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In a square asymmetric matrix, the relationships among objects in the lower 

triangular half-matrix, differ from the relationships among the same objects in the 

upper triangular half. Square, asymmetric matrices can arise in similarity and 

preference data, when the direction of comparison is important. An

asymmetric matrix can be rendered symmetric by averaging corresponding entries 

above and below the main diagonal. The difference between the original and the 

symmetric matrix is purely asymmetric, or skew-symmetric. The symmetric and 

skew-symmetric pans are orthogonal. An eigenvector-eigenvalue decomposition 

analyses the asymmetries into rank 2 skew-symmetric matrices, having an optimum 

least squares fit to the asymmetries (Gower, 1977).

In this dissertation I derive an alternating least squares, nonmetric 

analogue of the canonical decomposition of asymmetry, suitable for ordinal-level data. 

In simulation studies, the nonmetric version gives better metric and nonmetric 

recovery, than does the canonical decomposition, when the asymmetries have been



distorted by a  range-compressing monotonic transform. The nonmetric technique 

appears to out-perform the canonical decomposition in detecting simplexes, and 

possibly in recovering multiplicative bias coefficients. However, canonical 

decomposition gives superior recovery after range-expanding monotonic transforms, 

and in the presence of error.

An eigenvalue ratio test is proposed for determining the number of 

eigenvectors to extract in the canonical decomposition. The test quantifies changes in 

the slope of the log eigenvalue plot. In simulation studies the test appears to maintain 

its anticipated Type I error rate. The test is "under-powered", which may help it to 

extract only well-identified eigenvectors.

Finally, directional similarity judgments were collected for all possible pairs of 

exemplars of two semantic categories. The exemplars differed in typicality. After 

Tversky (1977) this should produce asymmetries related to the typicality. No 

asymmetries were found, however. Power analysis indicated that a correlation ratio 

for the asymmetries of .05 could have been detected 90% of the time. An extreme 

groups analysis also did not indicate asymmetry. The first eigenvector underlying the 

symmetric data, however, was highly correlated with typicality. Hence, Tversky's 

model was not supported.
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Chapter I 

Introduction.

Scaling is the application of a model to raise qualitative data to an interval or 

ratio level (Young, 1984). The assumptions of the model supplement the information 

missing in the data (Shepard, 1958). Scaling techniques are also used to display data 

that is already on an interval or ratio level (e.g., Torgerson, 1952). Many scaling 

techniques presuppose that the attribute is one-dimensional, that is, that it can be 

represented by a single continuum (Torgerson, 1958). The brightness of a light, 

loudness of a tone, and heaviness of a weight are examples of approximately one

dimensional attributes.

The goals of this dissertation, however, pertain to the scaling of 

multidimensional attributes. These are complex attributes that can be resolved into 

more than one aspect or component. For example, hue can be modeled by the color 

circle spanned by the two opponent process dimensions of "red-green" and "blue- 

yellow" (Indow, 1988; Shepard, 1980). An important feature of the multidimensional 

techniques is that the level of complexity of their solutions is data-driven. The 

multidimensional techniques wiil extract a single dimension when this is warranted by 

goodness-of-fit, and multiple dimensions when these are required to account for the 

data (e.g., Kruskal, 1964a; Shepard, 1962; Torgerson, 1952).

Typically, the multidimensional techniques use a similarity matrix as input.

The matrix gives the degree of resemblance, proximity, or consonance of all pairs of



stimuli drawn from a set (Coombs, 1964). For example, observers may rate the 

similarity of musical tones (Krumhansl, 1979). In the data matrix the rows and 

columns correspond to the tones. The numbers Xy in the body of the matrix are the 

average similarity rating of the tone for row "i" to the tone represented by column

Hjtl
J •

An advantage of the multidimensional techniques is their broad scope of 

application: essentially any matrix that is symmetric, and in which the rows and 

columns stand for the same entities, can be used as input. For example, we can use 

multidimensional scaling to represent the dimensions underlying the similarities among 

phonemes. From the standpoint of the analysis, it does not matter whether the 

similarities were obtained as direct ratings (e.g., Peters, 1963; Singh, Woods, & 

Becker, 1972), disjunctive reaction time (e.g., Munsterberg, 1894, for letters), 

confusion probabilities in perception (Miller, & Nicely, 1954), confusion probabilities 

in recall (Wickelgren, 1966), or some other behavioral process. The mathematics of 

the data analysis is clearly separated from the method of data collection. Thus, the 

multivariate analyses can range far from sensation and perception to represent 

cognitive or behavioral processes and, indeed, virtually any symmetric pattern of 

relationships among objects.

However, asymmetric relationships are far less accessible to standard 

multidimensional techniques. A symmetric relation is one in which order has no 

effect: The similarity of "a" to "b" equals the similarity of "b" to "a". Conversely, in



asymmetric relations, direction matters. The two orders of comparison give different 

results.

For many types of data, asymmetry seems to be the rule. The phoneme f b /  is 

not confused with /v/ with the same frequency as the reverse (Miller, & Nicely,

1954), nor are the rated similarities necessarily equal. Rosch (1975a) found that the 

psychological distance is shorter from an exemplar to a prototype than from the 

prototype to an exemplar. Tversky suggests that whenever two objects differ in 

characteristics such as "intensity, frequency, familiarity, good form, and informational 

content" similarity is likely to be asymmetric (Tversky, 1977, p. 332).

Tversky argues that asymmetry is inherent in directional similarity judgments: 

"We say that the portrait resembles the person, not that the person resembles the 

portrait" (Tversky, 1977, p. 328). In truth, however, the breadth of this phenomenon 

is not well understood. Due to the limitations of the scaling techniques, in most 

studies the data have been artificially made symmetric prior to analysis (Harshman, 

1978).

It is likely, however, that flows through space have symmetric and asymmetric 

components. For example, the migration between two countries probably depends on 

open borders and geographical proximity (symmetric) but also on differences in 

population densities, economic opportunities, political stability and freedom, and in 

general, attractiveness (asymmetric; Tobler, 1976-77, 1979). Flows of air pollution, 

distribution of a species, telephone calls, postal correspondence, and vehicular traffic



probably have symmetric and asymmetric components (Harshman, 1981). So, too, 

would flows through time, e.g., the succession of plant species.

A complementary difficulty occurs in preference. Here the relations are 

supposed to be asymmetric, but they can be contaminated with symmetry. If I prefer 

chocolate to vanilla I should "disprefer" vanilla to chocolate. Preference reversals 

(Kahneman, & Tversky, 1979) violate this, and pose theoretical difficulties similar to 

those of asymmetric similarity.

An analogous situation arises any time we study change using more than one 

variable. For example, we might administer a battery of cognitive tests to two groups 

of children — a group that is having difficulty learning to read, say, and a group that 

is not. For each group we can intercorrelate the tests, giving two symmetric matrices. 

Because of the symmetry, each matrix can be reduced to an upper or a lower 

triangular half matrix without loss of information. Thus, we can derive a matrix in 

which the upper half contains the correlations for one group and the lower half 

contains the correlations for the other group. The symmetry in this artificial matrix 

tells how the two groups of children resemble each other in the tests. The asymmetry 

tells how they differ; that is, the manner in which the correlations change with the 

presence or absence of reading difficulty. If we have more than two symmetric 

matrices that we wish to compare, we can average them in various ways to give two 

matrices, which can be compared as above. That is, we can use the technique for 

comparing two symmetric matrices as a way of conducting "single degree of freedom" 

contrasts, analogous to ANOVA, among more than two comparable matrices.



The problem of studying the effects of an independent variable on symmetric 

matrices of dependent variables is in fact exceedingly common. In MANOVA we 

partition the variances and covariances of the dependent variables into a between 

groups covariance matrix and a within groups covariance matrix. However, if we 

wished we could compute a separate dependent variable covariance matrix for each 

group, that is, for each level of the between-groups factor. Looking at the effects of 

the independent variable on the covariance of the dependent variables would be the 

same as looking at how reading difficulty status affects the correlations among 

cognitive tests. Thus, any time a MANOVA is conducted, techniques for jointly 

analyzing symmetry and asymmetry could be used to supplement our understanding of 

the data.

Clearly, then, a scaling method that is flexible enough to subsume symmetric 

and asymmetric components would have a great deal of utility. My goal in this 

dissertation is, first, to review a data-driven technique for analyzing asymmetric data 

at an absolute level of measurement. Then, by analogy to nonmetric multidimensional 

scaling I will develop an ordinal-level, data-driven method for analyzing asymmetries. 

As a third step, the behavior of the absolute-level and ordinal-level techniques will be 

studied using a computer program to simulate data with known characteristics. Once 

the techniques are better understood via simulation studies their utility will be 

demonstrated by applying them to asymmetric data sets already in the literature. Then 

the techniques will be applied to new similarity data collected to help clarify the 

relationship between asymmetric similarity and typicality differences.



Dependence of Multidimensional Techniques on Symmetric Input

As context, let us first consider four interrelated topics:

(1) The reason and way in which standard multidimensional techniques are 

dependent on symmetric input.

(2) The relationship between the symmetric and purely asymmetric parts of a

matrix.

(3) A general, data-driven technique for analyzing pure asymmetries; that is, 

input for which there is no symmetric component.

(4) The techniques that have been proposed for mixed symmetric-asymmetric 

data and a way of organizing them.

(5) Techniques for testing the statistical significance of the asymmetries.

Standard techniques for scaling complex attributes use a similarity matrix as 

input. Here similarity is to be understood broadly as any indicator of consonance 

between the stimuli in a study. Traditional techniques require symmetric input 

because they use a symmetric quantity to represent similarity, and because the 

mathematics become unwieldy otherwise.

In metric and nonmetric multidimensional scaling, stimuli are modeled as 

points in a multidimensional space. The dissimilarity between two stimuli is 

represented in the model as the distance between the corresponding stimulus points.



Generally, distance is defined to be a symmetric quantity (Frdchet, 1906): the distance 

from New York to Boston equals the distance from Boston to New York. Although 

we can invent a space in which symmetry does not hold (e.g., Wilson, 1931), the 

space would lose much of the intuitive accessibility needed for exploratory modelling.

In principal components analysis and factor analysis the stimuli are 

represented, not as points in a multidimensional space, but as vectors drawn from the 

origin. In principal components and factor analysis, the similarity between two 

stimuli is modeled as the cosine of the angle between the stimulus vectors (Hotelling, 

1933; Jackson, 1924). Of course the angle between vector "i" and vector "j" equals 

the angle between "j" and "i", and hence the representation of similarity is symmetric.

In the various forms of cluster analysis, similarity is indicated by membership 

in the same clusters. If object "i" is in the same cluster as "j", then "j” is in the same 

cluster as "i", and again the relation is modeled with an inherently symmetrical 

process (Lorr, 1983).

In some cases symmetry is inherent in the mathematics. Principal components 

and factor analysis separate a matrix into a set of eigenvectors. Each stimulus object 

has a coefficient, or loading, on each vector. The similarity between "i" and T  is 

predicted from the product of their loadings on an eigenvector (Hotelling, 1933):

S*j =  81!*%

where Sy is the similarity between i and j predicted from component "I”, a  ̂ is the 

loading of object i on component I, and a,! is the loading of j on component I.

Because a^a*, = a^a*,, §„ =  s .̂ Here, symmetry is imposed by the fact that



multiplication is commutative. This stricture can be avoided by allowing the loadings 

to take on imaginary values (Basilevsky, 1983). However, it is unclear how a 

representation in terms of imaginary numbers should be related to data comprised of 

real numbers. The mathematics do not prohibit modelling asymmetric similarity but 

do complicate it.

Classical MDS is computed on an interval-level similarity matrix by (1) 

squaring all entries; (2) subtracting the row and column mean from each entry; (3) 

adding the grand mean to each entry; and (4) conducting an eigenvector decomposition 

as is done in principal components (Torgerson, 1952). Thus, except in the unusual 

case that step (2) brings an asymmetric matrix to symmetry, asymmetric input will 

lead to an eigenvector decomposition of an asymmetric matrix. Hence, the 

mathematics discourage asymmetric analyses with metric MDS, in precisely the same 

way that they discourage the analysis of asymmetries with principal components.

Nonmetric MDS and most cluster analytic solutions are obtained with iterative, 

numerical algorithms. Here there is no computational stricture, and the requirement 

of symmetry is imposed only by how distance and category membership are usually 

defined. This allows us some freedom later in the dissertation for defining a 

nonmetric analysis of asymmetry.

The arguments presented in this section do not impede multidimensional 

techniques from accepting asymmetric input, so much as from providing asymmetric 

output. However, the two constraints are essentially interchangeable. As will be 

shown in the next chapter, the symmetric and asymmetric pans of a square matrix are



orthogonal. Therefore, a symmetric solution will be unable to account for the 

asymmetric aspects of the data. While principal components, cluster analysis and 

multidimensional scaling programs could be rewritten to allow asymmetries in the 

data, the asymmetries would be left unexplained.



In a square, asymmetric data matrix, the similarity of "i" to "j" does not in 

general equal the similarity of "j" to "i". That is, the value in row i, column j, is not 

constrained to equal the value in row j, column i:

X;j *  Xjj for at least one i, j pair.

We can impose symmetry on the matrix by replacing x, and Xjj with the average of the 

two:

and

The difference between the original and "symmetrized" matrices is the information 

lost in the conversion to symmetry:

Note that Xy ^  = -x  ̂^  In the derived symmetric matrix, the values in cells i,j and 

j,i are equal. In the residual matrix, the values in corresponding cells are equal in 

magnitude but opposite in sign. The residual matrix would therefore be called "anti

symmetric" or "skew-symmetric" (Basilevsky, 1983). The skew-symmetric matrix is 

purely asymmetric; it contains no symmetric part, asxyreti(1 +  xjj reijd = xijraid- x uretj(,

=  0 for all i, j. The values in the skew-symmetric matrix are orthogonal to the



entries in the derived symmetric matrix. This can be seen by computing the sums of 

cross products of the numbers in the symmetric part with the numbers in the skew- 

symmetric part. For the off diagonal cells ij and ji we have

This is true for all i *  j. For the diagonal cells, Xy -  0, and therefore

Hence the sum of cross products between the symmetric and skew-symmetric parts, 

that is, the sum of Equations 1 and 2 across all i, j, is zero. Thus, an asymmetric 

matrix can be additively decomposed into orthogonal symmetric and skew-symmetric 

parts.

Preference and other "dominance" matrices are often regarded as ideally skew- 

symmetric. Consider, for example, ratings of ice cream flavors on a scale from -10 

(strongly dislike) through 0 (neutral) to +10 (strongly like). If I prefer chocolate to 

vanilla by +5 units then presumably I would "prefer" vanilla to chocolate by -5 units. 

As another example, if tone "i” is +5 units louder than tone "j", then tone "j" should 

be -5 units "louder" than tone "i".

Because of the prevalence of preference and other dominance data, there are 

well-developed techniques for analyzing skew-symmetric matrices (e.g., Thurstone,



1927). Specifically, a one-dimensional scale having a least squares fit to the input 

matrix is given simply by the matrix's column averages (Mosteller, 1951). 

Unfortunately, traditional approaches to purely asymmetric data have been one

dimensional, and hence not useful for our present purposes.



As noted, a square, asymmetric matrix can be additively decomposed into 

symmetric and skew-symmetric parts. We can apply standard techniques in scaling to 

the symmetric part, extracting components, clusters, dimensions, etc. Thus our focus 

will be on identifying a method for analyzing the skew-symmetries. In fact, it is 

relatively straightforward to derive a principal components-like solution for skew- 

symmetric matrices.

Principal components is a subset of a more general form of analysis called the 

singular value decomposition (Leon, 1990), Eckart-Young decomposition (Eckart, & 

Young, 1936), or basic structure of a matrix (Horst, 1965). Principal components is 

essentially restricted to symmetric input matrices, but all matrices have singular value 

decompositions (Leon, 1990).

In principal components, a correlation matrix is analyzed into a set of 

eigenvectors. The correlations are approximated from the component loadings by

1 Parts of this chapter were presented at the American Psychological Association
annua) convention in San Francisco, August, 1991, (Borkum, 1991b).

Similarly,



In the singular value decomposition, a matrix is analyzed into separate row and 

column eigenvectors:

where % is the loading of object i on row component I,

bji is the loading of object j on column component I, and the remaining terms are 

defined analogously. Note that

which need not equal Xy .

The terms in parentheses show the reconstruction of xy and Xp from the first row and 

column eigenvector. To predict xfj, the entry in row i, column j of the input matrix, 

we use the loading of i on the row eigenvector, ay, and the loading of j on the column 

eigenvector, bp. To predict Xp, the entry in row j, column i, we use the loading of j 

on the row eigenvector, ap, and the loading of i on the column eigenvector, bu. 

Because ay and by can differ, and ap and bp can differ, Xy need not equal Xp. The 

predicted matrices are not constrained to symmetry.

We can think of principal components as the singular value decomposition of a 

symmetric correlation matrix. In a symmetric matrix the rows and columns are the 

same, so the two sets of eigenvectors are identical.

When a matrix is skew-symmetric each column is the negative of the 

corresponding row. Therefore, in the singular value decomposition, the row 

eigenvectors of a skew-symmetric matrix will be identical to the column eigenvectors, 

except for an alternation in sign and the order in which they are extracted (Basilevsky,



1983; Gower, 1977). For example, the first column eigenvector equals the second 

row eigenvector:

The second column eigenvector equals the negative of the first row eigenvector:

The same relationships hold between the third and fourth eigenvectors, the fifth and 

sixth eigenvectors, etc. This simplifies the results of the singular value decomposition 

and makes it quite analogous to the principal components decomposition of the 

symmetric part of the data. The identity between row and column eigenvectors 

enables the singular value decomposition to reconstruct the skew-symmetry:

But as noted above, bj =  a^ and bjn — -a ,̂ so

Analogously,

Taken together, the first two eigenvectors define the elementary skew-symmetric 

matrix that best approximates, in a ieast-squares sense, the skew-symmetric input 

(Basilevsky, 1983). Similarly the third and fourth eigenvectors define an elementary 

skew-symmetric matrix that best approximates the residuals left by the first two 

eigenvectors. This property holds for all pairs of eigenvectors.

Given that the eigenvectors work in pairs, it is perhaps unsurprising that the 

eigenvalues also occur in pairs. That is, the first two eigenvalues are equal in



magnitude, opposite in sign, and tell the amount of variation in the input matrix that is 

explained by the first elementary skew-symmetric matrix. Similarly the third and 

fourth eigenvalues differ from each other only in their signs, and indicate the match 

between the input and the second elementary skew-symmetric pattern, and so on. If 

we extract an odd number of eigenvectors, the last eigenvalue will be zero, as the last, 

unpaired eigenvector cannot improve the representation of skew-symmetry.

Aside from this pair-wise property, the eigenvalues of a skew-symmetric 

matrix are comparable to those of a symmetric matrix. Moreover, successive pairs of 

eigenvectors provide an optimal approximation to the input matrix, in the sense of 

minimizing the sum of squared residuals.

To understand the eigenvectors, consider the formulas for predicting entry x̂ :

Xy =  â am - a^ay + ...

and entry x̂ :

*ji =  ajnajj - a ^  + ...

Asymmetries will occur when a^ay is much greater than 8 ,^ ,  i.e., when ay is larger 

than ayi and when a^ is larger than a^. We can imagine that the eigenvectors reflect 

complementary properties, say, an ability to transmit information (component I) and 

an ability to receive information (component II). Asymmetry will occur between an 

object that is specialized as a "transmitter" (ay is high, ayi is low) and an object 

specialized as a "receiver" (% is high, a,-j is low). If both objects are transmitters, or 

if both are receivers, or if both transmit and receive with equal facility, the 

asymmetries between them will be mild or absent altogether. For example, if object i



could transmit and receive equally well, that is, if ay =  ay,, and if object j were 

similarly nonspecialized, % =  then

and similarly

(Harshman, 1981).

The two formulas

and

have a geometric as well as a conceptual interpretation (Constantine, & Gower, 1978; 

Gower, 1977). Suppose we represent components I and II as orthogonal axes in two

dimensional space. Then object i can be plotted as a point whose x-coordinate is ay 

and whose y-coordinate is a«i. The skew-symmetric relationship between i and j 

cannot be given by the distance between points i and j, nor by the angle between line 

segments joining these points with the origin, because distance and angle are 

symmetric relations. Note, however, that if ay is much greater than am, then the 

object point for i will be near the 3 o'clock position in the graph. If a^ is much



greater than a^ then the object point for j will be near the 12 o'clock position. Thus, 

the area o f the triangle formed by the two object points and the origin will be 

relatively large. It is this area that represents the skew-symmetries. To represent 

skew-symmetry, however, the area must be signed: if, in a clockwise "radar-sweep" 

around the origin, j follows i by less than 180 degrees, then we say that object "i" 

dominates object "j” in the model, and xy >  x̂ . If j precedes i in the clockwise 

sweep or, equivalently, j follows i by more than 180 degrees, then we say that object j 

dominates object i in the model, and % > xtt. (Because one of the dimensions may 

be reflected, it is always necessary to determine empirically which direction in an 

analysis, clockwise or counterclockwise, corresponds to dominance.)

In fact, it turns out that the signed triangular area is proportional to the skew- 

symmetries, and that the constant of proportionality is two. That is, the skew- 

symmetric relationship between i and j is equal to twice the signed triangular area 

bounded by the two object points and the origin. A demonstration of this is given in 

Appendix 3. If object i were not specialized as a transmitter or a receiver, that is, if 

ay =  am, and if object j were similarly nonspecialized, % =  % , then the object points 

for i and j would fall along a straight line, 45° from the x and y axes. The "triangle" 

formed by the two object points and the origin would actually be a straight line, that 

is, a "triangle" whose area is zero.

Triangles, of course, are inherently two-dimensional. As we add more 

dimensions to the solution, we increase the number of triangles used to approximate 

the relationship between any two objects. When eigenvectors are first extracted from



the skew-symmetric matrix, the only possible triangles are on the plane defined by 

dimensions I and II, the plane defined by dimensions III and IV, the plane defined by 

V and VI, and so on (Harshman, 1981). Dimension I, for example, does not interact 

with any dimensions other than II. Dimension II does not interact with any 

dimensions other than I. Thus, if T dimensions are extracted, there are at most T/2 

triangles between points "i", "j", and the origin. The sum of the signed areas of these 

triangles gives the approximation of the dominance relation between objects "i" and 

"j". We may wish to rotate the dimensions to simple structure, so that each 

dimension has as many zero loadings on it as possible. However, there is a tradeoff. 

Although the dimensions are simpler, the number of interactions between dimensions 

may increase. Triangles may now be defined, for example, on the planes spanned by 

dimensions I and III, I and IV, II and III, II and IV, etc. Harshman (1981) describes 

in greater detail the issues involved in the rotation of skew-symmetric representations.

The geometric interpretation of the eigenvectors of a skew-symmetric matrix 

was first discussed by Gower (1977), and the graphical display is called a "Gower 

diagram" by Harshman (1981). The geometric interpretation will be useful to us 

later, when we consider nonmetric techniques.

To scale a square, asymmetric matrix, then, we can separate it into symmetric 

and skew-symmetric parts. Each part can then be analyzed into its the singular value 

decomposition. We can then compute a canonical redundancy analysis (Stewart, & 

Love, 1968) to determine the degree to which the components underlying the 

symmetric and skew-symmetric parts are the same. Because the symmetric and skew-



symmetric parts of the input are orthogonal sources of information, significant overlap 

would be a substantive property of the data.

A great advantage of singular value decomposition is its ease of computation 

with standard statistical software packages. Begin with a skew-symmetric matrix.

From this, derive the raw score sum of squares, sum of cross products (SCP) matrix. 

In this derived matrix, the entry in row 1, column 1, is the raw score sum of squares 

of row 1 from the original, skew-symmetric matrix. The entry in row 1, column 2 of 

the SCP matrix is the raw score sum of cross products between row 1 and row 2.

The other entries in the SCP matrix are defined analogously. The SCP matrix is 

symmetric, because the sum of cross products between rows "i" and "j" equals the 

sum of cross products between rows "j" and "i". The SCP matrix, then, could be 

analyzed using a standard principal components procedure. In fact, this is precisely 

its advantage because, as shown in Appendix 2, the eigenvectors of the SCP matrix 

are identical to the eigenvectors of the original skew-symmetric matrix (Basilevsky, 

1983).

Computation, then, involves just four steps:

(I) The asymmetric input matrix is transposed so that column 1 becomes row 

1, etc. The transposed matrix is added to the original asymmetric matrix, and all 

entries are divided by 2. The resulting matrix is the symmetric part of the data. It 

can be analyzed into its eigenvectors using a principal components routine.



(2) The transposed matrix is subtracted from the original matrix. The 

resulting matrix is the skew-symmetric part of the data.

(3) A sum of squares, sum of cross products (SCP) matrix is computed from 

the derived skew-symmetric matrix.

(4) The eigenvectors of the SCP matrix are extracted using a principal 

components routine.

One caution is in order: the eigenvalues of the SCP matrix are equal to the 

squares of the eigenvalues of the original matrix. Thus, the analysis of the symmetric 

part of the data is not strictly comparable to the analysis of the skew-symmetric part.

In the analyses that follow this does not seem to pose a difficulty, but it can be 

corrected by taking square roots of the skew-symmetric eigenvalues.

The singular value decomposition of a skew-symmetric matrix is also known as 

the canonical decomposition of asymmetry (Gower, 1977). It is a variant o f one of 

the DEDICOM models (Harshman, 1978). Although it is general purpose, data- 

driven, analogous to principal components, and enjoys least squares properties, it has 

rarely if ever been used.

Rather, there is a scattered literature of numerous special purpose techniques 

for handling asymmetries. In the next chapter I will review this literature, and group 

the special purpose techniques by the assumptions they make about the data. In 

addition to considerable usefulness in its own right, the canonical analysis of



asymmetry is a convenient way of examining whether the data meets some of the 

assumptions underlying special purpose analyses.



Chapter 5

Current Techniques for Mixed Symmetric - Skew-Symmetric Data

In the vast majority of studies employing MDS, principal components, or 

factor analysis for scaling purposes, similarity is simply assumed to be symmetric 

(Harshman, 1978), Generally, each pair is presented in only one direction. Similarity 

values for both directions of comparison are set equal to the single value obtained.

Nonetheless, methods of analysis for data that are neither purely symmetric 

nor purely skew-symmetric have been proposed sporadically for about 40 years. To 

my knowledge they have not been collected until the present work. Here they are 

listed in approximately decreasing order of the strength of assumptions they make 

about the asymmetric pan of the data. Methods early in the list tend to be theory- 

driven; those later in the list are more data-driven.

(1) Imposed symmetry. A symmetric matrix can be derived from the initial 

input by replacing all x̂ - and with their average, .5*(Xy +  x^. This technique, and 

the even simpler approach of collecting only xy and assuming x̂  = xy, has been used 

in virtually all multidimensional approaches to scaling (Harshman, 1978). It yields a 

symmetric matrix on which principal components, cluster analysis, and 

multidimensional scaling can be computed. Aside from convenience, there are two 

possible rationales for its use.

First, the asymmetries may be random error. This is rarely if ever subjected 

to statistical test. However, tests exist, and are presented at the end of this chapter.



Second, the asymmetries may be due to "constant error" in which the entry for 

every pair is displaced up or down by a fixed increment caused by the experimental 

design. For example, suppose that two tones are presented in sequence, and that the 

first tone is always rated two units higher than it normally would be, simply because it 

is presented first. Suppose further that the true value of "i" is +5 and that the true 

value of "j" is + 3 . When "i" is presented first, the difference between the two tones, 

Xy, is (5+2) - 3 =  +4. When "j" is presented first the difference is Xp =  5 - (3+2)

= 0. If we isolate the skew-symmetric part of the data we find 

xijIttid = .5*(4 - 0) =  2

and

Xjj resid =  -5*(0 - 4) =  -2.

The same amount of deviation from symmetry, +2 vs. -2, would be found for all 

pairs of stimuli, and could be removed by imposing symmetry on the input matrix.

One test of the constant error hypothesis would be to isolate the skew-symmetric part 

of the data and see if in fact the deviations were all of the same amount. The mean of 

the above-diagonal entries, and the negative of the mean of the below-diagonal entries, 

would be computed. Then the average of these two numbers would be subtracted 

from the above-diagonal entries, and added to the below-diagonal entries. The 

resulting off-diagonal deviation scores should be close to zero, and should have a 

mean square that reflects chance only. If an independent measure of chance is 

available, an E test may be feasible, as described at the end of this chapter. 

Alternatively, one could examine the row or column sums. In a constant error matrix



the sums should decline or increase in a strictly linear fashion. The results of the 

canonical analysis also take on a characteristic form for constant-error data: The sum 

of cross products matrix for constant error is a perfect simplex. Hence, the object 

points lie along the circumference of a half circle.

(2) Categorical judgment. Harris (1957) applied a version of the Method of 

Successive Intervals to asymmetric, square matrices. This provides a one-dimensional 

scaling of the row objects, and a one-dimensional scaling of the columns. The row 

and column scales are constrained to be linear transformations of each other, differing 

at most by an arbitrary unit of measurement, and by an additive constant. The 

additive constant is equivalent to a single skew-symmetry dimension that should 

emerge in a CAA solution. The differences in unit of measurement between rows and 

columns would be analogous to a multiplicative bias coefficient, and should emerge as 

a second skew-symmetry dimension.

(3) Multidimensional unfolding (MDU). In multidimensional unfolding, the 

row objects and column objects are plotted as separate points in a joint space. If, as 

is usually the case in skew-symmetric data, the row and column objects are the same, 

each object will be represented twice in the solution. Multidimensional unfolding was 

suggested as one option by Gower (1977), but it has several disadvantages.

(a) Representing the same object by two different points can be confusing.

(b) If the diagonal entries are included in the analysis, then the distance 

between an object's two points would reflect both the degree to which it enters into 

asymmetric relations with other objects, and its degree of self-similarity. A purely



skew-symmetric matrix could not properly be represented: all relationships between 

objects would be asymmetric, requiring that the two points for each object be widely 

spaced. However, the diagonal entries in a skew-symmetric matrix are zero, 

suggesting that each object's self-similarity is very high.

(c) In multidimensional unfolding, the symmetric and asymmetric aspects of 

the data are represented on the same "map". If the asymmetries are numerically small 

but theoretically interesting, they may participate little in the solution.

(d) In multidimensional unfolding most of the information in the data matrix is 

ignored, leading readily to degenerate solutions (Zielman & Heiser, 1993).

In multidimensional unfolding the symmetries and skew-symmetries are 

accounted for with the same dimensions. In a canonical analysis of asymmetry, we 

would compute the eigenvectors of the symmetric and skew-symmetric parts separately 

and relate them with a canonical redundancy analysis. If the redundancies approached 

100%, the multidimensional unfolding model would receive support.

(4) In the "wind" (Wish, 1967) and gradient (Tobler, 1976-77, 1979) models, 

the symmetric part of the data provides a multidimensional scaling solution or similar 

map, with the objects represented as points on the map. The symmetric relations are 

modeled as the distances between object points. The asymmetric relations are pictured 

as vectors, directions, or "lines of force” within the map. This implies that the 

number of dimensions underlying the asymmetries is less than or equal to the number 

of dimensions for the symmetric part of the data. In practice, the maps are usually 

two-dimensional, so that the asymmetries must be one- or two-dimensional. This can



be checked by computing a canonical analysis of asymmetry to determine the actual 

number of dimensions.

(5) In the "drift-" or "slide-vector" model, asymmetries are presumed to be 

one-dimensional (Zielman & Heiser, 1993). The symmetric part of the data is 

represented by the distance between object points in a multidimensional scaling 

configuration. The skew-symmetric pan of the data is modeled as a single vector, of 

a given direction within the configuration. If the separation between two object points 

is orthogonal to the drift vector, the relationship between the objects is symmetric in 

the model. If two object points are separated from each other along the length of the 

vector, the objects will have an asymmetric relationship in the model. The more two 

objects are separated from each other, and the more their direction of separation 

coincides with the direction of the drift vector, the greater their asymmetry.

The drift vector can be thought of as a way of introducing asymmetry into the 

distances between points: It is easier to travel in the direction of the vector than to 

oppose it. In the drift vector model, the asymmetries are one-dimensional.

Moreover, this dimension can be completely specified as a linear combination of the 

dimensions underlying the symmetric pan of the data. This can be tested by 

determining whether (a) the skew-symmetric pan of the data yields a single 

eigenvector; and (b) whether the canonical redundancy of this eigenvector on the 

eigenvectors underlying the symmetric pan of the data approaches 100%.

(6) In Young's (1975) ASYMSCAL the similarities are analyzed into a spatial 

MDS configuration. The asymmetries are attributed to a different weighting of the



symmetric dimensions induced by each row stimulus. An implication of the model is 

that the same number of dimensions underlie the symmetric and skew-symmetric parts 

of the data. This can be tested with the canonical analysis of asymmetry.

(7) Spatial density and contrast models. The spatial density (Krumhansl, 1978) 

and feature contrast (Tversky, 1977) models resemble the drift vector approach by 

providing one-dimensional accounts of the asymmetries. However, the drift vector 

was a direction in the space underlying the symmetric part of the data. The vector 

underlying the asymmetries could in theory be perfecdy specified by a linear 

combination of the dimensions for the symmetric part. In the feature contrast and 

spatial density models there is no necessary relationship between the dimension 

underlying the asymmetries and those underlying the symmetric part. Rather, the 

asymmetry dimension is hypothesized to be related to an external characteristic of the 

objects. In the feature contrast model this is the salience or typicality of the objects. 

Higher similarity judgments are expected when comparing a less salient object to a 

more salient object than for the reverse comparison. In the spatial density model 

higher similarity judgments are expected when comparing an object with few close 

neighbors in the MDS solution, to an object with many close neighbors.

The canonical analysis of asymmetry can provide the start of a test of the 

assumptions, by determining whether a single dimension underlies the asymmetries. 

Thereafter, however, it is necessary to test the models more precisely, by correlating 

the asymmetric dimension with an independent measure of stimulus salience or with 

the number of near neighbors of a stimulus in the MDS space.



(8) Bias coefficients. The general bias coefficient model, of which the spatial 

density and additive feature contrast models are special cases (Nosofsky, 1991) posits 

simply that the rows are weighted differently than the columns. This implies that the 

asymmetry is one-dimensional. The asymmetry dimension is otherwise unconstrained 

by hypothesis. The assertion of one-dimensional asymmetries can be assessed by 

using the canonical analysis to determine the actual number of vectors underlying the 

skew-symmetric part of the matrix.

(9) Canonical analysis of asymmetry. This procedure was discussed above.

An asymmetric matrix is additively decomposed into orthogonal symmetric and skew- 

symmetric parts. A sum of squares, sum of cross products matrix is derived from 

each part and the eigenvectors are extracted. This can be thought of as an extension 

of a principal components-like approach to an asymmetric matrix. The canonical 

analysis of asymmetry is data-driven and does not make assumptions about the 

asymmetries.

(10) DEDICOM, or the "Decomposition into Directional Components" 

(Harshman, 1978, 1981) closely resembles the canonical analysis of asymmetry. In 

DEDICOM, a matrix of asymmetric relations between objects is divided into a set of 

factors underlying the objects and an asymmetric matrix of interrelationships among 

the factors. There may be one set of factors (single-domain model) or two, depending 

on whether we expect the same set of factors to underlie the objects in their row and 

column roles. The number of factors is usually small compared with the number of 

objects in the study. As a result, the matrix of factor interrelationships is generally



much smaller and easier to interpret than the interrelationships among the objects.

For a symmetric input matrix, DEDICOM reduces to principal components analysis. 

For skew-symmetric input, DEDICOM yields the singular value decomposition or 

canonical analysis of asymmetry. DEDICOM is data-driven and does not require 

assumptions about the asymmetries.

(11) Separate row and column soludons. In an asymmetric matrix the rows 

do not equal the columns. In the general case the dimensions underlying the rows 

would not be the same as the dimensions underlying the columns. Therefore, one 

approach to fully representing the input is to compute separate MDS configurations for 

the rows and the columns. This is the approach taken in Smallest Space Analysis for 

asymmetric data (Lingoes, 1972). As in DEDICOM and CAA, no assumptions are 

made about the asymmetries.

Although this approach is data-driven and exhaustive, it may not be the most 

useful way of representing the data. First, the row objects are treated as different 

than the column objects, even though in most of our matrices the row and column 

objects will be the same. This is not a difficulty if we hypothesize that different 

dimensions underlie the objects in their row and column roles. However, there is no 

equivalent of the single-domain DEDICOM model. Second, the partition into row 

and column solutions may not be as meaningful as the partition into symmetric and 

skew-symmetric components.



Significance testing of the asymmetries

In similarity data, the asymmetries are often numerically small, and hence 

compete with the hypothesis that they are random error. Several statistical tests are 

possible:

(1) For a matrix whose entries are frequency counts or probabilities: We can 

use a  chi-square test to compare the expected entries under the hypothesis of symmetry 

with the actual, observed cell entries (Bishop, Fienberg, & Holland, 1975). The 

expected entries are simply the entries in the symmetrized matrix: Ey =  E:i = .5*(Xy 

+  Xjj). Cells on the main diagonal are left out of the test because they are 

symmetrical by definition. The chi-square is evaluated at .5*(K2 - K) degrees of 

freedom, where K is the number of objects in the study.

(2) For parametric data, in which a number of subjects have each given 

similarity ratings for all possible pairs of K objects, significance testing can be 

developed by analogy to ANOVA. Five sources of variance may be identified: (I) 

ABsymm: the variation among the symmetries in the data, after averaging across 

subjects; (2) A B ^ : the variation in the data's skew-symmetries, after averaging 

across subjects; (3) S: the variation among subject means, after averaging across the 

stimulus pairs; (4) AB5ymm X S: how the symmetries interact with (vary across) 

subjects; and (5) ABuyin X S: how the asymmetries interact with (vary across) 

subjects. Using formulas given in Keppel (1982, pp. 635-642) we can derive the 

expected mean square for each of the five variance components in the design:



has an expected value of 1, if s<r2ABlsytn, the true average asymmetric variance in the 

population, is zero. Hence, this ratio would be a reasonable test statistic for the 

asymmetries. As a ratio of two sample variances, it should be distributed as F. The 

degrees of freedom would be

numerator: .5(k2 - k)

denominator: .Sfs-OOc2 - k)

where s is the number of subjects, and k is the number of objects or stimuli, in the 

study.

The asymmetric part of the matrix could be extracted for each subject. The 

asymmetry by subject interaction would be a logical error term for most purposes. If 

we wished to include level differences among subjects as a source of error, the pooled 

within-asymmetries variance would be a reasonable choice for an error term.

As may be seen, the ratio



Chapter 6

Nonmetric Analysis of Skew-Symmetries

In the canonical analysis of asymmetry, the asymmetric relation between two 

objects, i and j, say, is modeled as the difference between two cross-products:

*ii =  nsj - rjSj

The canonical analysis of asymmetry gives a least squares representation of the 

asymmetry on what is essentially an absolute scale of measurement, Xy approximates 

the actual asymmetry values, Xy, without changing their mean, standard deviation, 

rank order, etc. The geometric interpretation is on a ratio level. If r and s are plotted 

as orthogonal vectors, the area of the triangle formed by the origin and the object 

points (r^Si) and (r^Sj) is equal to one-half of Xy, the predicted asymmetry between i 

and j.

Most data in psychology, however, is thought to correspond to an ordinal level 

of measurement (Stevens, 1946). In attempting an absolute or a ratio level of 

representation, we would be allowing the scale mean and/or the scale mean and 

standard deviation, plus any unknown monotonic transforms that have altered the data, 

to influence the representation. However, the scale mean, standard deviation, and 

order-preserving transforms are arbitrary in ordinal-level data. Therefore the 

representation would include incidental features of the data and be less parsimonious.

It seems reasonable, then, to generalize the canonical analysis of asymmetry, 

so that it is making use of only the rank order of the asymmetries in the data. We can 

readily do so, by analogy to the nonmetric multidimensional scaling of symmetric



data. In what follows, the nonmetric generalization will be called nonmetric, skew- 

symmetric multidimensional scaling, or NSKMDS. Although the feasibility of such 

an undertaking was noted by Gower (1977), the actual development of a nonmetric, 

skew-symmetric technique appears to be new in this dissertation.2

In NSKMDS, as in the canonical analysis of asymmetry, the predicted 

asymmetry values are given as the differences between sums of cross products

- TjSj

and interpreted geometrically as twice the area of the triangle formed by the object 

points i and j, and the origin. As in the canonical analysis of asymmetry we will 

seek a least squares representation. The difference from the canonical analysis of 

asymmetry, is that in NSKMDS we will require only that the predicted asymmetry 

values Xy have the same rank order as the actual asymmetries Xjj.

To accomplish this we must first define what we mean by a least squares, 

ordinal level relationship. This is provided by Kruskal's Stress Formula 2 (Borg & 

Lingoes, 1987; Kruskal & Wish, 1977) modified for skew-symmetric input;

S2 =  Ejj [x , - 5jj]2. (3)

S2 is a "badness of fit" measure, as it gives the sum of squared departures of 

the predicted asymmetries, Xy, from the quantities they are designed to represent, 5̂ . 

Note that if this were the canonical analysis of asymmetry the formula would show xy 

in place of 5̂ : we would be trying to minimize the sum of squared departures of the

2 Parts of this chapter were presented at the American Psychological Association 
annual convention in New York City in August, 1995, (Borkum, 1995).



predicted from the actual asymmetry values. Instead, however, we seek only a least 

squares correspondence between the predicted asymmetries and a new quantity, 5y.

The values are called "disparities" in nonmetric MDS, and we will adopt the same 

terminology here. Disparities are numbers chosen to be as close as possible to the 

predicted asymmetries Xy, with the proviso that they maintain the same rank order as 

the actual asymmetries Xy. Thus the disparities are a device for representing the rank 

order of the actual asymmetries in the badness of fit formula. If we can find Xy values 

that minimize S^ the X y ' s  will approximate the rank order among the actual 

asymmetries, to a least squares criterion.

It should be noted that, as written, the S2 badness of fit formula is incomplete. 

The value of S2 could be infinitely reduced simply by shrinking the configuration to a 

single point at the origin. Then all disparities and all predicted asymmetries Xy 

would be zero, mimicking perfect goodness of fit. In the actual Stress Formula 2 this 

is prevented through normalization, that is, by dividing Equation 3 by the sum of 

squared deviation scores of the Sy's.

S2 = E y  [ k y  - 5y]2 / E y  [ 5y -  8 ^

Then, any shrinkage in the configuration would reduce the denominator as well as the 

numerator, preventing a decrease in S2. The normalization can be carried out as a 

separate step, however, and does not affect the derivation that follows.

It should also be remembered that the Xy values in Equation 3 are not infinitely 

free to vary. In NSKMDS, as in the canonical analysis of asymmetry, they are 

derived from the representation of the objects i and j in terms of the vectors r and s:



*y =  TiSj - fjSi

The Xj, values derive from the position of objects i and j in a two-dimensional space. 

To reduce badness of fit, we must adjust the objects' coordinates (r„Sj), ( r ^ )  in this 

spatial model so that the predicted asymmetries Xy will approach the disparities S y  in 

Equation 3.

Because the Xy values must derive from the location of object points (rj,Sj) and 

(rj.Sj) in a two-dimensional space, the Xy’s will generally not give a perfect match to 

the Sy's. And because the Sy's must maintain the same rank order as the actual 

asymmetries in the data, the Sy values will generally not match the Xy's exactly. 

Therefore, will rarely equal 0. Our goal is simply to minimize S2, to obtain a good 

approximate solution.

Our task, then, is two-fold. We must find Sy values that are as close as 

possible to the predicted asymmetries Xy while maintaining the same rank order as the 

actual asymmetries X y .  Then, we must find predicted asymmetries that are as close as 

possible to the Sy's, by adjusting the coordinates of objects i and j on the vectors r and 

s. In each of these two steps, "as close as possible" will mean "in a least squares 

sense".

Finding the Sy values

The Sy's can be obtained through Kruskal's (1964b) block averaging algorithm. 

First, arrange the actual asymmetries Xy in ascending order. There are usually .S*(K2 

- K) asymmetries, one for each pair of objects. Thus, sorting the asymmetries also



sorts the object pairs. Now, next to each actual asymmetry value xy place the 

predicted asymmetry Xy, computed from

^  = r^  - rjSj,

for the same pair of points. Thus, if the observed asymmetry between i and j is 4.3, 

say, then next to 4.3 place the predicted asymmetry between the same object points i 

and j. An example is shown in Table I. If the predicted asymmetries (column 2 in 

Table 1) had a perfect monotonic relationship to the actual asymmetries (column 1), 

then the X y ’ s  would increase or hold steady as we went down the table, just as the X y ' s  

do.

To make this happen, start at the top of the table, and read down until coming 

to the first pair where xy drops instead of increasing or holding steady. If this is the 

ninth pair, say, average the X y  for the eighth and ninth pairs, and use this mean value 

in place of the eighth and ninth X y ' s  (column 3). If this mean value is less than the 

seventh xy, average the seventh, eighth, and ninth X y ' s ,  and use this value instead of 

the three original X y ’ s  . This mean X y  is compared with the sixth X y ,  etc. Eventually, 

even if we have to go back and average the first nine X y ’ s ,  we will have a string of 

Xy's that does not decline (column 5).

Proceeding in this way through the list we can be sure that the predicted 

asymmetries xy will increase or stay the same, and thus have a perfect monotonic 

relationship to the observed asymmetries xy. Any X y  that we do not need to average is 

left unchanged. Thus it is indeed as close as possible (i.e., identical) to the original



X y .  When we have to average two or more X y ’ s  to achieve monotonicity, the mean X y  

is as close as possible to the original X y ' s  in a least squares sense. Thus, the X y ' s ,

Table 1 

Monotone Regression1

Skew-Symm
Skew-Symm Computed 1st 2nd Final

Data From Pass Pass Result
NSKMDS Model

0.7 0 0 0 0

0.8 3 3 3 3

1.9 3 3 3 3

2.0 5 5 5 5

2.3 8 8 8 8

2.4 9 9 9 9

3.8 12 12 10.67 10.67

5.5 13 10.5 10.67 10.67

6.2 8 10.5 10.67 10.67

7.1 14 14 14 14

1 Note. Adapted horn Borg and Lingoes, 1987, p. 35.

after smoothing with the averaging technique, are the 3 '̂s. They have a perfect monotonic 

relationship to the observed asymmetries,and they are as close as possible to the Xy predicted 

asymmetries.



Optimizing the yg values

Although our goal is to find values of x̂  that minimize Sz, we must do so indirectly, 

by adjusting the coordinates of i and j on vectors r and s in

Therefore let us substitute Equation 4 into the formula for S2:

Squaring gives

Let us focus at first on adjusting the coordinate of a single object, i, on vector r

We want the value of r; that will minimize S2. We can find this by setting the first partial 

derivative of S2 with respect to rs equal to zero, and solving for r;:

Note that because the derivative is linear with respect to r( there is only one solution, that is, 

there are no multiple roots. Moreover, we can assume that this solution is not a maximum 

because badness of fit, as assessed by Equation 4, can be made worse without limit 

Therefore, Equation 5 tells us the coordinate to assign to object i on vector r, to minimize Sj. 

That is, it tells how to adjust the r, values so as to minimize the sum of squared discrepancies



between the disparities 8$ and the predicted asymmetries x̂ . By using Equation 5 with each 

object i in turn, we can adjust all of the coordinates on vector r.

Hie steps for vector s are almost identical:

We then set the first partial derivative of Sj with respect to s, equal to zero, and solve for q:

Equation 6, applied to each object i in turn, tells us the coordinates to assign on vector s so as 

to minimize S2.

In practice, we will replace each q and S) element as soon as the new value is 

computed. As a result, the values of the coordinates depend on the order in which they are 

updated. A preferable approach might be to store the new values of q and S[ in separate 

vectors, say r'; and s’j, and to replace q with r\ and S; with after all of the elements had 

been recomputed. This would correspond to adjusting the configuration as a whole to a least 

squares criterion. In experience with the algorithm, however, it appears that the two 

approaches lead to essentially identical solutions. Replacing the q and $ values as they are 

computed provides some savings in time and memory overhead, and hence was die approach 

adopted.

l orality parameter In practice, we use a modified formula for S*:



The modified formula differs from the original only in weighting each term on the right hand 

side by

where K is a negative integer. This gives greater weight, when computing to S '̂s that are 

smaller in absolute value. Thus, the weighting should help encourage solutions that accurately 

reproduce the smaller asymmetries, that is, that preserve fine-grained aspects of the data The 

weighting is useful because a common feature of degenerate solutions is that small skew- 

symmetries tend towards zero, and effectively drop out of the solution.

In NSKMDS, "K" is referred to as a locality parameter. Unless otherwise specified, 

K is set to zero in the analyses, so that

and there is no differential weighting of smaller asymmetries. When NSKMDS has appeared 

to produce a degenerate solution, negative values of K will sometimes be used in an attempt 

to eliminate the degeneracy.

The modifications in Sj lead to a similar weighting in the equations for determining 

the coordinates of each point on each iteration. Thus, Equation 5 is modified slightly, from

(5)

to

and.

(5a)

to



(6a)

NSKMDS algorithm

The NSKMDS algorithm proceeds iteratively. First the disparity values 8§ are 

calculated to approach the predicted asymmetries, Xg. Then the coordinate of each object on 

each of the two dimensions is adjusted to give new predicted asymmetries that approach the 

disparities. These steps, adjusting the disparities and then adjusting the coordinates, comprise 

one iteration. On the next iteration the disparities are recomputed from the new x '̂s, and the 

object coordinates are readjusted to approach these new disparities. The algorithm proceeds in 

this fashion until S2, the badness of fit between the disparities and die predicted asymmetries, 

stops improving.

Thus, NSKMDS belongs to the alternating least squares class of algorithms. It 

interleaves two steps, each of which improves goodness of fit in a least squares sense. There 

are two advantages in particular associated with alternating least squares techniques. Because 

die least squares solutions on each iteration will usually improve, and certainly cannot worsen, 

badness of fit, and because badness of fit cannot improve beyond S2 =  0, the algorithm must 

converge. Moreover, because the improvement on each iteration is optimal in a least squares 

sense, the algorithm finds "the conditional global minimum, since it is conditional on the 

values used to start the entire process" (Takane, Young, & de Leeuw, 1977, p.63). That is, 

the algorithm finds the best possible solution, given the starting configuration of object points.

Two difficulties can arise in NSKMDS, however, or indeed in alternating least 

squares algorithms more generally. First, there may be a local minimum "between" the



starting configuration and the globally optimal solution. In that event the algorithm will 

converge on the local solution, which may not be adequate, and which may not be replicable 

given a different starting configuration. To help avoid this, NSKMDS uses the canonical 

analysis of asymmetry to generate the starting configuration. The results of the canonical 

analysis should generally be close enough to the optimal ordinal-level solution to avoid local 

minimum problems. There is no guarantee that this will be the case, however. Moreover, if 

the optimal metric and nonmetric solutions differ markedly, the risk of a local minimum 

solution will increase. The second potential difficulty is a degenerate solution. When 

discussing the unnormalized S2 formula,

S2 =  Sy - 5s!2. (7)

we noted that it could be minimized by shrinking the configuration to a single point, Inranvt 

at the origin. Then all coordinates and all disparities would be zero, reducing Sj to zero.

This problem was solved by dividing Formula 3 by the sum of squared deviation scores of 

the disparities,

so that any reduction in the overall size of the configuration would be penalized. The 

normalization, however, leaves a "loophole": Sj can be minimized by partitioning the object 

points into two sets, and shrinking each set to a single point. Degenerate solutions are most 

likely to occur when relatively few observed asymmetries are being used to estimate a large 

number of model parameters, the ( r ^  coordinates (Borg & Lingoes, 1987). Because the 

number of vector coordinates and the number of degrees of freedom in the data is the same in



NSKMDS as in symmetric multidimensional scaling, NSKMDS should be no more prone to 

degenerate solutions than is MDS generally.

Appendix 6 gives the source code for a FORTRAN 77 program implementing the 

NSKMDS algorithm.

In the chapters that follow, I will review simulation studies testing the behavior of the 

NSKMDS algorithm and comparing it with the canonical analysis of asymmetry. I will then 

apply the two techniques to representative asymmetric data sets in the literature to demonstrate 

the potential utility of the analyses. Then data collected for this dissertation will be analyzed 

to shed light on a dominant theory about asymmetries in similarity ratings.



Chapter 7 

Simulation Program

Neither the canonical analysis of asymmetry, which is rarely if ever used, nor 

nonmetric skew-symmetric MDS, which is new in this dissertation, have been subject to 

systematic investigation. Simulation studies can be helpful in this regard, by showing the 

behavior of the algorithms under known conditions. In this chapter I will discuss the program 

used to conduct the simulation studies.

Overview.

The simulation studies were conducted using a FORTRAN 77 program, written by 

the present author, compiled for personal computers, and designed for studying the 

performance of analysis techniques under a wide range of user-specified conditions.

The program proceeds in a series of stages. First, a symmetric and skew-symmetric 

matrix of the same order are generated, and added together to produce a generally asymmetric 

matrix. (Either part can be set to zero, however, to give a purely symmetric or purely skew- 

symmetric matrix.) In the simulations, the resulting matrix is die "true" configuration.

The program then generates a number of error perturbed versions of the true matrix 

to imitate data collected from a number of subjects. The type and amount of error are 

specified in advance by the user. Also, if indicated, the matrix elements are subjected to a 

monotonic distortion to simulate ordinal-level data.

An average matrix is then derived from the error perturbed versions. The degree to 

which the average matrix represents the error-filled versions is quantified with descriptive



measures such as the correlation ratio. Because the true scores are not used in these indices, 

they are measures that would ordinarily be available to a researcher with actual data.

The average matrix is then analyzed using the technique under investigation, and 

regenerated using the results of the analysis. The regenerated matrix is compared with the 

"true" configuration to determine the efficacy of the analysis under the given conditions.

This constitutes a single trial in the simulation. For a particular set of conditions, 

numerous trials would be run, each beginning with a different "true" matrix.

Let us examine several of these steps a bit more closely.

Type of error.

1 . Normal error. Luce (1989, p. 260), in reviewing his own psychophysical 

studies, noted that the primary source of error appeared to be a strong influence on responses 

by the stimulus from the preceding trial. If stimuli are presented in a different random order 

for each subject, this type of error would be equivalent to adding random deviates to each cell 

of the asymmetric matrix. Hence, for one error condition available in the simulation 

program, random, normally-distributed values are added on a ceil-by-cell basis to the 

asymmetric matrix for each "subject”, or replication, within a trial. Each entry in the error- 

perturbed matrix is thus represented as

X |’ =  X j +  Zfc

where Zyk is the error added to cell ij for subject, or replication, k.

Normal error enters at the level of the similarity judgment, on a given trial, a person 

comparing two stimuli may assign a value that is higher or lower than it ordinarily would be.



due to such uncontrolled factors as the similarity of the immediately preceding trial. In this 

model, normal error pertains to the trial and is added directly to the similarity judgment

In MDS and principal components analysis we depict stimuli as points or directions in 

a multidimensional space. That is, each stimulus is represented as a vector of coordinates on 

the dimensions of the space. The coordinates might simply be a convenient way of picturing 

the data -  a graphical technique. Alternatively, we might assume that the dimensions are in 

some senses true, for example, that they are aspects of how people represent the stimuli 

internally. If the dimensions have a reality separate from die similarity judgments, then the 

dimension coordinates themseives may be subject to random error -  a person may 

misperceive a given aspect of a given stimulus object This will affect similarity judgments 

involving the stimulus; if the stimulus vectors are perturbed, the similarity values derived horn 

the vectors will also be perturbed. However, adding normally-distributed error to the stimulus 

vectors will not, in general, cuase normally-distributed error in the similarity values. Rather, 

the error distribution of the similarities will depend on how the stimulus vectors are compared 

to give similarity values. Three types of comparisons are considered here, giving three types 

of error distributions: (1) a squared Euclidean distance model -  similarity may be modeled as 

the squared distance between stimulus points; (2) a principal components (scalar products) 

model — similarity may be given as the angle between stimulus vectors; and (3) an 

asymmetry model -  similarity may be given as the signed area of the triangle formed by the 

two stimulus points and the origin. Each of these cases gives rise to a different distribution of 

error in die derived similarity values, as described in the following paragraphs.



2. Chi-square error. Error may enter in at die level of die stimulus vectors, 

before the asymmetric matrix is constructed. If the error were added to the vectors 

underlying the symmetric part of the matrix, and if the symmetric part were constructed using 

a squared Euclidean distance model, each cell in the average matrix would be given as

which, after squaring equals

which

If the error has a mean of zero the terms in braces will tend towards zero. If the error is 

uncorrelated with itself, then the term in parentheses will be smaller than the remaining terms. 

Therefore, Equation 8 will tend towards

which is distributed as chi-square with two degrees of freedom and a nonoentrality parameter 

equal to fa - Xj)2. Ramsay (1969) notes that this is preferable to normal error in a distance 

model as the Xq' entries here are constrained to be positive.

3. Wishart error. If error enters into the model at the level of the symmetry 

vectors, and if these vectors are combined using a principal components (scalar products) 

model, the entries in the average matrix would be given by



If the error has a mean of zero, the terms in braces will tend towards zero, and Equation 9 

will be approximately equal to

which has a product normal distribution with mean equal to XjXj. Product normal distributions 

resemble a normal distribution. If z* and z* each have a mean of 0 and a standard deviation 

of I, then Xg' in Equation 9 will have a mean of XjXj, a standard deviation of 1, and will be 

symmetric. It will be both heavier-tailed and more peaked than a normal distribution, with a 

kurtosis of 6, versus 3 for a normal distribution (Craig, 1936, pp. 2 and 3; Meeker,

Cornwell, & Aroian, 1981). Note that the diagonal entries are given as

which is distributed as chi square with one degree of freedom and a noncentrality parameter 

equal to x,-2. This pattern, of product normal distributions for the off-diagonal entries of a 

matrix, and chi-square distributions on die diagonal, matches that of a Wishart matrix (Seber, 

1984).

4. Asymmetric error. If error is added to the vectors underlying the 

asymmetric part of the matrix, and if these vectors are combined to give elementary skew- 

symmetries, the error-perturbed skew-symmetries in the average matrix will be



If die error vectors have a mean of zero the terms in braces will drop out of the equation, 

leaving

This is distributed as the difference of two product normal distributions. For the diagonal 

entries j= i, and

Xg’ =  (1/k) (rjSi - s^ +  - S ^ z * * ),

= 0

In the simulation program this is referred to as asymmetric error, as the error only contributes 

to the skew-symmetric part of die matrix.

The simulation program permits incongruent combinations of error and true score 

models. For example, the user can specify a chi-square error distribution, and a principal 

components-like model for the true scores. In that case the error will be constructed as 

enor9 = (1/k) (2̂  [z* - ZpJ2) 

and the symmetric pan of the true scores will be constructed as 

*8 =Xi*Xj.

In this way the effects of type of error can be distinguished from the effects of the model 

used to construct the true scores.

Amount of error. In general, the amount of error introduced by a vector will depend 

on the type of error, unless we take steps to remove the confounding.

First, we need to specify an index of the amount of error, that can be used across 

error types. In the simulation program, the index is the sum of squared differences between 

cells in the original and error-perturbed matrices.



Second, for each type of error we need to rescale the error vectors to produce the 

desired residual sum of squares.

For normal error this is straightforward. Because a random deviate is added to each 

cell of the matrix, the residual sum of squares is simply the sum of squares of the deviates. 

We can rescale the deviates by simply normalizing them to a sum of squares of one

and then multiplying each by the square root of the desired amount of residual sum of 

squares. This same process is used in die two artificial cases: adding chi-square error, 

generally appropriate only for squared distance models, to symmetries created through scalar 

products, and adding Wishart error to distance models.

When we add chi-square error to a distance model, however, the situation becomes 

more complicated. In this case, instead of adding error, cell by cell, to the already- 

constructed symmetric matrix, the error is added to the symmetry vectors before they are used 

to construct the matrix. Thus, error enters into the matrix as

And the sum of squared residuals for a given matrix k is

To determine how the error vectors should be rescaled, we introduce a scaling coefficient, C, 

and set die equation equal to the desired amount of residual variation (DARV)

or



When expanded (see Appendix 4), this equation is a fourth degree polynomial in the unknown 

rescaling coefficient:

where DARV is the desired amount of residual variation. All of the terms in Equation 11 are 

known except for the scaling coefficient, C, and thus the equation is of the form

In general, quartic equations such as this will have four roots, some of which may be negative 

or even imaginary. However, for our purposes we need only a single, positive root

In the simulation program this root is obtained through the methods of bracketing and 

bisection. That is, consider Equation 12. It will be satisfied for those values of C for which 

the right hand side equals zero. If we initially set C equal to zero, the right hand side will 

equal a negative number, that is, -DARV. In the program, C is then increased by increments 

of .1, until the right hand side of Equation 12 first equals a positive number. Thus we have 

identified an interval, .1 in length, for which Equation 12 is negative at the lower border, and 

positive at the upper border. Presumably the root, the point at which Equation 12 crosses 

zero, is bracketed within this interval.



To refine our estimate of the root we bisea the interval, keeping track of the half 

interval in which the sign change occurs. We then bisea the half interval, and so on, until 

we have converged on the place where the sign change occurred. This is very likely to be a 

root, and hence the desired rescaling factor.

Because Equation 12 is a continuous function, the place at which its sign changes is 

also a place at which it crosses zero, i.e., a root. However, the program may fail to 

converge in the allotted number of iterations, and hence return an erroneous value. Therefore 

as a final step, the program checks the obtained value of C to see if it indeed reduces 

Equation 12 to a number close to zero. If the obtained value is not so confirmed as a root, 

the error vector is discarded and a new error vector is generated. This appears to happen cm 

approximately 5%  of the matrices, not enough to significantly lower the efficiency of the 

program.

Different quartic equations, solved in the same manner, arise for Wishart error added 

to the vectors for scalar product matrices, and for asymmetric error. The quartic equations 

and their derivations ate shown in Appendix 4.

By rescaling in this manner, the amount of error variation can be adjusted 

independently of the type of error.

Monotonic distortion. The purpose of monotonic distortion is to obscure the original 

scale of the matrix entries, while preserving their rank order. Presumably this reflects the 

case of ordinal level data, in which only rank order information can be assumed to be 

accurate. In areas such as multidimensional scaling, the ability of an analysis technique to



recover the original scale values after monotonic distortion is considered central to its 

usefulness (e.g., Kniskal, 1964a; Shepard, 1962).

Introducing monotonic distortion is a relatively simple process in the simulation 

program, the main task being to identify a way of quantifying and characterizing the 

distortion. It was felt at the outset that power functions of the type 

y =  x*

would be quite useful as they permit both accelerating (k> 1) and decelerating (k< 1) 

distortions, whose magnitude is specified by the exponent Moreover, the shape of distortion 

is both well-known and relevant to psychologists, due to its nearly universal appearance in 

psychophysics (e.g.. Stevens, 1957). The chief problem is that in the simulation program 

matrix entries can take on negative values. Even, whole-numbered exponents k would then 

transform these into positive values, and thus fail to preserve order. Even, fractional values 

of k, common in psychophysics, would transform negative matrix entries into imaginary 

numbers, which would be exceedingly hard to interpret substantively. To solve these 

problems, foe expedient was developed of stripping foe sign before applying the transform, 

and then reattaching the sign afterwards 

x'jj =  sign(xij)*labs(xg)lk 

This produces monotonic distortions similar to those shown in Figures la (for k < I) and lb 

(for k >  1).

Recovery Indices. Young (1970) operationalized metric recovery as the squared 

product moment correlation coefficient between foe true and recovered matrix entries.



In the simulation program this framework is adopted, with two modifications. First, metric 

recovery is redefined as the squared ratio-level product moment correlation

as this is mote appropriate to the (absolute level) canonical analysis of asymmetry. Second, a 

nonmetric recovery index was defined analogously, as the squared Spearman tank order 

correlation coefficient between the true and reconstructed matrix entries.

Eigenvalue Dropoff. One purpose to which simulation studies may be directed is 

determining how well an analysis technique distinguishes true horn error variance. A 

condition that may bear on this is the extent to which the eigenvalues of the true factors 

display a different pattern than those of the error factors. To permit a systematic study of this 

the simulation program provides for two different patterns of true factors: in the fast drop-off 

condition each successive eigenvalue is lower than the preceding eigenvalue by a factor of 

1.8. In the slow drop-off condition each eigenvalue is lower than the preceding eigenvalue by 

a factor of 1.18. Thus, in both dropoff conditions the eigenvalues show an exponential 

decay, which is characteristic of the principal components analysis of random data (e.g., 

Craddock & Flood, 1969). However, in the fast dropoff condition the true eigenvalues are 

separated from each other to a greater extent than is commonly seen in random matrices that 

are larger than 10 by 10 (see tables in Lautenschlager, 1989).
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Random Numbers. On each trial the true and error matrix components are created 

from random numbers. In the simulation program these are derived from the Wichmann and 

Hill (1982) random number generator, which gives numbers between 0 and 1 drawn from a 

uniform distribution. When random normal variates are needed, the output of the random 

number generator is filtered through Beasley and Springer’s (1977) subroutine for the inverse 

normal cumulative density function. The Wichmann and Hill algorithm was chosen because 

it was published in a peer-reviewed journal (Applied Statistics), and was the subject of a 

number of subsequent commentary articles (McLeod, 198S; Wichmann & Hill, 1984; Zeisel, 

1986).

The simulation program was thus designed to be quite broad in the range of 

conditions that it could be used to study. Of the numerous possible simulations, several were 

selected, as the ernes most useful for guiding the application of CAA and NSKMDS to real 

world data.



Chapter 8 

Simulation Studies: Quality Control

Initial efforts went to verifying that the simulation program itself was furctioning 

effectively.

Accuracy of algorithms. First, analyses were conducted on matrices to which no 

error or monotonic distortion had been introduced. This was designed to test that the 

algorithms being used, and the subroutines by which they were implemented, had acceptable 

accuracy. I had written all of the source code for the analyses, including the Jacobi rotations 

used in the eigenvalue decomposition, and hence the accuracy could not be taken for granted.

One hundred error-free trials were conducted for each of the two analysis types. For 

CAA the mean metric recovery index value was 1.00000000, and the standard deviation was

0.00000000. These same values were obtained for NSKMDS. Thus, the results were perfect 

on these trials to eight decimal places, which is near the theoretical limit for single precision 

arithmetic.

Regulation of error variance. Second, the program was checked for its consistency in 

introducing the user-specified amount of error variance for each of the four types of error.

One hundred trials were run for each of the four types of error at each of four error levels 

(sum of squared residuals set equal to 0.5, 1 , 5, or 10 times the true symmetric sum of 

squares). On these trials, the mean absolute deviation, of the actual error level from the user- 

specified level, was less than 10* times the user-specified level. Thus, if on a given trial the



error sum of squares should equal 227, say, the error sum of squares would actually equal, 

on average, 227 ±  .00227.

Random number generator. Third, the numbers produced by the Wichmann and (fill 

(1982) subroutine were checked for apparent randomness, and to verify that they were being 

selected from a rectangular distribution between 0 and 1. A series of 1000 numbers was 

produced iteratively by the subroutine. The mean and variance of these numbers are shown 

in Table 2, where it may be seen that they differ only negligibly from the corresponding 

population parameters for a uniform 0,1 distribution 0t=.50, o2=.0833). Then the numbers 

were checked for periodicity by computing autocorrelations of lag 1 through IS. These, as 

shown in Table 2, indicate that the numbers selected by the subroutine do not depend in any 

consistent, obvious way on any of the IS preceding numbers.

Confounding variance. Despite these precautions, a major source of variance in 

metric recovery, throughout the initial simulations, was the time of day at which the 

simulations were run. Analyses conducted after midnight yielded high metric recoveries; in 

early afternoon the recoveries were poor.



Table 2

Diagnostic Statistics On The Random Number Generator

Statistic Value

Mean 0.494

Variance 0.085

Autocorrelation Lag 1 0.01523

Autocorrelation Lag 2 0.01002

Autocorrelation Lag 3 0.04614

Autocorrelation Lag 4 0.03141

Autocorrelation Lag S -.01891

Autocorrelation Lag 6 -.00942

Autocorrelation Lag 7 -.02056

Autocorrelation Lag 8 0.03423

Autocorrelation Lag 9 -.00431

Autocorrelation Lag 10 0.02528

Autocorrelation Lag 11 -.03432

Autocorrelation Lag 12 0.03453

Autocorrelation Lag 13 0.00305

Autocorrelation Lag 14 0.01443

Autocorrelation Lag 15 0.00230

Note. Based on a series of 600 consecutive products of the random number generator, using 
clock seeds as described in the text.

Time of day enters explicitly into the program in only one place: in the seed variables 

passed to the random number generator.



where IHR, IMIN, ISEC, and I100TH are the hour, minute, second and hundredth of a 

second read from die computer's clock, IX, IY, and IZ ate the seed variables used for the 

random number generator on a given iteration, and RANDM is the generator's output

Statements of this type were used in all of the calls to the random number generator. 

To assess the magnitude of the dme-of-day effect, and to verify that it entered into the 

simulations through the value of IHR, that is, the first two digits in the first step of 

construction of the K  variable, "IHR" was replaced throughout the program, in statements 

such as (13), by another variable that was artificially set to 0, 3, 6, 9, 12, IS, 18, or 21. 

Canonical analysis of asymmetry was conducted. The level of normal error was set to 6,



i.e., 6 times the level of true variation in the matrix, and the level of skew-symmetric error 

was set to 2. Monoconic distortion was set to 3, that is, 

x’j = sign(xs)*[abs(x9)p.

These levels were chosen to prevent "ceiling" and "floor" effects in the eight "time of day" 

conditions. That is, the error and monotonicity values were set so as to prevent two or more 

"time of day” conditions from becoming indistinguishable due to maximally high or 

maximally low metric recovery. The metric recovery of skew-symmetries was used as the 

dependent variable. Fifty trials were run for each of the 8 "hours". The results, shown in 

Figure 2, appeared to replicate the time of day effect In the corresponding one-way 

ANOVA, the effect of time of day is significant, E(7,152) =  34.752, p<.0005 (see Table 

3). In the sample, 61.5% of the variance is explained by time of day (correlation 

ratio=T72=.615; Pearson, 1905). The proportion of explained variation estimated for hour in 

the population of trials is .59 (5>2 =  .590).

Table 3 

Time of Day Effect 

Analysis of Variance

Source SS df MS F R S)2

Hour 6.304 7 .901 34.752 .000 .590

Error 3.939 152 .026
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One solution, randomizing the IHR variable across trials, or replacing IHR with, say, 

ISEC in the random number generator calls, was immediately felt to be inadequate. "Time of 

day" pushes metric recovery through nearly its full range, and certainly far to either side of 

the threshold for acceptable values, say .80. Hence, randomizing time of day would add 

considerable error variance to the simulations. Moreover, because we do not know whether 

metric recovery is being suppressed in some conditions, or inflated in others, or whether both 

effects are occurring, we cannot be sure that randomization would give an unbiased estimate 

of true metric recovery. Thus, an attempt was made to determine the nature of the time of 

day effect in metric recovery, and the mechanism by which it was occurring.

The fact that the program automatically rescales the error vectors to produce the 

desired amount of perturbation should confer considerable resistance against problems with the 

random numbers. If, at some hours, the random numbers were small, the resulting error 

matrices would be small, but would be automatically scaled up. Similarly, the magnitude of 

skew-symmetric error would be suppressed if the random numbers were relatively constant, or 

if the first skew-symmetric error vector correlated with the second (high lag-10 

autocorrelation, for 10-element vectors). However, the simulation program should 

automatically rescale the vectors upwards to eliminate these effects. Moreover, when 600 

calls were made to the random number generator at each of die eight "hours", the resulting 

series show no departure from the expected mean (.50), variance (.0833), or lag-10 

autocorrelation (0) for numbers randomly drawn from a uniform distribution (see Table 4).

In feet, autocorrelations from lag 1 to lag 15 were computed for each of the eight "hours".



No trends emerged, and no autocorrelations exceeded .09 in absolute value. To appearances, 

the random number generator was functioning exceedingly well.

Table 4

Diagnostic Statistics For The Random Number Generator 

Time of Day Effects

HOUR" Mean Variance Lag 10 Autocorr.

00 0.494 0.085 0.025

03 0.493 0.086 0.082

06 0.491 0.083 0.030

09 0.497 0.082 0.052

12 0.490 0.082 0.020

15 0.486 0.086 0.033

18 0.500 0.082 0.028

21 0.495 0.082 0.034

Another possibility was then considered. It may be that the error in one randomly 

perturbed matrix was correlated with the error in another of the 30 random matrices in a trial. 

If the correlation were positive, error would tend to compound across matrices, rather than 

cancel as it should, and metric recovery would be suppressed. If the correlation were 

negative, the error would cancel at a higher-than-expected rate, and metric recovery would be 

inflated. Effects of this type did not seem likely because (1) there is an approximately 1.8 

second interval between the production of one error matrix and the next in a trial.



Correlations between the error matrices would thus require that the random number gerararnr 

behave in a approximately cyclical manner, with a 1.8 second period. iWanc* there is no 

apparent mechanism that would induce a resonance between the random number generator 

and the simulation program as a whole, synchrony would be coincidental. (2) The rate of the 

simulation program as a whole should be affected by its iterative root-finding steps for 

rescaling the error vectors. Because these roots will in general differ for each error matrix, 

and hence be found more or less rapidly, the 1.8 second cycle-time is only approximate: The 

program will create some matrices at a fester, and some at a slower, rate. This should help 

reduce any coincidence in rhythm between the random number generator and the program as 

a whole. Moreover, as may be seen in (13), above, the seeds used for the random number 

generator are changed every hundredth of a second. Nonetheless, between-matrix effects 

were studied empirically. The skew-symmetric error vectors in particular were examined, as 

skew-symmetric error had shown the strongest time of day effect. First, the "hour" was set 

to 0. A single trial was run of 30 error-perturbed matrices, and hence 30 pairs of skew- 

symmetric error vectors. The elements of the 60 vectors were then subjected to a 2 (first vs. 

second vector) by 10 (position-within-vector) ANOVA, with the 30 replications giving the 

within cells variance. A significant vector by position interaction would indicate that error 

was positively correlated across matrices, but that the elements in the first vector differed from 

corresponding elements in the second vector. A significant main effect for position, in the 

absence of a significant interaction, would indicate that error was positively correlated across 

matrices, and that there was a positive lag- 10 autocorrelation, causing entries in the first 

vector to resemble the corresponding entries in the second vector.



Five runs of 30 matrices were analyzed at each of the 8 "hours”. None of the 40 

position by vector interactions were significant. However, the position main effect was 

significant for all ANOVAs with "hour" greater than or equal to 12. The median of the five 

F ratios fix the position main effect at each "hour", and the median metric recovery, are 

shown in Table 5. Increases in the variation associated with the position main effect appear to 

closely parallel decrements in metric recovery. Hence there is evidence that by 12 o'clock at 

die latest, i.e., when the first seed to the random number generator is initially of the form ”1

2 ______”, error variance is positively correlated across matrices, suppressing metric

recovery.

The feet that the position by vector interaction is not significant suggests that entries in 

the first vectors tend to resemble the corresponding entries in the second vectors. This 

implication of a lag- 10 autocorrelation does not necessarily contradict the absence of such a 

correlation noted earlier. Before, we looked for oscillations that were sustained (stationary) in 

the 600-member series. Here our focus is on a short-term autocorrelation.

We may note that at IHR=0, the median £  is below I . This discrepancy is not 

statistically significant. That is, if we invert the value (1/.69 =  1.45) and test it at £(580,9) 

degrees of freedom (Feldt, 1965), die result is not significant at even the a =.25 level. 

However, to investigate this further, five trials were conducted, as above, at IHR=l and 

IHR=2. The median £  ratios are shown in Table 5. From the trend, there is a suggestion 

that, at IHR=0 and IHR=1, the main effect of position has less variance than would be 

expected by chance. This would occur if the entries in some error matrices were negatively 

correlated with corresponding entries in other error matrices in the same trial. This would



Table 5 

Time of Day Effect

MEDIAN MEDIAN F POSITION

00 0.847 0.691 US

01 0.859 0.847 US

02 0.890 1.099 OS

03 0.813 1.777 .070

06 0.772 1.571 .121

09 0.719 1.549 .127

12 0.448 3.016 .002

15 0.359 5.128 .000

18 0.300 5.231 .000

21 0.359 5.199 .000

artificially inflate metric recovery. Hence, it was felt prudent to consistently use values of the

form "Q 2 _____ ” as the first step in creating the first seed variable to the random number

generator, to dampen what appears to be a 1.8 second periodicity. This strategy was adopted 

throughout the simulation studies. Thirty-two simulations in total were conducted. It is to the 

results of these studies that we will now turn our attention.



General settings. The simulations were designed to mimic likely conditions 

confronting a researcher. In particular, the simulations were intended to help guide the 

analysis of the similarity data whose collection is described in Chapters 16 and 17.

Therefore, in the simulations that follow, a ten by ten matrix of "true" asymmetric 

similarity values is assumed. Each matrix is replicated 30 times and is subject, in each 

replication, to monotonic and/or error distortion in the amount specified for that trial. Hence 

the 30 replications correspond to simulated data for 30 subjects. The NSKMDS analysis is 

then applied to the average of these 30 distorted matrices. The results of the analysis are used 

to reconstruct the ten by ten matrix, and the reconstruction is compared, cell by cell, with the 

original, "true" matrix.

Because our interest is in the techniques for representing skew-symmetries, only the 

skew-symmetric pan of the true matrix was entered into the comparison. Two indices of 

comparison were used. Metric recovery was operationalized as the squared, ratio-level 

product-moment correlation between the true and reconstructed entries for the cells in the 

upper triangular half of the skew-symmetric matrix. Nonmetric recovery was operationalized 

as the squared, Spearman rank-order correlation coefficient between the true and reconstructed 

entries for the upper triangular half. Note that the diagonal cells in a skew-symmetric matrix 

are always zero, by die definition of skew-symmetry, which would inflate the correlation



between the true and reconstructed entries. Therefore the diagonal cells were excluded from 

calculations of the recovery indices.

Monotonic distortion. As noted, the nonmetric analysis program gives essentially 

perfect metric and nonmetric recovery of ideal data: data that has been altered by neither 

random error nor monotonic transform. In addition, however, a nonmetric analysis should be 

able to recover ordinal level information from data that has been subjected to a monotonic 

transform, that is, a transform that does not degrade or remove information on rank order.

To investigate whether the NSKMDS algorithm is able pass this criterion, 210 trials 

were run, spanning 21 levels of positively accelerated monotonic distortion. The levels varied 

between 1.0 (no distortion) and 3.0 (high distortion) in increments of 0.1. Thus, the 

NSKMDS algorithm was tested at distortion levels of 1.0, 1 . 1 , 1.2, ...2.8, 2.9, and 3.0.

The effects of this distortion on metric and nonmetric recovery are shown in Figure 3, and in 

Table 6. There it may be noted that mean nonmetric recovery, that is, the mean of the 

squared Spearman rank order correlation coefficients between the true and recovered elements 

in the upper triangular half matrix, remains above 0.97 for distortion levels between 1.0 and

1.9. Over the foil 1.0 to 3.0 range the nonmetric recovery fells below 0.95 only twice: at 

2.0 (is =0.939) and at 2.4 (& =0.890).

The NSKMDS algorithm, as those used in traditional nonmetric MDS, is only 

designed to recover the ordinal level properties of the data. Nonmetric MDS derives much of 

its utility, however, from the empirical result that metric recovery is often quite high as well 

(e.g., Borg, & Lingoes, 1987; Young, 1970). Metric recovery by NSKMDS is shown in 

Table 6 and Figure 3. The mean metric recovery is greater than 0.90 for all of the tested



distortion levels between 1.0 and 2 . 1 , and is greater than 0.85 for all levels between 1.0 and 

2.S. Thereafter, metric recovery appears to decline fairly rapidly.

The 2.5 level appears to reflect a fairly high distortion. For example, in Stevens' 

(1960) list of 22 power-iaw exponents determined empirically for psychophysical rtaral only 

one (electric shock) has an exponent greater than 1.7. Thus, NSKMDS appears to provide 

good metric recovery at the moderate distortion levels typical of psychophysical data As 

nonmetric recovery remains high throughout the range studied, it seems likely that the decline 

in metric recovery at high distortion levels reflects a divergence between optimal metric and 

nonmetric solutions, rather than a failure of the algorithm.

The linear regression of mean metric recovery on distortion level is significant,

E(l,19) =  149.421, p<.00Q5, as is die linear regression of mean nonmetric recovery on 

distortion level, E(l,19) =  6.442, p<.020. The slope for metric recovery, -0.124, suggests 

a faster decline than the slope for nonmetric recovery, -0.020. In both cases the regressions 

must be qualified by the heteroscedasticity seen in Table 6. There is no variability in 

recovery when the distortion level is 1 (no distortion). As the mean recovery indices decline, 

the variability in recovery at that distortion level increases. E,,** is essentially infinite if the 

no-distortion condition is included. If this condition is omitted, E ,^  is 21609.00, p < .05, 

for metric recovery, and 15129.00 , p < .05, for nonmetric recovery.

These results were replicated in a second simulation covering 8 monotonicity levels 

(1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0) whose results are described later (see Chapter 1 1 ).



Table 6

Nonmetric Analysis (NSKMDS)

Recovery Under Positively Accelerated Monotonic Distortion



FIGURE 3
NSKMDS: ACCELERATED DISTORTION



Monoconicity exponents above 1.0 generate a positively accelerated distortion, 

expanding the range of values in the matrix. Entries whose absolute values are below 1.0 

before the transformation will be brought closer to zero by the distortion. Entries whose 

magnitudes ate greater than 1.0 will be increased, with the large entries increasing the most 

rapidly. In contrast, monoconicity levels below 1 compress the range of values, as shown in 

Figure lb. Many of the power-law exponents in psychophysics, including those for the sone 

scale of loudness (0.3) and the bril scale for the brightness of a 5-degree target (0.3) and of a 

point source (0.5), compress the stimulus range in this manner (Stevens, 1957, 1960).

To test whether the NSKMDS algorithm is resistant to a decelerating monotonic 

transform, 20 trials were run at each of 8 monotonicity levels below 1.0: 0.67, 0.50, 0.40, 

0.33, 0.29, 0.25, 0.22, and 0.20. These values are the reciprocals of 1.5, 2.0, 2.5, 3.0, 3.5,

4.0, 4.5, and 5.0, respectively. Thus, the smaller coefficients produce higher levels of 

distortion. Results are shown in Table 7, and graphically in Figure 4. With increasing 

distortion level, the linear, downward trend is significant for both metric recovery, £ (1 , 6) = 

6.29, p < .05, and nonmetric recovery, E(l, 6) =  8.35, p <  .05. However, even at high 

distortion levels, metric recovery does not fall below .925, while the squared Spearman rank 

order correlation coefficient does not fall below 0.969. Thus, the algorithm appears able to 

correct for a wide range of monotonic distortions to recover metric and nonmetric 

information.



Recovery Under Decelerating Monotonic Distortion

Nonmetric Recovery Metric Recovery

Distortion
Level

CAA NSKMDS CAA NSKMDS

.67 .990 .995 .977 .986

.50 .976 .991 .946 .976

.40 .971 .993 .895 .967

.33 .956 .988 .877 .965

.29 .935 .992 .873 .981

.25 .929 .978 .840 .958

.22 .906 .978 .850 .957

.20 .898 .969 .836 .925

Note. Each entry is the mean recovery across 40 trials. See Tables 20 and 21 for results 
of analysis of variance for these data.

Normal error. Kruskal and Shepard (1974) noted in regard to nonmetric factor 

analysis that its resistance to monotonic distortion seemed outweighed by its greater 

susceptibility to error. In nonmetric algorithms, small random distortions in the data can in 

theory lead to a substantial deterioration in the solution due to problems with local minima 

and degeneracy. Therefore, simulations were conducted to check the robustness of the 

NSKMDS algorithm when random normal error is added to the matrix of true scores.



FIGURE 4
NSKMDS: DECELERATED DISTORTION



One hundred and ten simulation trials were run, spanning eleven settings of normally 

distributed error. The error levels were sampled in increments of 0.S, between 0.0 (no error) 

and S.O (high error). Thus, the levels 0.0, 0.5, 1.0, ...4.0, 4.5, and 5.0 were included. In 

the simulations "level" indicates the sum of squared residuals in the error perturbed matrix, as 

a proportion of the sum of squares of the true score matrix. Thus, an error level of 0.5 

indicates that the sum of squared residuals is half as large as the true score sum of squares.

An error level of 1.0 indicates that the true and residual sums of squares ate equal, and a 

level of 5.0 indicates that the residual sum of squares is five times as great as the true score 

sum of squares. Presumably error levels greater than 2.0 or 3.0 would be unusually high for 

psychological data.

Results are shown in Table 8, and graphically in Figure 5. Nonmetric recovery 

declined from 1.000 when no error was present, to 0.555 at an error level of 5.0. In the 

same conditions metric recovery decreased from 1.000 to 0.411. The linear trend in the 

nonmetric decline is significant, =  34.90, p <  .0005, as is the linear trend in the metric 

decline, JE&, =  105.76, p < .0005. For both metric and nonmetric recovery, is 

essentially infinite if the noerror condition is included. If die no-error condition is excluded, 

nonmetric recovery shows heteroscedasticity: as error level increases so does the trial-to-trial 

variability in recovery, = 34.99, p <  .05. For metric recovery, = 7.55, as.

Thus, the NSKMDS algorithm is clearly vulnerable to the presence of normally- 

distributed error. However, most of the error levels tested here seem extreme for actual data 

At an error level of 5.0, for example, the residual sum erf squares is five times greater than 

the true score sum of squares, analogous to a test reliability of 0.17. If we restrict



Recovery as a Function of Normal Error

NONMETRIC METRIC
RECOVERY RECOVERY

ERROR
LEVEL N MEAN STD. DEV. MEAN STD. DEV.

0.0 10 1.000 0.000 1.000 0.000

0.5 9 0.931 0.050 0.885 0.115

1.0 11 0.906 0.070 0.739 0.220

1.5 6 0.891 0.047 0.796 0.262

2.0 9 0.663 0.278 0.732 0.232

2.5 12 0.765 0.122 0.601 0.282

3.0 11 0.628 0.233 0.634 0.266

3.5 13 0.637 0.212 0.474 0.316

4.0 10 0.699 0.147 0.528 0.246

4.5 8 0.685 0.128 0.492 0.246

5.0 11 0.555 0.218 0.411 0.279

consideration to error levels between 0 and 1.5, comparable to reliabilities between 0.40 and

1.00, the procedure seems to fere reasonably well. Nonmetric recovery declines only to 

0.891, and metric recovery to 0.739.
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Asymmetric Error. In addition to error corruption of the individual cells in a matrix, 

the vectors used in constructing the asymmetries may become contaminated by error. That is, 

the vectors underlying the asymmetries may reflect how the stimuli ate represented 

cognitively. These internal representations, i.e., the vector elements, may themselves be 

susceptible to random fluctuations (e.g., Ramsay, 1969).

Error added to individual cells can be divided into symmetric and skew-symmetric 

components. In the ten by ten matrices with which we have been working, 55 of the 100 

degrees of freedom are associated with the symmetries (Bishop, Fienberg, & Holland, 1975), 

suggesting that, on average, 55% of the random normal error will have no effect cm a skew- 

symmetric technique such as NSKMDS. If the vectors underlying the asymmetries are 

corrupted however, all of the effect would pertain to the asymmetries specifically. Moreover, 

because the original vectors are being corrupted, it may be harder for an algorithm such as 

NSKMDS to recover the true configuration. Thus, asymmetric error poses a different and 

possibly harder challenge than cell-by-cell normal error.

To test the performance of NSKMDS under conditions of asymmetric error, 110 trials 

were conducted, covering error levels between 0 and 5.0, in increments of 0.5. Thus the 

levels 0, 0.5, 1.0, ... 4.0, 4.5, and 5.0 were included.

In the results, shown in Table 9 and in Figure 6, nonmetric recovery remains above 

.950 for error levels 0 to 1.5, declining rapidly thereafter, to as low as 0.580 at an error level 

of 4.0. A similar pattern is seen for metric recovery, with values decreasing from 1.000 at 

an error level of 0, to 0.898 at an error level of 1.5, and then sharply thereafter, reaching a 

low of 0.415 at an error level of 4.5. The linear trend component of the decline is significant



for metric recovery, E (l, 9) =  39.65, £ <  .0005, and for nonmetric recovery, E(l, 9) = 

18.47, £ <  .005). However, even after excluding the no-error condition, there was 

significant heteroscedasticity for both metric (Ena* =  200.02, p < .05) and nonmetric (E™,

=  497.63, p <  .05) recovery.

As was true for normally distributed error, the nonmetric algorithm appears to offer 

excellent recovery of metric and nonmetric information at error levels below 1.5. If we 

assume that these are error levels typical for real-world data, the algorithm appears to function 

quite well.

Interaction. Thus, the NSKMDS algorithm appears relatively unaffected by 

reasonable levels of normal and asymmetric error, and monotonic distortion. The recovery 

levels seem high enough, however, to raise questions about how representative the simulations 

are of actual data. One possibility is that the two types of error, and monotonic distortion, 

interact in ways that are deleterious to the algorithm's functioning.

To test this, normal and asymmetric error, and monotonic distortion, were varied 

simultaneously in a 3-way, completely crossed, factorial design. Normal error level was set 

to either 2.0 or 4.0, monotonic distortion was set to either 1.5 or 3.0, and asymmetric error 

level was set to 2.0 or 4.0. The relatively high levels of error were adopted to prevent 

"ceiling" effects in recovery that could obscure true differences between cells in the design.



Recovery As A Function of Asymmetric Error

NONMETRIC METRIC
RECOVERY RECOVERY

ERROR
LEVEL N MEAN STD. DEV. MEAN STD. DEV.

0.0 12 1.000 0.001 1.000 0.000

0.5 10 0.973 0.048 0.955 0.021

1.0 9 0.969 0.013 0.944 0.031

1.5 10 0.950 0.028 0.898 0.090

2.0 9 0.899 0.066 0.887 0.076

2.5 10 0.895 0.063 0.752 0.233

3.0 11 0.883 0.121 0.712 0.263

3.5 11 0.890 0.068 0.825 0.113

4.0 11 0.580 0.290 0.437 0.262

4.5 8 0.669 0.253 0.415 0.297

5.0 9 0.778 0.103 0.540 0.249

Each of the eight cells was represented by thirty trials. Initially, 240 simulation trials were 

run, with each trial randomly assigned at its outset to one of the eight combinations of error 

and monotonicity level. However, due to the anticipated heterogeneity of variance a balanced 

design seemed essential. Therefore, after 240 simulation trials had been run, trials were 

deleted at random from cells that had been over-represented, and additional trials were 

conducted to supplement under-represented cells.



RE
CO

VE
RY

1.2 

0.9 

0.6 

0.3 

0.0
0 1 2 3 4 5 6

ASYMMETRIC ERROR LEVEL

FIGURE 6
NSKMDS: ASYMMETRIC ERROR

RECOVERY INDEX 

  NONMETRIC
 METRIC

J_______L



A two by two by two factorial analysis of variance was conducted. Results ate 

shown in Table 10, treating normal error, asymmetric error, and monotonic distortion as fixed 

effects. Despite the leniency of this assumption and possibly some inflation in the Type 1 

error rate for nonmetric recovery due to heterogeneity of variance (Keppei, 1982, p. 87;

=  3.28, p <  .05) none of the interactions is significant for either metric or nonmetric 

recovery. As seen in Tables 10 and 11, the primary influence on recovery is the main effect 

for asymmetric error, and there is a smaller but significant main effect for monotonic 

distortion level. The main effect for normal error is inconsistent, attaining significance for 

nonmetric but not for metric recovery.

For metric recovery, none of the main effects is significant under a random effects 

model. None of the two-way interactions is significant when tested against the three-way 

interaction, as is appropriate for a random effects model. The significance test for the three 

way interaction is unaffected by the change to a random effects model, and remains 

nonsignificant

Similarly, for nonmetric recovery no effects are significant under a random effects 

model. The absence of significant effects in the random effects models seems attributable to a 

marked loss of power, due to the low computed denominator degrees of freedom (1; Keppei, 

1982, p. 642) for the tests.



Table 10 

Nonmetric Analysis (NSKMDS)

Analysis of Variance 

Normal Error Level By Asymmetric Error Level By Monotonic Distortion

Metric Recovery (Fixed Effects Model)

SOURCE SS df MS F p S)2

NORMAL
ERROR
LEVEL .009 1 .009 .150 us -

MONOT.
DISTOR. .485 1 .485 7.78 .006 .021

ASYMM.
ERROR 5.150 1 5.150 82.66 .0005 .251

NORMAL
BY
MONOT. .014 1 .014 .223 as -

NORMAL
BY
ASYMM. .001 1 .001 .014 as -

MONOT.
BY
ASYMM. .004 I .004 .067 as -
NORMAL
BY
MONOT.
BY
ASYMM. .119 1 .119 1.196 as -
WITHIN
GROUPS 14.454 232 .062



Table 10 
(Continued)

Analysis of Variance

Normal Error Level By Asymmetric Error Level By Monotonic Distortion

Nonmetric Recovery (Fixed Effects Model)

SOURCE SS df MS F J2

NORMAL
ERROR
LEVEL .277 1 .277 6.71 .010

MONOT.
DISTOR. .601 1 .601 14.57 .0005

ASYMM.
ERROR 3.265 I 3.265 79.14 .0005

NORMAL
BY
MONOT. .079 1 .079 1.92 us

NORMAL
BY
ASYMM. .032 1 .032 .79 ns

MONOT.
BY
ASYMM. .127 I .127 3.071 ns

NORMAL
BY
MONOT.
BY
ASYMM. .016 I .016 .396 us

WITHIN
GROUPS 9.570 232 .041

S)2

.017

.040

.230



Table 11 

Nonmetric Analysis (NSKMDS)

Normal Error By Asymmetric Error By Monotonic Distortion

NONMETRIC METRIC
RECOVERY RECOVERY

NML
ERR

ASY
ERR

MON
DIST MEAN

STD
DEV MEAN

STD
DEV

2 2 1.5 .782 .189 .636 .292

2 2 3 .781 .173 .495 .292

2 4 1.5 .635 .170 .311 .205

2 4 3 .509 .200 .242 .187

4 2 1.5 .791 .142 .568 .262

4 2 3 .684 .210 .546 .274

4 4 1.5 .564 .255 .324 .264

4 4 3 .398 .257 .196 .194



Although canonical analysis of asymmetry is not a new technique, it seems to have 

rarely if ever been used. Therefore there is little experience with its performance, and 

simulations similar to those conducted with NSKMDS appear useful. The general settings for 

these studies are the same as those for the simulations involving the nonmetric technique.

Monotonic distortion. Two hundred and twenty trials were run, spanning monotonic 

distortion levels between 1.0 (no distortion) and 3.0, in increments of 0.1. Thus, the levels

1.0, 1.1, 1.2, ... 2.8, 2.9, and 3.0 were included in the study. Only positively accelerated 

distortion was used. Normal and asymmetric error levels were set to zero.

The results are shown in Table 12 and in Figure 7. Nonmetric recovery is almost 

perfect, with a mean recovery index above .96 for all levels of monotonic distortion. Metric 

recovery shows a steady decline, from 1.000 in the no-distortion condition, to .732 at a 

distortion level of 3.0. For metric recovery the linear trend is significant, E (l, 19) =

472.99, p < .0005, with a slope of -. 13. The linear trend for nonmetric recovery is 

agnificant as well, E(l, 19) =  13.09, p < .005, although the slope is only -.01. There is 

heteroscedasticity for both the metric recovery index, = 5041.00, p <  .05, and the 

nonmetric index, = 9801, p <  .05.



Table 12

Canonical Analysis of Asymmetry (CAA)

Recovery Under Positively Accelerated Monotonic Distortion



FIGURE 7

CAA: ACCELERATED DISTORTION



At first glance it seems counterintuitive that a metric technique would have relatively 

more difficulty with metric than with nonmetric recovery. However, in positively accelerated 

distortion, large matrix entries are made disproportionately even larger. A metric technique 

will attempt to reproduce these large entries. However, in doing so it will depart from the 

magnitude, although not necessarily the rank order, of many of the entries in the original, 

non-distorted matrix.

To study the effects of negatively accelerated distortion, monotonicity coefficients of 

.67, .50, .40, .33, .29, .25, .22, and .20 were used. These values are the reciprocals of 

representative levels of positively accelerated distortion, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and

5.0. Decreasing coefficients correspond to increasing levels of distortion. Forty trials were 

run at each distortion level. Normal and asymmetric error were set to zero.

The results are shown in Table 7, and in Figure 8. Metric recovery declines 

gradually from .977 at the .67 distortion level, to .836 at the .20 distortion level. For 

negatively accelerated distortion, nonmetric recovery also declines, albeit gradually, from .990 

at the .67 distortion level, to .898 at the .20 distortion level. The linear downward trend 

involving the means is significant: For metric recovery, F (l,6) — 186.04, p  < .0005, with a 

Slope of .31. For nonmetric recovery, E(l,6) =  30.57, p <  .001, with a slope of .19. The 

heteroscedasticity is significant, even after excluding conditions with no variability: Em = 

129.39, p < .05 for metric recovery, and = 676.00, p < .05 for nonmetric recovery. 

As the trial-to-trial variability in recovery increases, the mean recovery level goes down.
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Normal error. An advantage of standard factor analysis over nonmetric factoring, is 

the relative resistance of the metric technique to disruption by error. As recovery in 

NSKMDS declines steadily with error, it seemed reasonable to study canonical analysis of 

asymmetry under the same conditions. One hundred and ten trials, spanning 11 levels of 

normally-distributed error, were run. The normal error levels ranged from 0 (no error) to

5.0, in increments of 0.5. Asymmetric error and monotonic distortion were not included in 

these trials.

Results are shown in Table 13, and in Figure 9. Mean metric recovery declines 

gradually, from 1.000 at an error level of 0, to .826 and .873 at error levels of 4.5 and 5.0. 

The linear trend component is significant, E(l, 9) =  98.57, p <  .0005, and has a slope of - 

.03. Nonmetric recovery is more variable, although the downward linear trend is significant, 

EG,9) = 10.88, p < .01, with a slope of -.03. The conditions differ in their variability to a 

significant extent: Em* =  112.89, p < .05 for metric recovery, and = 506.25, p <

.05 for nonmetric recovery.

Nonmetric recovery is consistently lower than metric recovery. This contrasts with 

NSKMDS, for which nonmetric recovery generally appeared higher than metric recovery in 

die normal error conditions. However, inspection of Tables 8 and 13 suggests that nonmetric 

recovery may nonetheless be higher in an absolute sense, for the canonical analysis of 

asymmetry. The two techniques will be contrasted explicitly in the next chapter.



Recovery As A Function Of Normal Error

NONMETRIC METRIC
RECOVERY RECOVERY

ERROR
LEVEL N MEAN STD. DEV. MEAN STD. DEV.

0.0 15 1.000 0.000 1.000 0.000

0.5 8 0.973 0.010 0.983 0.008

1.0 14 0.852 0.225 0.967 0.019

1.5 6 0.936 0.042 0.960 0.021

2.0 10 0.825 0.074 0.944 0.022

2.5 3 0.903 0.123 0.924 0.038

3.0 10 0.864 0.081 0.893 0.036

3.5 14 0.858 0.081 0.867 0.075

4.0 8 0.849 0.089 0.861 0.085

4.5 11 0.794 0.225 0.826 0.065

5.0 It 0.858 0.067 0.873 0.059

Asymmetric error. One hundred and ten trials were run, spanning eleven asymmetric 

error levels. Levels from 0 to 5, in increments of 0.5, were included in the study. Thus, 

metric and nonmetric recovery were assessed at asymmetric error levels of 0, 0.5, 1.0 ... 4.5,

5.0. Error level is the sum of squared differences between the true and error-perturbed 

matrices, as a
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proportion of the true sum of squares. Thus, an error level of 3 indicates that the residual 

sum of squares is 3 times greater than the sum of squares of the true matrix entries.

Results are shown in Table 14, and in Figure 10. Mean metric recovery declines 

gradually from 1.000 in the no-error condition, to .804 at an error level of 5.0. The linear 

trend component is significant, E (l, 9) = 50.41, ji <  .0005, and has a slope of -.03. 

Nonmetric recovery shows a similar pattern,

Table 14

Canonical Analysis of Asymmetry (CAA)

Recovery As A Function Of Asymmetric Error

NONMETRIC METRIC
RECOVERY RECOVERY

ERROR
LEVEL N MEAN STD. DEV. MEAN STD. DEV.

0.0 9 1.000 0.000 1.000 0.000

0.5 9 0.912 0.064 0.951 0.033

1.0 11 0.946 0.060 0.968 0.014

1.5 11 0.936 0.037 0.951 0.030

2.0 16 0.891 0.096 0.939 0.028

2.5 6 0.887 0.041 0.902 0.044

3.0 16 0.855 0.101 0.867 0.089

3.5 10 0.888 0.029 0.918 0.026

4.0 8 0.849 0.058 0.868 0.050

4.5 6 0.772 0.124 0.875 0.074

5.0 8 0.839 0.090 0.804 0.105
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declining from a mean of 1.000 at an error level of 0, to a mean of .772 at an error level of

4.5. Here, too, the linear trend component is significant, £ (1 , 9) =  31.91, g < .0005, with 

a slope of -.03. The variance differs significantly among conditions, with £„,„ =  56.25, g 

< .05, for metric recovery, and =  18.28, g <  .05, for nonmetric recovery.

Hence, CAA, as NSKMDS, appears to be affected by asymmetric error. Comparing 

Tables 9 and 14 it appears that NSKMDS is affected more strongly by asymmetric error than 

is CAA. The two analysis techniques are compared directly in the next chapter.

Interaction. The canonical analysis of asymmetry appears to maintain acceptably high rates of 

recovery in tire presence of even relatively large amounts of normal and asymmetric error, 

and monotonic distortion. Actual data, however, are likely to contain all three types of 

perturbation, and hence it is important to assess for interaction effects.

Two hundred and forty trials were run corresponding to the eight cells of a 

completely crossed two (normal error level) by two (asymmetric error level) by two 

(monotonic distortion level) factorial ANOVA. Tire normal error levels 2 and 4, the 

asymmetric error levels 2 and 4, and the monotonic distortion levels 1.5 and 3 were 

represented in the design. These levels were chosen to minimize "ceiling" and "floor” effects; 

that is, to prevent the results for two or more cells in the design from converging due to 

maximal or minimal recovery. For each of the 240 trials the combination of error and 

monotonic distortion conditions was assigned at random. However, heterogeneity of variance 

was expected, and therefore after the 240 trials had been run, entries were deleted at random 

from cells with more than 30 trials and additional simulations were run to supplement cells 

with less than 30 trials, to ensure a balanced design.



Results are shown in Tables IS and 16. For metric recovery, under a fixed effects 

model only the main effects for monotonic distortion and asymmetric error are significant.

The effect sizes are 5>2=.036 for monotonic distortion and S>2=.298 for asymmetric error. 

None of the two-way interactions are significant, nor is the three-way interaction or the 

normal error level main effect The results under a random effects model are strongly 

influenced by the virtual absence of a sum of squares for the three-way interaction. This 

ensures that each of the two way interactions is significant Quasi-E ratios for the three main 

effects are not significant. As expected, there was marked heterogeneity of variance, 

Eobx=992.25, £< .05 .

The fact that the mean square for the three way interaction is much lower than the 

pooled within cells mean square suggests that the three way interaction is not appropriate to 

use as an error term in this analysis. The feet that none of the interactions are significant 

when tested against the pooled within cells mean square suggests that the three types of 

perturbation are independent in their effects.

For nonmetric recovery, only the main effects of asymmetric error and monotonic 

distortion ate significant under a fixed effects model. Effect sizes are &r=.Q24 for monotonic 

distortion and S>2=.256 for asymmetric error. None of the interactions, nor the normal error 

main effect, are significant under a fixed effects analysis. Under a random effects model, the 

monotonic distortion and asymmetric error main effects remain significant. In addition the 

normal error by asymmetric error interaction achieves significance when tested against the 

mean square for the three-way interaction. Heterogeneity of variance was present, as 

indicated by Hartley’s (1950) test, Enaut=529.00, p< .05.



The same concerns for the appropriateness of using the three-way interaction as an 

error term would seem to apply in the analysis of nonmetric recovery as pertained in the 

analysis of metric recovery.

Table 15

Canonical Analysis of Asymmetry (CAA)

Normal Error By Asymmetric Error By Monotonic Distortion

NONMETRIC METRIC
RECOVERY RECOVERY

NML.
ERROR

ASY.
ERROR

MON.
DIST. MEAN

STD.
DEV. MEAN

STD.
DEV.

2 2 1.5 .899 .003 .923 .002

2 2 3 .827 .014 O A A.0*t*T .003

2 4 1.5 .630 .065 .658 .063

2 4 3 .507 .069 .504 .063

4 2 1.5 .845 .029 .858 .032

4 2 3 .789 .041 .827 .012

4 4 1.5 .651 .055 .678 .062

4 4 3 .584 .064 .572 .061



Analysis of Variance 

Normal Error Level By Asymmetric Error Level By Monotonic Distortion

Metric Recovery (Fixed Effects Model)

SOURCE SS df MS F g

NORMAL
ERROR
LEVEL .000 I .000 .003 os

MONOT.
DBTOR. .516 1 .516 13.82 .0005

ASYMM.
ERROR 4.046 1 4.046 108.35 .0005

NORMAL
BY
MONOT. .034 I .034 .920 ns

NORMAL
BY
ASYMM. .107 1 .107 2.86 us

MONOT.
BY
ASYMM. .084 1 .084 2.25 us

NORMAL
BY
MONOT.
BY
ASYMM. .000 1 .000 .000 ng

WITHIN
GROUPS 8.663 232 .037

Zi2

.036

.298



Table 16 
(Continued)

Analysis of Variance

Normal Error Level By Asymmetric Error Level By Monotonic Distortion

Nonmetric Recovery (Fixed Effects Model)

SOURCE SS df MS F p

NORMAL
ERROR
LEVEL .000 I .000 .003 ns

MONOT.
DISTOR. .382 1 .382 8.98 .003

ASYMM.
ERROR 3.655 1 3.655 85.99 .0005

NORMAL
BY
MONOT. .020 I .020 .468 ns

NORMAL
BY
ASYMM. .137 I .137 3.22 ns

MONOT.
BY
ASYMM. .015 1 .015 .355 ns

NORMAL
BY
MONOT.
BY
ASYMM. .006 1 .006 .139 ns

WITHIN
GROUPS 9.862 232 .043

S)2

.024

.256



Considered by itself, then, the nonmetric analysis of skew-symmetry appears to 

function quite well in the presence of reasonable levels of normal and asymmetric error, and 

monotonic distortion. There is little evidence from the simulations to suggest that these three 

factors interact to lower the performance of the algorithm. Moreover, metric and nonmetric 

recovery levels have been high enough that it seems reasonable use die algorithm in the 

analysis of actual data However, the performance of its metric counterpart, the canonical 

analysis of asymmetry, thus far appears at least as high. Therefore, several simulations were 

conducted to compare the two techniques.

Monotonic distortion. To study the effects of accelerating monotonic distortion 

(exponents >  1.0), 20 trials were run for each of the two analysis methods, at each of eight 

distortion levels, in a completely crossed factorial design. The eight distortion levels were

1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0. The variance components of interest were the 

main effect for analysis type, and the analysis type by distortion level interaction.

Results are shown in Tables 17 and 18, and in Figures 11a and lib . For metric 

recovery, neither effect of interest is significant whether distortion level is treated as a fixed or 

random effect. For nonmetric recovery, the main effect for analysis type is significant under 

both a fixed effect and a random effect model. As may be seen in Tables 17 and 18, and in 

Figure 11a, there is a small but consistent tendency for the metric technique to give higher 

nonmetric recoveries than does the nonmetric technique.



Fixed Effects Model

SOURCE SS df MS F g

DISTORTION
LEVEL 7.616 7 1.088 131.61 .0005

METHOD .006 1 .006 .707 ns

DISTORTION 
LEVEL BY
METHOD .082 7 .012 1.42 ns

WITHIN
GROUPS 2.513 304 .008

Method= Fixed Effect. Distortion Level= Random Effect

SOURCE SS

DISTORTION
LEVEL 7.616

METHOD .006

df MS F

7 1.088 131.61

I .006 .500

DISTORTION 
LEVEL BY
METHOD .082 7 .012 1.42

8)2

.739

R

.0005

OS

ns



Fixed Effects Model

SOURCE

DISTORTION
LEVEL

METHOD

DISTORTION 
LEVEL BY 
METHOD

WITHIN
GROUPS

SOURCE

DISTORTION
LEVEL

METHOD

DISTORTION 
LEVEL BY 
METHOD

SS df

.114 7

.038 I

.031 7

1.437 304

SS df

.114 7

.038 1

.031 7

MS F

.016 3.43

.038 7.93

.004 .934

.005

MS

.016

.038

.004

H Sr

.005 .049

.005 .020

US -

f  a

3.43 .005

9.50 .05

.93 ng

Method= Fixed Effect. Distortion Level= Random Effect



ME
TR

IC
 

RE
CO

VE
RY

FIGURE 11A
METRIC RECOVERY V. 

ACCELERATED DISTORTION

MONOTONIC DISTORTION LEVEL



NO
NM

ET
RI

C 
RE

CO
VE

RY

FIGURE 11B
NONMETRIC RECOVERY V. 

ACCELERATED DISTORTION

MONOTONIC DISTORTION LEVEL



This result, however, should be qualified in two ways. First, S)2 for the main effect of 

analysis type is quite small, at .02. Second, both techniques appear to be providing 

nonmetric recovery at acceptable levels, greater than .91 forNSKMDS and greater than .94 

for the canonical analysis of asymmetry.

Decelerating monotonic distortions were studied in a completely crossed two-way 

factorial design. Eight distortion levels, 0.67, 0.50, 0.40, 0.33, 0.29, 0.25, 0.22, and 0.20, 

were crossed with metric vs. nonmetric analysis type. The eight distortion levels included in 

the design were the reciprocals of the eight levels of accelerating distortion used in the 

previous simulation. Twenty trials were run for each of the sixteen cells in the design. The 

magnitudes of metric and nonmetric recovery were reported above, in Table 7.

The ANOVA for metric recovery is shown in Table 19. As may be seen, the main 

effect for analysis method, the main effect for distortion level, and the interaction are 

significant, both when distortion level is treated as random, and when it is treated as fixed. <h2 

for the main effect of analysis method is 0.332. 5>2 for the interaction is .064. As shown in 

Figure 12, metric recovery is consistently higher with the nonmetric algorithm. The effect 

appears to be particularly strong at the higher levels of distortion, which may account for the 

interaction. Not surprisingly, given the size of the main effect, the simple main effects are 

significant at all levels of distortion.



Fixed Effects Model

Source SS d f MS F g

DISTORTION
LEVEL .305 7 .044 24.04 .0005

METHOD .483 I .483 266.40 .0005

DISTORTION 
LEVEL BY
METHOD .107 7 .015 8.44 .0005

WITHIN
GROUPS .551 304 .002

Method= Fixed Effect. Distortion Level= Random Effect

Source

DISTORTION
LEVEL

METHOD

DISTORTION 
LEVEL BY 
METHOD

SS

.305

.483

.107

df

7

1

7

MS

.044

.483

.015

24.04

32.20

8.44

S)2

.201

.332

.064

R

.0005

.001

.0005



FIGURE 12
METRIC RECOVERY V. 

DECELERATED DISTORTION



For nonmetric recovery, results are shown in Table 20 and in Figure 13.

Table 20

Analysis Method vs. Decelerated Monotonic Distortion Level 

Analysis of Variance For Nonmetric Recovery

Fixed Effects Model

Source SS df MS

DISTORTION
LEVEL .123 7 .018

METHOD .129 1 .129

DISTORTION 
LEVEL BY
METHOD .046 7 .007

WITHIN
GROUPS .199 304 .001

26.74

196.54

9.98

.0005

.0005

.0005

Method—Fixed Effect. Distortion Level= Random Effect

Source

DISTORTION
LEVEL

METHOD

DISTORTION 
LEVEL BY 
METHOD

WITHIN
GROUPS

SS

.123

.129

.046

df

7

1

7

MS

.018

.129

.007

26.74

18.43

S)2

.233

.257

.078

R

.0005

.01



FIGURE 13
NONMETRIC RECOVERY V. 

DECELERATED DISTORTION



The two main effects and the interaction are significant, when distortion level is treated as 

random, and when it is treated as fixed. S>2 for the main effect of analysis type is .257. S>2 

for the interaction is .078. The nonmetric algorithm gives higher nonmetric recovery levels. 

This effect appears to be strongest at the higher distortion levels, which seems to underlie the 

interaction. The simple main effects are significant at all monotonic distortion levels, as 

would be expected given the magnitude of the main effect

Hence there is a suggestion that the nonmetric technique is superior for both metric 

and nonmetric recovery under a decelerating monotonic distortion. Moreover, the effect sizes 

associated with this appear reasonably high. Nonetheless, both techniques are giving a good 

reproduction of the true matrix entries. In all conditions, metric recovery is greater than .920 

for NSKMDS, and greater than 0.830 for the canonical analysis of asymmetry. Nonmetric 

recovery is greater than .960 for NSKMDS and greater than .890 for the canonical analysis of 

asymmetry.

Normal error. Although the nonmetric analysis of skew-symmetry appeared to handle 

moderate levels of normal error reasonably well, susceptibility to error is generally a weakness 

of nonmetric algorithms. Therefore, NSKMDS was tested against the canonical analysis of 

asymmetry in the presence of normal error.

Four error levels, 1.0, 2.0, 3.0, and 4.0, were combined with analysis method 

(NSKMDS, the canonical analysis of asymmetry) in a completely crossed factorial design. 

Twenty trials were run for each of the eight cells.



For metric recovery, the main effects of error level and of analysis type are 

significant, regardless of whether error level is treated as a random or a fixed effect (Table 

21). The interaction is not significant under either model. The main effects are shown in 

Figure 14a, where it may be noted that die canonical analysis of skew-symmetry provides
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Source SS df MS F R S)2

ERROR LEVEL .495 3 .165 12.60 .0005 .134

METHOD .488 1 .488 37.24 .0005 .140

ERROR LEVEL 
BY METHOD .416 3 .139 10.57 .0005 .111

WITHIN
GROUPS 1.993 152 .013

Method= Fixed Effect. Error Level= Random Effect

Source SS df MS F R
ERROR LEVEL .495 3 .165 12.60 .0005

METHOD .488 1 .488 3.51 US

ERROR LEVEL 
BY METHOD .416 3 .139 10.57 .0005

WITHIN
GROUPS 1.993 152 .013

superior metric recovery. The effect size is quite high, with S)2 =  .301 for the main effect of 

method.

For nonmetric recovery (Table 22) the main effect for error level and the interaction 

of error level with analysis type are significant, when error level is treated as a random effect



and when it is treated as a fixed effect The main effect of analysis type is significant under 

the fixed effects but not the random effects model. 5>2 for the analysis type main effect is 

.140, and fix- the interaction 3>2 is .111. As suggested by Figure 14b, the canonical analysis 

of asymmetry provides higher nonmetric recovery than NSKMDS at error levels 2.0, and

4.0. The simple main effect is not significant at error levels of 1.0 and 3.0. It seems likely, 

however, that the absence of significance at the 3.0 level is a Type 0 error, and that the 

canonical analysis of asymmetry provides better recovery, at least at the higher error levels.

As in previous simulations, the differences between the two techniques appear greatest 

at higher error levels than would presumably be encountered in actual data. At the 1.0 error 

level the nonmetric recoveries do not differ significantly between the two techniques, and both 

metric and nonmetric recoveries appear acceptably high for NSKMDS. Nonetheless the 

magnitude of the main effect is large, and particularly when reasonably high levels of normal 

error are expected, CAA seems to be a better choice of analysis technique.

Asymmetric error. Because the effect of asymmetric error is potentially different 

from that of normal error, it was studied in a separate simulation.

Four levels of asymmetric error, 1.0, 2.0, 3.0, and 4.0, were combined with analysis 

method in a completely crossed factorial. Twenty trials were run for each of the eight cells.

The results for metric recovery are shown in Table 23. The main effect for error 

level and the analysis method by error level interaction are significant under a fixed effects 

model and when error level is regarded as a random effect The main effect of method is



Source SS df MS F P S)2

ERROR LEVEL 1.523 3 .508 23.564 .000 .228

METHOD .962 I .962 44.656 .000 .147

ERROR LEVEL 
BY METHOD .596 3 .199 9.228 .000 .083

WITHIN
GROUPS 3.274 152 .022

Method= Fixed Effect. Error Level= Random Effect

Source SS d f MS F R

ERROR LEVEL 1.523 3 .508 23.56 .0005

METHOD .962 1 .962 4.83 US

ERROR LEVEL 
BY METHOD .5% 3 .199 9.23 .0005

WITHIN
GROUPS 3.274 152 .022

significant only under a fixed effects model. Analysis of the simple main effects of analysis 

type indicates that metric recovery is significantly higher for die canonical analysis of 

asymmetries at error levels 2.0, 3.0, and 4.0 (see Figure 15).

For nonmetric recovery the results are shown in Table 24 and in Figure 16.



Source SS df MS F R S)2

ERROR LEVEL .493 3 .164 12.07 .000 .161

METHOD .040 I .041 2.98 US -

ERROR LEVEL 
BY METHOD .176 3 .059 4.30 .006 .048

WITHIN
GROUPS 2.070 152 .014

Method=Fixed Effect. Error Level= Random Effect

Source SS df MS F R
ERROR LEVEL .493 3 .164 12.071 .000

METHOD .040 I .041 .695 OS

ERROR LEVEL 
BY METHOD .176 3 .059 4.304 .006

WITHIN
GROUPS 2.070 152 .014

The main effect for error level and the interaction of error level with analysis type, are 

significant whether error level is treated as fixed or random. The main effect of analysis type 

is not significant. Analysis of the ample main effects indicates significantly higher nonmetric 

recovery by the canonical analysis of asymmetry at the 3.0 error level. Differences at the
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other levels were not significant. It seems likely that underlying this mix of results is a 

slightly better nonmetric recovery by the canonical analysis of asymmetry at the higher error 

levels, and that the absence of a significant difference at the 4.0 error level is a Type II error.

Rpaiisrir rewtiHnnc We have seen, then, that the canonical analysis of asymmetry 

provides better metric and nonmetric recoveries than NSKMDS, in the presence of high 

amounts of error in the input data. The two techniques do not seem to differ to a substantive 

extent in the presence of positively accelerated monotonic distortion, but NSKMDS provides 

better recovery with negatively accelerated distortions. Given this mix of findings it seemed 

desirable to compare the two techniques under combinations of error and monotonic distortion 

that might be expected to occur in neal-world data

Two simulations were run. In the first, normal error was set to 0.67, asymmetric 

error was set to 0.33, and monotonic distortion was set to 0.3. Thus, the error variation 

before monotonic distortion equaled the true sum of squares, analogous to a reliability of 0.5 

at the level of the individual subject The monotonic distortion level is the same as in the 

sone scale for loudness and the bril scale for brightness of a five degree target in sensory 

psychophysics (Stevens, 1960). One hundred trials were run for each analysis type.

Under these conditions, the relatively large sample size provides stable estimates of the 

expected recovery levels. For NSKMDS the mean metric recovery was 0.956, with a 

standard error of the mean of 0.004. The mean nonmetric recovery was 0.959, with a 

standard error of 0.003. For the canonical analysis of asymmetry the mean metric recovery 

is 0.963, with a standard error of 0.002, and the mean nonmetric recovery is 0.953, with a
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standard error of 0.010. Despite the stability of the estimates, the differences between the 

techniques are not statistically significant, £(198) =  1.76, as, for metric recovery, and £(198)

= -0.59, as, for nonmetric recovery.

In the second simulation, normal error and asymmetric error were set to 0.67 and 

0.33, respectively, as before. Monotonic distortion was set to 1.5, approximately equal to the 

power law exponent for the heaviness of lifted weights (Stevens, 1957). For NSKMDS the 

mean metric recovery was 0.965, with a standard error of 0.002, and the mean nonmetric 

recovery was 0.959, with a standard error of 0.009. For the canonical analysis of asymmetry 

the mean metric recovery was 0.975, with a standard error of 0.001, and the mean nonmetric 

recovery was 0.969, with a standard of 0.003. The difference in nonmetric recoveries is not 

significant, £(198) =  1.03, us, while the difference in metric recoveries is significant, £(198)

= 4.36, p<.0005.

Thus, there are technical grounds for asserting that the canonical analysis of 

asymmetry provides better metric recovery under realistic error conditions, when the 

monotonic transform is positively accelerated. At this point, however, we are splitting hairs. 

Metric and nonmetric recovery are above 0.95 for each technique under each set of 

conditions. For all practical purposes they are providing solutions that are identical to die true 

configuration, and therefore to each other.



Chapter 12 

Eigenvalue Ratio Test

For principal components analysis, several techniques are available for determining 

which components should be retained in the solution. Common practices include visually 

inspecting an eigenvalue plot far a scree-like appearance of the later factors (Cartel!, 1966), 

retaining factors whose eigenvalue exceeds 1.0 (Kaiser, 1960, however see Cliff, 1988), 

testing the later eigenvalues for equality in the population (Bartlett, 1950), and comparing the 

eigenvalues in a principal components analysis with the eigenvalues that would be obtained 

from analysis of random normal variables of the same number and sample size ("parallel 

analysis”; Horn, 1965; Lautenschlager, 1989)3. It is unclear, however, whether these 

techniques can be transferred to the canonical analysis of asymmetry. In this section I 

describe a technique for testing the components of a skew-symmetric matrix, and present 

simulation studies of the technique. To my knowledge this technique is new to this 

dissertation, although as noted below, it builds on prior work by others.

Craddock and Flood (1969) noted that the last, presumably error, factors in a 

principal components analysis appear to show an exponential decline in eigenvalue with 

respect to factor number. Hence, they plotted the logarithms of the eigenvalues against the 

factor number and inspected the graph for a terminal straight line segment. A straight line 

having negative slope would indicate an exponential decay presumably more characteristic of

3 See Borkum (1993) for a more extensive review and an alternative proposal.



error than of true factors.4 LautenschJager’s (1989) extensive simulations of principal 

components with random data, which he presents in tabular form, do seem to demonstrate an 

exponential decay. Similar results have been reported by Farmer (1971) and by Mandel 

(1972). Thus, the ratios between successive error eigenvalues should be equal,

(W  = (A/A*) ,

or

(A/A)  /  (A/A*) = 1 (14)

where j =  i+ 1  and k = j+ 1. If an exponential decay of eigenvalues is a general characteristic 

of random matrices, then it may be possible to use the (eft side of Equation 14 as a test 

statistic for determining the number of eigenvectors to retain. For skew-symmetric matrices, 

however, a modification is needed. Because the eigenvalues occur in pairs, the members of 

which are equal in magnitude, it would always be the case that Aj = -Aj when j =  i +  1 , 

and j is an even number. We can remedy this, however, by requiring that Ai? Aj, and Ak be 

from successive pairs — i.e., that j= i+ 2 , and k = j+ 2 .

Simulations were conducted to investigate whether this eigenvalue ratio approach 

shows promise for the canonical analysis of asymmetry.

First, 1000 trials were conducted in which the canonical analysis of asymmetry was 

used to analyze the skew-symmetries in random matrices. Normal error level was set to 1.5,

4 Note, however, that the eigenvalues in Johnson et a l.'s  (1984) factor analysis of the 
MMPI also show an exponential decay, once the first factor is excluded. Jackson 
(1959) has argued that the MMPI is a one-factor instrument. If the succeeding factors 
are valid, however, then a log eigenvalue plot of the MMPI factors should presumably 
divide into two straight line segments, the first, "true" segment having a steeper slope 
than the second, "error" segment.



asymmetric error and true asymmetric variation were both set to 0, and monotonic distortion 

level was set to 1.0 (no distortion). The mean eigenvalues across the 1000 trials are shown in 

Table 25. The ratios between the mean

Table 25

Eigenvalues of Skew-Symmetries for Random Normal Matrices

RATIO TO STD.
EIGENVALS MEAN PRIOR E.V. DEV. SKEWNESS KURTOSIS

1 and 2 1.059 — 0.109 -.163 0.361

3 and 4 0.746 0.7044 0.100 0.283 0.009

5 and 6 0.535 0.7172 0.077 0.091 -.351

7 and 8 0.356 0.6654 0.061 -.035 -.169

9 and 10 0.163 0.4579 0.070 0.118 -.501

Note. Based on a 1000 trial simulation.

eigenvalues of successive pairs are .7044, .7172, .6654, and .4579. With the exception of 

the last, the ratios appeared close enough to each other to justify further exploration.

In the next simulation the ratio of the first and third eigenvalues was divided by the 

ratio of the third and fifth eigenvalues,

(A.t / X3) / (A3 / Xj) = EVR1 (first eigenvalue ratio) 

and the distribution of this value across trials was tabulated. Normal error level was set to 

0.67, asymmetric error level was set to 0.33, and monotonic distortion set to 1.5. These



conditions appeared reasonably representative of actual data. In one condition, two "true" 

vectors were used in constructing the asymmetries. In the second condition there was no true 

variance underlying the skew-symmetries. Asymmetric error was also set to zero, as there 

were no asymmetry vectors to perturb, and monotonicity was set to 1.0. To compensate for 

the loss of asymmetric error, normal error was increased proportionately, to 1.40. One 

hundred trials were run under each of the two sets of conditions.

Under the true asymmetry condition, the eigenvalue ratio varied between 7.336 and 

418.697, with a mean of 89.505. Under the pure error condition, the eigenvalue ratio varied 

between 0.255 and 6.380, with a mean of 1.479. As may be seen in Figure 17, there is no 

overlap between the distributions in the true and error conditions. Any cutoff value between 

6.380 and 7.336 would, in this small sample, reduce the Type I and Type II error rates to 

zero. The mean under the pure error condition, 1.479, is significantly greater than 1.0, t(99) 

=  4.129, p <  .001.

In a second, exploratory test, a smaller effect size was mimicked by increasing the 

error level. In the "true asymmetries" condition, normal error was raised to 1.33 and 

asymmetric error was increased to 0.67. The level of monotonic distortion was kept at 1.5.

In the "random” condition, the normal error level was increased proportionately to 3.0. One 

hundred trials were run in each condition.

When true vectors underlie the asymmetric part of the matrix, the eigenvalue ratio 

varies between 7.913 and 258.270, with a mean of 58.510. When the asymmetries consist 

only of error, the eigenvalue ratio varies between 0.147 and 4.341 with a mean of 1.288.



FIGURE 17
DISTRIBUTION OF EVR1 

#  FACTORS=0 # FACTORS=2



The mean of the error condition is significantly greater than one, 1(99) =  3.064, p <  .01. 

With the increased error the means of the two distributions appear to have drawn closer. 

However, the standard deviations have also declined. As seen in Figure 18, there is no 

overlap, and any cutoff value between 4.341 and 7.913 would reduce the Type I and Type D 

error rates to zero in this limited number of trials.

As noted, die mean in both error conditions exceeded 1.0. This seems most likely to 

be an effect of using the arithmetic mean when the quantity varying is a ratio. That is, 

assume that A, and A3 each have a mean of 1.0, but that fluctuations to 1.5 and 0.5 are equally 

likely. Then the ratios (1.5/.5) = 3.0 and (.5/1.5) =  .33 are equally likely. However, 

(3.00+0.33)/2 =  1.67. The upward shift would not occur had we taken the geometric 

mean, as SQRT(3.0*.33) = SQRT(1) =  1. Moreover, the eigenvalues in the canonical 

analysis of asymmetry are the squares of those of die skew-symmetric matrix. The squaring 

would presumably increase the upward shift of the arithmetic mean. Therefore, in the 

remaining simulations, square roots of the eigenvalues were used.

To help gauge die usefulness of the test more precisely, and to extend it beyond the 

first pair of eigenvalues, 1000 trials were run on random matrices. Normal error was set to 

1.50, asymmetric error and true variation were set to zero, and monotonic distortion was 

switched off. The following ratios were tabulated:

(/A, / VrA3) / (/Aj / /A s) first eigenvalue ratio (EVR1)

(/A3 / /A 5) / (/Aj / /A j) second eigenvalue ratio (EVR2)

and

(/Aj / /A 7) / (/A 7 / /Aq) third eigenvalue ratio (EVR3).
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Aspects of the distributions of the three ratios are shown in Table 26. The means of the three 

distributions do not equal 1.0, nor do they equal one another, although the first two means,

Table 26

Normative Values for the Eigenvalue Ratio Test

STD. 95th 99th 99.5
MEAN DEV. SKEWNESS %ile %ile %ile

EVR1 1.160 0.564 1.623 2.211 2.957 3.475

EVR2 0.967 0.510 1.445 1.908 2.840 3.086

EVR3 0.629 0.598 2.490 1.722 3.148 3.661

Note. Based on a 1000 trial simulation with random normal matrices.

1.160 and 0.967, are close to 1.0. Despite the bell-shaped appearance of Figures 17 and 18, 

none of the three distributions here, after standardizing to zero mean and unit standard 

deviation, conform to a normal distribution, as assessed by the Komolgorov-Smimov test. 

Therefore the upper percentiles, corresponding to a  levels of .05, .01, and .005, were 

obtained empirically, as described below.

Four additional simulations were then conducted. The simulations were identical to 

the 1000-trial condition just described, except that small amounts of true asymmetric variation 

were added. In the first simulation, true asymmetric variation was set to 0.03. On average, 

only 45% of the normal error variance contributes to the skew-symmetric part of a ten by ten 

matrix, the rest going towards the symmetric part and the diagonal. Therefore the true 

asymmetry level of .03 corresponds to a correlation ratio for the skew-symmetries of



.03/(.03+1.5*45) =  .05.

In the second simulation, the true asymmetry level was .12, corresponding to a correlation 

ratio for the skew-symmetries o f . 15. In the third simulation, the true asymmetry level was 

.55, giving a correlation ratio for the asymmetries of .45. In the fourth simulation the true 

asymmetry level was 1.01, corresponding to a correlation ratio for the asymmetries of .60. If 

we had defined the correlation ratio as the true variation in the matrix, divided by the true 

plus symmetric, asymmetric, and diagonal error variation, the correlation ratios for the four 

simulations would have been computed as .023, .074, .269, and .403, approximately one half 

the sizes noted above.

Each of the four simulations consisted of 100 trials. EVR1, EVR2, and EVR3 were 

computed on each trial and the distributions tabulated. In particular, the 1000 trial null 

simulation noted above was used to obtain the cutoff value for a  = .05, for each of the three 

ratios. Then, in each of the four non-null simulations described here, the number of trials 

were counted in which each of the ratios were above the cutoff value. For EVR1 , 

corresponding to the two true asymmetric vectors, this permitted some assessment of the 

power of the test in the presence of different effect sizes in the population. For EVR2 and 

EVR3, the distributions provide a check on the presumed a  level.

Results are shown in Table 27. For EVR2 and EVR3, the a  levels appear to be 

approximately .05, with some variation in either direction. For EVR1, it appears that the 

test's power depends strongly on the effect size. At a .05 correlation ratio for the 

asymmetries (.023 overall correlation ratio), 8 was .90, corresponding to a power level of 

. 10. For a correlation ratio of . 15 for the skew-symmetries, 8 was .67, and power was .33.



For a correlation ratio of .45 for the skew-symmetries, 8 was .29, and power was .71, and 

for a skew-symmetry correlation ratio of .60, 8 was .01, and power was .99.

Thus, the EVR test appears generally able to distinguish when one pair of dimensions 

underlies a skew-symmetric matrix. Five additional simulations were then conducted to assess 

its capacity to detect that two pairs of dimensions should be extracted. These simulations 

provide some indication of the power or sensitivity of EVR2, and a check on the a  level for 

EVR3. Additionally, in these simulations we would want EVR1 to reject a 2-dimensional 

solution, even though the two dimensions that it assesses actually are present in the true, 4

dimensional solution. Thus, the simulations provide a check on the a  level fra* EVR1 under 

conditions different from those in the previous simulation.

One hundred trials were conducted for each of five correlation ratios for the second 

pair of skew-symmetric dimensions. Correlation ratios used in the study were .05, . 15, .30, 

.45, and .60. The normal error level was set to 1.50, and monotonic distortion and 

asymmetric error were switched off. A fast drop-off was selected for the eigenvalues of the 

true asymmetric dimensions. In the fast drop-off, each successive pair of eigenvalues is lower 

by a factor of 1.80 than the preceding pair. Because the true eigenvalues thus show the kind 

of exponential decay thought to characterize error, the simulations presumably provide a fairly 

stringent test.



Empirically Obtained Type I and Type D Error Rates 

For the Eigenvalue Ratio Test

1 Note. Correlation ratio is the ratio of true to true plus error variation. "True" variation 
here refers to the true asymmetric variation of the last pair of dimensions, for example the 
third pair of dimensions in a 6-dimensional structure.



For each correlation ratio, the number of instances in which the test statistic, EVR1 , 

EVR2, or EVR3, was above the a =.05 level in the 1000-trial normative simulation, was 

counted. The results are shown in Table 27. The obtained a  levels for EVR1 and EVR3 are 

close to the anticipated value of .05. For EVR1, the actual or varied between .03 and < .01, 

suggesting that EVR1 may be slightly conservative under these conditions. The Type II error 

rate for EVR2 varied with the true correlation ratio. Power (1-8) was .47 at a correlation 

ratio of .05, .84 for a correlation ratio o f . 15, .96 for a correlation ratio of .30, .96 for a 

correlation ratio of .45, and .98 for a correlation ratio of .60.

The eigenvalue ratio test was then studied for its ability to detea that 3 pairs of 

dimensions should be extracted. This provides a check on the a  levels for EVR1 and EVR2, 

and on the B level for EVR3. One hundred trials were run for each of four correlation ratios 

for the third pair of dimensions underlying the skew-symmetries: .05, . 15, .30, and .45. 

Normal error level was set to 1.50, monotonic distortion and asymmetric error were switched 

off, and a fast drop-off was selected for the true eigenvalue pairs.

As in the preceding simulations, the number of times that the test statistic, EVR1 , 

EVR2, or EVR3 , was above the a =.05 cutoff value in the 1000 trial norming study, was 

counted. This is shown in Table 27. The obtained a  level for EVR2 varies between .02 and 

.07, and appears generally to confirm the expected .05 a  level. The obtained a  level for 

EVR1 varies between .02 and < .01, and suggests that EVR1 may be somewhat conservative 

under these conditions. For EVR3, the Type II error rate declines with increasing true effect 

size. For a correlation ratio of .05, power (1-8) was .33, for a correlation ratio of .15 power



was .44, for a correlation ratio of .30 power was .59, and for a correlation ratio of .45 power 

was .70.

Overall, then, the test appears to be reasonably effective at indicating the correct 

number of dimension pairs underlying the skew-symmetries. That is, it appears able to detect 

changes in the slope of the log-eigenvalue plot corresponding to a change between true and 

error variance. EVR1 and EVR3 seem to have considerably less power than researchers 

would ordinarily be used to. EVR1, fra- example, shows approximately the same relationship 

to population effect size as a 4-groups, one-way ANOVA with 3 subjects per group. This 

"under-powering" is not necessarily a disadvantage, however. One of the main criticisms of 

the use of metric MDS with nonmetric data is an apparent tendency to extract too many 

factors (Helm, 1960; Mellinger, 1956). A conservative stopping rule in factor extraction 

should help curtail a tendency to over-extraction. Moreover, in the current simulations the 

EVR stopping rule seems to accord reasonably well with the expected level of metric 

recovery. Thus, when one dimension pair underlay the asymmetries, power at the two lowest 

correlation ratios was . 10 and .33, while the mean metric recovery at the two lowest 

correlation ratios was .57 and .83. For the two highest correlation ratios, power was .71 and 

.99, and mean metric recovery was .961 and .984. Hence, although the test appears quite 

conservative, it may help screen out poorly defined components. An additional advantage of 

the test, if further studies support its use, is its ease of computation, and the fact that it recasts 

the visual inspection of a scree plot into somewhat more definite terms.



Chapter 13 

Analyses With Special Matrix Structures

One-Dimensional Asymmetries

The canonical analysis of asymmetry and NSKMDS require two dimensions to 

represent skew-symmetry. However, we may have a substantive theory in which the 

asymmetries are one-dimensional. A one-dimensional solution can occur in CAA and 

NSKMDS if the objects' coordinates fall along a straight line in the two-dimensional space. 

This will happen, for example, if all of the loadings on one dimension are constant:

Xy =  1 $  -  IjSj

and if r; =  Tj =  1 for all i, j, then

Xij =  S| -  Si .

That is, the asymmetries are explained as the difference between scores on a single set of 

additive bias coefficients, v

Table 28 shows an error-free, asymmetric matrix generated in this manner. Because 

the bias coefficients are not in any particular order the one-dimensional structure is not easily 

accessible to inspection. However, it is readily apparent in Figure 19, which is the CAA 

solution for the data. The NSKMDS solution is identical, except for a reflection of one of 

the dimensions.

Simplex

Guttman (1954) and Shepard (1978) note that a one-dimensional ordering among 

objects is often the primary feature of a proximity matrix. For example, test questions may
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differ in complexity, or depression inventory items in the severity of symptoms they reflect.

In that case, the likelihood of a subject passing a question or endorsing an item will be closely 

related to the subject's likelihood of passing questions of similar difficulty level, or endorsing 

items of similar intensity. As the questions or items become more discrepant in their 

complexity or intensity, correlations between them would decline. A correlation matrix 

among the questions, arranged in order of item difficulty, would show a characteristic pattern: 

items next to each other in the order would have the highest correlations; as items became 

more removed the correlations between them would drop. Therefore, the highest entries 

would be near the main diagonal; the size of entries would decline with increasing distance 

from the diagonal.
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FIGURE 19
CAA SOLUTION FOR ONE-DIMENSIONAL DATA

DIMENSION I



Guttman (1954) calls matrices of this type simplexes. Because of their frequent 

occurrence and parsimony he notes the importance of an ability to detect simplexes. As n 

items can be ordered in n! ways (for example, 3,628,800 orderings for 10 objects) it is often 

not possible to detect a simplex by visually inspecting or rearranging a matrix. Hence, 

Guttman (1966) uses the detection of simplexes as a key criterion for judging the adequacy of 

scaling techniques. Ideally, the technique should recover the one-dimensional ordering 

underlying the objects.

Simplexes can occur among skew-symmetries. For example, if the asymmetry in a 

matrix is due to constant error, such as a constant effect of spatial position or time order, the 

sum of cross products matrix derived from the skew-symmetries will have a simplex structure. 

Hence the canonical analysis of asymmetry will involve the representation of a simplex.

Figure 20 shows the results of a CAA of a matrix in which ail asymmetries are due to 

constant error. In the skew-symmetric part of this idealized matrix, all entries above the main 

diagonal are "2”, and all entries below the main diagonal are ”-2". (The results would be the 

same if we chose a different constant instead of "2"). As may be noted, the object points fall 

along a semicircular horseshoe curve. The results of an NSKMDS analysis of the same 

matrix are shown in Figure 21. The nonmetric analysis properly displays the one dimensional 

ordering of die object points along a straight line. In this example, then, NSKMDS provided 

a clearer representation of the simplex caused by constant error.



FIGURE 20
CAA SOLUTION FOR CONSTANT ERROR 

(SIMPLEX)
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Multiplicative Bias Coefficients

One of the simplest ways of inducing asymmetry in a matrix is to multiply each 

column or row by a different coefficient Although neither the canonical analysis of skew- 

symmetry nor its nonmetric generalization is designed to indicate the presence of multiplicative 

bias coefficients (which can be done simply by attempting to symmetrize a matrix by dividing 

entries by the row or column sums) it would be preferable if the techniques were able to 

recover bias coefficients when they are present. To explore how CAA and NSKMDS would 

handle a bias-perturbed matrix, a brief trial was conducted using Kruskal and Wish's (1977) 

symmetric matrix of ratings of the perceived similarities among twelve countries. In one 

condition, each column in Kruskal and Wish's matrix was multiplied by a different, arbitrary 

number. In a second condition, each row was multiplied by a different number and in a third 

condition, each row and each column were multiplied by arbitrary coefficients.

For CAA the eigenvalue ratio test suggests that one pair of factors be extracted for the 

column bias condition. After varimax rotation the first factor has a Pearson product moment 

correlation of .885 with the column bias coefficients. This is actually a bit lower than the 

correlations with the unrotated factors (.948 with factor 1, .908 with factor 2) but presumably 

this would not be known to a researcher in actual practice. For NSKMDS a test statistic is 

not yet available, and the algorithm is currently programmed for only a two-dimensional 

solution. However, inspection of the sums of squares of the coordinates on the two 

dimensions (3.021 and .226) suggests that only the first should be retained as contributing 

significantly to the solution. It correlates -.988 with the vector of bias coefficients.



For the row bias condition, in CAA, the values of EVR1, EVR2, and EVR3 suggest 

that only the first pair of factors should be retained. After varimax rotation, the first factor 

correlates .986 with die row bias coefficients. The correlations of the bias coefficients with 

the two unrotated factors are .942 and -.930, respectively. In NSKMDS the sum of squared 

coordinates on the two dimensions (1.46 and .56) would probably suggest a one-dimensional 

solution. Although rotation is not available, this does not seem to be a hindrance, as the first 

dimension correlates .993 with the row bias coefficients.

When both row and column bias coefficients are used, the analysis techniques should 

recover the ratio of the two coefficients for each object (country in this case) in the matrix.

For CAA the eigenvalue ratio test suggests that only the first pair of eigenvectors be retained. 

Their correlations with the ratio of the row and bias coefficients are .570 and -.910.

However, in practice a researcher would not know to select the second eigenvector. The first 

vector after varimax rotation correlates .861 with the bias coefficient ratio. For NSKMDS, 

the sum of squared coordinates on the two dimensions (.314, 1.578) suggests that only the 

second dimension be interpreted. In fact this dimension correlates .944 with the bias 

coefficient ratio.

Hence, in this brief demonstration there was some advantage to the nonmetric 

technique, in that it appears to recover multiplicative bias coefficients a bit more accurately 

than CAA, and without requiring rotation.



Chapter 14 

Published Data Sets

To check the usefulness of the canonical analysis of asymmetry and nonmetric, skew- 

symmetric MDS with real-world data, several previously published data sets were analyzed. 

The NSKMDS solutions were constrained to one and two dimensions because the technique 

has not yet been programmed for greater than two dimensions. As will be seen, however, 

this does not impede its usefulness for the data sets to follow. Moreover, for each of these 

data sets the eigenvalue ratio test suggests a two dimensional CAA solution, which should be 

an upper bound for the dimensionality of the corresponding nonmetric solution.

Correlations Among Cognitive Tests

Ham and Parsons (1997) administered six cognitive tests to 131 individuals who met 

the diagnostic criteria for alcohol dependence, at the end of a 2-3 week detoxification 

program. The test battery was also administered to 83 control subjects matched for 

handedness, education, and age. None of the subjects in either condition was judged to have 

a medical, neurological, or psychiatric disorder other than alcohol dependence that could affect 

neuropsychological functioning, and none were taking psychoactive medications. The alcohol- 

dependent subjects had lower scores on the cognitive tests. Ham and Parsons' primary 

interest, however, was on comparing the covariance structures for the alcohol-dependent and 

control subjects. Using chi-square testing in LISREL (Joreskog & Sorbom, 1989, cited in 

Ham & Parsons, 1997) they determined that the two covariance matrices differed to a 

statistically significant degree. LISREL extracted 3 factors from the 6 tests. These factors



were labelled Verbal (Shipley Vocabulary test and Wechsler Adult Intelligence Scale-Revised, 

Information subtest). Problem Solving (Shipley Abstraction test and Booklet Categories Test), 

and Visual-Spatial (Trails B and Wechsler Adult Intelligence Scale-Revised, Block Design 

subtest). It appeared from the LISREL results that the Verbal and Visual-Spatial factors were 

more highly correlated in the alcohol-dependent subjects, compared with the control subjects. 

In addition, the LISREL results suggested that the Verbal and Problem-Solving factors were 

less highly correlated in the alcohol-dependent subjects than in the control subjects. Ham and 

Parsons interpreted the increase in Verbal-Visual Spatial correlation as indicating that the 

alcohol-dependent subjects were using verbal skills to compensate for losses in spatial ability. 

They explained the decrease in the Verbal-Problem Solving correlation as a sign that the 

alcohol-dependent subjects were less able to access verbal skills for the purpose of problem

solving.

Ham and Parsons' data can also be examined via CAA and NSKMDS. First, we 

would construct a matrix in which the upper triangular half contains the test intercorrelations 

for the alcohol-dependent subjects, and the lower triangular half gives the intercorrelations for 

the control subjects (Table 29). We would then extract and analyze the asymmetries in this 

hybrid matrix. The asymmetries indicate the change in correlations as one shifts from the 

control to the alcohol-dependent subjects. The asymmetries can then be displayed visually 

using CAA or NSKMDS. In contrast to LISREL, CAA and NSKMDS provide a visual 

display of the changes in the correlations themselves, rather than the changes in factors 

derived from the correlations.



Figure 22 shows the two-dimensional CAA solution for the hybrid correlation matrix. 

The two visual-spatial tests, Block Design and Trails B, are at the far left of the figure. The 

verbal tests, Information and Shipley Vocabulary, are at the far right. At the center, close to 

the origin, are the problem solving tests, Booklet Categories and Shipley Abstraction. By 

picturing the triangle formed by two object pants and the origin, we can identify the 

magnitude of change in a correlation as one shifts from the alcohol-dependent subjects to the 

controls. Comparison with die hybrid matrix shows that separations of less than 180 degrees 

in the figure, in a clockwise direction, correspond to larger correlations for the alcohol- 

dependent subjects compared with the controls.

The largest triangular areas are between visual-spatial and verbal tests: Trails and 

Information, Trials and Shipley Vocabulary, Block Design and Information, and Block Design 

and Shipley Vocabulary. These are the correlations showing the greatest increases in the 

alcohol-dependent subjects. This aspect of die solution matches Ham and Parsons' LISREL 

results and is readily verified by inspection of the test intercorrelation matrix. Trails B also 

appears to dominate Categories and Shipley Abstraction. This reflects the larger Trails B- 

Categories and Trails B-Shipley Abstraction correlations in the alcohol-dependent subjects. 

There appears to be some tendency for the correlation between Information and Shipley 

Vocabulary to be higher in the alcohol-dependent subjects.



Intercorrelations Among Cognitive Tests 

For Alcohol-Dependent and Control Subjects

Shipley WAIS-R Shipley Booklet WAIS-R
Vocabulary Information Abstraction Categories Trails B Block Design

Shipley
Vocabulary -- .692 .543 .176 .284 .323

WAIS-R
Information .491 ~ .440 .250 .247 .391

Shipley
Abstraction .498 .419 -- .449 .476 .487

Booklet
Categories .156 .188 .364 .. .294 .292

Trails B .019 .011 .287 .089 - .393

WAIS-R 
Block Design .239 .144 .536 .332 .277

Note. Correlations for alcohol-dependent subjects are above the main diagonal, correlations for control subjects are below the main diagonal. 

Source. Adapted from Ham & Parsons, 1997 {jj



FIGURE 22
CAA SOLUTION FOR COGNITIVE TEST DATA



Note, too, that in Figure 22, the problem solving tests, Categories and Shipley 

Abstraction, form only small triangular areas with the verbal tests, Information and Shipley 

Vocabulary. From the figure there is little indication that these correlations change as one 

transitions from the alcohol-dependent to the control subjects. Indeed, inspection of the 

correlation matrix indicates that the largest change in correlations among these four tests is a 

.062 increase in shifting to the alcohol-dependent subjects. In this respect Ham and Parsons’ 

LISREL solution and the CAA representation differ. In the LISREL solution the problem 

solving tests showed a lower correlation with the verbal tests in the alcohol-dependent sample. 

However, inspection of the correlation matrix shows that all four of the intercorrelations 

between verbal and problem solving tests ate higher in the alcohol-dependent subjects.

Figure 23 shows die NSKMDS display of the same hybrid correlation matrix. The 

results are nearly identical to those of CAA. Two differences, however, may be noted.

First, the points separated by the smallest distance in the CAA solution. Categories and 

Shipley Abstraction, have essentially merged into a single point. That is, discrimination of 

the two closest points was lost. Second, in the NSKMDS solution four of the object points 

fell along a straight line, raising the possibility that the changes in correlations among these 

tests in going from the control to the alcohol-dependent subjects corresponds to constant error. 

The four tests showing this property are all of the tests in the battery except for Trails B and 

Information. In feet, examination of the correlation matrix shows that of the 7 correlations 

showing a change in magnitude o f . 10 or more, all 7 involve Trails B, Information, or both. 

The remaining correlations show approximately equal, and very small, changes as one shifts 

from the control to the alcohol-dependent subjects.



FIGURE 23
NSKMDS SOLUTION FOR COGNITIVE TESTS



Data on the balance of trade between nations in 1993 was extracted from the 

Direction of Trade Statistics Yearbook (International Monetary Fund, 1994). As the purpose 

of the analysis was a demonstration of the techniques rather than a study in economics, only 

ten nations were drawn from those listed in the yearbook. An attempt was made to include 

representative nations of major economic groups (European Organization for Economic 

Cooperation and Development, the Organization of Petroleum Exporting Countries, North 

American Free Trade Agreement) and each continent. Nations were specifically excluded if 

their reports of imports and exports did not match those of their trading partners, or if their 

volume of trade was so low that the country would be likely to drop out of the analysis. The 

countries selected as meeting these criteria were: Brazil, China, France, Japan, Nigeria, 

Russia, Saudi Arabia, South Korea, die United Kingdom, and the United States. Hie trade 

data ate shown in Table 30.

In CAA, eigenvalue ratio test values for the first three dimension pairs were 24.91,

0.56, and 0.24, suggesting that two dimensions (one pair) should be extracted. These two 

dimensions are shown in Table 31, and in Figure 24. All countries have loadings of 

approximately zero on both dimensions, except for the United States, Japan, and China. In 

Figure 24 it may be seen that most of the trade imbalances in the matrix as a whole represent 

a favorable balance of Japan and China in relation to the United States. Although petroleum 

exporting countries (Saudi Arabia, Nigeria, Venezuela, and Russia), other countries having 

large populations (Brazil, Russia), and other industrialized nations (France, the United



Table 30 

International Trade In 1993

BRAZIL CHINA FRANCE JAPAN NIGERIA RUSSIA SAUDI
ARABIA

KOREA UNITED
KINGDOM

USA

BRAZIL - 78 79 231 24 22 42 54 114 803
CHINA 15 - 368 2065 12 296 58 286 199 3373
FRANCE 69 160 -- 515 56 162 139 120 1853 1569
JAPAN 152 1735 549 -- 49 151 411 1919 1210 11042
NIGERIA 14 0.1 75 1 -- 0 0 5 17 561
RUSSIA 10 453 237 188 0 -- 92 89 112 l&S
SAUDI
ARABIA 147 12 271 893 10 0 388 192 843
SOUTH
KOREA 32 536 123 1174 13 66 134 162 1778
UNITED
KINGDOM 53 111 1615 497 95 91 274 120 2239
UNITED
STATES 606 877 1327 4795 89 297 667 1478 2638

Note. In tens of millions of U.S. dollars. Rows = exports; columns = imports. 
Data from International Monetary Fund (1994)
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International Trade Data: Skew-Symmetric Dimensions

Canonical Analysis of 
Asymmetry

Nonmetric Skew-Symmetric 
MDS

Nation
Dimen. 1 
(Imports)

Dimen. II 
(Exports)

Dimen. I 
(Expons)

Dimen. II 
(Imports)

Brazil -.0136 .0302 .0000 .0000

China -.0470 .3584 .2759 -.0129

France .0178 .0411 .0000 .0000

Japan .0124 .9262 .7936 .0455

Nigeria .0059 .0668 .0272 .0013

Russia -.0135 -.0164 .0000 .0000

Saudi
Arabia -.0666 .0288 .0033 -.0256

South
Korea .0885 .0434 .0216 .0267

United
Kingdom .1021 -.0597 -.0304 .0243

United
States .9870 .0087 -.0958 .8340



Kingdom) are included in the matrix, the imbalances are essentially restricted to the United 

States, Japan, and China.

The nature of the two dimensions helps to clarify this. The first dimension has a 

Pearson product moment correlation of .909 (.853 after varimax rotation) with the amount of 

imports by a country. The second dimension correlates .911 (.892 after varimax rotation) 

with the amount of exports. Hence, only those nations having a large absolute volume of 

trade participate significantly in the solution. Hie interpretation of the two dimensions as 

"sending" and "receiving" appears quite straightforward in this case. Note, too, that if each 

country's trade were perfectly balanced, the object points would fall along a straight, 45 

degree line in Figure 24. All triangles between two object points and the origin would have 

zero area, indicating an absence of asymmetry.

The results of an NSKMDS analysis of the trade data are shown in Table 31. Hie 

sum of squared loadings on the first two dimensions are .695 and .722, suggesting that both 

contribute to the solution. The first NSKMDS dimension has a Pearson product moment 

correlation of .928 with total exports. The second NSKMDS dimension has a Pearson 

product moment correlation of .914 with total imports. Thus, the NSKMDS solution is 

almost identical to that of CAA. However, the NSKMDS dimensions appear to have slightly 

higher correlations with imports and exports. As may be seen in Table 31, there appears to 

be some degeneracy in the NSKMDS solution, with three countries (Brazil, France, and 

Russia) having loadings of almost exactly zero on the two dimensions. This does not impair 

goodness of fit, however, because the actual trade volume of these countries is far below that 

of the others.
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The study of cross-citations between journals often involves asymmetry. The number 

of times that articles in Psvchometrika. for example, cite those in Psychological Bulletin will 

not necessarily equal the number of citations flowing in the reverse direction. Everett and 

Pecodch (1991) note that the bias coefficient approach of Bishop, Fienberg, and Holland 

(1975) is the preferred approach for this because citations are frequency data, for which log- 

linear analysis provides significance tests. However, we will apply CAA and NSKMDS to 

citation data, because these two techniques provide graphical displays that can complement the 

purely numerical approach of Bishop, et al. The graphical representations may be particularly 

helpful if the asymmetries require a greater than one-dimensional set of bias coefficients. An 

early cross-citation matrix was collected by M. Levine and published in Coombs (1964). It 

shows the citations among 10 psychology journals in 1960, and is reproduced in Table 32.

The rows correspond to the journals in which the citations are found; the columns represent 

the journals whose articles are cited.

Coombs regards the matrix as an example of "row conditional data". Because 

journals differ in the number of articles they contain, and in the number of references per 

article, numbers in different rows are not on the same scale, and are not strictly comparable.

In the unfolding analysis that he discusses, between-row comparisons are excluded from 

consideration. In the present analyses we will take the simpler approach of norming each row 

to a mean of 1. That is, we will divide each entry by the sum for its row, and then multiply 

this quotient by 10.



Table 32 

Journal Citation Data For 1960

Note. AJP=American Journal of Psychology, JASP=Joumal of Abnormal and Social 
Psychology, APP=Journal of Applied Psychology, JCPP=Journal of Comparative and 
Physiological Psychology, JCP=Journal of Consulting Psychology, EDU=Journal of 
Educational Psychology, EXP= Journal of Experimental Psychology, BUL=Psychological 
Bulletin, REV= Psychological Review, PKA= Psychometrika.

Numbers in the body of the table give the frequency with which articles in the column journal 
were cited by articles in the row journal.

Source. Coombs (1964)

A canonical analysis of asymmetry on the normed data yields eigenvalues of A, =  A2 

= ±.06172, Aj = A4 =  ±.01429, As = A6 =  ±.01210, A7 =  Ag = ±.00076, and A, = A10 

= ±.00005. The eigenvalue ratio test gives values EVR1 =  3.658, EVR2=.0743,

EVR3=1.0047, suggesting a two-dimensional solution. This solution is shown in Table 33, 

and in Figure 25.



After varimax rotation the first factor correlates .917 with the column sum for the 

journal, that is, its total "export" of citations to the journals in the matrix. The second rotated 

factor correlates -.604 with the journal's ratio of imports to exports, that is, the ratio of the 

number of times the journal cites other journals, to the number of times it is cited by them.

As may be seen in Figure 25, Psychological Bulletin and the Journal of Experimental 

Psychology have high loadings on the first factor because articles in them tend to be cited 

frequently. On the second factor, Journal of Experimental Psychology has a large positive 

loading, and Psychological Bulletin a large negative loading, because the former journal is 

primarily an exporter of citations, while the latter is primarily an importer.

As shown in Table 33, the NSKMDS solution is similar to the CAA solution, but 

contains marked degeneracy. The four journals with the highest loadings on the CAA 

dimensions show the same pattern on the NSKMDS dimensions. However, in NSKMDS the 

other six loadings on each dimension are tied at essentially zero. Use of locality parameters 

between -I and -10 did not significantly deter NSKMDS from this solution.



Representation of Asymmetries in Journal Citation Data

CAA NSKMDS

Dimen.
V

Dimen.
n

Dimen.
I

Dimen.
n

American Journal of 
Psychology .3771 -.3426 .5247 -.2897

J. of Abnormal and 
Social Psychology .2808 .0250 .0000 .0000

J. of Applied 
Psychology .0533 -.2896 .0000 .0000

J. of Comparative and 
Physiological .1940 -.1063 .0001 -.0001

J. of Consulting 
Psychology .1234 -.0181 .0000 .0000

J. of Educational 
Psychology .0463 -.4596 .3863 -.2133

J. of Experimental 
Psychology .6438 .6280 .2241 .7301

Psychological Bulletin .4667 -.3123 .5112 -.2822

Psychological Review .2918 -.2259 .0002 -.0001

Psychometrika .0607 -.1802 .0000 -.0001

1 Note. CAA dimensions are shown after Varimax rotation.



FIGURE 25
CAA SOLUTION FOR JOURNAL CITATIONS



Chapter 15 

Rationale for Experiments

Overview

In the two studies described here the plan was to

(1) use absolute magnitude estimation and rating scales to collect parametric similarity 

data on representative data sets;

(2) test whether the asymmetries are statistically significant;

(3) if die asymmetries are significant, determine which assumptions about the 

asymmetries are supported and, through this, state which special purpose models could 

justifiably be used;

(4) conduct exploratory analyses of the asymmetries using the canonical analysis of 

asymmetry (CAA) and its nonmetric generalization; and

(5) for parametric CAA, to determine the degree of relationship between the 

dimensions underlying the symmetric and skew-symmetric parts of the data.

Stimulus sets on which similarity ratings were collected were verbal exemplars of the 

natural categories vegetables and tools. Typicality ratings were collected separately to allow a 

test of Tversky's (1977) contrast model.

Experiment 1. Similarity.

The goal underlying Experiment 1 was to obtain similarity matrices that contain 

statistically significant asymmetries, that ate measured on a parametric level, and that are



reliable enough to permit substantive interpretation of even minor variance components of the 

asymmetries.

(1) Significant asymmetries. A study by Tversky and Hutchinson (1986) is useful in 

guiding our search for asymmetries. Tversky and Hutchinson studied the appropriateness of 

multidimensional scaling models to proximity data, by computing two ordinal-level test 

statistics on the proximity matrices. Of particular interest to us is their reciprocity statistic, R.

Imagine that we are studying the similarity of four fruits. The row for "apple", for 

example, would contain the similarity values of three other fruits to an apple. Using this row 

we can find the fruit that is rated as most similar to an apple, say fruit "i". We can then use 

row "i" of the matrix to make the reverse determination: how similar to fruit "i" is an apple. 

This value is denoted R*: the similarity to fruit "i" of the object to which "i" is most similar. 

For example, consider Table 34. The values in each row have been reduced to rank

orders.

To an 

APPLE 

PEAR 

ORANGE 

GRAPE

Table 34 

Hypothetical Similarity Matrix

APPLE

2

2

3

How similar is an

PEAR

1

1

2

ORANGE

3

3

GRAPE

2

1



"Fear" is rated as most similar to "Apple", so R^u is the similarity of an apple to a 

pear, in this case "2". "Grape" is rated as most similar to "Pear", so Bp«r is the similarity 

rank of a pear to a grape, "2” here. "Fear" is ranked as most similar to "Orange" in the 

data, so is the similarity rank of "Orange" to "Pear", "3". "Orange" is most similar to 

"Grape" so is die similarity of grape to orange, "3" in this data set 

The reciprocity, £ , of this data set is

The reciprocity statistic is a limited measure of the asymmetry of the matrix. It can be 

rewritten as

the difference (plus one) between values on one side of the main diagonal and the 

corresponding values on the other side. However, the sum only involves those Xy, pairs 

for which at least one of the two values equals 1. Thus, £  is hased on the sum of K 

different £  values. Note that a full accounting of the asymmetries would make use of all K2 

- K off-diagonal cells and, for parametric data, would not involve a prior conversion to ranks.

Nonetheless, the reciprocity statistic is a rough guide to the degree of asymmetry in a 

data set. Tversky and Hutchinson (1986) examined 100 previously studied proximity matrices 

and found significant asymmetries in 33 of them. Almost invariably, the asymmetric data sets 

consisted of (a) word associations; or (b) subjective similarity values for objects belonging to a 

semantic category and varying in their typicality. Examples of the latter would be a car and a



skateboard, both members of the category "vehicles” (loosely defined), but varying in their 

typicality, the degree to which they are good examples of the category. In the present study, 

subjective similarity will be used as a source of presumably asymmetric proximity data.

Parametric data. There are at least two well-validated techniques for collecting 

parametric-level data. Anderson (1974) found that rating scales give interval-level data 

provided that subjects are familiar with the scale and the stimuli, and provided end effects are 

avoided. End effects may be understood as follows: Picture that we study objects 

representing a range of values on a particular attribute. The ratings for objects near the center 

of the range will tend to be distributed symmetrically and approximately normally over several 

adjacent categories. However, the tarings for extreme stimuli will "pile up" in the outside 

categories. The distribution of ratings for extreme stimuli will be skewed towards the center 

of the scale. The ends of the rating scale truncate the distribution of ratings, lowering 

discrimination among extreme stimuli and producing a bias towards the center of the scale 

(Thurstone, 1929). Anderson (1974) found that end effects can be removed from the data by 

including more extreme stimuli titan those we intend to analyze. The unwanted "pile up" of 

extreme stimuli is thus sequestered by "dummy objects" that have no substantive role in the 

study.

A different approach to obtaining parametric data is provided by absolute magnitude 

estimation. Stevens (1956) proposed that people associate with numbers a subjective sense of 

"numerosity”, the subjective magnitude that the numbers convey. For example, people might 

regard the number ”.01" as inherently small and "1,000,000" as inherently large. Absolute 

magnitude estimation is a cross-modality match between this sense of numerosity and the



subjective magnitude produced by a stimulus (Heilman & Zwislodd, 1961). People are asked 

to "assign a number to every [stimulus] so that the qihjernvp magnitude of the number is 

equal to die subjective magnitude of the [stimulus]" (Zwislodd, 1983, p.463).

Absolute magnitude estimation appears to produce ratio-level data while avoiding 

many of the context effects that arise in ordinary magnitude estimation (Collins, &

Gescheider, 1989; Gescheider, & Hughson, 1991). In the present study absolute magnitude 

estimation of similarity will be used in addition to rating scales, to help verify that the results 

are independent of specific experimental task.

The AME and rating scale tasks are straightforward and the stimuli familiar. This 

should help increase the reliability of the ratings. Dimensional analyses will be conducted on 

the mean ratings averaged across subjects. Therefore increasing the number of subjects will 

enhance reliability. This runs into a problem of diminishing returns, of course, as the 

standard error of the mean declines only in proportion to the square root of the sample size. 

Fifty subjects seems a reasonable balance between economy and reliability.

Expeomsnt.2. Typicality

Rosch (1975a) found that the psychological distance from a poor example of a 

category (e.g., a line at an 85 degree inclination) to a prototype (e.g., a vertical line) was 

shorter than the reverse distance. Similarly, Tversky found that similarity ratings were higher 

when comparing a low salience to a high salience stimulus. Tversky described salience as 

dependent on the "intensity, frequency, familiarity, good form, and informational content” 

(Tversky, 1977, p. 332). Certainly one source of asymmetries in similarity data is thus likely 

to be stimulus typicality or salience. Tversky and Rosch tested their theories against the null



hypothesis of no asymmetry in the context of salience or typicality difference. Thus, their 

studies were not designed to detect the presence of a multidimensional structure underlying the 

asymmetries. However, pilot studies to the present investigation (Borkum, 1991a, 1991b) 

suggest that a multidimensional structure is quite likely. This raises three possibilities about 

the relationship between asymmetry and typicality. Typicality may turn out to be one factor 

among many that brings about asymmetries: typicality would be a strictly unidimensional 

construct that correlated with one of the asymmetry dimensions. Alternatively, typicality may 

itself turn out to be a multidimensional construct. The various dimensions, aspects, or types 

of typicality may correlate with those of the asymmetries. The most complex possibility 

would be that typicality is multidimensional, but that only one aspect of typicality produces a 

directional effect in similarity judgments.

To distinguish between these it is important to determine the number and nature of 

dimensions underlying typicality judgments.



Chapter 16 

Experiment 1: Similarity

Method

Stimuli

Rosch (1975b) prepared a relatively exhaustive list of semantic categories and their 

exemplars. Using the word frequency norms of KuCera and Francis (1967) she found 17 

categories of concrete objects that were represented by five or more items. Seven of these 

categories had specific characteristics or ambiguities that made them difficult to use as stimuli. 

For the remaining ten categories, she obtained fifty to sixty exemplars each, varying widely in 

degree of association to the category, from the Batdg and Montague (1969) category 

production norms. Rosch obtained typicality ratings for each of these exemplars, and 

presented them in rank order of typicality.

These semantic categories, with items differing widely in typicality, should provide the 

stimuli necessary for a study of asymmetries. For pairwise similarity judgments, ten stimuli 

from a category seems sufficient Beyond this number and we are subject to diminishing 

returns. For example, we can determine the asymmetric relationships among ten stimuli with 

10? . io =  90 judgments, but to study an additional two stimuli would increase the number 

of judgments to 122 - 12 = 132.

Our first preference might be to select ten stimuli at equal intervals along the typicality 

continuum: this would provide a representative set of the instances of the category. 

Alternatively, we could sacrifice representativeness and select only high and low typicality



items, so as to maximize the number of likely asymmetric pairs. However, I suspect that 

neither approach would be optimal. Typicality is likely to exert an influence in the 

experiment only if the category is kept firmly in mind. This seems best accomplished by 

increasing the number of high typicality exemplars. Therefore, in categories with c. 50 

exemplars I have chosen stimuli at approximately the following tanks: 1, 3, 5, 8, 12, 17, 23, 

30, 38, and 47. For categories with c. 60 exemplars, stimuli with tanks of approximately 1, 

3, 6, 10, 15, 21, 28, 36, 45, and 55 have been drawn.

Two categories — carpenter's tools and vegetables — were used for the pairwise 

similarity judgments. The list of stimulus words for these two categories is given in 

Appendix 5.

For the rating scale study the 102 - 10 =  90 unique pairs of 10 stimuli in a category 

were formed. These were supplemented by the 10 pairs of identical stimuli (e.g., "sander - 

sander"), and by 10 pairs in which each of the ten stimuli in turn is matched with a term 

from a different category (e.g., "sander - magazine rack"). This brings the total number of 

stimulus pairs rated to 110*2 categories =  220. The identical pairs and extraneous pairs are 

the extreme stimuli to help eliminate end effects.

Subjects

Eighty-seven undergraduates drawn from the PSY 100 subject pool (43 in the 

magnitude estimation and 44 in the rating scale condition) participated in the group study in 

exchange for one hour of extra credit towards their course grade. Standard informed consent 

procedures were used and the research conformed to American Psychological Association 

guidelines on the ethical treatment of human subjects.



Procedure

Category tarings. Subjects were asked to complete two ratings booklets. One booklet 

contained the 110 pairs of carpenter's toots, and the other booklet contained the vegetables. 

Subjects completed the booklets in random order, and the pairs within booklets were 

randomized individually for each subject The instructions were

On the pages that follow you will see 110 pairs of objects. Almost all of 
these objects are carpenter's tools. For each pair, please decide how similar 
the first tool is to the second tool. Then, please rate the similarity of the first 
tool to the second tool on this 1 to 9 scale:

Here are some sample pairs, to show you the type of objects involved. Please rate 
them.

1. How similar are PLIERS to WOOD? ____
2. How similar is a SAW to NAILS? ___
3. How similar is a HINGE to CEMENT? ____

(Ten examples were given, including a pair of identical objects, and an extraneous
pair-1

(The 110 pairs were presented on the following pages of the subject's booklet, in a 
different random order for each subject. Each pair was embedded in the foil 
sentence, "how similar is a...?", to help ensure that the judgments would be 
directional.]

I 2 3
not at all 
similar

4 5 6 7 8 9
very

similar



Absolute magnitude estimations. The procedure for the two category booklets was the 

same as for the ratings, except than (1) the booklet and the 10 practice pairs did not include 

identical, nor extraneous pairs. (2) Instead of the 9 point scale, subjects were instructed:

This is a matching study.

People often have an internal, intuitive feel for the size of numbers. For each 
number, they have a sense, or a feeling, of how large or small it is.

On the pages that follow you will see 110 pairs of objects. Almost all of 
these objects are carpenter's tools. For each pair, please decide how similar 
the first tool is to the second tool. Then, please choose a number that 
matches this similarity. The feeling of how large the number is should match 
the feeling of how similar the objects are. Please do not use a rating scale. 
Rather, please try to match your sense of the amount of similarity with a 
number that has the same size.

You can use whole numbers, fractions, decimals, whatever number best 
reflects the amount of similarity. Treat every pair individually and do not 
worry about the numbers you gave to pairs that came before.

Here are some sample pairs, to show you the type of objects involved. To 
each of them please give a number that shows the amount of similarity.

Results

The ten extraneous pairs, in which stimuli were matched with objects from outside the 

category, were not included in the analyses.

Trml category. For each subject, an intraclass correlation coefficient (ICQ was 

computed from the ten repeated pairs. The ICC was selected to assess absolute agreement. 

That is, subjects who assigned ratings of "1", "2", and "3" to two pairs at the first 

presentation, and "7", "8", and "9" at the second presentation, would be considered



unreliable, even though die product moment correlation coefficient between the two sets of 

ratings is 1.00. Reliability was assessed for the individual presentation of the stimulus pairs, 

rather than fix the average of the two presentations. To determine the significance of an 

ICC, the mean square few the stimulus pairs was tested against the pooled mean square within 

stimulus pairs in a one-way ANOVA (McGraw & Wong, 1996). Only subjects whose 

reliabilities differed significantly from zero at the a =.05 level were included in subsequent 

analyses. This corresponded to an ICC of approximately 0.63.

Of the 43 subjects in the magnitude estimation condition, 21 did not meet the criterion 

of reliability. Hence, the magnitude estimation data for 22 subjects was retained. Similarly, 

24 of the 44 subjects giving rating scale data did not meet the reliability threshold and were 

excluded from further analysis.

In examining the data, it appeared that nearly all subjects in die magnitude estimation 

condition had in fact used a rating scale, that is, a scale with definite end-points. Of the 22 

subjects whose data was retained, 10 used only whole numbers between 0 and 100, with the 

occasional addition of half-steps, 6 used only whole or half steps between 0 and 10 and 3 

used only whole or half steps between 0 and 9.

In order to equate the differing scales used in the magnitude estimation data, each 

subject's judgments were first transformed into z-scores. The ratings and magnitude 

estimations were then averaged across subjects, and the scatterplot was examined, of ratings 

vs. magnitude estimations few the 100 stimulus pairs. The concave downward function, that 

generally characterizes the relationship of category judgments to magnitude estimations 

(Stevens & Galanter, 1957) did not emerge- Rather, the scatterplot was very nearly linear,



suggesting that magnitude estimation subjects had in faa produced rating scale Haia.

Therefore, data from the rating scale and magnitude estimation conditions were combined in 

all following analyses.

As noted, the data for a subject was retained if it showed a high internal consistency 

across the ten repeated pairs. The agreement ch- internal consistency across subjects was 

asspsseri as well. Conservative estimates were obtained by excluding the diagonal elements, 

that is, the comparisons of objects with themselves, from die calculations. Subjects invariably 

agreed in assigning the highest possible similarity values to these pairs, but it was not clear 

that this would properly reflea their agreement on the pairs in which the objects differed.

The average similarity ratings across the 42 subjects had an absolute agreement ICC of .9192. 

This is approximately the anticipated ratio-level correlation the average ratings would have 

with the average ratings of a new sample of 42 subjects drawn randomly from the same 

population. At the level of the individual subject the absolute agreement ICC was . 1122. 

Thus, an individual subject's ratings would be expected to have a ratio-level product moment 

correlation o f . 1122 with those of another subjea drawn randomly from the same population. 

The significance of the reliabilities was checked by testing the mean square for stimulus pairs 

against the mean square of the stimulus pair by subjea interaction. The reliabilities were 

significant, E(89,3649) =  12.37, p < .001.

Reliabilities were computed for the rating scale and magnitude estimation conditions 

separately. The average similarity judgments for tire 20 subjects in the rating scale condition 

had an absolute agreement ICC of .9903. The absolute agreement ICC for individual subjects 

was .5323. The reliabilities were significant, with £(89,1691) = 103.44, pc.001. For the



magnitude estimations, the average similarity judgments had an absolute agreement ICC of 

.9360, with an ICC at the individual subject level o f . 1398. These reliabilities were 

significant, E(89,1869) =  15.62, p < .001.

Average similarity matrices were computed for the magnitude estimation condition, 

die rating condition, and the two conditions combined. Disregarding the diagonal elements, 

86.36% of the average magnitude estimation sums of squares were symmetrical and 99.72% 

of the average ratings sums of squares were symmetrical. In die two conditions combined, 

97.45% of the sums of squares of the average similarity judgments were symmetrical. The 

Hubert and Baker (1979) coefficient, that is, the Pearson product moment correlation of the 

nows with the columns, was .9243 for the average magnitude estimations, .9914 for the 

average ratings, and .9201 for die average similarity judgments across conditions, indicating a 

high degree of symmetry.

The asymmetries were then isolated for each subject in each condition. Overall, the 

asymmetries had an absolute agreement ICC of .0000 at the level of the individual subject, 

and -.0002 for the average of the 42 subjects. Of course these were not statistically 

significant For the magnitude estimates, F(44,924) =  1.20, us for the ratings, F(44,836) = 

.90, ns; and for the two conditions combined, E(44,1804) — 1.00, as.

A power analysis indicated that, given die number of subjects in the two conditions 

combined (42) and the asymmetry by subject interaction mean square, which was used to 

gauge error, a correlation ratio in the population of .048 would be detected by this experiment 

90% of the time. Hence, if similarity judgments are asymmetric, the effect size associated 

with the asymmetries would be judged from this experiment to be below .048.



In the typicality judgments given by subjects in this study (see experiment 2) "wood" 

emerged as the most typical, and "paintbrush” as the least typical, of the tools. A paired t- 

test was conducted to determine whether, across the 42 subjects, die judged similarity of 

"wood" to "a paintbrush" differed from the similarity erf "a paintbrush" to "wood". The 

similarity judgments were higher when the least typical exemplar was compared to die most 

typical exemplar, but the difference was not significant: 1(41)= 1.27, g > .10.

The symmetric part was then isolated from the similarity judgments averaged across 

subjects. A principal components analysis was then conducted on this symmetric matrix.

The scree plot does not show definite breaks, but seems most consistent with a one-factor 

solution. Across tools, the first component has a Pearson product-moment correlation of .800 

(g < .01) with the subjects' average typicality judgments.

Vegetable category. Similar analyses were conducted for the judged similarities 

among vegetables as for the similarities among tools. Absolute agreement ICCs were 

computed for each subject using the ten repeated pairs. The significance of the ICCs was 

assessed by testing die mean square across pairs against the pooled mean square within pairs. 

Significance at the a =.05 level generally corresponded to an absolute agreement ICC at the 

level of the individual judgment (not the average of the two judgments for each pair) of .63. 

The data of 18 of the 43 magnitude estimation subjects and 17 of the 44 subjects using rating 

scales, were reliable by this criterion, and retained for further analyses. Of the 18 subjects 

retained in the magnitude estimation condition, 3 used only whole or half steps between 0 and 

9, 7 used only whole or half steps between 0 and 10, and 5 used only whole or half steps 

between 0 and 100. In a scatterplot for the 100 stimulus pairs, the average rating across



subjects shows a nearly linear relation to the average magnitude estimation. Thus, it seems 

likely that the subjects in the magnitude estimation condition were in feet making category 

judgments. For each subject, similarity judgments were transformed to z-scores. Data from 

the two conditions were then combined as noted for most of the analyses to follow.

An intraclass correlation coefficient was used to assess absolute agreement across 

subjects. A conservative test was arranged by omitting the diagonal elements (comparison of 

an object with itself) from the reliability and significance calculations. It did not seem certain 

that judgments of self-similarity, which showed essentially perfect agreement, would 

adequately reflect the reliability for pairs in which the stimuli differed. In the magnitude 

estimation condition, the average similarity judgments had an ICC of .9691, and die 

individual subject's judgments had an ICC of .2583. Testing the mean square few stimulus 

pairs against the stimulus pair by subject interaction, the reliabilities were significant:

E(89,1602) = 32.33, p <  .001. In the rating scale condition the average judgments had an 

ICC of .9894, and the individual subjects' judgments had an ICC of . 1456. The intersubject 

agreements were significant, with E(89,1424) =  94.43, p<.001. When the rating scale and 

magnitude estimation conditions are combined, the average judgments have an absolute 

agreement ICC of .9416, with a absolute agreement ICC of .1519 at the level of the 

individual subject These agreement coefficients are significant: E(89,3026) =  17.12,

£<.001.
Average similarity judgments were computed across subjects for the magnitude 

estimation condition, the rating scale condition, and the two conditions combined.

Disregarding the sums of squares on the diagonal (all of which would count toward the



symmetries if it were included), 93.82% of the average magnitude estimation sums of 

squares, 97.88% of the average rating scale sums of squares, and 98.47% of the average 

combined sums of squares, was symmetric.

The asymmetric part of the similarity judgments was then extracted for each subject in 

each condition. In the rating scale condition, the asymmetries had an absolute agreement ICC 

of .0008 at die individual subject level, and .0351 at the level of the average rating. For 

magnitude estimations the individual subject ICC was -.0013, while the average judgments 

had an absolute agreement ICC of -.2413s. For the two conditions combined, the absolute 

agreement at the individual subject level was -.0033, and for the average judgments it was - 

.1721. These are not statistically significant. For the rating scale condition, £(44,704) =

1.04, us For the magnitude estimation condition, E(44,748) =  .81, us For the two 

conditions combined, F(44,1496) = .85, us.

A power analysis indicated that, given the number of subjects whose data was retained 

(35), and the level of error variance, estimated as the asymmetry by subject interaction, a 

population correlation ratio of .057 would be detected by this experiment 90% of the time. 

Hence, if similarity judgments are asymmetric, the effect size of the asymmetries would be 

expected from this research to be below .057.

As discussed in Experiment 2, below, the subjects in this study judged "peas” to be 

the most typical, and "dandelion" the least typical, of the stimuli. These results were also

s A negative reliability estimate is obtained whenever the mean square for error 
exceeds the mean square for the effect. That is, "negative reliability" occurs when the 
F ratio is below 1. Unless error variance has been artificially inflated through a 
mistake in the experimental design, a negative ICC would presumably reflect sampling 
error from a population whose reliability is zero.



obtained by Rosch (1975b). In the present experiment, the average judged similarity of peas 

to a dandelion exceeds the judged similarity of a dandelion to peas, contrary to hypothesis. 

The difference is not statistically significant, however, as assessed by a paired t-test £(34) =  - 

.82, p >  .25.

A principal components analysis was then conducted of the squared, average 

symmetric part of the vegetable similarity judgments. A two-factor solution is suggested by 

examination of the scree plot. The first factor, after varimax rotation, has a Pearson product- 

moment correlation of .802 (£ < .01) with the subjects' average typicality judgments.



Chapter 17 

Experiment 2: Typicality

The current study was designed to investigate typicality for a multidimensional 

structure. This was accomplished with Q-factor analysis (Boricum, 1989). In this technique, 

typicality ratings of stimuli are collected from a large number of subjects. Principal 

components are extracted from the subject by subject correlation matrix. These components
s.

are the dimensions underlying the typicality ratings. Rotation to simple structure (e.g., 

varimax) may be conducted, and would correspond to the hypothesis that each typicality 

dimension is used solely and exclusively by a different cluster of subjects. With or without 

rotation, the dimension is labelled by comparing objects with high component scores to those 

with low component scores.

Stimuli

The stimuli were the ten exemplars for each of the two categories, as given in 

Appendix 5.

Subjects

Eighty seven undergraduates were recruited for the group study from the departmental 

subject pool in accordance with the procedures noted above. These were the same subjects 

who gave the similarity judgments described in Study 1.

Procedure

Typicality judgments were not requested until after the similarity judgments were 

complete. Half of the subjects were requested to use a 1-9 scale for their judgments, and half



were asked to use absolute magnitude estimation. Subjects used the same judgment modality, 

rating scale vs. magnitude estimation, for typicality judgments as they had for the similarity 

judgments. Subjects wrote their typicality judgments in a booklet. Instructions for the rating 

scale condition for tools were:

"On the next page you will see 12 object names. For each object please 
decide how typical it is of the category "Carpenter's Tools. That is, please 
decide how much it is a typical or good example of the category "Carpenter's 
Tools", vs. being an atypical or bad example of a Carpenter's Tool. Please 
rate this typicality on the following 1 to 9 scale:

Instructions for subjects asked to use absolute magnitude 

estimation were:

This is a marching study.

People often have an internal, intuitive feel for the size of numbers. Few each 
number, they have a sense, or a feeling, of how large or small it is.

On the next page you will see 12 object names. For each object please 
decide how typical it is of the category "Carpenter's Tools". That is, please 
decide how much it is a typical or good example of the category "Carpenter's 
Tools", vs. being an atypical or bad example of a Carpenter's Tool.

Then, please choose a number that matches this typicality. The feeling of 
how large the number is should match the feeling of how much the object is a 
typical carpenter’s tool. Please do not use a rating scale. Rather, please try

1 2 3 4 5 6 7 8 9

Not at all 
typical 
of a
carpenter's
tool

Very 
typical 
of a 

carpenter's 
tool



to match your sense of the amount of typicality with a number that has the 
same size.

You can use whole numbers, fractions, decimals, whatever number best 
reflects the amount of typicality. Treat every object individually and do not 
worry about the numbers you gave to objects that came before."

On a single page, following the instructions, 12 words were printed, arranged 

vertically down the page. Ten of the words were the ten exemplars of the category. One 

word ("motorcycle" for the vegetables category and "duck" for the tools) was obviously 

extraneous and drawn from a different category. The remaining word was the category name 

itself. The extraneous word and category name were designed to be extreme stimuli to 

reduce end effects in the use of the rating scales. The 12 words were presented in a different 

random order for each subject 

Results

Subjects whose similarity data had been excluded as possibly random were excluded 

from the typicality analyses. The 35 subjects remaining for judgments of typicality of 

vegetables showed good absolute agreement, with an intraclass correlation coefficient of .964 

for the average ratings, and .728 for the individual subjects' ratings. These reliabilities were 

signiflcandy different from zero, E(9,306) =  27.77, p < .001. A principal components 

analysis was conducted on the subject by subject correlation matrix. The eigenvalues are 

shown in Table 35. The first seven values of the eigenvalue ratio test are 4.68, 0.95, 0.80, 

1.13, 1.35, 0.45, and 1.92, suggesting a one-factor solution. EVR values after the seventh 

cannot be calculated because eigenvalues 10-35 are approximately zero. This is largely 

artifactual: because there are only ten typicality ratings underlying die subject intercorrelations,



ail eigenvalues after the tenth are necessarily zero. In these data, the tenth eigenvalue is also 

near zero, suggesting some further linear dependence across subjects. The object scores on 

the first principal component have a Pearson product-moment correlation of -.87 with the 

ratings obtained by Rosch (1975b). The primary difference between the ratings obtained here, 

and those reported by Rosch, appears to be a greater typicality accorded to potatoes and to 

peppers in the current data (see Table 36). The direction of the scale in the present study 

differed from that used by Rosch, which accounts for the negative sign in the correlation.

Table 35

Eigenvalues of Vegetable Typicality Judgments

Principal Component Number Eigenvalue

1 21.749

2 3.665

3 2.893

4 2.168

5 1.292

6 0.868

7 0.786

8 0.323

9 0.255

10 0.000



The 42 subjects remaining for judgments of the tools category showed acceptable 

inteijudge agreement, with an intraclass correlation coefficient of .928 for the average 

ratings and .565 for the individual judges. The reliabilities differ significantly from zero, 

£(9,369) =  13.98, p < .001. A principal components analysis of the typicality judgments 

gave the eigenvalues shown in Table 37. The first eight values of the eigenvalue ratio test are 

1.73, 1.29, 0.68, 1.17, 1.00, 1.05, 0.89, and 0.00, suggesting a one-factor solution. 

Eigenvalues 10-35 are essentially zero, for the same reasons as noted for the vegetable 

typicality judgments. The tools' scones on the first principal component have a Pearson

Table 36 

Typicality Judgments of Vegetables

VEGETABLE MEAN TYPICALITY Rosch (1975b)

Pea 0.784 1.07

Green Beans 0.676 1.18

Broccoli 0.653 1.28

Brussels Sprouts 0.189 1.72

Beets 0.025 2.08

Eggplant -.019 2.38

Potato 0.603 2.89

Peppers 0.278 3.21

Avocado -.618 3.62

Dandelion -2.577 5.20



product moment correlation of -.84 with the ratings reported in Rosch (1975b). Subjects in 

the current sample rated nails and, in particular, wood, as more typical of carpenters’ tools 

than did subjects in Rosch's study (see Table 38).

Table 37

Eigenvalues of Typicality Judgments of Tools

tPONENT NUMBER EIGENVALUE

1 15.528

2 6.070

3 4.105

4 3.573

5 2.108

6 1.449

7 0.992

8 0.716

9 0.458

10 0.000



Table 38 

Typicality Judgments of Tools

TOOL

Saw

Ruler

Nails

Sander

Chisel

Pliers

Wood

Hinge

Paintbrush

Cement

MEAN TYPICALITY

0.594

0.568

0.901

0.410

0.084

0.346

0.942

-.317

-1.836

-1.690

Rosch (1975) 

1.04 

1.48 

1.67 

1.79 

2.26 

2.56 

2.77 

3.12 

3.81 

4.91



Chapter 18 

Discussion

In developing a nonmetric version of the canonical analysis of asymmetry, the explicit 

goal was to be able to accurately represent the rank order of the skew-symmetries. The 

NSKMDS algorithm appears quite satisfactory for this. In the simulation studies it was 

relatively unaffected by accelerating and decelerating monotonic transforms of die 

asymmetries. Nonmetric recovery, operationalized as the squared Spearman rank order 

correlation coefficient between the true and recovered asymmetries, was above .89 for all of 

the monotonic transforms sampled between x -*• x0-2 and x -*■ x2-5. Nonmetric recovery by 

NSKMDS declined for exponents above 2.5. However, these are fairly drastic transforms 

that seem unlikely to occur in actual data.

It is surprising at first that monotonic transforms would have any effect on a 

nonmetric technique. However, NSKMDS relies on the canonical analysis of asymmetry 

(CAA) for its starting configuration. As the correct metric and nonmetric solutions diverge at 

higher distortion levels, NSKMDS is required to travel further from the starting configuration 

to the final results. Thus there is presumably more opportunity for local minimum and 

degeneracy problems to arise.

NSKMDS relies only on ordinal-level information in the data. In this respect it is 

similar to the nonmetric multidimensional scaling of symmetric data Standard nonmetric 

MDS is useful primarily because it generates solutions with desirable metric properties, and



with more parsimony than metric MDS solutions. This, indeed, was noted in early MDS 

studies of hue (e.g., Helm, Messick, & Tucker, 1961; Helm, 1960; Mellinger, 1956), and 

attributed to subjects' tendencies to underestimate the larger color differences. Metric 

techniques, that attempted to reproduce the judgments at an interval level, produced a surfeit 

of dimensions. The first two dimensions, the color wheel, were substantive, and the other 

dimensions reflected the subjects' decelerating monotonic distortion.

Similar results are found fix' the nonmetric MDS of asymmetry. The NSKMDS 

algorithm shows very high metric recovery, despite relying only on ordinal level information. 

For the sampled monotonic transforms between x -» x 30 and x -* x2*5, the squared ratio-level 

product moment correlation between the true and recovered asymmetries was consistently 

greater than .85. The canonical analysis of asymmetry tended to have a marginally better 

nonmetric recovery than NSKMDS for positively accelerated transforms, that is, transforms 

that exaggerate the differences between large and small asymmetries. A much stronger effect, 

however, was the higher metric and nonmetric recovery by NSKMDS, compared with CAA, 

for decelerating transforms.

This advantage of the nonmetric technique, NSKMDS, is qualified in several ways. 

First, although it is statistically significant, and larger the more decelerating the transform, it is 

probably not large enough to be of practical importance. Moreover, it is balanced out by a 

higher susceptibility of die nonmetric technique to error. Indeed, one of the most surprising 

results of the simulations was the robustness of the canonical analysis of asymmetry to even 

large amounts of normal or asymmetric error, and to monotonic transforms of the input data



In shifting from large simulation runs to the analysis of selected matrix structures and 

published data sets, a different pattern of strengths and weaknesses emerged. NSKMDS 

appeared much better able to represent a simplex, and thus to show when some or all of the 

asymmetries were likely to reflect constant error, such as a time or spatial position error.

There was a suggestion, although one that would need verification, that the nonmetric 

technique may better recover multiplicative bias coefficients. However, NSKMDS solutions 

appear quite prone to a particular type of degeneracy, in which the smallest asymmetries are 

set equal to zero. Thus, NSKMDS appears less able to distinguish among the smallest 

asymmetries than is CAA. For some analyses this tendency did not significantly impair the 

solutions, as the smallest asymmetries were small enough to disregard. In other analyses, 

however, it led to discomforting lacunae in the solutions.

The pattern of strengths and weaknesses of NSKMDS leads to the hypothesis that the 

technique tends to increase the larger asymmetries in the data, and shrink the smaller 

asymmetries. This would account for its ability to "straighten the horseshoe" of a simplex, 

representing it as a straight line. It would also explain why NSKMDS was able to out

perform CAA for negatively accelerated transforms, but performed slightly more poorly than 

CAA for positively accelerated transforms. From this perspective, its strength is also its 

weakness, for the reduction of the smallest asymmetries to zero would simply be an extreme 

form of this tendency. The NSKMDS algorithm contains no explicit instructions to 

differentially increase the large asymmetries and decrease the small asymmetries, nor, 

equivalently, to increase the variance of the skew-symmetries. Hence, this is an unexpected 

property of the algorithm. Its most likely source seems to be at the monotone regression



stage. Small and nearly equal asymmetries would be more likely to be in the wrong rank 

order, and hence to be set equal to each other by the monotone regression. Particularly small 

asymmetries are susceptible not only to being in the wrong order, but to having the wrong 

sign, and would be set equal to their mean, a number close to zero. Hence, at each iteration 

the monotone regression module tends to divide the disparities into small, tied values, and 

large, untied values.

This hypothesis suggests directions for future work in developing NSKMDS.

Increasing the size of large vs. small asymmetries is an excellent dimension-reduction 

technique. Indeed the first nonmetric MDS program, the analysis of proximities, explicitly 

maximized the variance among distances so as to produce parsimonious solutions (Shepard, 

1962). NSKMDS contains no such explicit instructions, nor instructions to achieve greater 

parsimony than the pie-set dimensionality of the solution. However, NSKMDS could be 

modified to seek explicitly a more parsimonious solution. Indeed, at the simplest level, 

NSKMDS could be readily adapted to produce monotonic one-dimensional solutions, by 

replacing x^, x^ with 1 in the equations used to derive the objects' coordinates. The squared 

product-moment correlation between the asymmetries in the data and those derived from a 

one-dimensional model, would indicate the appropriateness of the solution.

More generally, future work with NSKMDS should attempt to delineate the conditions 

under which a degenerate solution will form, and to develop modifications to prevent 

degeneracy. The locality parameter was not successful for this.

In its present form, the NSKMDS algorithm is limited to two-dimensional solutions. 

This limitation appears easily circumvented, however. Monotonic regression can be used to



generate values that are as close as possible to the skew-symmetries in the data, while strictly 

maintaining the rank order of the skew-symmetries in the two-dimensional solution. These 

predicted values would be subtracted from the skew-symmetric data to leave "monotonic 

residuals" that could themselves be analyzed into a two-dimensional solution. The two 

dimensions of the residualized data would be interpreted as the third and fourth dimensions of 

the skew-symmetric data. The residualization process could then be conducted again, and the 

twice-residualized data analyzed to give the fifth and sixth skew-symmetric dimensions, etc.

Pending these developments, the experience with the techniques reported in this 

dissertation can give some guidance about whether CAA or NSKMDS should be used in a 

given analysis. In a psychophysical study with a sensory modality whose power law exponent 

is known to be below 1, and whose error level is likely to be low, NSKMDS would probably 

be the preferred approach. NSKMDS could also be useful for examining whether some or all 

of the asymmetries in a matrix are likely to be due to constant error. All other investigations, 

including studies for which the type of distortion or amount of error are unknown, should use 

the canonical analysis of asymmetry due to its greater robustness.

Simulation Program

To my knowledge, metric and nonmetric MDS have not been systematically 

compared in the way CAA and NSKMDS have been compared in this dissertation.

Generally, nonmetric MDS is recommended due to its ability to recover metric configurations 

from the nonmetric properties of the data. However, we have seen that under some 

conditions (positively accelerated transforms plus high error) a metric technique, CAA,



provides better metric and nonmetric recovery than a nonmetric technique, NSKMDS. 

Nonmetric MDS received much of its impetus from analyses of negatively accelerated data 

judged similarities among hues. Moreover, Shepard diagrams relating disparities to distances, 

nearly always show the distances to be a positive, exponential function of the data Thus 

there is reason to believe that nonmetric multidimensional scaling, (ike NSKMDS, is deriving 

much of its advantage from a tendency to differentially expand large differences, and that its 

advantage disappears, or is reversed, for positively accelerated transforms. The current studies 

of skew-symmetric MDS, then, raise the hypothesis that the advantage of nonmetric MDS 

does not pertain to ordinal level data in general, but is specific to data in which the 

differences between large and small dissimilarities have been minimized by a decelerated 

transform, such as a power law exponent below 1 in psychophysics. The simulation program 

developed for this dissertation, with its capacity to generate symmetric matrices using either a 

component or a distance model, and to apply normal, Wishart, chi-square, or asymmetric 

error whose magnitudes can be adjusted separately from the type of error, would seem well- 

suited to a systematic comparison of metric and nonmetric MDS.

Surprisingly, virtually no studies of metric recovery by the various factor analysis 

techniques have been conducted (Seber, 1984). The simulation program developed for this 

dissertation should, with the addition of subroutines for factor analysis, suffice for this 

purpose.



Eigenvalue Ratio Test

In studying the multidimensional structure of asymmetries it was useful to have a 

guideline for the number of dimensions to extract The eigenvalue ratio test was developed 

here for this purpose. Although its cutoff values were determined empirically rather than 

through a theoretical analysis of its sampling distribution, the derived a  levels appear stable 

across simulations. The power associated with the test was relatively low, increasing with 

effect size to roughly the same degree as would a one-way, four-groups ANOVA with 3 

subjects per condition. This conservativeness may be an advantage, however, in that we 

would ordinarily seek factors that are not simply statistically significant, but that have enough 

true score variance to be well-defined.

Although the eigenvalue ratio test was derived empirically for skew-symmetric data, 

its development was suggested by the exponential decay in successive eigenvalues seen in 

standard principal components (e.g., Craddock, & Flood, 1969; Lautenschiager, 1989;

Mandel, 1972). Moreover, the general purpose, to quantify changes in die slope of a log- 

eigenvalue plot, should apply to standard principal components analysis. Hence, simulation 

studies of the type reported in this dissertation may be useful for extending the eigenvalue 

ratio test for use with standard principal components analysis.

Recent work in psychology has focused on "parallel analysis", that is, retaining in a 

principal components analysis those factors whose eigenvalues exceed the eigenvalues obtained 

from an analysis of random data. Although tables of eigenvalues for random data have been 

published, to my knowledge there has been no systematic investigation of the sensitivity or 

specificity of parallel analysis, nor of whether factors that are judged to be statistically



significant also tend to be well-identified, that is, show good metric recovery. The 

simulations used to study the eigenvalue ratio test in this dissertation, could be extended to 

parallel analysis as well.

Experiment 1 was an attempt to collect similarity judgments containing systematic 

asymmetries, by selecting objects that belonged to the same category, but differed in 

typicality. Higher similarity judgments have been reported by Rosch (1975a) and by Tversky 

(1977) when a lower-typicality exemplar is compared to a higher-typicality exemplar. The 

goal was to obtain asymmetric similarity judgments that could be examined for a 

multidimensional structure using CAA and NSKMDS. However, no asymmetries were 

found.

Because asymmetric similarity judgments have been reported previously by Rosch 

(1975a) and by Tversky (1977), including in a  large-scale analysis of previously published 

similarity matrices (Tversky & Hutchinson, 1986), die absence of asymmetries in the current 

data might be a Type II error. The studies conducted for this dissertation were able to detect 

asymmetries with 90% power (6=.10) down to a correlation ratio of .047 for the vegetable 

category, and .057 for the tools. This is relatively sensitive, but smaller effects do occur in 

psychological research (Cohen, 1977).

Several aspects of the results, however, give the absence of asymmetries some 

significance. First, the subjects whose data were retained for analysis showed high within- 

subject reliability in their similarity judgments. Moreover, the average judgments of these



subjects showed a high between-subjects reliability. For the vegetable category, the average 

similarity judgments had a reliability of .942, and the average typicality judgments had a 

reliability of .964 . For die tools, the reliability of die average similarity judgments was .919, 

and die reliability of the average typicality judgments was .928. Thus, the subjects were able 

to give reasonably precise estimates of similarity and typicality. The asymmetric portion of 

these estimates, however, shows no indication of containing true-score variance. The 

reliability of the average asymmetries is estimated at -.003 for the vegetable category, and 

.000 for the tools.

Second, subjects appear to have been influenced by typicality in the symmetric portion 

of their similarity judgments. In a principal components analysis of the symmetries, the one- 

factor solution for the tool similarity judgments correlated .800 with the average typicality 

judgment. For the vegetable category, a two-factor solution was indicated. After varimax 

rotation, the first factor correlated .802 with the average typicality judgment. Thus, typicality 

appears to have been the primary influence on the symmetric part of the similarity judgments, 

but, contrary to hypothesis, it generated no asymmetries.

Third, an "extreme groups" analysis, involving the directional similarity judgments 

between the most and least typical objects, did not support the hypothesis. The difference 

between the two directions of comparison was not significant for either the vegetable or the 

tool category. For the vegetables, even the direction of difference was contrary to the 

hypothesis: higher similarity judgments were obtained when the most typical exemplar was 

compared to the least typical.



The most obvious weakness in the current study is the high proportion of subjects 

who appear to have responded randomly. Much of the random responding seems attributable 

to the study’s conditions: subjects were run as a group and were free to leave as soon as they 

had recorded their judgments. The study was run on a Friday, spring afternoon, nearly the 

last day of the semester. I suspect that subjects did not have a clear sense of the importance 

of their similarity judgments, and that the study lost a competition with the weather.

Random responding was readily identified by checking die consistency of each 

subject's ratings across ten repeated pairs, and the unreliable subjects were excluded.

However, the attrition entails a loss of power that may be quite unfortunate, given the 

presumably small effect size of asymmetries. Of course attrition can also produce an 

unrepresentative sample. However, because the subject sign-up process itself yields 

unrepresentative samples, and because no individual differences have been proposed for the 

asymmetries, this does not seem likely to be a problem. Certainly I cannot identify a reason 

to expect that the lost subjects, had they given reliable judgments, would have generated 

asymmetries.

Some of the attrition may be due to the group nature of die study. Were the study 

hypotheses to be followed up, it would be preferable to run subjects individually. Computer- 

presentation of the stimuli might also lend a greater credibility of the research to the subjects. 

The number of trials (240 similarity judgments and 20 typicality judgments) may have been 

fatiguing, and a reduction to, say 8 stimuli for each category, for a total of 160 similarity and 

16 typicality judgments, may give better results.



If a follow-up study were to be conducted, the judgments should probably be collected 

as ratings. Although Heilman and Zwislocki (1961) have argued that absolute magnitude 

estimations are less likely to contain response set variance, this seems more than outweighed 

by the subjects' unfamiliarity with the task. Indeed, many of the magnitude estimation 

subjects whose judgments were reliable seem to have disregarded the instructions altogether 

and used a rating scale. For the detection of asymmetries, it would be crucial to reduce error 

variance as far as possible. This does not seem well-served by attempting to train subjects in 

an unfamiliar response mode.

However, although improvements can be made, I would tend to recommend against 

following up the hypotheses by collecting more similarity ratings. As noted, there was no 

trace of asymmetry in the current, reasonably sensitive experiment Moreover, CAA and 

NSKMDS "take the asymmetries at face value", that is, they attempt to represent all of the 

asymmetries in the matrix. Therefore if the asymmetries contained a significant amount of 

error, the CAA and NSKMDS solutions, and particularly multidimensional solutions, could be 

quite misleading. Tests of a priori hypotheses are safer in this regard, in that they focus on a 

single source of variance, and include a check on the likely replicability of the finding.

Further research on asymmetric similarity could perhaps best be conducted instead by 

examining the data sets identified by Tversky and Hutchinson (1986) as containing 

asymmetries.

Typicality

Previous research had suggested that ratings of the complexity and meaningfulness of 

geometric figures could be analyzed into multiple dimensions using Q-factor analysis



(Boricum, 1989). (fence, it seemed plausible that typicality would also be multidimensional, 

and that these dimensions might account for multidimensional asymmetries. The typicality 

judgments collected for this dissertation, however, appear to have a strongly one-dimensional 

structure. Because there is no compelling theoretical reason, to my knowledge, to expect 

typicality to be multidimensional, this research direction may not be useful for further studies.

Random number generator

The initial problems seen with the random number generator are worth considering in 

more detail. The generator was published in peer-reviewed journal (Wichmann, & Hill,

1982). It was the subject of some later commentary (McLeod, 1985; Wichmann, & Hill, 

1984; Zeisel, 1986), in which no difficulties of the type encountered here were reported. In 

this dissertation, a series of numbers produced by the generator showed no significant 

autocorrelations to suggest a periodicity. Nonetheless, in the context of the simulation 

program, the generator was found to be producing numbers that correlated across trials. The 

trials were separated by a slightly variable interval of approximately 1.8 seconds. The 

periodicity appears to have been controlled by the first two digits of one of the three six-digit 

seeds.

In this dissertation the concern was simply to locate the periodicity well enough to 

eliminate it from the simulations. However, the Wichmann and Hill algorithm is presumably 

in widespread use, as it is has been adopted as the random number generator in SYSTAT 

(Wilkinson, Hill, Welna, & Birkenbeuel, 1992). Moreover, in Monte Carlo studies of



statistics, the randomness of the generated numbers is often taken for granted. Hence, the 

cause of the difficulties may be important beyond the current work.

The Wichmann and Hill algorithm is a variant of the multiplicative congruential 

generator developed by Lehmer in 1949 (Knuth, 1981). Generators of this type produce a 

sequence of numbers. Each element in the sequence is the modulus, or remainder, left after 

the preceding element is multiplied by one constant, "a”, and then divided by another 

constant, "m":

Xi+1 = mod [(a*Xj)/ml .

The output of the generator on one iteration is its input on the next. The sequence necessarily 

repeats itself, with a period less than or equal to m. However within the period, for carefully 

chosen values of a and m, the successive numbers can be quite random (Knuth, 1981). 

Moreover, Wichmann and Hill's method contains a refinement: The algorithm is based cm 

three simultaneously running, iterative congruential generators. The random number returned 

on each trial is derived from the sum of the three generator outputs. Wichmann and Hill note 

that the algorithm's results pass a number of statistical tests for randomness.

The difficulties encountered in the simulation program almost certainly pertain not to 

the generator itself, but to how it was used. Many of the seeds used here were outside the 

proper values for the generator. Moreover, the generator is designed to run iteratively, 

starting with a single, arbitrary set of seeds: The output from successive iterations should then 

be random with respect to the earlier iterations. In the simulation program, however, the 

generator was called repeatedly, with new seeds on each call. Hence, instead of using the 

generator's output across iterations, we were using its output across different seeds.



Multiplicative congruential generators have not been tested for this type of operation. 

Wichmann and Hill note that the seeds, once set "should not be changed other than by rails 

of the algorithm" (p. 189). Certainly, they did not intend for each random number to be 

generated by a separate call.

Since the studies reported in this dissertation were conducted, the simulation program 

has been modified. The seeds to the Wichmann and Hill generator are set to proper values 

using a data statement at the beginning of the program, and are not reset while the program is 

running. A second random number generator has been added, from Knuth (1981). The 

second generator is of a subtractive rather than a multiplicative congruential type. Thus it can 

provide some check on simulation results obtained with the multiplicative generator, and vice 

versa.

Press, Teukolsky, Vetterling, and Flannery (1992) caution that random number 

generators should be tested for the application in which they are being used. Hence, the 

investigations reported in Chapter 8, to check for and correct violations of randomness, will 

need to be retained in the modified simulation program.
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Orthogonality of Symmetric and Skew-Symmetric Parts

The symmetric and skew-symmetric parts of an asymmetric matrix are orthogonal. 

This can be seen by computing their sum of cross-products:



To understand Gower's approach, recall first that prototypical similarity data is 

symmetric (d̂  =  dp) and that prototypical dominance data is skew-symmetric (dy = -dp). 

Generally in MDS a square data matrix is forced to symmetry by replacing dy and dp with 

their arithmetic mean: .5*(dy +  dp). When performed over the entire matrix this is 

equivalent to averaging the matrix with its transpose:

S =  .5*(D +  D )

where D is the original, square, asymmetric data matrix, and S is the derived, symmetrized 

matrix. That S is symmetric is easily verified, for it meets the definitional requirement of 

being equal to its own transpose:

S’ =  .5*(D +  D ')'

=  .5*(D" + D’)

=  ,5*(D +  D')

=  S

S, however, is not D, and information is lost when we symmetrize. This information 

is the difference between S and D:



D - S =  D - .5*(D +  D' )

= D - .5*D -.5*D'

= .5*D - 5*D'

=  .5*(D - D ')

=  A

A, the lost information, is skew-symmetric, for it meets the definitional requirement 

of being equal to the negative of its transpose:

A’ = .5*(D - D’)'

= .5*(D' - D ")

= .5*(D’ - D)

= -.5*(D - D )

= A

Thus, any matrix can be partitioned into a purely symmetric and a purely asymmetric (i.e., 

skew-symmetric) part (Basilevsky, 1983). The symmetric part is easily analyzed of course, 

with principal components analysis, factor analysis, multidimensional scaling, and the like. 

Hence, Gower focusses on the asymmetries.

A symmetric matrix can be analyzed into very simple, vector components, with 

optimal least squares properties. The symmetric matrix is analyzed into a set of simple 

matrices, each of which is the outer product of a vector with itself:

S = S, + Sz + S3 ... + Su

=  s ^ ’ +  sfeSj’ +  S3S3’ ... +  Sk%’



The vectors s* are the eigenvectors of the matrix. In the outer product of a vector with itself, 

each row is proportional to ail the other rows, and each column is proportional to all the other 

columns. Thus, each outer product matrix contains only 1 independent row and 1 

independent column. The matrix is of rank one. Its information content can be displayed 

along a (one-dimensional) line, corresponding to the principal component vector. Hence, the 

symmetric matrix is analyzed into simple and easily described components.

Each outer product of a vector with itself is necessarily symmetric:

This makes the outer product of a vector with itself unsuitable for representing skew 

symmetric data We are forced to a more complex representation. The outer product of one 

vector with another is not necessarily symmetric:

which need not equal s^ ’. The outer product is still of rank one, however, because each row 

is proportional to the other rows, and each column is proportional to the other columns. If $ 

and Sj have the same number of elements s^ ' will be square and its transpose can be 

subtracted from if

The difference matrix is skew-symmetric, for it equals the negative of its transpose:



(V l - & ) '

= Sj"Si’ - Si,,Sj'

=  SjSj* -  Sfl’

= -(SiSj* - SjSj')

The difference matrix is rank two (must be represented as a plane rather than a vector), and is 

the simplest unit into which skew-symmetric matrices can be analyzed without losing the 

skew-symmetric property. Gower (1977) points out that the singular value decomposition of 

a skew-symmetric matrix is into difference matrices such as these. Hence, using the singular 

value decomposition to give a least squares approximation of the asymmetries, leads to rank 

two difference matrices. In matrix terms, the singular value decomposition of a skew- 

symmetric matrix, as for all matrices, is 

S = U D V'

However, the vectors in V are the same as those in U, except for the order and signs within 

pairs of vectors. Therefore, a simpler form of the singular value decomposition is 

=  U D J U '

where J is a block diagonal skew-symmetric matrix.

Thus, while we analyze symmetric matrices into tank one components, or vectors, the 

fundamental unit of a skew-symmetric matrix is a rank two component, or plane.

A skew-symmetric component plane is not a metric space. This may be seen by 

considering how distance is defined in a vector space.

Distance is inherently bound up with the notion of vector length. The length of a 

vector is the distance from its end point to the origin. The distance between the endpoints of



2 vectors is the length of the vector joining the endpoints. Length, in turn, is defined as the 

inner product of a vector with itself.

The yalar product (sum of cross products) of two vectors is the most common 

example of an inner product. The scalar product of a vector with itself is the sum of squares 

of its elements.

x'x =  X2, +  X?2 +  X2J ...

The square root of this is its Euclidean length (Pease, 1965, pp. 51-53).

Slightly more generally, we can modify the scalar product as x’Kx, where K is a 

square matrix. When K = I, the identity matrix, the usual scalar product emerges as a 

special case. When K *  I, the scalar product still equals the squared distance, but computed 

now using a different set of axes. When the columns of K are orthogonal the new axes are 

orthogonal rotations of the original axes. When the columns are not orthogonal, an oblique 

rotation occurs. When the sum of squares of a column are greater (less) than one, the axis 

corresponding to the column has been expanded (contracted).

For x’Kx to meet the definitional requirements of an inner product K must be 

symmetrical. When the vector spaces are derived from skew symmetric data, the 

asymmetries are defined as 

*iy2 - x2yi

= (Yi. Yz)’ K (x,, Xj) 

where K is an elementary skew-symmetric matrix:

K = 0 -1  

I 0



Because K is not symmetric, it cannot be used to define an inner product relation, and 

therefore does not indicate distance in the usual sense.



In the canonical analysis of asymmetry, and in its nonmetric extension, a skew- 

symmetric matrix is represented as the sum of elementary skew-symmetric matrices, each 

constructed from two dimensions:

Xg — - a^a^ (16)

where ag is the coordinate of object i on dimension I, % is the coordinate of i on dimension 

n, a* is the coordinate of j on dimension I, and a# is the coordinate of j on D.

This elementary skew-symmetric relation between objects i and j can be represented 

geometrically in two-dimensional space as the signed area of the triangle whose vertices are 

object 1, object 2, and the origin. The area is signed. We label it as, say, positive if object i 

is less than 180 degrees from j in a clockwise sweep around the origin, and negative if object 

i is more than 180 degrees from j in a clockwise sweep.

There are two ways to see the basis few* this interpretation. The first involves 

recognizing that the relation given by Equation 16 above is the determinant of a 2 by 2 matrix 

whose rows represent the objects and whose columns represent the two dimensions. One 

would then follow standard proofs (e.g., Birkhoff & Mac Lane, 1953) that the determinant is 

equal to the area of a parallelogram, two of whose sides are the lines drawn between the 

origin and the two object points. The area of a triangle formed by the two object points and 

the origin is simply one-half the area of the trapezoid.

Here I will simply illustrate the correspondence with reference to Figure 26,below.



as in Equation 16, above.

In Figure 26, we are seeking to demonstrate that the area of the inner triangle equals 

one half the quantity given in Equation 16. We can obtain the area of die inner triangle by 

subtracting the areas of triangles 1, 2, and 3 from the area of the circumscribing rectangle:





Wishart Error

Let t,, t, be elements in a vector used to create the true symmetric part of a matrix. 

Under the factor model, cell tXy in the true matrix is constructed as

i.e., as the cross product of the appropriate scores on the true vector.

Now let ej, be random normal deviates in an error vector that is added to the true 

vector to corrupt it. If we create an error perturbed matrix from the corrupted vector, using 

the factor model, cell will be given as

that is, as the cross product of the appropriate scores on the corrupted vector.

The amount of error perturbation for ceil that is, the squared residual at i j  thus

equals

Across all cells, the total perturbation, or sum of squared residuals equals

We want to multiply all elements e in the error vector by a rescaling factor, K, so that S S ^  

equals the desired amount of error perturbation, or DAP:



After squaring we have

Some condensing is possible because

and

This yields

or

in which K is the unknown rescaling coefficient The rescaling coefficient is obtained by 

solving Equation 17 for a teal root.



Chi-Square Error

We could add random normal deviates to a "true" vector, and then use this now- 

corrupted "true" vector to generate the cells of a symmetric matrix under a squared Euclidean 

distance model:

If the vector had not been corrupted by the addition of error, the squared Euclidean distances 

would have been

and therefore the sum of squared residuals is given by

To rescale the error vectors so as to obtain the desired amount of residual sum of squares



As in the case of Wishart error, this fourth degree polynomial in K can be solved for a real 

root, which would be the desired rescaling factor.

Asymmetric Error

The entries in an elementary skew-symmetric matrix are constructed from two

vectors:

If we add an error vector to each of these true vectors, an error perturbed elementary skew- 

symmetric matrix can be formed:

The sum of squared differences, across cells, between the true and error perturbed matrices is 

given by

Because there are two error vectors, et and eD, corresponding to the two true vectors, we will 

need two rescaling coefficients:



However, in the canonical analysis of skew-symmetry, the two true vectors defining an 

elementary skew-symmetric matrix have the same sum of squares. Therefore, we can 

simplify the present task by requiring that the two error vectors, after rescaling, have the same 

sums of squares. Thus we require that

All quantities in Equation 19 are known except for the rescaling coefficient for the first error 

vector, K;, which can be determined with root-finding methods. Once Kt is established, we 

can use Equation 18 to find Kn. Source code in FORTRAN 77 for solving Equation 19 is 

given in Appendix 7.



Appendix V 

Stimulus Words

CATEGORY

Carpenter's Tool

Vegetable

EXEMPLAR TYPICALITY

RANK MEAI

saw 1 1.04

ruler 3 1.48

nails 6 1.67

sander 10 1.79

chisel 16 2.26

pliers 22 2.56

wood 27.5 2.77

hinge 34.5 3.12

paintbrush 45 3.81

cement 55 4.91

pea I 1.07

green beans 3 1.18

broccoli 6 1.28

brussels sprouts 10 1.72

beets 15 2.08

eggplant 21 2.38

potato 29 2.89

peppers 37 3.21

avocado 44 3.62

dandelion 54 5.20

Source: Rosch, E. (1975b).
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