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Responding to email is a time-consuming task that is a requirement for 

most professions. Many people find themselves answering the same questions 

over and over, repeatedly replying with answers they have written previously 

either in whole or in part. In this thesis, the Automatic Mail Reply (AMR) system 

is implemented to help with repeated email response creation. The system uses 

past email interactions and, through unsupervised statistical learning, attempts to 

recover relevant information to give to the user to assist in writing their reply.  

Three statistical learning models, term frequency-inverse document 

frequency (tf-idf), Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation 

(LDA), are evaluated to find which approach works the best in terms of email



document retrieval and similarity matching. AMR is built using the Python 

programming language in order to take advantage of tools and libraries 

specifically built for natural language processing and topic modeling. Datasets 

include the author’s work email and personal email archives, the publicly 

available 20 Newsgroups dataset, and the recently released email archives of 

U.S. Secretary Hillary Clinton from the Freedom of Information Act website. In 

addition to different datasets and statistical modeling approaches, two different 

system tools, GenSim and SciKit-Learn, are also compared.  

The outcome of this work is an initial version of the AMR system, which is 

freely available from the author’s Github page1. The core components of AMR 

input an email corpus, create a model of that corpus based on unsupervised 

learning and predict useful replies to new email based on the model. These 

pieces could be used as a toolkit for many different purposes. Although the best 

topic modeling approach is not definitively determined, this thesis concludes that 

using SciKit’s LSA implementation yields the most consistent results (p < 0.05) 

across the tested databases. These results could be used for future work on 

developing a more sophisticated product to accomplish a range of machine 

learning tasks.

                                                
1 https://github.com/zacheryschiller/amr 
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Chapter 1 

INTRODUCTION 

1.1 Purpose 

 With the majority of workplace communication happening digitally, email 

has become a necessity. Unfortunately, reading and responding to email is also 

incredibly time consuming. Research done by the International Data Corporation 

found that workers spend ~28% of their workweek reading and answering email 

[1]. This is time that could be better spent working on tasks and projects. 

There have been many attempts to make dealing with email quicker and 

easier, as seen in the related work section below. Most of these projects focus on 

filtering all of the messages in an inbox to only show relevant email that must be 

replied to. However, this is only one part of the problem. Another large part is 

actually creating the replies themselves. A report from Radicati Group [2] found 

that the average number of emails sent per person per day was 41 in 2015. This 

number of replies has been increasing since 2011, as seen in Figure 1.1. Since 

email is the dominant form of professional communication, it is likely that this 

number will continue to increase in the future. 

In many cases, the responses that people write are very similar, if not 

identical, to responses they have written in the past. If there were a system that 

made this writing easier by providing suggestions based on previous interactions, 

it would significantly reduce the time wasted in rewriting the same responses. 
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Figure 1.1. Average number of emails sent and received per user per day 2011-

2015 [2] 

 

1.2 The Automatic Mail Reply System 

 This thesis details the creation of a proof-of-concept Automatic Mail Reply 

(AMR) system that works in two parts, background setup and recurring automatic 

reply suggestions. First the user inputs all of his or her past email interactions 

into AMR by importing an archive of their email to the AMR system. The system 

then sets up a database with all of the messages that have been sent and 

received by the user. These messages are stored along with significant 

information about the emails based on the content found in the messages. The 

text of the email is saved as individual keywords and, using statistical modeling, 

topics are extracted from these keywords. 

Statistical modeling, or topic modeling, is a form of machine learning, 

expanded upon in the related work section below, which finds underlying 

structure in unlabeled data and then attempts to make predictions based on that 
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structure. Different forms of statistical modeling are used in AMR, and they are 

explained in much more detail in Chapter 2.  

After the system is set up and running, it waits until a new message is 

received.  When the user receives a new email message, the message is sent to 

AMR, which then searches the archive for a previous email that matches the new 

query email. This old message is then provided for them to use in creating a 

response to the new query email. If the matching message contains both the 

original message and the reply, the user can either send the original response or 

modify it before sending. Each time the user gets a new email they are presented 

with a past message that has been matched to the new query. This reduces the 

amount of time needed to respond to messages by eliminating the need to write 

similar responses again. 

The goal of this research was to build the proof-of-concept Auto Mail 

Reply system and to ensure it works by testing it with multiple email datasets and 

new email queries. Once built, different topic modeling approaches were 

compared to find which works best in retrieving relevant messages from an 

archive of email based on a new query email. In the future, a full product could 

be developed based on AMR, using the best topic modeling approach. This 

product could be used by anyone with an email account to make his or her email 

responses easier to write. 
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1.3 Related Work 

 Although there has been little work on generating responses for emails, 

there has been considerable work on reducing the number of emails that a user 

has to read and deal with. Most of this work centers on looking at previous email 

interactions and categorizing new email as something that the user will probably 

respond to. One popular example of this was Google’s Priority Inbox [3]. Priority 

Inbox took the user’s past email and determined which messages the user was 

likely to actually care about and want to read. It marked these emails with a 

priority tag to make them stand out. This was done through machine learning [4]. 

Google has since created a newer way of filtering email and an entirely new 

email client named Inbox [5] focused on only showing relevant email and 

information to the user.  

 Research done by Ayodele [6] used past email interactions to attempt to 

predict which emails would need a reply from the recipient and which could be 

ignored. Ayodele used vector space modeling and term weighting to make these 

predictions. These ideas are explained further in Chapter 2 and are key concepts 

used in the approach of this thesis. 

A paper by Dredze et al. [7] explained how machine learning could be 

used to help with the tasks of summary keyword generation. Dredze used two 

topic modeling approaches, discussed in more detail below, to attempt to 

summarize an email into keywords. This research suggested that using keywords 

to summarize an email was superior to using the entire message body. Later in 

this thesis when comparing emails to find their similarity, they are broken into 
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keywords instead of using the raw text of the email based on the outcomes of 

this research. 

In another paper [8], Dredze, along with Google’s Gmail team, compares 

different approaches to suggesting viewing filters for sets of emails. A viewing 

filter is a tool used in many modern email applications that sorts received email 

into folders or labels based on a predefined setting. After comparing multiple 

approaches, machine learning is found to be the best way to categorize emails to 

give better results when searching through an inbox. Dredze’s work is similar to 

this thesis in that it also incorporates the user’s previous archive of email as the 

main dataset for the system. However, this thesis uses this learning approach to 

predict responses instead of filtering email. 

Most recommendation systems, such as Google’s Priority Inbox [3] 

mentioned above, rely on feedback from the user to create the recommendation. 

Having the user complete some action and then learning from this action, as in 

this approach, is called supervised learning. As an example, in Google’s Priority 

Inbox the user can mark an email as important or not important. The system then 

uses this feedback to improve the model. Although supervised learning could be 

helpful once AMR is built, the initial goal is to make a system that will utilize the 

data already present in the user’s archive of past interactions in order for 

matches to be found, rather than waiting until enough feedback has been 

supplied to build a model. 

Supervised learning is one of three broad categories of machine learning. 

The other two categories are reinforcement learning and unsupervised learning. 
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In supervised learning the computer is given training data with specific inputs and 

desired outputs for it to learn how to classify new data. Once the computer is 

taught how to classify information, it is given the dataset to make predictions on. 

Reinforcement learning uses rewards to guide the system into predicting the 

correct output. When the correct output is selected, the system is rewarded 

which encourages the correct output again. With unsupervised learning the 

computer is given no training data and instead looks for structure in the dataset 

by recognizing patterns. 

There has been work on creating a similarity metric for a user based only 

on their previous data without asking for additional feedback. Minkov et al. [9], 

using unsupervised learning, developed a recommendation system for 

suggesting new academic talks to users based on their previous interests. The 

system took previous data and attempted to make recommendations about what 

to do based on patterns found in the data. Another name for this searching is 

data mining [10]. The proof-of-concept AMR system works in a similar way, 

mining the email archive for information. The reply that is suggested to the user 

is based only on the information found in the user’s past email interactions. The 

goal of AMR is to mine the person’s archive of email to make this suggestion. 

Since the desired output is unknown and there is no reward system, 

unsupervised learning is the appropriate type of machine learning to be use. 

 Drezde [7] references two topic modeling approaches, Latent Semantic 

Analysis (LSA) [11] and Latent Dirichlet Allocation (LDA) [12].  These will be 

discussed in more detail in Chapter 2.  Here, it is important to note that these two 
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approaches underlie much of the machine learning research regarding email. 

Due to the amount of work that suggests these are the best approaches to use 

[6, 7, 8, 9, 11, 12], LSA and LDA are the primary topic modeling ideas explored in 

this thesis. 

 

1.4 Outline 

 The remainder of this thesis will include an initial explanation of topic 

modeling and other definitions that are important for understanding the research. 

The next chapter discusses the overall approach taken for the proof-of-concept 

and comparison of the topic models. Chapter 4 explains the implementation of 

this approach. In Chapter 5, the results of the research are discussed. Chapter 6 

presents conclusions and discusses possible future work, including turning AMR 

into a full product based on this research. 
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Chapter 2 

TOPIC MODELING CONCEPTS 

Topic modeling, or statistical modeling, is a method of unsupervised 

machine learning, which analyzes unlabeled data to uncover hidden, or latent, 

patterns. In this research the unlabeled data is a large body of text made up of 

emails. The patterns found in the model are in the form of latent concepts, or 

themes, that tie multiple words together. These latent concepts will later be used 

to find the similarity between documents. 

Three topic modeling approaches are used in this thesis tf-idf, LSA, and 

LDA. These three approaches, along with other concepts necessary to 

understand them, are detailed below. It is important to note that the topics in this 

section are described using the terms “document” and “collection”; later each 

email will be treated as an individual document and the dataset, or email archive, 

as a collection. 

 

2.1 Bag-of-Words 

 The simplest way to look at a body of text is to break it down into the 

individual words that exist in the text. This is called the bag-of-words model and 

does not include any extra complexity. The rest of the models discussed in this 

chapter include some other processing to get more context out of the text, 

however most start with this step. 
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2.2 Term Frequency (tf) 
 
 Term frequency [13] is a way of assessing how closely a document 

matches another document by counting the number of times a word (i.e., term) is 

used in each document and comparing the counts. The count is the number of 

times that term occurs in the document. For example, suppose there are three 

documents A, B, and C where A and B contain the word “cat” 8 and 10 times 

respectively, while C only contains the word once. A and B would give a higher 

similarity rating than A and C or B and C due to the count matching more closely.  

The relevance of the document to another does not increase linearly with 

the frequency of a word in the document. Continuing the example from above, if 

a fourth document D contained the word “cat” 40 times, this document is not 

necessarily four times more likely to be similar to A than B is with its 10 “cat” 

instances. To correct for this, a logarithmic scale is used rather than the specific 

number of times a word occurs. The sum of the logs of the weights for the 

frequency of each word is the value representing how closely the document 

matches the query. The term frequency weight 𝑇!,! is calculated using Equation 

2.1 below as 1+ the log of the count 𝑐!,! of the term 𝑡 in the document 𝑑. To 

prevent the value being negative, if 1+ the log of the count is negative, 𝑇 would 

be zero. The sum of these values for each term in the two comparison 

documents is the score for their similarity. 

 

𝑇!,! = max(0, 1 + log!"( 𝑐!,!)) 

Equation 2.1. 
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2.3 Inverse Document Frequency (idf) 

 When comparing two documents in a collection of many documents, one 

factor to consider is how common a word is in the collection. If there is a 

collection of 1,000 documents and the word ”computer” occurs in 400 of them 

while the word ”vegetable” occurs in 800 of them, “computer” should have a 

higher weight in determining the similarity of two documents. The “computer” 

term is more significant because it is less common. The weight of this 

significance is called the inverse document frequency [13]. 

Note that this is the frequency of the term in the entire collection of 

documents, which is not the same as the term frequency from the previous 

section. To calculate the inverse document frequency weight, each document is 

checked to see if the term exists in the document or not. There are only two 

outcomes: the document contains the term or it does not, regardless of the 

number of times the term occurs in the document. When a new document is 

added to the collection, the inverse document frequency is updated with the 

terms in the new document. 

Since the desired outcome is to find the words that occur the least, the 

inverse of the frequency is used. The logarithm is used, just as in the term 

frequency weight equation above, because the effect is not linear. In Equation 

2.2 below the inverse document frequency weight 𝜄!,! of the term 𝑡 in the 

collection 𝐶 is the number of documents in the collection 𝐶  divided by the 

number of documents 𝑑 that contain the term. 
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𝜄!,! =  log!"(
𝐶

𝑑 𝑑 ∈ 𝐶 and 𝑡 ∈ 𝑑
) 

Equation 2.2. 

 

2.4 Term Frequency-Inverse Document Frequency (tf-idf) 

Term frequency-inverse document frequency (tf-idf) is the combination of 

the previous two concepts to create a better metric for determining the similarity 

of a query and a document in a collection. The tf-idf weight 𝜏!,!,! of each term 𝑡 in 

document 𝑑 of collection 𝐶 is found in Equation 2.3 by multiplying the term 

frequency weight 𝑇!,! of the term and document by the inverse document 

frequency weight 𝜄!,! of the term. These weights are summed for all of the terms 

in the query 𝑞 and the document 𝑑 as in Equation 2.4, producing a score 𝛹!,!,! 

for how closely a document matches a query. This is one of the best ways to 

determine similarity matching of documents [13] and is the first topic modeling 

approach compared in this research. 

𝜏!,!,!  =  𝑇!,!  × 𝜄!,! 

Equation 2.3. 

 

𝛹!,!,!  =  𝜏!,!,!
!∈!⋂!

 

Equation 2.4. 
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2.5 Vector Space Model 

Another approach to comparing document similarity is using a vector 

space model. In this model, first created by Salton et al.[13], a multidimensional 

space is created where the terms in the documents are the many axes and the 

documents themselves are vectors in this space. Figure 2.1 below shows an 

example of this vector space model. The query vector and two document vectors 

are shown with terms as the axes. In this case the terms are “cat”, “dog”, and 

“bird” are terms that exist in a collection while the query, d1, and d2 vectors are 

representations of documents in the collection that contain these three terms.  

The document vectors only exist between terms that exist in the 

documents themselves, making the space extremely sparse. In Figure 2.1, the 

query vector would lie flat along the “cat”, “dog” plane if it did not contain the term 

“bird”. These vectors are created for all of the documents as well as the query. 

After the vectors are created, the lengths must be normalized to unit vectors by 

dividing the vectors by their respective lengths. Now these vectors can be 

compared. 
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Figure 2.1. Representation of the vector space model with three document 

vectors between three term axes 

 

The document vector that is the closest match to the query vector will be 

the most similar document to the query in the collection. Rather than looking at 

the endpoints of the vectors, the angles of the vectors are compared. This is a 

more accurate way to compare the vectors as the length is removed from the 

equation. The smaller the angle is between two document vectors, the more 

similar they will be. The cosine of the angles gives a way to compare them, 

resulting in a numerical value of similarity between two documents or a query 

and a document. 

Equation 2.5 and 2.6 show how to find the cosine similarity 𝑆 of the query 

vector 𝑞 and document vectors 𝑑 in this vector space 𝑉. The angle between 𝑞 𝑑 
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is represented by 𝛼, 𝑞! is the tf-idf weight of the 𝑖𝑡ℎ term in the query and 𝑑! is the 

tf-idf weight of the 𝑖𝑡ℎ term in the document. These vectors are length normalized 

by dividing the vectors by their lengths to create unit vectors at the angle 𝛼. 

Equation 2.5 includes the length normalization step whereas the following 

Equation 2.6 shows the equation once the terms are length-normalized. 

 

𝑆(𝑞,𝑑 ∈ 𝑉) =  𝑐𝑜𝑠(𝛼) = 𝑞 ⋅ 𝑑 =
𝑞
𝑞
⋅
𝑑
𝑑
=

𝑞!𝑑!!
!!!

𝑞!!!
!!!  𝑑!!!

!!!

 

Equation 2.5. 

 

𝑆(𝑞,𝑑 ∈ 𝑉) = 𝑞!𝑑!
!

!!!
 

Equation 2.6. 

 

2.6 Principal Component Analysis 

 Principal component analysis [14] is a process used to evaluate data by 

transforming it from one set of axes to a new set in order to highlight a specific 

feature. As principal component analysis applies to AMR, the transformation is 

based on the query vector and is a step leading to the second topic modeling 

approach in this thesis, Latent Semantic Analysis. As discussed in the vector 

space model above, the initial axes are the individual terms that exist in the 

collection of documents.  The documents are initially represented as length-

normalized vectors in this space as depicted in Figure 2.1 above. With principal 
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component analysis the document vectors are transformed onto new axes made 

up of the query vector and the orthogonal match to the query vector. These axes 

are called the principal components and are used to find the distance from the 

document vectors to the query vector. 

Figure 2.2 below shows an example in 2D space where the axes are 

represented by terms “cat” and “dog” in the collection; the query vector is also the 

new axis after the transformation. The blue points are the endpoints of the 

document vectors and the distance from the new axis 𝑑1− 𝑑1!  would be the 

variance from the query. 

 

 

Figure 2.2. Principal Component Analysis 2D Example [15] 
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This is done in order to “flatten” the data as all of the document vectors 

can now be represented in terms of their variance from the query vector. This 

creates a way to filter out the least significant data points, as the vectors that are 

more closely related to the query will be closer to the new axes and the outliers 

will have a much larger variance. Principal component analysis works regardless 

of the complexity of the data or the number of dimensions, which is important, as 

the vector space model for the collection of documents will have many 

dimensions. 

 

2.7 Singular Value Decomposition 

 Singular value decomposition [16] is a method of factorization used on a 

matrix of data in many statistical models. For the purposes of this thesis it is only 

important to understand how it is used as a step in the process of the second 

topic modeling approach used in AMR, Latent Semantic Analysis. As the vector 

space model and principal component analysis allow for comparisons based on 

the individual terms found through tf-idf weighting, singular value decomposition 

uses the same approach to find patterns that exist within the entire collection of 

documents. Instead of taking the principal components based on the tf-idf values 

in just the query document, it uses relative occurrences of terms to highlight 

topics across the entire collection. These topics are relationships that exist 

between words as they are frequently used together. A matrix is created with the 

tf-idf weights of the terms in the topics from the entire collection. Singular value 
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decomposition uses this matrix to highlight the similarities of the terms in these 

topics.  

 

2.8 Latent Semantic Indexing / Analysis (LSI / LSA) 

In the paper introducing Latent Semantic Analysis, Deerwester explains 

the idea of LSA quite simply, “We take a large matrix of term-document 

association data and construct a ‘semantic’ space wherein terms and documents 

that are closely associated are placed near one another.” [11] The process uses 

the weight information that comes from tf-idf analysis, builds a vector space 

model of the documents and then uses principal component analysis and 

singular value decomposition to group the individual terms in the collection of 

documents into concepts. These concepts are then used to make a comparison 

of a query to the documents that produces results that would not be possible by 

simply looking at the individual terms. 

As an example suppose the term “mouse” is frequently used with the 

terms “keyboard”, “computer”, “monitor”, “speakers” and “desktop” across many 

documents in a collection. The singular value decomposition in latent semantic 

analysis will take the frequency of the terms in proximity to each other and group 

these words together into a concept that can then be used when doing a 

similarity comparison. So if a new query document has the sentence ”I need a 

new keyboard and mouse for my desktop”, LSA will produce a higher similarity 

matching score to documents that contain any of the terms that exist inside of the 

concepts. An interesting result of comparing topics instead of individual terms is 
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that a term that was not in the query could still show up in the similarity match 

due to the term’s proximity to the topic in the query. LSA is the second topic 

modeling approach compared in this thesis. 

 

2.9 Bayesian Network 

 A Bayesian network [17] is a model of a system represented as a graph 

with nodes for pieces of the system. Each node in the graph has states and a 

probability distribution for those states. The nodes each have probabilistic 

outcomes based on the states of their predecessor nodes’ values. If a node in 

one part of the network is changed, the successor nodes will change their 

probability distributions leading to decision making at each successor node. In 

order for this to work correctly the graph cannot contain any cycles.  

 

2.10 Latent Dirichlet Allocation (LDA) 

 Latent Dirichlet Allocation (LDA) is a generative probabilistic topic 

modeling approach. The topics in the model come from probabilities generated 

by data. Created by Blei et al [12], LDA is similar to latent semantic analysis in 

that it also finds and then compares concepts in the documents of a collection. In 

fact, LDA is referred to as the Bayesian version of LSA [12]. 

The process for LDA starts off by creating a Bayesian network with a 

“Dirichlet” probability distribution based on an initial parameter. The Dirichlet 

probability distribution determines the number of concepts that the documents 
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will be sorted into. The nodes in the Bayesian network will cluster the terms into a 

finite number of concepts. 

Each document is represented by an array of concept groups along with 

the percentages of how well the document fits each of these concept groups. The 

similarity of documents to each other or to a query is found based on these 

groupings. Once the words are all placed into the concept groups based on the 

initial probability distribution, the documents are iterated over, refining the 

underlying topics through changes in the probability distribution. As the 

underlying topics are changed, this in turn changes the probability of terms 

matching topics and the categorization of the documents change. 

Suppose that a collection of documents is compared with LDA using three 

topics. Each document in the collection would then be represented by a 

percentage of how much that document matches each of the topics. For example 

document A might be represented by being made up of 40% topic 1, 35% topic 2 

and 25% topic 3. These percentages can then be used to compare a query to the 

documents and find the document that matches the percentages of the query 

most closely. If document B is made up of 35% topic 1, 35% topic 2 and 30% 

topic 3, the topical makeup of the two documents are similar due to their 

percentages. Each of these three topics are, in turn, made up of smaller topics 

modeled through the Bayesian probability distribution. 

Of the three topic modeling approaches compared in this thesis, LDA is 

expected to perform the best similarity matching between documents and queries 
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because it improves on the other two approaches by continuously refining the 

model. 
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Chapter 3 

DESIGNING AUTOMATIC MAIL REPLY (AMR) 

3.1 Overview 

This chapter covers the step-by-step approach used for the proof-of-

concept AMR system. This includes how to get the user’s emails, how to parse 

the emails, how a corpus and model is created, how the similarity matching is 

computed, and how the new response is sent to the user. 

 

3.2 Data 

In order to automatically create a response based on previous messages, 

an archive of the user’s previous email is needed. This archive of email is used to 

build a text corpus. This corpus acts as the raw dataset to use when making the 

model. The user will download this email archive and give it to the system. The 

system, in turn, will parse this archive and split it into individual pieces that will 

later be searched. This process may take a considerable amount of time 

because it is very likely that the user will have thousands of emails to parse. In 

fact, a large archive of emails is preferred, as having more data will allow the 

system to build a better model. The creation of the corpus text only needs to be 

done once before being saved and recalled later when creating the model. When 

a query is compared against the model, its terms are also added to the corpus 

text.  
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3.3 Reading Email and Parsing Important Information 

When the email archive is obtained, it is parsed into keywords that are 

then included in the model. Each of the individual emails is split up into these 

keywords. A vector space model is created for the corpus based on the 

frequency of the keywords across the emails. 

Since there are many common words in the English language, splitting 

words also includes removing common words in the dataset. These common 

words, called “stop words”, such as “a”, “as”, “if”, and “the”, are removed from the 

keyword list of each email. Lists of common English stop words are available 

[18], but an additional list was created to add in email-specific terms such as 

“original message”, “reply”, and “forward”. 

The header information also helps find relevant matches. This data, 

including the subject, sender, and recipient, is saved and added to the keywords. 

This will also be valuable information to give to the user once a matching email is 

found because it could impact how the response is written. For example, if a user 

has a previous email sent to their friend that matches the new query email from 

their boss, the user could use this information to choose the appropriate tone for 

the new response email. 

It is important that the original document is also saved separately without 

modification or removing words. Although only the keywords are necessary to 

perform the search and matching, it will be helpful to give the user the full body of 

the email so they can choose which parts to use in the new reply. 
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3.4 Creating a Model 

After the keywords are found and set up for each document, a dictionary is 

created containing all of the keywords along with how frequently they are used. 

The model is then created with the combination of the corpus text and this 

dictionary. There are different topic models that are built with the corpus and 

dictionary. The topic models that are used in AMR are tf-idf, LSA and LDA, as 

described in Chapter 2.  These are compared to see which performs the best 

with the given data and provides the most relevant results. The model 

comparison, along with comparing two Python tools, GenSim and SciKit, are 

discussed in Chapter 5. For the purposes of the proof-of-concept for AMR, it 

does not matter which approach is used, only that a model is created so that 

query emails can be compared against it.  

 

3.5 Obtaining The Query Email 

 The next step is to have an incoming email sent to the system so that it 

can perform its search against the corpus. AMR checks the user’s inbox and, 

when a new email is received, takes the new message to compare it against the 

corpus.  

 

3.6 Comparing Against The Model 

 After the model has been created and the query email is in the AMR 

system, the check for similarity is used to determine what previous email has the 

highest probability of being useful to the user. First the information from the query 
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is added to the model. The entire model does not need to be rebuilt because the 

model only needs to add or update the terms that exist in the new query. After 

the model is updated with the query information, the comparison can finally be 

done. 

The result of this comparison, explained in depth in Chapter 5, is the top 

five matching emails ranked according to the percentage of how well they match 

the query. Along with these ranked results, a threshold percentage is used to 

ensure that only the most closely matched messages are sent to the user. 

 

3.7 Reconstructing a Message 

 After using the keywords of the email to match the query with a previous 

response, this response is recalled to help build a new response. The actual 

body of the message is used instead of just the keywords, as the user would 

prefer coherent sentences rather than a random grouping of keywords. 

Since the subject of building coherent sentences based solely on 

keywords could take multiple thesis projects, the proof-of-concept AMR system 

sends the user the body of the closest matching email so that the user can copy 

or delete the parts that they do and do not want. This may include only the 

original matched message or a reply as well as the original message depending 

on the structure of the matched email. 

 The purpose of this step is to give the user the best information possible 

so that they can create their response to the query email. This may be the entire 

response, allowing them to simply copy and paste. However, the AMR system 
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can also be useful as a reminder about the user’s previous responses or topics in 

a similar interaction. The user can use information such as to whom the matched 

email was sent, when it was sent, or the body of the message to construct their 

new response. 

 

3.8 Sending a Response to the User 

 The response sent to the user includes the subject of the original query 

message so that it is obvious what message it refers to. In addition to the original 

body of the matching email, the body of the response includes the header 

information from the match along with the match percentage so the user knows 

how well it matches the query. Once this new message is sent to the user, they 

can use the information to construct their reply. By providing the user with this 

automatically generated content to go along with the email that they receive, they 

will be able to create their reply more quickly than they could have without this 

information.  

In order to be useful the system should provide the sample response 

faster than the user could read and produce a response separately. 
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Chapter 4 

IMPLEMENTING AMR 

4.1 Datasets 

4.1.1 First Two Datasets (Author’s Work and Private Email Archives) 

In order to test the approach, datasets in the form of email archives were 

obtained and formatted for use in the creation of the corpus text, as described in 

section 3.4, before being turned into a model. The first two datasets come from 

the author’s own archive of emails. One is the author’s private email archive 

(5,249 messages) and the other is the author’s archive from working in 

information technology as a technology director and network administrator for a 

school district (17,725 messages). Due to privacy issues, these two datasets are 

not publicly available, and the results of this research will not show any specific 

emails from them. 

 Two of the most popular email clients, Google’s Gmail and Apple Mail, 

allow any user to create an archive of their email and export it. The format of this 

export, denoted as .mbox [19], is an industry standard. Another popular email 

client, Microsoft Outlook, allow exporting to an email archive that can easily be 

converted to the standard .mbox format. In the case of these first two datasets, 

the export was simply done from Gmail using Google’s Takeout service. 

The two archives in the .mbox format needed to be broken down into the 

individual emails so that they could be searched to find important data. This is 

the very first step in the completed AMR system. A Python program was created 

for this process. This program asks the user for the location of the .mbox file and 
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splits the archive into the individual emails and stores them as plain text files. 

This program supports extracting the messages from one single .mbox file or a 

group of many .mbox files if the user would like to use multiple archives. This 

allows anyone to use his or her own email archive in the AMR system. 

 

4.1.2 Third Dataset (Secretary Hillary Clinton’s Released Emails) 

 The third dataset of emails was chosen based on the current interest in 

the content of U.S. Secretary Hillary Clinton’s emails, which were released to the 

public [20] under the Freedom of Information Act (FOIA) [21]. Since this content 

is freely available for anyone to download and look at, it provided an easy-to-

obtain dataset that is unique. The content of the emails provide an interesting 

dataset to use to test similarity matching for different topic models. 

 Although the content of Secretary Clinton’s emails (7,386 messages) 

would prove to be a useful dataset, the emails were not stored in the same 

simple .mbox file as in the initial datasets. Thus more work was required to get 

the data into a form that could be used for this research. This was completed in 

two steps: first by creating a tool to pull all of the emails from the US Department 

of State FOIA website and then formatting the emails to be used for the project. 

 Since there is not a simple way to download a large number of emails 

from the FOIA website, a Python program was written to retrieve the files 

individually from the server that they were stored on. A short script by McGill [22] 

was found that described the process of getting a JSON file with a list of all of the 

documents that are returned from searching the FOIA database. With this 
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information, the FOIA database was searched to create a list of Secretary 

Clinton’s publicly released emails. Once this list was obtained, it was possible to 

use the Python tool “urllib2” to download the email documents. 

 This program to download the released emails will also work for any other 

search of the FOIA site that returns publicly available documents. In addition to 

the work done for the purpose of this paper’s research, this program will be 

publicly available on the author’s GitHub page [23] for anyone to use to easily 

download other publicly-available documents from the FOIA website. 

Unfortunately, all of the emails downloaded from the FOIA site were in the 

form of PDFs. This format is easy for a human to read but is not optimized for 

insertion into the dictionary and corpus model used in the AMR system. The 

process of converting the data into a form that fits this research started with the 

conversion of the PDF documents to plain text files using Adobe Acrobat Pro’s 

[24] batch convert function. Once the individual emails were converted to plain 

text documents, they were adjusted to match the same structure found in a 

standard .mbox archive as in the previous two datasets.  

In order for documents such as these to be released by the US State 

Department, the content had to be declassified first. In some cases, this 

declassification included removing some parts of the header information of the 

emails, such as the sender and/or recipient. All of the documents included a note 

saying that they were declassified by the U.S. Department of State. Another 

Python program was created to remove this note and move the header 

information to the top so that the messages would match those found in a .mbox 
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archive. For messages with missing sender/recipient information, the sections in 

the header were left blank rather than including a replacement as this might have 

skewed results. This program also removed excess whitespace and added a line 

at the top forcing the use of UTF-8 encoding for the characters in the email. With 

this process completed, the dataset could be used in the AMR system just as if it 

came from a regular .mbox export. 

 

4.1.3 Fourth Dataset (20 Newsgroups Dataset) 

In order to have a benchmark to compare to the other datasets, it is 

necessary to have a dataset that others have used in the past for other email 

related processing projects. The 20 Newsgroups Dataset [25] provides this 

benchmark. It is available in many formats and includes 18,882 email messages 

on a variety of different subjects. These messages include the sender and 

subject header information and are already formatted correctly for inclusion in the 

AMR system. Since this data was already available in plain text and formatted as 

email messages, the data simply needed to be copied and imported into the 

system. This was done in the same way as the first two datasets, excluding 

extracting the files from an archive, since they were added as individual 

documents instead of a .mbox archive. 

 

4.2 Email Aggregation (Python Email Utility) 

 Once the datasets are obtained and cleaned up, the next step for the AMR 

system is to go through the individual emails and extract the important pieces. 
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The AMR system includes a Message class to hold all the information for a 

specific email message. Python’s built-in Email library is used to fill out this 

information. Each email is made into a separate instance of the Message class 

that contains variables for the file location, to address, from address, subject, 

body, and tokens. Most of these variables are straightforward, however the 

tokens of the email require more explanation. 

 

4.3 Getting Keywords (NLTK) 

 To create the keywords for each email, the individual words in the body 

are turned into tokens using the Natural Language Toolkit Python library. The 

Natural Language Toolkit (NLTK) [18] is an open source platform for use with 

Python that offers many built-in tools for working with natural language 

processing. With NLTK, the body of the email in the form of sentences is easily 

split into tokens for each word. When the body of text is converted by NLTK, the 

punctuation is also removed from the tokens.  

As mentioned in Section 3.3, English stop words are stripped out in the 

process of creating the Message tokens. NLTK contains a set of English stop 

words, but email specific words were removed as well. There was also a set of 

dataset-specific keywords that were removed such as the author’s name from the 

first two datasets. The subject, sender, and recipient information is included with 

the body as tokens of a specific email to add additional context. In the case of 

forwarded and quoted replies, the full original text was saved to be given to the 

user at the end of the similarity matching process. 
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If a message contains multiple parts, such as an original message and a 

reply, AMR attempts to separate these sections. The lines in the email are 

parsed looking for common ways that replies are quoted by email applications. 

This includes beginning a section with “Original message:”, or “On Tuesday 

[Sender]  wrote…”, or a section in which each line begins with the ”>” character. 

For the purposes of the proof-of-concept AMR system, these multiple parts are 

tokenized and included just as the main body is. However, future work could 

allow for matching specific pieces of an email to help narrow down the relevant 

information to give back to the user. 

The last part of the email that is removed in the Message class is the 

signature people often leave at the end of their emails. Signatures can be 

included in many different forms depending on the email application used so the 

removal of the signature is tailored to the most popular email clients, Gmail, 

Apple Mail, and Outlook. 

 

4.4 Creating Keyword Text and Index 

 After all of the email messages have been parsed and tokenized, the next 

step in the AMR system is to combine the individual email tokens into one 

keyword text document. This keyword text is the first form of the corpus that will 

be used later in the statistical modeling sections below. 

The AMR system asks the user what they would like to call this corpus 

and then goes through all of the messages and saves the tokens of each email 

as a line in the corpus text. For the proof-of-concept system, an index file is 
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created, along with the corpus text, with the location of the email file represented 

by the tokens at each line of the corpus text. This is done so that each instance 

of the Message class does not need to be saved in memory. Later, when a 

match is found, the Message class is recreated from the file location found in the 

index. If a full product were to be built after this thesis work, this information can 

be stored in a database table for improved speed and data storage. 

 

4.5 Turning the Keyword Text Corpus into a Model 

 As discussed in previous chapters, there are three different topic modeling 

approaches used in this thesis, tf-idf, LSA, and LDA. In order for AMR to turn the 

corpus of tokens into a statistical model using these approaches, two different 

Python tools are used: “GenSim: Topic Modeling for Humans”, created by 

Řehůřek [26], and “Scikit-learn: Machine Learning in Python”, created by 

Pedregosa et al. [27]. For the remainder of this thesis these tools will be referred 

to as GenSim and SciKit respectively. Both of these tools are free to use and 

have been designed to work with statistical models.  

GenSim was created specifically to work with text corpora while SciKit has 

a large number of uses, one of which is topic modeling with text corpora. The 

next two subsections will explain how these two tools were used in AMR to 

create the topic models that are then used in the search for similar email 

messages. In Chapter 5 the two models will be compared, along with the three 

topic models, to see which combination gives the best results for the datasets in 

this thesis.  
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4.5.1 GenSim Models (tf-idf / LSA / LDA) 

In the AMR system there is a class for each of the two tools, GenSim and 

SciKit. These classes are used to create the topic models based on the corpus. 

The approach using GenSim starts by iterating through the keyword text corpus 

and adding each message’s individual tokens to a dictionary. GenSim’s 

implementation of the dictionary is identical to a regular Python dictionary, which 

allows for the use of Python’s built-in functions. The next step is turning this 

dictionary into the bag-of-words counts of the tokens in the entire dictionary. With 

these counts, AMR is ready to create the model. To do this, one of the topic 

modeling approaches must be selected.  

With tf-idf, a new corpus is created by counting the bag-of-words totals, 

term frequency, across all of the documents and multiplying by the inverse 

document frequency as described in Chapter 2. This creates a sparse vector 

model of the corpus where each of the documents has its own tf-idf weight.  

The LSA model is created in a similar way as the tf-idf model in GenSim. 

After the tf-idf weights are found, principal component analysis and singular value 

decomposition are used to look for a number of latent topics in the dataset. The 

number of topics to extract from the data is specified in the AMR program. 

If the number of topics is set too low, 10 for example, and the number of 

terms is large, 100,000 for example, the number of terms that fit in each concept 

is going to be very large, leading to the concepts being too broad and not very 

useful. On the other hand, having too many concepts, 1,000 for example, will 
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make too many very specific concepts that will not be shared by many 

documents. The number of topic concepts for the LSA models used in this 

research was chosen to be 300, as research by Landauer et al. [28] found this 

number of topics to be the maximum number needed for finding the best results 

with LSA. 

The LDA topic model requires more steps and a few more variables 

specified in the AMR program. As explained in Chapter 2, the LDA model finds a 

number of latent topics in the data and then iterates through the data multiple 

times, refining the topics in order to better represent the messages in relation to 

each other. As with LSA above, LDA also requires setting the number of latent 

concepts to extract. AMR also sets this number to 300 for consistency across 

models and tools. 

 The GenSim LDA model is also pre-set with two other variables, “chunk 

size” and “passes”. Both of these settings determine when the concepts will be 

updated while iterating through the data. The chunk size variable sets how many 

documents the model will categorize before stopping to update the concepts. For 

example, if the number of documents is 10,000 and the chunk size is 2,000, the 

model will stop every 2,000 documents, five times, to update the concepts. The 

pass number is the number of times the entire dataset will be iterated through, 

with an update to the concepts each time the end of the dataset is reached.  

The chunk size for AMR’s LDA models is set at 2,000, as this number was 

the default for both GenSim and SciKit and, according to the Python tools [25, 

26], this number is appropriate for the size of the datasets. Like the chunk size, 
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the number of passes has an effect on how well refined the concepts are. The 

goal is to iterate through the data enough times that the concepts match the 

model and are no longer changing when they are updated. The Python tools 

suggested that two passes would be enough to solidify the concepts, but since 

the model only needs to be created once, five passes are done to ensure the 

best concepts are created for the model. In order to compare the different models 

as well as the different tools, the same numbers are selected for these values in 

the LSA and LDA models in both GenSim and SciKit. 

Both the dictionary and the models are saved after being created with 

AMR’s GenSim class so that all of this processing only needs to be completed 

once per dataset. When a query is done, the models are updated with the 

query’s information, but the model does not have to be completely rebuilt. In this 

way, multiple queries can be compared against the model without having to 

reconstruct it each time a similarity check needs to be done. 

 

4.5.2 SciKit Models (tf-idf / LSA / LDA) 

 Just as with the GenSim tool, AMR uses a separate class to build the topic 

models using SciKit. As in the first step in creating the models in GenSim, the 

SciKit class starts by iterating through the keyword text corpus extracting each 

message’s individual tokens. Instead of a dictionary of these tokens, they are 

stored in a two-dimensional array 𝑛×𝑚, where the row 𝑛 is the number of each 

document and the column 𝑚 contains the corresponding document’s tokens. 
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 After the array is created, this data is passed into what SciKit calls a 

“vectorizer”. To create the first model, a tf-idf vectorizer is used which turns each 

of the elements of the array into a vector corresponding to the tf-idf weight of the 

terms in the documents. This is the sparse vector matrix that has been discussed 

multiple times previously in this thesis. The vectorizer transforms the data and fits 

it to the tf-idf model to be used later for comparison. 

 To create the LSA model in SciKit, another transformation of the data 

needs to be done. Starting with the already created and vectorized tf-idf model, 

singular value decomposition is applied with a set number of latent topics to be 

extracted. As mentioned in Chapter 2, the vectors must be normalized after being 

transformed in order to match the features that are extracted. GenSim takes care 

of this step while building the models, but SciKit requires normalizing the vectors 

as a separate step. Again, for consistency across models and tools, the number 

of latent topics to be found is set to be 300.  

 Where the LSA model in SciKit could use the already computed tf-idf 

weights as a starting point, the LDA model in SciKit uses a separate “count 

vectorizer”. This count vectorizer starts with the count of the term frequencies as 

with tf-idf, but also uses the initial vectorization to set the chunk size for how 

often to update the latent features in the model. The model is transformed and 

normalized during each iteration in order to find the best fit for the topics in the 

vector space. 

 The LDA model in SciKit has settings for the number of latent topics and 

number of iterations over the entire dataset, which are set to 300 and five 
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respectively. Just as with the GenSim models, these numbers were selected 

after testing different values, and the same values are selected across tools and 

models in the AMR system so that the results can be compared. The models only 

need to be created once per dataset and can then be used to compare query 

documents without needing to be recreated. 

 

4.6 Getting Query Email From Inbox 

With the topic models created for the corpus, the AMR system is finished 

with the preparatory phase and is ready to be used for its main purpose: to find 

an email from the corpus matching a new query email. In order to make this 

comparison, first the query email needs to be retrieved. 

For the proof-of-concept AMR system, the retrieval of the query email from 

the user’s inbox is done with the email protocol IMAP and the Python library 

imaplib [29]. IMAP is a protocol for allowing services to access an email account 

and retrieve messages. When AMR is started it first asks the user for their email 

login information and attempts to connect to the user’s inbox. The login 

information is stored securely only while the program is running and is deleted 

when exiting the program.  

After successfully accessing the user’s inbox, AMR checks for a new 

message every 30 seconds. If a new message is found, the email is opened and 

saved to a text file just as all of the other emails from the user’s archive are 

stored. AMR then creates a new Message class instance of the query email and 

extracts the tokens as mentioned in a previous section. 
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In a future full product built with this AMR system, the program would run 

on a server and could stay logged in to the user’s account permanently. It would 

constantly check for new messages and wait patiently until a new one arrives. 

The new query message would also be stored in a database instead of as an 

individual file. 

 

4.7 Comparing a Query to a Model 

 Now that the query email has been saved and its tokens extracted, AMR 

can finally compare these tokens to one of the topic models created previously. 

In the current AMR system, one model is used at a time. However, it is possible 

for the user to select the model to be used. First the query email’s tokens are 

added to the corpus. This is done so that like terms and concepts can be 

matched from the query to the previous archive. This also adds the query 

information to the model so that it can be used with future queries. This step is 

completed in the Python classes for the two tools.  

 In GenSim the new query document is indexed into the model. This 

indexing essentially determines the query’s place in the topic model. The 

similarity of the query to another document in the model is checked and a list is 

created of each of the documents in the model along with the percentage of how 

well the document matches the query. This percentage is the cosine similarity, as 

discussed in Section 2.5, multiplied by 100. 

The documents that match the closest have values close to 100% such as 

99% or 91% and documents that are the farthest from matching are given 
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negative values down to 0%. A value of 100% should be given to the newly 

added tokens, as they will match the query perfectly since they are the same. 

This list is then sorted in descending order, ignoring the twin of the query that 

was just created in the corpus. The result is the top five matching emails ranked 

according to the percentage of how well they match the query. 

 SciKit similarly adds the new query document to the model and indexes it 

so that the keywords or topics that exist in the model can be searched for in the 

query. The query tokens are also turned into a vector representation to better 

match the tf-idf, LSA, and LDA models. Finally the cosine similarity is computed 

between the query and the model. Just like with the GenSim comparison, a list of 

the documents is created along with their individual corresponding percentage of 

how similar they are to the query.  

 In both SciKit and GenSim, the comparison results are formatted in the 

same way so that it does not matter which tool is used. The output from the 

comparison is a list of the top five document names along with their similarity 

percentage. In the AMR system these document names are actually keys to find 

where the email text file is stored by looking at the corresponding corpus’ index 

file that was created along with the keyword text in a previous section. 

 

4.8 Creating a Reply 

 Now that there is a set of five emails that match the query document, 

helpful information can be given to the user. For the proof-of-concept AMR 

system, the top matching email of these five is selected and the original body of 



 40 

the email is extracted and then sent to the user. In the case that the match is a 

standard email, the original body will contain the keywords and/or topics that the 

model found to match the query. If the match is a message with a reply, the 

original body is used because the reply will be in the top section of the email with 

the quoted question in the bottom “replied-to” section. 

It is important to note that there is a threshold percentage that can be set 

for the user by the AMR system. If none of the matching documents have a 

similarity percentage that exceeds this threshold, the system will not send a 

response. This is to ensure that the user is not sent random emails that have 

nothing to do with the query just because no other messages seem to fit. This 

threshold is initially set to 50%, but could be lowered to get more experimental 

results, or heightened to remove unhelpful responses. 

 Along with the original body of the matching email, some additional 

information is included at the top of the reply. This includes the percentage 

indicating how closely the model predicted this reply matches the query as well 

as the original reply’s header information including the subject, sender, recipient, 

and date. This response email is given the subject name “AMR Response: “ 

along with the query subject so that it is easy for the user to find what message 

the response is supposed to match. 

 

4.9 Sending Response to the User 

 Now that the new response has been created, the final step is to send this 

response back to the user. AMR uses the Python library smtplib [30] to send this 
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response to the user. The user can then use this information to construct their 

response to the original query email by either copying the entire message or 

selecting pieces of the message. Even if the user does not use parts of the 

automatically created response, it is possible that by seeing old messages the 

user will recall some information that they can then use to create their reply.  

Once a response is sent to the user, the AMR system goes back into its waiting 

mode, checking every 30 seconds to see if a new message is received and the 

comparison process runs again with the new query email.  
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Chapter 5 

RESULTS AND ANALYSIS 

5.1 Results of Building and Testing AMR 

 The AMR proof-of-concept system was built as designed in Chapter 3 and 

is functioning correctly as demonstrated in Figures 5.1 and 5.2, with examples in 

Figures 5.3, 5.4, 5.5, and 5.6 below. The system runs in the background and 

continuously checks for new emails. When a new email is received, an AMR 

response is created and sent to the user’s inbox in less than a minute. The AMR 

system, in its current form, can run from a command line, import a user’s .mbox 

archive and run locally on a computer. The only dependencies are the Python 

language and the extra tools discussed in the implementation chapter, NLTK, 

SciKit and GenSim. 

 Figures 5.1 and 5.2 below show an example of the setup process for 

AMR. The user imports their .mbox email archive and the program builds the 

corpus and models for them. Once these steps are completed, the user is 

prompted to start the email processing side of AMR and login to their email 

account with their username and password. After this is done, AMR finds a new 

matching email, then creates and sends an email response. Next, the system 

waits before creating and sending a new response after another new email 

comes in. 

 In the final version of AMR the Python tool and model to use are set in the 

code of the program rather than allowing the user to make the choice. This is in 

order to remove an added confusing step for the user. However, these settings  
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Figure 5.1. AMR Setup Example 1 

 

Figure 5.2. AMR Setup Example 2 
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are easily changed, as AMR is setup to work with any combination of the tools 

and statistical modeling approaches discussed in this thesis. 

 Although AMR is creating responses and sending them to the user 

successfully, the usefulness of these responses is inconsistent. As an anecdotal 

test, a set of email questions were sent to AMR with the two public datasets to 

see if the responses created were useful or related to the questions. A response 

was deemed related if most of the keywords in the email were the same or 

similar to the query email. If there were only a few matching terms the response 

was marked as partially related. Finally, if the response could reasonably be 

used to aid the user in writing a response to the question, the response was 

marked as useful. Table 5.1 below shows the results of this short test. Some of 

these query emails were specifically created with keywords found in emails in the 

datasets to see how well the match would be found. 

In another example, seen in Figure 5.4, the query email contains the 

keywords “party”, “drinks”, “Friday” and “cupcakes” and, although the matching 

email that AMR found only contains one of the words, “Friday”, the matching 

email contains the keywords “birthday”, “goodies” and “breakfast”. These terms 

are similar to the keywords in the query email so the topic model, SciKit’s LSA in 

this case, finds this a relatively good match at 55% and gives the information to 

the user. This is a good example of using the latent concepts in the corpus to 

help in finding a match for the query, even if the terms do not match. However 

this response is not particularly helpful for creating a response to the query email. 
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Query Subject 20 News 
Response 
Match % 

20 News 
Response 
Related 

20 News 
Response 

Useful 

Sec. 
Clinton 

Response 
Match % 

Sec. 
Clinton 

Response 
Related 

Sec. 
Clinton 

Response 
Useful 

Book 70.0 Partially No 99.2 Yes Yes 

Friday 67.3 No No 55.2 Yes No 

IP Address? 82.3 Partially No 58.1 No No 

Groups in Gmail 50.3 Yes Yes 73.4 No No 

Capital 
Questions 

60.9 No No 59.5 No No 

Recommendation 60.9 Partially No 71.3 No No 

Afghanistan 71.5 No No 62.9 Yes No 

Computer Speed 62.5 No No 49.5 No No 

Movies 62.9 No No 52.2 Partially No 

 

Table 5.1. Relevance and usefulness of the AMR System with the 20 

Newsgroups and Secretary Clinton datasets 

 

 Figure 5.5 shows an example AMR response to a query asking how to 

make email groups in Gmail. The response does not mention Gmail, but contains 

instructions on how to set up a listserv for sending emails to groups of people. 

Although this is not exactly the response that is being searched for, it is 

information that would help in the reply to the query. Without having a dataset 

and set of queries that are specifically made for each other, this is a promising 

result. 

 As seen in Table 5.1, there are a few examples of AMR matching similar 

emails, but there are many examples of the system failing to produce related or 
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useful results. Having a threshold for the response set to 50% alleviates some of 

this, but occasionally some nonsense email is brought up as a result of a query 

email. There are a few reasons this could happen which are discussed more 

thoroughly in the next section. 

In the example in Figure 5.6, the query email contained some computer 

and networking related terms such as “IP Address” and “server”. However, the 

matching response AMR found does not have a lot to do with the query email 

despite the model, SciKit’s LSA, giving the match an 82% accuracy rating. This 

can happen when there simply is not a good match in the dataset, or the topics 

found by the model do not match the emails very well.  

A positive feature demonstrated in Figure 5.6 is the removal of the 

signature before comparing the message against the corpus. The query email 

contained a signature with a quote. AMR correctly removed the signature before 

finding the tokens in the email. This is important, as removing signatures helps to 

ensure that the keywords that match are actually relevant to the information in 

the email.  

Since the AMR system is working as intended, the remaining question is 

what tool and model produces the best matching results for email. The next 

section will discuss selecting and comparing the topic models and tools to find 

which works best with AMR. 
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Figure 5.3. Example AMR Response with Secretary Clinton Dataset, GenSim 

LDA Model 
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Figure 5.4. Example AMR Response with Secretary Clinton Dataset, SciKit LSA 

Model 

 



 49 

 

Figure 5.5. Example AMR Response with 20 Newsgroups Dataset, SciKit LSA 

Model  
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Figure 5.6. Example AMR Response with 20 Newsgroups Dataset, SciKit LDA 

Model 
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5.2 Comparing Topic Models 

 This subsection describes how the models and tools were compared, 

shows the comparison results, and discusses what is meant by one approach 

being “better” than another. 

 

5.2.1 Predicted Outcome 

Based on previous research and testing done by others [10, 11], the 

processes using LSA and LDA were expected to work better than the tf-idf 

approach. This is mainly due to the concept of grouping messages based on 

latent topics found in these more advanced methods. Further, it was expected 

that LDA would create better results than LSA because of the way LDA iterates 

over the documents multiple times to refine the concepts. 

 

5.2.2 What is Meant by “Best” Method? 

 When comparing the three statistical modeling approaches as well as the 

two different tools it is important to understand what is actually being compared. 

For the purposes of this thesis, the “best” method would give the optimal email 

match based on the query email. However, optimal could mean different things. 

First, there is an assumption that there exists a relevant match to the query in the 

dataset. It is difficult to define the “best” match if there are no relevant matches in 

the dataset. Another problem with searching for the best method is that users 

can have different opinions about what makes a response match useful. 
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Understanding that these limiting factors exist, the remaining sections can now 

discuss how the comparison was completed. 

 

5.2.3 Finding a Way to Assess the Methods 

 In order to determine which method worked the best there must be some 

criteria for determining the effectiveness of the output. The best approach would 

be to give these tools to many people and have them use the tools for a period of 

time. These testers could report back on how useful they found the AMR system 

in general as well as the different methods. Unfortunately, this was not possible 

due to time constraints, so an alternate approach was needed. 

 For the two public datasets, one way to compare the methods would be to 

see how the method’s results compare to Google’s indexing and ranking system. 

To do this, these two datasets were listed on a publicly accessible website and 

the indexes were given to Google for inclusion in their web-crawler. Once the 

sites were indexed, a simple Google search including the specific folder could be 

done. Unfortunately, Google only allows for searching with a small number of 

keywords compared to the many keywords used in the emails from the datasets. 

Although initial testing worked by searching with two or three terms, using all of 

the keywords from an email failed to produce results. 

 Another approach, although more arbitrary than percentages, would be to 

analyze a set of query emails and look at the results to determine if the results 

would be useful to someone in creating an answer to the original query. If the 

results included the exact answer this would be the most helpful. If the results 
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contained part of the answer this would be the next best, followed by results that 

were similar to the question. Finally the lowest score would be given if the results 

did not seem to match the query email at all. Unfortunately, this approach would 

require individually going through and looking at every message to determine 

whether the method’s match fit into one of these categories. Since this would 

require too much human involvement, this method was not used. 

 

5.2.4 How Results Were Obtained 

In an effort to find which approach works best on the four datasets a 

formula was created that could compare the approaches. The combination of the 

two tools and three models lead to six different methods to be compared: SciKit-

tfidf, SciKit-LSA, SciKit-LDA, GenSim-tfidf, GenSim-LSA, and GenSim-LDA. The 

following paragraphs explain how these six models were tested on each of the 

four datasets.  

To find a result for this comparison, an assumption had to be made about 

the effectiveness of the methods. The assumption is that the matching document 

selected by the majority of the methods is the best match possible for the query. 

That is to say, if a query is tested against a dataset with each of the six methods, 

the matching document that is given the highest matching percentage by most of 

the six methods is considered the best match for the query.  

For example if a query is tested against the dataset and four of the 

methods suggest document A is the best match and two methods suggest 

document B, it is assumed that A is the correct top match of all the documents in 
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the dataset because it was found to be the best in four of the six cases. It is 

important to understand that in making this assumption, the results below are 

more of a comparison of the consistency of the methods rather than their 

usefulness. With this assumption, it is possible to compare the methods to find 

how well the methods each pick a match that the majority agree is suitable for 

the query. 

To create results to be used in the comparison, the six models were 

created for each dataset. Then each dataset was iterated over by the models, 

treating each individual document as the query against the rest of the dataset. 

This produced a set of the top five similarity matched documents for each of the 

six methods. These five documents, along with their match percentages were 

recorded for each document in each dataset. Table 5.2 below shows an example 

of the output from using one of the documents as a query against the dataset. 

Note that the top match for every comparison would actually be the query 

document itself with a 100% matching percentage. This 100% match was used 

as a way to ensure the model was working correctly, but was removed in order to 

find relevant results. 
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Table 5.2. Example Method Comparison Results from Dataset 

 

With these numerical results, a formula to compare them had to be found. 

Since the methods often found similar documents in the top five matches, the 

matched documents were ranked depending on how many times they were listed 

in the results of a specific query as well as the rank in that particular method’s 

results.  

A point system was used where a document matching the query would get 

five points if it was the first match, four for the second, three for the third, two for 

the fourth and one for being the fifth matching document. Table 5.3 below shows 

a demonstration of this point assignment continuing the example from Table 5.2. 

The points for each document are summed to create a score for that document. 

Method 1st 
Match 

1st 
Match 
% 

2nd 
Match 

2nd 
Match 
% 

3rd 
Match 

3rd 
Match 
% 

4th 
Match 

4th 
Match 
% 

5th 
Match 

5th 
Match 
% 

SciKit 
-tfidf 

A 34.95 C 34.46 D 32.38 B 31.79 E 31.74 

SciKit 
-LSA 

B 87.39 A 87.28 D 87.10 C 87.07 F 86.84 

SciKit 
-LDA 

A 34.95 C 34.46 B 32.38 E 31.79 G 31.74 

GenSim-
tfidf 

A 31.66 B 31.12 C 29.62 D 28.91 E 27.37 

GenSim-
LSA 

B 86.28 D 86.27 A 86.26 E 86.24 C 86.20 

GenSim-
LDA 

C 98.62 B 98.62 D 98.62 H 95.66 F 93.54 
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Method 1st Match 2nd Match 3rd Match 4th Match 5th Match 

SciKit-tfidf A C D B E 

SciKit-LSA B A D C F 

SciKit-LDA A C B E G 

GenSim-tfidf A B C D E 

GenSim-LSA B D A E C 

GenSim-LDA C B D H F 

Score for documents: { A:22, B:23, C:19, 15, E:6, F:2, G:1, H:2 } 

 

Table 5.3. Example assigning points given to matching documents of one query 

 

In order to determine the accuracy of the model’s choice for the best 

match to the query, this score is divided by the maximum number of points that a 

matching document can get. If a match were selected as the best for each of the 

six methods it would earn five points for each, giving 30 points. Dividing by 30 

gives a proportional rating for how well a specific document matches the query 

based on all six models. 

With this score for each matching document, the top rated match for each 

method was multiplied by the corresponding percentage the model gave to that 

match. Continuing the example in the previous tables, Table 5.4 shows this final 

match value for each method. This finally gives one matching rating for each 

method and each query document in the corpus. These final values were 

averaged across each dataset and the means were compared to find which tool 

and model produced the best results. 
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Method 1st Match 1st Match % Match score Final Score 

SciKit-tfidf A 34.95 (22/30) 0.256 

SciKit-LSA B 87.39 (23/30) 0.670 

SciKit-LDA A 34.95 (22/30) 0.256 

GenSim-tfidf A 31.66 (22/30) 0.232 

GenSim-LSA B 86.28 (23/30) 0.662 

GenSim-LDA C 98.62 (19/30) 0.953 
 

Table 5.4. Example final scores given to methods for one query 

 

5.2.5 Analysis of Results 

With the resulting scores, there were two factors to compare: the Python 

tool used to create the models and the models themselves. For the evaluation of 

the Python tools, the results were separated into the SciKit models’ scores and 

the GenSim models’ scores. Similarly, for the evaluation of the models, the 

results were separated based on the model used: tf-idf, LSA, and LDA.  

Before the averages were compared, a one-way analysis of variance 

(ANOVA) [31] was completed to determine whether the difference between the 

resulting scores was significant. The null hypothesis was that there is no 

difference between the results based on the tool or model used. Table 5.5 below 

shows the results of the ANOVA for the two factors. The results indicate 

significance (p < 0.05) for both comparison factors. Therefore, the null-hypothesis 

can be rejected. 
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 GenSim & SciKit 
ANOVA 

Test Statistic 

p 
value 

tf-idf, LSA & LDA 
ANOVA 

Test Statistic 

p 
value 

Personal Email 
Dataset 

308.23 < 0.05 156.34 < 0.05 

Work Email  
Dataset 

889.73 < 0.05 123.40 < 0.05 

Secretary Clinton 
Dataset 

172.59 < 0.05 40.08 < 0.05 

20 Newsgroups 
Dataset 

2,004.23 < 0.05 603.92 < 0.05 

 

Table 5.5. ANOVA results for Python tool comparisons and model comparisons 

  

With the ANOVA completed, a t-test [32] comparison of means was run for 

each set of variables to ensure the differences in the means of the scores were 

statistically significant. This mean corresponds to how often the method picks the 

highest ranked matching document out of the list of matching documents found 

by all the methods in this research. 

The results of the Python tool comparisons and corresponding t-tests are 

below in Table 5.6. For each of the datasets, the results show that the mean of 

the SciKit scores was greater than that of the GenSim scores. This indicates that 

SciKit performs better on the datasets than GenSim with statistical significance (p 

< 0.05). The difference in the means range from 0.015 for the author’s work email 

dataset to 0.020 for both the author’s personal email dataset and the 20 

Newsgroups dataset. 
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 SciKit Mean 
(SD) 

GenSim Mean 
(SD) 

Test 
Statistic 

p value 

Personal Email 
Dataset 

0.152 (0.083) 0.132 (0.094) 17.56 
 

< 0.05 

Work Email  
Dataset 

0.137 (0.075) 0.122 (0.085) 29.83 < 0.05 

Secretary Clinton 
Dataset 

0.186 (0.105) 0.170 (0.115) 13.14 < 0.05 

20 Newsgroups 
Dataset 

0.103 (0.071) 0.083 (0.073) 44.77 
 

< 0.05 

 

Table 5.6. SciKit and GenSim comparisons with standard deviations and t-tests 

  

 The means of the three topic models were compared in sets of two in 

order to determine the significance of the results. First tf-idf and LSA were 

compared, then tf-idf and LDA, and finally LSA and LDA. The results of these 

comparisons, along with the corresponding t-tests are below in Tables 5.7, 5.8, 

and 5.9. In three of the four datasets, Latent Semantic Analysis produced the 

results with the highest score, indicating that LSA is the best model for the 

datasets. Only one dataset, the author’s work email, had a higher mean for the tf-

idf model as seen in Table 5.7. The comparisons with LSA were all statistically 

significant (p < 0.05). 

 For the comparisons between the tf-idf and LDA models, tf-idf consistently 

scored higher. The only comparison that did not produce a statistically significant 

result (p = 0.62) was the comparison of these models in the 20 Newsgroups 

dataset. For every other comparison, LDA scored the lowest among the topic 

models tested in this thesis. 
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 tf-idf Mean (SD) LSA Mean (SD) Test 
Statistic 

p value 

Personal Email 
Dataset 

0.139 (0.081) 0.155 (0.093) 11.97 < 0.05 

Work Email  
Dataset 

0.133 (0.071) 0.131 (0.088) 4.79 < 0.05 

Secretary Clinton 
Dataset 

0.179 (0.106) 0.184 (0.110) 3.53 < 0.05 

20 Newsgroups 
Dataset 

0.087 (0.069) 0.104 (0.077) 29.87 < 0.05 

 

Table 5.7. tf-idf and LSA model comparisons with standard deviations and t-tests 

 

 tf-idf Mean (SD) LDA Mean (SD) Test 
Statistic 

p value 

Personal Email 
Dataset 

0.139 (0.081) 0.132 (0.091) 5.66 < 0.05 

Work Email  
Dataset 

0.133 (0.071) 0.124 (0.082) 16.11 < 0.05 

Secretary Clinton 
Dataset 

0.179 (0.106) 0.171 (0.114) 5.42 < 0.05 

20 Newsgroups 
Dataset 

0.087 (0.069) 0.088 (0.070) 0.50 0.62 

 

Table 5.8. tf-idf and LDA model comparisons with standard deviations and t-tests 

 

 LSA Mean (SD) LDA Mean (SD) Test 
Statistic 

p value 

Personal Email 
Dataset 

0.155 (0.093) 0.132 (0.091) 16.65 < 0.05 

Work Email  
Dataset 

0.131 (0.088) 0.124 (0.082) 10.06 < 0.05 

Secretary Clinton 
Dataset 

0.184 (0.110) 0.171 (0.114) 8.71 < 0.05 

20 Newsgroups 
Dataset 

0.104 (0.077) 0.088 (0.070) 29.32 < 0.05 

 

Table 5.9. LSA and LDA model comparisons with standard deviations and t-tests 
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5.2.6 Best Topic Modeling Approach for Emails 

 Based on the results in Tables 5.6, 5.7, 5.8, and 5.9 above, the best topic 

modeling approach according to this scoring method is SciKit-LSA. It is important 

to remember the assumption made to get this result. The assumption was that 

the document considered to be the best match by the majority of the methods is 

indeed the best match for the query. If this assumption is valid, the results show 

that SciKit-LSA is the best approach to use for AMR. 

 

5.3 What These Results Mean 

There are two interesting points in these results. First is that the SciKit 

models consistently beat their GenSim model counterparts in all four datasets. 

This indicates that the SciKit tool is a better tool to use with the AMR system. 

However, there are two caveats to this conclusion. First is that the assumption 

made to find this data favors results that match the other methods and second 

that the difference in the average matching percentage is still not very large. 

Further testing would need to be completed in order to validate the results, but it 

is predicted that the SciKit tool will lead to better results for similarity matching 

over GenSim. 

Another interesting point is that the LSA method beat the LDA approach. 

This result was surprising because the past research suggests the opposite. This 

could be due to the assumption made to do the comparison. It is possible that the 

datasets did not meet some requirement, either in terms of number of documents 

or content in those documents, to allow the iterative LDA approach to improve 
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over the LSA model. Since the key difference between LSA and LDA is the 

constant improving of the concept groups, another possible reason could be that 

the similarity matching does not benefit from this improvement. 

Anecdotally, when comparing a few responses by hand, simply looking at 

the results, LDA seemed to give more relevant results for the query. LDA 

sometimes recommends a match that is different than the match suggested by tf-

idf and LSA, however this match may actually be more useful to a person. It is 

possible that the results of the comparison in this thesis are not consistent with 

the results that would come from having human testers. This would also explain 

why the expected result, LDA giving the best matches, is not reflected here. 

As mentioned in Section 5.2.2, it is difficult to rate the true usefulness of 

this outcome. These results were obtained by comparing the methods to each 

other and not to an outside standard, since this idea has not been implemented 

publicly before. More research will need to be completed including tests with 

multiple users’ inboxes. 
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Chapter 6 

CONCLUSION 

6.1 Completion of AMR 

 The main goal of this thesis, as stated in Section 1.2, was to build a 

working proof-of-concept Auto Mail Reply system. This goal was accomplished 

as was shown in Chapter 5. As an outline for a larger product, AMR was also a 

success, as it represents the core of what a full product would need to do. At the 

start of this research it was uncertain whether a system like this, once built, 

would be useful. The system now works and can be helpful in showing the user 

relevant information and replies based on query emails. 

 The AMR system is publicly available and can be downloaded and used 

by anyone with an email account. The only extra tools needed by the user are 

the GenSim and SciKit Python tools as well as the Python language itself. AMR 

will be open sourced and will be provided on the author’s Github page2 for 

anyone to use or add to. 

 In addition to using AMR in order to build a full email based product, the 

work in this thesis could be used in many different applications. The core of AMR 

is the processing of email, unsupervised learning based on topic models, and 

applying that knowledge to make a prediction. These pieces could be used as a 

toolkit for many different purposes. It could be used for searching emails, 

comparing other matching algorithms, or as a basis for a recommendation engine 

for a user’s non-email documents.  

                                                
2 https://github.com/zacheryschiller/amr 
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As an example, AMR could be used to help with matching descriptions of 

one product on a website to a different description of the same product on a 

different site. There are many possibilities for continued work with AMR since it is 

freely available on the Internet.  

 

6.2 Comparisons 

 While there are conclusions that can be drawn from the comparisons in 

this thesis, the overall best topic modeling approach and Python tool for this 

system is not yet known. As mentioned in Section 5.2.3, there are many ways 

that the methods could be tested and compared, and the approach in this 

research is just one of them. The results presented in Chapter 5 show the 

effectiveness of the models on the included datasets, but additional testing on 

different datasets and with different approaches would need to be completed 

before definitively concluding that one tool and model are the best for the AMR 

system. 

 With more time for this research, the next step would have been to have 

the system tested by many human users. They would each have a version of the 

AMR system that used the different methods and could provide feedback on the 

success or failure of these methods. Using a service like Amazon’s Mechanical 

Turk [33], many different approaches could be tested on a public dataset. By 

having the system tested by many individuals with their own very different email 

archives, a more definitive conclusion could be made about which topic modeling 

approach is the best for AMR. 
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 Although the best topic modeling approach may need more testing to 

determine, one result from the testing was that the SciKit tool was superior to the 

GenSim tool for this purpose. Consistently across all of the datasets, SciKit gave 

more accurate results as shown in Table 5.6. This result leads to the suggestion 

that future versions of AMR be built using the SciKit tool rather than the GenSim 

tool.  

 

6.3 Usefulness 

 The AMR system works the best when the user gets many emails that are 

similar in their content. There are many professions where this would be useful. 

For example, AMR would be an ideal tool for positions in information technology 

or human resources. The author’s work dataset produced much more useful 

responses than the author’s personal dataset. One reason for is the repetitive 

questions and similar answer topics likely to be found in the email archives of an 

IT professional. 

 If the AMR system were used at a company or business where multiple 

people worked in the same position, the archives of multiple people could be 

combined to create a better dataset. This would also be beneficial for a team in 

which people come and go. When someone leaves a team, the answers that that 

person could provide are then lost to the team. It is possible that the person left 

their email account with the team, but the remaining team members may not 

have time to go back and look through a past colleague’s email. By adding the 
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person’s email archive to the team’s dataset, their old responses can be brought 

up if there is a new query that they had already answered. 

Dataset sharing could be taken much further. For example, anyone using 

the AMR system could include his or her email archive in a general dataset to be 

used by everyone. There are obviously negative implications of this, as people’s 

email could be given to others. However, instead of using the additional data as 

matches for query searches, the archives could instead be used as additional 

training data for the topic model to help in finding latent topical links between 

keywords. 

Although the goal of this thesis is to make email more efficient, increasing 

the efficiency of something does not always make the situation better. It is 

possible that by cutting down the amount of time it takes to read and respond to 

email, society will get used to the efficiency and instead expect people to 

respond to more email. This is known as Jevon’s paradox3 [34]. However, if AMR 

were expanded upon, it may be possible to create a system that would respond 

automatically. This would completely remove the user from having to spend time 

rewriting messages. 

 

6.4 Building a Full Product 

 In order to take the work on the AMR system and expand it into a fully 

functional product, first the system would need to be set up on a server rather 

than run locally on the user’s computer. This would ensure that the system could 

run continuously and provide responses to the user as quickly as possible. The 
                                                
3 Thanks to George Markowsky for bringing this to my attention. 
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content could be stored in a database to improve searching and recall time as 

well as provide support for as many topic models as desired. 

 Another important addition would be to support OAuth or another form of 

authentication protocol linking the user’s inbox to the AMR system. Having the 

user import his or her email as a .mbox file works and is not very difficult, but it is 

an unfamiliar process to someone who does not have experience with system 

tools. Additionally, it could be a small but important barrier keeping some from 

using the system. Syncing AMR with the user’s email would also allow the 

models to be updated if the user changes their archive by deleting emails or re-

categorizing them. 

 As mentioned previously, the current AMR system attempts to separate 

multipart messages into the original message and the reply. Further work could 

expand on this to include searching each piece of the message and providing the 

user with only the reply part of the message. Since some people will reply 

separately to an email, the thread of message interactions may need to be traced 

to find a specific response. In some situations, the user may prefer the entire 

message, but the future system would benefit from this option.  

 The next big improvement would come from the way that the automatically 

generated response is given to the user. In the proof-of-concept AMR system, 

the generated response is emailed to the user separately. The best solution to 

this problem would be to build the system into an add-on for the email service or 

as an extension for the Internet browser. In either of these cases, the 

automatically generated response could be shown to the user as an overlay of 
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the original query email. This would make the system easier to use and increase 

the efficiency of the tool. 

One way that the suggestion model could be improved is by incorporating 

feedback from the user into a supervised learning model as mentioned in the 

related work section of Chapter 1 in addition to the unsupervised learning that is 

already happening in AMR. First the model would be built and trained with the 

previous archive of email then, as the user is presented with multiple 

automatically generated responses, the system would remember which ones that 

the user actually picked and use this as part of its learning process. This 

supervised learning approach would refine the model as it is being used to 

continuously improve it. 

 The final addition that would be beneficial to the AMR system would be to 

use the top matching replies to actually build new sentences for the reply as 

mentioned in Section 3.7, instead of just giving the user the full raw replies as the 

system currently does. If the messages were annotated with information using 

the Semantic Web standard [35] this semantic knowledge could be used to help 

with the creation of these sentences. Additionally, there has been some research 

into generating text responses by learning from user input. This has been done 

most famously by Cleverbot.com [36] and also in a recent Google research paper 

[37]. In fact, combining the conversation model used in the paper by Google with 

the research in this thesis, a better version of the Automated Mail Reply system 

could be created that would be even more useful.  
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APPENDIX 

Code 

 

All of the code written for this thesis is publicly available and can be found 

on the author’s GitHub page: https://github.com/zacheryschiller/amr. 
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