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ABSTRACT 
 

CAN THE MARSH MIGRATE? 
FACTORS INFLUENCING THE GROWTH OF SPARTINA PATENS  

IN UPLAND SOIL 
 

by 
 

Tessa M. Dowling 
 

University of New England, August, 2018 
 

Although high elevation salt marsh plants, such as Spartina patens (salt hay) can 

cope with accelerated sea level rise by migrating inland, it is not well known whether 

environmental factors, such as soil, plant litter, and salinity, will influence the ability of 

S. patens to colonize upland forest areas.  For one growing season, I tested how S. patens 

vegetative growth (the final number of stems, aboveground stem biomass, and 

belowground rhizome biomass) and reproduction (presence of flowers) responded to 

upland or marsh soil, the presence or absence of plant litter, and 4.5ppt or 14.5ppt salinity 

levels.  In order to determine if the source location of the plant influenced their response 

to treatment effects, I collected S. patens plants from three Maine salt marshes in the 

townships of Scarborough, Biddeford, and Wells.   Litter and salinity treatments did not 

significantly affect vegetative growth, and they only affected flowering in a three-way 

interaction with site.  All vegetative and reproductive measures were significantly 

affected by soil and the site x soil interaction - S. patens collected from Biddeford and 

Wells grew significantly less in the upland soil compared to the marsh soil, but 

Scarborough plants grew equally well in both soil treatments.  One possible explanation 

for why plants from the three sites responded differently to soil 
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treatments was that the Scarborough site had a significantly lower percent soil organic 

matter content, and therefore, was more similar to upland in soil organic matter content 

than the other two sites.  These results suggest that S. patens populations from a site with 

low soil organic content will be more successful adjusting to upland soil than plants from 

high soil organic matter sites, which would give those populations accustomed to low 

organic matter an advantage when migrating inland.  The ability to identify S. patens sites 

that will successfully migrate inland, by measuring soil organic content or other site 

characteristics, is vital if conservation efforts are going to protect the S. patens 

populations most likely to persist in the face of sea level rise. 
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INTRODUCTION 
 
 

Accelerated sea level rise has led to increased rates of salt marsh loss world-wide 

(Warren and Niering 1993; Stammermann and Piasecki 2012; Fagherazzi 2013).  Loss of 

salt marshes can have negative environmental effects, such as decreasing waterfowl 

nesting and feeding habitat (Clausen and Clausen 2014),  and cause negative effects on 

coastal human infrastructure due to the increased impact of storm surges and the decrease 

in shoreline stability (Shepard et al. 2011).  Sea level rise also causes detrimental shifts in 

salt marsh vegetative communities (Short et al. 2016).  Typical New England salt marsh 

communities are divided into two zones; a high marsh zone dominated by the perennial 

grass salt hay (Spartina patens), and a low marsh zone dominated by smooth cordgrass 

(Spartina alterniflora) (Pennings and Bertness 2001; Lonard et al. 2010).  An intolerance 

to high salinity and inundation levels prevents S. patens from colonizing the low marsh, 

and interspecies competition generally prevents S. alterniflora from spreading into areas 

dominated by S. patens (Bertness and Ellison 1987; Ungar 1998). However, sea level rise 

has an indirect negative impact on S. patens by facilitating the movement of S. 

alterniflora populations into the high marsh S. patens zone (Donnelly and Bertness 2001; 

Watson et al. 2016).  With increasing rates of sea level rise, S. patens is squeezed 

between the encroaching S. alterniflora and the adjacent upland (Tono and Chmura 

2013), unless it can migrate inland. 

Evidence of trees stumps within salt marshes and analysis of historic photos 

illustrate that salt marshes have migrated inland in the past (Kirwan et al. 2016; Raabe 
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and Stumpf 2016).  However, what is not clearly understood is whether environmental 

factors, including soil composition, the presence of plant litter, and salinity, have the 

potential to impede S. patens inland migration.  The upland that migrating S. patens 

encounters will not match its native marsh environment, in part because upland soil is 

unlikely to convert into marsh soil as quickly as vegetation can move inland (Anisfeld et 

al. 2017).  For example, upland soil organic matter content can take longer than three 

years to match the organic content of natural salt marsh soils under created salt marsh 

conditions (Moy and Levin 1991).  Soil organic matter is particularly important to marsh 

plant growth because it pools nutrients and promotes nutrient fixation (Langis et al. 1991; 

Callaway 2000), but it takes time for organic matter to build-up in soils changing from an 

upland into a marsh environment (Moy and Levin 1991), which could deter S. patens 

growth.   

Research suggests that plant litter and salinity can also decrease vegetative 

growth.  The presence of salt marsh litter, such as wrack, can physically block stem 

growth leading to declines in S. patens aboveground biomass (Tolley and Christian 

1999). Forest plant litter, that S. patens might encounter when migrating into the upland, 

also can inhibit plant growth by acting as a physical barrier to stem emergence and by 

blocking sunlight (Xiong and Nilsson 1999; Sayer 2006).  Salinity levels can cause salt 

stress to S. patens (Pezeshki and DeLaune 1993) and levels above 7ppt can limit 

aboveground and belowground growth (Ewing et al. 1995; Snedden et al. 2015).   

Few published studies have investigated how plant litter and salinity affect salt 

marsh plant reproduction.  However, Li and Pennings (2017) found that the timing of 
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wrack litter disturbance influenced the effect of litter on S. alterniflora reproduction; 

wrack litter placed over S. alterniflora stems early in the growing season stimulated 

flower production, while wrack litter placed over stems later in the growing season 

decreased the number of stems that produced flowers.  When Xiao et al. (2011) studied S. 

alterniflora reproduction, they found that, within one growing season, a salinity level of 

30ppt caused flower biomass to decrease compared to a salinity level of 15ppt, but that 

the number of stems that produced flowers did not change between the two salinity 

treatments.  Since S. patens is a salt marsh plant in the same genus as S. alterniflora, it is 

possible that S. patens would have a similar response to plant litter and salinity treatments 

as S. alterniflora, and show a decline in flowering when litter is present late in the 

growing season, but not have the number of stems with flowers decrease due to salinity 

levels.       

As a species, S. patens can grow in a wide range of habitats and has a large 

geographic range (Broome et al. 1995; Bush and Houck 2008).  Within that range, S. 

patens shows high intraspecies variation in salt tolerance (Hester et al. 1996; Pezeshki 

and DeLaune 1997), waterlogging (Burdick and Mendelssohn 1987), and biomass 

allocation (Brewer and Bertness 1996).  The growth response of S. patens to soil, plant 

litter, and salinity also might vary among populations from different salt marsh sites, and, 

therefore, site is another important factor which could determine how plant growth will 

respond to the need to migrate inland.  

To test the influence of environmental factors on the migration potential of S. 

patens into the upland, I used a manipulative experiment to study the effects of four 
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factors - soil, plant litter, salinity, and site- on S. patens vegetative growth and 

reproduction.  I designed the experiment with two soil treatments, two litter treatments, 

two salinity treatments, and three site treatments.  I predicted that 1) the upland soil 

treatment would decrease S. patens vegetative growth compared to the marsh soil 

treatment, 2) the plant litter would decrease S. patens vegetative growth and reproduction 

because the litter would be present throughout the growing season, 3) the higher salinity 

level would cause a decrease in vegetative growth compared to the low salinity, and 4) S. 

patens from the three sites would respond differently to the other experimental factors 

(soil, litter, and salinity) due to different tolerance levels among the S. patens 

populations.  Results from my experiment will provide insight into whether 

environmental factors will limit the migration of S. patens into the upland.  Studying the 

details of marsh migration is important if we want to design successful management tools 

to assist marsh migration and help salt marshes persist into the future despite sea level 

rise. 
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METHODS 

 
Study Species Collection 

 
The S. patens used in this study was collected in June 2017 from three southern 

Maine salt marshes located in the townships of Scarborough (43°33'52.6"N 

70°22'25.9"W), Biddeford (43°27'23.1"N 70°22'52.0"W), and Wells (43°19'58.5"N 

70°32'45.0"W) (Fig. 1).  The Scarborough site was located approximately 11km north of 

the Biddeford site and approximately 30km north of the Wells site.  S. patens was 

extracted with spades from the marsh sites in approximately 8.5cm diameter by 21cm 

deep plugs, containing approximately 30 stems, and including the intact root mass and 

soil.  Eighty S. patens plugs were collected from each marsh site (240 total), placed in 

plastic bins with saltwater, and then transported back to the University of New England 

(adjacent to the Biddeford collection site). 

 

Study Design 
 

I divided the 80 plugs from each of the three sites among the three other treatment 

factors such that there were ten replicates for each treatment combination (3 site x 2 soil x 

2 litter x 2 salinity x 10 = 240).  The two soil treatments were marsh and upland, and 

were created by planting S. patens plugs in fabric pots (having a volume of 19L, a 

diameter of 30cm, and a depth of 25cm) filled with either marsh soil from the creeks at 

each of the three marsh sites, or with upland soil from the top 30cm of a forest, 

dominated by Quercus rubra and Acer rubrum, in Scarborough, ME (43°37'51.0"N 

70°24'02.2"W, Fig. 1).  The two plant litter treatments were the presence or absence of 
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litter.  For the 120 plugs in the litter present treatment, the plant litter was placed over the 

surface of the soil around the plug and the composition of the litter corresponded to the 

soil treatment, such that the litter placed over marsh soil was clipped dead S. patens from 

the three marsh sites and the litter placed over the upland soil was Quercus and Acer 

leaves from the upland forest site.  For the 120 plugs in the litter absent treatment the soil 

was left exposed.  To create the salinity treatments, I assigned 24 pots containing S. 

patens plugs to one of ten 1.8m diameter by 0.4m deep plastic wading pools, such that 

each pool contained two replicates of each site x soil x litter treatment combination.  Half 

the wading pools had a low salinity treatment, created by adding 500g of aquarium salt to 

approximately 70L of freshwater, and half of the wading pools had a high salinity, 

created by adding 3120g of aquarium salt to approximately 70L of freshwater.  The low 

salinity treatment averaged 4.5ppt ± 0.2 (standard error of the mean) over the course of 

the growing season and the high salinity averaged 14.5ppt ± 0.5.  Water levels within the 

pools were maintained at a depth of at least 5cm, with occasional variations due to 

rainfall, throughout the study, which ran from June until September 2017. 

I used four variables to quantify S. patens response to treatment factors: the final 

number of stems, aboveground stem biomass, and belowground rhizome biomass were 

used as indicators of vegetative response, and flowering was used to measure 

reproduction.  The final number of stems corresponded to the number of stems in each 

pot at the end of the experiment.  After counting, I collected the aboveground biomass by 

clipping the stems where they exited from the soil surface, dried the stems to a constant 

mass in a 60℃ oven, and then recorded aboveground biomass in dried grams per pot 
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(g/pot).  For belowground biomass, I collected only the rhizomes that grew during the 

experiment by clipping the rhizomes where they exited from the S. patens plug (which 

had maintained its structural integrity throughout the study).  I dried the rhizomes to a 

constant mass in a 60℃ oven, and then recorded each rhizome biomass in dried g/pot.  

Flowering occurred in August 2017, and I recorded the number of flowers per S. patens 

stem, the number of stems with flowers per pot, and whether flowers were present in each 

pot within each treatment combination.   

To understand whether differences in soil properties among sites could explain 

site response differences to upland soil, I collected 12 soil samples (measuring 

approximately 8.5cm in diameter and 21cm deep) from each of the three S. patens 

collection sites.  The samples were collected in April 2018 and were sent to the 

Analytical lab and Maine Soil Testing Service, located at the University of Maine-Orono 

campus, and tested for organic matter content through loss of ignition at 375°C for 2 

hours (Schulte and Hoskins 2011).    

 
Data Analysis 

 
I analyzed the main and interactive effects of the four environmental factors on 

plant response using R statistical software (Version 3.3.1 2016).  All response variables 

were analyzed separately, and different modeling approaches were used for the three 

continuous vegetative growth variables (final number of stems, aboveground stem 

biomass, and belowground rhizome biomass) than for the categorical reproductive 

variable (presence or absence of flowers in a pot), because of non-normality issues with 

continuous reproductive measures, such as the number of flowers per pot.  Stem biomass 
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and rhizome biomass were logarithmically transformed to meet model assumptions of 

normality.  I accounted for variations among S. patens plugs that could confound the 

treatment effects by assessing several potential covariates using multiple linear 

regression.  Three potential covariates were assessed for both the final number of stems 

and aboveground stem biomass: the number of initial stems per pot, the number of days 

the stems grew per pot prior to taking measurements, and the presence or absence of 

flowers (Appendix A I-II).  Three covariates were assessed for belowground rhizome 

biomass: the number of initial stems per pot, the number of days the rhizomes grew per 

pot, and the depth the soil around the plug subsided during the experiment, exposing 

some of the rhizomes (Appendix A III).  I used the residuals from the covariate 

regression models (retaining significant covariates, significant covariate interactions, and 

any non-significant term associated with significant higher-order interactions) as the 

adjusted response values in the ANOVAs (3 site x 2 soil x 2 litter).  These crossed factors 

were nested within pools, which, in turn, were nested within the two salinity treatments.  

If treatment effects were significant (p ≤ 0.05), then I conducted multiple F-test 

(ANOVA) pairwise comparisons to analyze differences within the effect using sequential 

Bonferroni-corrected alpha levels (e.g. starting at ⍺ = 0.05/9 ≈ 0.01 for soil x site 

interactions).  Poisson log-linear modeling was used to test the significance of treatment 

effects on the presence or absence of flowering (p ≤ 0.05), and multiple comparisons 

were conducted using odds-ratio tests.  I compared soil organic matter among sites with 

an ANOVA (p ≤ 0.05), and then tested for significance between pairs of sites using a 
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series of F-tests (ANOVAs) and sequential Bonferroni corrected alpha	levels (starting at 

⍺ = 0.05/3 ≈ 0.02).   
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RESULTS 

 
 

The final number of stems, which averaged 104 ± 2.4 (standard error of the mean) 

stems at the end of the growing season, was generally lower in the upland soil compared 

to the marsh soil, although the trend was not consistent across all sites.  The final number 

of stems (adjusted for the number of initial stems, the number of grow days, and the 

presence of flowering) significantly differed by soil type and site x soil interaction (Table 

1, Fig. 2).  Specifically, the adjusted number of stems was significantly lower in upland 

soil than in marsh soil for plants from the Biddeford (ANOVA (),+, = 8.07, p < 0.01) and 

Wells (ANOVA (),+, = 40.91, p < 0.01) sites, but not for plants from Scarborough 

(ANOVA (),+, = 2.86, p = 0.10).  When comparing sites within the upland soil treatment 

using sequential Bonferroni adjusted alpha levels (Fig. 2), Scarborough had a 

significantly higher count than Wells in the upland soil (ANOVA (),+, = 22.13, p <0.01), 

but Biddeford did not differ from the other two sites ((),+,= 4.36, p = 0.04; ANOVA 

(),+,=6.75, p = 0.01). 

Significant treatment effects were the same for aboveground stem biomass 

(adjusted for the number of initial stems, the number of grow days, and the presence of 

flowering) and belowground rhizome biomass (adjusted for the number of initial stems, 

the number of grow days, and the depth of soil subsidence) as they were for final the 

number of stems: there was a significant soil treatment effect and site x soil interaction 

(Tables 2 and 3).  Aboveground and belowground biomass trends were also consistent 

with the final number of stems findings, with lower growth overall in the upland soil as 
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compared to marsh soil (Fig. 3 and 4), except for plants from Scarborough (ANOVA 

(),+, = 9.71, p < 0.01 aboveground and (),+, = 13.09, p < 0.01 belowground for 

Biddeford; ANOVA (),+, = 13.17, p < 0.01 aboveground and (),+, = 15.17, p < 0.01 

belowground for Wells; ANOVA (),+, = 3.25, p = 0.08 aboveground and (),+, = 0.10, p 

= 0.76 belowground for Scarborough).  In addition, plants from Wells had lower biomass 

than Scarborough within the upland soil treatment (Fig. 3, ANOVA (),+, = 8.42, p < 0.01 

for aboveground biomass; Fig. 4, ANOVA (),+, = 9.78, p < 0.01 for belowground 

biomass).  There were no significant differences between Biddeford and the other two 

sites within the upland soil treatment, although there was a greater decrease between the 

adjusted biomass of the Biddeford plants compared to the Wells plants than between the 

Biddeford plants and the Scarborough plants (Fig. 3, ANOVA (),+, = 1.18, p = 0.28 and 

(),+, = 3.04, p = 0.09 for aboveground biomass; Fig. 4, ANOVA (),+, = 0.95, p = 0.33 

and (),+, = 3.86, p = 0.05 for belowground biomass).  The aboveground stem biomass 

averaged 7.6 ± 0.2 g/pot and ranged from 1.5 to 27.5 g/pot.  The average belowground 

rhizome biomass was approximately a quarter of the average stem biomass and ranged 

from 0.02 to 7.9 g/pot.   

Reproduction (as reflected in the number of pots per treatment combination that 

had flowers), similar to the vegetative growth variables, decreased overall in the upland 

soil treatment but to varying degrees among sites.  Flowers grew in 62 of the 240 pots 

(approximately 25% of pots).  The number of stems with flowers per pot ranged from 0 

to 7 and the total number of flowers per pot, since some stems grew more than one 

flower, ranged from 0 to 15.  Reproduction was significantly influenced by site, soil, the 
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site-soil interaction, and the three-way interaction of site, litter, and salinity (Table 4).  

The interaction between site and soil reflected what was found for the vegetative growth 

variables: reproduction by plants from Biddeford and Wells was lower in upland soil than 

in marsh soil, while flowering for Scarborough plants was similar between the two soil 

treatments (Fig. 5).  However, when I compared the reproduction in upland versus marsh 

soil treatment within a site, only Biddeford had a significant decrease in number of pots 

with flowers (odds ratio = 14.80, 95% CI = 1.81- 121.15 for Biddeford; odds ratio = 1.11, 

95% CI = 0.46-2.70 for Scarborough; odds ratio = 2.15, 95% CI = 0.71-6.53 for Wells, 

where a 95% CI overlapping 1 would support the null hypothesis of no difference).  

When reproduction within the upland soil treatment was compared among sites, more 

pots from Scarborough contained flowers than either Biddeford (odds ratio = 26.00, 95% 

CI = 3.24-208.81) or Wells (odds ratio = 3.78, 95% CI = 1.29-11.06), but Biddeford and 

Wells did not significantly differ (odds ratio = 0.15, 95% CI = 0.02-1.27, encompassing 

the null hypothesis).  There was no consistent pattern in the interaction between litter and 

salinity among sites.  For example, when litter was present, a higher number of 

Scarborough and Wells pots contained flowers in the high salinity treatment compared to 

the low salinity treatment, but Biddeford pots had the exact opposite flowering trend with 

more pots containing flowers in the low salinity treatment.   

I found a significant difference in percent soil organic matter content among sites 

(Table 5).  The average percent organic matter from the Scarborough site (16.7 ± 2.0% 

s.e.m.) was less than half of the average from Biddeford (41.2 ± 2.6%) or Wells (42.2 ± 

1.3%).  The observed difference in percent organic matter between Scarborough and the 
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other two sites was significant (ANOVA (),-- = 57.14, p < 0.01 for the Scarborough-

Biddeford comparison, ANOVA (),-- = 111.70, p < 0.01 for the Scarborough-Wells 

comparison), but there was no significant difference in percent organic matter between 

the Biddeford and Wells sites (ANOVA (),-- = 0.12, p = 0.73).     
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DISCUSSION 
 
 

Inland migration enables salt marsh persistence even in the face of marsh 

submergence due to accelerated sea level rise (Kirwan et al. 2016; Raabe and Stumpf 

2016; Schieder et al. 2018).  Obstacles to the successful migration of salt marsh plants, 

including anthropogenic barriers, the resistance of forests to retreat ahead of the salt 

marsh, and the steepness of adjacent upland slopes, have been documented (Doyle et al. 

2010; Feagin et al. 2010; Smith 2013), but no published studies have addressed the effect 

of soil on the transition of salt marsh plants from the marsh to the upland.  Upland soil 

differs from marsh soil in bulk density, nutrient retention, and organic matter content 

(Brinson et al. 1995; Callaway 2000; Truog 2016); all characteristics that could deter 

marsh plant growth in upland soil (Callaway 2000; Reddy and DeLaune 2008).  As 

predicted, I found that S. patens overall performed less well in the upland soil than in the 

marsh soil, and that the response varied depending on the collection site of the S. patens 

plants.  I found that S. patens collected from two salt marsh sites (Biddeford and Wells) 

grew significantly less in upland soil compared to marsh soils; for Biddeford plants this 

decrease was consistent across all three vegetative growth variables (final number of 

stems, Fig. 2; aboveground stem biomass, Fig. 3; belowground rhizome biomass, Fig. 4) 

and reproduction (flowering, Fig. 5), and for Wells plants the significant decrease 

occurred for all variables except flowering.  Interestingly, I found that the growth of S. 

patens collected from the other marsh site, Scarborough, did not significantly respond to 

soil treatment.  Furthermore, although I had predicted that litter and salinity would impact 

plant biomass based on results from prior research (Xiong and Nilsson 1999; Ewing et al. 
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1995), they were relatively unimportant factors in my study, and only influenced 

reproduction, as reflected in a significant three-way site x litter x salinity interaction for 

flowering (Table 4).    

The variation in plant response to soil treatment found when comparing S. patens 

from the three collection sites (Fig. 2-5) can partly be explained by differences in soil 

organic matter. The organic matter percentages from all three collection sites fell within 

reported values for salt marsh soils which range from less than 5% to greater than 45% 

(Swarzenski et al. 1991; Callaway 2000; Edwards and Proffitt 2003).  Wells (42.2%) and 

Biddeford (41.2%) were close to the high end of the organic content range, while 

Scarborough (16.7%) was close to the lower end.  The organic content in upland soils is 

generally lower than in a marsh (Brinson et al. 1995; Anisfeld et al. 2017), with upland 

mineral soils rarely having higher than 10% organic matter (Truog 2016).  The finding 

that S. patens collected from Scarborough grew equally well in upland and marsh soils 

could be attributed to a local adaptation of Scarborough plants to low soil organic 

content, and thus a tolerance to organic matter conditions similar to those of upland soil; 

an advantage to growing in the upland soil treatment that Biddeford and Wells plants, 

with a native soil organic content many times higher than the organic content of upland 

soil, did not have.  However, differences in S. patens vegetative growth within the upland 

soil treatment suggest that additional site characteristics besides soil organic matter 

content could be important.  For example, the growth of Biddeford plants in the upland 

soil treatment was midway between the growth of Scarborough and Wells plants and not 

significantly different from either (Fig. 2-4), even though the organic matter content at 
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the Biddeford site differed significantly from that at Scarborough.  Further investigation 

into other site characteristics, such as hydrology, soil drainage class, and the availability 

of nutrients, would be needed to pinpoint what additional factors influence the growth of 

S. patens in upland soil.  My study did not include tidal hydrology as an experimental 

factor because my focus was on the transition of the marsh into the upland, where S. 

patens is farthest from the ocean and should experience the least inundation.  However, 

incorporating inundation levels that S. patens would experience at the upland boundary 

into future studies would improve our understanding of how S. patens plants will respond 

to migration because inundation has an important influence on salt marsh plant growth 

and zonation (Adams 1963; Broome et al. 1995).  My observation that plants from 

different sites vary in their ability to grow in upland soil, which suggests that some S. 

patens population will find inland migration easier than others, indicates a need for 

further research to determine what drives this differing response to upland soil.    

The presence of ground litter had no effect on S. patens vegetative growth 

variables (Tables 1-3).  In contrast to my findings, and in support of my prediction for the 

litter treatment, other research demonstrated that the presence of litter decreased 

aboveground vegetative growth (Facelli and Pickett 1991; Xiong and Nilsson 1999).  

Differences between my results and those of other studies could be due to differences in 

methodology.  The litter present treatment in my study was created by placing litter on 

top of the upland or marsh soil surrounding the S. patens plug (but not on top of the 

existing stems in the plug), while in many other studies the litter was laid directly over 

both initial and emerging stems (Tolley and Christian 1999; Xiong et al. 2001).  The litter 
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treatment in my experiment, therefore, would only block the emergence of stems 

sprouting outside of the initial plugs, and stems rarely emerged outside of the initial plug 

during my study.  It is possible, had the experiment extended for a second growing 

season, thus allowing more time for the rhizomes that grew in the first season to send up 

stems, that a greater difference in growth would be seen between pots containing litter 

and those without.  Litter did significantly affect reproduction in a three-way interaction 

with salinity and site (Table 4), but there was no consistent pattern in how the number of 

pots containing flowers responded to litter and salinity among or within the three sites.  

Research suggests that late in the growing season temporary wrack litter disturbance to S. 

alterniflora, another salt marsh species, can decrease flowering (Li and Pennings 2017); 

however, few studies have addressed the effects of litter and salinity on salt marsh 

flowering over an entire growing season, and more research is necessary to clarify their 

impact on Spartina reproduction.   

Salinity plays a critical role in defining salt marsh vegetative boundaries by 

constraining plant species to specific zones based on their susceptibility to salt stress 

(Adams 1963; Byers and Churma 2007), yet, contrary to my prediction for the salinity 

treatment, I did not find a significant difference in vegetative growth between the 4.5ppt 

and the 14.5ppt salinity treatments (Tables 1, 2, and 3).  My results are consistent with 

those by Broome et al. (1995) who found no significant differences in the number of S. 

patens stems or aboveground biomass at five salinity levels ranging from 0 to 20ppt, but 

conflict with the results of Ewing et al. (1995), who observed a decrease in S. patens 

aboveground biomass at 14ppt compared to 7ppt, and Snedden et al. (2014), who 



18 
 

observed a decrease in belowground biomass at 8ppt compared to 3.9ppt.  I suggest that 

these differences could be because S. patens populations are known to differ in 

susceptibility to salinity (Silander and Antonovics 1979; Pezeshki 1991; Pezeshki et al. 

1993).  For example, the source of the plants in Ewing et al.’s (1995) study was a 

brackish marsh with an approximate salinity of 2ppt.  While I did not record salinity 

levels in the marshes in my study, measurements of salinity in the creeks within the sites 

ranged from 8 to 30ppt, suggesting that my plants in their native environment had a 

higher exposure to salt than the plants in Ewing et al.’s (1995) study, and thus, 

presumably, had an overall higher salt tolerance.  

    
Implications and Future Research 

 
 My research indicates that some S. patens populations in Maine were better at 

growing in upland soil than others, which might translate into an advantage for inland 

migration, and thus could have important implications both for prioritizing areas for salt 

marsh conservation, and for choosing restoration plant sources.  In particular, I suggest 

that salt marsh conservation efforts focus on preserving S. patens populations growing in 

soil with a low percentage of organic matter, because in my study the S. patens plants 

with the highest growth success in upland soil were from a site with low soil organic 

content.  By identifying S. patens populations that could make the transition into upland 

soil without a significant decrease in growth, my study joins a growing body of research 

which aids in determining sites for successful inland migration (Feagin et al. 2010; Smith 

2013).  It is important to focus on plant populations with the highest potential to migrate 
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into the upland so that conservation organizations, often limited by finances, spend their 

resources on salt marshes that have a better chance of persisting over the long term.   

Plants from S. patens populations that grow well in upland conditions could also 

be used in salt marsh restoration sites to improve the migration potential of the restored 

marsh.  However, future research should obtain a clearer understanding of what site 

characteristics, including organic matter content, could influence the ability of S. patens 

to grow well in upland soil.  Testing more sites across the native S. patens species range, 

from Maine south to Florida and west along the coast to Texas (Bush and Houck 2008), 

would provide more details on what factors influence S. patens migration into upland 

soils.  By conducting a manipulative experiment, I was able to control treatment factors 

and limit the number of variables potentially confounding my results, but research 

expanding on my experiment should include field studies to confirm that my results are 

reproducible in a natural setting.   
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TABLES 
 
 
Table 1: ANOVA results for the adjusted final number of stems by treatment factor.   
The final number of stems was adjusted by the number of initial stems per pot, the 
number of days the stems grew per pot, and the presence or absence of flowers. 
 
Treatment Factor DF SS MS F 
Site 
Soil  
Litter 
Salinity 
Site x Soil 
Site x Litter 
Site x Salinity 
Soil x Litter 
Soil x Salinity 
Litter x Salinity 
Site x Soil x Litter 
Site x Soil x Salinity 
Site x Litter x Salinity 
Soil x Litter x Salinity 
Site x Soil x Litter x Salinity 
Residuals 

2 
1 
1  
1 
2 
2  
2 
1 
1 
1 
2 
2 
2 
1 
2 
88 

273 
12811 
1093 
7374 
23211 
2546 
563 
1 
1479 
1187 
2028 
480 
1089 
23 
93 
52078 

137 
12811 
1093 
7374 
11605 
1273 
282 
1 
1479 
1187 
1014 
240 
545 
23 
46 
592 

0.79 
21.65* 
1.85 
0.37 
19.61* 
2.15 
0.48 
<0.01 
2.50 
2.01 
1.71 
0.41 
0.92 
0.04 
0.08 

*p ≤ 0.05 
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Table 2: ANOVA results for the adjusted stem biomass by treatment factor. The stem 
biomass was adjusted by the number of initial stems per pot, the number of days the 
stems grew per pot, and the presence or absence of flowers. 
  
Treatment Factor DF SS MS F 
Site 
Soil  
Litter 
Salinity 
Site x Soil 
Site x Litter 
Site x Salinity 
Soil x Litter 
Soil x Salinity 
Litter x Salinity 
Site x Soil x Litter 
Site x Soil x Salinity 
Site x Litter x Salinity 
Soil x Litter x Salinity 
Site x Soil x Litter x Salinity 
Residuals 

2 
1 
1  
1 
2 
2  
2 
1 
1 
1 
2 
2 
2 
1 
2 
88 

0.09 
0.23 
<0.01 
0.12 
0.43 
0.05 
0.03 
0.02 
0.01 
0.02 
0.07 
0.07 
0.07 
0.03 
0.01 
2.04 

0.04 
0.23 
<0.01 
0.12 
0.21 
0.02 
0.02 
0.02 
0.01 
0.02 
0.04 
0.03 
0.04 
0.03 
0.01 
0.023 

1.85 
9.99* 
0.08 
1.11 
9.24* 
1.17 
0.63 
0.92 
0.22 
0.79 
1.51 
1.45 
1.50 
1.46 
0.22 

*p ≤ 0.05 
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Table 3: ANOVA results for the adjusted rhizome biomass by treatment factor.  The 
rhizome biomass was adjusted by the number of initial stems per pot, the number of days 
the rhizomes grew per pot, and the depth of the soil subsidence around each plug within 
the pots. 
 
Treatment Factor DF SS MS F 
Site 
Soil  
Litter 
Salinity 
Site x Soil 
Site x Litter 
Site x Salinity 
Soil x Litter 
Soil x Salinity 
Litter x Salinity 
Site x Soil x Litter 
Site x Soil x Salinity 
Site x Litter x Salinity 
Soil x Litter x Salinity 
Site x Soil x Litter x Salinity 
Residuals 

2 
1 
1  
1 
2 
2  
2 
1 
1 
1 
2 
2 
2 
1 
2 
88 

0.60 
2.13 
0.18 
0.03 
0.91 
0.09 
0.13 
0.01 
0.17 
<0.01 
0.38 
0.32 
0.20 
0.10 
0.05 
9.42 

0.30 
2.13 
0.18 
0.03 
0.46 
0.05 
0.06 
0.01 
0.17 
<0.01 
0.19 
0.16 
0.10 
0.10 
0.02 
0.11 

2.78 
19.85* 
0.20 
1.11 
4.26* 
0.43 
0.60 
0.10 
1.54 
0.02 
1.75 
1.50 
0.40 
0.88 
0.80 
 

*p ≤ 0.05 
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Table 4: Results from the poisson log-linear model of flowering by treatment factor 
 
Treatment Factor DF G Square 
Site 
Soil  
Litter 
Salinity 
Site x Soil 
Site x Litter 
Site x Salinity 
Soil x Litter 
Soil x Salinity 
Litter x Salinity 
Site x Soil x Litter 
Site x Soil x Salinity 
Site x Litter x Salinity 
Soil x Litter x Salinity 
Site x Soil x Litter x Salinity 

2 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 
2 
2 
1 
2 

16.50* 
6.49* 
1.60 
0.91 
7.07* 
0.79 
3.97 
2.91 
1.94 
1.53 
3.83 
1.46 
6.54* 
0.10 
3.39 

*p ≤ 0.05 
 
Table 5:  ANOVA results for percent soil organic matter content by site 
 
Treatment 
Factor 

DF F 

Site 
Residuals 

2 
33 

50.80* 
 

*p ≤ 0.05 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



29 
 

FIGURES 
 

 

 
 
Fig. 1: The map of the collection sites for S. patens plugs, marsh soil, and upland soil.  
The teardrop-shaped symbols represent, from north to south, the locations of the 
Scarborough, Biddeford, and Wells collection sites in southern Maine for S. patens and 
the marsh soil.  The star within a circle symbol represents the upland forest soil collection 
site in Scarborough, ME.  Map courtesy of Google My Maps (2018). 
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Fig. 2:  The site and soil effects on average adjusted final number of S. patens stems (± 
s.e.m.).  An asterisk indicates a significant difference between marsh and upland soil 
treatments within a collection site.  Letters indicate significant differences among sites 
within the upland soil treatment – sites with the same letter are not significantly different 
from one another.    
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Fig. 3:  The site and soil effects on average adjusted S. patens aboveground stem biomass 
(± s.e.m.).  An asterisk indicates a significant difference between marsh and upland soil 
treatments within a collection site.  Letters indicate significant differences among sites 
within the upland soil treatment – sites with the same letter are not significantly different 
from one another.    
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Fig. 4:  The site and soil effects on average adjusted S. patens belowground rhizome 
biomass (± s.e.m.).  An asterisk indicates a significant difference between marsh and 
upland soil treatments within a collection site.  Letters indicate significant differences 
among sites within the upland soil treatment – sites with the same letter are not 
significantly different from one another.   
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Fig. 5: The site and soil effects on the number of pots (out of 40) containing S. patens 
flowers.  The asterisk indicates a significant difference between marsh and upland soil 
treatments within the Biddeford collection site.  Letters indicate significant differences 
among sites within the upland soil treatment – sites with the same letter are not 
significantly different from one another.   
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APPENDICES 
 

APPENDIX A THE ANOVA RESULTS FOR COVARIATE TERMS 
 
The following tables present the multiple linear regression results for the significant 
covariate terms and interactions used to calculate the residual response variable for the 
treatment factor ANOVA. 

 
APPENDIX A I: The multiple linear regression results for the final number of stems 
covariate terms  
 
Covariate Term DF SS MS F 
Number of grow days 
Flowering                                   
Number of initial stems                            
Number of grow days x Flowering                         
Number of grow days x Number of initial stems             
Flowering x Number of initial stems                  
Number of grow days x Flowering x Number of initial stems    

1 
1 
1 
1 
1 
1 
1 

22725 
11071 
2830 
0 
48652 
8616 
1946 

22725 
11071 
2830 
0 
48652 
8616 
1946 

24.02* 
11.70* 
2.99 
< 0.01 
51.42* 
9.11* 
2.06 

*p ≤ 0.05 
 
 
APPENDIX A II: The multiple linear regression results for the stem biomass covariate 
terms 
 
Covariate Term DF SS MS F 
Number of grow days 
Flowering                           
Number of initial stems                            
Number of grow days x Number of initial stems             

1 
1 
1 
1 

1.25 
3.21 
2.68 
2.87 

1.25 
3.21 
2.68 
2.87 

20.80* 
8.09* 
17.38* 
18.59* 

*p ≤ 0.05 
 
 
APPENDIX A III: The multiple linear regression results for the rhizome biomass 
covariate terms  
 
Covariate Term DF SS MS F 
Number of grow days 
Number of initial stems                            
Depth of soil subsidence                        
Number of grow days x Depth of soil subsidence          
Number of initial stems x Depth of soil subsidence 

1 
1 
1 
1 
1 

11.66 
2.51 
21.17 
2.36 
9.21 

11.66 
2.51 
21.17 
2.36 
9.21 

19.24* 
4.15* 
34.48* 
3.90* 
15.20* 

*p ≤ 0.05 
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APPENIX B THE PERMITS FOR THE SCARBOROUGH COLLECTION SITE 
 

 
STATE OF MAINE 
DEPARTMENT OF INLAND FISHERIES AND WILDLIFE 

PERMIT 
ISSUED TO:   
 
Tessa Dowling  
241 Boom Rd.  
Saco, ME 04074  
(413) 320-3457  
tdowling@une.edu  
  

EFFECTIVE 
DATE 
 
5/22/17 

 

RENEWABLE 
 
     Yes 
 

FEE 
No 

NAME OF PRINCIPAL OFFICER (if business) 
 
 

TYPE OF PERMIT 
 
Scientific collection permit  

LOCATION WHERE AUTHORIZED ACTIVITY MAY BE CONDUCTED –  
 
Scarborough Marsh Wildlife Management Area 

CONDITION OF PERMIT 
 
 
Permittee(s) may collect plant and core samples of sediments and from marsh as part of research 
project with University of New England. 
 
Permittee(s) will do their best to avoid excessive disturbance in marsh as well as avoiding sample 
plots from existing bird research within Scarborough Marsh WMA.  
 
MDIFW requests copies of any publications that may arise from this research.  

REPORTING REQUIREMENTS 
 
If this research continues in successive years, please call a regional biologist (657.2345) 3 weeks in 
advance to organize activities. 
 
 
SIGNATURE OF AUTHORIZED AGENCY REPRESENTATIVE 

 
 

TITLE 
Assistant Regional Wildlife 
Biologist 
 

DATE 
5/22/17 
 

SIGNATURE OF AUTHORIZED AGENCY REPRESENTATIVE 
Brad Zitske 

TITLE 
 

DATE 
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STATE OF MAINE 
DEPARTMENT OF INLAND FISHERIES AND WILDLIFE 

PERMIT 
ISSUED TO:   
 
Tessa Dowling  
241 Boom Rd.  
Saco, ME 04074  
(413) 320-3457  
tdowling@une.edu  
  

EFFECTIVE DATE 
 
4/11/18 

 

RENEWABLE 
 
     Yes 
 

FEE 
No 

NAME OF PRINCIPAL OFFICER (if business) 
 
 

TYPE OF PERMIT 
 
Scientific collection permit  

LOCATION WHERE AUTHORIZED ACTIVITY MAY BE CONDUCTED –  
 
Scarborough Marsh Wildlife Management Area 
Permittee is allowed to collect 24 soil samples for study on soil differences between various marshes in 
state 

CONDITION OF PERMIT 
 
 
Permittee(s) may collect plant and core samples of sediments and from marsh as part of 
research project with University of New England. 
 
Permittee(s) will do their best to avoid excessive disturbance in marsh as well as avoiding 
sample plots from existing bird research within Scarborough Marsh WMA.  
 
MDIFW requests copies of any publications that may arise from this research.  

REPORTING REQUIREMENTS 
 
If this research continues in successive years, please call a regional biologist (657.5746) 3 
weeks in advance to organize activities. 
 
 
SIGNATURE OF AUTHORIZED AGENCY 
REPRESENTATIVE 

 
 

TITLE 
Assistant Regional 
Wildlife Biologist 
 

DATE 
4/11/18 
 

SIGNATURE OF AUTHORIZED AGENCY 
REPRESENTATIVE 
Brad Zitske 

TITLE 
 

DATE 
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