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Heat transport studies often focus on calculating an average direction and magnitude of 

groundwater flow within the streambed for long (3 days – 1 week) periods of time. Short-

term changes in flow magnitude and/or direction within the streambed caused by near 

stream groundwater pumping and storms are not represented by these long term 

averaging methods. Temperature profiles collected in B Stream (Houlton, Maine) and the 

Stillwater River (Orono, Maine) were used to calibrate a one-dimensional heat transport 

model and quantify short-term hydraulic events in vertical groundwater velocity within 

streambeds. Temperature profiles were collected during the summer of 2014 with iButton 

(Maxim Integrated, San Jose, CA) temperature loggers from two locations within each 

streambed to assess the spatial variability of groundwater flow within the streambed. 

Velocity values were averaged over daily periods allowing us to analyze how 

groundwater flow within the streambed changed during short-term hydraulic events. 

Bedrock wells at the B Stream site and surficial wells at the Stillwater River site were 

pumped while streambed temperature profiles were being collected.  Temperature 

profiles were also collected before, during, and after Hurricane Arthur.  Average modeled 



 

 

velocities were -4.38 x 10-6 m/s and -5.01 x 10-6 m/s (standard deviations of 8.02 x 10-6 

m/s and 1.34 x 10-5 m/s) for the south and north locations at the Stillwater River site and 

were -1.13 x 10-5 m/s and -1.93 x 10-5 m/s (standard deviations of 1.46 x 10-5 m/s and 2.03 

x 10-5 m/s) for locations 1 and 2 at the B Stream site. Significant (p = 0.0004) differences 

between location 1 and location 2 at the B Stream site were recorded while there is no 

significant (p = 0.64) difference between the north and south locations at the Stillwater 

River site. Model results indicate periods of directional change of groundwater flow at 

both study sites associated with short-term hydraulic events. Shifts within the Stillwater 

River are coincident with groundwater pumping while shifts within B Stream are 

coincident with storm events. Flow within the Stillwater streambed shifts from downward 

to upward as groundwater wells are turned off at the Stillwater location. Flow within the 

B Stream streambed shift from downward, to upward, then back to downward. 

Calculating average velocity over 24 hour time periods allowed for the detection of these 

changes in the direction of groundwater flow within the streambed. 
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CHAPTER 1: INTRODUCTION 
1.1 Significance 

Groundwater and surface water are interconnected resources and the interactions 

between the two shape the ecosystem around them.  Hyporheic exchange, the temporary 

diversion of surface water into the streambed, is an important process occurring within 

the streambed (Brunke and Gonser, 1997). Hyporheic exchange can add nutrients and 

organic matter to the stream and dissolved oxygen to the streambed (Zimmer and Lautz, 

2014). Hydrologic events such as groundwater pumping or storms (precipitation runoff 

events) can change how groundwater and surface water interact.  Multiple studies have 

linked near stream groundwater extraction to the reduction of flow from the groundwater 

into the surface water (Alley et al., 1999; Dudley and Stewart, 2007; Zume and Tarhule, 

2007; Barlow and Leake 2012; Rugel et al., 2012).  Alley et al. (1999) and Heath (1983) 

have shown that the drawdown of the water table caused by pumping a well can change 

the hydraulic gradient near a surface body of water (Alley et al., 1999; Heath, 1983). This 

change in gradient can cause an increase in groundwater recharge or decrease in 

discharge into the stream from the groundwater system (Alley et al., 1999; Dudley and 

Stewart, 2007; Rugel et al., 2012; Zume and Tarhule, 2007). Zume and Tarhule (2007) 

used MODFLOW (McDonald and Harbaugh, 1988) to evaluate the impacts of 

groundwater exploitation on stream flow depletion. Zume and Tarhule’s (2007) 

simulations showed that groundwater pumping reduced baseflow by 29% and increased 

downward flow of water within the streambed by 18% in the Beaver-North Canadian 

River in Oklahoma.  Rugel et al. (2012) used flow duration curves and annual baseflow 

recession slopes to describe changes in stream flows caused by agricultural irrigation 



 2 

systems within the Flint River Basin in southwestern Georgia. Rugel et al. (2012) found 

substantial reductions in stream baseflow and intensified low-flow and no-flow periods 

after the irrigation systems were installed.  

Storm events and variations in surface discharge have also been shown to alter the 

flow of groundwater within the streambed (Malcolm et al., 2004; Westhoff et al., 2011; 

Zimmer and Lautz, 2014). Malcolm et al. (2004) collected high-resolution hydraulic head 

data and indicated hydrological events (storms) drive rapid changes in flow within 

streambeds.  Malcolm et al. (2004) also observed changes in the hydrochemistry of 

hyporheic water during these events. Westhoff et al. (2011) used an advection-dispersion 

model coupled with an energy balance model to simulate in-stream water temperature. 

Westhoff et al. (2011) showed that infiltration losses were increased during small rain 

events and that hyporheic exchange varies with varying discharge at the beginning of first 

order streams.  

1.2 Measuring Flow Within the Streambed 
 

Tracing heat signals throughout streambeds has been found to be a useful method 

for quantifying the movement of water between the groundwater and surface water 

(Anderson, 2005; Kalbus et al., 2006; Keery et al., 2007). Suzuki (1960) was the first to 

develop an analytical method that used heat as a tracer to estimate vertical flow. Suzuki 

(1960) noted that characteristic sinusoidal temperature variations at the surface of the 

earth are damped with depth below the streambed.  He developed a method that used a 

heat flow equation to estimate vertical one-dimensional groundwater flow by comparing 

the temperature oscillations at the surface with those at a known depth below the surface 

(Suzuki, 1960). Stallman (1965) improved upon Suzuki’s work and eliminated an 
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approximation used in Suzuki’s method by developing an exact mathematical solution to 

Suzuki’s (1960) work. The transport of heat in the subsurface is a combination of 

conductive heat transport through the sediments and fluids, the dispersion of the heat due 

to groundwater velocity variation, and advective heat transport from flowing 

groundwater. Parameters that quantify the movement of heat in the subsurface can be 

estimated by fitting temperature profiles recorded within a streambed to an analytic or 

numerical heat transport model. This is often done by analyzing the damping of the 

diurnal temperature fluctuation with depth, and the shift in the phase of the temperature 

signal with depth (Keery et al., 2007; Lautz, 2010; Silliman et al., 1995).  These methods 

fit temperature (T) data measured at a range of (x) and times (t) to the one dimensional 

heat transport equation (equation 1) with assigned values for a heat energy storage 

constant (Kt), heat conduction and water dispersion constant (KCD), and advection 

constant (Kv) (Kipp, 1987). These constants are calculated from the thermal dispersion 

(D), heat conduction of the water and solid phases (kf, ks), porosity (n), heat capacity for 

the water and solid phases (cf, cs), density of the water and solid phases (

€ 

ρ f, 

€ 

ρ s), and 

vertical groundwater velocity (v). 

 

€ 

Kt
∂T
∂t

= Kcd ⋅
∂ 2T
∂x 2

−Kv ⋅ v⋅
∂T
∂x

 (1) 

 

€ 

Kcd = (n⋅ k f + (1− n) + n⋅ D (2) 

 

€ 

Kt = ρ f ⋅ c f ⋅ n + (1− n)⋅ ρs⋅ cs (3) 
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€ 

Kv = n⋅ ρ f ⋅ c f  (4) 

 

 

Several studies suggest that thermal dispersion is negligible (Bear, 1972; 

Ingebritsen and Sanford, 1999; Hopmans et al., 2002). Bravo et al. (2002) imply that 

thermal dispersion is negligible in the wetland system they investigated and only briefly 

mention this parameter in their discussion of heat transport applied to wetland systems. 

Roshan et al. 2012 created a power law relation between D and velocity that is applicable 

for higher dimensionless anisotropic thermal Peclet numbers (above about 2). Below this 

threshold, the thermal conductivity of the water and solid are the dominant terms in 

equation 3, and the assumption that thermal dispersion is negligible becomes valid. This 

transition occurs at velocities of approximately 3 x 10^-4 m/sec for heat transport through 

fine sand (Rau et al., 2012). The 1-D heat transport method is only sensitive to thermal 

diffusion and heat capacity when velocities are low (upflow less than 1.6 x 10^-8 m/sec) 

(Vandenbohede and Lebbe, 2010). Similar results were obtained using forward modeling 

to assess heat transport (Goto et al., 2005). 

Heat transport studies often focus on calculating an average direction and 

magnitude of groundwater flow within the streambed for long (3 days – 1 week) periods 

of time (Hatch et al., 2006; Lautz, 2010; Silliman et al., 1995). Short-term changes in 

flow within the streambed caused by pumping or storms will not be represented by these 

long term averaging methods. Therefore, it is not possible to fully understand how the 

flow between the groundwater and surface water is altered during short term events. 
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Other methods, such as aerial infrared photography, dyes, seepage meters, and stream 

flow measurements can all be used to quantify the vertical flow of water within 

streambeds (Kalbus et al., 2006; LaBaugh et al., 2008). Traditional methods for 

quantifying SBF and hyporheic exchange, such as seepage meters and Darcy flux 

estimates, have several limitations (Keery et al., 2007).  Seepage meters are inexpensive 

but record average discharge during the entire deployment period. This would prevent the 

detection of changes in flow during short-term events.  There is often uncertainty in 

Darcy flux methods caused by the large variation in magnitude of the hydraulic 

properties within a streambed (Keery et al., 2007). Heat transport methods avoid this 

problem as the properties of water, including density, heat capacity, and heat conductivity 

are well known and the heat capacity and heat conductivity of naturally occurring solids 

span a small range of values and can be taken from literature values (Constantz, 2008). 

Typically, porosity is either measured from sediment samples or estimated based on 

literature values for the materials observed in the streambed. Temperature data are also a 

relatively inexpensive parameter to measure and are quick and easy to collect with the 

emergence of low-cost data-logging temperature sensors (Kalbus et al., 2006). 

There are models that couple groundwater flow and heat transport, including 

HST3D (Kipp, 1987) and VS2DH (Healy and Ronan, 1996), that both numerically solve 

the 2 or 3 dimensional heat transport equations using the finite difference methods.  

However, these complex models are not always needed as one-dimensional models can 

provide accurate high-resolution spatial and temporal data (Hatch et al., 2006; Lautz, 

2010). Assumptions of a one-dimensional heat flow models, such as completely vertical 

flow, are often inconsistently valid in field conditions and have been the focus of multiple 
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recent studies (Briggs et al., 2013; Cuthbert and Mackay, 2013; Ferguson and Bense, 

2011; Lautz, 2010). Lautz (2010) found that errors in vertical flow are small (<20%) 

when vertical velocities are greater than horizontal velocities. Cuthbert and Mackay 

(2013) found that strong convergence or divergence of flow introduced significant error 

in vertical velocities calculated using heat transport methods. However, the errors 

estimated in this study are relatively small, especially for temperature measurements 

collected at a depth of 0.1 m (Cuthbert and Mackay, 2013). Ferguson and Bense (2011) 

found that one-dimensional analytical solutions can provide estimates of specific 

discharge into streams for specific discharges between 1.0 x 10-7 and 1.0 x 10-5 m/s. 

However, these estimations are only accurate when the variance in streambed hydraulic 

conductivity is low (Ferguson and Bense, 2011). Additional information on the 

application of heat transport methods can be found in Rau et al. (2014). 

1.3 Heat Transport and Streambed Variability 
The flow of groundwater within streambed has been shown to vary over space 

and time (Krause et al., 2007; Ellis et al., 2006). Many studies have used heat transport 

methods to investigate the variability of flow within streambeds (Ferguson and Bense, 

2011; Kalbus et al., 2009; Conant, 2004). Conant (2004) related streambed flux obtained 

from minipiezometer data to streambed temperature and used this relation to Calculate 

fluxes in a 60 m section of the Pine River in Angus, Ontario, Canada. Kalbus et al. (2009) 

used a heat transport model to investigate the influence of aquifer and streambed 

homogeneity on variation of flow within the streambed. Kalbus et al. (2009) found that 

the homogeneity of the aquifer has a stronger influence on the groundwater fluxes 

through the streambed than the streambed itself. However, a homogeneous streambed 

with low hydraulic conductivity resulted in homogenization of fluxes (Kalbus et al., 
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2009). Ferguson and Bense (2011) suggests that point measurements made with vertical 

temperature arrays represent average groundwater velocity over scales of square 

decimeters to square meters due to temperature averaging resulting from lateral 

conduction of temperatures.   

1.4 Research Goals and Hypothesis 
 This study focuses on expanding to the body of quantitative analysis and 

applications of heat transport methods to further understand the influence of short term 

hydrologic events on the groundwater and surface water system by quantifying changes 

in magnitude and direction of flow within two Maine streambeds induced by storms and 

pumping of near stream groundwater wells. Average velocity values are calculated 

before, during, and after these short-term events in order to see how the flow is changing.  

The variance within each streambed is also analyzed. We hypothesize that (a) pumping 

tests will produce higher infiltration rates within the streambed at both locations and (b) 

there will be an increase in downward flow within the two streambeds throughout the 

duration of storm runoff events that result in elevated stream flow stage. 
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CHAPTER 2: SITE DESCRIPTIONS 
In this study, data was collected from B Stream, a tributary of the Meduxnekeag 

River in northeastern Maine, and from the Stillwater River, a portion of the Penobscot 

River watershed in central Maine. The B Stream watershed has an area of 116 km2 and 

drains into the Meduxnekeag River on the west side of Houlton, Maine.  The land is 

covered predominantly by forests (79%) with about 17% of the area used for agriculture 

(Southern Aroostook County Soil and Water Conservation District, 1993). Bedrock of the 

B Stream watershed consists of steeply dipping calcareous and noncalcareous siltstones 

and calcic and dolomitic limestones that have been weakly metamorphosed (Pavilides, 

1971). Surficial geology in the region is dominantly glacial till with scattered swamp 

deposits (Brewer, 1981). The Stillwater River is located on the west side of Marsh Island, 

breaking from the Penobscot River and flowing around the island and eventually 

rejoining the Penobscot at the south end of the island.  The Penobscot River Watershed 

has an area of 21,476 km2 and drains into the gulf of Maine (Dudley and Giffen, 2001). 

Bedrock below the Stillwater River consists of thick interbedded phyllite and 

metasiltstone (Griffen, 1976). Surficial geology is glacial till and glaciomarine deposits 

with an esker running along the river right banks of the Stillwater River (Maine 

Geological Survey, 2003).  There is a deposit of wood waste, consisting of bark and 

wood chunks set in a matrix of sawdust with silt lining the bottom of the river (Emery 

and Garrett, 2002).  

In rural areas, such as northern Maine, the use of groundwater as a source for 

drinking water is higher due to the high proportion of the population who source their 

water from private wells (Prescott, 1963).  Groundwater resources in northern Maine are 

also under high demand for agricultural irrigation. Farmers concerned with potato quality 
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and reducing crop loss often increase groundwater usage to combat these concerns 

(Damicis and Baker, 2003).  Water use in Aroostook County has increased 400% from 

1982 to 1997, and the need for water continues to expand. The increased demand for 

water resource in Maine has prompted concern over the potential impact on the 

ecological health of surface-water systems. To address this concern, Maine has 

implemented low flow regulations (Maine Department of Environmental Protection, 

2007), that restrict extraction of water that directly or indirectly reduces in-stream flow 

below a minimum amount considered necessary for ecosystem health.  

Crocket station, the site of interest within the Meduxnekeag River Watershed for 

this study (Figure 1), is a retired water works building owned by the town of Houlton. 

This site was chosen due to its location on the banks of B Stream, and accessibility to the 

site (including land owner permission). Two 15 cm diameter bedrock wells (Crocket Well 

and Railroad Well) were installed in 2011 on the Crocket Station property measuring 30 

m and 45 m deep and located 10 m and 30 m away from B Stream, respectively. Both 

wells are similar in construction to the majority of domestic wells located in Houlton, 

Maine with an open hole within the bedrock and a black steel casing through the 

unconsolidated material (fill and till) and about a foot into the bedrock. The Maine 

Geological Survey has 93 registered domestic wells in the town of Houlton, the majority 

of which (92 out of 93) are bedrock wells.  Depths of these wells range from 7 m to 115 

m (mean=57 m, 1 standard deviation=19 m). The Stillwater River site was chosen 

because Old Town water supply wells are located on the banks of the Stillwater, 

providing a setting where high pumping rates occur near a river (Figure 2). These 

surficial wells measure 15.4 m and 14 m deep with 60 cm diameter casings and are 
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located 30 m and 46 m from the Stillwater River (Emery and Garrett, 2002). These two 

locations allow us to compare how differing types of near stream groundwater extraction 

and geology influence the flow of water within the streambed.  
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Figure 1: Map of the B Stream Field Site. The sample site is located in Houlton, 
Maine. The locations where iButtons were deployed in the stream are in orange and the 
green circles represent wells used for pumping tests.  
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Figure 2: Map of the Stillwater River Site. The sample site is located in Old Town, 
Maine. The locations where iButtons were deployed in the stream are in orange and the 
green circles represent wells used for pumping tests.  
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CHAPTER 3: METHODS 
3.1 Temperature Time Series Data 

The flow of water within the streambed at both study sites was calculated by 

using streambed temperature time series to calibrate a numerical one-dimensional finite 

difference heat transport model. Temperature profiles were collected over 2 week periods 

during the summer of 2014 starting in early May and ending in early September. 

Temperature measurements were recorded with Thermochron iButtons (Dallas 

Semiconductor, Dallas Texas) models DS1922L and DS1921Z with accuracy of 0.5oC 

and 1.0oC and precision of .125oC and .0625oC, respectively.  The iButtons were 

programmed to record data at 10-minute intervals for 2 week periods.  Each vertical 

profile was collected by placing four iButtons into a machined plastic rod with slots at 

intervals of 8 cm to assure consistent spacing of the iButtons (Figure 3). The slots 

housing the iButtons where sealed by covering the openings with electrical tape to 

waterproof the iButtons.  

 
Figure 3: iButton and Deployment Stick. iButtons housed in the machined plastic rod. 
A U.S. quarter (2.42 cm diameter) is shown for scale. 
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iButton temperature loggers were deployed in two locations at each study site to 

assess the spatial and temporal variability of the flow of water within each streambed 

location. During each two-week collection period, two sets of six logger arrays were 

installed in a 2 by 3 rectangular configuration with spacing of 25 cm between each 

iButton rod (Figure 4). One array was placed in the streambed closest to the Crocket Well 

and the other was placed 3 m down stream from the first location. Each logger rod was 

pushed into the streambed until the top iButton was resting at the top of the streambed 

and the other three iButtons were at streambed depths of 8 cm, 16 cm, and 24 cm.  

Temperature profiles were collected from the Stillwater River four times during the 

summer of 2014 beginning on July 1st and ending on September 2nd. Two sets of four 

logger arrays were installed by a 2 X 2 configuration with spacing of 25 cm between each 

rod.  

 
Figure 4: iButtons Deployed at the B Stream Site. This picture shows the temperature 
arrays deployed in the streambed of B Stream. Bobbers and string were attached to the 
top of the plastic rods for easy location. The spacing between each stick is 25cm. 
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3.2 Pumping Tests 
Four separate pumping tests were executed on Crocket Station’s two bedrock 

wells with the purpose of seeing how nearby groundwater extraction influenced the flow 

of water within the B Stream streambed. A 12volt DC Proactive™ Tornado 85 pump 

powered by two 12v 35AH AGM Deep Cycle batteries was used to Conduct two 

pumping tests on each well, one during high streamflow in the spring and one during low 

streamflow in the end of summer. There was a minimum duration of 10 days between 

each pumping test to allow for the system to recover. Each pumping test had duration of 

3 hours with a pumping rate of 2 l/min  to 3.5 l/min and was conducted during a two-

week temperature collection period. Each pumping test resulted in the removal of about 

720 l of groundwater, an amount of water that is greater than the average daily household 

use of 554 l/day (Hutson, 2004). A higher than average pumping rate was used for two 

reasons: 1) To avoid underestimation of the pumping effect on SBF and 2) to stress the 

system to accommodate the short time period of pumping provided by the batteries. Head 

changes in both wells were measured manually with electric water level tapes and an 

unvented pressure transducer (Solinst LeveLogger). Time series hydraulic pressure head 

data was collected from the well at intervals of 1 minute during the pumping tests and 

was corrected for atmospheric pressure changes by barometric pressure data retrieved 

from the Houlton International Airport (4.3 miles from Crocket Station). Drawdown data 

was analyzed using the Log-Log curve matching Theis method presented by Fitts (2013) 

to determine transmissivity of the two wells (Theis, 1935). Individual pumping tests were 

not completed on the Old Town wells. However, flow rates from the Old Town wells 

were provided by the Old Town water district. Stream stage data was collected using an 
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unvented pressure transducer (Solinst LeveLogger) placed in a stilling well that was 

attached to a metal rod driven into the river. 

3.3 One-Dimensional Finite Difference Heat Transport Model 
The direction and magnitude of the vertical groundwater flow within the 

streambed was calculated by calibrating a numerical one-dimensional finite difference 

model with the vertical temperature profiles collected during the summer of 2014.  The 

model solves equation 1, the enthalpy dependent derivation of the heat transport equation 

used in the USGS model HST3D (Kipp, 1987).  The model was created in a Python (van 

Rossum and Drake, 2011) script, using the Numpy (Oliphant, 2007) and Matplotlib 

(Hunter, 2007) libraries that enhance the numerical and plotting capabilities of the Python 

scripting language. The partial derivatives within equation 1 were approximated with 

finite difference methods (Slingeland and Kump, 2012). The conduction/dispersion term 

and the advection term are solved separately by using operator splitting. First, the 

conduction/dispersion term is solved using an implicit forward finite difference method 

(Slingerland and Kump, 2011). Second, an upwind scheme is used to solve the advective 

portion of the numerical model (Slingerland and Kump, 2011). The advective portion of 

equation 1 represents the water flux in and out of the cell and assumes all flow is vertical. 

The approximation for the partial derivative in the advective portion of equation 1 is 

dependent on the direction of groundwater flow.  The approximation for the partial 

derivative within the advective term of equation 1 is given as 

 

€ 

∂T
∂x

=
Tfront −Tback

Δx  (5) 
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where Tfront  and Tback are the temperatures of the cells upstream of the respective cell 

face. This approximation can introduce instability within the model and is invalid when 

the stability criterion (eq 6) is violated (Slingerland and Kump, 2011). This method can 

also create numerical dispersion, especially where temperatures change rapidly over short 

distances (Slingerland and Kump, 2011). 

 

€ 

| v |⋅dt
dx

<1
 

(6) 

  

The stability of the upwind scheme (eq. 6) requires the product of the velocity (v) and the 

time step (dt) to be smaller than the size of the distance step (dx).  

The one-dimensional vertical model has a total length of 5 m that is uniformly 

divided into 250 cells. Temperature is calculated in each of the 2 cm long cells over time 

to simulate the temporal temperature signal at different depths beneath the streambed. 

Temperatures are fixed at the top problem domain at each time step using measured 

streambed temperatures. A constant average annual temperature (6oC) was assigned to 

the bottom model cell. Thermal dispersion was assumed to be small and set to 0.005 

W/m•C. Values used for constant parameters can be found in table 1.  

Model Property B Stream Stillwater Units 
Density of Fluid 1000 1000 kg m-3 

Density of solid 800 250 kg m-3 

Specific heat of fluid 4186 4186 j kg-1 C-1 

Specific heat of solid 1300 900 j kg-1 C-1 

Heat conduction of fluid 0.58 0.58 W m-1 C-1 

Heat conduction of solid 1.5 0.15 W m-1 C-1 

Porosity 0.2 0.7 - 
Hydrodynamic Dispersion 0.005 0.005 W m-1C-1 

 
Table 1: Model Parameter Values Used In Simulations 
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The direction and magnitude of the advective flux within the streambed, v m/sec, 

was estimated by minimizing the normalized squared residuals (RNSS) between the 

measured and simulated temperatures at all three depths of 8 cm, 16 cm, and 24 cm 

(equation 7) 

 

€ 

RNSS =

(Ti _meas −Ti _ sim )
2

i=1

n

∑
n

 
(7) 

 

where Ti_sim and Ti_meas are the ith value of the modeled and measured temperature time 

series data and n is the number of time steps. Running different velocity values ranging 

from -1 x 10-4 to 1 x 10-4 m/s through the model simulated the multiple temperature 

profiles used in calibration. The simulated profile with the lowest total combined RNSS  

for all three depths was considered the best fit and the velocity parameter used to produce 

that modeled profile was assigned to the measured data. Negative and positive velocity 

values within the model indicate upward and downward flow, respectively, within the 

streambed. A velocity value of zero indicates a system with no vertical groundwater flow.  

Temperature data was broken into 24 hour windows and the velocity was allowed 

to change at the beginning of each window in order to capture the potential transient 

response of changing advective flow over short periods (1 – 3 days) caused by the 

pumping tests and storms. Different vertical velocities are allowed in each time window 

and these velocities change as a step function in each time window (i.e. instantaneous 

change in velocity every 24 hours). The first day in each data set was considered a 

‘warm-up’ period because the initial streambed temperatures are unknown and inaccurate 



 19 

temperatures are impacted by the poorly constrained initial conditions (Lautz, 2010; 

Silliman et al., 1995).   

Upward, downward, and no flow conditions were run through the model in order 

to see if it was responding to different flow conditions properly. Theoretically, the 

temperature signal at depth of a streambed with downward flow will have higher 

amplitude than that of a streambed with upward flow. The advective portion of equation 

1 drives the propagation of the temperature signal into the streambed when the water is 

flowing down from the streambed and into the hyporheic zone. Figure 5 shows the 

simulated temperature curves, each with a different velocity values. 

 
Figure 5: Varying Velocity Within the Model. Modeled temperature values at 14cm 
depth with upward (negative), downward (positive), and no flow conditions. The upflow 
condition (red curve) causes the advective portion of equation 1 to work against the 
propagation of the temperature signal, damping the amplitude of the signal.  
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CHAPTER 4: RESULTS 
4.1 Pumping Tests 

Pumping tests on the Crocket well (Figure 1) with pumping rates of 2 l/min and 

3.5 l/min and durations of 3.5 hours for each test caused water level in wells to drop 302 

cm and 1339 cm, respectively. Drawdowns of 4 cm and 10 cm were recorded in the 

Railroad well (Figure 1) during the pumping tests of the Crocket well. Transmissivity of 

the Crocket well was calculated to be 0.001 m2/min. Pumping tests on the railroad well 

with pumping rates of 2 l/min and 3.5 l/min and durations of 3.5 hours caused water level 

in 324.2 cm and 712 cm, respectively. Drawdown of 6cm and 18 cm was recorded in the 

Crocket well during the pumping tests of the railroad well. Transmissivity of the railroad 

well was calculated to be 0.01m2/min. 

4.2 Temperature Data 
Streambed temperature data fluctuate diurnally within the streambed at both sites 

(Figure 6).  Temperatures at depth are usually colder than those recorded at the surface. 

Amplitudes of the temperature signals at the B Stream location range from 3-4oC at the 

streambed to 0.5-1.0oC at depths of 24 cm, dampening with depth. Stillwater temperature 

signals exhibit a similar trend but have smaller amplitudes at the streambed (2-3oC) and 

at depth (no diurnal signal at 24 cm depth). Temperatures deviate away from sinusoidal 

patterns throughout the data and occur at both sites with durations of 1-3 days (Figure 7).  

Many deviations occur during or shortly after a precipitation event and/or a drop in air 

temperature.  

Deviations occur as either a muting of the diurinal signal or as an inversion of the 

temperature gradient within the streambed (Figure 7). Temperature at the streambed 

drops quickly with the air temperature while the temperature at depth exhibits a 
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dampened and delayed response to the decreasing surface temperature, causing an 

inversion in the temperature profile. The decrease in temperature is followed by a 

recovery of the original temperature gradient and diurinal signal at or below temperatures 

recorded before the event.  

 
Figure 6: Measured Temperature Profile. Temperature data from one temperature 
array recorded at depth within the streambed of B Stream. 
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Figure 7: B Stream Temperatures During Hurricane Arthur. Hurricane Arthur 
moved through both field sites during the evening of July 4th to the afternoon of July 5th. 
An inversion is seen here from 5 July 2014, 00:00 to 6 July 2014 12:00. A muting of the 
temperature signal occurs after the inversion from 6 July 2014 12:00 to 7 July 2014 
12:00.  
 

4.3 Model Data 
B Stream temperature data collected from June 3rd to July 13th and August 1st to 

September 12th were used to calibrate the heat transport model by adjusting the velocity 

parameter from equation 10. Two 14-day periods of data were not used as data from July 

13th to July 31st was lost due to equipment error. Stillwater River temperature data 

collected from July 1st to July 15th and July 22nd to September 2nd were used for model 

calibration. Data collected from July 22nd to August 4th was lost due to equipment error. 

High water levels that prevented logger retrieval from July 15th to July 22nd caused the 

gap in the Stillwater River temperature data.  

B Stream values extracted from daily model calibrations ranged from -5.27 x 10-5 

m/sec to 2.74 x 10-5 m/s (mean = -1.13 x 10-5 m/s, standard deviation = 1.46 x 10-5 m/s) for 
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location 1 and from -7.20 x 10-5 m/s to 3.80 x 10-5 m/s (mean = -1.93 x 10-5 m/s, standard 

deviation = 2.03 x 10-5 m/s) for location 1.  RNSS of the daily windows ranged from 

0.005oC to 0.209oC (mean = 0.028oC, standard deviation =0.036oC). The majority of the 

daily extracted velocities at location 1 are upward, eight out of 55 are downward.  The 

downward velocity values occur during three separate occasions from July 5th to July 7th, 

on August 14th, and from September 7th to September 12th
 (Figure 8).   Location 2 exhibits 

similar trends with the majority of the daily extracted velocities being upward in flow 

direction and five days of downward velocity values occurring on July 5th and 6th, August 

14th, and September 9th and 12th  (Figure 9). Paired students t-tests (McClave and Sincich, 

2009) indicate that there is a significant difference (p=0.0004) between the average 

extracted velocities from location 1 and 2. 
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Figure 8: Average Velocities at Location 1 of the B Stream Site. Average velocities of 
location 1 in B Stream are plotted on the bottom portion of the plot. The top portion is the 
daily precipitation rates. 
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Figure 9: Average Velocities at Location 2 of the B Stream Site.  Average velocities 
of location 2 in B Stream are plotted on the bottom portion of the plot. The top portion is 
the daily precipitation rates 
 
 
 

Stillwater River velocity values extracted from daily model calibrations ranged 

from -3.93 x 10-5 m/s to -3.67 x 10-7 m/s (mean = -4.38 x 10-6 m/s, standard deviation = 

8.02 x 10-6  m/s) for the south location (Figure 10) and from -7.67 x 10-5 m/s to 1.63 x 10-6 

m/s (mean = -5.01 x 10-6  m/s, standard deviation = 1.34 x 10-5 m/s) for the north location 

(Figure 11).  RNSS of the daily windows ranged from 0.005oC to 0.209oC (mean = 

0.028oC, standard deviation =0.036oC). The majority (46 out of 53) of the daily extracted 

velocities at the north location indicate upflow, seven out of 55 indicate downflow.  The  

velocity values with downward flow occur once on August 20th and from August 22nd to 

August 28th the 25th
 and 28th. All of the daily extracted velocity values at the south 



 26 

location are upward.  A full account of all calculated velocities and errors can be found in 

tables 2.1 and 2.2. Paired students t-tests indicate that there is no significant difference 

(p=0.624) between the daily average velocities from the north and south locations before 

August 27th. However, paired students t-tests indicate there is a significant (p=0.002) 

difference between the daily average velocities from August 27th to September 2nd. 

 

 
Figure 10: Average Velocities at the South Location of the Stillwater River Site. 
Average velocities of the south location in the Stillwater River are plotted on the bottom 
portion of the plot. The top portion is the daily precipitation rates 
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Figure 11: Average Velocities at the North Location of the Stillwater River Site. 
Average velocities of the north location in the Stillwater River are plotted on the bottom 
portion of the plot. The top portion is the daily precipitation rates 
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CHAPTER 5: DISCUSSION 
5.1 Pumping Influence on Velocities 

Daily model calibrations allowed for the analysis of the changes in groundwater 

flow within the streambed changed during short-term hydraulic events.  Velocity outputs 

from the model indicate that the pumping tests conducted on the bedrock wells near B 

Stream had no effect on the direction of flow within the streambed (Figure 12). 

Reductions in hydraulic head were recorded in each well opposite of the well being 

pumped. This indicated that the cone of depression formed around the well being pumped 

had extended to the other well. Therefore it is known that the cone of depression forming 

around the pumped well had a radius no smaller than 45m. Both wells are closer than 45 

m to the edge of the stream (6 m and 25 m) suggesting that the cone of depression extends 

to B Stream. The cone of depression should change the hydraulic gradient as it reaches 

the streambed.  However, no significant change in the flow occurs within the model 

output. This result indicates that streamflow or hyporheic exchange within B Stream was 

not significantly impacted by the short term pumping tests. Additional testing necessary 

to determine if long term pumping would have impacted the groundwater velocity within 

the B Stream streambed.  
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Figure 12: Average Velocities During June Pumping Test at B Stream. The top 
portion of Figure 8 shows the pressure head in the Crocket Well during the June pumping 
test. The bottom plot shows the measured and modeled temperature profiles recorded 
during the pumping test. The black boxes represent the windows of time that the model is 
calibrated to. The numbers above each window are the velocity values in m/s extracted 
for each individual window. 
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The surficial till unit that dominates the Houlton quadrangle (Brewer, 1981) could 

be decreasing the vertical effect of the expanding cone of depression and preventing it 

from influencing the SBF within B Stream. Glacial till in Maine has been shown to 

exhibit hydraulic conductivity values reaching as low as 3.5 x 10-7 m/s (Lyford et al., 

1999). A low hydraulic conductivity till may reduce the hydraulic interconnection 

between the bedrock and the surficial unit, restricting flow of water from the surficial unit 

into the bedrock.  If a low conductivity till were impeding the flow of water from the 

surficial unit into the bedrock, drawdown would occur in the bedrock with little impact to 

the surficial unit. Water would eventually begin to percolate into fractures from the 

surficial unit if the cone of depression was maintained for an extended period of time. 

However, hydraulic stress associated with short term pumping likely recovers before 

impacting the hydraulic gradients within the streambed.  Higher pumping rates and 

extended pumping durations when compared to the tests executed in this study appear to 

be required for the pumping to have a significant effect on the flow of water within B 

Stream’s streambed.  

Velocity outputs from the model indicate that pumping of the surficial wells near 

the Stillwater River induced a shift in the direction of flow within the streambed (Figure 

13). There was a shift in pumping rates on August 27th where well 28 was turned off and 

well 2a was turned on. The wells at the Stillwater River site are in surficial deposits and 

have very high pumping rates. The downward velocity values before the pump shut off 

indicate that well 28 is drawing water from the Stillwater river. Loggers from the north 

location recorded a shift from downward velocity values to upward velocity values on 
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August 28th. This shift in direction of flow is likely caused by the recovery of the cone of 

depression after well 28 was shut off.  

 
 
Figure 13: Average Velocities Pumping Rates at B Stream. Pumping rates from wells 
28 and 2a vs. the modeled velocity values of the optimization windows at the Stillwater 
north location. Velocity values shift from upflow to downflow after well 28. 
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5.2 Storm Event Influence on Velocities 
A mixture of upward and downward vertical groundwater velocities indicated by 

the calibrated simulations suggests that the direction of the groundwater flow in the 

streambed is shifting over time during storms in B Stream. Shifts in velocity at both B 

Stream sites are coincident with large rainfall events and increased stream water levels 

(Figures 8 and 9). The three periods with directional change of velocity occur within the 

model during and shortly (1-2 days) after the three largest (1.7 cm, 3 cm, and 8 cm of 

rain) precipitation events that occurred during data collection (Figure 14). The hydraulic 

gradient drives the flow of water (Freeze and Cherry, 1979) and higher water levels in B 

stream introduced by storms could lead to a change of the vertical hydraulic gradient. 

Boano et al. (2007) found that stream discharge and height fluctuations could cause 

variations in SBF. Hurricane Arthur, a weak tropical storm when it passed over Maine, 

had the highest rainfall rates and largest stream stage increase (1.5 m) measured during 

the study period. The output velocities from the model indicate a shift from upward to 

downward flow within the streambed during the increase in stream level (Figure 11).  

Flow then shifts back to upward flow after stream levels drop to previous storm levels. 

The two other large storms exhibit smaller but similar trends.  

The Stillwater River model results do not exhibit the same directional change as 

seen in the B Stream results (Figure 15). Hurricane Arthur passed over the Stillwater 

River but the same directional shift in groundwater flow does not occur at either location. 

The velocity values at both Stillwater River locations exhibit upward flow and peak in 

magnitude during the elevated stream stage. Large watersheds have been shown to have 

muted or delayed responses in stage and discharge to precipitations events (Dingman, 

2002). The stage of the Stillwater River peaked a day later than the stage of B Stream 
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after Hurricane Arthur. This delayed and muted response of stream stage could be 

limiting the effect of the storm on the SBF within the Stillwater River.  

The differing geology between the Stillwater River and B Stream locations may 

be responsible for the differences in response of the velocity values.  The esker located at 

the Stillwater site consists of medium sand to coarse gravel (Emery and Garrett, 2002). 

Typical hydraulic conductivity values of sand and gravel are magnitudes higher than 

typical hydraulic conductivity values of the fractured bedrock at the B Stream site. Water 

from precipitation events will most likely travel faster through the esker than the 

fractured bedrock.  These differences in flow could be responsible for the differences in 

the direction of flow within the streambed observed between the two study sites. 

 
Figure 14: Average Velocities vs. Stream Stage and Precipitation at B Steam. 
Precipitation, stream stage, and modeled velocity value plots from top to bottom. The 
large increase in the stream stage could alter the hydraulic gradient within the streambed. 
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Figure 15: Average Velocities vs. Stream Stage and Precipitation at the Stillwater 
River. Precipitation and stream stage vs. the velocity values from a temperature array at 
the North Stillwater Location. No change in the sign of the velocity values occur, 
indicating no shift in direction of flow within the streambed. 
 

These flow reversals have the potential to alter stream characteristics such as 

streambed chemistry (Zimmer and Lautz, 2014) and the ability of the stream to support 

habitat for fish (Brabrand et al., 2002). Zimmer and Lautz (2014) found that a rise in 

stream stage causes locations within the streambed that are surface water rich to be 

inundated with dilute event water.  The change from upflow to downflow in B Stream 

recorded during Arthur will introduce surface water into an otherwise groundwater 

dominated portion of the streambed and has the potential to alter the chemistry within it. 

Changes in the residence time of water in the streambed caused by changes in flow have 

the potential to alter biogeochemical processes occurring in the streambed (Gooseff et al., 

(2003). Process such as the mineralization of dissolved organic carbon and nitrogen occur 

over periods of days to weeks and a change in flow had the potential to alter these 
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processes (Gooseff et al. 2003). Groundwater influx can control the amount of available 

habitat suitable for salmonid reproduction. Brabrand et al. (2002) found a correlation 

between salmonid redd density and the degree of groundwater influx. He attributed this 

result to the stable temperature regime provided by an influx of groundwater. Further 

research should investigate how these short-term reversals impact the quality of water 

and fish habitat within a stream. 

The shift in direction of flow measured in the B Stream data is not a data artifact 

produced by the streambed temperature deviations brought by precipitation events. SBF 

shifts do not occur during all temperature deviations and are not associated with small 

precipitation events. For example, the streambed temperature drop of 28oC to 8oC from 

July 10th to July 11th (Figure 7) is not associated with a precipitation event and caused a 

small inversion of the temperature signal very similar to the inversion following the 

September 6th storm.  However, unlike the velocity values following the September 6th 

storm, values stay upward throughout the inversion. Smaller (>1.5 cm) precipitation 

events do not have a significant effect on the flow of groundwater within the streambed. 

Rain events on August 6th and September 3rd had rainfall totals of >1.5 cm and displayed 

non-sinusoidal temperature deviations. These events did not raise the stage of B Stream 

or the Stillwater River and did not have a significant effect on the direction or velocity of 

the SBF.  

5.3 Variance Between Temperatures and Velocities 
There is a significant difference (p=0.004) between the average velocities 

between the iButton locations in B Stream as indicated by the paired student’s t-test. 

Location 2 at the B Stream site has a higher upward average velocity (-1.93 x 10-05 m/sec) 

than location 1 (-1.13 x 10-05 m/sec). Temperatures recorded at depth at location 2 should 
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be colder than temperatures at location 1 because of the stronger upward velocity at 

location 2.  The average temperature signal at each location indicates that the 

temperatures collected at location 2 are consistently colder than temperatures at location 

1 (Figure 16).  Temperatures collected at a depth of 24 cm are on average 1.14oC colder 

at location 2 when compared to location 1. The average velocities between the iButton 

locations in the Stillwater River are not significantly different before well 28 was turned 

off.  However opposing directions of flow Temperatures at both locations are very similar 

and differ by an average of 0.33oC (smaller than the iButton accuracy of 0.50oC) at a 

depth of 24 cm (Figure 17).  The wood pulp material that lines the entire streambed of the 

sample locations and the sorted esker landform (Emery and Garrett, 2002) likely drive the 

lack of hydraulic variability and resulting streambed velocities and temperatures. The 

significant variability within B Stream is caused by the heterogeneity of the streambed, 

which is mainly composed of poorly sorted clays and glacial till (Pavilides, 1971).  
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Figure 16: Average Temperatures at Both Locations of the B Stream Site. Average 
temperatures from B Stream at location 1 are plotted in the bold and full line. Average 
temperatures from B Stream at location 2 are plotted in the bold dashed line. All 
temperature measurements are plotted behind the bold lines. Blue lines are temperatures 
at the streambed and the green, orange, and red lines are temperatures at 8 cm, 16 cm, and 
24 cm depth. Mean difference between the two sites was 0.37oC, 1.07oC, 1.31oC, and 
1.54oC at depths of 0 cm, 8 cm, 16 cm, and 24 cm within the streambed. 
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Figure 17: Average Temperatures at Both Locations of the Stillwater River Site. 
Average temperature at the south location is plotted in the bold and full line. Average 
temperature for the north location is plotted in the bold dashed line. All temperature 
measurements are plotted behind the bold lines. Blue lines are temperatures at the 
streambed and the green, orange, and red lines are temperatures at 8 cm, 16 cm, and 24 
cm depths. Mean difference between the two sites was 0.35oC, 0.14oC, 0.22oC, and 
0.27oC at depths of 0 cm, 8 cm, 16 cm, and 24 cm within the streambed. 
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CHAPTER 6: CONCLUSION 
One-dimensional heat transport methods were used to assess the potential impact 

that near stream groundwater extraction and storms have on the flow of groundwater 

within the streambeds of B Stream (Houlton, Maine) and the Stillwater River (Old Town, 

Maine). Calibrations of a numerical one-dimensional heat transport model allow for the 

investigation of changes in transient groundwater flow within a streambed caused by 

short-term hydraulic events such as storms and nearby groundwater pumping. This 

analysis of temperature data collected in the Stillwater River confirm that flow within the 

streambed is affected by the pumping of large surficial aquifer wells located close to the 

stream. However, pumping smaller bedrock wells close to a stream in a location with low 

conductivity glacial till does not have an effect on the flow within the streambed. The 

analysis confirmed an increase in downward SBF directly after large (>1.5 cm) storm 

events at B Stream but not at the Stillwater River. Significant variance in average 

velocities between the two sample locations at B Stream was detected. This variance is 

likely to be a product of the streambed geology. Further study should focus on using 

short-term heat transport model calibration to investigate the potential impact of stream 

characteristics (geochemical, quality of fish habitat) caused by these short-term hydraulic 

events and how variance within the streambed alters the influence of pumping tests on the 

flow within the streambed.  
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APPENDIX A: PYTHON SCRIPTS!
Heat Transport Model 
 
def model_ss(V,file_list,start,stop,initial_guess): 
 ''' 
 Five arguments  
 
 - 1st arg is the velocity of the flow 
  (negative flow is up, positive flow is down) m/s 
 - 2nd arg is the porosity of the material 
 - 3rd arg is a list of 4 variables. Each variable is an output array from the read_data  
  function. The order of the list should be blue, green, orange, red.  
 - 4th arg is the start point (date) of optimization  
 - 5th arg is the end point (date) for optimization 
  
 - 4th and 5th argument should be in string format  
  
 Ex: 'Jun 03 2014 12:00' 
   
 Returns three objects 
 
 - 1st is the error value  
 - 2nd is the temperatures calculated at depth 
 - 3rd is the dates of when the temperatures were calculated at  
 
 ''' 
 import numpy as np 
 from read_data import read_data 
 from copy import copy 
 from dateutil.parser import parse 
 # Heat term 
 
 pf=1000. # density of fluid kg/m**3 
 cf=4186. # specific heat of fluid joule/kg c 
 ps=800  # density of solid kg/m**3 
 cs=1300  # specific heat of solid joule/kg c 
 n=.20 
 Ke=(pf*cf*n+(1-n)*ps*cs) 
 
 # Conduction and Dispersion 
 kf=.58 # watts/m c 
 ks=1.5 # watts/m c 
 D=V*0.005 
 Kcd=(n*kf+(1-n)*ks+n*D) 
 
 # Advection 
 Kv=n*pf*cf 
 
 # Simplifying  
 dt=3*60.   # seconds in three minutes  
 dx=.02     # meters 
 C=(dt/dx**2)*(Kcd/Ke) 
 
 
 # matrix 
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 mtrx=np.zeros([250,250]) 
 for i in range(250): 
  for j in range(250): 
   if (i==0) and (j==0): 
    mtrx[i,j]=1 
   elif (i==249) and (j==249): 
    mtrx[i,j]=1 
   elif (i==j): 
    mtrx[i,j]=2*C+1 
    mtrx[i,j-1]=-C 
    mtrx[i,j+1]=-C 
    
 tsteps2=2 
 dt2=dt/tsteps2 # 3 minute steps (180 seconds) used in advection calculation 
 
 bed_temps=file_list[0] 
 green_temps=file_list[1] 
 orange_temps=file_list[2] 
 red_temps=file_list[3] 
 
 vect=initial_guess  #18.5*np.ones([250]) # Initial Guess 
 vect[249]=10              # Setting the boundary condition  
 temp_at_depth=[] 
 if (V*dt2/dx)>1.: 
  print 'stability violated'     
 
 
 number_of_rows=len(bed_temps) 
 for t in range(number_of_rows): 
  vect[0]=bed_temps[t,1]  # adding the streambed data to the vector 
  solv=np.linalg.solve(mtrx,vect) # solving for conduction dispersion term 
  temps=copy(solv) 
  temps_old=copy(solv) 
 
  for t2 in range(tsteps2): # solving for advective term 
   if V>0: 
    temps[1:-1]=(-Kv/Ke*V*dt2/dx)*(temps_old[1:-1]-temps_old[0:-
2])+temps_old[1:-1] 
   
   else: 
    temps[1:-1]=(-Kv/Ke*V*dt2/dx)*(temps_old[2:]-temps_old[1:-
1])+temps_old[1:-1] 
 
  vect=copy(temps) 
  temp_at_depth.append([temps[4],temps[8],temps[12]]) 
  
  
 temp_at_depth=np.array(temp_at_depth) 
  
 # setting up optimization arrays  
 calculated_green=temp_at_depth[:,0] 
 measured_green=green_temps[:,1] 
  
 calculated_orange=temp_at_depth[:,1] 
 measured_orange=orange_temps[:,1] 
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 calculated_red=temp_at_depth[:,2] 
 measured_red=red_temps[:,1] 
  
 dates=green_temps[:,0] 
  
 idx_start=np.where(dates==parse(start)) 
 idx_stop=np.where(dates==parse(stop)) 
  
 start=float(idx_start[0]) 
 stop=float(idx_stop[0]) 
  
 # Calculating error 
 diff_green=calculated_green[start:stop]-measured_green[start:stop] 
 diff_orange=calculated_orange[start:stop]-measured_orange[start:stop] 
 diff_red= calculated_red[start:stop]-measured_red[start:stop] 
 diff_green=np.absolute(diff_green) 
 diff_orange=np.absolute(diff_orange) 
 diff_red= np.absolute(diff_red) 
 
  
 aerr_green=np.sum(diff_green)/len(diff_green) 
 aerr_orange=np.sum(diff_orange)/len(diff_orange) 
 aerr_red=np.sum(diff_red)/len(diff_red) 
 ss=(aerr_green**0.5+aerr_orange**0.5+aerr_red**0.5)/3 
 
 return ss,temps,temp_at_depth,dates 
 
 
 
Model optimization 
 
import os 
import numpy as np 
import matplotlib.pyplot as plt 
from dateutil.parser import parse 
from read_data import read_data 
from new_velocity_model import model_ss 
 
 
# Setting up the optimization parameters 
 
# path to data files 
path=os.path.expanduser('~/Desktop/thesis/data/corrected_data_houlton/houltonC_2014_09_12/') 
 
# putting together velocity array 
v5=np.array([[x*-1e-5 for x in range(9,0,-1)]]) 
v6=np.array([[x*-1e-6 for x in range(9,0,-1)]]) 
v7=np.array([[x*-1e-7 for x in range(9,0,-1)]]) 
v8=np.array([[x*-1e-8 for x in range(9,0,-1)]]) 
vp5=np.array([[x*1e-5 for x in range(9,0,-1)]]) 
vp6=np.array([[x*1e-6 for x in range(9,0,-1)]]) 
vp7=np.array([[x*1e-7 for x in range(9,0,-1)]]) 
vp8=np.array([[x*1e-8 for x in range(9,0,-1)]]) 
velocities=np.hstack((v5,v6,v7,v8,vp8,vp7,vp6,vp5)) 
length_v=np.shape(velocities) 
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velocities=np.reshape(velocities,(length_v[1],1)) 
 
dates=['Aug 29 2014 15:00','Aug 30 2014 15:00','Aug 31 2014 15:00','Sep 1 2014 15:00','Sep 2 2014 
15:00', 
'Sep 3 2014 15:00','Sep 4 2014 15:00','Sep 5 2014 15:00','Sep 6 2014 15:00','Sep 7 2014 15:00','Sep 8 2014 
15:00', 
'Sep 9 2014 15:00','Sep 10 2014 15:00','Sep 11 2014 15:00','Sep 12 2014 10:00'] 
 
f,(ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10) = plt.subplots(10, sharex=True) 
 
 
######################### 
 
optimized_v001=[] 
guess=18.5*np.ones([250]) # taking an initial guess at the temperature values 
for i in range(len(dates)-1): # looping through each date window 
    blue=read_data('001blue_h_2014_09_12shift.txt',path,dates[i],dates[i+1]) #reading in measured 
temperatures 
    green=read_data('001green_h_2014_09_12shift.txt',path,dates[i],dates[i+1]) 
    orange=read_data('001orange_h_2014_09_12shift.txt',path,dates[i],dates[i+1]) 
    red=read_data('001red_h_2014_09_12shift.txt',path,dates[i],dates[i+1]) 
    file_list=[blue,green,orange,red] 
 
    errors=[] 
 
    for v in velocities: # calculate temperatures for each velocity values within the velocity array 
        ss,temps,t_at_d,plotdates=model_ss(v,file_list,dates[i],dates[i+1],guess) 
        errors.append([v,ss,t_at_d,temps]) 
        print '{0},{1},{2},{3}'.format(dates[i],dates[i+1],v,ss) 
 
    errors=np.array(errors) # finding the minimum error 
    err_col=errors[:,1] 
    idx=err_col.argsort()[:2] 
    fit=errors[idx]   
    optimized_v001.append(fit) 
    best=fit[0] 
    best_temps=best[2] 
 
    # setting the guess for the next window of data to the last column of temperatures in from the model run 
with the     lowest error      
    guess=best[3]  
 
 
 
Read Data Script 
 
def read_data(filename,path,start_date,end_date): 
 ''' 
 Four arguments 
 
 - 1st arg is the name of the iButton file 
 - 2nd arg is the path to file  
 ex: path=os.path.expanduser('~/Desktop/maine/thesis/data/houlton_jun_19_2014/IButtons/') 
 - 3rd arg is the start date and time of the data 
 - 4th arg is the end date and time of the data 
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 -------------------- 
  
 date time should be in the following format 
  
 'Jan 01 2014 13:00' 
  
 -------------------- 
 ''' 
 
 from dateutil.parser import parse 
 import numpy as np 
 from dateutil import rrule 
 import time 
 import os 
  
 data=[] 
 flag=0 
 with open(path+filename,'r') as fl: 
  for line in fl: 
   line=line.decode(errors='ignore') 
   words=line.split(',') 
   if flag==1 and (len(words)>1): 
    date=parse(words[0]) 
    temp=float(words[-1]) 
    data.append([date,temp]) 
   if ((words[0]=='TimeStamp')or(words[0]=='Date/Time')): 
    flag=1 
  
 data=np.array(data)    
 idx=np.where((data[:,0]>parse(start_date))&(data[:,0]<parse(end_date))) 
 data=data[idx[0],:] 
 
 timevals=list(rrule.rrule(rrule.MINUTELY,dtstart=parse(start_date), 
         until=parse(end_date),interval=3)) 
 timevals_epo Ch=np.array([time.mktime(a.timetuple()) for a in timevals]) 
 data[:,0]=[time.mktime(a.timetuple()) for a in data[:,0]] 
 data=data.astype(np.float64) 
 data2=np.interp(timevals_epo Ch,data[:,0],data[:,1]) 
 
 finaldata=np.vstack((np.array(timevals),data2))     
 return finaldata.transpose() 
 
!
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APPENDIX B: VELOCITY STATISTICS 
 
Table 2: Stillwater Velocity Statistics at the North Location 

Time 
Window North Location 

 n=3     
 mean median max min Rnss 

July/1/2014 12:00 to 
July/2/2014 12:00 -1.03E-06 -6.00E-07 -5.00E-07 -2.00E-06 0.456 

July/2/2014 12:00 to 
July/3/2014 12:00 -2.33E-06 -2.00E-06 -2.00E-06 -3.00E-06 0.246 

July/3/2014 12:00 to 
July/4/2014 12:00 -2.00E-06 -2.00E-06 -2.00E-06 -2.00E-06 0.195 

July/4/2014  12:00to 
July/5/2014 12:00 -1.33E-06 -1.00E-06 -1.00E-06 -2.00E-06 0.153 

July/5/2014  12:00to 
July/6/2014 12:00 -4.33E-06 -4.00E-06 -4.00E-06 -5.00E-06 0.095 

July/6/2014  12:00to 
July/7/2014 12:00 -2.67E-06 -2.00E-06 -2.00E-06 -4.00E-06 0.074 

July/7/2014  12:00to 
July/8/2014 12:00 -4.00E-06 -4.00E-06 -3.00E-06 -5.00E-06 0.075 

July/8/2014  12:00to 
July/9/2014 12:00 -3.00E-06 -3.00E-06 -2.00E-06 -4.00E-06 0.072 

July/9/2014 12:00 to 
July/10/2014 12:00 -2.00E-06 -2.00E-06 -1.00E-06 -3.00E-06 0.084 

July/10/2014 12:00 to 
July/11/2014 12:00 -1.10E-06 -8.00E-07 -5.00E-07 -2.00E-06 0.077 

July/11/2014 12:00 to 
July/12/2014 12:00 -1.20E-06 -9.00E-07 -7.00E-07 -2.00E-06 0.065 

July/12/2014 12:00 to 
July/13/2014 12:00 -1.33E-06 -1.00E-06 -1.00E-06 -2.00E-06 0.071 

July/13/2014 12:00 to 
July/14/2014 12:00 -1.27E-06 -9.00E-07 -9.00E-07 -2.00E-06 0.082 

July/14/2014 12:00 to 
July/15/2014 12:00 -8.67E-07 -8.00E-07 -8.00E-07 -1.00E-06 0.069 

      
      
      

July/22/2014 12:00 to 
July/23/2014 12:00      

July/23/2014 12:00 to 
July/24/2014 12:00      

July/24/2014 12:00 to 
July/25/2014 12:00      

July/25/2014 12:00 to 
July/26/2014 12:00      

July/26/2014 12:00 to 
July/27/2014 12:00      

July/27/2014 12:00 to 
July/28/2014 12:00      



Table 2. Continued 
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July/28/2014 12:00 to 
July/29/2014 12:00 No Data Collected Due to Equipment Error 

July/29/2014 12:00 to 
July/30/2014 12:00      

July/30/2014 12:00 to 
July/31/2014 12:00      

July/31/2014 12:00 to 
Aug/1/2014 12:00      

Aug/1/2014 12:00 to 
Aug/2/2014 12:00      

Aug/2/2014 12:00 to 
Aug/3/2014 12:00      

Aug/3/2014 12:00 to 
Aug/4/2014 12:00      

      
 n=4     
 mean median max min Rnss 

Aug/6/2014 9:00 to 
Aug/7/2014 9:00 -3.75E-06 -3.50E-06 -2.00E-06 -6.00E-06 0.193 

Aug/7/2014 9:00 to 
Aug/8/2014 9:00 -3.75E-06 -4.00E-06 -2.00E-06 -5.00E-06 0.223 

Aug/8/2014 9:00 to 
Aug/9/2014 9:00 -3.50E-06 -3.50E-06 -3.00E-06 -4.00E-06 0.196 

Aug/9/2014 9:00 to 
Aug/10/2014 9:00 -4.75E-06 -5.00E-06 -3.00E-06 -6.00E-06 0.188 

Aug/10/2014 9:00 to 
Aug/11/2014 9:00 -4.00E-06 -4.00E-06 -3.00E-06 -5.00E-06 0.201 

Aug/11/2014 9:00 to 
Aug/12/2014 9:00 -2.75E-06 -3.00E-06 -2.00E-06 -3.00E-06 0.189 

Aug/12/2014 9:00 to 
Aug/13/2014 9:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.185 

Aug/13/2014 9:00 to 
Aug/14/2014 9:00 -3.75E-06 -4.00E-06 -3.00E-06 -4.00E-06 0.155 

Aug/14/2014 9:00 to 
Aug/15/2014 9:00 -7.25E-06 -7.50E-06 -5.00E-06 -9.00E-06 0.149 

Aug/15/2014 9:00 to 
Aug/16/2014 9:00 -3.75E-05 -4.00E-05 -2.00E-05 -5.00E-05 0.164 

Aug/16/2014 9:00 to 
Aug/17/2014 9:00 -7.25E-06 0.00E+00 1.00E-06 -3.00E-05 0.135 

Aug/17/2014 9:00 to 
Aug/18/2014 9:00 -3.00E-06 -3.00E-06 -2.00E-06 -4.00E-06 0.104 

      
 n=3     
 mean median max min Rnss 

Aug/18/2014 13:00 to 
Aug/19/2014 13:00 -2.33E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.224 

Aug/19/2014 13:00to 
Aug/20/2014 13:00 -7.67E-05 -8.00E-05 -7.00E-05 -8.00E-05 0.355 

Aug/20/2014 13:00 to 
Aug/21/2014 13:00 1.63E-06 2.00E-06 2.00E-06 9.00E-07 0.271 

Aug/21/2014 13:00 to 
Aug/22/2014 13:00 -4.00E-07 -4.00E-07 -2.00E-07 -6.00E-07 0.186 

Aug/22/2014 13:00 to 
Aug/23/2014 13:00 3.40E-07 4.00E-07 7.00E-07 -8.00E-08 0.177 
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Aug/23/2014 13:00 to 
Aug/24/2014 13:00 4.00E-08 3.00E-08 8.00E-08 1.00E-08 0.163 

Aug/24/2014 13:00 to 
Aug/25/2014 13:00 3.13E-07 4.00E-07 5.00E-07 4.00E-08 0.167 

Aug/25/2014 13:00 to 
Aug/26/2014 13:00 3.47E-07 1.00E-07 9.00E-07 4.00E-08 0.154 

Aug/26/2014 13:00 to 
Aug/27/2014 13:00 8.33E-08 3.00E-08 2.00E-07 2.00E-08 0.133 

Aug/27/2014 13:00 to 
Aug/28/2014 13:00 1.00E-07 2.00E-07 3.00E-07 -2.00E-07 0.152 

Aug/28/2014 13:00 to 
Aug/29/2014 13:00 -7.00E-08 -1.00E-08 1.00E-07 -3.00E-07 0.136 

Aug/29/2014 13:00 to 
Aug/30/2014 13:00 -9.00E-08 -1.00E-07 3.00E-08 -2.00E-07 0.160 

Aug/30/2014 13:00 to 
Aug/31/2014 13:00 -5.00E-08 -9.00E-08 4.00E-08 -1.00E-07 0.156 

Aug/31/2014 13:00 to 
Sep/1/2014 13:00 -1.00E-07 -1.00E-07 3.00E-07 -5.00E-07 0.124 

      
Students T-Test 

(paired) Between 
Locations p=.624     

 

Table 2: Mean, median, max, min, and Rnss of the Stillwater River velocity data from the 
north location.  
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Table 3: Stillwater Velocity Statistics at the South Location 
 

Time 
Window South Location 

 n=4     
 mean median max min Rnss 

July/1/2014 12:00 to 
July/2/2014 12:00 -1.08E-06 -1.45E-06 6.00E-07 -2.00E-06 0.459 

July/2/2014 12:00 to 
July/3/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.306 

July/3/2014 12:00 to 
July/4/2014 12:00 -1.70E-06 -2.00E-06 -8.00E-07 -2.00E-06 0.237 

July/4/2014 12:00 to 
July/5/2014 12:00 -1.50E-06 -1.50E-06 -1.00E-06 -2.00E-06 0.208 

July/5/2014 12:00 to 
July/6/2014 12:00 -3.75E-06 -4.00E-06 -3.00E-06 -4.00E-06 0.144 

July/6/2014 12:00 to 
July/7/2014 12:00 -1.15E-06 -1.00E-06 -6.00E-07 -2.00E-06 0.104 

July/7/2014 12:00 to 
July/8/2014 12:00 -2.00E-06 -2.00E-06 -1.00E-06 -3.00E-06 0.110 

July/8/2014 12:00 to 
July/9/2014 12:00 -2.00E-06 -2.00E-06 -1.00E-06 -3.00E-06 0.101 

July/9/2014 12:00 to 
July/10/2014 12:00 -8.00E-07 -7.50E-07 -7.00E-07 -1.00E-06 0.116 

July/10/2014 12:00 to 
July/11/2014 12:00 -1.83E-07 -1.95E-07 6.00E-08 -4.00E-07 0.107 

July/11/2014 12:00 to 
July/12/2014 12:00 -2.70E-07 -2.50E-07 -8.00E-08 -5.00E-07 0.113 

July/12/2014 12:00 to 
July/13/2014 12:00 -8.50E-07 -1.00E-06 -4.00E-07 -1.00E-06 0.103 

July/13/2014 12:00 to 
July/14/2014 12:00 -4.75E-07 -4.50E-07 -2.00E-07 -8.00E-07 0.107 

July/14/2014 12:00 to 
July/15/2014 12:00 -3.50E-07 -3.50E-07 -2.00E-07 -5.00E-07 0.106 

      
 n=2     
 mean median max min Rnss 

July/22/2014 12:00 to 
July/23/2014 12:00 

-
0.0000006 

-
0.0000006 0.0000008 -0.000002 0.330 

July/23/2014 12:00 to 
July/24/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.118 

July/24/2014 12:00 to 
July/25/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.079 

July/25/2014 12:00 to 
July/26/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.082 

July/26/2014 12:00 to 
July/27/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.073 

July/27/2014 12:00 to 
July/28/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.071 

July/28/2014 12:00 to -4.00E-06 -4.00E-06 -3.00E-06 -5.00E-06 0.098 
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July/29/2014 12:00 
July/29/2014 12:00 to 

July/30/2014 12:00 -3.50E-06 -3.50E-06 -3.00E-06 -4.00E-06 0.088 
July/30/2014 12:00 to 

July/31/2014 12:00 -4.00E-06 -4.00E-06 -4.00E-06 -4.00E-06 0.095 
July/31/2014 12:00 to 

Aug/1/2014 12:00 -3.50E-06 -3.50E-06 -3.00E-06 -4.00E-06 0.098 
Aug/1/2014 12:00 to 

Aug/2/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.092 
Aug/2/2014 12:00 to 

Aug/3/2014 12:00 -3.50E-06 -3.50E-06 -3.00E-06 -4.00E-06 0.092 
Aug/3/2014 12:00 to 

Aug/4/2014 12:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.079 
      
 n=4     
 mean median max min Rnss 

Aug/6/2014 9:00 to 
Aug/7/2014 9:00 -2.19E-06 -2.35E-06 -7.00E-08 -4.00E-06 0.249 

Aug/7/2014 9:00 to 
Aug/8/2014 9:00 -3.75E-06 -4.00E-06 -2.00E-06 -5.00E-06 0.150 

Aug/8/2014 9:00 to 
Aug/9/2014 9:00 -2.75E-06 -2.50E-06 -2.00E-06 -4.00E-06 0.101 

Aug/9/2014 9:00 to 
Aug/10/2014 9:00 -3.75E-06 -4.00E-06 -2.00E-06 -5.00E-06 0.107 

Aug/10/2014 9:00 to 
Aug/11/2014 9:00 -2.75E-06 -2.50E-06 -2.00E-06 -4.00E-06 0.101 

Aug/11/2014 9:00 to 
Aug/12/2014 9:00 -2.50E-06 -2.50E-06 -2.00E-06 -3.00E-06 0.102 

Aug/12/2014 9:00 to 
Aug/13/2014 9:00 -2.00E-06 -2.00E-06 -2.00E-06 -2.00E-06 0.102 

Aug/13/2014 9:00 to 
Aug/14/2014 9:00 -3.75E-06 -4.00E-06 -2.00E-06 -5.00E-06 0.097 

Aug/14/2014 9:00 to 
Aug/15/2014 9:00 -5.00E-06 -5.00E-06 -3.00E-06 -7.00E-06 0.097 

Aug/15/2014 9:00 to 
Aug/16/2014 9:00 -1.90E-05 -1.65E-05 -3.00E-06 -4.00E-05 0.106 

Aug/16/2014 9:00 to 
Aug/17/2014 9:00 -5.25E-06 -4.00E-06 -3.00E-06 -1.00E-05 0.084 

Aug/17/2014 9:00 to 
Aug/18/2014 9:00 -5.75E-06 -4.50E-06 -4.00E-06 -1.00E-05 0.101 

      
 n=3     
 mean median max min Rnss 

Aug/18/2014 13:00 to 
Aug/19/2014 13:00 -3.93E-05 -2.00E-05 -8.00E-06 -9.00E-05 0.308 

Aug/19/2014 13:00to 
Aug/20/2014 13:00 -3.33E-05 -2.00E-05 -1.00E-05 -7.00E-05 0.391 

Aug/20/2014 13:00 to 
Aug/21/2014 13:00 -3.67E-06 -4.00E-06 -1.00E-06 -6.00E-06 0.177 

Aug/21/2014 13:00 to 
Aug/22/2014 13:00 -1.73E-06 -1.00E-06 -2.00E-07 -4.00E-06 0.171 

Aug/22/2014 13:00 to -1.57E-06 -6.00E-07 -1.00E-07 -4.00E-06 0.189 
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Aug/23/2014 13:00 
Aug/23/2014 13:00 to 

Aug/24/2014 13:00 -1.20E-06 -4.00E-07 -2.00E-07 -3.00E-06 0.198 
Aug/24/2014 13:00 to 

Aug/25/2014 13:00 -1.20E-06 -4.00E-07 -2.00E-07 -3.00E-06 0.198 
Aug/25/2014 13:00 to 

Aug/26/2014 13:00 -7.37E-07 -2.00E-07 -1.00E-08 -2.00E-06 0.191 
Aug/26/2014 13:00 to 

Aug/27/2014 13:00 -8.00E-07 -3.00E-07 -1.00E-07 -2.00E-06 0.193 
Aug/27/2014 13:00 to 

Aug/28/2014 13:00 -8.67E-07 -3.00E-07 -3.00E-07 -2.00E-06 0.180 
Aug/28/2014 13:00 to 

Aug/29/2014 13:00 -3.67E-07 -3.00E-07 2.00E-07 -1.00E-06 0.169 
Aug/29/2014 13:00 to 

Aug/30/2014 13:00 -1.01E-06 -1.00E-07 8.00E-08 -3.00E-06 0.168 
Aug/30/2014 13:00 to 

Aug/31/2014 13:00 -1.06E-06 -1.00E-07 -9.00E-08 -3.00E-06 0.152 
Aug/31/2014 13:00 to 

Sep/1/2014 13:00 -1.23E-06 -4.00E-07 -3.00E-07 -3.00E-06 0.168 
Table 3: Mean, median, max, min, and Rnss of the Stillwater River velocity data 
from the south location.  
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Table 4: B Stream Velocity Statistics at Location 1 
 

Time 
Window Location 1  

 n=5     
 mean median max min Rnss 

Jun 24 2014 1:00 to Jun 
25 2014 1:00 -8.06E-06 -8.00E-06 7.00E-07 -2.00E-05 0.295 

Jun 25 2014 1:00 to Jun 
26 2014 1:00 -2.60E-05 -2.00E-05 -2.00E-05 -5.00E-05 0.136 

Jun 26 2014 1:00 to Jun 
27 2014 1:00 -4.80E-05 -3.00E-05 -2.00E-05 -9.00E-05 0.238 

Jun 27 2014 1:00 to Jun 
28 2014 1:00 -8.60E-06 -7.00E-06 -1.00E-06 -2.00E-05 0.507 

Jun 28 2014 1:00 to Jun 
29 2014 1:00 -1.36E-05 -1.00E-05 -8.00E-06 -2.00E-05 0.313 

Jun 29 2014 1:00 to Jun 
30 2014 1:00 -6.80E-06 -6.00E-06 -4.00E-06 -1.00E-05 0.177 

Jun 30 2014 1:00 to 
July 1 2014 1:00 -5.40E-06 -4.00E-06 -4.00E-06 -9.00E-06 0.164 

July 1 2014 1:00 to July 
2 2014 1:00 -3.80E-06 -3.00E-06 -2.00E-06 -7.00E-06 0.166 

      
 n=5     
 mean median max min Rnss 

July 2 2014 13:00 to 
July 3 2014 13:00 -1.20E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.392 

July 3 2014 13:00 to 
July 4 2014 13:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.233 

July 4 2014 13:00 to 
July 5 2014 13:00 -4.00E-05 -4.00E-05 -3.00E-05 -5.00E-05 0.334 

July 5 2014 13:00 to 
July 6 2014 13:00 1.60E-05 2.00E-05 2.00E-05 1.00E-05 0.392 

July 6 2014 13:00 to 
July 7 2014 13:00 2.14E-05 2.00E-05 4.00E-05 8.00E-06 0.275 

July 7 2014 13:00 to 
July 8 2014 13:00 0.00E+00 -2.00E-06 1.00E-05 -1.00E-05 0.460 

July 8 2014 13:00 to 
July 9 2014 13:00 -2.60E-05 -3.00E-05 -2.00E-05 -3.00E-05 0.302 

July 9 2014 13:00 to 
July 10 2014 13:00 -2.60E-05 -3.00E-05 -2.00E-05 -3.00E-05 0.469 

July 10 2014 13:00 to 
July 11 2014 13:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.974 

July 11 2014 13:00 to 
July 12 2014 13:00 -6.20E-06 -5.00E-06 4.00E-06 -2.00E-05 1.370 

      
 n=5     
 mean median max min Rnss 

Aug 1 2014 12:00 to 
Aug 2 2014 12:00 -2.00E-05 -2.00E-05 -1.00E-05 -3.00E-05 0.148 
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Aug 2 2014 12:00 to 
Aug 3 2014 12:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.143 

Aug 3 2014 12:00 to 
Aug 4 2014 12:00 -1.40E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.150 

Aug 4 2014 12:00 to 
Aug 5 2014 12:00 -1.60E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.140 

Aug 5 2014 12:00 to 
Aug 6 2014 12:00 -9.80E-06 -1.00E-05 -9.00E-06 -1.00E-05 0.129 

Aug 6 2014 12:00 to 
Aug 7 2014 12:00 -2.20E-05 -3.00E-05 2.00E-05 -4.00E-05 0.225 

Aug 7 2014 12:00 to 
Aug 8 2014 12:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.205 

Aug 8 2014 12:00 to 
Aug 9 2014 12:00 -3.40E-05 -4.00E-05 2.00E-05 -7.00E-05 0.273 

Aug 9 2014 12:00 to 
Aug 10 2014 12:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.216 

Aug 10 2014 12:00 to 
Aug 11 2014 12:00 -1.30E-05 -1.00E-05 -6.00E-06 -3.00E-05 0.187 

Aug 11 2014 12:00 to 
Aug 12 2014 12:00 -1.06E-05 -1.00E-05 -5.00E-06 -2.00E-05 0.170 

Aug 12 2014 12:00 to 
Aug 13 2014 12:00 -9.60E-06 -8.00E-06 -5.00E-06 -2.00E-05 0.171 

Aug 13 2014 12:00 to 
Aug 14 2014 12:00 -1.00E-05 -8.00E-06 -6.00E-06 -2.00E-05 0.184 

Aug 14 2014 12:00 to 
Aug 15 2014 12:00 1.60E-06 3.00E-06 1.00E-05 -1.00E-05 0.504 

      
 n=5     
 mean median max min Rnss 

Aug 15 2014 13:00 to 
Aug 16 2014 13:00 -2.00E-06 -5.00E-06 6.00E-06 -1.00E-05 0.308 

Aug 16 2014 13:00 to 
Aug 17 2014 13:00 -2.40E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.230 

Aug 17 2014 13:00 to 
Aug 18 2014 13:00 2.20E-05 3.00E-05 3.00E-05 1.00E-05 0.226 

Aug 18 2014 13:00 to 
Aug 19 2014 13:00 -1.80E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.232 

Aug 19 2014 13:00 to 
Aug 20 2014 13:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.227 

Aug 20 2014 13:00 to 
Aug 21 2014 13:00 -1.20E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.196 

Aug 21 2014 13:00 to 
Aug 22 2014 13:00 -1.60E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.188 

Aug 22 2014 13:00 to 
Aug 23 2014 13:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.180 

Aug 23 2014 13:00 to 
Aug 24 2014 13:00 -1.10E-05 -9.00E-06 -8.00E-06 -2.00E-05 0.190 

Aug 24 2014 13:00 to 
Aug 25 2014 13:00 -9.00E-06 -9.00E-06 -8.00E-06 -1.00E-05 0.168 

Aug 25 2014 13:00 to 
Aug 26 2014 13:00 -6.60E-06 -6.00E-06 -5.00E-06 -9.00E-06 0.178 

Aug 26 2014 13:00 to 
Aug 27 2014 13:00 -5.60E-06 -5.00E-06 -5.00E-06 -7.00E-06 0.173 
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Aug 27 2014 13:00 to 
Aug 28 2014 13:00 -5.40E-06 -5.00E-06 -5.00E-06 -6.00E-06 0.423 

Aug 28 2014 13:00 to 
Aug 29 2014 8:00 -6.20E-06 -6.00E-06 -3.00E-06 -9.00E-06 0.357 

      
 n=5     
 mean median max min Rnss 
Aug 29 2014 15:00 to 

Aug 30 2014 15:00 3.20E-06 3.00E-06 1.00E-05 -3.00E-06 0.263 
Aug 30 2014 15:00 to 

Aug 31 2014 15:00 -1.86E-05 -1.00E-05 -1.00E-08 -6.00E-05 0.350 
Aug 31 2014 15:00 to 

Sep 1 2014 15:00 -5.20E-05 -5.00E-05 -3.00E-05 -9.00E-05 0.275 
Sep 1 2014 15:00 to 

Sep 2 2014 15:00 -1.40E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.200 
Sep 2 2014 15:00 to 

Sep 3 2014 15:00 -1.18E-05 -1.00E-05 -9.00E-06 -2.00E-05 0.205 
Sep 3 2014 15:00 to 

Sep 4 2014 15:00 -9.00E-06 -1.00E-05 -7.00E-06 -1.00E-05 0.200 
Sep 4 2014 15:00 to 

Sep 5 2014 15:00 -1.60E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.195 
Sep 5 2014 15:00 to 

Sep 6 2014 15:00 -9.20E-06 -1.00E-05 -7.00E-06 -1.00E-05 0.193 
Sep 6 2014 15:00 to 

Sep 7 2014 15:00 -9.40E-06 -9.00E-06 -3.00E-06 -2.00E-05 0.209 
Sep 7 2014 15:00 to 

Sep 8 2014 15:00 5.32E-06 5.00E-06 1.00E-05 6.00E-07 0.273 
Sep 8 2014 15:00 to 

Sep 9 2014 15:00 7.80E-06 1.00E-05 1.00E-05 2.00E-06 0.239 
Sep 9 2014 15:00 to 
Sep 10 2014 15:00 7.60E-06 9.00E-06 1.00E-05 3.00E-06 0.243 

Sep 10 2014 15:00 to 
Sep 11 2014 15:00 2.40E-06 2.00E-06 6.00E-06 -3.00E-06 0.326 

Sep 11 2014 15:00 to 
Sep 12 2014 10:00 2.74E-05 3.00E-05 4.00E-05 7.00E-06 0.200 

 

Table 4: Mean, median, max, min, and Rnss of the B Stream velocity data from the 
location 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 60 

Table 5: B Stream Velocity Statistics at Location 
 
 

Time 
Window Location 2  

 n=2     
 mean median max min Rnss 

Jun 24 2014 1:00 to Jun 
25 2014 1:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.115 

Jun 25 2014 1:00 to Jun 
26 2014 1:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.014 

Jun 26 2014 1:00 to Jun 
27 2014 1:00 -4.00E-05 -4.00E-05 -4.00E-05 -4.00E-05 0.009 

Jun 27 2014 1:00 to Jun 
28 2014 1:00 -3.50E-05 -3.50E-05 -3.00E-05 -4.00E-05 0.105 

Jun 28 2014 1:00 to Jun 
29 2014 1:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.041 

Jun 29 2014 1:00 to Jun 
30 2014 1:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.018 

Jun 30 2014 1:00 to 
July 1 2014 1:00 -1.00E-05 -1.00E-05 -1.00E-05 -1.00E-05 0.033 

July 1 2014 1:00 to July 
2 2014 1:00 -1.00E-05 -1.00E-05 -1.00E-05 -1.00E-05 0.030 

      
 n=2     
 mean median max min Rnss 

July 2 2014 13:00 to 
July 3 2014 13:00 -1.30E-05 -1.30E-05 -6.00E-06 -2.00E-05 0.336 

July 3 2014 13:00 to 
July 4 2014 13:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.151 

July 4 2014 13:00 to 
July 5 2014 13:00 -2.50E-05 -2.50E-05 -2.00E-05 -3.00E-05 0.101 

July 5 2014 13:00 to 
July 6 2014 13:00 2.00E-05 2.00E-05 2.00E-05 2.00E-05 0.100 

July 6 2014 13:00 to 
July 7 2014 13:00 1.50E-05 1.50E-05 2.00E-05 1.00E-05 0.356 

July 7 2014 13:00 to 
July 8 2014 13:00 -9.50E-06 -9.50E-06 -9.00E-06 -1.00E-05 1.350 

July 8 2014 13:00 to 
July 9 2014 13:00 -3.50E-05 -3.50E-05 -3.00E-05 -4.00E-05 1.150 

July 9 2014 13:00 to 
July 10 2014 13:00 -5.00E-05 -5.00E-05 -4.00E-05 -6.00E-05 1.080 

July 10 2014 13:00 to 
July 11 2014 13:00 -6.50E-05 -6.50E-05 -4.00E-05 -9.00E-05 1.300 

July 11 2014 13:00 to 
July 12 2014 13:00 -7.00E-05 -7.00E-05 -5.00E-05 -9.00E-05 0.688 

      
 n=5     
 mean median max min Rnss 

Aug 1 2014 12:00 to 
Aug 2 2014 12:00 -2.00E-05 -2.00E-05 -1.00E-05 -3.00E-05 0.057 
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Aug 2 2014 12:00 to 
Aug 3 2014 12:00 -2.40E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.042 

Aug 3 2014 12:00 to 
Aug 4 2014 12:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.046 

Aug 4 2014 12:00 to 
Aug 5 2014 12:00 -1.40E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.043 

Aug 5 2014 12:00 to 
Aug 6 2014 12:00 -2.00E-05 -2.00E-05 -2.00E-05 -2.00E-05 0.061 

Aug 6 2014 12:00 to 
Aug 7 2014 12:00 -2.40E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.042 

Aug 7 2014 12:00 to 
Aug 8 2014 12:00 -2.40E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.058 

Aug 8 2014 12:00 to 
Aug 9 2014 12:00 -3.80E-05 -3.00E-05 -3.00E-05 -6.00E-05 0.050 

Aug 9 2014 12:00 to 
Aug 10 2014 12:00 -1.80E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.060 

Aug 10 2014 12:00 to 
Aug 11 2014 12:00 -1.60E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.063 

Aug 11 2014 12:00 to 
Aug 12 2014 12:00 -9.60E-06 -1.00E-05 -8.00E-06 -1.00E-05 0.081 

Aug 12 2014 12:00 to 
Aug 13 2014 12:00 -8.80E-06 -1.00E-05 -6.00E-06 -1.00E-05 0.139 

Aug 13 2014 12:00 to 
Aug 14 2014 12:00 -1.04E-05 -1.00E-05 -6.00E-06 -2.00E-05 0.149 

Aug 14 2014 12:00 to 
Aug 15 2014 12:00 3.80E-06 6.00E-06 7.00E-06 -7.00E-06 0.516 

      
 n=5     
 mean median max min Rnss 

Aug 15 2014 13:00 to 
Aug 16 2014 13:00 -2.00E-05 -2.00E-05 -1.00E-05 -3.00E-05 0.034 

Aug 16 2014 13:00 to 
Aug 17 2014 13:00 -3.40E-05 -3.00E-05 -3.00E-05 -4.00E-05 0.026 

Aug 17 2014 13:00 to 
Aug 18 2014 13:00 -5.40E-05 -7.00E-05 4.00E-05 -9.00E-05 0.154 

Aug 18 2014 13:00 to 
Aug 19 2014 13:00 -5.20E-05 -5.00E-05 -4.00E-05 -7.00E-05 0.087 

Aug 19 2014 13:00 to 
Aug 20 2014 13:00 -3.60E-05 -4.00E-05 -3.00E-05 -4.00E-05 0.092 

Aug 20 2014 13:00 to 
Aug 21 2014 13:00 -1.80E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.050 

Aug 21 2014 13:00 to 
Aug 22 2014 13:00 -1.20E-05 -1.00E-05 -1.00E-05 -2.00E-05 0.061 

Aug 22 2014 13:00 to 
Aug 23 2014 13:00 -1.36E-05 -1.00E-05 -8.00E-06 -2.00E-05 0.072 

Aug 23 2014 13:00 to 
Aug 24 2014 13:00 -9.00E-06 -6.00E-06 -5.00E-06 -2.00E-05 0.079 

Aug 24 2014 13:00 to 
Aug 25 2014 13:00 -6.60E-06 -6.00E-06 -5.00E-06 -1.00E-05 0.096 

Aug 25 2014 13:00 to 
Aug 26 2014 13:00 -5.60E-06 -5.00E-06 -4.00E-06 -1.00E-05 0.087 

Aug 26 2014 13:00 to 
Aug 27 2014 13:00 -4.80E-06 -4.00E-06 -3.00E-06 -8.00E-06 0.082 
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Aug 27 2014 13:00 to 
Aug 28 2014 13:00 -4.40E-06 -4.00E-06 -4.00E-06 -6.00E-06 0.075 

Aug 28 2014 13:00 to 
Aug 29 2014 8:00 -3.20E-06 -3.00E-06 -2.00E-06 -6.00E-06 0.070 

      
 n=5     
 mean median max min Rnss 
Aug 29 2014 15:00 to 

Aug 30 2014 15:00 -1.00E-05 -8.00E-06 5.00E-06 -3.00E-05 0.069 
Aug 30 2014 15:00 to 

Aug 31 2014 15:00 -6.20E-05 -6.00E-05 -2.00E-05 -9.00E-05 0.199 
Aug 31 2014 15:00 to 

Sep 1 2014 15:00 -7.20E-05 -7.00E-05 -5.00E-05 -9.00E-05 0.070 
Sep 1 2014 15:00 to 

Sep 2 2014 15:00 -2.20E-05 -2.00E-05 -2.00E-05 -3.00E-05 0.024 
Sep 2 2014 15:00 to 

Sep 3 2014 15:00 -1.80E-05 -2.00E-05 -1.00E-05 -2.00E-05 0.025 
Sep 3 2014 15:00 to 

Sep 4 2014 15:00 -1.00E-05 -1.00E-05 -1.00E-05 -1.00E-05 0.038 
Sep 4 2014 15:00 to 

Sep 5 2014 15:00 -1.56E-05 -2.00E-05 -8.00E-06 -2.00E-05 0.038 
Sep 5 2014 15:00 to 

Sep 6 2014 15:00 -8.20E-06 -9.00E-06 -6.00E-06 -1.00E-05 0.034 
Sep 6 2014 15:00 to 

Sep 7 2014 15:00 -8.60E-06 -9.00E-06 -1.00E-06 -2.00E-05 0.044 
Sep 7 2014 15:00 to 

Sep 8 2014 15:00 -3.80E-06 -5.00E-06 9.00E-06 -1.00E-05 0.071 
Sep 8 2014 15:00 to 

Sep 9 2014 15:00 7.80E-06 7.00E-06 2.00E-05 -1.00E-06 0.084 
Sep 9 2014 15:00 to 
Sep 10 2014 15:00 -6.20E-06 4.00E-06 9.00E-06 -4.00E-05 0.104 

Sep 10 2014 15:00 to 
Sep 11 2014 15:00 -2.20E-05 -7.00E-06 1.00E-06 -5.00E-05 0.161 

Sep 11 2014 15:00 to 
Sep 12 2014 10:00 3.80E-05 4.00E-05 5.00E-05 2.00E-05 0.060 

 
 

Table 5: Mean, median, max, min, and Rnss of the B Stream velocity data from the 
location 2.  
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