
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

Summer 8-21-2015

Detection of Iron (III) Using Magnetic
Nanoparticles
Kaiya Hansen
University of Maine - Main, kaiya.hansen@umit.maine.edu

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Analytical Chemistry Commons, Environmental Chemistry Commons, and the
Materials Chemistry Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Hansen, Kaiya, "Detection of Iron (III) Using Magnetic Nanoparticles" (2015). Electronic Theses and Dissertations. 2334.
http://digitalcommons.library.umaine.edu/etd/2334

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/134?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/2334?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

DETECTION OF IRON (III) USING  

MAGNETIC NANOPARTICLES 

By 

Kaiya Hansen 

B.S. University of Maine, 2014 

 

A THESIS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

(in Chemistry) 

 

The Graduate School 

University of Maine 

August 2015 

 

 

 

 

Advisory Committee: 

 Carl P. Tripp, Professor of Chemistry, Advisor 

 Alice E. Bruce, Associate Professor of Chemistry 

 Mark Wells, Professor of Marine Science 



 
 

DETECTION OF IRON (III) USING  

MAGNETIC NANOPARTICLES 

By Kaiya Hansen 

Thesis Advisor: Dr. Carl Tripp 

 

An Abstract of the Thesis Presented 
in Partial Fulfillment of the Requirements for the 

Degree of Master of Science 
(in Chemistry) 
August 2015 

 

The goal of this work was to develop an iron (III) sensor which can be mounted 

on buoys and gliders and automatically measure iron (III) in the ocean. The method 

investigated in this thesis was based on anchoring the iron (III) chelator desferrioxamine 

B (DFB) to magnetic particles. DFB selectively binds iron (III), resulting in a complex 

which produces a broad absorbance band at 430 nm. This band can be measured via 

UV-Vis spectroscopy (UV-Vis). However, measuring oceanic iron (III) directly in solution 

is difficult because the concentrations can be very low, sometimes less than 1 nM. This 

problem could be solved if one were able to concentrate the iron (III) from a sample and 

magnetic particles (which can be removed from a solution by introducing a magnet to 

the side of the container) were used to accomplish this task. 

In Chapter 2, it was found that the untreated carbon-coated cobalt magnetic 

(Co-C) particles were able to capture iron (III) from a solution. This offered the 

opportunity to use untreated Co-C particles to capture iron (III) and then in a second 



 
 

step, remove the iron (III) from the particles for analysis in solution. Most of the studies 

in Chapter 3 were directed at developing a protocol for extracting iron (III) from the 

untreated Co-C particles. In one case, 100% of the iron (III) was removed from the 

particles with DFB. However, this result was not repeatable – in all other cases, 72% or 

less of the iron (III) captured from solution was recovered by the DFB. It was determined 

that this was because the Co-C particles were exposed to the air between removing the 

remaining iron solution and adding the DFB. This allowed the iron (III) on the surface to 

react and form iron oxyhydroxides, meaning that the DFB was not able to capture it all. 

In Chapter 4, a variety of magnetic nanoparticles were derivatized with DFB on 

the surface: Co-C particles, TurboBeads Silica™ (Co-C particles purchased with a silica 

coating), and silica-coated nickel nanoparticles (Ni-SiO2). It was found that TurboBeads 

Silica™ treated with DFB or DFB-Fe (DFB already bound to iron), as well as Ni-SiO2 

treated with DFB-Fe could capture iron (III) from solution. Some of the iron (III) could be 

removed from the particles by adding oxalate adjusted to a pH of 1.5. However, no 

more than 70% (usually less) of the iron (III) captured by these particles was ultimately 

recovered by the oxalate. The DFB on the particles’ surface should have captured the 

iron (III), preventing it from forming oxyhydroxides. However, to measure iron (III) in the 

oxalate required adding DFB and adjusting the pH to form the DFB-Fe complex in 

solution. It was discovered that in a solution of oxalate, DFB-Fe can be reduced to iron 

(II) when exposed to light. Because measurements were not performed in a dark room, 

some of the iron (III) was rendered undetectable. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Motivation for Automated Iron Detection 

 

The increase in atmospheric carbon dioxide levels has been affecting the world’s 

climate. A major source of carbon dioxide sequestering occurs through phytoplankton 

growth in the world’s oceans. However, in as much as 40% of the world’s oceans, it has 

been found that the amount of phytoplankton and hence, carbon dioxide uptake is 

limited by the amount of dissolved iron. Some areas of the ocean, known as “high-

nitrate, low-chlorophyll” (HNLC) areas, have an excess amount of the macronutrients 

(phosphates, nitrates, and silicates) needed for phytoplankton growth. Seeding these 

areas with iron has been shown to increase the amount of phytoplankton which grow 

there, indicating that a lack of iron is what is preventing more phytoplankton from 

growing.1,2,3 

Adding iron to HNLC areas allows more phytoplankton to grow, and in turn, to 

consume carbon dioxide. Thus, the amount of iron in the ocean plays a role in 

determining how much carbon dioxide can be taken out of the atmosphere. For this 

reason, it is very important to understand the distribution and role of iron in oceanic 

waters as well as to understand the mechanisms by which organisms extract iron from 

the ocean. This information would also aid in developing a better understanding of 

oceanic ecosystems because phytoplankton are at the base of the food chain in the 

ocean. 
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The development of models and an understanding of the role of iron in oceanic 

ecosystems will require a database of the spatial concentration of iron in the oceans. 

Currently, there is insufficient data on iron levels in the oceans because measuring iron 

at trace levels can be quite difficult. Concentrations can be very low – less than 1 nM – 

because iron is not very soluble and is constantly being consumed by phytoplankton. 

Additionally, some of the iron present is complexed to organic molecules rather than 

free in solution.1 

Contemporary methods for measuring iron at sub-nanomolar levels are primarily 

lab-based, though a few ship-based methods have also been developed. Common lab-

based methods for measuring low concentrations of iron (III) include inductively-

coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic adsorption 

(GF-AA). When using either of these methods for seawater analysis, the analyte must 

first be removed from the sample. This is because the sensitivity can be reduced by the 

presence of other ions in solution. This is particularly problematic when measuring iron 

in seawater, because other ions are present in much higher concentrations. 

Additionally, because these are lab-based methods, samples must be collected from the 

ocean and brought to a laboratory. Therefore, collection and transportation of samples 

is time-consuming and tedious. It is also possible to perform analysis from aboard a ship 

rather than in a lab.4,5 These methods still require user involvement, so someone must 

be present on a ship to analyze the samples. Ship time is expensive, and the sampling 

can still be tedious. Therefore, to increase the volume of data collected on iron levels 

throughout the world’s oceans, a fully automated detection system is needed. 
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Furthermore, this automated system needs to be one which can be deployed on buoys 

and gliders in the ocean. 

There have been some methods developed which can be deployed on a buoy 

and provide continuous iron measurements automatically. These methods use a variety 

of detection techniques, such as fluorescence6, 7, colorimetry8, and flow-injection 

analysis/spectrophotometric detection9. However, only one of these methods has a 

detection limit below 1 nM, and it cannot be used with acidified samples.6 Acidification 

is necessary for comparison with historical data. Therefore, there is still a need to 

develop new sensor platforms which are not only automatized but have detection limits 

below 1 nM and can be performed on acidified samples. 

The work in this thesis was ultimately motivated by the need to develop such a 

sensor. The research presented herein was done to bring us one step closer to 

developing sufficiently sensitive iron detectors on buoys and gliders. 

1.2. A Potential Basis for Automated Iron (III) Detection – Desferrioxamine B 

 

All the work described herein, including the previous work toward the goal of 

developing iron (III) sensors, is based on the chemistry of desferrioxamine B. The 

structure of desferrioxamine B (also called deferoxamine) is shown in Figure 1.1. 
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Figure 1.1. The structure of desferrioxamine B. 

 

Desferrioxamine B (abbreviated as DFB) is known as a siderophore, meaning that 

it chelates iron (III). In fact, it is naturally produced by prokaryotes such as Streptomyces 

pilosus for the purpose of collecting the iron (III) needed for survival.10, 11 Deferoxamine 

chelates iron (III), forming a hexadentate structure as shown in Figure 1.2. It has a high 

affinity for iron (III), with a thermodynamic binding constant on the order of 1031 to 1032. 

DFB does not have such high binding constants with other metals. The metal with the 

next-highest binding constant, copper (II), has a binding constant about 15 orders of 

magnitude lower than that of iron (III).1, 11, 12 Therefore, not only does it have a high 

affinity for iron (III) – it will also bind iron (III) at the exclusion of other metal ions. The 

high affinity is due to the fact that a hexadentate structure is formed, making a rather 

stable coordination complex. The selectivity is due to the fact that iron (III) is ideal for 

fitting into the cavity formed when DFB curls around to chelate a metal. 

The fact that DFB possesses both a high affinity and selectivity for iron (III) makes 

it ideal for use as an iron (III) sensor. The high binding constant with iron (III) enables 

DFB to chelate it even at very low concentrations. Its high selectivity means that 

interference from other metal ions in the sample (which will always occur with sea 

water samples) is unlikely. Finally, DFB is commercially available and therefore easy to 

obtain. 
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Figure 1.2. The structure of desferrioxamine B complexed with iron (III) (also known as 
ferrioxamine B). 
 

1.3. Detection of Iron (III) Using Infrared Spectroscopy  

 

One method of DFB-based iron (III) detection which has been explored was the 

use of infrared spectroscopy to detect DFB-Fe on a silicon wafer.1 A silicon wafer was 

first treated with mesoporous silica. The silica layer was then functionalized using 

3-(triethoxysilyl)propylsuccinic anhydride. Upon exposure to water, the anhydride 

became a dicarboxylic acid. Carboxylic acids can undergo reactions with amines in the 

presence of a carbodiimide to form an amide linkage. Note in Figures 1.1 and 1.2 that 

DFB contains an amine group which is not utilized in the chelation of iron (III). 

Therefore, by adding N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC) and DFB, DFB could be covalently linked to the wafer. More specifically, it is 

covalently linked via formation of an amide linkage through a reaction between the 

amine group in DFB with the carboxylic acid groups on the surface of the wafer. This 

process is summarized in Figure 1.3. 
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Figure 1.3. Summary of process to attach DFB to silica-coated silicon wafer. TEA stands 
for triethylamine, and “anhydride silane” refers to 3-(triethoxysilyl)propylsuccinic 
anhydride. Figure from Cuihong Jiang’s Ph.D thesis (University of Maine). Structures for 
TEA and anhydride silane added for clarity. 
 

The mechanism for the general reaction between a carboxylic acid and amine 

with carbodiimide present is shown in Figure 1.4. The addition of EDC is necessary to 

ensure that the amide linkage is formed. This is because when only carboxylic acid and 

DFB are present, they will undergo an acid-base reaction (with the amine group on the 

DFB acting as a base), forming a salt.  
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Figure 1.4. Reaction between DFB and carboxylic acid with EDC and mechanism. 

Adapted from mechanism stated by Nakajima and Ikada, 1995.13 Side reactions have 
been left out for simplicity. 
 

Once the DFB was successfully attached to the surface of a silica-coated silicon 

wafer, it was exposed to a 1 L sample, and the DFB extracted any iron (III) in the sample. 

The silicon wafer was analyzed using infrared spectroscopy, using a wafer not treated 

with DFB as the background. Figure 1.5 shows two difference spectra – one spectrum 

recorded before DFB has chelated iron (III) and the second one recorded after it has 

done so. When DFB has chelated iron (III), a band appears at 560 cm-1, which is due to a 

Fe-O stretching mode. This band is not present in the spectrum of DFB without iron (III). 
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The intensity of the band was proportional to the amount of iron (III) present, so it was 

used to quantify iron (III).1 

 

Figure 1.5. Infrared spectra of DFB-treated silicon wafer surface before and after 
reaction with iron (III). The top spectrum is of the wafer before the reaction while the 
bottom spectrum is of the wafer after the reaction. A reference spectrum was recorded 
through an unmodified silica-coated wafer.1 
 

It was found that the presence of other metal cations in a sample did not 

interfere with the ability of this method to measure iron (III). Iron-containing colloids 

and organic compounds did not interfere with the Fe-O peak either. It was also 

determined that this method can be used with samples which have been acidified to pH 

1.8. This is necessary for comparison to historical measurements. Ocean samples have, 

in the past, been acidified to free any iron complexed to organic ligands in the ocean. 

Acidification also prevents the formation of iron hydroxides, which occurs naturally in 

iron solutions of higher pH.  
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Additionally, the infrared-based detection method was field-tested off the coast 

of Alaska. The concentrations of iron (III) were measured at various depths in the ocean 

with the infrared detection method and by flow-injection analysis with 

chemiluminescence. As shown in Figure 1.6, the error bars for the values obtained in 

each method overlap, meaning that the two measurements are not significantly 

different. In other words, the infrared detection method was in agreement with a more 

well-established chemiluminescence method.1 

Despite the advantages of the infrared detection method, it is still restricted to 

use on a ship. This is primarily due to the fact that water absorbs very strongly in the 

infrared region. This means that wafers must be dried before measurements can be 

taken, to avoid the interference of water with the detection of other bands. Another 

disadvantage is that the wafer was stirred in the sample for 24 hours to ensure 

complete mass transport of iron (III). Neither drying nor long stirring times are practical 

for deployment on buoys and gliders. 
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Figure 1.6. Iron (III) concentrations measured off the coast of Alaska at various depths 
with chemiluminescence and IR spectroscopy. The circles represent chemiluminescence 
measurements while the squares represent measurements with the newly-developed 
infrared detection method. Data points represent mean measurements with three 
replicates; the error bars represent ±1 standard deviation.1 
 

1.4. Capture of Iron (III) on Transparent Membrane and Detection with UV-Vis 

Spectroscopy 

 

Subsequent work in iron (III) detection systems using DFB focused on a different 

method which would not require drying nor become limited by mass transport. This 

work was begun by Zachary Helm for his M.S. thesis. Instead of attaching DFB to a 

silicon wafer, a Teflon® membrane was used. The membrane is capable of withstanding 

flow rates of up to 10 mL/min, allowing a water sample to be flowed through it. But to 
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accommodate these flow rates, the pores have to be large, meaning that the 

membranes have a low surface area.14 

To compensate for the low surface area, the membranes were treated with a 

block copolymer of polystyrene-b-poly(acrylic acid) (PS-b-PAA). Treatment simply 

involved exposing the membranes to a solution of PS-b-PAA in water. Because the PS 

block is hydrophobic, it is not particularly soluble in water. The PAA block is hydrophilic 

and therefore this block extends out from the surface into the water. Initially, the 

polymers lie flat on the surface, but as the surface becomes more crowded, they will 

arrange to accommodate additional polymers which adsorb from the solution phase. 

Eventually, the polymers adopt a “brush-like” configuration, where the PAA extends 

from the surface into solution.14, 15 This process is illustrated in Figure 1.7. 

Once the surface of the membrane has been treated with PS-b-PAA, one can use 

the reaction between DFB/EDC and a carboxylic acid (see Figure 1.4)13 to covalently 

attach DFB to the acrylic acid units of the PAA. The PAA units are long chains extending 

from the surface, which increases the number of binding sites for DFB. This is known as 

vertical amplification, and it helps account for the low surface area of the original 

membranes.14 
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Figure 1.7. The process by which a Teflon® membrane is derivatized with PS-b-PAA. The 
red lines are PS blocks and the blue lines are PAA blocks. 1) PS-b-PAA in solution near a 
Teflon® membrane. 2) Some PS-b-PAA adsorbed, flat, onto the membrane surface. 
3) The block copolymers have adsorbed, with the PS blocks attached to the surface and 
PAA blocks extending out into solution. The carboxylic acid functional groups of the PAA 
are shown. 
 

Thus, one can mitigate the problem of mass transport by flowing sample through 

a membrane. However, infrared spectroscopy is still sensitive to the presence of water. 

Therefore, another detection technique is needed which is not sensitive to the presence 
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of water. Ultra-Violet-Visible spectroscopy (UV-Vis) is an attractive option, as it is often 

used for aqueous samples. The membranes are opaque when dry, which may at first 

appear to be problematic for using UV-Vis to measure the surface. However, the 

membranes become transparent when wetted by water (see Figure 1.8). This is due to 

the fact that the membranes have a refractive index similar to that of water and that the 

surface is hydrophilic, meaning it can be completely wetted by water. This means that 

when water fills the porous network of the membrane, there is one continuous phase of 

similar refractive index. Therefore, as long as the membranes are wet, they are 

amenable to analysis by transmission UV-Vis. The detection process is illustrated in 

Figure 1.9. 

 

Figure 1.8. A Teflon® membrane before and after exposure to water. The left image 
shows a membrane before its exposure to water while the right image shows the same 
membrane after exposure to water. Some water droplets can be seen on the membrane 
exposed to water. 
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The DFB-Fe complex is a deep red color with a broad absorbance band between 

430 and 470 nm. No such band is observed when a solution containing iron (III) is passed 

through a membrane which has not been derivatized with DFB. Since the intensity of 

this peak is proportional to the amount of iron (III) present on the membrane, the 

absorbance at 470 nm provides a measure of the amount of iron (III) present.14  

 

Figure 1.9. Process for detecting iron (III) on a DFB-treated Teflon® membrane. 1) A 
sample which contains iron (III) is flowed through a Teflon® membrane which has been 
treated with DFB. The DFB captures the iron (III). 2) The Teflon® membrane now has 
DFB-Fe on the surface. DFB-Fe absorbs light at 470 nm, which can be detected with UV-
Vis spectroscopy. 
 

Helm found that the membranes were able to extract iron (III) from both fresh 

water and sea water samples. The iron (III) uptake was more efficient at higher pH – for 

instance, when increasing the pH from 9 to 9.3, the rate constant for DFB-Fe 

complexation increased from 1.65 to 6.87 M-1s-1. The amount of iron (III) which could be 

captured also increased as the flow rate was decreased, as shown in Figure 1.10. It was 

suspected that this was due to increased contact time, which allowed more time for DFB 

to capture the iron (III). The detection limit for a 5 mL sample was found to be 0.24 nM 
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at a pH of 2 and a flow rate of 0.1 mL/min. However, this is not sufficiently low to 

measure iron (III) in all parts of the ocean, because the iron (III) concentrations can be as 

low as 30 pM.14 This means that in order to use this system to measure oceanic iron (III), 

the detection limit would first have to be improved. 

 

Figure 1.10. Flow rate dependence of iron (III) captured on Teflon® membranes. This 
shows the amount of iron (III) captured by a DFB-treated Teflon® membrane at varying 
flow rates.14 
 

Madhira Gammana followed up Helm’s work as part of her Ph.D thesis.16 In this 

work, membranes treated with PS-b-PAA were reacted with varying amounts of DFB. 

More specifically, she compared membranes fully reacted with DFB and membranes 

where only 50% of the reactive sites were bound with DFB. She found that membranes 
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with half the amount of DFB on the surface were able to capture more iron (III) and at a 

faster rate than their fully-bound counterparts. In other words, the membranes less 

densely-packed with DFB were better able to take up iron (III). It was suspected that this 

was because although more DFB was present on the fully-bound membranes, the 

denser packing interfered with some of the DFB molecules’ ability to bind iron (III). As 

shown in Figure 1.2, the DFB must wrap around the iron (III) in order to capture it. If the 

DFB is densely-packed enough, there may be steric hindrance preventing DFB from 

forming that curled structure. 

Further follow-up work was done by Silas Owusu-Nkwantabisah in his Ph.D 

thesis.17 When reacting DFB with a PS-b-PAA-treated membrane, he used DFB bound to 

iron (III), an approach called molecular imprinting. The iron (III) was then removed from 

the DFB by washing the membrane with 0.1 M oxalate at pH 1.5. It was found that when 

using DFB-Fe, the carboxylic acid on the surface only partially reacted with the DFB. 

What percentage of the carboxylic acid groups reacted depended on the length of the 

PAA block used, but in all cases, less than half of the acrylic acid groups on the surface 

actually reacted with the DFB. Additionally, it was found that for DFB-derivatized 

membranes prepared in this manner, the amount of iron (III) which could be recovered 

from solution was not flow-rate dependent. Nonetheless, not all of the iron (III) could be 

captured from solution, possibly due to a limitation from contact time.  

Thus, two problems still remained: an insufficiently low detection limit and flow 

rate dependence in the uptake of iron (III) by the membrane. In order to improve the 
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detection limit, one needs to concentrate as much iron (III) into the path of the 

detection beam as possible. In this author’s B.S. thesis work, the amount of iron (III) 

needed in the beam to produce a DFB-Fe absorbance of 0.02 was calculated. The result 

was that to produce an absorbance of 0.02 in a 1 cm cuvette with a 3 mm UV-Vis beam, 

there needed to be 36 ng of iron (III). This translates to 4.5 x 10-7 g/cm3 in general.18 

1.5. Capture of Iron (III) on Transparent Column and Detection with UV-Vis 

Spectroscopy 

 

Based on the work done by Helm, it seemed to be necessary to use very slow 

flow rates – around 0.1 mL/min – to get iron (III) capture greater than 90% out of a 

sample.14 Passing 1 L of sample at such a slow flow rate would be impractical. It was 

thought that increasing the contact time with a DFB-treated surface would allow for 

greater capture rates. Rather than decreasing the flow rate, it was thought that a 

column could be used in place of a membrane, as illustrated in Figures 1.11 and 1.12. 

This membrane would have to be made of a transparent material so that measurements 

could be taken directly on the column, as with the work done with the membranes. Still, 

a sample flowed through a column would have a longer contact time with the column 

surface than with a membrane experiencing an equivalent flow rate. It was thought that 

this would allow for higher iron (III) capture rates without the need to decrease the flow 

rate.16, 18 

This author’s B.S. work strove to develop a transparent, DFB-treated column 

which could be used to capture iron (III) from a sample. Agarose beads were selected as 
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the column material. Because they have a refractive index close to that of water (1.333 

to 1.337)19, they are somewhat transparent in water. The structure of agarose and a 

suspension of agarose beads in water are shown in Figure 1.13.  

 

Figure 1.11. Thickness of membrane compared to thickness of column. A sample will 
take longer to flow through a column than it would through a membrane, increasing 
contact time with the surface. 
 
 

 

Figure 1.12. Process proposed to detect iron (III) using a transparent column treated 
with DFB. 1) A sample which contains iron (III) is flowed through a transparent column 
which has been treated with DFB. The DFB captures the iron (III). 2) The transparent 
column now has DFB-Fe on the surface. DFB-Fe absorbs light at 430 nm, which can be 
detected with UV-Vis spectroscopy.  
 

       

Figure 1.13. Structure of agarose and picture of agarose beads suspended in water. The 
former is on the left while the latter is on the right. 
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As was done to the membranes, the agarose beads were first treated with 

PS-b-PAA. The acrylic acid groups of the PAA were then reacted with DFB to produce an 

amide linkage. Derivatization with DFB was successful, and these derivatized beads were 

able to capture iron (III), which could then be measured on a suspension of the particles. 

However, even at the maximum amount of iron (III) which could be captured by the 

beads, the DFB-Fe absorbance was only 0.016. Furthermore, due to the beads’ 

movement in the water, there were many fluctuations in the baseline. For this reason, it 

was determined that this system would be difficult to automate.18 

1.6. Capture of Iron (III) with Magnetic Particles and Subsequent Concentration for In-

Solution Detection 

 

The simplest way to measure iron (III) is to add DFB to a solution containing iron 

(III) and then take a UV-Vis spectrum to determine the concentration of DFB-Fe. The 

reason this method cannot directly be used to measure iron (III) in the ocean is due to 

the low concentration – even though DFB would capture the iron (III), the concentration 

of the resulting complex would be too small to measure effectively with UV-Vis. 

However, if one were able to concentrate the iron (III) from a sample, and then add DFB 

to the concentrated solution, it may in fact be possible to detect the resulting DFB-Fe 

complex. 

In this author’s B.S. work, iron (III) was captured on agarose beads derivatized 

with DFB by stirring the beads in an iron (III) solution in a beaker. The beads were 

somewhat difficult to capture from solution afterward.18 However, this problem could 
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be circumvented by using magnetic beads. Adapting the iron (III) capture onto magnetic 

particles is the focus of the work presented in this thesis. First, magnetic particles would 

be treated with DFB. Then, the beads could be stirred in a water sample, the DFB on the 

surface capturing any iron (III) present. Once all the iron (III) is captured, the particles 

can be drawn to a magnet, allowing for the remaining water in the sample to be 

removed. The complete process is outlined step-by-step in Figure 1.14. 

To remove iron from the DFB on the particles, one can stir them in a solution of 

oxalate at pH 1.5. As determined in Helm’s M.S. work, oxalate has a higher affinity for 

iron (III) than DFB at this pH.14 Therefore, using a smaller volume of pH 1.5 oxalate than 

the original sample volume, the iron (III) can be removed from the beads. Because a 

smaller volume was used, the iron (III) will now be concentrated. By adding DFB to the 

concentrated iron (III)/oxalate solution and raising the pH to around 8 (where DFB has 

the higher affinity for iron14), one will concentrate the iron (III) and form a detectable 

DFB-Fe complex. The chemistry upon which this process is based is illustrated in 

Figure 1.15. 
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Figure 1.14. Steps to remove and concentrate iron (III) using magnetic particles. 1) DFB-
treated magnetic particles are dispersed in solution. 2) DFB on particles takes iron out of 
solution and particles are drawn to a magnet. 3) Supernatant is removed. 4) Smaller 
volume of 0.1 M oxalate (pH 1.5) than that of the original solution is added. 5) Oxalate 
removes iron from DFB on particles. 6) Supernatant, now containing oxalate chelating 
iron, is removed. 7) Supernatant from step 6 is added to a cuvette; DFB is added and the 
pH is adjusted to around 8, causing the DFB to chelate the iron. 8) UV-Vis spectrum is 
taken to measure DFB-Fe absorbance of solution from step 7. 
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Figure 1.15. Controlling the chelation of iron (III) by DFB and oxalate. a) A particle 
derivatized with DFB has captured iron (III). A solution of oxalate at pH 1.5 is added, 
removing the iron (III) from the DFB on the particles. b) The oxalate solution, now 
containing iron (III), is mixed with DFB solution. The pH of the oxalate/DFB solution is 
raised to 8, causing DFB to chelate the iron (III).  
 

Many magnetic particles are made of iron or iron oxides. However, due to 

concerns that some of the iron could leak out into solution, thereby providing false 

readings of iron (III), it was necessary to avoid using those for this work. Therefore, this 

work primarily focuses on the use of carbon-coated magnetic cobalt particles known as 

TurboBeads™ (Co-C), pictured in Figure 1.16. TurboBeads™ are about 50 nm in 

diameter, and the carbon coating prevents oxidation of the cobalt. They were 

developed for the purpose of derivatization for the use of capturing particular elements 

and molecules from solution.20 For this reason, they appeared to be an ideal choice for 

this project. They can also be purchased with a variety of functional groups already on 

the surface. 
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Figure 1.16. Images of TurboBeads™. Left: Macroscopic photograph of TurboBeads™. 
Right: TEM image of TurboBeads™ showing the graphene layers on the surface. 
 

The research described herein was done in an attempt to develop a method of 

concentrating iron (III) from a sample using functionalized magnetic particles. The bulk 

of this work was performed on carbon-coated cobalt (TurboBeads™, Co-C). The first goal 

was to treat the surface of these particles with DFB. The next goal was to use the 

derivatized particles to take iron (III) out of a sample solution. The final goal was to 

remove the iron (III) from the particles into another solution with a smaller volume than 

the original sample. By decreasing the volume in which the iron (III) is dissolved, a more 

concentrated iron (III) solution would be obtained. 

In the process of performing this research, it was discovered that untreated 

TurboBeads™ will take iron (III) from solution; therefore, some work was done to 

explore the possibility of taking advantage of this characteristic. Finally, due to the 

limited success of concentrating and measuring iron (III) using TurboBeads™, the 
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possibility of using other magnetic nanoparticles for this concept was also explored. 

More specifically, this concept was applied to nickel nanoparticles and TurboBeads 

Silica™ (TurboBeads™ which have been coated in silica). 
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CHAPTER 2: INITIAL WORK 

 

2.1. Introduction 

 

As outlined in Chapter 1, DFB can be attached by reaction of its amine group to a 

surface containing carboxylic acid groups through the formation of an amide linkage. 

This section details the initial work done toward the derivatization of carbon-coated 

cobalt nanoparticles (Co-C) with carboxylic acids and the subsequent derivatization with 

DFB. The original goal was to be able to perform the procedures outlined in Figure 2.1. 

 

Figure 2.1. Scheme depicting the initial goals for the beginning of this project. 1) Treat 
the surface of Co-C particles with a carboxylic acid. 2) React the carboxylic acid groups 
on the surface of the particles with DFB. 3) Use the DFB-treated particles to collect iron 
(III) from a solution. 4) Use oxalate at a pH of 1.5 to remove the iron (III) from the 
particles. 
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Two methods of derivatizing the surface with carboxylic acid groups were 

attempted. The first was the adsorption of sodium polyacrylate (NaPA) onto the surface. 

The structure of NaPA is shown in Figure 2.2. As with block copolymers1, NaPA adsorbs 

on a nanoparticle surface from a solution due to its relatively low solubility in water. 

NaPA was used in place of the block copolymers in this work for a couple reasons. First, 

it is easier and cheaper to obtain than PS-b-PAA. Second, the NaPA is available as a 

60,000 molecular weight polymer, so it has an average of 833 acrylic acid units per 

polymer chain. This is far more carboxylic acid units per polymer chain than the 

PS-b-PAA, which has an average of 180 units per polymer chain. The adsorbed amount 

of a homopolymer such as NaPA on surfaces (approximately 5 mg/m2) is about the same 

as, if not more than, that of a block copolymer.2 Therefore, it was thought that with the 

higher molecular weight NaPA, there would be more carboxylic acid groups on the 

surface and therefore, more DFB could be added to the surface.  

The second method involved the polymerization of 

3-(triethoxysilyl)propylsuccinic anhydride (“silane”) around the particles. The structure 

of this molecule is shown in Figure 2.2. Trialkoxysilanes are known to polymerize with 

water3, and though water was not explicitly added to the reaction vessel, the silane 

reacts with the surface water to form a coating on the particle. 
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Figure 2.2. Structures of chemicals used for carboxylic acid derivatization. Left: sodium 
polyacrylate (image from Sigma Aldrich). Right: 3-(triethoxysilyl)propylsuccinic 
anhydride. 
 

2.2. Experimental 

 

2.2.1. Materials 

 

The following materials were obtained from Sigma-Aldrich: <50 nm carbon-

coated magnetic cobalt nanopowder (Co-C), deferoxamine mesylate salt (DFB), iron (III) 

chloride (FeCl3), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Sodium 

hydroxide and hydrochloric acid were purchased from Fisher. The sodium polyacrylate 

with MW 60,000 (NaPA) was purchased from Polysciences as a 35% solution, while the 

3-(triethoxysilyl)propylsuccinic anhydride (“silane”) was from Gelest, Inc. 

An iron-free 0.1 M oxalate solution was provided by Dr. Mark Wells. The iron-

free 0.1 M oxalate solution was prepared by flowing it through a Toyopearl column 

derivatized with DFB. The pH was adjusted as necessary using dilute sodium hydroxide 

and hydrochloric acid solutions. 

The 35% NaPA solution was first diluted to a 3500 ppm solution by diluting 1 mL 

of 35% NaPA to 100 mL with DI water. The 3500 ppm solution was then further diluted 
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to make a 700 ppm solution using 1 part 3500 ppm NaPA to 4 parts DI water. The exact 

volumes prepared depended on how much 700 ppm solution was needed. 

The FeCl3 was received as a powder. To make a 1 mM solution of FeCl3, the solid 

material was dissolved in DI water (16.2 mg per 100 mL). The pH was adjusted to 2.5 – 

2.8 with concentrated HCl to prevent the formation of iron hydroxides in solution. 

Solutions older than 1 week were discarded.  

All other materials listed above were used as received. The DFB and EDC were 

stored at -50 °C when not in use. 

All UV-Vis spectra were recorded on an Ocean Optics USB 2000 UV-Vis 

spectrometer with SpectraSuite software. Attenuated total reflectance infrared spectra 

(ATR-IR) were taken using an Alpha-P Bruker spectrometer at a resolution of 4 cm-1. 

Mass was recorded on a Mettler Toledo AG245 analytical balance. Thermogravimetric 

analysis was performed using a TGA Q500. SEM and EDX measurements were 

performed using a Zeiss NVision 40 system. Mechanical shaking was performed using a 

Vibramax 100 from Heidolph. 

2.2.2. Washing Particles 

 

Washing was performed by adding the desired solvent (usually DI water unless 

otherwise noted), mixing for approximately 2 seconds, drawing the particles to the side 

of the container using an external magnet, and then decanting the wash liquid or 

extracting the liquid with a pipette. 
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2.2.3. Treatment of Co-C with Sodium Polyacrylate (NaPA) 

 

A 700 ppm NaPA solution was prepared as described in Section 2.2.1. The pH of 

the NaPA solution was adjusted to 3. Next, 20 mL of this solution was added to 50 mg 

Co-C particles. This suspension was sonicated for 1 hour, then mechanically shaken at 

450 rpm with a Vibramax 100 for periods ranging from 11 to 24 hours. The particles 

were then washed 3 times with DI water. 

2.2.4. Treatment of Co-C with 3-(triethoxysilyl)propylsuccinic Anhydride (Silane) 

 

Approximately 50 mg Co-C particles were added to 85 mL toluene in a 125-mL 

Erlenmeyer flask. The flask was covered with a rubber septum. Using a syringe, 2 mL of 

the anhydride silane were added to the flask. The syringe was washed 3 times with 

toluene into the reaction mixture (thereby adding an additional 15 mL toluene). The 

suspension was sonicated for 1 hour and then mechanically shaken at 450 to 600 rpm 

with a Vibramax 100 for 2 hours. The supernatant was decanted. After that, the 

particles were then washed once with toluene, followed by an acetone wash, further 

followed by 3 DI water washes. 

2.2.5. Derivatization of Carboxylic Acid-Treated Co-C with DFB 

 

The derivatization of carboxylic acid-treated Co-C with DFB was attempted in a 

number of different ways at the beginning of this project. 

For Method #1, 20 mL of the 1.96 mM DFB was added to the NaPA- and 

anhydride silane-treated particles. Next, 10 mg EDC was added to each mixture and the 
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pH of the supernatant was adjusted to 5 (±0.2). Then, 10 mg FeCl3 was added to each 

sample to bind the DFB to iron (III). The suspension was shaken at 450 rpm with a 

Vibramax 100 for 4 hours, then 600 rpm for another 20 hours. Fresh EDC was added at 3 

different points during this time period to make up for loss of EDC (it can hydrolyze in 

solution at room temperature; the exact rate depends on the pH4). After 24 hours, the 

particles were sonicated for 1 hour, shaken for 1 hour, sonicated again for 1 hour, and 

then shaken for two additional days. After this, the supernatant was removed and the 

particles were washed 3 times with DI water. 

For Method #2, 20 mL 2 mM DFB was added to the NaPA- and anhydride silane-

treated particles. This was followed by an addition of 10 to 16 mg EDC, and then 

approximately 40 µmol FeCl3. The supernatant was adjusted to a pH between 4 and 5. 

The silane-treated particles were sonicated for 1 hour, and then both samples were 

mechanically shaken at 450 rpm for 3.5 days. Each sample was then washed 3 times 

with DI water. For the NaPA-treated nanoparticles, the pH of the last water supernatant 

was adjusted to 2 before it was removed from the particles. 

For Method #3, first, two 20-mL samples of 2 mM DFB were prepared. To one 

sample, 20 mg EDC was added. To the other sample, 20 mg EDC and 6.6 mg FeCl3 was 

added. The sample which contained FeCl3 was added to 50 mg anhydride silane-treated 

Co-C, while the aliquot without FeCl3 was added to 50 mg of NaPA-treated Co-C. The pH 

of each suspension was adjusted to 4.5. Each suspension was sonicated for 30 minutes 

and then mechanically shaken at 450 rpm with a Vibramax 100 for 5 hours. After the 
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sonication step and after each hour of shaking, 25 mg fresh EDC was added. After the 

reaction, the supernatants were removed and each sample was washed 3 times with DI 

water. 

2.2.6. Characterization with Thermogravimetric Analysis 

 

After treating the Co-C particles with NaPA (Section 2.2.3) or silane (Section 

2.2.4), they were analyzed by thermogravimetric analysis (TGA). These measurements 

were performed in the following way. A small amount of the sample (5 to 8 mg) was put 

onto a TGA sample tray. The sample was heated to 80 °C at 10 °C/min under a N2 

atmosphere. To ensure that any remaining water in the sample evaporated, the 

temperature was held at 80 °C for 30 minutes. The temperature was increased to 800 °C 

at 10 °C/min. After this, the atmosphere was changed from N2 to O2 gas and the 

temperature was increased to 1000 °C at the same rate. This last step was done for 

easier cleaning of the sample trays. 

As a control, TGA was also performed on a sample of untreated Co-C particles. In 

this case, the procedure was the same except the temperature was only held at 80 °C 

for 20 minutes. 

2.2.7. Characterization of DFB-Derivatized Co-C Particles with SEM and EDX 

 

After using Method #1 for derivatization of Co-C with DFB (Section 2.2.5), the 

particles were analyzed with SEM and EDX. Before taking these measurements, the 

particles were washed with water and then dried. 



36 
 

2.2.8. Characterization of DFB-Derivatized Co-C Particles with ATR-IR Spectroscopy 

 

After using Methods #2 and #3 for derivatization of Co-C particles with DFB 

(Section 2.2.5), the particles were characterized with ATR-IR spectroscopy. A few 

milligrams of the sample to be analyzed were spread onto the single pass diamond 

crystal and pressed onto the crystal with the plunger. If the sample was wet, it was 

allowed a few minutes to dry before a spectrum was taken. In all cases, the background 

used was of the bare crystal.  

2.2.9. Iron (III) Removal with Oxalate from DFB-Derivatized Co-C Particles 

 

As discussed in Section 2.3.2, the EDX measurements performed after using 

Method #1 to derivatize Co-C with DFB show that there was iron on the surface of the 

particles. The iron (III) had to be removed prior to measuring iron (III) uptake from 

solution by the particles. To do this, 5 mL 0.1 M oxalate at pH 1.5 was added to each 

derivatized bead sample (note: these samples underwent Method #1 for DFB 

derivatization). The mixtures were sonicated for 30 minutes and then shaken at 450 rpm 

with a Vibramax 100 for 30 minutes. Then, the particles were drawn out of suspension 

with a magnet and the supernatant was drawn off.  

After that, 1000 µL of 1.96 mM DFB was added to the 0.1 M oxalate supernatant 

and the pH of this mixture was adjusted to near 8. The volume of NaOH required to 

make this pH adjustment was recorded. A UV-Vis spectrum was taken of this 

oxalate/DFB mixture. If necessary to ensure that the absorbance was not too high for 

proper quantification of the peak, the mixture was diluted and another spectrum was 
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taken. In all cases, the final volume was recorded after pH adjustments and necessary 

dilutions, as stated in Table 2.1.  

This procedure was repeated 4 more times. After that, a similar procedure was 

performed wherein the oxalate was stirred with the particles for 18 hours rather than 

just 30 minutes. 

Table 2.1. Final Volume of Oxalate/DFB Mixture After pH Adjustment and Necessary 

Dilutions 

Sample Wash Number Final Volume (mL) 

NaPA-Treated Co-C 
Nanoparticles 

1 9.3 
2 9.9 
3 9.8 
4 6.1 
5 5.8 
6 5.8 

-   

Silane-Treated Co-C 
Nanoparticles 

1 7.9 
2 8.8 
3 8.9 
4 7.7 
5 9.4 
6 9.4 

 

2.2.10. Iron (III) Uptake of DFB-Derivatized Co-C Particles 

 

After washing the particles with oxalate (Section 2.2.9), the ability of each 

particle sample to remove iron (III) from solution was tested. To do this, 20 mL 1 mM 

FeCl3 was added to the NaPA- and silane-treated particles as well as to 25.5 mg 

untreated Co-C. Each suspension was shaken at 450 rpm with a Vibramax 100 for 3 

hours. After that, the particles were drawn out of solution with a magnet and the 

supernatant was removed.  
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A 1 mL aliquot of each FeCl3 supernatant was mixed with 1 mL 1.76 mM DFB. The 

pH of each mixture was adjusted to 8 using NaOH. The volume of NaOH required to 

make this pH adjustment was recorded, as stated in Table 2.2. A UV-Vis spectrum was 

taken of each of these mixtures after pH adjustment. The iron (III) content of the original 

solution was also measured using the same procedure. 

Table 2.2. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in Oxalate 

Supernatants 

Oxalate Wash Sample 
NaOH (+ any HCl) Added to Oxalate/DFB 

Mixture (mL) 

Fresh FeCl3 Solution (not exposed to 
nanoparticles) 

0.4 

Untreated Co-C Nanoparticles 0.8 
NaPA-Treated Co-C Nanoparticles 1.4 
Silane-Treated Co-C Nanoparticles 0.3 

Note: When the pH of the oxalate/DFB mixture went over 9, some HCl was added to 
bring the pH to between 8 and 9. 

 

2.2.11. Calculations 

 

For all DFB-Fe measurements, the concentration was calculated from the UV-Vis 

absorbance using Beer’s Law (Equation 2.1). The molar absorptivity of the DFB-Fe 

complex used is 2.5 x 106 
2cm

mol  .5 Then, the original concentration in the oxalate or FeCl3 

sample (prior to adjusting the pH or adding DFB) had to be calculated (Equation 2.2). 

Finally, the amount of iron in µmol could be calculated knowing the volume of solution 

added (Equation 2.3). 
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Equation 2.1

Equation 2.2

Equation 2.3
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In Equation 2.1, A represents absorbance, c represents concentration, ε 

represents the molar absorptivity, and ℓ represents the path length. In Equation 2.2, M 

represents concentration, V represents the volume of a solution, subscript C indicates 

the more concentrated solution (before dilution), and subscript D indicates the diluted 

solution. Finally, in Equation 2.3, Fe is the amount of iron (III) in a particular volume (VS) 

of a sample of solution in L with a concentration MC in mol/L.  

2.3. Results and Discussion 

 

2.3.1. Characterization with Thermogravimetric Analysis 

 

Figures 2.3 and 2.4 show the thermogravimetric analysis data for unmodified 

Co-C nanoparticles. Figure 2.3 shows the weight % versus temperature, where weight % 

is the percent of the original weight of the sample at the start of the experiment. 

Though there are a few small fluctuations and perhaps a slight decrease of less than 5% 

weight above 700 °C, the largest change appears just before 800 °C. At that 

temperature, oxygen was introduced to the sample, allowing the sample to oxidize. This 

easily accounts for the increase in weight to 115% weight at 800 °C. 
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Figure 2.3. Thermogravimetric plot of unmodified Co-C nanoparticles.  

  

Figure 2.4 shows the derivative of the weight rather than the raw weight data. 

There is only one notable peak in this spectrum just before 800 °C, where a dramatic 

increase to 115% weight can be seen in Figure 2.3. Peaks in graphs of the derivative of 

weight with respect to °C correspond to a change in weight. Here, the derivative 

indicates the rate of weight loss, showing the peak to be negative because weight was 

gained. Below 800 °C, this graph shows no peaks, and hence there was no significant 

change in the weight below 800 °C. 
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Figure 2.4. Derivative of weight with respect to temperature (weight%/°C) for the graph 
shown in Figure 2.3. 
 

Figures 2.5 and 2.6 show a representative set of thermogravimetric analysis data 

for a NaPA-treated Co-C nanoparticle sample. Similar data was obtained for all such 

samples analyzed. Unlike the unmodified Co-C nanoparticles, there is a significant 

decrease in the weight, most prominently at 400 °C. This can be seen in Figure 2.5 as a 

decrease in the weight % curve. The weight percent dropped from 17.5% to 14.5% (the 

weight percent is not 100% at 100 °C because the sample was wet when added to the 

sample tray, so water weight was lost prior to that temperature). If 17.5% weight is 

considered to be the full weight of the dry sample, then this means almost one fifth of 

the weight of the sample was lost over the 100 °C – 700 °C temperature range. 
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Figure 2.6 confirms that there is a significant change in the weight at 400 °C, 

because the derivative is greater than 0 at that point. This indicates that at this 

temperature, there is a positive rate of weight loss. Because such a loss was not 

observed at this temperature for the unmodified particles, we conclude that this was 

due to the loss of NaPA. This provides evidence that the NaPA was adsorbed onto the 

surface of the particles. 

 

Figure 2.5. Thermogravimetric plot of NaPA-treated Co-C nanoparticles. Note: the 
sample was wet when the experiment began, so weight loss occurred below 100 °C due 
to the evaporation of water. 
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Figure 2.6. Derivative of weight with respect to temperature (weight%/°C) for the graph 
shown in Figure 2.5. 
 

The next two figures, Figures 2.7 and 2.8, show a set of thermogravimetric 

analysis data for a sample of silane-treated Co-C nanoparticles. In this case, Figure 2.7 

has two weight decreases, one centered around 250 °C and another centered around 

450 °C. In total, between 100 °C and 500 °C, the weight percent decreased from 59% to 

52.5%. As with the NaPA-treated sample, the weight percent is not at 100% because the 

initial sample weight included adsorbed water, which was lost before 100 °C. 

Considering 59% to be the total sample weight, this means a loss of 11% of the sample 

weight occurred between 100 °C and 500 °C. 
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Figure 2.7. Thermogravimetric plot of silane-treated Co-C nanoparticles. Note: the 
sample was wet when the experiment began, so significant weight loss occurred below 
100 °C due to the evaporation of water. 
 

In Figure 2.8, which shows the derivative graph, positive peaks at 250 °C and 

450 °C indicate a loss of weight at these temperatures. Similar results were seen by 

García-González et. al. when performing TGA measurements on titania particles treated 

with various organosilanes. They saw one peak at 525-650 K or 252 to 377 °C 

(depending on the exact silane used). This was attributed to a combination of factors.6 

When silanes polymerize, they first undergo hydrolysis, producing silanol groups. These 

silanol groups undergo a condensation reaction, leading to polymerization of the silane 

through formation of Si-O-Si bonds and liberation of water.7 García-González et. al. 

thought that their 525-650 K peak was due in part to the loss of hydrolyzed silanes 

which were merely interacting with the surface via hydrogen bonding. Additionally, 
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some of the weight loss was thought to be the evolution of water from additional 

condensation reactions between adjacent silanol groups on the surface.  A similar 

explanation can be used for the peak at 250 °C in Figure 2.8. 

García-González et. al. also saw another peak at 650 to 850 K or 377 to 577 °C 

(depending on the exact silane used). They attributed this to cleavage of C-C and Si-C 

bonds in the coating – in other words, oxidation of the coating.6 This provides an 

explanation for the peak at 450 °C in Figure 2.8. 

 

Figure 2.8. Derivative of weight with respect to temperature (weight%/°C) for the graph 
shown in Figure 2.7. 
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2.3.2. Characterization of DFB-Treated Co Nanoparticles – SEM and EDX 

 

Figures 2.9, 2.10, and 2.11 show the SEM images taken of unmodified Co-C 

nanoparticles, NaPA-treated Co-C, and silane-treated Co-C, respectively. These samples 

were treated using Method #1 for derivatizing carboxylic acid-coated particles with 

DFB-Fe (see Section 2.2.5 for more details). 

The SEM in Figure 2.9 shows that the starting Co-C particles are small, 

approximately 50 nm in size or less. In Figures 2.10 and 2.11, one can see that the NaPA- 

or silane-treated particles aggregated into larger chunks which are 5 to 10 µm in size. 

This is particularly true of the silane-treated particles (Figure 2.11). These appear to 

have a smooth surface, indicating that the silane polymerized around many 

nanoparticles at once rather than around individual particles. 

 

Figure 2.9. SEM image of unmodified Co-C nanoparticles. The scale bar indicates 200 
nm. 
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Figure 2.10. SEM images of NaPA-treated Co-C nanoparticles. The scale bars indicate 10 
µm (left) and 2 µm (right). 

 

Figure 2.11. SEM image of silane-treated Co-C nanoparticles. The scale bar indicates 20 
µm. 

 
Figures 2.12, 2.13, and 2.14 show the EDX spectra taken of each of these 

samples. As expected, the unmodified Co-C nanoparticles only have peaks due to carbon 

and cobalt (see Figure 2.12). Figure 2.13 shows the spectrum of the NaPA-treated 

sample, and in addition to the cobalt and carbon peaks, there are peaks due to oxygen, 

iron, and nitrogen. Figure 2.14 shows the spectrum of the silane-treated sample, which 

is similar to Figure 2.13 but with the addition of a silicon peak. 
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Figure 2.12. EDX spectrum of unmodified Co-C nanoparticles. 

 

Figure 2.13. EDX spectrum of NaPA-treated Co-C nanoparticles. 
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Figure 2.14. EDX spectrum of silane-treated Co-C nanoparticles. 

The percent of each element was also determined by the EDX software. These 

calculated values are shown in Table 2.3. The presence of nitrogen indicates that there 

is DFB on the surface of the NaPA- and silane-treated particles. However, there is no 

way to be certain from this data whether the amide linkage was successfully formed, 

which is why IR spectroscopy was used to characterize subsequent samples. 

Table 2.3. Elemental Analysis of Untreated, NaPA-Treated, and Silane-Treated Cobalt 

Nanoparticles by Atom 

 

Element 
Untreated Co-C (atom 

%) 
NaPA-Treated Co-C 

(atom %) 
Silane-Treated Co-C 

(atom %) 

Co 90 % 45 % 34 % 
C 10 % 29 % 23 % 
O - 15 % 34 % 
N - 4 % 6 % 
Fe - 7 % 2.5 % 
Si - - 0.5 % 
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It is also interesting to compare the percentages of nitrogen and iron on these 

two samples. All of the nitrogen signal originates from the DFB. Each molecule of DFB 

can chelate 1 atom of iron (III). Because one DFB molecule contains 6 nitrogens, there 

should be 6 nitrogen molecules for every 1 iron atom, if all of the iron present is bound 

to DFB. However, the percentages in Table 2.3 show that the NaPA-treated particle 

sample is 4% nitrogen and 7% iron – in other words, there is actually 1.8 times more iron 

atoms than nitrogen atoms in this sample. Table 2.3 also shows that the silane-treated 

sample is 6% nitrogen and 2.5% iron. This means there is 2.4 times more nitrogen than 

iron in this sample, but if all the iron were bound to DFB, there would be 6 times more 

nitrogen.  

Thus, in both cases, a portion of the iron in the sample must not be bound to 

DFB and therefore, there is some non-specific adsorption onto the surface. This excess 

iron comes from the approach used for the addition of DFB to the surface. When 

generating DFB-Fe, excess FeCl3 was added so that all the DFB in the solution would be 

bound to iron. Thus, when the DFB-Fe was exposed to the samples, there was excess 

iron (III) in solution which could also adsorb on the surface of the particles. 

2.3.3. Characterization of DFB-Derivatized Co-C Particles with ATR-IR Spectroscopy 

 

Figures 2.15 and 2.16 show the ATR-IR spectra of a NaPA-treated Co-C 

nanoparticle sample and a silane-treated Co-C nanoparticle sample, respectively. In 

both cases, the samples were derivatized with DFB using Method #2 (see Section 2.2.5 

for more details). 
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Figure 2.15. ATR-IR spectra of a NaPA-treated Co-C nanoparticle sample after DFB 
derivatization. The derivatization technique used was Method #2. 
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Figure 2.16. ATR-IR spectra of a silane-treated Co-C nanoparticle samples after DFB 
derivatization. The derivatization technique used was Method #2. 
 

Both spectra in Figures 2.15 and 2.16 have a band at 1546 cm-1. However, 

neither have a peak equal in intensity near 1650 cm-1. Each of the two seem to have a 

small peak or shoulder at 1637 cm-1. However, each spectrum also has a broad band 

centered at 3300 cm-1 (Figure 2.15) or 3350 cm-1 (Figure 2.16) which is the O-H 

stretching mode of a water peak. This shows that there is water on the surface. 

Therefore, the 1637 cm-1 peak is a water bending mode in both cases. The 1546 cm-1 

peak is probably the C=O stretching mode from a deprotonated carboxylic acid (COO-). 

If the DFB derivatization reaction had occurred, then it would have produced 

bands due to an amide linkage in the IR spectrum. These bands (more specifically, the 
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C=O stretching modes for an amide) should appear around 1650 cm-1 and 1550 cm-1 and 

be approximately the same intensity. If anything, the former peak should be larger, as it 

can easily overlap with the water O-H bending mode which often appears near 1630 to 

1640 cm-1 when water is present. However, in the case of Figures 2.15 and 2.16, the 

1546 cm-1 peak was larger than the 1637 cm-1 peak, leading to the conclusion that the 

1637 cm-1 peak was due to water and that no amide linkage formed. 

One possibility for why the amide linkage did not form during this attempt at 

DFB derivatization is that the EDC was added to the particles after the DFB was added. 

Thus, the carboxylic acid groups on the particles were exposed to the DFB without the 

EDC, allowing the amine group on the DFB to undergo an acid-base reaction with the 

carboxylic acids. Therefore, when performing Method #3 of DFB derivatization, EDC and 

DFB were mixed into one solution prior their addition to the particles. 

For the particles which underwent Method #3 for DFB derivatization, ATR-IR 

spectra were taken before and after the reaction. Figure 2.17 shows the spectra before 

and after using Method #3 for DFB derivatization on NaPA-treated nanoparticles. 

Likewise, Figure 2.18 shows the spectra before and after using Method #3 on silane-

treated nanoparticles. 
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Figure 2.17. ATR-IR spectra before and after using Method #3 for DFB derivatization on 
NaPA-treated Co-C nanoparticles. The top spectrum was taken before derivatization 
while the bottom spectrum was taken after. 
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Figure 2.18. ATR-IR spectra before and after using Method #3 for DFB derivatization on 
silane-treated Co-C nanoparticles. The top spectrum was taken before derivatization 
while the bottom spectrum was taken after. 
 

Before the reaction, both the NaPA- and silane-treated samples have peaks at 

1534 cm-1. In both cases, this peak is still present in the spectrum after the DFB 

derivatization was attempted. Moreover, neither spectrum taken after this reaction has 

a peak near 1650 cm-1, which is comparable in size to the 1534 cm-1 peak. Therefore, it is 

reasonable to conclude that in these cases, as well as when using Method #2 for DFB 

derivatization, no amide linkage was formed and DFB was not covalently linked to the 

surface of the particles. 
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2.3.4. Iron (III) Uptake & Removal with Oxalate from DFB-Derivatized Co-C 

 

The EDX data (see Table 2.3) shows that there was iron on the surface of the 

NaPA- and silane-treated particles after using Method #1 for DFB derivatization. Thus, 

the next step was to remove this iron from the surface with oxalate at pH 1.5. Table 2.4 

shows the results of this experiment – the amount of iron (III) recovered in each oxalate 

wash from the particles. The amount of iron (III) removed decreased with each 

successive wash for both particle samples. In total, 16.6 µmol iron (III) was removed 

from the NaPA-treated particles, and 7.7 µmol iron (III) was removed from the silane-

treated particles. However, even after the sixth wash, iron was still eluting off of the 

particles. Therefore, it is likely that even after washing the particles six times with 

oxalate (the last wash involving stirring the particles for 18 hours), some iron still 

remained on the particles.  

Table 2.4. DFB-Fe Absorbance Measurements in Oxalate Washes 

  

Sample Wash Number Fe+3 Amount (µmol) 

NaPA-Treated Co-C 
Nanoparticles 

1 11.7 
2 3.4 
3 0.9 
4 0.3 
5 0.2 
6 0.1 

-   

Silane-Treated Co-C 
Nanoparticles 

1 3.1 
2 1.4 
3 0.9 
4 0.6 
5 0.8 
6 0.9 
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Nonetheless, another experiment was performed to see if these particles would 

take iron (III) out of solution. To do this, each particle sample, along with some 

unmodified Co-C nanoparticles, was put into a solution containing iron (III). After stirring 

the particles in the solution, the amount of iron (III) left in the solution was measured 

using UV-Vis. The results of this experiment (the amount of iron (III) in the FeCl3 

solutions before and after shaking with the particles) are shown in Table 2.5. 

Table 2.5. DFB-Fe Absorbance Measurements in Iron (III) Supernatants 

 

Sample Tested 
Amount Fe+3 in 20 mL 

(µmol) 

Fresh FeCl3 Solution (not 
exposed to nanoparticles) 

22.6 

Untreated Co-C 
Nanoparticles 

0 

NaPA-Treated Co-C 
Nanoparticles 

22.6 

Silane-Treated Co-C 
Nanoparticles 

22.9 

 

Table 2.5 shows that the same amount of iron (III) was present in 20 mL of the 

fresh solution as was present in 20 mL after stirring with either of the treated 

nanoparticle samples. It is concluded that these particles did not remove any iron (III) 

from solution. This is not surprising, as it was shown that there may have still been iron 

on the particles at the start of this experiment. Because of that, it is possible that the 

particles may not have been able to take up more iron (III).  

What is surprising about these results was what occurred on the untreated Co-C 

nanoparticles. More specifically, there was no iron (III) left in the solution after these 
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particles were stirred in it, meaning that it must have adsorbed onto the particles. In 

other words, the untreated particles are able to take iron (III) out of solution. This is due 

to non-specific binding with the carbon-coated surface. 

2.4. Conclusions 

 

First, thermogravimetric analysis was done on the carboxylic acid-treated Co-C 

nanoparticles to determine if either method, using NaPA or the silane, worked to put 

carboxylic acid onto the surface. These experiments showed that both the NaPA and 

silane treatments of Co-C particles resulted in successful surface treatment. However, 

the ATR-IR evidence suggests that despite attempting different methods to derivatize 

the NaPA- and silane-treated Co-C nanoparticles with DFB, derivatization was 

unsuccessful. 

It was also shown that untreated Co-C nanoparticles are able to take iron (III) out 

of solution. This result led to the pursuit of two different directions for investigation. 

The first direction was an attempt to take advantage of this property. In other words: 

could Co-C nanoparticles be used, without modification, to take iron (III) out of solution? 

Subsequently, could it then be removed from the particles with DFB and then measured 

as DFB-Fe in that solution using UV-Vis? These questions were explored in the work 

described in Chapter 3. 

The second direction (see Chapter 4) was to first coat the underlying surface, 

then modify this coating with DFB. It was thought that if the particles could not be used 

unmodified to remove iron from solution, that they should be blocked from doing so. 



59 
 

This prevents any potential competing reactions when adding or removing iron (III) from 

the surface, which could potentially make the process less effective overall. In order to 

do this, it was thought that the same method used by Roy et. al. to derivatize silicon 

wafers with DFB8 could be used for this goal. In that instance, silicon wafers were first 

coated with silica, which was then derivatized with carboxylic acid functional groups. 

The amine group on DFB could be covalently-linked via a reaction with the carboxylic 

groups to form an amide linkage.  
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CHAPTER 3: IRON UPTAKE WITH UNMODIFIED, CARBON-COATED COBALT 

NANOPARTICLES 

 

3.1. Introduction 

 

In Chapter 2, we showed that the bare Co-C nanoparticles are capable of 

drawing iron (III) out of solution. Therefore, it was thought that these particles could be 

used without DFB attached to the surface to extract iron (III) from solution. Once the 

particles had gathered iron (III) from a solution, they could be removed from the 

supernatant using a magnet. The key would be to develop a strategy to remove the 

captured iron (III) from the particles. Because there is no DFB on the surface in this case, 

it was thought that a DFB solution could be used to remove iron (III) from the surface. 

By using a smaller volume of DFB than the original solution, the iron (III) would be 

concentrated and measured directly via UV-Vis to determine the amount of iron (III). 

This scheme is illustrated in Figure 3.1. The work presented herein was done to explore 

the possibility of using this scheme to concentrate iron (III) from a solution for 

measurement with UV-Vis spectroscopy. 
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Figure 3.1. Steps to remove and concentrate iron (III) using unmodified Co-C 
nanoparticles. 1) Bare Co-C nanoparticles are dispersed in a solution of FeCl3. 2) Co-C 
particles remove iron (III) from solution and are drawn to a magnet. 3) Supernatant is 
removed. 4) Co-C particles are dispersed in a DFB solution (smaller volume than original 
FeCl3 solution). 5) DFB removes iron (III) from Co-C particles, forming a DFB-Fe solution. 
6) DFB-Fe solution is removed so that a UV-Vis spectrum can be recorded. 
 

3.2. Experimental 

 

3.2.1. Materials 

 

The following materials were obtained from Sigma-Aldrich: carbon-coated 

magnetic cobalt nanopowder (Co-C), deferoxamine mesylate salt (DFB), and iron (III) 

chloride (FeCl3). Sodium hydroxide and hydrochloric acid were purchased from Fisher 
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Scientific. The sodium hydroxide and hydrochloric acid were diluted as necessary to 

make pH adjustments to the solutions. 

The FeCl3 was received as a powder. First, a 1 mM stock solution was made by 

dissolving the solid material in DI water (16.2 mg per 100 mL). Then, the pH was 

adjusted to between 2.5 and 2.8 with concentrated HCl to prevent the formation of iron 

hydroxides in solution. In most cases, a lower concentration used, in which case 1 to 

2 mL of the 1 mM FeCl3 was diluted to 100 mL with DI water. The pH of the diluted 

solution was immediately adjusted to between 2.5 and 2.8 with concentrated HCl.  

The DFB was also received as a powder and frozen when not in use. Solutions of 

DFB were prepared in concentrations of 2 mM and 8 mM by dissolving the appropriate 

amount of the DFB powder in the desired volume of DI water. For a 2 mM solution, this 

required 0.1314 g DFB per 100 mL; for an 8 mM solution, this required 0.1314 g DFB per 

25 mL. The pH of the 8 mM solutions was controlled with HCl and NaOH solutions. The 

Co-C nanoparticles were used as received. 

All UV-Vis spectra were recorded on an Ocean Optics USB 2000 UV-Vis 

spectrometer with SpectraSuite software. A 1 cm cuvette was used unless otherwise 

noted. For background and absorbance spectra, each scan took 2 minutes. Mass was 

recorded on a Mettler Toledo AG245 analytical balance. Mechanical shaking was 

performed using a Vibramax 100 from Heidolph. 
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3.2.2. Washing the Particles 

 

Washing was performed by adding the desired solvent (usually DI water unless 

otherwise noted), mixing for 2 seconds, drawing the particles to the side of the 

container using an external magnet, and then decanting the wash liquid or extracting 

the liquid with a pipette. 

3.2.3. The Effect of NaCl on Bare Co-C Particles’ Uptake of Iron (III) from Solution 

 

Two samples were prepared containing unmodified Co-C particles and an iron 

(III) solution. One contained 9.0 mg Co-C, 10 mL DI water, and 10 mL 1 mM FeCl3 (i.e. 

0.5 mM FeCl3). The other contained 12.5 mg Co-C, 10 mL 1 M NaCl, and 10 mL 1 mM 

FeCl3 (i.e. 0.5 mM FeCl3/0.5 M NaCl). Each was sonicated for 30 minutes and then 

mechanically shaken with a Vibramax 100 for 2.5 hours. Next, the supernatant was 

removed from each solution. 

In preparation to determine the amount of iron (III) left in the supernatant, 

1000 µL of each supernatant was combined with 500 µL 2 mM DFB. The pH of each 

mixture was adjusted to be between 8 and 10 using dilute NaOH. This was done because 

DFB is fully deprotonated at this pH, and as such has a higher affinity for cations such as 

iron (III). (This was determined to be unnecessary for subsequent experiments because 

there were no competing ligands for iron (III).) The volume of NaOH added for the pH 

adjustment was recorded, as stated in Table 3.1. The iron (III) contents of 0.5 mM FeCl3 

and 0.5 mM FeCl3/0.5 M NaCl were also measured in this same manner. This was done 
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to determine the amount of iron (III) present in these solutions before exposure to the 

particles. 

Table 3.1. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in FeCl3 

Solutions 

 

Sample 
NaOH (+ any HCl) Added to Sample/DFB 

Mixture (µL) 

FeCl3 Solution in DI Water 110 
FeCl3 Solution in NaCl 115 

FeCl3 Solution in DI Water – Exposed to 
Particles 

40 

FeCl3 Solution in NaCl – Exposed to 
Particles 

40 

Note: When the pH of the oxalate/DFB mixture went over 9, some HCl was added to 
bring the pH to between 8 and 9. 

 

3.2.4. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Initial Attempt 

 

The target concentration of the FeCl3 solution to be used in this experiment was 

20 µM; therefore, when making the solution, 2 mL 1 mM FeCl3 was diluted to 100 mL. 

The exact concentration of the FeCl3 solution was measured in the following manner. 

First, 2000 µL of the solution was added to a cuvette. The background spectrum was 

recorded through the solution. Then, 200 µL 2 mM DFB was added and an absorbance 

spectrum was recorded. See Section 2.2.11 for details on how the concentration of iron 

(III) in the solution was calculated from measuring the UV-Vis spectrum. 

Next, 20 mL FeCl3 was added to 0.0511 g (51.1 mg) Co-C nanoparticles. This 

suspension was sonicated for 30 minutes and then mechanically shaken at 600 rpm with 

a Vibramax 100 for 30 minutes. The particles were separated from the supernatant with 



67 
 

a magnet and the supernatant was removed. The particles were washed 3 times with DI 

water. Then, using the same procedure described in the previous paragraph, the iron 

(III) content of the supernatant was measured by recording a UV-Vis spectrum. 

A 8 mM DFB solution was made as described in Section 3.2.1 and the pH 

adjusted to 1.88 with HCl. To remove the iron (III) from the particles after their exposure 

to FeCl3, 5000 µL 8 mM DFB (pH 1.88) was added to the particles. The pH of the DFB 

solution was adjusted below 2 to ensure that the iron (III) would not form oxyhydroxides 

prior to chelation with DFB. This suspension was shaken at 600 rpm in 5-minute 

intervals. After each 5-minute interval, the particles were separated from the 

supernatant with a magnet and 2000 µL of the supernatant was added to a cuvette and 

a UV-Vis spectrum was recorded. The background spectrum was recorded using a fresh 

aliquot of 8 mM DFB solution. The portion of supernatant in the cuvette was then added 

back into the rest of the sample before the next interval of shaking. The particles were 

shaken for a total of 40 minutes (eight 5-minute intervals). 

3.2.5. Removing Iron (III) from Bare Co-C Nanoparticles with DFB: Varying DFB pH 

 

The procedure to measure the iron (III) concentration of the FeCl3 used in this 

experiment, as well as the procedure to add iron (III) to the Co-C particles, was the same 

as described in Section 3.2.4. This was used on four different samples of Co-C at 

different DFB solution pH. The mass of Co-C nanoparticles and corresponding DFB 

solution pH for each experiment are reported in Table 3.2.  
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To remove iron (III) from the particles with DFB, the following procedure was 

used. First, four separate 5000 µL samples of 8 mM DFB were prepared. Each was 

adjusted to a different pH and added to a different Co-C particle sample as stated in 

Table 3.2. Each suspension was shaken with a Vibramax 100 at 600 rpm for 1 hour. After 

that hour, 2000 µL of the supernatant was added to a cuvette and a UV-Vis spectrum 

was recorded. The portion in the cuvette was added back into the rest of the sample. 

The suspension was shaken at 600 rpm for another hour. Again, 2000 µL of the 

supernatant was added to a cuvette and a UV-Vis spectrum was recorded. 

Table 3.2. pH of DFB Used with Each Sample; Mass of Each Sample 

 

Sample Label 
Mass of Co-C Particles 

(mg) 
pH of DFB Used 

A 50.8 2.06 
B 48.5 3.98 
C 55.5 6.23 
D 54.8 8.08 

 

3.2.6. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Adding NaCl 

 

The procedure used in this experiment was the same as in Section 3.2.4, except 

that the FeCl3 and 8 mM DFB solutions contained 1 M NaCl. The pH of the 8 mM DFB 

solution was 1.34. 
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3.2.7. Investigation of Particles’ Interference in UV-Vis Spectra 

 

The motivation for this experiment is discussed in Section 3.3.5. 

Two suspensions were made. In one case, 0.0488 g Co-C nanoparticles were 

suspended in 20 mL DI water. In the other case, 0.0542 g Co-C nanoparticles were 

suspended in 20 mL of an HCl solution at a pH of 2.08. These two suspensions were 

sonicated for 30 minutes, followed by shaking at 600 rpm for 30 minutes; these two 

steps of sonication and shaking were repeated twice more, in that order. After each 

sonication/shaking cycle, a UV-Vis spectrum of the supernatant was recorded. Fresh 

supernatant (DI or the HCl) was added after any time a UV-Vis spectrum indicated the 

presence of particles in suspension (see Section 3.3.6 for more details). The background 

for the UV-Vis spectra was DI water. 

The sonication of the large aggregated particles resulted in the production of a 

small fraction of fine particles that would remain in suspension and not be extracted by 

the magnet. A follow-up experiment was done in an attempt to remove the fine 

particles from the suspension. A suspension of 0.0544 g Co-C in 20 mL DI water was 

sonicated for 30 minutes. The particles were separated out with a magnet and a UV-Vis 

spectrum of the supernatant was recorded; the background was DI water. The 

suspension was then shaken at 600 rpm with a Vibramax 100 for 1 hour, after which a 

UV-Vis spectrum of the supernatant was recorded. At this point, the supernatant was 

removed entirely and the particles were washed 5 times with DI water. A fresh 20 mL DI 

water was added to the particles. The particles were then shaken at 600 rpm for a total 
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of 2 hours, with a UV-Vis spectrum of the supernatant recorded every 30 minutes. One 

week later, the particles were washed 3 times with DI water. In a fresh 20 mL DI water 

supernatant, the previous step was repeated. 

The results of these experiments led to changes in the general procedure for 

adding FeCl3 solutions to Co-C particles and removal of iron (III) from the particles with 

DFB. These procedural changes are described in Sections 3.2.8 and 3.2.9. 

3.2.8. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Substituting DI Water 

with pH 2 HCl 

 

First, a solution of HCl at a pH of 2.00 was prepared. Then, 0.0545 g Co-C 

nanoparticles was suspended in 5000 µL of the pH-2 HCl. This suspension was sonicated 

for 30 minutes. The particles were then separated from the supernatant with a magnet 

and the supernatant was removed. The particles were washed 3 times with the pH-2 

HCl. 

The target concentration of FeCl3 solution was approximately 20 µM; therefore, 

when making the solution, 2 mL 1 mM FeCl3 was diluted to 100 mL. The actual 

concentration of the FeCl3 solution was measured using the following manner. First, 

2000 µL of the solution was added to a cuvette. The background spectrum was recorded 

through the solution. Then, 200 µL 2 mM DFB was added and an absorbance spectrum 

was recorded. 

Next, 20 mL of that FeCl3 solution was added to the particles. This suspension 

was shaken at 450 rpm with a Vibramax 100 for 1 hour. The particles were separated 
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from the supernatant with a magnet and the supernatant was removed. The particles 

were washed 3 times with the pH-2 HCl. Then, using the same procedure described in 

the previous paragraph, the iron (III) content of the supernatant was measured. 

An 8 mM DFB solution was prepared and the pH adjusted to 1.74 with HCl. To 

remove the iron (III) from the particles after their exposure to FeCl3, 5000 µL 8 mM DFB 

(pH 1.74) was added to the particles. This suspension was shaken at 450 rpm in 

5-minute intervals. After each 5-minute interval, the particles were separated from the 

supernatant with a magnet and 2000 µL of the supernatant was added to a cuvette so 

that a UV-Vis spectrum was recorded. The background used was fresh 8 mM DFB 

solution. The portion of supernatant in the cuvette was then added back into the rest of 

the sample before the next interval of shaking. The particles were shaken for a total of 

40 minutes (eight 5-minute intervals). 

3.2.9. Removing Iron (III) from Bare Co-C Particles – Concentrating Iron (III) from <10 µM 

FeCl3 

 

Two separate experiments were performed using lower concentrations of FeCl3 

solutions which were measured to be <10 µM FeCl3. They will be discussed together. 

The procedure for the first experiment was the same as described in 

Section 3.2.8 with two exceptions. First, where an HCl solution at pH 2 was used, DI 

water was used instead. Second, when making the FeCl3 solution, 1 mL of ~1 mM FeCl3 

was diluted to 100 mL. As discussed in Section 3.3.8, the concentration of the FeCl3 

solution was measured to be 9.1 µM. The pH of the 8 mM DFB used was 1.74. 
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The second experiment was designed to be a repeat of the first experiment on 

several samples. When making the FeCl3 solution, 900 µL 1 mM FeCl3 was diluted to 

100 mL. The exact concentration of the FeCl3 solution was measured in the following 

manner. First, 5000 µL of the solution was added to a 5 cm cuvette. (A larger path length 

cuvette was used to increase the signal, thereby making it easier to measure lower 

concentrations of iron (III).) The background spectrum was recorded through the 

solution. Then, 1000 µL 2 mM DFB was added and an absorbance spectrum was 

recorded.  

Four samples of Co-C nanoparticles were prepared (the masses were all 50 mg ± 

3 mg). Each sample was suspended in approximately 10 mL DI water. These suspensions 

were sonicated for 30 minutes. The particles were then separated from the supernatant 

with a magnet and the supernatant was removed. The particles were washed 3 times 

with DI water. 

Next, 20 mL of that FeCl3 solution was added to each of these samples. This 

suspension was shaken at 450 rpm with a Vibramax 100 for 1 hour. The particles were 

separated from the supernatant with a magnet and the supernatant was removed. The 

particles were washed 3 times with DI water. Then, using the same procedure described 

in the previous paragraph, the iron (III) content of the supernatant was measured. 

For reasons discussed in Section 3.3.8, no attempt was made to remove the iron 

(III) from the particles with DFB in this case.  
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3.2.10. Calculation of Amount of Iron (III) 

 

To calculate the amount of iron (III) in a solution based on the DFB-Fe 

absorbance, Equations 2.1 – 2.3 (see Chapter 2) were used. 

3.2.11. Detection Limits and Error Bars 

 

In most cases, when a background UV-Vis spectrum was recorded, 5 absorbance 

spectra were recorded through the solution used to record the background spectrum. 

These were termed the baseline spectra. These baseline spectra were then used to 

determine the detection limit. To do this, the noise level in each baseline spectrum was 

determined. The standard deviation of this noise was calculated. Unless otherwise 

noted, one standard deviation of the baseline noise level was defined as the error in 

measurement. Three times the standard deviation of this noise level was defined as the 

detection limit. 

3.3. Results and Discussion 

 

3.3.1. The Effect of NaCl on Bare Co-C Particles’ Uptake of Iron (III) from Solution 

 

The purpose of this experiment was to see if increasing the ionic strength of the 

iron (III) solution would have any effect on the Co-C particles’ ability to take iron (III) out 

of the solution. This was done because, if this technique were to be used on real 

samples, the ionic strength would be higher due to all of the salts present in oceanic 

water. Therefore, it was desirable to know the ionic strength dependence of iron (III) 

uptake. 
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The top spectrum in Figure 3.2 was recorded for the supernatant containing 

FeCl3 in DI water after shaking with the particles, while the bottom spectrum shows a 

similar spectrum for the supernatant containing FeCl3 in the NaCl solution. While neither 

baseline is flat, there are no peaks due to the DFB-Fe complex in the spectrum. There is, 

however, an increasing absorbance with decreasing wavelength, indicative of light 

scattering. This scattering is due to the presence of small particulates. 

The absence of a DFB-Fe peak in the supernatant indicates that there was no 

iron (III) left in the supernatant after each solution was shaken with the particles. In 

turn, this means that in both cases, the iron (III) in solution adsorbed onto the particles. 

Note that due to the signal-to-noise ratio, and also the level of scattering present, one 

cannot say with 100% certainty that there is no iron (III). The detection limit was 

calculated to be an absorbance of 0.0014, which translates to an iron (III) concentration 

of 1.1 x 10-6 M in the supernatant. This means that in each 20 mL supernatant studied in 

this experiment, there was no more than 0.02 µmol of iron (III) remaining. This is 

roughly 5% of the amount of iron (III) measured in each of the original solutions.  
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Figure 3.2. UV-Vis absorbance spectra of FeCl3-containing supernatants after being 
stirred with Co-C nanoparticles for 3 hours. a) Spectrum of the supernatant in DI water. 
b) Spectrum of the supernatant in 0.5 M NaCl. DFB is present in both cases. 
 

In contrast, when the concentrations of iron (III) in the original solutions were 

measured, a clear DFB-Fe peak (λmax = 430 nm) could be seen in the UV-Vis spectrum. 

These are shown in Figure 3.3. For the supernatant containing no NaCl, the 

concentration was calculated to be 0.35 ± 0.03 mM iron (III). The concentration in the 

supernatant containing 0.5 M NaCl was calculated to be 0.43 ± 0.03 mM iron (III). Here, 

the error represents half the total absorbance of the noise at the top of each peak, 

because as one can see in Figure 3.3, the noise at the top of the peaks was quite 

substantial in these spectra. The noise is greater at the top of the peaks due to the 

relative signal-to-noise levels at different wavelengths. The detector measures light that 
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is not absorbed, so at wavelengths which are strongly absorbed, there is less signal 

getting to the detector. In turn, this makes the signal-to-noise ratio lower, resulting in a 

greater amount of noise at high absorbance values. 

Overall, because there was iron (III) present in the solutions before stirring them 

with the particles, and no detectable iron (III) after, it can be said that in both cases, the 

particles were able to remove all of the iron (III) out of solution. Thus, it can be 

concluded that the presence of NaCl in solution did not hinder uptake of iron (III) by the 

particles.  

The key to why iron (III) can adsorb onto the particles is their carbon coating, 

which consists of a few layers of graphene.1 The coating may not be pure graphene – 

instead, there may be some graphite oxide functionality on the surface. Graphite oxide 

is an oxidized form of graphite; a sample structure of graphite oxide is shown in 

Figure 3.4. Among the basic graphite structure of interlocking benzene rings are 

epoxides, hydroxides, and carbonyls such as carboxylic acid.2 These groups are able to 

chelate a variety of metals such as iron (III). Additionally, depending on the pH, some of 

these functionalities may become deprotonated, causing a negative charge on the 

surface. This negative charge may attract the positively-charged iron (III) ions (Fe+3).  
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Figure 3.3. UV-Vis spectra of FeCl3 solutions prior to stirring with particles. Both 
supernatants have had DFB added to them. a) Solutions in DI water; b) Solutions in 
0.5 M NaCl. 
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Figure 3.4. Sample structures of graphite and graphite oxide. The left structure is 
graphite while the right structure is graphite oxide. 
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3.3.2. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Initial Attempt 

 

In this experiment, iron (III) was first removed from 20 mL of a solution of FeCl3 

using unmodified Co-C particles. Then, the particles were stirred with 5 mL 8 mM DFB 

(pH 1.88) in an attempt to remove iron (III) from the surface. Table 3.3 shows the 

amounts of iron (III) extracted as a function of time stirred. 

Table 3.3. Amount of Iron (III) in the FeCl3 Solution, FeCl3 Supernatant, and DFB 

Supernatants (pH 1.88) as a Function of Time Stirred 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution (28.5 µM) 0.570 
FeCl3 From Particles 0 

DFB at t = 5 min. 0.160 
DFB at t = 10 min. 0.234 
DFB at t = 15 min. 0.266 
DFB at t = 20 min. 0.262 
DFB at t = 25 min. 0.232 
DFB at t = 30 min. 0.231 
DFB at t = 35 min. 0.230 
DFB at t = 40 min. 0.214 

 

The total amount of iron (III) added to the particles was 0.570 µmol. Table 3.3 

also shows that after stirring the particles with the FeCl3 solution, no DFB-Fe absorbance 

peak (and hence, no iron (III)) was measured in the supernatant, showing that all the 

iron (III) adsorbed onto the particles. The detection limit was calculated to be an 

absorbance of 0.0018, which is equivalent to 0.016 µmol in 20 mL. Therefore, no more 

than 0.016 µmol iron (III) was left in the solution after stirring it with the particles for 1 

hour. 
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After that, the amount of iron (III) present in the DFB supernatant was measured 

as a function of total stirring time of the DFB solution at pH 1.88 with the particles. 

Figure 3.5 is a graph of the amount of iron (III) extracted in that supernatant as a 

function of stirring time with the particles. The DFB reaches a maximum in iron (III) 

extracted at about 15 minutes of stirring and at this point, 47% of the iron (III) in the 

original solution was recovered. 

 

Figure 3.5. The amount of iron (III) measured in the DFB supernatant as a function of the 
amount of time spent stirring with the particles. The error bars represent 1 standard 
deviation in the baseline noise level. 
 

Figure 3.5 shows a slight drop in the amount of iron (III) recovered after the 20-

minute mark. It is possible that a small amount of the iron (III) was re-adsorbed by the 

particles as the stirring time was increased. Additionally, the UV-Vis spectra at later 

points in the stirring process showed more scattering (an increase in absorbance with 
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decreasing wavelength). This scattering profile partially obscured and overlapped with 

the peak at 430 nm, making selection of the baseline points difficult to estimate. This led 

to a measurement of the peak’s intensity to be lower in value. The scattering is likely 

due to an increase in the amount of fine particulates in solution with stirring time. 

3.3.3. Removing Iron (III) from Bare Co-C Nanoparticles with DFB: Varying DFB pH 

 

In this experiment, four separate samples of Co-C nanoparticles were exposed to 

20 mL FeCl3. The concentration of the FeCl3 solution used was measured to be 26.6 µM. 

The amount of iron (III) left in each supernatant after an hour of stirring with the 

particles was measured. Then, DFB was used to remove the iron from the particles. For 

each sample, the DFB used was adjusted to a different pH, to determine if this pH had 

an effect on the amount of iron (III) which could be removed from the particles. 

Depending on the pH, the DFB can lose up to 3 protons, giving it a charge of -3. Thus, 

the higher the pH, the more negatively-charged DFB can become.3 Increasing the 

negative charge on DFB will in turn increase the binding constant of DFB for iron (III) 

because the iron (III) is positively-charged.   

Table 3.2 shows the different pH of the DFB solutions used. The amount of iron 

(III) detected as a function of stirring time is shown in Table 3.4. The detection limit for 

each case is also shown, because in many cases, there was no DFB-Fe peak in the 

spectrum.  

The only sample in which the DFB appeared to acquire iron (III) was Supernatant 

A (where the DFB was adjusted to a pH of 2.06). In this case, after 2 hours, 0.206 µmol 
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iron (III) was found in the supernatant. This was 39% of the iron (III) in the 20 mL of FeCl3 

solution which was added to this particular sample of particles. In the initial experiment 

performed to remove iron (III) from Co-C nanoparticles, (Section 3.3.2), 47% of the iron 

(III) could be recovered from the particles, but after an increased time stirring, the 

amount in the supernatant appeared to decrease. In this experiment, the particles were 

stirred for a total of 2 hours. This is longer than the total stirring time of the experiment 

in Section 3.3.2, where the particles were only stirred for 40 minutes. It is possible that 

the amount of iron (III) collected was somewhat lower because of the longer stirring 

time. 

Table 3.4. Amounts of Iron (III) in FeCl3 Solution, FeCl3 Supernatant, and DFB 

Supernatants 

 

Sample 
Amount of Fe+3 (µmol) in 20 

mL 
Detection Limit (µmol) 

Original FeCl3 Solution 0.532 0.031 
FeCl3 Supernatant A 0 0.059 
FeCl3 Supernatant B 0 0.041 
FeCl3 Supernatant C 0 0.027 
FeCl3 Supernatant D 0 0.023 

DFB A (pH 2.06) at 1 hr 0.181 0.015 
DFB B (pH 3.98) at 1 hr 0* 0.015 
DFB C (pH 6.23) at 1 hr 0* 0.015 
DFB D (pH 8.08) at 1 hr 0* 0.015 
DFB A (pH 2.06) at 2 hr 0.206 0.015 
DFB B (pH 3.98) at 2 hr 0* 0.015 
DFB C (pH 6.23) at 2 hr 0* 0.015 
DFB D (pH 8.08) at 2 hr 0* 0.015 

*In these cases, the spectra were not flat. They had a scattering profile (increasing 
absorbance with decreasing wavelength) and/or a peak centered at 508 nm. Because 
there did not appear to be a peak in the normal range which DFB-Fe appears, the 
amount of DFB-Fe should be stated to be 0. However, because of these interfering 
features, it is difficult to say with certainty that there was no DFB-Fe in these samples. 
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In all cases, the spectra had a feature which significantly interfered with the 

ability to distinguish a DFB-Fe peak. In the spectra of DFB from samples B, C, and D after 

1 hour, all had a peak centered at 508 nm. While the DFB-Fe peak may shift somewhat 

from its typical 430 nm absorbance, a shift greater than 70 nm seems unlikely. This is 

especially true given that these DFB supernatants appeared pink in color, while the 

DFB-Fe complex is more orange in color. Thus, this peak is due to another source. After 

2 hours, some spectra still had this peak, while others only showed a large scattering 

curve (increasing absorbance with decreasing wavelength, in a 1/λ4 relationship). 

The source of such interference (the peak at wavelengths above 500 nm and the 

scattering) was explored in Section 3.3.6. Nevertheless, from this experiment the 

efficiency of iron (III) extracted increased when the pH of the DFB used for extraction 

was adjusted to a pH of 2 or less. Even in this case, the yield of the iron (III) extraction 

was below 50%.  

As discussed further in Section 3.3.7, iron (III) can form iron hydroxides in 

solutions of higher pH. This is why the iron (III) solutions are all adjusted to a pH 

between 2.5 and 2.8. Therefore, if the pH of the DFB solution was above 3 (as was the 

case with 3 of the 4 samples in this experiment), iron hydroxides could have formed 

before the DFB had a chance to react with the iron (III). For the sample exposed to DFB 

at a pH of 2, this would not have been a problem, because the low pH should have 

prevented the formation of iron hydroxides. However, this experiment still did not 

reveal why less than 50% of the iron (III) was recovered in this case. 
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3.3.4. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Adding NaCl 

 

In this experiment, 50.7 mg Co-C nanoparticles were exposed to a solution of 

iron (III) in 1 M NaCl. An attempt was made to remove the iron (III) from the particles 

with a DFB solution, also made in 1 M NaCl. The ionic strength of the iron (III) solution 

was increased in order to repeat the results in Section 3.3.1, which indicated that the 

particles still took up iron (III) from such a solution. The DFB solution was made in 1 M 

NaCl because it was thought that it may prevent particles from becoming stable in 

solution. This is helpful because such an occurrence may be responsible for interference 

in UV-Vis spectra, such as scattering or the shifted peak seen in the experiment in 

Section 3.3.3. 

Table 3.5 shows the amount of iron (III) in each sample measured. There was no 

DFB-Fe peak seen in the FeCl3 supernatant after it had been allowed to stir with the 

particles. The detection limit in this case was an absorbance of 0.0038. This is equivalent 

to 0.033 µmol in 20 mL – thus, this is the maximum possible amount of iron (III) which 

could have been left in the supernatant after shaking with the particles. Also, note that 

the concentration of iron (III) in the original FeCl3/NaCl solution was measured to be 

19.0 µM. 

Figure 3.6 better shows the trend of iron (III) retrieval by the DFB/NaCl solution 

from the Co-C particles. Similar to the experiment done with no NaCl (Section 3.3.2), it 

appears that the maximum amount of iron (III) was removed from the particles after 15 

minutes of stirring. 
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Table 3.5. Amounts of Iron (III) in FeCl3 Solution, FeCl3 Supernatant, and DFB 

Supernatants 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution (FeCl3/1 M NaCl) 0.380 
FeCl3 From Particles 0 

DFB at t = 5 min. 0.117 
DFB at t = 10 min. 0.208 
DFB at t = 15 min. 0.274 
DFB at t = 20 min. 0.274 
DFB at t = 25 min. 0.272 
DFB at t = 30 min. 0.283 
DFB at t = 35 min. 0.267 
DFB at t = 40 min. 0.262 

 

 

Figure 3.6. The amount of iron (III) measured in the DFB/NaCl supernatant as a function 
of the amount of time spent stirring with the particles. The error bars represent 1 
standard deviation in the baseline noise level. 
 

The error bars on all data points at 15 minutes and later overlap in Figure 3.6, 

indicating that these amounts of iron (III) are likely the same. Therefore, the amount of 
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NaCl (Section 3.3.2), where the amount of iron (III) appeared to decrease somewhat 

after peaking at 15 minutes.  

As to the relative amount of iron (III) recovered from the particles in the DFB, in 

this experiment, about 72% of the iron (III) found in 20 mL of the original solution was 

recovered by the DFB/NaCl solution. At first glance, this appears to be an improvement 

over the amount recovered in the experiment performed without NaCl present 

(Section 3.3.2). In that case, 47% of the iron (III) in the original solution was recovered. 

However, in this experiment, the FeCl3 solution used had a lower concentration, so a 

higher percentage does not necessarily mean more iron (III) was recovered. In fact, in 

both cases, about 0.27 µmol of iron (III) was recovered – the higher percentage in this 

case is just due to the fact that there was less iron (III). 

Because of these results, it was thought that perhaps the only reason not all the 

iron (III) could be recovered is that 0.27 µmol is the maximum amount of iron (III) which 

can be recovered by the DFB from Co-C nanoparticles. Theoretically, this should not be 

the case, because 5 mL of 8 mM DFB contains 40 µmol DFB, which is more than 100 

times the amount of iron (III) present. Nonetheless, 0.27 µmol was the maximum 

amount which could be recovered. Therefore, the next step was to perform a similar 

experiment wherein less than 0.27 µmol of iron (III) was captured by the particles. 
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3.3.5. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Interference of 

Particles 

 

The procedure described in Section 3.2.4 was repeated, but with a lower 

concentration of FeCl3. More specifically, the goal was to make a solution around 

10 µM, so 1 mL of a 1 mM FeCl3 solution was diluted to 100 mL. This experiment was 

performed twice. 

In both attempts, a significant shift in the DFB-Fe peak was seen in the DFB 

supernatant. Figure 3.7 shows the UV-Vis spectrum of the FeCl3 solution used in these 

experiments, compared to a UV-Vis spectrum of the DFB supernatant after attempting 

to remove iron (III) from the particles. 

Spectrum (a) in Figure 3.7 is an example of a spectrum recorded through a 

solution of FeCl3 with DFB added. This peak is centered at 430 nm. In contrast, when 

measuring the DFB-Fe peak in a DFB solution used to remove iron (III) from Co-C 

nanoparticles, the result was spectrum (b) in Figure 3.7. This peak is centered at 497 nm. 

Additionally, the shape of the peak is asymmetric toward higher wavelengths. This 

indicates that the peak seen in the DFB supernatant may not be entirely, or at all, due to 

the presence of DFB-Fe. 

In any case, this problem (which also occurred when studying the effect of the 

DFB pH on these experiments in Section 3.3.3) had to be investigated before going 

further with this project. It was suspected that the shift in the peak may be due to a 
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small amount of the Co-C particles becoming stable in solution. To determine if this 

might be the case, the experiments described in Section 3.3.6 were performed. 

 

Figure 3.7. Absorbance UV-Vis spectra of a FeCl3 solution with DFB added and a DFB 
solution used to remove iron (III) from Co-C nanoparticles. a) FeCl3 with DFB added. b) 
DFB solution used to remove iron (III) from Co-C nanoparticles. Note: these spectra are 
not on the same absorbance scale; they were made to be of comparable size to easily 
see the differences between the two spectra. 
 

3.3.6. Investigation of Particles’ Interference in UV-Vis Spectra 

 

To investigate whether particles becoming stable in solution could interfere with 

the UV-Vis spectrum, bare Co-C particles were sonicated and stirred in DI water and in 

water adjusted to pH 2. UV-Vis spectra of the supernatants were recorded.  
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Table 3.6 gives a description of observations (both spectral and otherwise) at 

various points in this experiment. In general, the pH 2 water supernatants showed a 

peak at around 510 nm after being sonicated, then shaken with Co-C nanoparticles. 

Additionally, the DI water supernatants showed a peak at around 410 nm after the same 

treatment. Whenever a peak appeared, the supernatant generally appeared to have a 

pinkish/orange color. 

Table 3.6. Observations and Spectral Features of Supernatants Sonicated/Shaken with 

Co-C Nanoparticles 

 

Sample/Point in Experiment 
Features in UV-Vis 

Spectrum 
Observations About 
Supernatant Color 

DI Water Supernatant #1 – 1 
cycle sonication/stirring 

 
Flat Clear 

pH 2.08 Water Supernatant 
#1 – after sonication/stirring 

 
Peak ~510 nm Slightly Colored 

DI Water Supernatant #1 – 2 
cycles sonication/stirring 

 
Peak ~410 nm Slightly Colored 

pH 2.08 Water Supernatant 
#2 – after sonication/stirring 

 
Peak ~510 nm Slightly Colored 

DI Water Supernatant #2 – 
after sonication 

 
Flat Clear 

pH 2.08 Water Supernatant 
#3 – after sonication 

 

Maybe slight peak ~520 
nm 

Clear 

DI Water Supernatant #2 – 
after stirring 

 
Peak ~410 nm Slightly colored 

pH 2.08 Water Supernatant 
#3 – after stirring 

 
Peak ~515 nm Colored (pinkish) 
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It is important to remember that in this experiment, the only components 

present are the water (either DI water or water acidified to pH 2 with HCl) and the Co-C 

nanoparticles. Therefore, the peaks are most likely due to fine particles which dislodge 

from aggregates of nanoparticles, forming a stable suspension. The particles in the 

stable suspension are resistant to removal by the magnet. Neither water nor HCl absorb 

any wavelengths in the UV-Vis region of the electromagnetic spectrum and the pink 

colorization of the particles appears only after prolonged stirring of the particles (at 

least 5 minutes). 

Additionally, the wavelength at which these peaks appear varied, depending on 

whether the supernatant was DI water or HCl. The color of nanoparticle suspensions is 

known to depend on the particle size, shape, and concentration in suspension. The size 

of nanoparticle aggregates which form can also have an effect.4 The size of aggregates 

and the distance between them is going to depend on the Debye length of the particles, 

which is the distance over which a charged species can have an electrostatic effect on its 

surroundings.5  

The Debye length is affected by the surface charge, which in turn will be affected 

by the solution pH.5 The DI water’s pH was not controlled, whereas the HCl was adjusted 

to a pH of 2. Therefore, the particles’ surface charges are going to be different, 

depending on what solution they are in. Additionally, the HCl will have more charged 

species in solution, causing some charge screening, which will also affect the Debye 

length. Ultimately, because the solution pH affects the surface charge of the particles, 
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particles in different pH solutions will have different Debye lengths. The Debye length 

will affect the size of aggregates which form, so different Debye lengths will result in 

differently-sized aggregates. This will in turn affect the color of the suspension. 

After obtaining the results in Table 3.6, we investigated possible solutions to the 

presence of fine particles in suspension. We examined if it was possible to “pre-screen” 

the particles. That is, before the addition of iron (III), particles would be sonicated in a 

supernatant, then washed, to remove any smaller, fine particles. During the addition of 

iron (III), only mechanical shaking would be used (not sonication) to avoid the additional 

formation of fine particulates. 

Co-C particles were sonicated, shaken, then washed. They were shaken again in 

fresh DI water for 2 hours. UV-Vis spectra were recorded through the DI water 

supernatant every 30 minutes. For the first 60 minutes, the UV-Vis spectra remained 

flat. A peak appeared after 2 hours of shaking. Then, the particles were once again 

washed, added to fresh DI water, and shaken for 2 hours. Again, UV-Vis spectra were 

recorded through the DI water supernatant every 30 minutes. In this instance, a peak 

appeared in the UV-Vis spectrum after 90 minutes of shaking. 

Therefore, it was determined that the maximum amount of time the particles 

should be stirred in any supernatant is 1 hour. Additionally, before using the particles in 

an experiment, they should be sonicated, and then washed with DI water. During the 

experiment, they should not be sonicated, only shaken. This was implemented in 

experiments performed throughout the remainder of the chapter. 
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3.3.7. Removing Iron (III) from Bare Co-C Nanoparticles with DFB – Using pH 2 HCl for 

Washes 

 

Thus far, while the particles have been able to remove all of the iron (III) from a 

solution, recovery of iron (III) from the particles using a DFB solution has remained 

below 50%. While the iron (III) solution and, in most cases, the DFB solution are kept at 

a low pH, the water used to wash the particles between steps was just DI water. The 

reason pH is relevant is that, in solutions at a higher pH, iron (III) can form iron 

hydroxides and precipitate out of solution. Therefore, it was possible that by exposing 

the iron-covered particles to DI water, it could cause some iron (III) on the surface to 

precipitate and become inaccessible to the DFB. 

Therefore, in the next experiment, rather than washing the particles with DI 

water, they were washed with an HCl solution at pH 2. Additionally, changes were made 

to the procedure in order to prevent fine particles from entering the solution phase (see 

Section 3.2.8). Other than that, the procedure for adding iron (III) to the particles and 

then removing them with DFB was the same as for the experiment described in 

Section 3.3.2. Table 3.7 shows the amount of iron (III) in the original solution, in the 

solution after stirring it with the Co-C nanoparticles, and in the DFB added post-iron (III) 

exposure at varying lengths of stirring time. Note that the iron (III) concentration of the 

original solution was found to be 27.4 mM. 
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Table 3.7. Iron (III) in FeCl3 Solution, Supernatant, and DFB after Shaking with Co-C 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution 0.431 
FeCl3 From Particles 0 

DFB at t = 5 min. 0.0583 
DFB at t = 10 min. 0.0961 
DFB at t = 15 min. 0.105 
DFB at t = 20 min. 0.105 
DFB at t = 25 min. 0.115 
DFB at t = 30 min. 0.119 
DFB at t = 35 min. 0.118 
DFB at t = 40 min. 0.122 

 

Figure 3.8 also shows the amount of iron (III) recovered by the DFB from the 

particles as a function of stirring time. As with all previous experiments, there was no 

DFB-Fe peak detected in the iron (III) solution after it was allowed to stir with the 

particles. The detection limit was found to be an absorbance of 0.013, which translates 

to a measurement of 0.012 µmol iron (III) in 20 mL. Therefore, that is the maximum 

amount of iron (III) which could be left in solution. 

The maximum amount of iron (III) recovered by the DFB appears to have been 

achieved after about 30 minutes of stirring time. Although a slightly larger amount was 

found in the DFB after 40 minutes, the error bars on the last three data points appear to 

overlap, indicating that these measurements are approximately the same number – 

about 0.12 µmol. In 20 mL of the original solution, there was 0.431 µmol, so the 

0.12 µmol of iron (III) recovered is 28% of the iron (III) in solution. Therefore, washing 

the particles with a dilute HCl solution instead of DI water, between adding the iron (III) 
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and attempting to remove it, did not improve the amount of iron (III) recovered in the 

DFB solution. In fact, a lower percentage of iron (III) was recovered – in the other 

experiments discussed thus far in this chapter, the amount of iron (III) recovered was 

above 30%. 

 

Figure 3.8. Amount of iron (III) in DFB as a function of time shaken. The error bars 
represent one standard deviation of the noise level in the baseline. 
 

3.3.8. Removing Iron (III) from Bare Co-C Particles – Concentrating Iron (III) from <10 µM 

FeCl3 

 

After determining a potential way to avoid interference in the UV-Vis spectrum 

from particles becoming stable in solution, two experiments were done to determine if 

decreasing the FeCl3 concentration would ultimately allow DFB to remove a larger 
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In the first experiment, the concentration of iron (III) in the original solution was 

measured to be 9.1 µM. The results of this experiment are displayed in Table 3.8. 

Note that there was once again no DFB-Fe peak in the UV-Vis spectrum of the 

iron (III) solution after it was stirred with the particles. The detection limit was found to 

be an absorbance of 0.0016, which translates to a measurement of 0.014 µmol iron (III) 

in 20 mL. Therefore, this is the maximum amount of iron (III) which could have been left 

in solution. 

Table 3.8. Amounts of Iron (III) in FeCl3 Solution, FeCl3 Supernatant, and DFB 

Supernatants 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution (FeCl3, 9.1 µM) 0.183 
FeCl3 From Particles 0 

DFB at t = 5 min. 0.0819 
DFB at t = 10 min. 0.149 
DFB at t = 15 min. 0.171 
DFB at t = 20 min. 0.183 
DFB at t = 25 min. 0.188 
DFB at t = 30 min. 0.177 
DFB at t = 35 min. 0.187 
DFB at t = 40 min. 0.190 

 

The trend in the amount of iron (III) collected by the DFB with respect to the 

amount of time it was stirred with the particles is shown in graphical form in Figure 3.9. 

Interestingly, the maximum amount of iron (III) measured was technically 0.190 µmol. 

This is 104% of the iron (III) in the original solution. However, if the error is assumed to 

be 1 standard deviation of the noise in the baseline, this means each measurement was 
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± 0.005 µmol. The total amount of iron (III) measured in 20 mL of the original solution 

was 0.183 µmol. Given an error of ± 0.005 µmol, the difference between these two 

numbers is not significant. 

Therefore, this experiment indicates that all of the iron (III) present in 20 mL of 

the 9.1 µM FeCl3 solution was captured by the Co-C nanoparticles and subsequently, 

taken off by the DFB solution. The results of this experiment were promising, indicating 

that if a relatively small amount of iron (III) is captured by the particles (in this case, 

below 0.2 µmol), then an 8 mM DFB solution can remove it from the particles, 

concentrating it. 

 

Figure 3.9. The amount of iron (III) measured in the DFB supernatant from Co-C 
nanoparticles as a function of the amount of time spent stirring with the particles. In 
this experiment, iron (III) was drawn from 9.1 µM FeCl3. The error bars represent 1 

standard deviation in the baseline noise level. 
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These promising results prompted a second experiment to show repeatability in 

the measurement. In this case, the FeCl3 solution used had a concentration of 7.1 µM. 

The experiment was performed on 4 separate samples of Co-C nanoparticles. However, 

unlike all previous experiments discussed in this chapter, the evidence showed that 

none of the nanoparticle samples took any iron (III) out of solution. This data is shown in 

Table 3.9. 

Unfortunately, for this experiment, only 1 baseline spectrum was recorded for 

each of the supernatant samples, so the error in these numbers cannot be determined 

in the same manner which it has been done throughout the chapter (see Section 3.2.11 

for more details). Nonetheless, the fact that a DFB-Fe peak could still be detected in the 

FeCl3 solution after shaking with the particles indicates that there is still iron (III) in the 

solution. After an FeCl3 solution was stirred with the particles, about the same amount 

of iron (III) was detected as in the solution before exposure to the particles. In other 

words, this time, the particles did not take iron out of solution – there was not even a 

decrease in the amount of iron (III) present in solution. 

Table 3.9. Amounts of Iron (III) in FeCl3 Solution, FeCl3 Supernatant 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution (FeCl3, 7.1 µM) 0.142 
FeCl3 from Particle Sample A 0.143 
FeCl3 from Particle Sample B 0.142 
FeCl3 from Particle Sample C 0.151 
FeCl3 from Particle Sample D 0.158 
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The DFB and water used in these experiments were not found to be 

contaminated with iron (III), so that does not explain the discrepancy. Other sources of 

contamination are unlikely, because the amounts of iron (III) detected fell within 

0.02 µmol of each other.  

It is not clear why, if contamination was not a factor, iron (III) could not be 

removed from the 7.1 µM FeCl3 solution. Every other experiment described in this 

chapter shows that 100% of the iron (III) was removed from a FeCl3 solution after 

stirring with the Co-C nanoparticles. This experiment would have to be repeated to 

determine if this were a true result. However, this portion of the project was halted 

here for reasons discussed in Section 3.4. 

3.4. Conclusion 

 

In all but one case, it was shown that the unmodified Co-C nanoparticles are 

capable of taking iron (III) out of a solution. This was attributed to the presence of 

graphite oxide functionalities on the surface which were capable of chelating metals 

such as iron (III). In the instances where this was not shown, it is possible that the 

experiment suffered from contamination. This experiment would need to be repeated in 

order to determine if it were a true result. 

It was found that the iron (III) could not consistently be removed from the Co-C 

particles with a DFB solution. Only in one instance was 100% of the iron (III) adsorbed 

onto the particles recovered in a DFB solution, and that result could not be repeated. In 

most cases, less than 50% of the iron (III) was recovered.  
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It is possible that iron (III) cannot be completely recovered due the reaction of 

iron (III) with oxygen in the air. Between the addition of iron (III) to the particles and the 

addition of DFB to the particles, the particles are exposed to air. Although the exposure 

is less than a minute, the amount of iron (III) on any given sample of Co-C particles is 

less than 1 µmol and present as a very thin layer of iron (III) on the surface. Therefore, 

the small amount of iron (III) present could react to form oxyhydroxides when exposed 

to air. This would make the iron (III) inaccessible to the DFB, resulting in an incomplete 

recovery. To prevent this from happening when changing supernatants, the supernatant 

would have to be flushed out with a new solution to prevent the particles from 

becoming exposed to air. This would not be feasible to do in our lab without purchasing 

new equipment.  

It was determined that the capture and concentration of iron (III) with untreated 

Co-C nanoparticles could no longer be pursued. The inconsistency in the amount of iron 

(III) which could be recovered from the particles made this scheme impractical. 

Additionally, allowing the particles to be exposed to air after becoming exposed to 

iron (III) may cause the formation of iron oxyhydroxides. This problem could not be fixed 

with the current available equipment. Therefore, for the remainder of the project, the 

focus was put on the work in Chapter 4. 
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CHAPTER 4: IRON UPTAKE WITH SILICA-COATED, DESFERRIOXAMINE B-TREATED 

MAGNETIC NANOPARTICLES 

 

4.1. Introduction 

 

In the work of Roy et. al., they derivatized a silicon wafer with DFB, which 

provided a means to quantitatively extract iron (III) from seawater at the low ppt level.1 

The wafer was first coated with a mesoporous silica, then functionalized with carboxylic 

acid groups using an alkoxysilane. The amine tail of DFB was reacted with the carboxylic 

acid groups to form an amide linkage, effectively attaching DFB to the surface. These 

wafers were then able to collect iron (III) out of a sample. Thus, a potential solution to 

the hurdles described in Chapters 2 and 3 is to coat the magnetic particles with a silica 

layer and then attach DFB, following the same protocols outlined by Roy et. al.   

Initially, work in this chapter was done to coat the Co-C nanoparticles in silica, 

and then use Roy et. al.’s method to derivatize the surface with DFB. Other types of 

magnetic nanoparticles were also used in this chapter, primarily nickel nanoparticles 

and TurboBeads Silica™, and to a lesser degree, iron (II, III) oxide particles. The 

TurboBeads Silica™ are commercially available Co-C particles supplied with a silica 

coating. 
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4.2. Experimental 

 

4.2.1. Materials 

 

The following materials were obtained from Sigma-Aldrich: carbon-coated 

magnetic cobalt nanopowder (Co-C), deferoxamine mesylate salt (DFB), iron (III) 

chloride (FeCl3), tetraethyl orthosilicate (TEOS), triethylamine, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), 2-(N-morpholino)ethanesulfonic acid (MES) 

hydrate, TurboBeads Silica™ (Co-C-Silica), nickel nanopowder (Ni), iron (II, III) oxide 

(Fe3O4) nanopowder, oxalic acid dihydrate, sodium oxalate, nickel (II) chloride 

hexahydrate, and toluene. Ammonium hydroxide, sodium hydroxide, hydrochloric acid, 

and absolute/anhydrous ethanol were all purchased from Fisher Scientific. The 

potassium bromide (KBr) used was either from Sigma-Aldrich or Fisher Scientific. The 

3-(triethoxysilyl)propylsuccinic anhydride (anhydride silane) came from Gelest, Inc.  

The sodium hydroxide and hydrochloric acid were diluted as necessary and used 

to make pH adjustments to solutions. The MES hydrate was used to make buffers at a 

pH of 5. To do this, 0.195 g solid MES hydrate was added to 90 mL of DI water. The pH 

was adjusted to 5.0 with NaOH, and the volume was topped off to 100 mL. This made a 

0.01 M MES buffer. 

The FeCl3 was received as a powder. To make a solution of FeCl3, first a 1 mM 

solution was made by dissolving the solid material in DI water (16.2 mg per 100 mL). The 

pH was adjusted to between 2.5 and 2.8 with concentrated HCl to prevent the 

formation of iron hydroxides in solution. Generally, a concentration close to 20 µM was 
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desired, so 2 mL of the 1 mM FeCl3 was diluted to 100 mL with DI water. The pH of the 

diluted solution was immediately adjusted to between 2.5 and 2.8 with concentrated 

HCl to prevent the formation of iron hydroxides in solution. Solutions older than 1 week 

were discarded.  

A Toyopearl® column derivatized with DFB was provided by Dr. Whitney King at 

Colby College. This column was used to remove iron (III) from 0.1 M solutions of oxalate. 

First, a 0.1 M solution of oxalate was prepared with sodium oxalate in DI water (1.34 g 

per 100 mL DI water) and adjusted to a pH of 8 using NaOH. This solution was run 

through the Toyopearl® column. The column was cleaned with an oxalic acid solution at 

a pH of 1.5. This solution was prepared with oxalic acid dihydrate in DI water (1.26 g per 

100 mL DI water) and adjusted to a pH of 1.5. 

A 0.1 M NiCl2 solution was made by combining 2.3833 g NiCl2 hexahydrate and 

100 mL DI water in a 150 mL beaker. 

All other materials listed above were used as received. The DFB and EDC were 

stored at -50 °C when not in use. The nickel nanopowder and anhydride silane were 

stored under nitrogen. 

All UV-Vis spectra were recorded on an Ocean Optics USB 2000 UV-Vis 

spectrometer with SpectraSuite software. In general, after a background UV-Vis 

spectrum was recorded, 5 absorbance spectra were recorded through the solution used 

for the background. These were known as the baseline spectra. A 5 cm cuvette was used 
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unless otherwise noted. For background and absorbance spectra, each scan took 2 

minutes. 

Diffuse reflectance infrared spectra were recorded using an ABB-Bomem FTLA 

2000 spectrometer at a resolution of 8 cm-1. For diffuse reflectance spectra, 500 scans 

were used, taking a total time of approximately 6.5 minutes. 

XPS measurements were recorded using a SPeCS instrument equipped with a VG 

Microtech Ltd dual Al anode x-ray source and a SPeCS HAS 3000 Plus x-ray analyzer. 

Mass was recorded on a Mettler Toledo AG245 analytical balance. Mechanical 

shaking was performed using a Vibramax 100 from Heidolph. TEM images were 

recorded using a Philips CM10 instrument. The propeller stirrer used was an Arrow 

1750. Calcination was performed in a Barnstead|Thermolyne 48000 furnace. 

4.2.2. Washing the Particles 

 

Washing was performed by adding the desired solvent (usually DI water, unless 

otherwise noted), mixing for about 2 seconds, drawing the particles to the side of the 

container using an external magnet, and then decanting the wash liquid or extracting 

the liquid with a pipette. 

4.2.3. Treatment of Co-C Particles with Silica, Anhydride Silane, and DFB 

 

This procedure was performed in an effort to acquire DFB-derivatized Co-C 

particles wherein the underlying graphene-like surface was completely coated with 

silica. The first step was to coat the surface of the particles in silica. To do this, 40 mL 
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ethanol, 10 mL DI water, and 1200 µL ammonium hydroxide were combined with 

0.1129 g Co-C nanoparticles in a 250 mL beaker. This mixture was sonicated for 1 hour 

(two 30-minute increments). Then, the mixture was moved to a propeller stirred beaker. 

As it was stirred vigorously, 395 µL tetraethyl orthosilicate (TEOS) was added dropwise. 

The mixture was allowed to stir vigorously for 2 hours. Then, the supernatant was 

removed from the particles and the particles were washed 3 times with ethanol, then 

placed into a 10 mL beaker. The particles were dried under vacuum for 1 hour at 50 – 

60 °C. (Note: it was only discovered after the fact that the typical procedure involves 

calcination at 500 °C.) A small portion was set aside for later characterization. 

The remainder of this procedure was adopted from Eric Roy’s method of 

derivatizing silica-coated wafers with DFB.1 The particles were first functionalized with 

carboxylic acid using 3-(triethoxysilyl)propylsuccinic anhydride. The particles were 

added to a mixture of 50 mL toluene and 1000 µL triethylamine in a 250 mL beaker. The 

beaker was shaken on a Vibramax 100 for about 10 minutes at 450 rpm. The 

supernatant was removed from the particles, then the particles themselves were 

washed with toluene and added to a fresh 50 mL aliquot of toluene in a 125-mL 

Erlenmeyer flask. The flask was stoppered with a rubber septum. N2 gas was added to 

the flask through a syringe needle inserted into the septum.  

Next, 2 mL of 3-(triethoxysilyl)propylsuccinic anhydride was added to the flask 

via a syringe. The syringe was rinsed into the flask three times with 5 mL toluene. The 

flask was shaken on a Vibramax 100 at 600 rpm for 1 hour. After shaking for an hour the 
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particles were removed from the supernatant and washed 3 times with DI water. To 

convert the anhydride functionality to a dicarboxylic acid, the particles were shaken in 

10 mL DI water on a Vibramax 100 at 450 rpm for 15 minutes. A small portion was set 

aside for later characterization. 

The necessary solution to derivatize the particles with DFB was mixed in the 

following procedure. First, approximately 10 mL of a 10 mg/mL solution of EDC/0.01 M 

MES buffer was made. Then, 0.1637 g deferoxamine mesylate salt was added to this 

solution. Next, 0.0360 g FeCl3 (90% of the number of moles required to form 100% 

DFB-Fe) was added. This solution was added to the silica and carboxylic acid-derivatized 

particles, and the resulting mixture was allowed to shake for 3 hours at 450 rpm. After 

shaking, the supernatant was removed and the particles were washed 3 times with DI 

water. A portion was removed and dried for further characterization. 

Each of the portions set aside for characterization was analyzed with diffuse 

reflectance FT-IR (DRIFT). For each, a 1% mixture of the sample in KBr was mixed using a 

mortar and pestle. A spectrum of each mixture was recorded against a background of 

pure KBr powder. 

4.2.4. Iron Uptake of Silica- and DFB-Treated Co-C Particles 

 

The DFB used during the derivatization was 90% bound with iron (III). To remove 

the iron (III) bound to the DFB, the particles were washed 7 times with 0.1 M oxalate. To 

perform each wash, 5000 µL 0.1 M oxalate was added to the particles. For the first 

wash, the pH of the oxalate was at 4, while for subsequent washes, it was at a pH of 1.5. 
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The mixture was shaken on a Vibramax 100 for 5 minutes at 450 rpm before the 

supernatant was removed. To measure the amount of iron (III) extracted into the 

oxalate supernatant, 4000 µL of the supernatant was combined with 1000 µL 2 mM DFB. 

This mixture was adjusted to a pH between 8 and 9 using NaOH. The exact volume of 

the NaOH added was recorded, as stated in Table 4.1. A UV-Vis spectrum of this mixture 

was recorded against a background of DI water. 

Table 4.1. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in Oxalate 

Supernatants 

Oxalate Wash Number 
NaOH (+ any HCl) Added to Oxalate/DFB 

Mixture (µL) 

1 305 
2 700 
3 1220 
4 850 
5 850 
6 650 
7 800 

Note: When the pH of the oxalate/DFB mixture exceeded 9, HCl was added to lower the 
pH to between 8 and 9. Also, the NaOH solution used was diluted, as needed, in an 
attempt to avoid adjusting the pH over 9. These two factors resulted in a varying 
amount of liquid added to make the necessary pH adjustment. 

 

Next, the iron (III) uptake on these particles was measured. To do this, 20 mL of a 

solution of FeCl3 (17.9 µM) was added to the Co-C-Silica-DFB particles. This mixture was 

shaken on a Vibramax 100 at 450 rpm for 1 hour before the supernatant was removed.  

The iron (III) content of the original solution and this supernatant were each 

measured in the following way, using UV-Vis spectroscopy. First, 5000 µL of the solution 

to be measured for iron (III) content was added to a 5 cm cuvette. A background 
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spectrum was recorded through the solution, and then 500 µL 2 mM DFB was added to 

the cuvette and another spectrum was recorded. 

4.2.5. Treatment of Fe3O4, Ni Nanoparticles with Silica 

 

This method of coating the surface of these nanoparticles with silica was based 

upon one used by Yue, et. al. on Fe3O4 particles.2 To do this, 0.25 g of the nickel or Fe3O4 

was added to a mixture of 100 mL ethanol, 25 mL DI water, and 3000 µL ammonium 

hydroxide. This mixture was sonicated for 1 hour and then transferred to a propeller 

stirred beaker. As the mixture was stirred vigorously, 875 µL TEOS was added dropwise. 

This was stirred for 2 hours before the supernatant was removed. The particles were 

washed 3 times with water. This was the last step performed to coat the nickel particles 

in silica. 

After coating the Fe3O4 particles in silica, they were calcined in an oven. The 

oven was set to increase to 500 °C at 5 °C/min, hold at 500 °C for 2 hours, then cool back 

down to room temperature at a rate of 5 °C/min. The particles were analyzed with 

DRIFT spectroscopy. 

4.2.6. Transmission Electron Microscopy (TEM) Of Silica-Treated Nanoparticles 

 

TEM images were recorded of the following samples: nickel nanoparticles, silica-

treated nickel nanoparticles, and TurboBeads Silica™. In each case, a small amount of 

the particles was dispersed in water by sonicating for 1 to 2 minutes. A drop of this 
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dispersion was applied to a sample grid and allowed to dry under a lamp. Once the grid 

was dry, TEM images were recorded. 

4.2.7. Derivatizing TurboBeads Silica™ and Ni-SiO2 with DFB 

 

Once the particles were coated in silica, a similar procedure as the one used to 

treat silica-coated Co-C with anhydride silane and DFB was used on TurboBeads Silica™ 

and silica-treated Ni (see Section 4.2.3). The main difference was that the particles were 

shaken on a Vibramax 100 with the anhydride silane for about 18 hours instead of 1 

hour to attempt to maximize the carboxylic acid groups on the surface. Also, one sample 

each of TurboBeads Silica™ and silica-treated Ni was derivatized, using DFB which had 

not first been reacted with iron (III). This was done in addition to treatment of samples 

with 90% DFB-Fe (as described in Section 4.2.3). 

TurboBeads Silica™ treated with DFB will be referred to as Co-SiO2-DFB, while 

TurboBeads Silica™ treated with DFB-Fe will be referred to as Co-SiO2-FB. Nickel 

nanoparticles treated with DFB will be referred to as Ni-SiO2-DFB, while nickel 

nanoparticles treated with DFB-Fe will be referred to as Ni-SiO2-FB. 

4.2.8. Characterization of Silica- and DFB-Treated Magnetic Nanoparticles 

 

IR spectra of coated particles were measured by DRIFT. A 1% mixture (by weight) 

of the sample was prepared using a mortar and pestle. A spectrum of this mixture was 

recorded against a background of pure KBr powder. 
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XPS analysis of the particles was performed on the following samples: 

TurboBeads Silica, silica-treated Ni (Ni-SiO2), TurboBeads Silica treated with DFB, 

TurboBeads Silica treated with 90% DFB-Fe, Ni-SiO2 treated with DFB, and Ni-SiO2 

treated with 90% DFB-Fe. In each case, the sample was dried and spread onto a piece of 

double-sided carbon tape stuck to the sample holder. The sample was placed in the XPS, 

which was evacuated. 

4.2.9. Iron (III) Uptake of Ni-SiO2 

 

This experiment was performed on 5 different 50 mg (± 4 mg) samples, each of 

which came from one of two batches of Ni-SiO2. 

As a control experiment, the iron (III) uptake of silica-coated Ni nanoparticles 

was measured. To do this, 20 mL of a 20 µM solution of FeCl3 was added to the particles. 

This mixture was shaken on a Vibramax 100 at 450 rpm for 1 hour. After that, the 

supernatant was removed. The iron (III) content of the original solution and this 

supernatant were each tested in the following way using UV-Vis spectroscopy. First, 

5000 µL of the solution to be tested was added to a 5 cm cuvette. A background 

spectrum was recorded through the solution, and then 1000 µL 2 mM DFB was added to 

the cuvette and another spectrum was recorded.  
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4.2.10. Iron (III) Uptake of Ni-SiO2-DFB 

 

The procedure described in Section 4.2.9 was also performed on the 

Ni-SiO2-DFB. In this case, DFB (not DFB-Fe) was reacted with the Ni-SiO2 particles 

derivatized with the anhydride silane. 

4.2.11. Iron (III) Uptake of Ni-SiO2-FB; Removal of Iron (III) from Particles 

 

Removal of iron (III) from the Ni-SiO2-FB particles was done by washing with 

oxalate solutions. To do this, 0.1 M oxalate at pH 1.5 was added to the particles. This 

suspension was shaken on a Vibramax 100 for 5 minutes, after which the supernatant 

was removed from the particles. Then, 4000 µL of this supernatant was mixed with 

1000 µL 2 mM DFB. This mixture was adjusted to a pH between 8 and 9 using NaOH. The 

exact volume of the NaOH added was recorded, as stated in Table 4.2. Also, a UV-Vis 

spectrum of this mixture was recorded against a background of DI water unless 

otherwise noted. 

To add iron (III) to the particles, the procedure from Section 4.2.9 was used. 

An outline of the order and number of times the above procedures were 

performed on the Ni-SiO2-FB particles is presented in the list below, with any changes 

noted. In between each addition of oxalate or FeCl3, the particles were washed 3 times 

with DI water. 

 Step 1: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 

o Wash with 5000 µL for 5 Minutes 
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o Repeat 

 Step 2: Add Iron (III) by Stirring with 20 mL 32.0 µM FeCl3 for 1 Hour 

 Step 3: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 

o Wash with 10 mL for 5 Minutes 

o Repeat, but with 5000 µL oxalate 

o Note: the background for these measurements was a mixture of 4000 µL 

from the 10 mL wash and 1500 µL DI water. 

 Step 4: Add Iron (III) by Stirring with 20 mL 17.2 µM FeCl3 for 1 Hour 

 Step 5: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 

o Wash with 5000 µL for 5 Minutes 

o Repeat 

 Step 6: Add Iron (III) by Stirring with 20 mL 17.5 µM FeCl3 for 1 Hour 

Table 4.2. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in Oxalate 

Supernatants from Ni-SiO2-FB 

Oxalate Wash 
NaOH (+ any HCl) Added to Oxalate/DFB 

Mixture (µL) 

Step 1 – Wash #1 505 
Step 1 – Wash #2 500 
Step 3 – Wash #1 495 
Step 3 – Wash #2 495 
Step 5 – Wash #1 500 
Step 5 – Wash #2 600 

Note: When the pH of the oxalate/DFB mixture exceeded 9, some HCl was added to 
lower the pH to between 8 and 9. 
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4.2.12. UV-Vis Spectra of 0.1 M NiCl2, Product of Oxalic Acid and Ni Nanoparticles 

 

First, 0.0290 g of nickel nanoparticles were added to a 50 mL plastic centrifuge 

tube. Then, 5000 µL 0.1 M oxalate, at a pH of 1.6, was added to the particles. This 

suspension was shaken on a Vibramax 100 at 450 rpm for 15 minutes. After 15 minutes, 

the supernatant was removed and added to a 5 cm cuvette. A UV-Vis spectrum of this 

supernatant was recorded. A UV-Vis spectrum of a 0.1 M NiCl2 solution in a 1 cm cuvette 

was also recorded. In both cases, the background was DI water. 

4.2.13. Iron (III) Uptake of TurboBeads Silica™ 

 

The procedure for this experiment was the same as that in Section 4.2.9, but 

performed on TurboBeads Silica™. A total of five 50 mg (± 4 mg) samples of TurboBeads 

Silica™ were tested.  

4.2.14. Iron (III) Uptake of Co-SiO2-DFB 

 

It should be noted that a new sample of Co-SiO2-DFB had to be prepared after 

XPS was performed, because the XPS measurements consumed the entirety of the 

original sample. The same procedure was used, as described in Section 4.2.7. 

First, iron (III) was added to the particles, using the same procedure as described 

in Section 4.2.9 (iron (III) uptake of Ni-SiO2). Next, the Co-SiO2-DFB particles were 

washed with oxalate to remove iron (III). To do this, 0.1 M oxalate at pH 1.5 was added 

to the particles. This suspension was shaken on a Vibramax 100, after which the 

supernatant was removed from the particles. Then, to measure the amount of iron (III) 
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captured by the oxalate, 4000 µL of the oxalate supernatant was mixed with 1000 µL 

2 mM DFB. This mixture was adjusted to a pH between 8 and 9 using NaOH. The exact 

volume of the NaOH added was recorded, as stated in Table 4.3. A UV-Vis spectrum of 

this mixture was recorded against a background of DI water, unless otherwise noted.  

The procedure to wash the particles with oxalate was repeated 6 times on this 

sample. For the first three washes, the particles were shaken on a Vibramax 100 for 5 

minutes. For the fourth and fifth washes, the suspension was shaken for 15 minutes; for 

the sixth wash, it was shaken for 20 minutes. 

Table 4.3. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in Oxalate 

Supernatants from Co-SiO2-DFB 

Oxalate Wash 
NaOH (+ any HCl) Added to Oxalate/DFB 

Mixture (µL) 

1 580 
2 570 
3 500 
4 520 
5 550 
6 570 

Note: When the pH of the oxalate/DFB mixture exceeded 9, some HCl was added to 
lower the pH to between 8 and 9. 

 

In between the addition of iron (III) and the first addition of oxalate, as well as 

between each subsequent addition of oxalate, the particles were washed 3 times with 

DI water. 
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4.2.15. Iron (III) Uptake of Co-SiO2-FB 

 

It should be noted that a new sample of Co-SiO2-FB had to be prepared after XPS 

analysis because the XPS measurements consumed the entirety of the original sample. 

The procedure described in Section 4.2.7 was used in preparing a new batch. 

First, the procedure described in Section 4.2.14, to remove iron (III) from the 

particles with oxalate, was performed on the Co-SiO2-FB to remove any iron (III) which 

might be present. Two oxalate washes were performed. Then, as described in 

Section 4.2.9, iron (III) was added to the particles. After that, two more oxalate washes 

were performed, again using the same procedure as in Section 4.2.14. The amounts of 

NaOH added to mixtures of oxalate and DFB for pH adjustments are stated in Table 4.4. 

Table 4.4. Amounts of NaOH Added for pH Adjustments – Measuring Iron (III) in Oxalate 

Supernatants from Co-SiO2-FB 

Oxalate Wash 
NaOH (+ any HCl) Added to Oxalate/DFB 

Mixture (µL) 

Wash #1 (Before adding FeCl3) 520 
Wash #2 (Before adding FeCl3) 550 
Wash #1 (After adding FeCl3) 470 
Wash #2 (After adding FeCl3) 470 

Note: When the pH of the oxalate/DFB mixture exceeded 9, some HCl was added to 
lower the pH to between 8 and 9. 

 

4.2.16. Calculations 

 

Equations 2.1 – 2.3 (See Chapter 2) were used again to calculate the amount of 

iron (III) from the absorbance of a DFB-Fe UV-Vis peak. Additionally, the error in this 

measurement was determined in the same manner as described in Section 3.2.11. 
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4.3. Results and Discussion 

 

4.3.1. Characterization of Co-C Particles Treated with Silica and DFB 

 

In order to determine if Co-C particles were successfully treated with silica, then 

carboxylic acid, and then finally DFB, DRIFT spectra were recorded. The spectra recorded 

after each of these steps were performed are shown in Figure 4.1. Not shown, for 

simplicity, is the spectrum of unmodified Co-C particles. The only feature in such a 

spectrum is a low-intensity broad peak centered at 1400 cm-1. This band is due to the 

aromatic C=C stretching of the graphene carbon coating. 

After treatment of the Co-C particles with silica, the IR spectrum (Figure 4.1 (a)) 

shows a new broad peak at 1130 cm-1, which is characteristic of the Si-O stretching 

mode of silica. Therefore, the presence of this peak indicates that the particles were 

coated with silica. 

After the derivatization with the anhydride silane followed by exposure to water, 

the IR spectrum in Figure 4.1 (b) shows bands at 1720 cm-1 and 1570 cm-1. The 

1720 cm-1 peak is a carbonyl peak, due to the C=O stretching of the carboxylic acid 

(COOH). The peak at 1570 cm-1 is assigned to a carboxylate (COO-) mode. This shows 

that the surface was derivatized to contain carboxylic acid groups. 
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Figure 4.1. DRIFT spectra of Co-C particles. This was after a) treatment with silica, then 
b) treatment with anhydride silane, followed by exposure to water, and then c) 
treatment with 90% DFB-Fe. 

 

Figure 4.1 (c) was obtained after treatment with DFB-Fe. The C=O band of the 

carboxylic acid is gone and two new bands appear at 1640 cm-1 and 1555 cm-1. The 

reaction of carboxylic acid groups on the surface with the amine group of the DFB is 

expected to produce an amide linkage and two bands at 1650 cm-1 (amide I) and 

1550 cm-1 (amide II) of equal intensity. The disappearance of the band at 1720 cm-1 in 

Figure 4.1 (b) shows that the carboxylic acid is involved in the reaction with the DFB-Fe. 

While the two bands at 1640 cm-1 and 1555 cm-1 coincide with the expected 

wavenumbers for amide formation, the 1640 cm-1 band is more intense than the one at 
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1555 cm-1. This is because the 1640 cm-1 band contains a contribution from the bending 

mode of water. There is a broad peak at 3423 cm-1 due to the O-H stretching mode of 

water, showing that the surface contains adsorbed water. However, the intensity of the 

3423 cm-1 peak (water stretching mode) should be at least twice as intense as the water 

bending mode at 1640 cm-1. That is not the case here, so that peak at 1640 cm-1 has 

contributions from the bending mode of water and from the amide I mode. In other 

words, the amide linkage between the amine tail of DFB and the carboxylic acid on the 

surface was successfully formed. 

4.3.2. Iron Uptake of Silica- and DFB-Treated Co-C Particles 

 

Measurement of the iron (III) levels of the oxalate washes with DFB by recording 

UV-Vis spectra was not possible. The UV-Vis spectra showed peaks which interfered 

with the quantification of the DFB-Fe peak at 430 nm. For example, Figure 4.2 shows the 

UV-Vis spectrum of the second oxalate wash after adding DFB and adjusting the pH to 

8.25. A broad feature, increasing in intensity, appears from 600 nm to 400 nm, 

obscuring detection of the DFB-Fe band at 430 nm. This is due to scattering of the light 

as it passes through the sample. It is possible that some particles have become stable in 

solution with the oxalate wash, which leads to scattering of the light. Additionally, it was 

observed that in some oxalate washes, the solution appeared to be slightly cloudy after 

stirring with the Co-C particles. This cloudiness is also indicative of particulates in 

solution. There is also a weak peak centered at 502 nm, which is 70 nm higher than the 

normal location for a DFB-Fe peak, appearing on top of the scattering curve. 
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Figure 4.2. UV-Vis spectrum of the second oxalate wash of silica/DFB-treated Co-C 
nanoparticles.  

 

Figure 4.3 shows the UV-Vis spectrum of the seventh and last oxalate wash 

performed on these particles. As with Figure 4.2, an increase in absorbance with a 

decreasing wavelength (scattering) can be seen. However, there is no sign of any other 

peaks, including a DFB-Fe peak. It was concluded that any iron (III) which could be 

removed from these particles had been removed by this point. 
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Figure 4.3. UV-Vis spectrum of the seventh oxalate wash of silica/DFB-treated Co-C 
nanoparticles.  

 

The DFB-treated Co-C particles were exposed to solutions containing iron (III). 

Table 4.5 shows the amount of iron (III) present in 20 mL of the FeCl3 solution, before 

adding it to the particles, and in the supernatant, after this solution was stirred with the 

particles. 

Table 4.5. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with 

Co-C/Silica/DFB Particles 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

Original Solution (FeCl3, 17.9 µM) 0.358 ± 0.003 
FeCl3 Solution from Particles 0.357 ± 0.002 
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The margins of error represent one standard deviation of noise in the baseline 

spectra of each measurement. In any case, the amount of iron (III) measured before and 

after stirring with the DFB-treated Co-C particles only differed by 0.001 µmol – well 

within the margins of error for both measurements. Therefore, the same amount of iron 

was present in solution before and after it was stirred with the DFB-treated particles. 

This means that, despite having DFB on the surface, these particles did not take iron (III) 

out of solution. 

As discussed previously in this section, some of the oxalate supernatants from 

the oxalate washes (performed before adding iron) appeared cloudy. It is possible that 

this cloudiness was due to small amounts of silica coming off of the surface. Next, we 

recorded a DRIFT spectrum of the DFB-treated Co-C particles, after their exposure to 

iron (III) (which was also after their exposure to oxalate). This is shown in Figure 4.4 (b). 

Figure 4.4 (a) shows the spectrum of the DFB-treated Co-C particles before their 

exposure to oxalate. This is the same spectrum as in Figure 4.1 (c). Figure 4.4 (b) is the 

spectrum of the DFB-treated Co-C particles again after their exposure to oxalate and 

FeCl3. After exposure to oxalate and FeCl3, a large peak at 1638 cm-1 and a pair of peaks 

at 1367 cm-1 and 1321 cm-1
 are obtained. There is also no sign of a Si-O-Si stretching 

peak at 1000 to 1100 cm-1, showing the absence of a silica coating. The peak at 

1638 cm-1 is assigned to the carbonyl stretch of oxalate. The 1367 cm-1 and 1321 cm-1 

peaks are also known to appear in oxalates3, which are attributed to the stretching of 

the C-O bond in oxalate. 
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Figure 4.4. DRIFT spectra of silica- and DFB-treated Co-C nanoparticles. This was a) 
before exposure to oxalate and b) after exposure to oxalate and FeCl3 solutions. 

 

The presence of peaks which can be attributed to oxalate indicates that during 

the oxalate washes, oxalate adsorbed onto the surface of the particles. The lack of peaks 

due to silica suggests that the oxalate washes led to the removal of the silica coating 

(and hence, the attached DFB) from the Co-C nanoparticles. This would explain why the 

particles were not able to take iron (III) out of solution. 

The cloudiness observed in the oxalate washes is consistent with the removal of 

silica from the particulate surface. It is possible that the carbon coating makes the Co-C 

particles a poor substrate for anchoring the silica coating. Because the carbon coating is 
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hydrophobic, it doesn’t wet as well or form covalent linkages with the silica layer, as 

compared to the hydrophilic silicon layer used in Roy et. al.1 For this reason, it was 

decided to try forming a silica substrate on a different magnetic material. 

4.3.3. TEM Images of Silica-Coated Nanoparticles 

 

After determining that Co-C particles were not reliably coated with silica, 

alternative materials for magnetic particulates to coat with silica were sought. 

TurboBeads Silica™, a version of the Co-C particles which comes pre-functionalized with 

silica, was bought for this purpose. Also purchased were nickel nanoparticles, which had 

to be coated with a layer of silica after purchase.  

Before derivatization of these particles with DFB, TEM images of these particles 

were recorded in an attempt to determine the completeness of their coatings. 

Figure 4.5 shows the nickel nanoparticles, while Figure 4.6 shows these particles after 

being coated in silica. 

The nickel nanoparticles were not uniform in shape and varied in diameter from 

about 10 to 25 nm. Figure 4.6 shows that when coating these particles with silica, the 

silica appeared to have polymerized around groups of nanoparticles, forming particulate 

clusters over 100 nm in size. 
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Figure 4.5. TEM images of nickel nanoparticles. 
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Figure 4.6. TEM images of silica-treated nickel nanoparticles. 
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Figure 4.7 shows a TEM image of Co-C particles taken by Grass et. al.4  This 

shows the graphene layers around the cobalt center (the thin lines which encompass 

the larger, darker circle), which is about 2 nm thick. Next, Figure 4.8 shows the recorded 

TEM images of the TurboBeads Silica™. There is evidence of a coating on the particles – 

a thin gray band around the particles about 5 nm thick. If this coating includes both the 

graphene layer and the silica layer, and the graphene layer is 2 nm thick, then the silica 

layer must be 3 nm thick. 

 

Figure 4.7. TEM image of a Co-C nanoparticle. Recorded by Grass et. al.4 
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Figure 4.8. TEM images of TurboBeads Silica™.  
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4.3.4. Characterization of Silica-Treated, DFB-Treated Nanoparticles: IR Spectroscopy 

 

Figure 4.9 shows the IR spectra of TurboBeads Silica™ before and after an 

addition of the anhydride silane – spectrum (a) and (b), respectively. The two spectra 

are similar. Both have a peak at 1666 cm-1. Without knowing exactly how the silica was 

attached to the surface, it is difficult to say to what this peak may be due, because it is 

not a peak typically associated with silica. In both spectra, the largest feature is a peak 

at 1137 cm-1. This is the Si-O-Si stretching peak due to the presence of silica.  

One could argue that in the spectrum recorded after the reaction, there is a 

slight shoulder at 1713 cm-1 which is not present in the spectrum recorded before the 

reaction. This would be a sign of the carbonyl stretch of a carboxylic acid (COOH). 

However, it is difficult to say for certain that a peak is really there.  
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Figure 4.9. DRIFT spectra of TurboBeads Silica™ before and after addition of anhydride 
silane. a) TurboBeads Silica™ as purchased; b) TurboBeads Silica™ after the addition of 
anhydride silane. 

 

Likewise, Figure 4.10 (a) and (b) shows the IR spectra of Ni-SiO2 before and after 

addition of anhydride silane, respectively. While the two spectra are fairly similar, there 

is a small peak at 1714 cm-1 in Figure 4.10 (b) which was not present in Figure 4.10 (a). 

This peak is due to the C=O stretch of a carboxylic acid, indicating a reaction between 

the silica and the anhydride silane. 

The same reaction was performed on silica-treated Fe3O4 particles. The IR 

spectra of these particles, before and after reaction with the anhydride silane, are 

shown in Figure 4.11 (a) and (b), respectively. A peak at 1720 cm-1 in Figure 4.11 (b) is 
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due to a carbonyl stretch (C=O), indicating the presence of carboxylic acid groups. 

Because this reaction worked on the Fe3O4-Silica nanoparticles, it also worked on the 

TurboBeads Silica™ and Ni-SiO2 particles. However, each of these samples had a large 

peak (1550 to 1700 cm-1) near where a C=O stretching mode of a carboxylic acid 

appears, which made identification of a C=O band difficult. 

 

Figure 4.10. DRIFT spectra of Ni-SiO2 before and after addition of anhydride silane. a) 
Ni-SiO2; b) Ni-SiO2 after the addition of anhydride silane. 
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Figure 4.11. DRIFT spectra of Fe3O4-SiO2 before and after addition of anhydride silane. 
a) Fe3O4-SiO2; b) Fe3O4-SiO2 after the addition of anhydride silane. 

 

Thus, it was decided that the Ni-SiO2 and TurboBeads Silica™ should be 

characterized in a different way, after undergoing the reaction with DFB. XPS was 

chosen as the technique to be used. It was thought that if DFB were successfully put on 

the surface, XPS should detect the presence of nitrogen, because there are 6 nitrogen 

atoms in each molecule of DFB. Before the reaction with DFB, there should not be any 

nitrogen present in the samples. 

 

 



131 
 

4.3.5. Characterization of Silica-Treated, DFB-Treated Nanoparticles: XPS 

 

Figure 4.12 shows the XPS spectrum for Ni-SiO2. Table 4.6 shows the atom 

percent, as determined by CasaXPS software, using the major peaks in Figure 4.12 for 

each element. Peaks due to oxygen and silicon are from silica coating. Nickel is detected 

at a low level, (1%). XPS detects to a depth of about 10 nm into the surface of a sample. 

This means that there is very little nickel within the top 10 nm of the sample and shows 

that the silica coating is uniformly covering the underlying nickel particle. Carbon is also 

present, partly due to the carbon tape which the sample is stuck on and partly due to 

normal hydrocarbon contamination from the environment. If nitrogen was present, it 

would have its major, 1s peak at 398 eV. There is no such peak in this spectrum. 
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Figure 4.12. XPS spectrum of silica-treated nickel nanoparticles. It has been calibrated to 

the true value of the C 1s peak, 284 eV. The major peaks for each element present are 

labeled. Processed with CasaXPS software. 

 

Table 4.6. Atom Percent of Elements in Ni-SiO2 Sample 

 

Element Atom Percent 

Oxygen 41 % 
Carbon 27 % 
Nickel 1 % 
Silicon 31 % 
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Figure 4.13 shows the XPS spectrum of TurboBeads Silica™ and Table 4.7 

provides the percentage of each element. Again, oxygen and silicon peaks indicate the 

presence of silica. Carbon is also present – there is hydrocarbon contamination and 

background signal due to the tape, in addition to the carbon coating beneath the silica. 

About 2% of the top 10 nm of the sample is cobalt. The TEM images of the TurboBeads 

Silica™ (see Figure 4.8) indicated that the coating (silica and carbon combined) was only 

5 nm thick, so the XPS should be able to detect some material underneath it. 

There is also a peak due to nitrogen in this sample. These TurboBeads Silica™ 

had not been exposed to DFB, so this was unexpected. The process by which the silica 

coating is applied to the carbon-coated particles is not stated by the manufacturer, so 

the source of nitrogen is not known. It is reasonable to conclude that the nitrogen signal 

is not due to contamination from the environment, since the Ni-SiO2 particles did not 

contain nitrogen.  
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Figure 4.13. XPS spectrum of TurboBeads Silica™. It has been calibrated to the true value 

of the C 1s peak, 284 eV. The major peaks for each element present are labeled. 

Processed with CasaXPS software. 

 

Table 4.7. Atom Percent of Elements in TurboBeads Silica™ Sample 

 

Element Atom Percent 

Oxygen 25 % 
Carbon 53 % 
Cobalt 2 % 
Silicon 19% 

Nitrogen 1 % 
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Figure 4.14 shows the XPS spectrum of Ni-SiO2-DFB and Table 4.8 shows the 

percentages of each element. The spectrum is similar to that of the spectrum of Ni-SiO2 

particles which were not exposed to DFB. In addition to peaks that were already 

present, there is also a small nitrogen peak at 398 eV, which shows the presence of DFB 

on the surface.  

 

Figure 4.14. XPS spectrum of Ni-SiO2-DFB. It has been calibrated to the true value of the 

C 1s peak, 284 eV. The major peaks for each element present are labeled. Processed 

with CasaXPS software. 
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Table 4.8. Atom Percent of Elements in Ni-SiO2-DFB Sample 

 

Element Atom Percent 

Oxygen 27 % 
Carbon 56 % 
Nickel 1 % 
Silicon 15 % 

Nitrogen 1 % 
 

Figure 4.15 shows the XPS spectrum of Ni-SiO2-FB. Again, a weak peak due to 

nitrogen is observed. Figure 4.16 is an expanded view of the nitrogen peak region. The 

presence of the nitrogen peak indicates that there is DFB on the surface, though it does 

not provide any information on the formation of an amide linkage to the surface. 

The spectrum in Figure 4.15 is similar to the spectrum in Figure 4.14, except that 

there are an additional two small peaks overlapping with the broad peak at 712 eV. The 

712 eV peak is an Auger peak from nickel. Auger XPS peaks are due to secondary 

emission of electrons from an atom, which occurs when electrons rearrange to fill gaps 

left by core electrons emitted upon x-ray incidence. The major peaks for iron (2p) 

typically occur at 707 and 720 eV, and so they can overlap with the nickel Auger peak 

mentioned. Indeed, in Figure 4.15 one can see the two peaks at 711 and 724 eV on top 

of the broader feature, which is likely due to the nickel Auger peak. This indicates that 

there is some iron in the sample, but because the peaks overlap, an accurate percentage 

of iron in the sample could not be calculated. Therefore, although the percentage of 

each element in this sample is displayed in Table 4.9, the amount of iron was not 

calculated. 
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Figure 4.15. XPS spectrum of Ni-SiO2-FB. It has been calibrated to the true value of the C 

1s peak, 284 eV. The major peaks for each element present are labeled, including the 

two iron 2p peaks which are overlapping with a nickel Auger peak. Processed with 

CasaXPS software. 

 

Table 4.9. Atom Percent of Elements in Ni-SiO2-FB Sample, Excluding Fe 

 

Element Atom Percent 

Oxygen 29 % 
Carbon 57 % 
Nickel 1 % 
Silicon 13 % 

Nitrogen 1 % 
Iron Peak overlaps – could not calculate. 
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Figure 4.16. XPS spectrum of Ni-SiO2-FB, showing the small nitrogen peak at 398 eV. 

 

Figures 4.17 and 4.18 show the XPS of the Co-SiO2-DFB and Co-SiO2-FB samples, 

respectively. Tables 4.10 and 4.11 show the atom percent of elements present in the 

Co-SiO2-DFB and Co-SiO2-FB samples, respectively. The XPS spectra do not show any 

differences from the spectrum of TurboBeads Silica™ shown in Figure 4.13. Thus, there 

is no evidence that the DFB had bound to the TurboBeads Silica™ in either the 

Co-SiO2-DFB or Co-SiO2-FB samples. 
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Figure 4.17. XPS spectrum of Co-SiO2-DFB. It has been calibrated to the true value of the 
C 1s peak, 284 eV. The major peaks for each element present are labeled. Processed 
with CasaXPS software. 

 

Table 4.10. Atom Percent of Elements in Co-SiO2-DFB 

 

Element Atom Percent 

Oxygen 22 % 
Carbon 57 % 
Cobalt 2 % 
Silicon 17 % 

Nitrogen 2 % 
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Figure 4.18. XPS spectrum of Co-SiO2-FB. It has been calibrated to the true value of the C 
1s peak, 284 eV. The major peaks for each element present are labeled. Processed with 
CasaXPS software. 

 

Table 4.11. Atom Percent of Elements in Co-SiO2-FB 

 

Element Atom Percent 

Oxygen 23 % 
Carbon 63 % 
Cobalt 1 % 
Silicon 11 % 

Nitrogen 1 % 
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In summary, the XPS data shows that DFB is on the surface of both Ni-SiO2-DFB 

and Ni-SiO2-FB. This is evidenced by the presence of a nitrogen peak in the XPS 

spectrum of the DFB-treated material, which was not present in the XPS spectrum of 

Ni-SiO2. For Ni-SiO2-FB, iron was also detected. Because the XPS detected nitrogen in the 

native TurboBeads Silica™, it was not possible to determine if there was DFB on the 

surface. It should be noted that there did not appear to be any iron on the Co-SiO2-FB, 

indicating that either there is no DFB on the surface or the portion which reacted was 

the non-iron-bound DFB. 

4.3.6. Iron (III) Uptake of Ni-SiO2 (Prior to DFB Exposure) 

 

The amount of iron (III) in 20 mL of the iron (III) solutions added to each Ni-SiO2 

sample before and after stirring with the sample for 1 hour is provided in Table 4.12. 

The samples and solutions are numbered to indicate which sample received a particular 

FeCl3 solution (e.g. Sample 1 received 20 mL of FeCl3 Solution 1). Samples 1 and 2 are 

from one batch of Ni-SiO2 and Samples 3, 4, and 5 are from another batch. 

The margins of error represent one standard deviation of noise in the baseline 

spectra of each measurement. In all cases, the amount of iron (III) left in the 

supernatant, after shaking with the silica-treated nickel nanoparticles, was smaller than 

the amount present in 20 mL of the original solution. Table 4.13 lists the percentage of 

iron (III) lost from solution in each case. The largest amount lost in any particular sample 

was 12%. The difference is due to non-specific binding to the surface. Thus, the silica 

coating did not, in and of itself, prevent the adsorption of iron (III). Silica has an 
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isoelectric point at pH 2 and thus, has negatively charged sites even at low pH. These 

sites can electrostatically bind the iron (III) from solution. The origin of the negatively-

charged sites is the deprotonation of surface Si-OH groups. These groups react with the 

anhydride silane, which is added before the addition of the DFB. Therefore, a DFB-

treated silica may not have non-specific binding of iron (III). 

Table 4.12. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with Ni-SiO2 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

FeCl3 Solution 1 (17.2 µM) 0.413 ± 0.002 
FeCl3 Solution from Ni-SiO2 Sample 1 0.395 ± 0.003 

  
FeCl3 Solution 2 (18.1 µM) 0.435 ± 0.005 

FeCl3 Solution from Ni-SiO2 Sample 2 0.409 ± 0.001 
  

FeCl3 Solution 3 (17.3 µM) 0.415 ± 0.003 
FeCl3 Solution from Ni-SiO2 Sample 3 0.381 ± 0.004 

  
FeCl3 Solution 4 (17.3 µM) 0.415 ± 0.003 

FeCl3 Solution from Ni-SiO2 Sample 4 0.365 ± 0.003 
  

FeCl3 Solution 5 (17.3 µM) 0.415 ± 0.003 
FeCl3 Solution from Ni-SiO2 Sample 5 0.387 ± 0.004 

 

Table 4.13. Amount of Iron (III) Adsorbed by Ni-SiO2 Samples 

 

Sample Percent Iron (III) Adsorbed 

1 4% 
2 6% 
3 8% 
4 12% 
5 7% 
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4.3.7. Iron (III) Uptake of Ni-SiO2-DFB 

 

Table 4.14 shows the amount of iron (III) measured in 20 mL of the FeCl3 solution 

before and after it was allowed to stir with the Ni-SiO2-DFB particles for 1 hour. The two 

measurements differ by 0.006 µmol, but the margins of error do overlap. This shows 

that there was no iron (III) uptake by this surface. Thus, while the DFB did prevent non-

specific binding of iron (III), it was also inactive in taking up iron (III).  

The XPS measurements performed on this sample indicated that it was likely that 

DFB was on the surface. However, that did not guarantee that the DFB would be 

accessible to iron (III). It is possible that DFB is on the surface, but it is unable to chelate 

iron. For instance, if the density of DFB on the surface was high enough, the molecules 

could be too crowded to form the hexadentate structure required to chelate iron (III) 

(see Figure 1.2). Also, the DFB could bind through multiple sites with the surface and 

hence, would not dislodge from the surface to form multiple bonds with an incoming 

iron (III) ion. Because the DFB-treated Ni-SiO2 particles did not take up iron (III) from 

solution, no further work was done with them in this project.   

Table 4.14. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with 

Ni-SiO2-DFB 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

FeCl3 Solution (30.4 µM) 0.729 ± 0.003 
FeCl3 Supernatant from DFB-Treated 

Particles 
0.723 ± 0.003 
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4.3.8. Iron (III) Uptake and Removal with Oxalate of Ni-SiO2-FB Particles 

 

The following list (reproduced from Section 4.2.11) describes the sequence of 

steps recorded to study the iron (III) uptake of the Ni-SiO2-FB particles and subsequent 

removal of iron (III) from them.  

 Step 1: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 – Initial 

Oxalate Washes 

o Wash with 5000 µL for 5 Minutes 

o Repeat 

 Step 2: Add Iron (III) by Stirring with 20 mL FeCl3 for 1 Hour – First Iron (III) 

Addition 

 Step 3: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 – Second 

Oxalate Washes 

o Wash with 10 mL for 5 Minutes 

o Repeat, but with 5000 µL 

o Note: the background for these measurements was 4000 µL from the 10 

mL wash combined with 1500 µL DI water. 

 Step 4: Add Iron (III) by Stirring with 20 mL FeCl3 for 1 Hour – Second Iron (III) 

Addition 

 Step 5: Remove Iron (III) by Washing with 0.1 M Oxalate at pH 1.5 – Final Oxalate 

Washes 

o Wash with 5000 µL for 5 Minutes 
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o Repeat 

 Step 6: Add Iron (III) by Stirring with 20 mL FeCl3 for 1 Hour – Third Iron (III) 

Addition 

Table 4.15 provides the values for the iron (III) measured at each step in this 

experiment; however, the amounts of iron (III) in the oxalate washes could not be 

measured accurately. This is because a second peak appeared at 386 nm that 

overlapped with the DFB-Fe peak at 430 nm (see Figure 4.19). Still, the absorbance of 

the DFB-Fe peak must be less than the total measured absorbance. Therefore, the total 

absorbance would put a “maximum” on the value for the amount of iron (III) extracted. 

It is this “maximum” value of iron (III) in a given oxalate wash which is stated in 

Table 4.15. 

Table 4.16 shows the total amounts of iron (III) removed from (negative values) 

and added to (positive values) the Ni-SiO2-FB particles during this experiment. The latter 

was calculated by subtracting the iron (III) measured in the supernatant after stirring 

with the particles from the amount measured in the original solution. 
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Figure 4.19. UV-Vis spectra of the final oxalate washes of DFB-Fe-treated Ni-SiO2. a) The 
first of these washes has a DFB-Fe peak while b) the second does not. 
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Table 4.15. Amount of Iron (III) Measured in FeCl3, Oxalate Samples from Ni-SiO2-FB 

Particles 

 

Sample Sample Volume (mL) 
Amount of Fe+3 (µmol) in 

Sample Volume 

Initial Oxalate Washes* - - 
Wash #1 5 0.4 
Wash #2 5 0 

First FeCl3 Addition - - 
FeCl3 Solution (32.0 µM) 20 0.767 ± 0.003 
FeCl3 Supernatant from 

Particles 
20 0.624 ± 0.004 

Second Oxalate Washes* - - 
Wash #1 10 0.1 
Wash #2 5 0 

Second FeCl3 Addition - - 
FeCl3 Solution (17.2 µM) 20 0.413 ± 0.003 
FeCl3 Supernatant from 

Particles 
20 0.275 ± 0.004 

Final Oxalate Washes* - - 
Wash #1 5 0.08 
Wash #2 5 0 

Third FeCl3 Addition - - 
FeCl3 Solution (17.5 µM) 20 0.420 ± 0.003 
FeCl3 Supernatant from 

Particles 
20 0.346 ± 0.003 

*The measurements made in oxalate washes are not accurate due to the interference of 
a second peak. The numbers quoted can be thought of as the maximum possible 
amount of iron (III) present. Errors are not included for these values. 
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Table 4.16. Amount of Iron (III) Measured for Each Step (Removed from Particles with 

Oxalate or Added to Ni-SiO2-FB from FeCl3 Solution) 

 

Step (In Chronological Order) Amount of Fe+3 (µmol) 

Iron (III) Removed from Particles with 
Oxalate (Initial Wash) 

-0.4 

Iron (III) Adsorbed onto Particles (First 
FeCl3 Addition) 

+0.143 

Iron (III) Removed from Particles with 
Oxalate (Second Wash) 

-0.1 

Iron (III) Adsorbed onto Particles (Second 
FeCl3 Addition) 

+0.138 

Iron (III) Removed from Particles with 
Oxalate (Final Wash) 

-0.08 

Iron (III) Adsorbed onto Particles (Third 
FeCl3 Addition) 

+0.074 

Note: In this table, negative values indicate iron (III) removed from the particles while 
positive values indicate iron (III) added to them. 

 

The Ni-SiO2-FB particles removed 0.143 µmol with the first addition of FeCl3 

solution. When these particles were washed with oxalate, a maximum of 0.1 µmol 

iron (III) was removed from the particles. This is 70% of the iron originally removed from 

the solution. When these Ni-SiO2-FB particles were then added to a second FeCl3 

solution, the particles removed 0.138 µmol iron (III). Thus, the uptake of iron (III) is 

about the same value the second time in contact with a fresh iron (III) solution as the 

first time in contact with an iron (III) solution. When the Ni-SiO2-FB particles were again 

washed with oxalate, only 0.06 µmol was found in the oxalate. This translates to about 

43% of the iron (III) removed from the particles. That does not include any iron (III) 

which may be left on the particles from the particles’ first exposure to FeCl3. But in both 
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cases, not all of the iron (III) which the particles adsorbed from solution was removed 

from the particles with the subsequent oxalate wash.  

4.3.9. UV-Vis Spectra of 0.1 M NiCl2, Product of Oxalic Acid and Ni Nanoparticles 

 

Experiments were performed to determine the source of the interfering peak at 

386 nm, which appeared in UV-Vis spectra of oxalate exposed to nickel nanoparticles 

(see Figure 4.19). A sample containing 5 mL 0.1 M oxalate at pH 1.6 was shaken with 

unmodified nickel nanoparticles on a Vibramax 100 for 15 minutes. UV-Vis spectra of 

this supernatant and of 0.1 M NiCl2 were also recorded (see Figure 4.20). 

Both spectra have a peak at 394 nm. Given that this is seen in the spectrum of 

NiCl2 as well as the spectrum of the oxalic acid exposed to nickel nanoparticles, it is 

likely that this peak is due to nickel (II). This means that the oxalic acid and nickel react, 

forming nickel (II) ions in solution. 

One would expect the silica coating to protect the nickel inside from the oxalate. 

However, the peak in Figure 4.19 (the oxalate washes from the DFB-Fe-treated nickel 

nanoparticles) is at 386 nm, which is less than 10 nm from the wavelength of the peak in 

Figure 4.20. This indicates that the peak seen in Figure 4.19 is due to the oxalic acid 

reacting with exposed or leaked nickel from the particles. Thus, the use of nickel-based 

particles was not pursued any further. 

While Ni-SiO2-FB adsorbed iron (III), the formation of a band at 386 nm, due to a 

reaction between the oxalic acid and nickel, interferes with the band due to DFB-Fe. 
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Therefore, in order to use the nickel nanoparticles to detect iron (III), they would need a 

coating which can better protect them from the oxalate. 

 

Figure 4.20. UV-Vis spectra for Section 4.3.9. a) Oxalic acid after shaking with nickel 
nanoparticles for 15 minutes; b) 0.1 M NiCl2. 

 

4.3.10. Iron (III) Uptake of TurboBeads Silica™ 

 

Table 4.17 shows the amount of iron (III) measured in FeCl3 solutions before and 

after they were added to samples of TurboBeads Silica™ and stirred for 1 hour. The 

samples and solutions are numbered to indicate which sample received a particular 

FeCl3 solution (e.g. Sample 1 received 20 mL of FeCl3 Solution 1). 
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Table 4.17. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with 

TurboBeads Silica™ 

 

Sample Amount of Fe+3 (µmol) in 20 mL 

FeCl3 Solution 1 (17.7 µM) 0.426 ± 0.002 
Supernatant from Sample 1 0.363 ± 0.002 

  
FeCl3 Solution 2 (17.8 µM) 0.428 ± 0.005 

Supernatant from Sample 2 0.110 ± 0.004 
  

FeCl3 Solution 3 (17.8 µM) 0.428 ± 0.005 
Supernatant from Sample 3 0.065 ± 0.006 

  
FeCl3 Solution 4 (17.8 µM) 0.428 ± 0.005 

Supernatant from Sample 4 0.431 ± 0.003 
  

FeCl3 Solution 5 (17.8 µM) 0.428 ± 0.005 
Supernatant from Sample 5 0.430 ± 0.003 

 

The results obtained from this experiment were not consistent. In two cases 

(Samples 4 and 5), the amounts of iron (III) measured in the solution were the same 

(within error) before and after stirring with the particles. This indicates that these 

samples did not take any iron (III) out of solution. In the other three cases, there was 

less iron (III) after stirring with the particles. This indicates that these samples took some 

iron (III) out of solution. Table 4.18 shows what percentage of the iron (III) in the original 

solution was lost in each sample. This was calculated by first taking the difference 

between the amounts of iron (III) measured in solution before and after exposing the 

solution to the particles. Then, this difference was converted to a percent of the amount 

of iron (III) in the original solution. 
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The values in Table 4.18 vary wildly, from 0% iron (III) adsorbed to 85% iron (III) 

adsorbed. Although the TEM images of the TurboBeads Silica™ show that the particles 

are coated (see Figure 4.8), it is difficult to establish the uniformity of the coating. 

Section 4.3.6 showed that on Ni-SiO2 particles, the amount of iron (III) lost was 

much more consistent than what was seen in this experiment – between 4% and 12% of 

the total iron (III) was lost from solution to the Ni-SiO2 particles. This shows that the 

adsorption of iron (III) is reduced compared to the Co-C nanoparticles, where 100% iron 

(III) capture was obtained (see Sections 3.3.1 – 3.3.4 and 3.3.7). Therefore, it is likely 

that the TurboBeads Silica™ samples which adsorbed more iron (III) had some surface 

area not coated in silica, allowing the carbon coating to adsorb the iron (III). 

Table 4.18. Amount of Iron (III) Adsorbed by TurboBeads Silica™ Samples 

 

Sample Percent Iron (III) Adsorbed 

1 15% 
2 74% 
3 85% 
4 0% 
5 0% 

 

4.3.11. Iron (III) Uptake of Co-SiO2-DFB 

 

Table 4.19 shows the iron (III) measured in an FeCl3 before and after it was 

stirred with the Co-SiO2-DFB for an hour. It also shows the amount of iron (III) measured 

in each of the oxalate washes performed on this sample after adding FeCl3. 
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Table 4.19. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with Co-SiO2-

DFB, in Oxalate Washes 

 

Sample Volume of Sample (mL) 
Amount of Fe+3 (µmol) in 

Sample 

FeCl3 Solution (17.8 µM) 20 0.427 ± 0.003 
FeCl3 Supernatant 20 0 ± 0.003 
Oxalate Wash #1 5 0.091 ± 0.001 
Oxalate Wash #2 5 0.042 ± 0.001 
Oxalate Wash #3 5 0.028 ± 0.001 
Oxalate Wash #4 5 0.014 ± 0.001 
Oxalate Wash #5 5 0 ± 0.002 
Oxalate Wash #6 5 0 ± 0.002 

 

All the iron (III) from the 20 mL of FeCl3 solution added was adsorbed by these 

particles – that means a total of 0.427 µmol iron (III) was present on the Co-SiO2-DFB. 

However, the oxalate washes only removed a total of 0.175 µmol iron (III). This is 41% of 

the iron (III) which the particles adsorbed. Therefore, while it can be measured, only 

some of the iron (III) captured could be recovered in the oxalate. Additionally, because 

some samples of TurboBeads Silica™ can adsorb iron (III) without being DFB-treated (see 

Section 4.3.10), one cannot claim that specific binding of the iron (III) with the DFB 

occurred. 

4.3.12. Iron (III) Uptake of Co-SiO2-FB 

 

Table 4.20 shows the iron (III) measured in FeCl3 before and after it was stirred 

with the Co-SiO2-FB for an hour. It also shows the amount of iron (III) measured in each 

of the oxalate washes performed on this sample before and after adding FeCl3. 
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Table 4.20. Amount of Iron (III) in FeCl3 Solution Before and After Stirring with 

Co-SiO2-FB, in Oxalate Washes 

 

Sample Volume of Sample (mL) 
Amount of Fe+3 (µmol) in 

Sample 

Oxalate Wash #1 (before 
adding FeCl3) 

5 0.033 ± 0.002 

Oxalate Wash #2 (before 
adding FeCl3) 

5 0 ± 0.002 

FeCl3 Solution (18.6 µM) 20 0.447 ± 0.004 
FeCl3 Supernatant 20 0.218 ± 0.005 

Oxalate Wash #1 (after 
adding FeCl3) 

5 0.093 ± 0.002 

Oxalate Wash #2 (after 
adding FeCl3) 

5 0 ± 0.002 

 

Before adding iron (III), the Co-SiO2-FB particles were washed with oxalate to 

remove any iron (III) which may be present on the surface. In this case, only 0.033 µmol 

iron (III) was removed. This is less than the amount of iron (III) which adsorbed from the 

FeCl3 solution when it was added – 0.229 µmol. This may indicate that some DFB not 

bound to iron (III) reacted with the surface. However, as pointed out in the previous 

section, TurboBeads Silica™ adsorb iron (III). Thus, there is no evidence to support 

specific binding of DFB on the surface with iron (III).  

When washing the particles with oxalate after adding iron (III), only 0.093 µmol 

were recovered. This is 41% of the total amount of iron (III) which had adsorbed onto 

the particles. This is the same recovery rate from the particles with oxalate as seen with 

the Co-SiO2-DFB. 
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4.4. Conclusions 

 

First, an attempt was made to coat the Co-C nanoparticles in silica. This was 

followed by treatment with an anhydride silane. The anhydride functional groups were 

converted to carboxylic acid, which was then reacted with DFB. The IR evidence 

suggested that the silica coating successfully formed, and was successfully derivatized 

with carboxylic acid. It also suggests that an amide linkage was formed between the DFB 

and carboxylic acid. Thus, unlike the attempts to derivatize Co-C with DFB made in 

Chapter 2, this attempt was successful. However, the particles did not adsorb iron (III) 

and it was determined that the silica coating was coming off of the particles due to the 

hydrophobic nature of the carbon coating. 

An alternative substrate was sought. Magnetic nickel nanoparticles were chosen 

because they lacked a hydrophobic coating, meaning that the silica coating process may 

work better. (This is discussed further in Section 4.3.2.) TurboBeads Silica™, Co-C 

particles with a silica coating, were discovered as well. Both were studied as candidates 

for derivatization with DFB. 

DRIFT spectroscopy showed the presence of silica on both the TurboBeads 

Silica™ and silica-treated nickel nanoparticles. However, it was difficult to identify the 

C=O stretching peak due to the carboxylic acid, normally appearing at 1720 cm-1, 

because each sample had a large peak in the same region even before derivatization. 

Therefore, after derivatizing TurboBeads Silica™ and Ni-SiO2 with DFB, they were 

characterized with XPS.  
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Before derivatizing with DFB or DFB-Fe, the Ni-SiO2 particles showed no XPS peak 

due to nitrogen, whereas afterward, they did show such a peak. DFB contains nitrogen, 

whereas no other component in the experiment did, indicating that DFB was 

successfully added to the surface. However, the XPS showed that the TurboBeads 

Silica™, even underivatized, do contain nitrogen, and so XPS characterization could not 

determine whether DFB was or was not successfully added to the surface in that case. 

The iron (III) uptake of the Co-SiO2-DFB, Co-SiO2-FB, Ni-SiO2-DFB, and Ni-SiO2-FB 

particles was tested. The Ni-SiO2-DFB particles did not take up iron (III) at all, whereas 

the Ni-SiO2-FB did. However, two problems were encountered when removing iron (III) 

from the surface of Ni-SiO2-FB with oxalate. First, the oxalate did not remove 100% of 

the iron (III) which adsorbed to the particles when it was added. Second, a peak which 

overlapped with the DFB-Fe peak appeared in the UV-Vis spectra of oxalate, which was 

exposed to Ni-SiO2-FB particles. This peak appeared at 380 nm, which interfered with 

the accurate measurement of the absorbance of the DFB-Fe peak.  

It was determined that the peak at 380 nm was due to a reaction between oxalic 

acid and the nickel, bringing nickel (II) ions into solution. Therefore, unless the nickel 

nanoparticles can be coated in such a way as to protect the nickel from pH 1.5 oxalate, 

these particles cannot be used to extract, concentrate or measure iron (III) from the 

ocean. 

TurboBeads Silica™ was capable of removing iron (III) from a solution both 

before and after treatment with DFB or DFB-Fe. Therefore, iron (III) adsorbed by the 
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DFB-treated particles cannot necessarily be attributed to specific adsorption by capture 

with the DFB. After exposing the Co-SiO2-DFB and Co-SiO2-FB nanoparticle samples to 

iron (III), only 41% of the iron (III) adsorbed by the particles from solution could be 

removed from the surface with oxalate. Still, unlike with the Ni-SiO2-FB particles, there 

did not appear to be any additional peaks in the UV-Vis spectra of oxalate solutions to 

interfere with the DFB-Fe peak.  

To successfully concentrate and measure iron (III) from a sample with the 

magnetic particles, the oxalate must be able to remove all the iron (III) from the 

particles. Otherwise, an accurate measurement cannot be obtained. There are two 

possible ways in which iron (III) could have been lost – or more accurately, become 

unavailable to DFB, preventing it from being measured.  

As discussed in Section 3.4, when the iron (III) on the particles is exposed to air 

(i.e. when changing the solution which the particles are immersed in) it may react to 

form iron oxyhydroxides. Although the oxalate may be able to remove these 

oxyhydroxides from the surface5, the iron (III) still may not be accessible to DFB. 

Measuring iron (III) in oxalate involves adding DFB to chelate the iron (III), then 

measuring the 430 nm peak produced by the DFB-Fe complex. The portion of iron (III) in 

the oxyhydroxides cannot be measured in this way, because the DFB will not chelate it. 

Still, the formation of iron oxyhydroxides on the surface may not occur if the iron (III) is 

bound to oxalate, so this explanation only applies to any non-specifically-bound iron 

(III). 
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Another explanation can be found in the fact that oxalate can promote the 

photocatalytic degradation of DFB-Fe to form iron (II). Kunkely and Vogler found that 

irradiating a mixture of DFB-Fe and oxalate with white light caused the absorbance of 

the DFB-Fe peak to decrease by about 50% over the course of an hour.6 During this 

project, to measure iron (III) in oxalate, DFB was added and the pH was raised. The 

solution was exposed to ambient light in the laboratory while the pH adjustment was 

performed, which generally took at least 5 minutes. It is possible that prior to 

measurement of this solution with UV-Vis spectroscopy, some of the iron (III) could have 

been reduced to iron (II), reducing the DFB-Fe signal which would have appeared. This 

would make it appear as though not all of the iron (III) was recovered in the oxalate. This 

explains how some iron (III) could have appeared to be lost even if it had not reacted on 

the surface to become oxyhydroxides.  
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CHAPTER 5: FUTURE WORK 

 

The work presented in this thesis was done toward the goal of capturing and 

concentrating iron (III) from a solution to improve measurement ability. It was found 

that bare Co-C, Ni-SiO2-FB, Co-SiO2-DFB, and Co-SiO2-FB particles were all capable of 

removing iron (III) from a solution. The next step was to remove iron (III) from the 

particles using a solution of 0.1 M oxalate at a pH of 1.5 (or, in the case of the bare Co-C 

particles, 8 mM DFB), then measure the iron (III) in this solution. However, the 

maximum amount of iron (III) which could be recovered by the oxalate was 70% for the 

Ni-SiO2-FB particles and 41% for the Co-SiO2-DFB and Co-SiO2-FB particles. For the bare 

Co-C particles, 100% recovery was obtained once, but this was not reproducible. 

It was determined that the incomplete recovery could be due to the formation of 

iron hydroxides on the surface of the particles when exposed to air if any non-specific 

binding of iron (III) occurred. When changing supernatants (e.g. removing the iron (III) 

solution and adding oxalate), the particles were briefly exposed to the air, which would 

allow the iron (III) on the surface to react with atmospheric oxygen. Ultimately, any iron 

oxyhydroxides which formed as a result could not be captured by the DFB and therefore 

the iron (III) could not be measured. Therefore, in any further work done to capture and 

concentrate iron (III) from the particles must be done in such a way as to prevent 

exposure to air.  

One way to avoid exposure to air would be to work under nitrogen. Another way 

would be to ensure that the particles never leave solution, as illustrated in Figure 5.1. 



161 
 

Simply put, to change a solution, the old solution would have to be drained out as new 

solution was added in. Either way, if more work was to be performed on this project, 

exposure of the particles to air would have to be avoided. 

 

Figure 5.1. Scheme to prevent magnetic nanoparticles’ exposure to air when changing 
solutions. 1) Draw particles to the side of the container with a magnet. 2) Allow old 
solution to drain while pumping new solution in. 

 

Even if iron (III) was bound to DFB on the surface, preventing the formation of 

oxyhydroxides, loss could have occurred due to the reduction of DFB-Fe to iron (II) in the 

presence of oxalate caused by exposure to light (see Section 4.4). Therefore, when 

measuring iron (III) in solutions of oxalate, the oxalate solutions will have to be isolated 

from sources of light to prevent photodegradation prior to the measurement. 

If any further work is performed on this project, the changes suggested above 

will have to be implemented. 
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