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Non-native honeybees historically have been used to pollinate many crops 

throughout the United States, however, recent population declines have revealed the need 

for a more sustainable pollination plan. Native bees are a natural resource that can play an 

important role in pollination. I used spatial modeling tools to evaluate relationships 

between landscape factors and native bee abundance, with a focus on the wild native bees 

that pollinate Maine’s lowbush blueberries. I applied the InVEST Crop Pollination 

ecosystem spatial modeling tool, which predicts pollinator abundance based on available 

floral resources and nesting habitat, to the Downeast Maine region. The InVEST model is 

a generic tool that can be adapted to any landscape with development o f location specific 

parameters and a validation dataset. I surveyed botanists, entomologists and ecologists 

who are experts in native bee ecology and familiar with Maine’s landscape, and asked 

them to rank the suitability o f landcover types as native bee habitat. I used previously



collected bee abundance data to validate model assumptions. I evaluated the sensitivity 

and explanatory power o f the InVEST model with four model parameterization methods: 

1) suitability values assigned through the expert survey; 2) suitability values developed 

through a sensitivity analysis; 3) informed suitability values developed through an 

optimization based on the sensitivity analysis; and, 4) uninformed suitability values 

developed through machine-learning simulated annealing optimization. I evaluated the 

improvement in prediction gained from expert-informed and optimization-informed 

parameterization compared with prediction based on the relationship between proportion 

o f landcover surrounding blueberry fields and native bee abundance as an alternative to 

the InVEST model. The InVEST model parameterized through expert opinion predicted 

native been abundance (r = 0.315; P = 0.047), whereas, the uninformed optimization 

improved model performance by 28% (r = 0.404; P  = 0.010), and the informed 

optimization technique improved model performance by 58% (r = 0.486; P = 0.002). The 

landcover analysis found a significant relationship between the proportion of 

deciduous/mixed forest within a 2000 meter buffer around a field and native bee 

abundance within the field (r = 0.446; P  = 0.004). Although the InVEST model reliably 

predicts bee abundance across a landscape, simpler models quantifying relationships 

between bee abundance and proportional land cover around focal fields may be suitable 

alternatives to the InVEST simulation model.
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INTRODUCTION

Nearly 75% of the world’s crops rely at least partly on animal pollination (Klein 

et al. 2007), and bees are the most important insect pollinator (Tepedino 3 979). Lowbush 

blueberry ( Vaccinium angustifolium), a leading crop industry in Maine, requires insect, 

pollination (Drummond 2002). Maine is the world’s second largest producer of wild 

blueberries with over 91.1 million pounds harvested in 2012, (Yarborough 2012) and the 

country’s second largest importer o f non-native honeybees (Apis mellifera) for 

pollination, with more than 75,000 hives deployed yearly (A. Jadczak, Maine 

Department o f Agriculture, pers. comm.). Maine manages the greatest area (>24,000 ha) 

in lowbush blueberries o f any state (Yarborough 2009), primarily in Hancock and 

Washington counties, The decline o f honeybee populations has increased the cost of hive 

rentals (Pettis and Delaplane 2010). Focus increasingly has turned to a more sustainable 

pollination plan, which includes partially relying on and improving populations o f native 

pollinators. Native pol linators provide a freely available ecosystem service. They have 

coevolved with wild lowbush blueberries, and they are adapted to forage in reduced light 

and cooler temperatures common where blueberries grow (Cane and Payne 1988).

There are more than 270 native bee species in six families (Andrenidac Apidae, 

Colletuiae, Halictidae, Megachilidae, Melittidae) in Maine (Drummond and Stubbs 

2003, Dibble et al. unpublished data). More than 40 bee species forage in lowbush 

blueberries in Maine, although there likely are more associated species, as > 60 species . 

have been recognized on blueberries in Nova Scotia (Drummond and Stubbs 2003). 

While these families exhibit various life history traits, all require at a minimum, two key 

components to survive, suitable nesting habitat and floral resources for forage (Lonsdorf 

etal. 2009, 2011).
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The proportion o f natural habitat surrounding a crop field affects pollination by 

bees, as “natural habitat” can be synonymous with resources that provide nesting and 

foraging habitats. Specifically, in a synthesis o f 29 studies examining pollination 

services, Garibaldi et al. (2011) determined that bee visitation to crop bloom decreased 

with isolation from natural areas, despite added honeybee visits. The definition o f natural 

habitat varies by geographic location and at its simplest includes environments that offer 

shelter, nesting grounds and food resources (Ricketts et a f 2008). Natural habitat that 

provides nesting and foraging resources to bees in Maine is represented in land cover 

maps as deciduous/mixed forest, deciduous/mixed forest edge, and old fields and 

grasslands. The Downeast region o f Maine, where 85% of the world’s lowbush 

blueberries are harvested (Henly 2012), has few people (averaging 9.1 persons per square 

kilometer (km), compared to the US average o f 33.7 (U.S. Census Bureau 2014); the 

predominantly rural land development includes home gardens, which may provide 

additional beneficial habitat for bees.

The InVEST Crop Pollination Model, developed by the Natural Capital Project 

(Lohsdorf et al. 2009, 2011), is a tool for examining relationships between relative bee 

abundance and landscape composition. Bees are mobile organisms that depend on 

resources that often vary spatially and temporally across a landscape (Kremen et al.

2007), and access to those resources depends on the foraging ability o f the bee (Patricio- 

Roberto and Campos 2014). Understanding factors affecting pollination services on a 

farm requires understanding relationships between the spatial distribution o f pollinator 

habitat surrounding a farm and bee abundance in the focal crop (Kremen et al. 2007). The 

InVEST Model predicts relative abundance o f pollinators across a landscape, based on
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nesting resources within the focal cell and floral resources surrounding the cell within the 

confines of the modeled bee's foraging range, In VEST can be adapted to any crop, 

however, it requires validation for the focal crop.

The InVEST model requires a spatial land cover dataset and parameters relating 

iandcover suitability for providing habitat resources given the modeled bee’s life history 

strategy (Lonsdorf et al. 2009, 2011). In the absence of empirical data, parameters can be 

assigned based on published values or expert opinion. Expert opinion often is used to 

inform spatial models (Compton et al. 2007, Lonsdorf et a l 2009, Spear et al. 2010, 

Kennedy et al. 2013), although predictive accuracy o f the model is not necessarily 

improved with this knowledge (Chamey 2012). The abundance o f pollinators may be 

affected not only by landscape composition, but also by the pattern and arrangement of 

the surrounding landscape (Brosi et al. 2008, Ricketts et al. 2008, Lonsdorf et al. 2009,

2011) and the scale and extent at which the landscape is modeled (Lonsdorf et al. 2009, 

2011).

I investigated relationships between landscape composition and native bee 

abundance with the InVEST Crop Pollination Model adapted to Downeast Maine’s 

landscape, with lowbush blueberry fields as the focal study system. My analyses 

addressed the following questions: 1) Does expert opinion ranking o f bee habitats (the 

most common parameterization technique used for InVEST) provide predictive capability 

for estimating bee abundance? 2) How does the predictive capability of the InVEST 

model compare across several parameterization techniques? 3) How do predictions of a 

simple proportional Iandcover model compare to those of the InVEST model?
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DESCRIPTION OF STUDY EXTENT AND FIELD SITES

2I applied the InVEST model to the 4,802 lan blueberry growing region 

containing 40 focal blueberry fields (< 1 - 17 ha) in the Downeast region o f Maine 

(Figure 1.) Additional applications o f the InVEST model across different extents are 

described in Appendix B.

Figure 1. Modeled extent and blueberry field sites used for validation o f the InVEST 
model in the Downeast region of Maine, USA.

METHODS

Spatial landcover dataset selection and processing

The InVEST model requires an accurate spatial landcover dataset. The Maine 

Landcover Dataset 2004 (MELCD 2004; http://www.raaine.gov/niegis/catalog/')

http://www.raaine.gov/niegis/catalog/'


combines the National Landcover Dataset 2001 (NLCD 2001), based on 1999-2001 

Landsat Thematic Mapper 5 and 7 imagery, with classification of 2,004 SPOT 5 imagery, 

to create a 5-meter resolution raster dataset with 23 landcover classes. The blueberry field 

category represents commercial blueberry operations with an accuracy o f 89.7% in 

Maine.

I updated the 2004 MELCD landcover layer with ancillary datasets (ArcGIS ® 

version 10.0; Environmental Systems Research Institute, Redlands, CA, United States), 

including railroads (RAILROUTESYS) and roads (MEDOTPUBRDS, NG911; 

http://www.maine.gov/megis/catalog/). I updated the MELCD wetlands classes (wetland 

forest, wetlands, scrub-shrub) with the National Wetland Inventory (NWI; 

http://www.maine.gov/megis/catalog/) to capture wetland diversity potentially important 

to foraging bees. I created a deciduous/mixed forest edge class by applying a 10m buffer 

around deciduous forest and mixed forest pixels. I resampled the USD A Croplands 

Dataset (CDL; http://nassgeodata.gmu.edu/CropScape/) to 5-m pixels, and I updated the 

MELCD “blueberry field” class with blueberry fields >4 hectares in the CDL, capturing 

fields omitted from the original MELCD dataset while excluding wild blueberries not in 

managed fields. 1 digitized the perimeter o f blueberry fields where bee samples were 

collected but that were missing from the compiled landcover dataset. The final landcover 

5-m pixel dataset reclassified 42 classes into eight landcover types: deciduous/mixed 

forest edge, developed/other, coniferous forest, deciduous/mixed forest, emergent/shrub- 

shrub wetlands, other wetlands/water, agriculture/field and blueberries.

http://www.maine.gov/megis/catalog/
http://www.maine.gov/megis/catalog/
http://nassgeodata.gmu.edu/CropScape/


Bee species life history parameterization

I modeled 14 solitary bee species (Table 1.) in four families representative of the 

lowbush blueberry solitary bee community (Bushmann 2013). I assigned life history 

parameters (i.e., nesting preferences, flight seasonality) based on expert opinion and 

literature references (Osgood 1972, Michener 1966, Cane 1992, Michener 2000, Asher 

and Pickering 2013; Table 1.).

Table 1. Life history traits o f modeled solitary bee species.

Species Family Nest
substrate

Typical
foraging
distance

(m)

Flight
season

Andrena carlini Andrenidae ground 598 Mar - Aug
Andrena carolina Andrenidae ground 246 Apr - Jul
Andrena vicina Andrenidae ground 569 Mar - Aug
Augochlorella aurata Halictidae ground 60 Apr - Oct
Colletes inaequalis Colletidae ground 1091 Mar - Sept
Halictus ligatus Halictidae ground 148 Mar- Nov
Lasioglossum acuminatimi Halictidae ground 186 Apr -  Oct
Lasioglossum cressonii Halictidae cavity 63 Mar -  Oct
Lasioglossum heterognathum Halictidae ground 16 Apr - Sept
Lasioglossum leucocomum Halictidae ground 31 Mar - Oct
Lasioglossum pectorale Halictidae ground 81 Mar -  Nov
Lasioglossum versatum. Halictidae ground 79 Mar -  Oct
Osmia atriventris Megachilidae cavity 186 Apr -- Jul
Osmia inspergens Megachilidae cavity 495 May -  June

Foraging estimates obtained from inter-tegular width measurements

I estimated foraging ranges o f locally captured bees by measuring the inter- 

tegular (IT) width (i.e., distance between the wing bases) with a Dino-Lite mobile digital 

microscope and analyzed images in Dino-Capture 2.0 (AnMo Electronics Corporation, 

Hsinchu, Taiwan). I estimated foraging ranges from the measured IT width (mm) based
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on regression formulae developed by Greenleaf et al. (2007). Five measurements were 

taken per specimen, and 10 specimens were measured per species, except for Osmia 

atriventris, with only eight specimens available (Figure 2.). I averaged the measured IT 

widths by species (n = 50; n = 40 for O. atriventris), and I calculated both maximum and 

typical homing distances (m) (Table 2.) (Greenleaf et al. 2007). Mean typical homing 

distance values per species were used for model parameterization (Table 1.).

Figure 2. Example of the IT measurements used to estimate foraging distance (Halictus 
ligatus).
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Table 2. Mean (¿standard deviation) measured IT widths and mean typical and 
maximum homing d i s t a n c e s . ____________________________________

Species
Mean IT width 

(mm)

Mean typical 
homing 
distance 

(m)

Mean 
maximum 

homing 
distance (m)

Andrena carlini 2.74(0,14) 598 1290
Andrena carolina 2.08(0.09) 246 513
Andrena vicina 2.70(0.17) 569 1226
Augochlorella aurata 1.35(0.10) 60 120
Colletes inaequalis 3.30(0.19) 1091 2410
Halictus ligalus 1.78(0.16) 148 302
Lasioglossum acuminatum 1.91(0.09) 186 385
Lasioglossum cressonii 1.37(0.12) 63 125
Lasioglossum
heterognathum 0.91(0.18) 16 31
Lasioglossum leucocomum 1.10(0.10) 31 59
Lasioglossum pectorale 1,48(0.13) 81 162
Lasioglossum versatum 1.47(0.15) 79 157
Osmia atriventris 1.91(0.20) 186 384
Osmia inspergens 2.59(0.17) 495 1060

Landcover suitability parameterization through expert survey

I derived estimates o f the suitability of landcover types for both floral and nesting 

habitat for bees from an expert survey of 16 entomologists, ecologists, and botanists 

familiar with landscapes in Maine, The experts ranked (0==unsuitable to 10-most 

suitable) landcover class suitability for ground and cavity nesting bees, and spring, early 

summer and late summer forage (Appendix A), Participants responded either to a printed 

survey distributed by the US Postal Service or an electronic survey distributed by email. I 

summarized survey responses by class range, mode and average, omitting the coniferous 

forest clearcut landcover type in my models as I did not have access to a current spatial 

landcover that represented that type. 1 rescaled responses (1-10), and used the average



scaled response as the suitability ranking for the landcover or nesting substrate. I divided 

the average scaled suitability values by 10 to meet the InVEST model parameter range 

requirement o f 0.1 - 1.0 (Table 3.).
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Table 3. Average (± standard deviation) scaled landcover suitability values assigned through expert opinion.

Landcover Ground
nesting

Cavity
nesting Spring forage Early Summer 

forage
Late Summer 

forage

Deciduous/mixed forest, edge 0.9(0.17) 1.0(0.19) 0.9(0.24) 0.9(0.24) 1.0(0.22)
Developed/other 0.9(0.25) 0.6(0.30) 1.0(0.27) 0.9(0.26) 1.0(0.22)
Coni ferous forest 0.5(0.23) 0.6(0.28) 0.1(0.24) 0.1(0.21) 0.1(0.29)

Deciduous forest/mixed forest 0.6(0.21) 0.9(0.22) 0.7(0.21) 0.5(0.29) 0.4(0.18)
Emergent wetlands/scrub-shrub 0.2(0.14) 0.4(0.24) 0.7(0.22) 0.6(0.25) 0.6(0.20)
Wetlands/water 0.1(0) 0.1(0.05) 0.3(0.20) 0.2(0.16) 0.5(0.18)
Agriculture/field 0.7(0.29) 0.2(0.18) 0.9(0.31) 0.7(0.27) 0.9(0.33)
Blueberries 1.0(0.25) 0.4(0.26) 0.4(0.29) 1.0(0.28) 0.5(0.26)



InVEST model parameterization

I evaluated the sensitivity and explanatory power of the InVEST model with four 

model parameterization methods: 1) suitability values assigned through expert opinion, 2) 

suitability values developed through sensitivity analyses, 3) suitability values developed 

through informed optimization, and 4) suitability values developed through uninformed 

simulated annealing optimization. The InVEST model was applied to 14 focal species, 

and all models were validated with bee data collected from 40 fields during 2010-2012 

(Bushmann 2013). Though the resolution of the final updated dataset remained at 5-m, I 

conducted the InVEST analysis at a 10-m resolution to decrease analysis time.

Expert opinion

I ran the InVEST model with average suitability values resulting from the expert 

survey. I evaluated the relationship between the InVEST model output and the field- 

collected bee abundance data with simple linear' regression and Pearson product moment 

correlation coefficients (R 2.14.1, R Development Core Team 2011). I compared the 

three parameterization techniques to results from this baseline model.

Sensitivity analysis

I evaluated how uncertainty in parameter choice influenced the output of the 

model with a sensitivity analysis. I iteratively ran the model, varying each o f the 40 

nesting and floral resource suitability parameters individually by ± 0.1 (i.e., ± 10%) 

ranging 0-1; for a total o f 74 model runs. Some parameters initially were assigned the 

maximum value =1 and therefore were not evaluated at smaller values (Table 3.).
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1 evaluated the relationship between the InVEST model output and the field- 

collected bee abundance data with simple linear regression and percent change in the 

Pearson product moment correlation coefficients (r) compared to the baseline model 

parameterized by expert opinion.

Informed optimization

I conducted an optimization o f the InVEST model informed by the sensitivity 

analysis. I varied the number of parameters altered and the amount of change in 

suitability values in nine model runs. For example, one run included 20% (0.2) decreased 

suitability o f blueberries for nesting and forage, whereas, another run altered all 

parameters by ±20% (0.2), with direction determined by the sensitivity analysis. I 

evaluated the relationship between the InVEST model output and the field-collected bee 

abundance data with simple linear regression and the Pearson product moment 

correlation coefficients.

Uninformed optimization

I used simulating annealing optimization to parameterize the model with 

uninformed suitability values optimized to the validation dataset (Kirkpatrick et al. 1983). 

Simulated annealing is an optimization process that enables a function to escape local 

minimums and local maximums, with the goal to instead find a global optimum. The 

function is able to move both uphill and downhill, first with large jumps, and then with 

subsequent smaller jumps as the function focuses in on the optimum (Goffe et al. 1994).

This technique was performed by embedding the InVEST model into a function 

and running it through Python’s minimizing scip.optimize.anneal function (Oliphant

12



2007). Intial input parameters were those assigned through the expert opinion survey. All 

parameters varied simultaneously for each run. Scip.optimize.anneal is a minimizing 

function (i.e., seeks the minimum optimal value) therefore, 1 set the function to attempt to 

maximize the correlation coefficient by multiplying it by -1 to convert the value to 

positive. The optimization completed 87 iterations, although it failed to identify a global 

minimum given computer resource limitations. I evaluated the relationship between the 

In VEST model outputs for each optimized run against the field-collected bee abundance 

data with simple linear regression and calculated the Pearson product moment correlation 

coefficients.

Simple proportional landscape analysis

I calculated the average proportion of landcover types in 500, 1000, 1500 and 

2000 m buffers surrounding the 40 fields where bees were collected (Table 4.) to 

compare with bee abundance in these fields (ArcGIS v. 10.0, Environmental Systems 

Research Institute, Redlands, CA, United States; Geospatial Modelling Environment 

GME; Beyer 2012).



Table 4. Average (±standard deviation) proportions o f iandcover cover classes within a 500, 1000, 1500 and 2000 m buffer 
surrounding field sites (n = 40).________________________________________________________________________________

500 m 1000 m 1500 m 2000 m
Deciduous/mixed forest, edge 0.06 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.01)
Developed/other 0.04 (0.03) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)
Coniferous forest 0.29 (0.18) 0.34(0.15) 0.35(0.14) 0.36 (0.14)
Deciduous forest/mixed forest 0.30(0.18) 0.28 (0.16) 0.27 (0.14) 0.26 (0.12)
Emergent wetlands/scrub-shrub 0.08 (0.07) 0.09 (0.07) 0.09 (0.05) 0.10(0.04)
Wetlands/water 0.04 (0.08) 0.06 (0.09) 0.08 (0.10) 0.10 (0.10)
Agriculture fie ld 0.05 (0.04) 0.04 (0.03) 0.04 (0.03) 0.04 (0.02)
Blueberries 0.14(0.13) 0.10(0.09) 0.08 (0.07 0.06 (0.06)



The proportions were calculated using ArcGIS version 10.0 (Environmental 

Systems Research Institute, Redlands, CA, United States), and Geospatial Modelling 

Environment (GME; Beyer 2012). First, 1 used the ArcGIS “Buffer (Analysis)” tool to 

buffer all fields by the four selected buffer distances, and then used the GME “Intersect 

Polygons with Raster” tool to summarize the proportions o f landcover classes within the 

buffer polygons.

I compared the landcover proportion in each buffer for each o f the 14 species 

included in the InVEST model evaluation as well as for bee abundance data collected 

from the same 40 field sites for another 6-45 species not used in the model analysis. I 

evaluated the relationship between the proportion of landcover types and observed bee 

abundance within each field with simple linear regression and the Pearson product - 

moment correlation coefficient (r).

RESULTS 

Expert survey

Twelve of 16 experts completed the survey, with 92% preferring the electronic 

version. Responses varied with the greatest agreement in the value o f wetlands/water, and 

the least agreement in the value of agriculture/field (Table 5).
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Table 5. Range (maximum - minimum) of expert survey derived suitability values.

Early Late
Cavity Ground Spring summer summer

Landcover nesting nesting forage forage forage
Deciduous/mixed forest, edge 4 5 6 7 8
Developed/other 9 8 9 8 6
Coniferous forest 9 7 3 1 1
Deciduous forest/mixed forest 6 6 nl 9 6
Emergent wetlands/scrub shrub 9 4 8 9 6
Wetlands/water 1 0 5 5 5
Agriculture/field 6 9 9 9 9
Blueberries 7 8 9 7 6

Evaluation of alternative models

Baseline In VEST model - parameterized through expert opinion

The InVEST predictions o f bee abundance in the modeled Downeast extent were 

significantly correlated with field-collected abundances (Pearson’s r = 0.315; P ~ 0.047),

1 compared the parameterization analyses to this model.

Sensitivity analysis

Altering the model parameters by ±10% resulted in a change in correlation 

coefficient values of -7.09 - +9.09% (Table 6.). The model is most sensitice to changes in 

the deciduous/mixed forest and blueberries landcover classes. Decreasing the value o f all 

suitability parameters for the blueberry class resulted in increased correlations (Table 6.). 

An increase in the value o f the ground nesting parameter, and early summer and summer 

floral suitability for deciduous/mixed forest resulted in an increase in correlation strength 

(Table 6.).
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Table 6. Results o f sensitivity analysis. Values shown are percent change in Pearson correlation coefficient (r) for ± 10% change in 
parameter value compared to the baseline model.________________________________________________________________________

*model run significant at <0.05



Informed optimization

All 9 runs parameterized through the informed optimization process performed 

better (2.671% - 54.024%) than the expert-informed baseline run (i.e., Pearson’s r > 

0,316; P  < 0.047). The best performing model used the majority o f the expert derived 

parameters altered in ±0,2 in the direction the sensitivity analysis implied increased 

model fitness (Table 7.). This run performed 54% better than the baseline model run (r r- 

0.486; P  -  0.002).
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Table 7. Parameters used in the best performing model through informed optimization. Expert assigned parameters in 
parenthesis.____________________________________________________________________________________________



Un in form ed optim ization

The simulated annealing optimization of parameter values resulted in correlation 

coefficients ranging r  = -0.460 to r = 0.404. The best performing model (r = 0.404; P -  

0.010) performed 29% better than the baseline or expert-informed model.

Simple proportional landscape analysis

I observed significant positive correlations between the proportion of 

deciduous/mixed forest and bee abundance o f the 14 selected species at the 500, 1500 and 

2000 m buffers (Table 8.). The strongest correlation occurred with the proportion of the 

developed/other landcover class surrounding the field at both the 1500 and 2000 m scale 

(Table 8.). Results of other landcover classes varied in significance and strength across 

all scales, but the majority were constant in direction (Table 8.).

For the total dataset (sum of all taxa abundance), I observed significant positive 

correlations between the proportion o f deciduous/mixed forest and bee abundance, and 

significant negative correlations between the proportion of coniferous forest and bee 

abundance (Table 8.). Both relationships were strongest at the 2000 meter scale.
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Table 8. Pearson product-moment correlation values (r) for both proportional landscape analyses at the 500, 1000, 1500 and 2000 
meter (m) scale. Correlations between landcover and observed bee abundance for 14 selected species shown first; correlations between 
landcover and total observed bee abundance (sum of all taxa abundance) shown second._________________________________________

*significant at <0.05; **significant at <0.01



DISCUSSION

The InVEST model, like other spatial models that result in predictive maps, can 

be a powerful tool that is relatively easy to adapt to new areas. That being said, my 

research demonstrates that it is important to assess the effect o f parameterization 

techniques on the predictive ability o f the model.

Reliability o f model predictions can be affected by the model parameterization 

approach; responses of predictions to changes in parameter values may reveal unexpected 

model behavior and outcomes. The InVEST model parameterized through informed 

optimization performed better than the expert-opinion informed model. This 

improvement was not unexpected; the optimization process is data driven, and therefore 

it maximizes model prediction performance by altering the parameters to best fit the data. 

Model parameterization with the uninformed, machine learning, simulated annealing also 

was more reliable than the model driven by the expert opinion survey results; this process 

determines the global optimum for nearly all functions (Clarke et al. 2009), with 

improved prediction accuracy over model performance affected by lack of agreement in 

parameter values revealed in the expert surveys. A simple, proportional landscape 

analysis had greater predictive power than the InVEST model, emphasizing that the goal 

and scale of the prediction are important considerations when selecting the 

parameterization approach.
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Limitations of expert opinion

Expert opinion surveys often are used to parameterize models developed to 

facilitate conservation efforts (Compton et al. 2007, Lonsdorf et al. 2009; Spear et al. 

2010; Kennedy et al. 2013) in two approaches: responses are first recorded independently 

and then combined, or the group works together to arrive at a consensus (Martin et al.

2012). My expert opinion survey had limited consensus, reflecting expert group 

uncertainty, o f  landcover suitability for nesting and foraging habitat. Given that 1 

solicited the experts’ opinions individually, there was no opportunity to reduce this 

uncertainty or disagreement through discussion. Between-expert uncertainty rarely is 

explored (Johnson et al. 2004) but can be an important contribution to model prediction 

error. Elicitation of independent expert parameter valuation provides an opportunity to 

examine effects o f parameter uncertainty that can reduce bias in decision-making 

(Czembor et al. 2011). I parameterized the InVEST model with the re-scaled average 

response value (Martin et al. 2012), which relativized and generalized the values and as a 

result may have increased error in parameter values. The lack o f empirical data of 

landcover suitability as native bee habitat in Maine increases reliance on expert 

evaluation o f parameters. An expert may not accurately extrapolate their within-region 

knowledge to outside their area o f experience; there is no opportunity to control for this 

error, resulting in poorly constructed predictive models (Murray et al. 2009). I selected 

experts familiar with Maine’s landscape and native bees, although their experience was 

not necessarily in the area included in the modeling extent. In addition to varied expert 

experience, variation m the responses could reflect true variation in the landscape as 

many landcover classes used in the model have naturally patchy distributions of both
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floral and nesting resources (Cane 2001). This fine-seale diversity in the model 

predictions may be obscured by the model resolution. Model resolution was implicated in 

a previous application o f the InVEST model. Specifically, the model was unable to 

accurately predict abundance in New Jersey; the authors speculated that this was due to 

the coarse (i.e., 30 m) landcover layer used not capturing fine scale heterogeneity present 

in the landscape (Lonsdorf et al. 2009, 2011),

Studies to quantify suitability and bee use o f the variety o f habitats in Maine will 

be improved with robust parameterization based on empirical data. Additionally, the 

potential for an expert panel to provide values reached through consensus would be 

beneficial to explore (Kennedy et al 2013).

Sensitivity across parameters

The InVEST model was most sensitive to changes in the suitability ranking of 

deciduous/mixed forest and blueberries landcover classes. Deciduous/mixed forest is a 

dominant land cover type surrounding blueberry fields, and model sensitivity to this class 

reflects the abundance o f the landcover type. Sensitivity to the blueberries parameter can 

be attributed to the dominance of this landcover type locally; Lonsdorf et al. (2009) 

concluded that the InVEST model was most sensitive to resources distributed at a small 

scale (Lonsdorf et al. 2009). The model also was sensitive to altering parameters for 

ground nesting bees, which accounted for 11 o f the 14 modeled species.

Optimized model performance vs. expert opinion

Expert-informed parameterization is the typical approach for models used in 

conservation planning, and this approach was the baseline for comparison o f the InVEST
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model for predicting pollinator abundance in wild blueberries. The informed and 

uninformed optimized models performed better than the expert-informed model, 

however, this does not invalidate the expert informed model . The best performing 

uninformed optimized model had parameter values that were very different than those 

values assigned through expert opinion. The informed, optimized model, which used 

expert survey derived parameter values that were then optimized based on the results of 

the sensitivity analysis, performed better than both the baseline expert-opinion model and 

the uninformed, optimized model. Although methods used to obtain expert opinion and 

synthesis o f the results can affect the soundness o f models parameterized with those 

results (Chamey 2012), optimized models potentially overfit the data; the same dataset is 

used to calibrate and validate the model, and both the signal and the noise are fitted 

within the model. A more rigorous approach would include validation with an additional 

dataset as well as out-of-area model evaluation.

There are few examples o f comparisons of expert opinion versus data driven 

model parameterization. Chamey (2012) found that expert opinion assignment o f model 

parameter values was unreliable for complex models requiring valuation of numerous 

parameters. The In VEST blueberry model required suitability rankings for 8 landcover 

classes, across three different seasons, and for two nesting guilds of bees. The In VEST 

model evaluating the Costa Rica coffee agroecosystem used expert assigned suitably 

rankings for 6 landcover classes and one floral season, and resulted in an R = 0.62 

(Lonsdorf et al. 2009). Although simplification o f the model was appropriate for coffee, 

wild blueberries are a more complex crop system that is not adequately represented by a 

more simplified model.

2.5



Bee abundance based on landscape composition proportion vs. InVEST model 

predictions of bee abundance

In M aine's landscape, the proportion of both deciduous/mixed, forest and 

coniferous forest are significantly and orthogonally correlated with the number of bees 

found within blueberry fields. The proportion of forest (deciduous and coniferous 

combined) surrounding Wisconsin apple orchards was similarly correlated with bee 

abundance, while the proportion o f developed land surrounding a field was negatively 

correlated with bee abundance (Watson et al. 2011). The proportion o f deciduous/mixed 

forest found within a 2,000 meter buffer around a field may be a better predictor o f bee 

abundance in the area immediately surrounding a blueberry field than the more complex 

InVEST model. The InVEST model predicts bee abundance across the landscape, while 

the simple proportional method provides predictions only within a blueberry field. 1 

validated the blueberry InVEST model for only blueberry fields; however, bee abundance 

predictions in other landcover types were not evaluated with bee surv eys. Although the 

InVEST model could be useful for large scale conservation planning, the simple 

proportional method is a useful tool for evaluating near farm pollinator habitat and bee 

abundance

POTENTIAL LIMITATIONS

Although the InVEST model is a tool to examine relationships between land 

cover composition and bee abundance across a landscape, the tool has limitations. The 

biannual production cycle o f lowbush blueberry, in which flowering fields during the 

fruiting year provide more floral resources than those fields in regrowth, introduces
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complexity into the InVEST model that was not incorporated into this application of the 

model. An additional limitation to my modeling efforts is that the field collected data 

spanned three years, while my landcover layer remained static through each model run. 

Thus, it did not capture any land use changes that could have occurred from the time it 

was created to the time the field sampling was conducted, as well as any interannual 

changes. Expert-informed parameter values that are inaccurate also potentially decrease 

model prediction performance.

Spatial models predict species distributions and abundances based on certain 

habitat conditions available across landscapes (Austin 2002, Guisan and Thuiller 2005, 

Elith and Leathwick 2009, Lonsdorf et al. 2011). Relationships between bees and land 

cover have been documented worldwide, and landscape scale predictive modeling, such 

as the InVEST Crop Pollination model, can use these relationships to predict bee 

abundance across the landscape (e.g., Kremen et al. 2004, Ricketts et al. 2008, Garibaldi 

et al. 2011). There are limitations to applying any tool, including those used to inform 

conservation efforts, and understanding the limitations is critical to ensuring appropriate 

use of the tool (Johnson and Gillingham, 2004). The InVEST model is sensitive to 

parameterization techniques used for applying the model to predict native bees in 

Maine’s landscape. Additionally, more information is needed about bee abundances and 

species assemblages in Maine’s different landcovers. Finally, a simpler, small scale 

model may be more appropriate than a complex, landscape scale model; understanding 

the purpose o f the modeling effort and the desired outcome is a critical initial step in 

conducting a landscape assessment at an appropriate scale.

27



REFERENCES

Asher, J.S. and J. Pickering. 2013. Discover Life bee species guide and world checklist 
(Hymenoptera: Apoidea: Anthophila). 
http://www.discoverlife.org/mr)/20q?guide=Apoidea species.

Austin, M.P. 2002. Spatial prediction o f species distribution: an interface between
ecological theory and statistical modeling. Ecological Modeling 157(2-3): 101- 
118.

Benjamin, F.E., J.R. Reilly, and R. Winifee. 2014. Pollinator body size mediates the scale 
at which land use drives crop pollination services. Journal of Applied Ecology 
51(1): 1-10.

Beyer, H.L. 2012. Geospatial Modelling Environment (Version 0.6.0.0). (software).
URL: http://www.spatialecology.com/gme.

Bushmann, S. 2013. Wild bee (Hymenoptera: Apoidea) communities associated with the 
lowbush blueberry agroecosystem of Maine. Dissertation, University o f Maine, 
Orono, Maine.

Cane, J.H., and J.A. Payne. 1988. Foraging ecology of the bee Habropoda laboriosa 
(Hymenoptera: Anthophoridae), an oligolege of blueberries (Ericaceae: 
Vaccinium) in the southeastern USA. Annals o f the Entomological Society of 
America 81: 419-427.

Cane, J.H. 1992. Soils o f ground nesting bees (Hymenoptera: Apoidea): texture,
moisture, cell depth and climate. Journal o f the Kansas Entomological Society 64: 
406-413.

Cane. J.H. 2001. Habitat fragmentation and native bees: a premature verdict? Ecology 
and Society 5(1): 3, [online] URL: http://www.consecol.org/vol5/issl/art3/.

Chamey, N.D. 2012. Evaluating expert opinion and spatial scale in an amphibian model. 
Ecological Modeling 242: 37 - 45.

Clarke, B., E. Fokoue, H.H. Zhang. 2009. Principles and theory for data mining and 
machine learning. Springer, New York, New York, USA.

Compton, B.W., K. McGarigal, S.A. Cushman, and L.R. Gamble. 2007. A resistant- 
kemal model o f connectivity for amphibians that breed in vernal pools. 
Conservation Biology 21(3): 788 - 799.

Czembor, C.A., W. K. Morris, B.A. Wintle and P.A. Vesk. 2011. Quantifying variance 
components in ecological models based on expert opinion. Journal of Applied 
Ecology 48: 736-745.

28

http://www.discoverlife.org/mr)/20q?guide=Apoidea
http://www.spatialecology.com/gme
http://www.consecol.org/vol5/issl/art3/


Dibble, A., C. Stubbs, J. Ascher, and F. A. Drummond, unpublished data. Maine bee 
checklist.

Drummond, F.A. and C. Stubbs. 2003. Wild Bee Conservation for Wild Blueberry Fields. 
Extension Bulletin #2111. University o f Maine Cooperative Extension, Orono, 
Maine, USA.

Drummond, F.A. 2002. Honeybees and Lowbush Blueberry Pollination # 2079. 
University o f Maine Cooperative Extension, Orono, Maine, USA.

Elith, J. and J.R. Leathwick. 2009. Species distribution models: Ecological explanation 
and prediction across space and time. Annual Review of Ecology, Evolution and 
Systematics 40: 677-697.

Garibaldi, L.A., I. Steffan-Dewenter, C. Kremen, J.M. Morales, R. Bommarco, S.A.
Cunningham, L.G. Carvalheiro, N.P. Chacoff, J.H. Dudenhoffer, S. S. Greenleaf, 
A. Holzschuh, R. Isaacs, K. Krewenka, Y. Mandelik, M. M. Mayfield, L.A. 
Morandin, S.G. Potts, T.H. Ricketts, H. Szentgyorgyi, B. F. Viana, C. Westphal, 
R. Winffee, and A.M. Klein. 2011. Stability o f pollination services decreases with 
isolation from natural areas despite honey bee visits. Ecology Letters 14: 1062- 
1072.

Goffe, W.L., G.D. Ferrier, and J. Rogers. 1994. Global optimization of statistical 
functions with simulated annealing. Journal o f Econometrics 60: 65 - 99.

Greenleaf, S., N. Williams, R. Winfree, C. Kremen. 2007. Bee foraging ranges and their 
relationship to body size. Oecologia 153: 589 - 596.

Guisan, A. and W. Thuiller. 2004. Predicting species distribution: offering more than 
simple habitat models. Ecology Letters 8: 993 - 1009.

Henly, M. 2012. Re-establishing community boundaries in Downeast Maine: 
undemanding the roles o f ethnicity, tenure of residence, economic & 
environmental conditions. Journal o f Rural and Community Development 
7(2): 18-36.

Johnson, C J. and M.P. Gillingham. 2004. Mapping uncertainty sensitivity o f wildlife 
habitat ratings to expert opinion. Journal o f Applied Ecology 41 (1032 ~ 1041).

Kennedy, C.M. 2013. A global quantitative synthesis of local and landscape effects on 
wild bee pollinators in agroecosystems. Ecology Letters 16 (5): 584 - 599.

Kirkpatrick, S., C.D. Gelatt, M.P. Vecchi. 1983. Optimization by simulated annealing. 
Science 220 (4598): 671 - 680.

Klein, A.M, B.E. Vaissiere, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. 
Kremen, and T. Tschamtke. 2007. Importance o f pollinators in changing 
landscapes for world crops. Proceedings o f the Royal Society 274: 303 -  313.

29



Kremen, C., N.M. Williams, R.L Bugg, J.P. Fay and R.W. Thorp. 2004. The area
requirements of an ecosystem service: crop pollination by native bee communities 
in California. Ecology Letters 7: 1109-1119.

Kremen, C., N.M. Williams, M. A. Aizen, B. Gemmill-Herren, G. LeBuhn, R. Minckley, 
L. Packer, S. G. Potts, T. Roulston, I. Steffan-Dewenter, D. P. Vazquez, R. 
Winfree, L. Adams, E.E. Crone, S.S. Greenleaf, T.H. Keitt, A. Klein, J. Regetz, 
and T.H. Ricketts. 2007. Pollination and other ecosystem services produced by 
mobile organisms: a conceptual framework for the effects o f land-use change. 
Ecology Letters 10: 299 - 314.

Lonsdorf, E., C. Kremen, T. Ricketts, R. Winfree, N. Williams and S. Greenleaf. 2009. 
Modeling pollination services across agricultural landscapes. Annals o f Botany 
103: 1589-1600.

Lonsdorf, E., T. Ricketts, C. Kremen, R. Winfree, S. Greenleaf, and N. Williams. 2011. 
Crop pollination services. Pages 168 -  187 in P.H. Kareiva, H. Tallis,. T.H. 
Ricketts, G.C. Daily and S. Polasky, editors. Natural Capital: Theory and Practice 
o f Mapping Ecosystem Services. Oxford University Press - USA, New York,
New York, LJSA.

Osgood, E.A. 1972. Soil characteristics o f nesting sites of solitary bees associated with 
the low-bush blueberry in Maine. The Life Sciences and Agriculture Experiment 
Station, University o f Maine at Orono: Technical Bulletin 59.

Martin, T.G., M.A. Burgman, F. Fidler, P. M. Kuhnert, S, Low-Choy, M. Mcbride, and 
K. Mengersen. 2011. Eliciting expert knowledge in conservation science. 
Conservation Biology 26 (1): 29 - 38.

McGarigal, K., SA Cushman, and E Ene. 2012, FRAGSTATS v4: Spatial Pattern
Analysis Program for Categorical and Continuous Maps. Computer software 
program produced by the authors at the University of Massachusetts, Amherst. 
Available at the following web site:
http://www.umass.edu/landeco/research/fragstats/fragstats.html

Michener, C.D. 1996. The bionomics o f a pnmitively social bee, Lasioglossurn Versatum. 
Journal of the Kansas Entomological Society 3: 193 - 217.

Michener, C.D. 2000. The Bees of the World/The John Hopkins University Press, 
Baltimore, Maryland, USA.

Millspaugh, J.J. and F. Richard Thompson. 2009. Models for planning wildlife 
conservation in large landscapes. Elsevier/Academic Press, Burlington, 
Massachussetts, USA.

Murray, J.V., A.W. Goldizen, R.A.O’Leary, C.A. McAlpine, H.P. Possignham, and S.L. 
Choy. 2009. How useful is expert opinion in predicting the distribution o f a 
species within and beyond the region o f expertise? A case study using brush-

30

http://www.umass.edu/landeco/research/fragstats/fragstats.html


tailed rock-wallabies Petrogale penicillata. Journal of Applied Ecology 46(4): 
842-851.

Oliphant, T.E. 2007. Python for scientific computing. Computing in Science & 
Engineering 9 (90): 27 - 29.

Patricio-Roberto, G.B., and M.J.O. Campos. 2014. Aspects of Landscape and Pollinators 
- What is important to bee conservation? Diversity 6: 158 - 175.

Pettis, J.S. and Delaplane, K.S. 2010. Coordinated responses to honey bee decline in the 
USA. Apidologie 41(3): 256 - 263.

R Development Core Team. 2011. R: A language and environment for statistical
computer. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 
900051-07-0, from http://www.R-project.org/.

Ricketts, T.H., J. Regetz, I. Steffan-Dewenter, S.A. Cunningham, C. Kremeri, A.
Bogdanski, B. Gemmill-Eferren, S. S. Greenleaf, A. M. Klein, M.M. Mayfield, 
L.A. Morandin, A. Ochieng, and B.F. Viana. 2008. Landscape effects on crop 
pollination services: are there general patterns? Ecology Letters 11: 499-515.

Spear, S.F., N. Balkenhol, M, Fortin, B.H. Mcrae and K. Scribner. 2010. Use of 
resistance surfaces for landscape genetic studies: considerations for 
parameterization and analysis. Molecular Ecology 19: 3576 - 3591.

Tepedino, A .J. 1979. The importance o f bees and other insect pollinators in maintaining 
floral species composition. Great Basin Naturalist Memoirs 3: 139 — 150.

U.S. Census Bureau. (2014, January 06). State & county Quickfacts: Hancock County, 
ME. Retrieved January 31, 2014, from http://quickfacts.census.gov.

U.S. Census Bureau. (2014, January 06). State & county Quickfacts: States. USA. 
Retrieved January 31, 2014, from http://quickfacts.census.gov .

U.S. Census Bureau. (2014, January 06), State & county Quickfacts: Washington County, 
ME. Retrieved January 31, 2014, from http://quickfacts.census.gov.

Yarborough, D.E, 2009. Wild blueberry culture in Maine. Extension Bulletin # 2088. 
University o f Maine Cooperative Extension, Orono, Maine, USA.

Yarborough, D.E. 2012. Statistics - Wild Blueberry Crop Statistics. University o f Maine 
Cooperative Extension, Orono, Maine, USA. Retrieved April 9, 2014 from 
http://umaine.edu/blueberries/factsheets/statistics-2/statistics/.

Watson, J.C., A.T. Wolf, and J.S. Asher. 2011 Forested landscapes promote richness and 
abundance in native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin 
Apple Orchards. Environmental Entomology 40 (3): 621 -  632.

31

http://www.R-project.org/
http://quickfacts.census.gov
http://quickfacts.census.gov
http://quickfacts.census.gov
http://umaine.edu/blueberries/factsheets/statistics-2/statistics/


APPENDIX A: EXPERT OPINION SURVEY 

READ ME FIRST

The first component of the survey is information regarding the landcover 
classes and bee species 1 am modeling. The page titled "Lookup Table - 
LANDCOVER", provides a look-up table with descriptions, and example floral 
resources for each of the 9 landcover classes. The page titled "Lookup Table - 
BEES", provides a look-up table with life history information on the bee 
species my modeling efforts are focused on.

The second component of the survey is where you come in. The page titled 
"Floral Resource Availability" and the page titled "Nesting Habitat" are set up 
to allow you write in a value from 1 (lowest quality) -10 (highest quality) in 
each shaded cell. You will find more specific directions on what you are 
ranking, on the page titled "Floral Resource Availability" and the page titled 
"Nesting Habitat".
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Table 9. Lookup Table - LANDCOVER.
This table provides a description of each landcover class and examples of potential bee forage plants/floral resources.

IMPORTANT: The example floral resources listed below are listed to remind you of what is blooming at different times of the year. These lists do not imply abundance, nor due
landcover classes with 7 examples imply better suitability for bees than landcover classes with 2 examples.

.......... ..T

Landcover Class
Example: Feb. - 

April Example: May - June Example: July - September Description

Deciduous Forest edge (10 m)
wild strawberry, 

willow

shadbush, raspberry, 
blueberry, blackberry, 

bunchberry, violet, bluebead 
lily, other spring herbaceous 

wildflowers
meadowsweet, pasture rose, asters, 

goldenrods
This is the 10 meter strip on the edge of a deciduous 

or mixed forest patch

Developed
dandelion, 

crocus, coltsfoot
azalea, chives, mints, apples, 

cherries

dandelion, oregano, bee balm, 
yarrow, roses, mints, goldenrods, 

asters

This class represents all developed lands. Examples of 
this include rural, urban, suburban lands. This category 
does not include parks or developed, open spaces (see 

Landcover Class: Agriculture/Field).

Coniferous Forest trailing arbutus
sheep laurel, black 

huckleberry, wintergreen
raspberry, blackberry, goldenrod, 

aster
This class represents coniferous forest, including 

regenerating forest and the edge

Coniferous Forest - clearcut dandelion, red 
maple, trailing 

arbutus
sheep laurel, blueberry, black 

huckleberry
raspberry, blackberry, goldenrod, 

aster
This class represents clearcut or recently harvested 

coniferous forest, including the edge

Deciduous/Mixed Forest maple, willow

oak, columbine, honeysuckles, 
shadbush, viburnum, other 

spring herbaceous wildflowers meadowsweet, aster This class represents all deciduous and mixed forest

Emergent/Scrub Shrub 
Wetlands

wiliow, red 
maple

leatherleaf rhodora, 
cranberries, violets

St.John's wort, meadowsweet, 
steeplebush, summersweet, aster, 

shrubby cinquefoil
This class includes both emergent and scrub-shrub 

wetlands

Wetlands/Water
willow, red 

maple
highbush blueberry, mountain 

holly
pickerelweed, water lillies, purple 

loosestrife
This class represents all other wetlands (marine, 

riverine, and estuarine) and open water

Agriculture/Field
dandelion,

willow alfalfa, clover, hawkweed
vegetable crops, goldenrods, asters, 

meadowsweet

This class represents cultivated crops (except 
blueberries), pastures, grasslands and developed open 

space (i.e., parks)

Biueberries willow
blueberry, bunchberry, violet, 

sheep laurel
vetch, St.John's wort, butter and 

eggs, goldenrods, asters, dogbane

!"
This class represents both wild blueberries and 

managed blueberry fields



Table 10. Lookup Table - BEES.

This table provides life history information on the bee species we are using in our modeling efforts.

Species
Typical Foraging 

Distance (m) Nest Substrate General Flight Season

Andrena carlini 598 ground March - August

Andrena carolina 246 ground April - July

Andrena vicina 569 ground March - August

Augochlorella aurata 60 ground April - October

Colletes inaequalis 1091 ground March - July / August - September

Halictus ligatus 148 ground throughout the year

Lasioglossum acuminatum 186 ground April - October

Lasioglossum cressonii 63 cavity March - October

Lasioglossum heterognathum 16 ground April - September

Lasioglossum leucocomum 31 ground March - October

Lasioglossum pettorale 81 ground March - November

Lasioglossum versatum 79 ground March - October

Osmio atriventris 186 cavity April -July

Osmia inspergens 495 cavity M ay-June

Queen - Bombus ternarius 5767 ground and cavity April - October

Queer, - Bombus vagans 4415 ground and cavity May - October

Queen - Bombus spp. 7554 ground and cavity Feb - November

Worker - Bombus ternarius 966 ground and cavity June - October

Worker - Bombus vagans 1261 ground and cavity- June - October

Worker - Bombus spp. 2125 ground and cavity June - November



Table 11. Floral Resource Availability

First, let's think about floral resources (forage for bees) in the landscape, across the seasons:
This is a ranking based on the relative abundance of floral resources/flowering plants in each landcover class throughout the 

seasons. Starting in the column titled "February - April" set the landcover class with the greatest availability of floral 
resources during February - April, to 10, and give all other landcover classes that column a value relative to this maximum 
value (between 1 -10). Repeat this exercise for the column titled "May - June (blueberry bloom)", "July - September", and 

"Yearround (February - September)". See page titled "1. Lookup Table - LANDCOVER" for a description and examples of 
potential bee forage within each landcover class during the different months. To the right 1 have provided an example 

scoring in the column titled "EXAMPLE" and reasoning for my scoring in the column titled "REASONING". You do not need to 
provide your reasoning, 1 just wanted to demonstrate why 1 assigned the values 1 did. It is okay to leave a cell blank if you are

unsure.

EXAMPLE REASONING

Landcover Class
February - 

April

May - June 
(blueberry 

bloom)

July - 
September

Yearround 
(February - 
September)

February - April Available forage

Deciduous Forest edge (10 m) 6
willows, wild 
strawberries

Developed 10
crocuses, dandelions, 

coltsfoot

Coniferous Forest 2 trailing arbutus

Coniferous Forest - Clearcut unsure

Deciduous/Mixed Forest 9 maples, willows

Emergent Wetlands/Scrub Shrub 8 willow, red maple

Wetlands/Water 2 not much flowering

Agriculture/Field 6
possibly apples, choke 
cherries, dandelions

Blueberries
1

1
blueberry isn't 
flowering yet



Table 12. Nesting Habitat

Next, let's switch gears and think about nesting habitat based on the iandcover classes, and soil types:

LANDCOVER CLASS

Native bees are known to nest in both the ground, and in cavities/rotten wood and stems. This is a ranking of the 
availability of nesting for native bees within a given Iandcover class. Starting in the column titled "Ground Nester", 
set the Iandcover class with the greatest availability of nesting habitat for ground nesters to 10, and give all other 

Iandcover classes a value relative to this maximum value (between 1 -10). Repeat this exercise for the column titled 
"Cavity Nester". It is okay to leave a cell blank if you are unsure. Ground nesters include bees that nest in the soil, 

and cavity nesters in rotten wood, cavities and stems. See the page titled "2. Lookup Table - BEES" for a list of 
species in each category and information on their life history.

Landcover Class Ground Nester Cavity Nester

Deciduous/Mixed Forest edge (10 m)

Developed

Coniferous

Deciduous/Mixed Forest

Emergent Wetlands/Scrub Shrub

Wetlands/Water
Agriculture/Field

Blueberries

SOIL TYPE

For those native bees that nest in the ground, please rank the soil types based on the potential availability 
of nesting habitat. For the column titled "Ground Nester", set the soil type with the greatest availability of 
nesting habitat to 10, and give all other soil types a value relative to this maximum value (between 0 10),

It is okay to leave a cell blank if you are unsure.

Soil Type Ground Nester

coarse, sandy, well drained soil

coarse, sandy, poorly drained soil

sandy - loam, well drained soil

sandy - loam, poorly drained soil

silty - clay, well drained soil

silty - clay, poorly drained soil
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APPENDIX B. RESULTS OF ADDITIONAL INVEST TESTS

I investigated relationships between the landscape and native bee abundance using 

the InVEST Crop Pollination Model adapted to Downeast Maine’s landscape. I compared 

model performance using different spatial landcover data layers, modeled extents and 

validation datasets, with lowbush blueberry fields in Downeast Maine as the focal study 

system. Much of the methods are described above, but below I describe information 

associated with a few of the additional runs that I conducted.

Description o f  Study Extents and Field Sites

Maine produces the greatest area (>24,000 ha) o f managed, lowbush blueberries 

of any state (Yarborough 2009). Most of this management activity is in Downeast Maine, 

in Hancock and Washington counties. We evaluated the InVEST model for three extents 

(Figure 3.) spanning Downeast Maine, reflecting differences in landcover type, validation 

datasets, and patch size across this region.

I evaluated the predictive ability of the InVEST model across three spatial 

extents; the first extent (Eastern) covers 3000 km2 of the region (Figure 3.). Eight focal 

blueberry fields ( < 1 - 1 1  hectares) are located within this extent. The second extent 

(Blue Hill; Figure 3.) covers 705 km2 of southwestern Hancock County, and includes 26 

focal blueberry fields ( < 1 - 1 7  hectares). There are 40 focal blueberry fields ( < 1 - 1 7  

hectares) in the third extent (Eastern), which spans 4,802 km of the blueberry growing 

region.

37



Figure 3. Extents modeled and blueberry field sites used for validation of additional 
InVEST model runs, Maine, USA.

Methods

Landcover layer used

In addition to the methods described above, 1 also updated the landcover layer 

with satellite imagery that I classified. 1 purchased a single 10-m hyper spectral SPOT 

image of a 3,600 km2 area o f Washington County from May 2011 in an attempt to update 

the blueberry field coverage within the Eastern extent only (Airbus Defence and Space 

2014; Figure 3.). To improve the classification among landcover types, I used the 

MELCD as a guide to extract all pixels from the image that were not classified as water 

and wetlands and then conducted an isocluster unsupervised classification on them 

(ArcGIS ® version 10.0; Environmental Systems Research Inc., Redlands, CA, United 

States). Following the unsupervised classification, I developed training sets for landcover
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classes that were grouped with the blueberries class in the results o f the unsuperv ised 

classification. Training sets were developed for roads and gravel pits, conifers and 

blueberry fields using the MELCD dataset and aerial imagery (Bing Maps 2010). These 

training pixels were used in a maximum likelihood supervised classification and the 

subsequent classification that represented blueberries was added to the MEL CD 

blueberries class.

The final landcover dataset included 42 classes reclassified into 8 landcover 

types: deciduous/mixed forest edge, developed/other, coniferous forest, deciduous/mixed 

forest, emergent/shrub-shrub wetlands, other wetlands/water, agriculture/field and 

blueberries (Table 1). Although the resolution o f the final updated datasei remained at 5- 

m, we conducted the In VEST analysis at a 10-m resolution to decrease analysis time.

L andcover pattern description

I compared landscape pattern metrics for the three modeled extents (Figure 3.) 

with Fragstats 4 2 (McGarigal et al. 2012). For each landcover class 1 calculated the 

proportion o f the extent in that class, patch density (number per 100 hectares (ha)), mean 

patch area (ha), and a measure o f spatial configuration (i.e., interspersion/juxtaposiiion 

index), 1 also calculated a landscape scale mean patch area (ha) and interspersion / 

juxtaposition index (IJI) for each model extent.

Results

Pattern metrics

More than half of the region bounded by the Eastern extent was coniferous forest 

(24 5%) and wetlands/water (27.5%), and the mean patch sizes of both the
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deciduous/mixed forest and blueberries classes were larger than the mean patch area of 

the entire landscape (Table 13.; Table 14.). The Eastern landscape IJI was 73.7 (fable 

14.). Coniferous forest and deciduous/mixed forest class comprised more than half o f the 

landscape in the Blue Hill extent. The mean patch area for each class and the landcover 

mean patch area were similar, with the exception o f the coniferous forest mean patch 

area, which exceeded all other patch sizes. The landscape IJI was 74.12, Additionally, the 

coniferous forest and deciduous/mixed forest classes made up over half o f the landscape 

in the Downeast extent, and the landscape IJI was 73.6.

Table 13. Proportion o f land and mean patch area (ha) per class for each extent

Class

Eastern
mean

% land pa,charea
(ha)

Blue Hill 
mean 

% patch 
land area 

(ha)

Downeast
mean

% land patcharea
(ha)

Deciduous/Mixed Forest 
edge 4.0 1.5 4.3 1.2 4.3 1.3
Developed/Other 1.5 1.1 4.4 2.2 2.7 1.8
Coniferous Forest 24.5 6.6 34.4 10,0 28.7 8.8
Deciduous/Mixed Forest 24.1 116 21.3 6.0 26.3 10.3
Emergent/Scrub-Shrub
Wetland 11.9 4.4 8.6 3.1 10.6 3.7
Wetlands/Water 27.5 5.9 20.0 5.9 21.0 5.3
Agriculture/Fields 1.3 1.0 3.3 1.6 1.9 1.3
Blueberries 5.3 11.0 3.7 5.6 4.4 10.1

Table 14. Mean patch area (ha) and interspersion-juxtaposition index 
(IJI) for each extent___________________________________________

Extent
Eastern Blue Hill Downeast

mean patch area (ha) 5.3 4.6 5.2
IJI 73.7 74.1 73.6
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Model prediction and correlations

Combining the SPOT image based blueberry classification with the MELCD 

landcover did not result in different InVEST m odel predictions of bee abundance for the 

Downeast extent, however, total bee abundance was significantly correlated with the 

InVEST model bee abundance estimate for both the SPOT-enhanced and non-enhanced 

landcover when the modeled bee species were restricted to those with estimated foraging 

distances < 200 m (9 bee species, Pearson’s r = 0.77; P  = 0.02) (Table 15.). Correlation 

of the model-predicted and sampled bee abundance increased with restriction of the bee 

species that have an estimated foraging range < 100 m (6 bee species, Pearson’s r = 0.86; 

/, < 0.01).

InVEST predicted and sampled bee abundance were not significantly correlated in 

the Blue Hill extent, regardless o f grouping by foraging distance or the number of bee 

species included.

I observed significant correlations when modeling both 14 species communities 

(Pearson’s r = 0.32; P  = 0.04) and bees that forage < 200 m (9 bee species, Pearson’s r = 

0.36; P = 0.02) for the Downeast extent. A non-significant trend similar to correlations 

observed from previously described model runs was observed when modeling bee species 

that forage < 100 m (6 bee species, Pearson’s r = 0.26; P  = 0.08).
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Table 15. Pearson's r correlation and P  values between In VEST model-predicted 
and observed bee abundance for the three focal spatial extents in Maine._______

Extent Landcover Species Modeled r P
updated with SPOT 14 species 0.52 0.19

14 species 0.52 0.19
Eastern updated with SPOT 9 species (foraging < 200 m) 0.77 0.02

9 species (foraging < 200 m) 0.77 0.02
6 species (foraging < 100 m) 0.86 0.01

Blue Hill 14 species
9 species (foraging < 200 m)

0.32
0.33

0.12
0.11

14 species 0.32 0.04
Downeast 9 species (foraging < 200 m) 0.36 0.02

6 species (foraging < 100 m) 0.26 0.08

Discussion

Spatial landcover dataset, species and extent modeled effects on model output

The relationship between the In VEST Crop Pollination model’s predictions and 

observed native bee abundance in Maine’s landscape did not vary depending on the 

spatial dataset used, but did depending on both the species and extent modeled.

The addition o f the SPOT updated blueberries class did not alter the explanatory 

power o f the In VEST model across the Eastern extent. This was encouraging; large 

differences between the results would have required me to update the blueberries class 

through the purchase o f additional SPOT imagery, increasing project expenses.

There was a difference with significance and prediction power within all extents 

when I changed the number o f species modeled. It is not surprising that results ranged 

from significant to non-significant across the Eastern extent modeling efforts; this could 

be due to my small sample size o f 8 field sites. Overall, correlation between observed and
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predicted abundances was best within the Eastern extent when modeling only 6 species 

(foraging distance <100 m). The major landcover class within a 100 meter foraging 

buffer around the study sites located in the Eastern extent is blueberries. Previous work 

with the InVEST model has indicated that model predictions are most sensitive to the 

floral resources provided at the smaller scale (Lonsdorf et al. 2009). Additionally, it has 

been suggested that smaller bees (such as those foraging < 100in) are more strongly 

influenced by local, field scale resources (Benjamin et al. 2014).

Similarly, the fact that that the moderately positive correlations for the Blue Hill 

extent were non-significant could also be due to small sample size (26 field sites). The 

patch size o f the local resources {blueberries) are much smaller than the two other 

extents, with a mean patch area o f 5.6 ha (Table 14.), compared to mean blueberries 

patches of 11.0 ha and 10.1 for the Eastern and Downeast extents respectively. 

Additionally, the landscape is quite different within the Blue Hill extent than it is in 

Eastern or Downeast extents. Specifically, there is both a greater proportion of and larger 

patches o f coniferous forest within the Downeast extent (Table 13,). The smaller patch 

size present within the Blue Hill extent could limit the predictive power o f the InVEST 

model. Smaller patches o f resources may not be adequately reflected in the spatial 

landcover layer used; this was suggested as the reason that the InVEST model did not 

accurately predict bee abundance in other landscapes (Lonsdorf et al. 2009).

The weak to moderately weak positive relationships observed between predicted and 

observed abundances across the Downeast extent varied little when the number of species 

modeled was altered, This was encouraging as this modeling effort spanned much o f the 

blueberry growing region and included all of the validation datasets.



BIOGRAPHY OF THE AUTHOR

Shannon Chapin was bom in Lock Haven, Pennsylvania in 1984, and graduated 

from Central Mountain High School in Mill Hall, Pennsylvania in 2003. Shannon earned 

a Bachelors o f Science in Geography, with minors in Wildlife and Fisheries Sciences, 

and Climatology from The Pennsylvania State University in University Park, 

Pennsylvania in 2007. She received a post-baccalaureate certificate in 2010 in Geospatial 

Sciences from Humboldt State University in Areata, CA. Prior to returning to graduate 

school, Shannon worked for 5 years for various federal agencies, universities and a 

private firm as a field ecologist and GIS Analyst. After receiving her degree, Shannon 

plans to continue her career as a Geospatial Analyst at the Southern Environmental Law 

Center, a non-profit environmental advocacy organization, in Chapel Hill, North 

Carolina.

Shannon is a candidate for the Master of Science degree in Ecology and 

Environmental Science from the Uni versity o f Maine in May 2.014.

44


	The University of Maine
	DigitalCommons@UMaine
	5-2014

	Application of Spatial Modeling Tools to Predict Native Bee Abundance in Maine's Lowbush Blueberries
	Shannon J. Chapin
	Recommended Citation


	tmp.1416507833.pdf.3HfUX

