110% and 56%, respectively. 
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Figure 5.28 Tall Arch 60% Offset Service Load Vertical Displacements 
Error for each model was calculated as the ratio of the two-norm of the difference 

in moment seen experimentally and the model results over the two-norm of the vector of 
experimental moments at the locations of the gauges along the span. The percent error is 
presented in Table 5.2 for each model and each load case. The error is used to quantify t 
each model’s relative performance. At the end of backfilling, all models calculated a 
similar error within 7% of each other; the best performing model was the Existing Model 
with a calculated error of 51.3%. The Three Spring Model calculated the lowest error 
during an apex service load of 32%, close to the Existing Model’s 34.2%. Offset service 
load response at 60% and 40% was best predicted by the Friction Angle Spring Model at 
over 30% error, nearly half of the next best model for either load case. All models during 
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a 20% offset service load calculated an error higher than that of the Existing Model 
(138%). 

Table 5.2 Error of Each Model Moment Results, Tall Arch 

 Existing Radial Friction 
Three Spring 

(linear) 
Three Spring 
(quadratic) 

Backfilling 51.3% 53.3% 55.9% NA 58.5% 
Service Apex 34.6% 52.2% 87.7% NA 32.0% 

Service 60% Offset 87.3% 58.2% 30.1% NA 100.7% 
Service 40% Offset 58.9% 62.8% 33.3% NA 84.2% 
Service 20% Offset 138.0% 159.4% 157.9% NA 211.1% 

 
As with the short arch models, there was no clear model that best predicts the 

response of the experiment for all load cases. This error was shown as a magnitude and 
does not discriminate between over- and under-prediction along the span. The Friction 
Angle Spring Model calculated the lowest average error for all load cases with an average 
error of 73%. However, the Existing Model and Radial Spring Models followed close 
behind with errors of 74% and 77%, respectively. The alternative models for the tall arch 
did not show much improvement over if any for the analysis as a whole. The Existing 
Model still predicted backfilling and apex service load response better than the angled 
spring models and fell behind the Radial and Friction Angle Spring Models for the 
controlling service load applied at a 60% offset from the apex. 

5.7. Ultimate Load Response 
The short and tall arch apex moment during ultimate load analysis is shown in 

Figure 5.29 and Figure 5.30. The total apex moment was presented, which included the 
effect of backfilling and applied live load. It should be noted that in a real arch the soil 
stresses can be expected to redistribute when the arch experiences excessive deformations 
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such as during an ultimate load test; however, the simulations here assume a Boussinesq 
distribution model and do not redistribute the effect of the live load due to arch 
deformations. A continuum model Walton et al. (2015 b,c) was able to capture the 
redistribution in soil stress, however the results from that analysis are not presented here. 

The short arch experimentally was able to resist an apex load of 218.8 kN. The 
Existing Model predicted a maximum load of 215.2 kN, the Radial Spring Model 
predicted 213.5 kN, the Friction Spring Model predicted 145.1 kN, and the Three Spring 
Model predicted 187.7 kN. The Existing Model tracks the experimental data starting at 
about 84 kN, the magnitude of the last service level test. The Existing and Radial Spring 
Models predicted the ultimate load capacity within 1.6% and 2.5%, respectively. The 
Three Spring Model under-predicted the capacity by 14% and the Friction Angle Spring 
Model under-predicted the capacity by 34%. All models predicted a lower moment at the 
apex at failure than measure experimentally.  



100 
 

 
 

 
Figure 5.29 Short Arch Ultimate Load Moments 

The tall arch model was experimentally seen to withstand 225 kN before failure. 
The Existing Model followed the experimental response well after an applied load of 
around 84 kN, similar to the short arch results. This was the point where the load on the 
soil is exceeding the previous applied service loads and was entering virgin compression. 
The Existing Model continued to predict the experimental results until about 205 kN then 
loses capacity until a predicted failure at 202.5 kN, 10% less than that observed 
experimentally. The Radial Spring Model predicted smaller moments in the apex during 
ultimate load analysis and experiences failure at 203.5 kN, just under 10% less than the 
experiment. The Friction Angle Spring Model, similarly to the Radial Spring Model, 
predicted a lower moment at the apex, and starts to experience a failure earlier at 177 kN, 
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22% less than seen experimentally. The Three Spring Model over-predicted the capacity 
of the arch system and predicted failure at 251 kN. 

 
Figure 5.30 Tall Arch Ultimate load Moments 

For both arch geometries at the beginning of the ultimate load analysis, the 
Existing Model predicted a negative moment at the apex of the short arch compared to 
the experimentally seen moment. As the applied load increases to the magnitude of the 
previously applied apex service load of roughly 84 kN, the Existing Model and 
experimental arch responses converge and track well together until failure. This point 
signifies the change of the experimental soil experiencing pre-consolidation loading to 
virgin compression. 
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5.8. Conclusions 
This chapter contains a detailed a comparison between the Existing Model and the 

different variations of soil-spring models discussed in the previous chapter for an arch 
subjected to backfill, service, and ultimate loadings. The structural material used in the 
arch models was steel taking into account experimentally-determined stress-strain 
behavior. The models incorporated large deformation, nonlinear soil-spring elements, a 
Boussinesq live load distribution, and improved foundation elements. Notable 
conclusions are summarized below: 

 The angled spring models show promise as they better capture moments and 
displacements caused by offset loads. 

 The Existing Model better predicted the ultimate load analysis than other models. 
 The Existing Model best predicted the end of backfill moments at the apex and 

shoulder, followed by the Three Spring Model  
 The angled spring models generally predicted the footing moments better than the 

Existing model. 
 The Three Spring Model was unable to converge for offset load cases and backfill 

in the tall arch.  
 While angled spring models were able to capture the vertical restraint offered by 

the soil, they do not incorporate a failure criterion, i.e. the soil-springs do not have 
a limit to the amount of force they can apply to the arch. This could be an issue 
near the shoulders and apex of the models as the soil cover above the nodes is 
small. 
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CHAPTER 6  
CONCLUSIONS 

6.1. Summary and Conclusions 
The objectives of this research were to develop user-friendly prototype analysis 

software to analyze buried arch structures and to improve the model predictions of 
internal arch moments with respect to experimentally gathered results during backfill, 
service, and ultimate loading. The Existing Model used for analysis incorporated 
nonlinear, overburden-dependent springs to represent the soil restraint of the arch. The 
Existing Model was intended as a research tool and was not user-friendly, relying on text 
based input and generating text output files. CBAS Design was developed as prototype 
software to generate and analyze buried arch structures under backfilling and surface 
loading within an intuitive user interface. Prior simulation results compared well with 
experimental testing for dead load and apex live load cases but need improvement for 
offset load cases which can control design in certain geometries. This research 
investigated two aspects of the soil-spring model that warrant improvement: live load 
distribution through the soil and the soil-spring orientation. 

Chapter 2 described the typical soil modeling methods, live load distribution, and 
prior research on buried arch bridges. Different aspects of the experimental program and 
the model simulation developed by Walton et al. (2015 a,b) were addressed in detail. 
Walton et al. (2015 a) constructed scale models using two arch geometries, where the 
structure was placed in a self-reacting soil box, and subjected to staged backfilling, 
service live load, and ultimate apex load. Walton et al. (2015 b) improved a model 
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initially developed by Clapp and Davids (2011) to simulate the arch response using beam 
elements for the arch and nonlinear springs to represent the soil. 

Chapter 3 described the prototype software entitled CBAS Design that models the 
buried arch structures as a 2-D finite element model. CBAS Design incorporated an 
intuitive environment that can be used to generate different arch models with a variety of 
material and soil parameters as well as review the results of the analysis. The effect of 
small versus large deformation was treated and a mesh refinement study was conducted. 
Parametric studies examined the sensitivity of the model to different soil parameters and 
lift heights. CBAS Design is a tool that can be used to efficiently analyze a variety of 
buried arch bridges in a user-friendly interface using a simplification of the Existing 
Model.  

Chapter 4 addressed two areas of the Existing Model that warrant improvement, 
the live load distribution and the orientation of the soil-springs. Currently, a Boussinesq 
load distribution is used to calculate the effect of live loads on the arch. The Boussinesq 
distribution model was compared to a SSI continuum FE model and the experimental 
data on soil pressure near the arch for both the short and tall arches tested by Walton et 
al. (2015 b). The comparisons show that the experimental pressures along the span are 
poorly captured by the Boussinesq model away from the point of the load for all load 
cases. The SSI model results showed a different pressure distribution along the arch, 
distributing pressures away from the point of load application for offset load cases. The 
vertical load distribution along the span seen experimentally gives insight on the actual 
vertical pressures the arch system experienced during testing. More pressure gauges 
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would have improved resolution of the load distribution and allowed better assessment 
the effectiveness of the Boussinesq model for calculating soil stresses.  

Three soil-spring orientation alternatives were implemented with the intent of 
improving the soil-spring model’s ability to predict experimental data. The Radial Spring 
Model, Friction Angle Spring Model, and Three Spring Model were examined with 
respect to ease of implementation and advantages over the Existing Model. Each 
alternative soil-spring model incorporated vertical soil restraint to the arch during the 
different load cases. In addition, the Three Spring Model also added friction to the model 
by adopting the Coulomb soil model for active and passive soils. 

Chapter 5 examined comparisons between the alternative soil-spring models, the 
Existing Model, and experimental results throughout backfilling and due to service live 
and ultimate loadings. The Existing and Three Spring Model predicted the backfilling 
and apex service load response more accurately than the angled spring models. The 
angled spring models showed improvement in calculating the offset load response 
measured experimentally than the Existing Model. The Three Spring Model was only 
able to converge to a solution during backfill and apex loading for the short arch, and 
only converged through partial backfilling of the tall arch. Modifications were made to 
the soil-spring interpolation routine and improved the Three Spring Model convergence 
only for the tall arch geometry.  

While the alternative models showed some improvement over the Existing Model 
for some load cases, no one model is clearly the best option for all load cases. For the 
short arch geometry the angled spring models were able to capture the response of the 
arch as measured by the magnitude of the error  of model-predicted arch moments 
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relative to the experimentally determined moments. By the same measure, the Existing 
Model and Friction Angle Spring Model performed similarly for the tall arch analyses. 

6.2. Future Work 
While the changes to the model show some improvement in certain load cases, 

further improvements in modeling strategies are warranted to better simulate response of 
buried arch structures under all load cases. The following is a summary of 
recommendations for future work: 

 Improve the implementation of the Three Spring Model. The three spring model 
showed promising results for the short arch under backfilling, but its inability to 
converge for other load cases and geometries limited its application. 
Modifications improved model convergence for the tall arch but the Three Spring 
Model was still unable to find a solution for the short arch geometry. Future 
research should focus on modifying the implementation of this model to improve 
its convergence so it can be more thoroughly assessed. 

 Inclusion of failure criteria in the angled soil-springs. The angled soil-springs are 
allowed to apply a force on the arch that is dependent on the arch displacement 
and the weight of soil above the arch. However, this force can potentially exceed 
the shear strength of the soil and be unrealistically large. A failure criterion that 
limits the stiffness and capacity of the equivalent soil-springs to account for the 
strength of the soil at that location should be considered. 

 Optimization of the soil-spring orientation. The angled soil-springs were oriented 
radially and at the soil friction angle. Incorporating horizontal soil-springs near 
the base of the arch and radial or friction angle springs near the shoulder to 
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account for the arch movement into and out of the soil may improve model 
predictions. 

 Improve live load distribution models. The current live load distribution assumes 
an infinite soil with uniform soil properties. The ideal load distribution method 
will incorporate changes in soil properties with depth, the arch itself, and the 
movement of the arch due to the current and previous loadings. Suggested 
improvements include a better analytical solution or a coupled soil-continuum -
beam model where a soil-continuum model is initially run to give pressures that 
are then applied to a simplified beam-spring model. Alternatively, Westergaard 
theory for calculating vertical soil pressures could be investigated. The 
Westergaard method assumes alternating layers of soft and stiff soils. This allows 
more lateral spreading of vertical stresses than predicted using Boussinesq theory, 
which may agree better experimentally measured pressures. 

 Optimizing a constitutive model to solve for ideal soil-parameters. To create a 
model that best predicts the response of the experimental arches due to all load 
cases, an optimization study should be conducted to find the best material and 
geometric properties as well as soil-spring properties. Optimal soil-spring 
orientation could be investigated using an inverse problem, where error between 
the using experimental results and model predictions are used to define error to be 
minimized. 
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Introduction and Program Overview 
CBAS Design is a finite element program written in MATLAB (2014) that allows 

the user to analyze a variety of Composite Buried Arch Structures. The user can analyze 
the buried arch structures during construction and apply multiple loads at the top of the 
backfilled soil. CBAS Design automatically creates soil-springs for each arch element to 
capture the confining effect of the soil mass due to self-weight and service loads. After 
the analysis is complete, CBAS Design stores the results and displays the behavior of the 
composite arch for each step of the analysis. This user’s manual outlines the basic 
functionality of the software and an example. 

Installation and Running CBAS Design 
CBAS Design is installed by copying the entire CBAS 

Design folder to any location on the computer hard drive. This 
folder contains all the files required to run CBAS Design 
including the MATLAB Runtime Installer for different operating 
systems seen in Figure A.1. The main program is the CBAS 
Design.exe executable file located within this folder. Also in this directory is a folder 
that includes the moment curvature relationships for the FRP arch members used in this 
software. 

After the files have successfully been copied, the first step in installation is to run 
the MATLAB Runtime Installer for the computer’s operating system. As an example, if 
the computer is running 64-bit Windows the user must install the file labeled 
MCR_R2014b_win64_installer.exe before continuing. This file allows the 
computer to run the compiled MATLAB program without purchasing a full version of 

Figure A.1 CBAS 
Design Directory 
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MATLAB 2014b. If the computer runs a Mac or Linux OS, the zip files labeled 
MCR_R2014b_maci64_installer.zip or 
MCR_R2014b_glnxa64_installer.zip must be extracted and installed, 
respectively. 

Creating and Opening Existing Models 
Running CBAS Design.exe starts in the structural properties tab with initial 

default values for each variable in the analysis, shown below in Figure A.2. These should 
be modified to model the chosen arch configuration. To save a model, click on file in the 
menu bar and select save as. Enter a name for the model after a prompt is shown. This 
will save the inputs for the current model in a text input file in the folder labeled models 
in the CBAS Design directory. This is the default folder that input files will be 
automatically stored in for every model. If the model already has been saved in the past, 
pressing the save button will overwrite the existing model with the updated values. 
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Figure A.2 Initial View of CBAS Design, Structure Properties Tab 

To open a model, click on file in the menu bar then select open. The open window 
will display all models in the models directory mentioned above. Open the desired model 
and the inputs for that model will be loaded to the software user’s interface. The results 
tab will be accessible if results exist for the model. Otherwise the analysis still needs to 
be run in the analysis tab first. If results exist and a change is made to any analysis 
parameter, CBAS Design will issue a warning and delete the results for the model to 
ensure that the results correspond to the correct model. 

When an analysis is initialized, an input file for the model is automatically created 
and saved regardless of when the model was last saved. This guarantees the input file 
corresponds to the correct output database. 
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Structure Properties 
The first tab in the software is the Structure Properties window seen in Figure 

A.2. Here the type and geometry of the arch, the different soil properties and compaction 
level, and the boundary conditions are specified. 

The Arch Properties panel contains all variables that relate to the geometry and 
material properties of the arch. In the dropdown menu, there are predefined FRP layups 
with concrete strengths and diameters which are typically used for buried arch structures. 
The option is also available to conduct a linear analysis, allowing the user to specify an 
elastic modulus, cross sectional area, and moment of inertia for the arch. The Soil 
Properties panel defines geometry of the soil mass and characteristics of the soil. The 
Boundary Conditions panel defines the behavior of the base of the arch during loading. 

Select layup: Using the dropdown menu, select the appropriate layup for the arch 
to be analyzed. There are two pre-defined layups: 3 layers of longitudinal glass, or 2 
layers of longitudinal carbon. For each layup a 5, 6, or 7 ksi concrete compressive 
strength may be selected. Each layup has the option for a 12 or 15 inch diameter tube. 
Note that the 12 and 15 inch diameters are nominal values used to describe the size rather 
than a measure of the true tube diameter. The analysis uses the true diameter for all 
calculations, which is 11.98 in or 14.98 in for the glass tubes and 11.79 in and 14.83 in 
for the carbon tubes. 

Linear Analysis: If instead of selecting a predefined, nonlinear layup the user 
wants to conduct a linear analysis of the system, the Linear Analysis checkbox is 
selected. The analysis will run using an isotropic elastic material with the following 
parameters. 
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 Elastic Modulus: Elastic modulus of the main members in the arch in ksi. 
 Area: Cross sectional area of the arch in square inches. 
 Moment of Inertia: The moment of inertia in the plane of the arch span, in 

inches4. 
Span: The span between the centerlines of the two bases of the arch, in feet. The 

span-to-rise ratio is displayed under this entry, and if the span-to-rise ratio is greater than 
6 the text will be in red. Typical arch structures of this type do not exceed a span-to-rise 
ratio of 6, however the analysis can be performed with such a value. The span is not 
allowed to exceed 65 feet or be less than 10 feet. 

Rise: The height of the arch from the bottom of the arch to the centerline of the 
apex in feet. A warning will be given if the span-to-rise ratio is greater than 6, however 
the analysis will be allowed to continue even though this is not a typical configuration 
currently used in buried FRP arch structures. Due to the span limitation, the rise cannot 
exceed 32.5 feet. 

Spacing: Centerline distance between adjacent arches in inches. The spacing can 
range from 24 to 120 inches. 

Friction Angle: Backfill soil friction angle, in degrees. The friction angle can 
range from 30° to 55°.  

Lift Height: Height of each lift to be applied to alternative sides of the arch, in 
inches. Lift Height can range from 1 inch to 24 inches. 

Apex Soil Cover: Height of soil above the centerline of the arch at the top of the 
apex, in inches. The sum of Apex Soil Cover and Rise will be total backfill height. Apex 
Soil Cover can range from 12 inches to 240 inches. 

Soil Density: Backfill soil density in pounds per cubic foot. Soil density can range 
from 75 pounds per cubic foot to 160 pounds per cubic foot. 
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Level of Soil Compaction: An approximate level of the backfill soil’s compaction 
level, relative to dense, medium, or loose compaction. The accompanying figure shows 
the coefficient of horizontal pressure versus the lateral movement. 

Fixed: Boundary condition at the base of the arch restraining X and Y translation 
as well as rotation. 

Pinned: Boundary condition at the base of the arch restraining X and Y 
translation, rotation is allowed. 

Load Configuration 
In the Load Configuration tab, the user is able to specify up to 8 rectangular patch 

loads of varying sizes to simultaneously apply to the structure seen in Figure A.3. This 
tab can be seen below with the default values. The option to analyze the structure only 
during backfilling is available, stopping the analysis after backfilling process is complete. 
Using the dropdown menu select the number of patches to be applied to the structure. To 
define the patches, the user must specify the magnitude of the force, the location of the 
center of the rectangular patch, and the dimensions of the patch. The location is needed 
with respect to the coordinate system used in defining the arch nodes. The default 
location of the first patch is at (0,0) any additional patches are offset to prevent initial 
overlap. The first value is the x-location of the patch parallel to the span with zero at the 
apex seen in the “Elevation View of Structure” image in Figure A.3. The second value is 
the out of plane z-position of the patch transverse to the arch span with zero directly 
above the centerline of the arch seen in “Plan View of Applied Loads” in Figure A.3.  
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Figure A.3 Load Configuration Tab 

Patch length and width are defined by the dimension of the patch parallel to the 
arch span and transversely, respectively. All dimensions are in inches. 

Number of Patches: Up to 8 patches can be applied at once to the arch.  
Backfill Analysis Only: To simulate just the backfilling process, select this 

checkbox. The model will halt after the backfill analysis is complete without applying 
any additional loads defined in this tab. 

Apply a Uniform Surcharge: In addition to applying patch loads, it is possible to 
apply a uniform surcharge pressure over the entire structure. Enter a value in units of 
pounds per square foot greater than zero. Any patch loads will still be applied at the 
elevation of soil specified as the apex soil cover. This requires the user to specify a patch 
to be applied simultaneously with the surcharge. 

Define Patch Loads: Eight loads can be simultaneously applied to the structure 
with varying magnitudes, locations, and sizes. The magnitude is in kips, locations and 
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dimensions in inches. The x position is the distance from the center of the span. The z 
position is the out of plane distance from the centerline of the arch. The length is the 
patch dimension parallel to the length of the arch. The width is the patch dimension 
transverse to the length. 

Analysis 
In the Analysis tab, shown in Figure A.4, the user can select the Large 

Deformation Analysis option, change the number of elements in the arch, and run the 
analysis. When running the analysis, a status bar will pop up and the figure will update 
with the backfilling sequence showing the model’s progress.  

 
Figure A.4 Analysis Tab 

Large Deformation Analysis: The analysis will update nodal positions and allow 
the arch to deform past the limits of a small deformation analysis, allowing the model to 
capture the truer arch displacement. 
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Elements in Arch: Number of equal-length elements in the arch, limited to even 
numbers greater than 20. An upper limit is 1000 elements, however based on previous 
studies by Walton et al. (2015 b) there is a 2% change in ultimate load between 40 and 80 
elements and a 0.2% change between 80 and 160 elements. Generally, the more elements 
are used the more accurate the result; however this affects the runtime of the model. 

Run Analysis: Once all input parameters are finalized, press this button to start the 
analysis. If the model has not been saved yet, the user will be prompted to do so. 

Results 
The Results tab allows the user to view the response of the arch for each step in 

the analysis. Arch moments, shear, and axial member forces can be seen numerically 
along the span or visually using a color map. The arch deflection can be seen throughout 
the analysis with a scale magnification factor to fine tune the plot for different 
displacement levels. 

If any properties are changed after a model has run and results exist, CBAS 
Design will erase the output database for the model to ensure that no inconsistencies exist 
between the defined model and the relevant results. 

Comparison to Experimental Results 
The following is a comparison of arch moments and vertical deflections between 

experimental results, previous models, and CBAS Design. The experiment was designed 
and executed at the University of Maine Advanced Structures and Composites Center. 
The steel arches were set in concrete foundations that were supported by a low-friction 
surface. The foundations were allowed to rotate during the test. Soil was placed in 8 inch 
lifts on alternating sides of the arch until a crown depth of 24 inches was achieved. The 
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previous models are research models developed by Walton et al. (2015 b).The research 
model and CBAS Design share many of the same traits as both are finite element analyses 
using beam elements for the arch and axial springs for the soil pressure. However the 
research model accounts for the foundation rotation and decking elements. In both 
models, an at rest lateral earth coefficient (Ko) is 1, which is consistent with compacted 
soil.  

From work from Walton et al. (2015 a,b).the critical design depends on bending 
moments since Composite Buried Arch Structures are efficient in axial compression and 
shears are assumed small due to the small span to depth ratio. The critical locations are at 
the footings, apex, and the shoulders. At these locations, the critical design load cases are 
found to be positive moment at the shoulders and negative footing moment during 
backfilling. 

In this example, a model will be created with identical parameters to an 
experiment run by Walton et al. (2015 a).A tall steel bridge was the basis for an 
experiment to determine buried arch structure’s response to loading due to construction 
and applied patches. The parameters given in Table A.1 will be used in the model.  
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Table A.1 - Structural Properties of Model Buried Arch 
Material 2 Layer 

Carbon 
Elastic Modulus 29000 ksi 
Cross Sectional Area 6 in 
Moment of Inertia 1.125 in4 
Span Length 20 ft 
Span Rise 7.5 ft 
Arch Spacing 30 in 
Apex Soil Cover 24 in 
Soil Lift Height 8 in 
Soil Friction Angle 44° 
Soil Density 140 pcf 
Soil Compaction Level Dense 
Arch Boundary 
Conditions 

Fixed 
 
A line load was simulated by loading a box beam with a length equal to the width 

of the soil box at the top of soil. This will be applied to CBAS Design using the load 
configuration given in Table A.2. For the analysis, 80 arch elements were used. 

 
Table A.2 - Load Configuration of Model Buried Arch 

Number of Patch Loads 1 
Load Magnitude 18.75 kips 
Load X Position 0 in 
Load Z Position 0 in 
Load Length 6 in 
Load Width 84 in 

 
Arch moments and vertical displacements are compared between CBAS Design, 

the research model, and the experiment. Figure A.5 through Figure A.8 compare the 
moments and displacements versus the percent of arch length. Figure A.5 and Figure A.6 
are taken at the end of backfilling, while Figure A.7 and Figure A.8 are effects due to just 
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the applied patch load. The research model and CBAS Design follow the same trend in 
each comparison. The backfill moments at the apex is predicted by the models are 
enveloped by the experimental data. Shoulder moments at the end of backfill are over-
predicted by 17% using CBAS Design and by 13% using the research model. The 
controlling load case due to an applied load is the apex moment, varying 2% in both 
models from the experimental results. The deflections calculated in both models trend in 
the same direction as the experimental value but fall short in accurately predicting the 
vertical displacements.  
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Figure A.5 Tall Arch Backfill Moments Figure A.6 Tall Arch Backfill 
Displacements 

Figure A.7 Tall Arch Apex Load 
Moments 

Figure A.8 Tall Arch Apex Load 
Displacements 

Step by Step Example 
In this section the step by step process will be detailed for an example structure 

with the properties given in Table A.3 and Table A.4.  
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Table A.3 - Structural Properties for Example 
Material 2 Layer 

Carbon 
Concrete Strength 6 ksi 

Tube Diameter 12 in 
Span Length 38 ft 

Span Rise 9.5 ft 
Arch Spacing 36 in 

Apex Soil Cover 36 in 
Soil Lift Height 12 in 

Soil Friction Angle 37° 
Soil Density 131 pcf 

Soil Compaction Level Dense 
Arch Boundary 

Conditions 
Fixed 

Number of Elements 60 
Table A.4 - Load Configuration for Example 

Number of Patch Loads 1 
Load Magnitude 20 kips 
Load X Position 0 in 
Load Z Position 0 in 

Load Length 30 in 
Load Width 30 in 

 
The first tab visible when opening CBAS Design is the Structural Properties. In 

the Arch Properties panel select the 2 Layer Carbon, 6 ksi Fpc, 12 inch diameter material 
in the Select Layup popup menu. Enter a span of 38 feet into the text box. The figure 
changes as properties are entered as well as the Span to Rise Ratio to depict the structure 
being analyzed. Enter a rise of 9.5 feet and spacing of 36 inches into the correct text 
boxes.  

In the Soil Properties panel enter the values for Apex Soil Cover, Lift Height, 
Friction Angle, and Soil Density into the text boxes. In Figure A.9 below, the Elevation 
View of the Structure will depict the NCHRP soil relationship between lateral earth 
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pressure and element movement corresponding to the soil friction angle and level of 
compaction entered (Barker et al., 1991). In the Boundary Conditions panel, the Fixed 
option is already selected. The Structure Properties tab should look similar to the 
screenshot below in Figure A.9. 

 
Figure A.9 Structure Properties, Example Verification 

Switch to the Load Configuration tab to enter the loads to apply to the structure. 
One patch is already selected in the dropdown menu. Enter the load magnitude, x 
position, z position, patch length, and patch width in the table in that order. As seen in 
Figure A.10, both images to the right will change to represent the applied patch. 
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Figure A.10 Load Configuration, Example Verification 

In the Analysis tab, shown in Figure A.11, change the number of Elements in Arch 
to 60. The default analysis is a Large Deformation Analysis, which will more accurately 
calculate the nodal displacements using a large deformation solver. 
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Figure A.11 Analysis, Example Verification 

Clicking the Run 
Analysis button prompts the 
user to enter a name for the 
model if it hasn’t already been 
saved. While the analysis is 
running, the figure will change 
the show where the solver is 
currently in the backfilling sequence. In Figure A.12, it can be seen that the backfill 
height is half of the arch height. 

The Results tab will be clickable after the analysis is complete allowing the user 
to review total member moments, shears, and axial forces as well as the displaced shape 
for the arch for each step in the analysis process, as in Figure A.13. 

Figure A.12 Analysis in Progress 
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Figure A.13 Results Tab, Moment Visualization 

Output Database Description 
After each model has run, an output database is created that contain results in 

separate files. Member forces, nodal displacements, and soil pressures and forces are 
contained in a folder titled model_name_results. Each row in the tab files 
represents a node, the columns represent the analysis step. The following can be located 
in the results folder as .tab files: 

 Moment - kip*inches. 
 Axial force- kips 
 Shear force- kips 
 Complete nodal displacements- inches and radians 
 Vertical nodal displacements- inches 
 Horizontal nodal displacements- inches 
 Lateral earth pressure coefficients- unit-less 
 Vertical soil pressure- ksi 
 Vertical soil force- kips 
 Horizontal soil pressure- ksi 
 Horizontal soil force- kips 
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Along with these results, a text file is included that shows each step in the analysis 
as well as time of completion. This file is named, 
model_name_analysis_statistics.txt.  

Input File Description 
The input file is an ASCII text file containing all variables required by the 

software to run an arch analysis. The file is automatically generated when a model is 
saved or run. An input file can be created by hand, but it is recommended that the user let 
the software write the file. This is due to the software’s inability to check the values from 
an input file to be within the limits enforced by the user interface when the file is loaded 
which can result in inaccurate or non-converging models. There are two general formats 
that the software uses when creating an input file. For a nonlinear model, the following 
input file format is used. However if the model is linear, the software will use the input 
file format seen on the following page. Two examples of input files can be seen on the 
following pages. Note that after the *Run a Linear Analysis line, the next three 
values represent different properties in each case. Also, of more than one patch load is 
applied to the structure the last line of the input file repeats for each load. 
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*Input file for...user_manual_example 
*Large Deformation Analysis Indicator 
1 
*Run a Linear Analysis 
0 
*Moment Curvature Relationship 
Type3Fpc6_mphi.xlsx 
*Diameter of Cross Section 
11.79 
*Fpc, Compressive Strength of Concrete 
6 
*Arch Rise 
9.5 
*Arch Span 
38 
*Arch Spacing 
36 
*Depth of Soil Cover 
36 
*Lift Height 
12 
*Soil Properties Friction Angle 
37 
*Soil Properties Level of Compaction 
1 
*Soil Density 
131 
*Number of Elements in Arch 
60 
*Boundary Condition, 1 for pinned, 0 for fixed 
0 
*Applied Surcharge 
0 
*Number of Applied Live Load Patches 
1 
*Patch Loads 
8 0 0 10 20   
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*Input file for... linear_example 
*Large Deformation Analysis Indicator 
1 
*Run a Linear Analysis 
0 
*Elastic Modulus of Structure 
4286 
*Area of Cross Section 
112 
*Moment of Inertia 
1011 
*Arch Rise 
9.5 
*Arch Span 
38 
*Arch Spacing 
36 
*Depth of Soil Cover 
36 
*Lift Height 
12 
*Soil Properties Friction Angle 
37 
*Soil Properties Level of Compaction 
1 
*Soil Density 
131 
*Number of Elements in Arch 
60 
*Boundary Condition, 1 for pinned, 0 for fixed 
0 
*Applied Surcharge 
0 
*Number of Applied Live Load Patches 
1 
*Patch Loads 
8 0 0 10 20 
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