A Barefoot Running Program for a College Lacrosse Player with Chronic Exertional Compartment Syndrome: A Case Report

INNOVATION FOR A HEALTHIER PLANET

Unique

Barefoot running protocols have been effective in decreasing anterior and lateral chronic exertional compartment syndrome (CECS)¹; they have not been studied in patients with posterior CECS.
 Additionally, there is a lack of research that has investigated a barefoot running protocol in a college lacrosse athlete.

Purpose

The purpose of this case report was to examine the effects of adopting a forefoot strike pattern, through a barefoot running program, in a 20-year-old college lacrosse player with posterior chronic exertional compartment syndrome (CECS).

Foundation

- CECS is the second most common cause of activity-induced leg pain.²
 Twenty-two percent of CECS cases affect the posterior compartments.³
 A forefoot strike pattern has been shown to decrease ground reaction forces, shorten stride length, and increase cadence.⁴
 Barefoot running has not been
- Barefoot running has not been extensively explored in patients with posterior CECS.

Erica Mazzarelli, BS, DPT Student, Kirsten Buchanan, PhD, PT, ATC Doctor of Physical Therapy Program University of New England, Portland, Maine

Case Description

20 year-old female college lacrosse player
Bilateral tightness and throbbing in lower l numbness and tingling into feet
Brought on by running on pavement, up hi longer than 5-10 minutes
Diagnosis : Bilateral posterior chronic exertional comp syndrome (CECS)

Intervention

Day	Barefoot Activity ⁶	
Weeks 2-3		
1	Walk 30 min	
2	Walk 9 min/jog 1 min (x3)	
3	Rest	
4	Walk 8 min/jog 2 min (x 3)	
5	Walk 7 min/jog 3 min (x3)	
6	Rest	
7	Walk 6 min/jog 4 min (x3)	
8	Walk 5 min/jog 5 min (x3)	
9	Rest	
10	Walk 4 min/jog 6 min (x3)	
11	Walk 3 min/jog 7 min (x3)	
Weeks 4-6 - 3 days/week		
12	Jog 12 min	
13	Rest	
14	Jog 15 min	
15	Rest	
16	Jog 17 min	
17	Rest	
18	Jog 20 min	
19	Rest	
20	Jog 20 min	

leg,

ills, and

artment

Timeline

Discussion/Conclusion

for supervision of patient management. There is no funding source.

References

Diebal AR, Gregory R, Alitz C, Gerber JP. Forefoot running improves pain and disability associated with chronic exertional compartment syndrome. *Am J Sports Med*. 2012;40(5):1060-1067. doi: 10.1177/0363546512439182
 Clanton TO, Solcher BW. Chronic leg pain in the athlete. *Clin Sports Med*. 1994;13:743-759.
 Davis DE, Raikin S, Garras DN, Vitanzo P, Labrador H, Espandar R. Characteristics of patients with chronic exertional compartment syndrome. *Foot Ankle Int*. 2013;34(10):1349-1354. doi: 10.1177/1071100713490919
 Squadrone R, Gallozzi C. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. *J Sports Med Phys Fitness*. 2009;49(1):6-13.
 Figure 11-4. MusculoskeletalKey. https://musculoskeletalkey.com/11-muscles-of-the-leg-and-foot/. Published August 22, 2016.

Accessed October 29, 2018. 6. Rothschild, C. Barefoot running: Current evidence and transition strategies. Presented at; FPTA Annual Conference; Daytona Beach; 2012.