
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 11 (2015), pp. 53–79 doi:10.5311/JOSIS.2015.11.230

RESEARCH ARTICLE

Routes visualization: Automated
placement of multiple route

symbols along a physical network
infrastructure

Jules Teulade-Denantes1,2, Adrien Maudet1,3, and
Cécile Duchêne1,3

1Laboratoire COGIT, IGN, Saint-Mandé, France
2Université Paul Sabatier, Toulouse, France

3Université Paris-Est, France

Received: April 15, 2015; returned: June 1, 2015; revised: August 18, 2015; accepted: September 17, 2015.

Abstract: This paper tackles the representation of routes carried by a physical network
infrastructure on a map. In particular, the paper examines the case where each route is
represented by a separate colored linear symbol offset from the physical network segments
and from other routes—as on public transit maps with bus routes offset from roads. In this
study, the objective is to automate the placement of such route symbols while maximizing
their legibility, especially at junctions. The problem is modeled as a constraint optimiza-
tion problem. Legibility criteria are identified and formalized as constraints to optimize,
while focusing on the case of hiking routes in a physical network composed of roads and
pedestrian paths. Two solving methods are tested, based on backtracking and simulated
annealing meta-heuristics respectively. Encouraging results obtained on real data are pre-
sented and discussed.

Keywords: automated cartography, route maps, symbol placement, constraint formula-
tion, constraint optimization problem, simulated annealing

1 Introduction

Maps can indicate specific paths, journeys, rides, or trails to follow. This is what we call
routes. Routes can be represented in many ways on maps. The most common represen-

c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©

54 TEULADE, MAUDET, DUCHÊNE

tation for hiking routes on topographic maps is a unique linear symbol, with identical
specifications (color, width) for all routes. Labels enable the different routes to be distin-
guished. This representation is found, for example, on the maps produced at IGN (Insti-
tut National de l’Information Géographique et Forestière), the French national mapping
agency, as shown on Figure 1 (left). This representation allows maps to be multipurpose
without being overloaded. However it is not easy to distinguish each route independently
in Figure 1 (left, for example, to trace the different routes “GR5,” “GR533,” “GR534”). A
network of “road segments carrying routes” is perceived instead.

In this paper we are interested in another kind of route representation where each route
is symbolized by a different symbol, distinguished by its color (or another graphical vari-
able). The route symbols are positioned in relation to the other routes and to the carrying
road. This representation occurs on some public transit maps where each bus line has its
own symbol. It provides a global view of all the routes on the map, each route is perceived
as a whole. Figure 1 (right) presents a map with such a representation. This representation
has also been proposed recently in experimental maps designed for outdoor activities in
the context of the MenoMaps project [15].

Figure 1: Left: IGN-France 1:100k topographic map. Right: Map showing touristic routes
for motorbikes (CRDT Auvergne / Actual).

This second representation is less common on hiking maps, notably because no auto-
mated process exists to arrange the routes along the roads, so they have to be arranged
manually. This paper studies how to automate the creation of maps using this second rep-
resentation, starting from vector geographic data. First thoughts lead to the idea that the
route positions along each carrying road have to be chosen to satisfy legibility constraints.
Therefore we used the “constraint satisfaction problem” (CSP) paradigm to solve this prob-
lem. Note that other problems of the automated cartography domain have already been
expressed as problems that seek to satisfy constraints, e.g., generalization as first proposed
by [1], or label placement [5].

The work reported in this paper focuses on the case of hiking routes carried by a phys-
ical network infrastructure composed of roads and pedestrian paths. Although the con-
straints were designed with the hiking routes case in mind, the method could be applied
for other types of routes or circuits carried by a physical network infrastructure (see also
Section 6). This includes freight transport routes on airways, navigable waterways, road

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 55

and/or railway networks; electric cables sharing physical conduits; more generally any
type of route or trajectory followed by individuals, possibly pre-processed by aggregation
into flows; etc.

We identify three main parts in our problem: the constraint identification, the problem
modeling in the CSP paradigm, and the definition of solving methods. The rest of the paper
is organized as follows. Related works are introduced in Section 2. The proposed approach
to model the problem, including the constraint identification, is described in Section ??.
Two solving methods are described in Section 4. Section 5 presents an implementation and
results on real data. Finally, Section 6 concludes and draws perspectives for further work.

2 Related works

2.1 Route representations

The route representation is governed by perceptual concepts. The Gestalt psychology in-
troduced by Wertheimer [24] studies how the spatial arrangement of objects leads the hu-
man mind to perceive a subset of objects a whole. The Gestalt laws are recognized as
interesting to improve maps legibility (see, e.g., [2]). In the automated cartography do-
main, they have especially been promoted for generalization [6]. In particular, the “good
continuation” Gestalt principle has been successfully applied in automated road network
generalization [12, 18, 19, 23]. In our case, we seek to represent routes so that each of them
is perceived as a whole. Routes should respect the Gestalt laws of grouping, especially
the laws of similarity (one color for one route), continuity (routes should stay as much as
possible at the same position along their carrying road), and proximity (routes carried by
a road should be drawn adjacent to each other and to the road). Minimizing the number
of crossings is a known graph theory problem. Nöllenburg [14] references many methods
to automate metro maps layout. In order to study them, he proposes to describe a set of
design principles to create legible metro maps. All these principles apply to metro maps
(or more generally to schematic maps), and none addresses the minimization of crossings
independently from other problems, specific to metro maps. Among recent studies on this
topic, Fink and Pupyrev [7] provide a complexity proof and approximate solving algo-
rithms under certain working hypotheses. These working hypotheses are not valid in our
case because only simple paths are considered whereas our problem contains closed paths.
Therefore we cannot use anymore the extremity concept that constitutes the basis for the
complexity proofs and algorithms.

2.2 Constraint optimization

The classic definition of a constraint satisfaction problem (CSP) is as follows [9]. A CSP is a
triplet 〈X,D,C〉 where:

X = 〈x1, x2, . . . , xn〉 is a n-tuple of variables,
D = 〈D1, D2, . . . , Dn〉 is a n-tuple of domains such that xi ∈ Di,
C = 〈C1, C2, . . . , Ct〉 is a t-tuple of constraints.

A constraint Cj is expressed as a relation, defined on some subset of variables XCj ⊂ X ,
whose tuples are all the simultaneous value assignments to the members of this variable
subset.

JOSIS, Number 11 (2015), pp. 53–79

56 TEULADE, MAUDET, DUCHÊNE

This formalism can for instance be used to formalize the benchmark problem of placing
8 queens on a chess board so that they do not threaten each other. The variables are the
positions of the queens: ordered pairs of integers in the domain [1..8]∗ [1..8]. One constraint
is that two queens cannot have the coordinates (i, j) and (i, k)—i.e., two queens cannot be
placed on the same line.

A constraint optimization problem (COP) is a CSP with a score function that returns a
value for each solution: the aim is not any more to completely satisfy all constraints, but
to find an optimal solution. An optimal solution is a solution that minimizes (or maxi-
mizes) the score function. In our case, the variables should express the ordering (offsets)
of itineraries along road segments and the constraints should express the legibility. As
legibility is amongst others related to the number of crossings, and some crossings are not
avoidable, we are in the optimization case. However, for COPs the difficulty lies in the
creation of the score function [21].

Two classes of solving methods can be distinguished [20].

• The systematic algorithms offer the guarantee to find the optimal solution if it exists.
They are mostly backtracking algorithms or dynamic programming. Backtracking
algorithms explore all possibilities of variable assignations, in order to identify the
best one.
• The non-systematic algorithms try to find an approximation of the optimal solution.

They are used when the search space is too big for a systematic algorithm. Iterative
stochastic methods are commonly chosen.

3 Problem statement

In this paper, we chose to work on a road network, composed of road segments (some of
which can be footpaths in practice). A road segment corresponds to an edge of the network,
it has a geometry that is a polyline and it is bordered by two roads junctions. In addition to
this road network, we have a set of routes. For each route, we know the set of road segments
that carry the route. A road segment can carry 0 to n different route segments (i.e., parts
of routes carried by a same road segment). Figure 2a shows a road network composed of
5 road segments, and 2 routes (red and green) described by the road segments carrying
them. Figure 2b gives a possible layout of the routes symbol. It can happen that a route
is locally carried by no road segment, because the route is locally off-trail, or because the
road segment that carries the route is missing in the road dataset. In this case, a fictive road
segment is added to the road network. Hence any route segment is carried by one road
segment.

Figure 2: (a) A road network and 2 routes (b) a possible routes layout.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 57

Moreover we made the following simplifications:

(1) Only roads and routes are considered; surrounding objects in the map (buildings,
etc.) are ignored.

(2) The positions of route segments carried by a given road segment are not influenced by
the presence of other roads approaching the road segment; they are only influenced
by the configurations of the junctions that border this road segment (Figure 3).

Figure 3: Problem simplification: configurations (a) and (b) are considered equivalent, con-
figurations (c) and (d) are considered equivalent.

(3) The choice of colors for the route symbols is considered a separate problem and is not
managed. For our tests, colors have been manually chosen after the route placement
resolution.

(4) All routes are considered of equal importance, and displayed with the same symbol
width. Therefore no constraint related to a route hierarchy or to symbol width aspects
is defined.

(5) Once their positions have been computed, the route symbols are drawn with a simple
method that, amongst others, does not manage which route symbol is drawn on top
of which one at junctions (Figure 4). From interviews with cartographers working
in production, we understood that when a route is crossing several other routes at a
junction, it is better to draw this route on the top of the other ones (as on Figure 4a).
We assume that it is possible to define a drawing method that respects that. Other
characteristics of our drawing methods are described in Section 3.2.1.

Figure 4: Problem simplification: for the shown route layout, any of the drawings (a), (b),
or (c) can be obtained.

(6) The angles between road segments at junctions are not taken into account when eval-
uating the legibility of route positions, e.g., in Figure 5.

3.1 Considered constraints

In order to design a relevant set of the legibility constraints, we rely on the Gestalt laws.
We identify the four following constraints:

JOSIS, Number 11 (2015), pp. 53–79

58 TEULADE, MAUDET, DUCHÊNE

Figure 5: Problem simplification: situations (a) and (b) are considered equivalent.

• C1: All route segments carried by the same road segment have to be contiguous to
each other and to the road segment. In other words, it is not allowed to have a gap
between two route segments carried by a road segment, or between a route segment
and the road segment (cf. the Gestalt proximity law). For example, on Figure 6 situa-
tion (a) is permitted, not situation (b).
• C2: The continuity on a same route (cf. the Gestalt continuity law) is ensured as much

as possible. For example, in Figure 6d, all routes except the green one are continuous,
while none is continuous in Figure 6c. Note that this constraint indirectly manages
the Gestalt closure principles for routes forming loops, since only the presence of
crossing leads to closure being unsatisfied. Decreasing the number of crossings im-
plies improving the satisfaction of closure.
• C3: The number of crossings between the routes and between the routes and the

roads is minimized. To illustrate the notion of crossing, Figure 6c counts 3 crossings,
and Figure 6d counts 4 crossings.
• C4: The number of crossing clusters is minimized. A crossing cluster is a set of cross-

ings that are not disjoint in terms of the involved routes, as defined by Fink and
Pupyrev [8]. Figure 6c counts 2 clusters, while Figure 6d only counts 1 cluster, all
surrounded by ellipses.

3.2 Problem variables modeling

A road segment carries route segments. The position of a route segment along a road seg-
ment is defined by an integer that can be interpreted depending on the road geometry:
positive on the left of the road, negative on its right, increasing absolute value as the dis-
tance to road increases. Figure 7 shows two different configurations for the same road seg-
ment. The road segment is always situated at position 0. Our objective is to assign the most
appropriate position for each route segment in order to satisfy the legibility constraints at
best.

3.2.1 Handling route drawing at junctions

We assume that we have a drawing method that creates the suitable symbols (a strip with a
defined color and a defined width) from the initial geometries of the roads and the positions

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 59

Figure 6: Illustration of considered constraints. Top: situation (b) not permitted (C1). Bot-
tom: two route layouts where ellipses represent crossing clusters (see text for explanation
of C2 to C4).

Figure 7: Two different route layouts for a road segment directed from left to right and
carrying three routes. Route positions are defined by integer.

of the segments of the route along the roads, and that this method minimizes the crossings
number at junctions for a given layout of the routes (on Figure 8, this drawing method
would produce drawing (b) rather than (c)).

Figure 8: We assume we have a display method that minimizes the numbers of crossings at
junctions for a given layout of the routes. For the layout (a), the produced drawing would
be (b) rather than (c).

In practice, we set up a method to count the minimum number of crossings at a junction
for a given layout (described in Section 3.3.2), but we did not write the drawing method and

JOSIS, Number 11 (2015), pp. 53–79

60 TEULADE, MAUDET, DUCHÊNE

used a simpler one instead, which draws each route segment using a morphologic dilation
of the road segment, and simply joins with a straight line the resulting route segments at
junctions. Therefore, even when the route segments are optimally placed with respect to
the number of crossings at a junction, some junctions are badly drawn in the map showing
the result of the placement, as shown by Figure 9. This should be ignored when visually
assessing the route symbols placement results.

Figure 9: Here the route symbols placement is good, but the junctions are badly drawn
because our drawing method is simpler than the optimal one.

3.2.2 Variables for the constraint optimization problem

To model our problem as a constraint optimization problem (COP), we define a variable
for each road segment. This variable describes the layout of the route segments carried by
the road segment. Thus, for a road segment carrying n route segments, the domain of the
variable is the set of possible n-tuples corresponding to the possible layouts of the route
segments carried by the road segment.

To decrease the size of the problem, and to ensure the satisfaction of constraint C1
(cf. Section 3.1), it was chosen to define domains for the variables that automatically satisfy
C1, i.e., only n-tuples of contiguous positions are part of the domains. In other terms,
C1 is necessarily satisfied by the domain definition. For example, for a road segment
carrying 2 route segments, we have the following domain: {(−2,−1); (−1,−2); (−1, 1);
(1,−1); (1, 2); (2, 1)}. It is a set of 6 ordered pair, each ordered pair being a possible value
for the 2 route segments carried by the road segment. The size of the set is equal to (n+1)!
for a road segment carrying n route segments.

We note Dn the domain of the variable corresponding to a road segment that carries n
routes (e.g., D2 is the domain composed of 6 ordered pairs shown in the above paragraph).

3.2.3 Network modeling refinement: Grouping road segments into “strokes”

With the road network modeling introduced in Section 3, we could theoretically end up
with routes changing their position at every junction along a road, as illustrated in Fig-
ure 10a, while we would prefer to avoid it for legibility reasons. This is because only road
segments are initially modeled, but higher order entities (usually called “roads” in the ev-
eryday language) are perceived due to continuity criteria as explained by the Gestalt theory.
In the context of generalization, these “perceived roads” are called “strokes” by Thomson
and Richardson [18], who first proposed to automatically build them from road segments,
and to reason on them rather than on road segments for road network selection.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 61

We reused this concept in the modeling of our problem: to avoid repetitive position
changes along a perceived road, while reducing the problem complexity, adjacent road
segments are gradually grouped into so-called “route-based road strokes” based on three
criteria used in conjunction:

• the deflection angle at the junctions where the road segments meet is below a given
threshold (in our case 102.5◦); this is a classical criterion to build a “stroke” as defined
by Thomson and Richardson [18];
• the road segments have the same cartographic symbol; and
• the road segments carry route segments that belong to the same set of routes.

Figure 10 (b, c, d) shows examples of strokes built according to this logic. The computed
“route-based road strokes” are used instead of the initial road segments in the constraint
satisfaction problem modeling. This partially remedies to the simplification no. 5 described
in Section 3 (for junctions of the road graph that are internal to a “route-based road stroke”).
In the rest of the paper, initial “road segments” can be forgotten, and the term “road” will
be used to refer to a “route-based road stroke.” Variables as defined in previous section are
associated to these roads. The term “route” will be used to refer to the part of a route carried
by a road (called “route stroke” in the UML diagram below), unless otherwise stated.

Figure 10: (a) Initial modeling: 5 road segments carrying routes; (b, c d) Road segments
grouped into “strokes” on criteria of angles at junctions and carried routes: respectively 3,
2, and 1 road-route strokes for various locations of the routes.

Figure 11 shows the initial data model (road segments, routes and route segments)
enriched with strokes: a road segment (RoadSegment class) carries 0 to n route segments
(RouteSegment class), each associated with a position as described in Section 3.2; a route
(Route class) is composed of route segments; a road stroke (RoadStroke class) is a group of
oriented roads segments (OrientedRoadSegment class), which are road segments (inheritance
relation) carrying a flag boolean (orientationFlag property) that enables the direction of the
road segment to be compared to the direction of the stroke (same or reverse); a route stroke
(RouteStroke class) is a group of route segments carried by a road stroke, it has a position
on the road stroke (as described in Section 3.2, positionOnRoadStroke property); from this
position, the position of its route segments on their road segment can be deduced (get-
PositionOnRoadSegment() method). During the resolution of the Constraint Optimization
Problem, and during the rest of the paper, only the upper part of the class diagram (road
strokes, also called “roads,” carrying route strokes, usually simply called “routes”) is used.

JOSIS, Number 11 (2015), pp. 53–79

62 TEULADE, MAUDET, DUCHÊNE

RoadStroke

+getGeometry(): LineString

FlagedRoadSegment

+orientationFlag: boolean

RoadSegment

+geometry: LineString

Route

+name: String

RouteSegment

+getPositionOnRoadSegment(): int

1

1..n

1

1..n

RouteStroke

+positionOnRoadStroke: int

1

1..n

1 0..n

1 1..n

Figure 11: Class diagram showing relations between road, routes, and strokes.

3.3 Constraint evaluation

In this section, we explain how we evaluated the considered legibility constraints in the
context of a minimization problem. Constraint C1 is managed by the domain definition
as explained previously; therefore we have to evaluate constraints C2, C3, and C4. These
constraints have been described at an abstract level in Section 3.1. They can be considered
constraint types that are then instantiated into constraint instances in the map. The term
“constraint” hereafter refers to those constraint instances. As will be explained, some of
these constraints can be evaluated at the level of a road, others have to be evaluated at the
level of a junction, i.e., they concern all the roads that meet at that junction. A constraint of
the latter kind can only be evaluated once the variables associated to all concerned roads
have been assigned.

For each constraint type, a score function that associates a cost to each constraint in-
stance is defined, representing the constraint violation: the highest the score or cost is, the
less satisfied the constraint is. Solving (optimizing) the constraint optimization problem
aims at reaching a minimum cost for the constraints. More precisely we seek to mini-
mize a global cost function defined as the sum of the costs computed for all constraints
(cf. Section 3.4). The cost function for each constraint type was defined theoretically while
analyzing a few “toy situations” (i.e., typical situations defined after studying some maps).
In order to define the balance between the costs of the different constraints, we always
kept in mind, while defining each cost function, that the costs would eventually be aggre-
gated by means of a sum. Constraints and their cost functions were then tested and tuned,
separately and relatively to each other, using a few typical situations extracted from our
real data set. The balance between costs of different constraints is discussed more in next
subsections and in Section 3.4.

The descriptions of the constraints will use the following notations:

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 63

• xrd is the variable associated to road rd. Using the definition of Dn given in Sec-
tion 3.2.2, the domain associated to variable xrd is Dnrd , where nrd is the number of
routes carried by road rd.
• x̄rd = (x̄1

rd, . . . , x̄
nrd
rd) is used to denote the value assigned to variable xrd. x̄rd ∈ Dnrd .

• X is the tuple of all variables to assign. It contains the variables corresponding to all
roads of the considered map that carry routes: X = (xrd)rd carrying routes. The domain
associated to X is Π(rd carrying routes)Dnrd . An assignment of this tuple is noted X ; X ∈
Π(rd carrying routes)Dnrd .
• For a junction j, Xj is the tuple of the variables associated to all roads adjacent to j:
Xj = (xrd)rd adjacent to j . An assignment of Xj is noted Xj ; Xj ∈ Π(rd adjacent to j)Dnrd .
• A constraint c is defined as a pair (Xc, fc), where:

Xc is the tuple of the variables associated to the roads concerned with the constraint;
Xc ∈ Π(rd concerned by c)Dnrd .

fc : Π(rd concerned by c)Dnrd → R is the score function associated to c, it associates a real
score value to any assignment Xc of Xc. This function is built as a cost function:
the lower the score, the better the constraint is satisfied.

To simplify the understanding of the link between the constraints described in Sec-
tion 3.1, and our notations, we kept the number of the constraint as subscript of the defined
cost functions and the constants they use.

3.3.1 Constraint C2—Fostering route continuity

Constraint C2 concerning route continuity is evaluated at the level of a junction (one con-
straint at each junction where routes are present). For each route passing through this
junction, the distance between the positions of the route on each side of the junction is
evaluated. In Figure 12c, the green and the blue routes have a distance of 0, the red route a
distance of |3− (−1)| = 4.

Figure 12: The red route changes respectively from position −1 to position −1 (a), 1 (b), 3
(c), and 2 (d).

The particular case where a route is branching at a junction (for routes that are not
simple paths) is handled as follows: for each segment of this route that meet at this junction,
a partial distance is computed as the minimum difference of position with other segments
of the route; the aggregated distance for the junction is then the sum of the partial distances.
This relies on the idea that if at least two segments of the route are at the same position,
a kind of continuity is ensured and the problem is less serious than when a shift exists
between two segments of a regular (non-branching) route.

To formalize this, we define the function minimum distance(rt, j,Xj), which gives the
minimum distance between two segments of the route rt at junction j, knowing the assign-

JOSIS, Number 11 (2015), pp. 53–79

64 TEULADE, MAUDET, DUCHÊNE

ment Xj of the tuple of variables Xj , (i.e., assignment of the routes on all roads adjacent to
j).

To evaluate the score of the constraint for a given route, a logarithmic transformation
is applied to the computed distance. 1 This slows the increase of the score as distance
increases. For instance, for the red route the score difference will be greater between Fig-
ure 12a (distance 0) and Figure 12b (distance of 2) than between Figure 12b (distance of 2)
and Figure 12c (distance of 4). In other terms, we assume that, if we allow a shift (discon-
tinuity) for a route, it is not much more critical to allow a bigger shift. The total score of
the constraint for the junction is the sum of the scores obtained for each route passing at
the junction. This way, the score of the constraint for the junction will be greater (worse)
for situation Figure 12d than for situation Figure 12c (one additional discontinuous route
vs one route that is more discontinuous).

In terms of formalization, a constraint c2j is defined for each junction j as follows:

c2j = (Xj , f2j : Π(rd adjacent to j)Dnrd → R),

where the score function f2j is computed as

f2j (Xj) = λ2 ∗
∑

rt passing through j

ln
(
minimum distance(rt, j,Xj) + 1

)
,

where ln represents the natural logarithm (base e), and λ2 ∈ R
+.

Coefficient λ2 is a weight that enables the cost of the constraint to be tuned with respect
to other constraints. The function has the value of 0 for a junction where all routes are
continuous. Each discontinuous route at the junction adds a penalty of 0.7 ∗ λ2 (= λ2 ∗
ln(2)) for a discontinuity (minimum distance) of 1, a penalty of 1.1 ∗ λ2 (= λ2 ∗ ln(3)) for
a discontinuity of 2, and so on with a logarithmic increasing. In our implementation the
value of λ2 has been fixed to 2, which can only be interpreted compared to weights fixed
for other constraints (see following subsections).

3.3.2 Constraint C3—Minimizing crossings

Constraint C3 tends to minimize the crossings between a route, other routes, and roads.
We distinguish two kinds of crossings: internal crossings along the road carrying the route,
and crossings at roads junctions. Therefore we refine constraint C3 into two more specific
constraints, respectively called C3a (for internal crossings) and C3b (for crossings at junc-
tions).

Constraint C3a on crossings occurring within a road (recall that “road” stands for
“route-based road stroke”) is evaluated at the road level—one constraint per road carry-
ing routes. Only route/road crossings are concerned, as route/route crossings within a
road are already taken into account by constraint C2. Possible situations can be reduced to
two configurations: routes are present on one side of the road, or both sides. We assume
that the best route layout is the situation where all routes are on the side of the road where
they would cross the fewer roads (in Figure 13, situation (d) with 2 crossings). The score of
constraint C3 is computed as the difference between the numbers of crossed roads (on both

1We arbitrarily chose to use the natural logarithm (base e). Another logarithm could be used but the weighting
of the cost function, i.e., the λ2 coefficient introduced below, should be adapted accordingly.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 65

sides of the carrying road) for the current layout and for the best layout. Note that a cross-
ing with a given road on a given side of the carrying road is only counted once regardless
the number of routes that are present on this side, since all routes will be interrupted in the
same way and the fact that more routes are concerned does not make it more difficult to
mentally reconstruct them. As an example, in Figure 13 situations (a) and (b) are evaluated
the same with a score of 1 (= |3 − 2|) for C3a, while in situation (c) C3a has a score of 3
(= |5− 2|).

 (a) (b) (c) (d)

Figure 13: Evaluation of crossings along a road: configurations (a) and (b) are considered
equivalent while (c) is considered worse because more roads are crossed; (d) is the best
possible configuration.

The formalization of constraint C3a for a road rd is as follows:

c3ard = ((xrd), f3ard : Dnrd → R),

where the value of the score function f3ard is computed as

f3ard(xrd) =

⎧⎪⎨
⎪⎩

λ3a ∗
(
#left(rd)−min(#left(rd),#right(rd))

)
if ∀i ∈ [1, nrd], x̄

i
rd > 0,

λ3a ∗
(
#right(rd)−min(#left(rd),#right(rd))

)
if ∀i ∈ [1, nrd], x̄

i
rd < 0,

λ3a ∗
(
#left(rd) + #right(rd)−min(#left(rd),#right(rd))

)
otherwise,

with #left(rd) (resp. #right(rd)) the number of roads crossed on the left side (resp. the right
side) of rd; and λ3a ∈ R

+.
Coefficient λ3a is a weight that enables the cost of the constraint to be tuned with respect

to other constraints. The computed cost has a value of 0 for situations where all routes are
carried on the side of the road with the less roads crossed. Each additional crossed road
compared to this situation adds a penalty of λ3a. In our implementation, λ3a has been fixed
to 0.5, which, compared to the value of λ2 (for constraint C2), means that crossing up to
two additional roads (penalty of 1) is preferred to adding one discontinuity of distance 1
(penalty of 1.4).

Constraint C3b on crossings occurring at a junction is evaluated at the level of a junc-
tion (one constraint at each junction where routes are present). In the same way as for
constraint C3a, the score for constraint C3b for a given layout of the routes is computed as
the difference between the number of route/route and route/road crossings for this layout,
and the number of route/route and route/road crossings for the layout(s) that minimize
this number of crossings (considered the best layout for C3b). The number of crossings
for the best layout(s) is computed once for each junction before the optimization process
starts, while exploring all possible layouts for the junction. As only the roads involved in
the junction are concerned, the number of combinations to explore remains reasonable.

To count the number of crossings, we were inspired by the vertex crossings model from
Fink and Pupyrev [7]. The mechanism is described in Figure 14a. For this example, we
use the abstraction shown on Figure 14b, which only considers the order in which roads
and routes appear as we turn around the junction. With this abstraction, we get the cycle:

JOSIS, Number 11 (2015), pp. 53–79

66 TEULADE, MAUDET, DUCHÊNE

[Black, Blue, Yellow, Green, Purple, Red, Blue, Red, Purple, Black, Green, Purple, Yellow,
Black] where Black is the road, here handled as if it was a route. Note that this list is actually
a cycle; here we arbitrarily listed the sequence clockwise starting from the road on the left
in Figure 14a (black edge on the bottom-right in Figure 14b). Crossings will be counted
iteratively for each route (here “route” stands for a route in its whole, not for a segment).
Every time the crossings of a route have been counted, the route is removed from the cycle.
A sequence to process the routes is randomly chosen. Here: Green→ Purple→ Yellow→
Red→ Blue.

For the green route, the cycle described above is split with respect to the green route,
which gives us two sets (Figure 14c):

S1 = {Purple, Red, Blue, Black} and S2 = {Black, Blue, Yellow, Purple}
The routes crossing the green route are the routes that are present in both sets (this can
easily be understood from Figure 14c). In our example, we count 3 crossings for the green
route (with the Purple, Black, and Blue routes).

After processing the green route, we remove it from the current cycle. The next route
being processed is the purple one. As it is branching at this junction, it appears three times
in the cycle and gives us the following three sets (Figure 14d):

S1 = {Red, Blue}, S2 = {Black} and S3 = {Black, Blue, Yellow}.
The purple route has one crossing with a given route if this route appears in two out of the
three sets. If a route appeared in the three sets (which can occur if the route is also branching
at the junction), there would be two crossings with this route. For a given route A, counting
the crossings with a route B can be generalized as follows: splitting the cycle with respect
to A gives us n sets corresponding to sectors delimited by route A at the junction, which
can be ordered cyclically around the junction; the sets containing at least one occurrence of
route B are marked; the number of crossings between routes A and B is the length of the
shortest path joining all marked sets within the cycle formed by the sets. In our case, the
number of sets never exceeds 4 (route that makes a “loop”).

Figure 14: Example of crossings counting for junction (a). We get the corresponding ab-
straction (b), and the ellipses for the green route (c) and for the purple route (d).

The counting process is iterated until all routes have been processed. In our example,
we count 8 crossings (3 + 2 + 2 + 2 + 1 + 0).

To formalize this, we define the function count crossings(j,Xj), which gives this value
for a junction j and a given assignment Xj of the tuple of variables Xj .

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 67

For each junction j, we define a constraint c3bj as follows:

c3bj = (Xj , f3bj : Π(rd adjacent to j)Dnrd → R),

where the score function f3bj is computed as

f3bj (Xj) = λ3b ∗ count crossings(j,Xj)

with λ3b ∈ R
+.

Coefficient λ3b is a weight that enables the cost of the constraint to be tuned with respect
to other constraints. The computed cost has a value of 0 for situations where no crossing
occurs at the junction. Each crossing adds a penalty of λ3b. In our implementation, λ3b

has been fixed to 0.6. Compared to the score function of constraint C3a (with a value of
λ3a fixed to 0.5), it means that we prefer to add one route/road crossing within a road
rather than one route/road or route/route crossing at a junction. A comparison to the
score function of constraint C2 (with a value of λ2 fixed to 0.5) can be interpreted while
looking at Figure 12 (c and d), page 63. Indeed, we prefer situation (c) to situation (d): we
prefer to see one route (the red one) cross one more route (penalty +0.5) and increase its
existing discontinuity from 3 to 4 (additional penalty 2∗ ln(5)−2∗ ln(4) = +0.4), rather than
to see a discontinuity appear on one more route (the blue one) (penalty 2 ∗ ln(2) = +1.4).

3.3.3 Constraint C4—Minimizing the number of crossing clusters at junctions

Constraint C4 concerning the crossing clusters is evaluated at the level of a junction (one
constraint at each junction where routes are present). The number of crossings clusters at a
given junction is computed as follows: dynamically find the route with the most crossings,
remove it and reiterate the process. When no more crossing can be found at the junction, the
counting process terminates and the number of crossings clusters is equal to the number of
removed routes.

A function count crossings clusters(j,Xj) is defined, which gives this value for a junction
j and a given assignment of the tuple of variables Xj .

Moreover, we chose to penalize the presence of several crossing cluster on a same inter-
section, which is a factor of unreadability on an intersection. For this we used an exponen-
tial function to avoid a clusters accumulation.2

For each junction j, we define a constraint c4j as follows:

c4j = (Xj , f4j : Π(rd adjacent to j)Dnrd → R),

where the score function f4j is computed as

f4j (Xj) = eλ4∗count crossing clusters(j,Xj) − 1

with λ4 ∈ Z
+.

Contrary to the score functions of other constraints, we have not weighted the score
function using a multiplication factor. Coefficient λ4, set within the exponential function,
enables the computed cost to increase more rapidly with the number of crossing clusters.

2We arbitrarily chose to use the natural exponential function (base e). Another exponentiation function could
be used, but the weighting of the cost function, i.e., the λ4 coefficient introduced below, should be adapted ac-
cordingly.

JOSIS, Number 11 (2015), pp. 53–79

68 TEULADE, MAUDET, DUCHÊNE

The computed cost has a value of 0 for situations where no crossing occurs at the junction.
One crossing cluster gives a score of 2.7λ4 − 1 (= eλ4 − 1), two crossing clusters a score of
7.4λ4−1 (= e2∗λ4−1), etc. In our case λ4 has been set to 2, in order to hugely penalize (close
to a veto) the presence of several crossing clusters, assessed as extremely bad for legibility,
at a junction. Indeed, increasing the number of crossing clusters at a junction from 1 to 2
increases the cost computed for the constraint by 47.2 (= (e2∗2 − 1) − (e2∗1 − 1)), which,
given the tuning of the score functions for other constraints, is equivalent to, for example,
adding 78 intersections at a junction.

3.4 Aggregated cost function from defined constraints

The constraints defined in the previous section are used to evaluate the overall quality of a
possible solution (complete assignment of variables, i.e., route positions along roads). More
precisely, we do not seek to assess the quality of a solution on its own on an absolute scale,
but to assess whether a solution is better or worse than another one. For this, we use a cost
function that aggregates the evaluation of all instances of constraints. This function, called
Score(), is computed as the sum of the scores computed for all instances of constraints. In
other words, for an assignment of the variables X , the total score is computed as follows:

Score(X) =
∑

rd carrying routes

f3ard(xrd) +
∑

j∈AllJunctionsWithRoutes

(
f2j (Xj) + f3bj (Xj) + f4j (Xj)

)

The shapes of the different score functions are shown in Figure 15, on which visual compar-
ison is enabled by a common scale of the scores (y axis) for C2, C3a, and C3b. The tuning
of the functions with respect to each other has been discussed in Sections 3.3.1–3.3.3.

Figure 15: Shapes of the score functions defined for constraints C2 to C4. (a) shows y =
λ2 ∗ ln(x + 1), for C2; (b) shows y = λ3a ∗ x, i.e., the impact of crossing x additional roads,
for C3a ; (c) shows y = λ3b ∗ x, for C3b; (d) shows y = eλ4∗x − 1, for C4.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 69

4 Problem solution

4.1 Systematic approach

To optimize the identified constraints, we first used a backtracking algorithm. It is a depth-
first search that explores as far as possible along each branch of the search tree before back-
tracking [20]. This kind of algorithm is relevant for an optimization problem if partial
solutions can be assessed. Thus, subtrees containing no satisfying solutions can be pruned
before being explored. As we are in the case of a constraint optimization problem, to find
the optimal solution we used a score variable representing the function to optimize, i.e.,
the cost of the solution, as suggested by Smith [17]. In our case, the score to optimize is
given by the Score() function defined in Section 3.4. When a solution is first reached, i.e.,
all variables have been instantiated, the score variable is instantiated with the score of this
solution and a new constraint is added, stating that the value of the score variable must be
better than the current value of score (in a minimization problem, better means lower). The
value of score at the end of the exploration corresponds to the best reached score. Please
note that at any node of the tree, a constraint associated to a junction can only be assessed if
all variables associated to the junction (i.e., to the roads incident to the junction) have been
assigned. Otherwise, the score of the partial solution associated to the node does not take
the constraint into account. The corresponding pseudo code is presented in Algorithm 1.

Algorithm 1 Pseudocode for backtracking approach to optimization
score← initialScore
i← 0
while (i > −1)

if (allVariablesInstanciated(variables)) then
if (currentScore() < score) then

score← currentScore()
variables[i].resetValue()
i −−

else if (currentScore() < score) then
i ++
variables[i].instanciateValue()

else if (variables[i].hasNext()) then
variables[i].nextValue()

else
variables[i].resetValue()
i −−

return (variables, score)

Next, we optimized the algorithm by initializing the score variable with an upper bound
of the optimal score, in order to avoid a costly exploration at the beginning. This upper
bound is reached while performing a random exploration of the research tree and keeping
the lowest reached score. We also ordered the variables to prune the search tree earlier.
For that, we used the notion of complexity of a road junction. A junction is more complex
the larger number of possible layouts is can be associated with—the layout of the junction
being the combination of the layouts of the roads incident to the junction. The number

JOSIS, Number 11 (2015), pp. 53–79

70 TEULADE, MAUDET, DUCHÊNE

of possible layouts at a junction, i.e., the number of possible variables combinations as-
sociated to the junction (one road corresponds to one variable), can easily be computed
from the number of roads incident to the junction and the numbers of routes carried by
these roads. The idea is that the more complex junctions are associated to constraints that
generate higher partial scores and therefore are more likely to enable to prune the search
tree. Therefore we ordered the variables so that the variables associated to more complex
junctions are instantiated first. Besides, note that at a given stage of the process, constraints
taken into account are those corresponding to roads that have already been assigned, and
those corresponding to junctions of which all adjacent roads have been assigned. Other
constraints are not considered (their contribution is 0). There is no risk of pruning the tree
too much and missing better solutions, as taking into account more constraints can only
increase the total score.

Despite this, performance remained poor for our problem (cf. Section 5). However, this
algorithm did allow our constraint system to be improved and validated by testing it on a
restricted subset of variables corresponding to typical situations on a route map. Constraint
C4 on crossing clusters, which had initially not been identified as a constraint, was added
at this stage.

4.2 Non-systematic approach

As an alternative to the systematic approach, with performance that was not sufficient,
we modeled a non-systematic approach to get better performance. We used the simulated
annealing meta-heuristic [11], which is part of the iterative stochastic methods that are clas-
sically used to solve constraint optimization problems that have a large search space [20]. In
the domain of automated cartography, simulated annealing has been used for label place-
ment [5], generalization of urban areas at topographic scales [22], and color assignment
to maximize contrasts on schematized flight route maps [10]. Simulated annealing seeks
to minimize an energy computed from the variables to assign (the energy represents the
criterion to optimize). It starts from a given initial solution (a given assignment of the vari-
ables). At any stage of the process, from the current solution a new solution is computed by
applying a newAssignment() function that modifies part of the current solution. If this new
solution enhances (i.e., decreases) the energy, it is accepted as the new current solution. If
the energy is increased, the new solution is accepted with a probability depending on the
energy variation and the current value of a temperature variable T , which tends to decrease
along the process. The lower T is, the less likely it is that a worse solution will be accepted.
The fact that worse solutions may be accepted allow the approach to explore more solu-
tions, thus decreasing the possibility of becoming trapped in a local optimum. The process
stops when a given stopping criterion is met. The corresponding pseudo code is presented
in Algorithm 2.

In our case, the function E() that computes the energy is the Score() function defined
in Section 3.4. To initialize the variables (variablesInitialization()), we have just generated a
random sampler.

To identify a new assignment of variables (newAssignment(values)), we increase the like-
lihood of disturbing the variables corresponding to roads carrying more routes among
those involved in the most unsatisfied junctions. This favors the improvement of the most
unsatisfied junctions; and choosing more often roads that carry more routes ensures bet-
ter coverage of the solution space. More precisely, a road for which a new assignment

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 71

Algorithm 2 Pesudocode for simulated annealing approach to optimization
T ← initialT
variablesAssignment← variablesInitialization()
energy← E(variables)
while (NoStop())

newVariablesAssignment← newAssignment(variablesAssignment)
if E(newVariablesAssignment) < energy or
random() < exp((energy − E(newVariablesAssigment))/T) then

variablesAssignment← newVariablesAssignment
energy← E(newVariablesAssignment)

T ← lambda ∗ T
return variablesAssignment

will be computed is identified as follow: we first choose a junction j with the probability
pJunction(j); then, amongst the roads adjacent to the junction, we choose a road rd with
a probability of pRoadj(rd). A new value is then randomly assigned to the xrd variable
associated to the chosen road rd. The probabilities are defined as follow:

pJunction(j) =
f2j (Xj) + f3bj (Xj) + f4j (Xj)∑

j∈AllJunctionsWithRoutes

(
f2j (Xj) + f3bj (Xj) + f4j (Xj)

)

pRoadj(rd) =
#supported routes(rd)∑

rd adjacent to j #supported routes(rd)

We stop the algorithm (NoStop() function to false) when the energy has been stagnating
for a number of iterations (20, 000 in our case).

We arbitrarily chose an initial temperature (initialT) and a lambda very close to 1. This
way, we allow a wide enough exploration of the solutions space.

5 Implementation and results

We ran our methods on a real dataset composed of roads and hiking paths from BD TOPO,
the 1m resolution database of IGN, and routes provided by FFRP (Fédération Française de
Randonnée Pédestre), the French hiking federation, on which a conflation pre-process had
been run to reach the modeling described in Section 3. The considered dataset covers an
area of 10×20km. Given the density of roads and hiking routes, the dataset could be used to
generate a map at a scale of about 1:50k. At this scale the test dataset has a size of 20×40cm
(approximately an A3 leaflet). The test area assessed is representative of what can be found
on real route maps in terms of complexity of route symbol placement (number of routes
carried per road, complexity of junctions). Table 1 shows the distribution of roads of our
test area in terms of number of carried routes, and for each number of carried routes, the
cardinality of the variable domain. The total size of the search space, which is quite large,
is shown in the bottom-right cell of the table.

We implemented our model in GeOxygene, an open source framework developed in
Java at COGIT laboratory [3]. The main reason for choosing GeOxygene is that the op-
portunity to reuse existing generalization methods implemented in GeOxygene, more pre-

JOSIS, Number 11 (2015), pp. 53–79

72 TEULADE, MAUDET, DUCHÊNE

n 1 2 3 4 5 Total
Number of road strokes
carrying n routes 48 29 24 6 10 117

Variables domains cardinality 2 6 24 125 720 248 × 629 × · · · × 72010

Table 1: Test area description.

cisely in its generalization module CartAGen [16]. Regarding the work presented in this
paper, we already had in GeOxygene an implementation of the static model for roads car-
rying routes, and an implemented method for roads strokes detection based on roads at-
tributes and angles at junctions. We adapted this method by splitting the computed strokes
if needed, so that all road segments of a stroke carry the same set of routes.

We generated in advance the possible domains Dn (described in Section 3.2.2) associ-
ated to the variables of our CSP. As a domain Dn for a variable associated to a given road
only depends on the number of routes n carried by this road, we set an upper bound to n (in
our case 5, consistent with our test data set) and generated the five domains D1 to D5 (i.e.,
{(−1); (1)} for 1 route, {(−2,−1); (−1,−2); (−1, 1); (1,−1); (1, 2); (2, 1)} for 2 routes, etc.).
Each domain Dn was defined as a java constant, consisting in a set of lists of n elements.

Once the CSP was created, we implemented the score functions for constraints as de-
scribed in Sections 3.3 and 3.4, and implemented the backtracking and simulated annealing
algorithms according to the pseudo codes shown in Algorithms 1 and 2.

5.1 Experimentations and assessment settings

The two implemented methods (systematic/backtracking, and non-systematic/simulated
annealing) were run on a system powered by an Intel Core i5-2500 CPU (3.30 GHz) with
8GB of RAM. Both were assessed in terms of computational performance (evaluation 1,
Section 5.2). Because of the computational performance issues already described, the sys-
tematic (backtracking) method could not be run on our complete test dataset. However,
as it is guaranteed to reach the best possible solution, analyzing the cartographic results
obtained using this method was a way to validate the defined set of constraints (evalu-
ation 2, Section 5.3). Therefore the method was run on small extracts of our test dataset
corresponding to complex zones—in other words, with respect to the CSP, it was run on
restricted subsets of variables. The non-systematic (simulated annealing) method was run
on the complete test area. It was executed 100 times to take into account it is initialized
with randomized variables. The final scores obtained show few variations amongst the
100 executions, as well as the cartographic quality (visually assessed for a few results cho-
sen randomly). Figure 18 shows an extract of the map corresponding to the best reached
score. The cartographic results obtained were also evaluated (evaluation 3, Section 5.4). For
evaluations 2 and 3, the cartographic results were shown to five cartographers working in
production at IGN-France. Map series produced at IGN-France do not include such “bus-
like” representation of routes, but IGN has regularly had to produce hiking (or cycling)
maps using this representation for particular customers. Among the five cartographers to
whom the results were shown, three directly took part to the production of those maps.
The last two ones, including the maps product manager of IGN, have a good experience of
hiking maps production and are in contact with maps users.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 73

0 500000 1000000 1500000 2000000 2500000 3000000

20
30

40
50

60
70

Iterations

E
ne

rg
y

Va
lu

e

Figure 16: Convergence behavior of the simulated annealing process. The curve represents
the median score value as a function of the number of iterations. The vertical bars show
the first and third quartiles on the 100 executions. As all the runs do not stop after the same
number of iterations, the energy value for the shorter runs were repeated after their end.

5.2 Computational performance assessment

The systematic (backtracking) algorithm described in Section 4.1 required 10 hours to find
the optimal solution on a zone covering 1/10 of the test area considered representative of
the problem complexity. Knowing that the complexity of the algorithm is exponential in
the number of variables, we drew the conclusion that it was not realistic to use it on the
entire test map.

The simulated annealing method was run on the complete test area. The execution
time until the process converges was relatively stable over the 100 executions: more or
less 20 minutes, which is compatible with a use in production in the context of offline
production of maps. Figure 16 shows the convergence behavior of the process. The results
are consistent from an iteration to another. An important decreasing of energy value is
observed at 900, 000 executions, which may be interpreted as the resolution of important
conflicts.

5.3 Constraint set validation: Systematic (backtracking) method

Figure 17a shows an optimal placement obtained with the systematic (backtracking)
method on a restricted road network. On another restricted road network, Figure 17 (b
and c) shows two solutions assessed as optimal with different constraint parameters. On
the left, the cost function used is the one presented in Sections 3.3 and 3.4. On the right,
the weights of constraints have been slightly changed to favor the satisfaction of constraint
C3b (number of route intersections at junctions) over constraint C2 (route continuity).

These three extracts, enlarged to a bigger scale to be easily analyzed, were sent to the
cartographers and then discussed with them. Indeed, on Figure 17 (b and c) the vertical
road segment in the middle has been shortened for the needs of the paper, while the original
extract was provided to them (still for the needs of the paper, the two zones shown in

JOSIS, Number 11 (2015), pp. 53–79

74 TEULADE, MAUDET, DUCHÊNE

Figure 17 have been highlighted on Figure 18). No consensus could be drawn from the
reactions of the cartographers—both solutions were assessed as good, and none was clearly
preferred.

Figure 17: Optimal solution obtained on complex zones.

5.4 Assessment of non-systematic (simulated annealing) results

The map extract shown in Figure 183 was separately provided to two groups of cartog-
raphers, together with the extracts shown in Figure 17: on the one hand the group who
previously took part to the production of “bus-like” route maps, and on the other hand the
other two cartographers. This map is the one with the best score among the 100 executions
of the simulated annealing process. The extract covers a surface of approximately 1/3 of the
total test zone, and has been chosen because it is the most complex and therefore the most
interesting part of the test zone in terms of route symbol placement. An SVG file of the
extract was sent to the cartographers so that they could print it at real scale on the plotter
they usually use to assess proof maps in production. We did not set up a formal survey as,
for example, in [23]. Instead we asked them to assess the route placement, and asked them
for comments on what could be improved. We had separate informal interviews with each
of the two groups the day after, so that they could spend time to study the results. The two
groups considered the placement was good in general. The group of cartographers who
already had to manually produce such maps considered the cartographic quality of the
placement comparable to what they would have done manually (it is worth underlining,
after our experience, that traditional cartographers used to working manually are often
upset by the idea that a machine could be as effective as themselves). The cartographers
pointed some defects of our drawing method (which we were already aware of), and a few
places where the presence of a close neighboring road should have led to placing the route
symbols on the opposite side of the road. They also highlighted that the color contrasts
between adjacent routes should be improved.

3Here, the two zones used to assess the optimal solution obtained with the systematic (backtracking) method
have been highlighted, which was not the case in the version sent to the cartographers.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 75

Figure 18: Best solution reached by the simulated annealing process. Extract representing
1/3 of the area of the test zone, the most complex in terms of route symbols to place.

JOSIS, Number 11 (2015), pp. 53–79

76 TEULADE, MAUDET, DUCHÊNE

6 Conclusion and perspectives

In the study presented in this paper, we identified a set of constraints for a problem that, to
our knowledge, had not been tackled until now: multiple route symbol placement along a
road network. We proposed modeling of this problem as a constraint optimization prob-
lem. Moreover, we suggested two different solving methods. A systematic search with a
backtracking algorithm enabled the validation of our constraint system. A non-systematic
search with a simulated annealing algorithm gave very good results on a real case study
that is representative of relatively complex situations.

6.1 Possible improvements

We identify four different categories of possible improvements to our proposal. All these
perspectives will have to be explored in future works.

First, we use a perfectible drawing method that generates some bad looking junctions
even when routes are correctly placed (cf. Section 3.2.1). Working on a drawing method
may be a first angle to improve our graphical results. This method should take into account
our modeling of the route positions along a road.

Then, some aspects of the problem were ignored as described in the problem statement
Section 3, in order to first validate the approach globally. These aspects are:

• Angles: The modification of the position of a road may have a different impact de-
pending of the angle, as we may observe on Figure 5, where Figure 5(b) seems better
than Figure 5(a).
• Colors: As pointed out by the cartographers, having adjacent routes with poor color

contrast is a problem. This could be remedied while including color contrast con-
straints in our model. Existing studies about color contrasts, such as [4] or [10], could
be used as a basis.
• Hierarchy between routes: In some application contexts a hierarchy between routes

has to be shown, e.g., to highlight a particular hiking route, or in the case of routes
that would represent flows. A hierarchy of color values, dash styles, or line widths
could be used, but this results in new additional constraints, e.g., it should be avoided
to place one narrow route between two larger routes.

A third way to enhance our model and the results produced concerns the solving
method. One identified limit of our simulated annealing method is that some simple zones,
typically dead ends of the route graph at the borders of the test area, are not always opti-
mally handled because the corresponding variables are not disturbed often enough. This
is a drawback of our method to generate neighboring solutions from a current state, which
favors complex zones. To cope with that, a systematic search with the backtracking algo-
rithm could be run on such simple areas after the simulated annealing has finished. A first
test giving good results was carried in that direction. However it would be necessary to
automatically identify those simple zones. Likewise, in order to improve the performance
of our simulated annealing method, we could split the problem into sub problems and
solve them in sequence while taking already computed results as external constraints. For
that, sub-areas of the map could be identified e.g., thanks to the isthmuses (in the graph
theory acceptation of the word) of the road network. However, this partitioning may not
always be possible.

www.josis.org

http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 77

Finally, adding route symbols along roads requires space on a map. Thus, it could
impact the symbolization and the generalization of surroundings objects map (buildings,
waterlines, water areas, etc.). These modifications have to be done while considering the
fact that the positions of routes on roads may change. This implies the use of methods
taking into account the local management of geographic objects. This is the topic of a case
study within an ongoing research project, dealing with interactions between geographic
objects in an automated generalization model.

6.2 Reuse for other application cases

Another perspective concerns the application of our method to other kinds of routes and
physical network infrastructures, different from hiking routes on a road network. As men-
tioned in the introduction, we think that our method can be used for a diversity of applica-
tion cases. We think that the constraints defined in the paper are likely to be valid for most
situations, as they model continuity aspects that help perceive a route as a whole. However,
more constraints might be needed depending on specific characteristics of other applica-
tion cases. For instance, in the case of electric cables sharing conducts, a more complex,
multi-level modeling may be needed [13]. Besides, one specific characteristic of the hiking
routes application case is that no physical hubs that would anyway disrupt the continuity
of routes are displayed on the map at junctions—contrary to what happens, for example,
on airways routes, where an airport (hub) is displayed at every junction where two routes
begin or end to share the same physical network segment [10]. In other application cases,
hubs can be present only at some junctions, e.g., in the case of multimodal freight transport
routes. It would be interesting to study how the presence of hubs at junctions influences
the importance of the route continuity constraints at these junctions. Are they all the more
important as the hub tends to break the continuity, or can they be relaxed since the hub
tends to break it anyway?

Acknowledgements

The authors would like to thank Anne Bérard, Didier Blaquière, Régine Cochet, Blandine
Delavault and Christophe Pécot for their time and the interesting discussions around the
cartographic results assessment. They also would like to thank Eve Feinblatt-Mélèze for
her copy editing work. They finally would like to thank the anonymous reviewers who
helped improve the paper by their thorough comments and questions.

References

[1] BEARD, K. M. Constraints on rule formation. In Map Generalization: Making Decisions
for Knowledge Representation, B. Buttenfield and R. Mcmaster, Eds. Longman Scientific
and Technical, London, 1990, pp. 121–135.

[2] BELBIN, J. Gestalt theory applied to cartographic text. In Cartographic Design: Theoret-
ical and Practical Perspectives, C. H. Wood and C. P. Keller, Eds. Wiley-Blackwell, 1996,
pp. 235–269. ISBN13: 9780471965879.

JOSIS, Number 11 (2015), pp. 53–79

78 TEULADE, MAUDET, DUCHÊNE

[3] BUCHER, B., BRASEBIN, M., BUARD, E., GROSSO, E., MUSTIÈRE, S., AND PERRET,
J. Geoxygene: Built on top of the expertise of the french nma to host and share ad-
vanced gi science research results. In Geospatial Free and Open Source Software in the
21st Century, E. Bocher and M. Neteler, Eds., Lecture Notes in Geoinformation and
Cartography. Springer, Berlin, 2012, pp. 21–33. doi:10.1007/978-3-642-10595-1 2.

[4] CHESNEAU, E., RUAS, A., AND BONIN, O. Colour contrasts analysis for a better legi-
bility of graphic signs on risk maps. In Proc. 22th International Cartographic Conference
(ICC) (La Coruña (Spain), 2005).

[5] CHRISTENSEN, J., SHIEBER, S., AND MARKS, J. Placing text labels on maps and di-
agrams. In Graphics Gems, P. S. Heckbert, Ed. Academic Press, 1994, pp. 497–504.
doi:10.1016/B978-0-12-336156-1.50064-1.

[6] DE LUCIA, A., AND BLACK, T. A. A comprehensive approach to automatic feature
generalization. In Proc. 13th International Cartographic Conference (ICC) (Morelia (Mex-
ico), july 1987), pp. 168–191.

[7] FINK, M., AND PUPYREV, S. Metro-line crossing minimization: Hardness, approx-
imations, and tractable cases. In Graph Drawing, S. Wismath and A. Wolff, Eds.,
vol. 8242 of Lecture Notes in Computer Science. Springer, Berlin, 2013, pp. 328–339.
doi:10.1007/978-3-319-03841-4 29.

[8] FINK, M., AND PUPYREV, S. Ordering metro lines by block crossings. In
Mathematical Foundations of Computer Science 2013, K. Chatterjee and J. Sgall, Eds.,
vol. 8087 of Lecture Notes in Computer Science. Springer, Berlin, 2013, pp. 397–408.
doi:10.1007/978-3-642-40313-2 36.

[9] FREUDER, E. C., AND MACKWORTH, A. K. Constraint satisfaction: An emerg-
ing paradigm. In Handbook of Constraint Programming, F. Rossi, P. van Beek, and
T. Walsh, Eds., vol. 2 of Foundations of Artificial Intelligence. Elsevier, 2006, pp. 13–27.
doi:10.1016/S1574-6526(06)80006-4.

[10] HURTER, C., SERRURIER, M., ALONSO, R., TABART, G., AND VINOT, J.-L. An
automatic generation of schematic maps to display flight routes for air traffic con-
trollers: Structure and color optimization. In Proc. International Conference on
Advanced Visual Interfaces (AVI) (New York, NY, USA, 2010), ACM, pp. 233–240.
doi:10.1145/1842993.1843034.

[11] KIRKPATRICK, S., GELATT JR., C. D., AND VECCHI, M. P. Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680. doi:10.1126/science.220.4598.671.

[12] LI, Z., AND ZHOU, Q. Integration of linear and areal hierarchies for continuous multi-
scale representation of road networks. International Journal of Geographical Information
Science 26, 5 (2012), 855–880. doi:10.1080/13658816.2011.616861.

[13] LÜSCHER, P., STOOP, P., FEHLMANN, J., AND SPARENBORG, J. Automatic genera-
tion of network schematics from cadastral databases: Applications for an electric util-
ity company. In Proc. 15th ICA Workshop on Generalisation and Multiple Representation
(2012).

www.josis.org

http://dx.doi.org/10.1007/978-3-642-10595-1_2
http://dx.doi.org/10.1016/B978-0-12-336156-1.50064-1
http://dx.doi.org/10.1007/978-3-319-03841-4_29
http://dx.doi.org/10.1007/978-3-642-40313-2_36
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1145/1842993.1843034
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1080/13658816.2011.616861
http://www.josis.org

MULTIPLE ROUTE SYMBOLS PLACEMENT 79

[14] NÖLLENBURG, M. A survey on automated metro map layout methods. Tech. rep.,
Department of Informatics, Karlsruhe Institute of Technology (KIT), 2014.

[15] OKSANEN, J., SCHWARZBACH, F., SARJAKOSKI, L. T., AND SARJAKOSKI, T. Map
design for a multi-publishing framework: Case menomaps in nuuksio national park.
The Cartographic Journal 48, 2 (2011), 116–123. doi:10.1179/1743277411Y.0000000007.

[16] RENARD, J., GAFFURI, J., AND DUCÊNE, C. Capitalisation problem in research—
Example of a new platform for generalisation: CartAGen. In Proc. 13th ICA Workshop
on Generalisation and Multiple Representation (sept 2010).

[17] SMITH, B. Modelling. In Handbook of Constraint Programming, F. Rossi, P. van Beek, and
T. Walsh, Eds., vol. 2 of Foundations of Artificial Intelligence. Elsevier, 2006, pp. 375–404.
doi:10.1016/S1574-6526(06)80015-5.

[18] THOMSON, R., AND RICHARDSON, D. The “good continuation” principle of per-
ceptual organization applied to the generalization of road networks. In Proc. 19th
International Cartographic Conference (ICC) (Ottawa (Canada), 1999).

[19] TOUYA, G. A road network selection process based on data enrich-
ment and structure detection. Transactions in GIS 14, 5 (2010), 595–614.
doi:10.1111/j.1467-9671.2010.01215.x.

[20] VAN BEEK, P. Backtracking search algorithms. In Handbook of Constraint Programming,
F. Rossi, P. van Beek, and T. Walsh, Eds., vol. 2 of Foundations of Artificial Intelligence.
Elsevier, 2006, pp. 83–132. doi:10.1016/S1574-6526(06)80008-8.

[21] VAN HOEVE, W., AND KTRIEL, I. Global constraints. In Handbook of Constraint Pro-
gramming, P. v. B. Francesca Rossi and T. Walsh, Eds., vol. 2 of Foundations of Artificial
Intelligence. Elsevier, 2006, pp. 205–244. doi:10.1016/S1574-6526(06)80010-6.

[22] WARE, J. M., AND JONES, C. B. Conflict reduction in map generalization using itera-
tive improvement. GeoInformatica 2, 4 (1998), 383–407.

[23] WEISS, R., AND WEIBEL, R. Road network selection for small-scale maps using an im-
proved centrality-based algorithm. Journal of Spatial Information Science 2014, 9 (2014),
71–99. doi:10.5311/JOSIS.2014.9.166.

[24] WERTHEIMER, M. Untersuchungen zur Lehre von der Gestalt. II. Psychologische
Forschung 4, 1 (1923), 301–350. doi:10.1007/BF00410640.

JOSIS, Number 11 (2015), pp. 53–79

http://dx.doi.org/10.1179/1743277411Y.0000000007
http://dx.doi.org/10.1016/S1574-6526(06)80015-5
http://dx.doi.org/10.1111/j.1467-9671.2010.01215.x
http://dx.doi.org/10.1016/S1574-6526(06)80008-8
http://dx.doi.org/10.1016/S1574-6526(06)80010-6
http://dx.doi.org/10.5311/JOSIS.2014.9.166
http://dx.doi.org/10.1007/BF00410640

	Introduction
	Related works
	Route representations
	Constraint optimization

	Problem statement
	Considered constraints
	Problem variables modeling
	Handling route drawing at junctions
	Variables for the constraint optimization problem
	Network modeling refinement: Grouping road segments into ``strokes''

	Constraint evaluation
	Constraint C2—Fostering route continuity
	Constraint C3—Minimizing crossings
	Constraint C4—Minimizing the number of crossing clusters at junctions

	Aggregated cost function from defined constraints

	Problem solution
	Systematic approach
	Non-systematic approach

	Implementation and results
	Experimentations and assessment settings
	Computational performance assessment
	Constraint set validation: Systematic (backtracking) method
	Assessment of non-systematic (simulated annealing) results

	Conclusion and perspectives
	Possible improvements
	Reuse for other application cases

