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GPGPUs offer significant computational power for programmers to leverage.  

This computational power is especially useful when utilized for accelerating scientific 

models.  This thesis analyzes the utilization of GPGPU programming to accelerate 

scientific computing models.   

First the construction of hardware for visualization and computation of scientific 

models is discussed.  Several factors in the construction of the machines focus on the 

performance impacts related to scientific modeling. 

Image processing is an embarrassingly parallel problem well suited for GPGPU 

acceleration.  An image processing library was developed to show the processes of 

recognizing embarrassingly parallel problems and serves as an excellent example of 

converting from a serial CPU implementation to a GPU accelerated implementation.  

Genetic algorithms are biologically inspired heuristic search algorithms based on natural 

selection. The Tetris genetic algorithm with A* pathfinding discusses memory bound 

limitations that can prevent direct algorithm conversions from the CPU to the GPU.  An 
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analysis of an existing landscape evolution model, CHILD, for GPU acceleration 

explores that even when a model shows promise for GPU acceleration, the underlying 

data structures can have a significant impact upon that ability to move to a GPU 

implementation.  CHILD also offers an example of creating tighter MATLAB integration 

between existing models.   

Lastly, a parallel spatial sorting algorithm is discussed as a possible replacement 

for current spatial sorting algorithms implemented in models such as smoothed particle 

hydrodynamics. 

 

 

 

 



iv 

TABLE OF CONTENTS 

LIST OF TABLES ...................................................................................................... xiii 

LIST OF FIGURES ....................................................................................................... xv 

Chapter 

1    INTRODUCTION .....................................................................................................1 

2    VISUALIZATION WALL ........................................................................................4 

2.1    Driving Factors ...........................................................................................4 

2.2    New Hardware ............................................................................................5 

2.2.1    Xorg.conf ......................................................................................5 

2.2.1.1    PCIe Address ..................................................................5 

2.2.1.2    Device Section................................................................6 

2.2.1.3    Screen Section ................................................................7 

2.2.1.4    ServerLayout Section .....................................................9 

2.2.2    Issues .......................................................................................... 11 

2.3    New Computer .......................................................................................... 11 

2.3.1    First Try ...................................................................................... 11 

2.3.1.1    OS Installation .............................................................. 11 

2.3.1.2    Issues ........................................................................... 12 

2.3.2    Second Try ................................................................................. 12 

2.3.3    Third Try .................................................................................... 13 

2.4    Xrandr ....................................................................................................... 13 

 



v 

2.5    Xorg .......................................................................................................... 14 

2.5.1    Default Configuration ................................................................. 14 

2.5.2    Device Section ............................................................................ 15 

2.5.3    ZaphodHeads Option .................................................................. 16 

2.5.4    Screen Section ............................................................................ 17 

2.6    Computer Failure ...................................................................................... 18 

2.7    Summary ................................................................................................... 18 

3    BUILDING GPGPU MACHINES ........................................................................... 20 

3.1    NVIDIA GPUs .......................................................................................... 20 

3.2    Compute Capability ................................................................................... 21 

3.2.1    Architecture Specifications ......................................................... 24 

3.2.2    GPU Specifications ..................................................................... 25 

3.3    Top of the Line GPUs................................................................................ 26 

3.4    Precision vs. Cost ...................................................................................... 27 

3.5    Supporting Hardware................................................................................. 27 

3.5.1    Processor .................................................................................... 27 

3.5.1.1    Processor Manufacturer ................................................ 28 

3.5.1.2    Processor Selection ....................................................... 28 

3.5.1.2.1    5930K vs. 5960X ................................ 29 

3.5.1.2.2    Xeon vs. Core i7 ................................. 30 

3.5.2    Motherboard ............................................................................... 31 

 

 



vi 

3.5.3    Storage........................................................................................ 31 

3.5.3.1    RAID ........................................................................... 31 

3.5.3.1.1    RAID 0 ............................................... 32 

3.5.3.1.2    RAID 1 ............................................... 32 

3.5.3.1.3    RAID 5 ............................................... 33 

3.5.3.2    SSD vs. Hard Drive ...................................................... 33 

3.5.4    RAM........................................................................................... 33 

3.5.5    Power Supply .............................................................................. 34 

3.5.5.1    Power Supply Rating .................................................... 34 

3.5.5.2    Modular ........................................................................ 35 

3.5.6    Cooling ....................................................................................... 36 

3.5.6.1    Air Cooling .................................................................. 37 

3.5.6.2    Liquid Cooling ............................................................. 37 

3.5.7    Case ............................................................................................ 38 

3.6    GPGPU Machine Configurations ............................................................... 38 

3.7    Additional Considerations ......................................................................... 39 

3.8    Summary ................................................................................................... 40 

4    CUDA PROGRAMMING ....................................................................................... 41 

4.1    Terminology .............................................................................................. 41 

4.1.1    Host and Device .......................................................................... 42 

4.1.2    Kernel ......................................................................................... 42 

4.1.3    __global__ Keyword ................................................................... 42 

4.1.4    __device__ Keyword .................................................................. 42 



vii 

4.1.5    __host__ Keyword ...................................................................... 43 

4.1.6    Threads, Blocks, and Grids ......................................................... 43 

4.1.7    Warps ......................................................................................... 43 

4.1.8    Global and Shared Memory ........................................................ 44 

4.2    Code .......................................................................................................... 44 

4.2.1    Internal Kernel Variables ............................................................ 44 

4.2.2    Kernel Configuration .................................................................. 45 

4.2.3    Dimensionality ............................................................................ 45 

4.2.4    Streams ....................................................................................... 46 

4.3    Occupancy ................................................................................................ 47 

4.3.1    Occupancy Calculator Code ........................................................ 48 

4.3.2    Alternative Versions ................................................................... 49 

4.4    Memory Management ............................................................................... 49 

4.4.1    Explicit Memory Management .................................................... 49 

4.4.2    Unified Memory ......................................................................... 51 

4.5    Data Structures .......................................................................................... 52 

4.5.1    Memory Coalescence .................................................................. 52 

4.5.2    Good Data Structures for GPUs .................................................. 53 

4.5.3    Data Structures to Avoid ............................................................. 53 

4.5.4    Array of Structures versus Structure of Arrays ............................ 53 

4.5.5    Thrust Library ............................................................................. 54 



viii 

4.6    Error Handling .......................................................................................... 54 

4.7    Multiple GPUs .......................................................................................... 55 

4.8    CUDA SDK and Toolkit ........................................................................... 56 

4.9    NVCC ....................................................................................................... 56 

4.9.1    PTX ............................................................................................ 56 

4.9.2    Unsupported NVCC Compile Options ........................................ 57 

4.10    Summary ................................................................................................. 57 

5    IMAGE PROCESSING GPU ACCELERATION .................................................... 58 

5.1    ImageMagick ............................................................................................ 58 

5.1.1    MagickWand API ....................................................................... 59 

5.1.2    GPU Compilation ....................................................................... 61 

5.2    GPU Filters ............................................................................................... 62 

5.3    Timing ...................................................................................................... 62 

5.3.1    Timer Functions .......................................................................... 62 

5.3.2    Timers ........................................................................................ 63 

5.4    Image Conversion ..................................................................................... 63 

5.5    Results ...................................................................................................... 64 

5.6    Summary ................................................................................................... 69 

6    TETRIS GENETIC ALGORITHM AND PATHFINDING...................................... 70 

6.1    Genetic Algorithms ................................................................................... 70 

6.1.1    Genome ...................................................................................... 71 

6.1.2    Initial Population ........................................................................ 71 

6.1.3    Evaluation ................................................................................... 71 



ix 

6.1.4    Breeding ..................................................................................... 72 

6.1.4.1 Roulette Wheel Selection ................................................ 72 

6.1.4.2 Roulette Wheel Example ................................................. 73 

6.1.4.3 Crossover ........................................................................ 74 

6.1.5    Mutation ..................................................................................... 74 

6.1.6    Elitism ........................................................................................ 75 

6.2    Tetris Genome ........................................................................................... 75 

6.2.1    Chromosomal Terminology ........................................................ 76 

6.2.2    Chromosome Selection ............................................................... 78 

6.2.3    Additional Considerations ........................................................... 78 

6.3    Tetris Piece Placement with A* Pathfinding .............................................. 79 

6.3.1    Costs ........................................................................................... 79 

6.3.1.1    G Cost .......................................................................... 79 

6.3.1.2    H Cost .......................................................................... 79 

6.3.2    A* Basics .................................................................................... 80 

6.3.3    Tetris Specific Implementation ................................................... 80 

6.3.3.1    Regions ........................................................................ 80 

6.3.3.2    Costs ............................................................................ 81 

6.4    C# CPU Results......................................................................................... 81 

6.5    Additional Considerations ......................................................................... 82 

6.6    GPU Implementation ................................................................................. 83 

6.6.1    C# to C++ ................................................................................... 84 

6.6.2    Issues .......................................................................................... 84 



x 

6.6.3    Potential Solutions ...................................................................... 85 

6.6.3.1    Global Memory Solution .............................................. 85 

6.6.3.2    Thrust Library Solution ................................................ 85 

6.6.3.3    Warp Pathfinding Solution ........................................... 86 

6.7    Summary ................................................................................................... 86 

7    CHILD .................................................................................................................... 87 

7.1    MATLAB Integration ................................................................................ 87 

7.1.1    MEX ........................................................................................... 88 

7.1.2    MEX Modifications .................................................................... 88 

7.1.3    MATLAB to MEX Interface ....................................................... 89 

7.1.4    MEX Compilation....................................................................... 90 

7.2    GPU Implementation ................................................................................. 91 

7.2.1    Underlying Data Structures ......................................................... 92 

7.2.2    Memory Transfers ....................................................................... 93 

7.3    Summary ................................................................................................... 93 

8    PARALLEL SPATIAL SORTING ALGORITHM .................................................. 95 

8.1    Related Work ............................................................................................ 95 

8.2    Algorithm Explanation .............................................................................. 96 

8.3    Algorithm Steps ........................................................................................ 97 

8.4    Caveats...................................................................................................... 99 

8.4.1    Caveat 1 ...................................................................................... 99 

8.4.2    Caveat 2 ...................................................................................... 99 

 



xi 

8.4.3    Caveat 3 .................................................................................... 100 

8.4.4    Caveat 4 .................................................................................... 100 

8.5    Example .................................................................................................. 100 

8.6    Scalability ............................................................................................... 104 

8.7    Dimensionality ........................................................................................ 105 

8.8    Potential Applications ............................................................................. 105 

8.8.1    SPH .......................................................................................... 106 

8.8.2    Agent Based Modeling .............................................................. 106 

8.9    Summary ................................................................................................. 106 

9    FUTURE WORK .................................................................................................. 108 

9.1    Visualization Wall ................................................................................... 108 

9.2    Testis Genetic Algorithm and Pathfinding ............................................... 108 

9.3    Image Processing .................................................................................... 109 

9.4    CHILD .................................................................................................... 109 

9.5    Parallel Spatial Sorting Algorithm ........................................................... 109 

10    CONCLUSION ................................................................................................... 111 

REFERENCES ............................................................................................................ 112 

APPENDIX A.    NVIDIA QUADRO NVS 420 XORG.CONF ................................... 115 

APPENDIX B.    AUTO CONFIGURED XORG.CONF ............................................. 119 

APPENDIX C.    FIRST RADEON HD 5870 XORG.CONF ....................................... 123 

APPENDIX D.    SECOND RADEON HD 5870 XORG.CONF .................................. 127 

APPENDIX E.    GPGPU MACHINE CONFIGURATION SPECIFICATIONS ......... 131 

APPENDIX F.    IMAGE PROCESSING TESTS ........................................................ 133 



xii 

APPENDIX G.    IMAGE PROCESSING SOURCE ................................................... 137 

APPENDIX H.    TETRIS GENETIC ALGORITHM SOURCE .................................. 138 

APPENDIX I.    TETRIS GENETIC ALGORITHM FULL RESULTS ....................... 139 

APPENDIX.    J MATLABCOMPILE.SH ................................................................... 140 

APPENDIX K.    CHILD MATLAB PATCH .............................................................. 141 

BIOGRAPHY OF THE AUTHOR .............................................................................. 155 

 

  



xiii 

LIST OF TABLES 

 

Table 3.1:  Compute Capability Comparison Table Part 1 [2] ........................................ 22 

Table 3.2:  Compute Capability Comparison Table Part 2 [2] ........................................ 23 

Table 3.3:  Comparison of i7-5960X [12] and i7-5930K [11] ......................................... 30 

Table 3.4:  Comparison of E7-4809 v2 [14], E7-8893 v2 [13], and i7-5930K [11] ......... 30 

Table 3.5:  80 PLUS Certification Ratings [17] .............................................................. 35 

Table 3.6:  GPGPU Machine Configurations ................................................................. 39 

Table 4.1:  Automatically Defined dim3 Variables......................................................... 44 

Table 4.2:  Triple Chevron Parameter Definitions [2]..................................................... 45 

Table 4.3:  cudaMemcpyKind Values ............................................................................ 51 

Table 4.4:  Multiple GPU CUDA Functions................................................................... 55 

Table 5.1:  MagickWand API Functions for Reading and Writing Images ..................... 60 

Table 5.2:  MagickWand API Objects for Reading and Writing Images ......................... 60 

Table 5.3:  MonkTimer Functions .................................................................................. 63 

Table 5.4:  Generated Image Resolutions ....................................................................... 64 

Table 5.5:  GPU Timer Values for Five GPUs ............................................................... 65 

Table 5.6:  Setup Timer Values for Five GPUs .............................................................. 66 

Table 6.1:  Example Roulette Wheel Selection Ranges .................................................. 73 

Table 6.2:  Tetris Chromosome Descriptions ................................................................. 75 

Table 6.3:  Example Calculated Chromosome Values .................................................... 77 

Table 6.4:  Best C# CPU AI Individuals Produced ......................................................... 82 

Table 7.1:  CHILD Source Files Requiring Modification for MEX Compilation ............ 89 



xiv 

Table 7.2:  mexFunction() Parameters............................................................................ 90 

Table E.1:  First Machine Configuration ...................................................................... 131 

Table E.2:  Second Machine Configuration .................................................................. 132 

Table F.1:  Image Processing Open Timer Values ........................................................ 133 

Table F.2:  Image Processing Setup Timer Values ....................................................... 134 

Table F.3:  Image Processing GPU Timer Values ........................................................ 135 

Table F.4:  Image Processing Save Timer Values......................................................... 136 

  



xv 

LIST OF FIGURES 

 

Figure 1.1:  CPU and GPU Theoretical Floating Point Performance [2] ...........................2 

Figure 2.1:  Example Quadro NVS 420 Xorg Device Section ..........................................7 

Figure 2.2:  Example Quadro NVS 420 Xorg Screen Section ...........................................8 

Figure 2.3:  Differing Xorg Screen Section Options for Single Monitor ...........................9 

Figure 2.4:  Quadro NVS 420 Xorg ServerLayout Section ............................................. 10 

Figure 2.5:  IRL Virtualization Wall Monitor and Screen Layout ................................... 10 

Figure 2.6:  ATI Radeon HD 5870 Port Layout .............................................................. 13 

Figure 2.7:  Command to Produce Xorg Default Configuration ...................................... 14 

Figure 2.8:  Example Radeon HD 5870 Xorg Device Section ........................................ 16 

Figure 2.9:  xrandr Command to List Video Port Names ................................................ 17 

Figure 2.10:  Radeon HD 5870 Xorg Device Section With ZaphodHeads Option .......... 17 

Figure 2.11:  Sample Radeon HD 5870 Xorg Screen Section ......................................... 18 

Figure 3.1:  NVIDIA GTX 980 Specifications [5] .......................................................... 25 

Figure 3.2:  RAID Levels 0, 1, and 5 ............................................................................. 32 

Figure 3.3:  Modular and Non-Modular Power Supplies [18][19]................................... 36 

Figure 3.4:  Liquid Cooling vs. Air Cooling ................................................................... 37 

Figure 3.5:  Case Modification ....................................................................................... 40 

Figure 4.1:  Architecture Comparison from CUDA C Programming Guide [2] .............. 41 

Figure 4.2:  Triple Chevron Parameters and Syntax ....................................................... 45 

Figure 4.3:  dim3 struct Variables .................................................................................. 46 

Figure 4.4:  Creation of Two CUDA Streams [2] ........................................................... 46 



xvi 

Figure 4.5:  Using Streams for Asynchronous Memory Transfers .................................. 47 

Figure 4.6:  Calculating MyKernel Occupancy Programmatically[2] ............................. 48 

Figure 4.7:  Typical CUDA Program Flow from CUDA Wikipedia Article [21] ............ 50 

Figure 4.8:  cudaMalloc and cudaFree Function Prototypes ........................................... 50 

Figure 4.9:  cudaMemcpy Function Prototype ................................................................ 51 

Figure 4.10:  cudaMallocManaged Function Prototype .................................................. 52 

Figure 4.11:  Error Checking Using checkCudaErrors Macro ......................................... 54 

Figure 4.12:  Compiling for Multiple Compute Capabilities with nvcc [22] ................... 57 

Figure 5.1:  Command to Generate MagickWand C++ Compiler Flags [24] .................. 61 

Figure 5.2:  Arch Linux MagickWand C++ Compiler Flags ........................................... 61 

Figure 5.3:  Example Image Convert Command............................................................. 63 

Figure 5.4:  GPU Timer Comparison for GTX 580, GTX 680, GTX 980 ....................... 67 

Figure 5.5:  Setup Timer Comparison for GTX 580, GTX 680, GTX 980 ...................... 68 

Figure 6.1:  Example Roulette Wheel Selection Pie Chart .............................................. 73 

Figure 6.2:  Example Breeding with Random Crossover ................................................ 74 

Figure 6.3:  Example Tetris Board with Highlighted Scoring Criteria ............................ 77 

Figure 6.4:  Normal Tetris Pieces ................................................................................... 83 

Figure 6.5:  Additional Tetris Pieces .............................................................................. 83 

Figure 7.1:  Wrapping exit() Functions for MEX Compilation ....................................... 88 

Figure 7.2:  Command to Compile CHILD from CHILD Main Directory ...................... 90 

Figure 7.3:  Command to Compile CHILD matlabInterface Object Files........................ 91 

Figure 7.4:  Linked List Insertion and Removal ............................................................. 92 

Figure 8.1:  Grid of Blocks with Coordinates ................................................................. 96 



xvii 

Figure 8.2:  Example Block to Global Memory Object Array Mapping .......................... 97 

Figure 8.3:  Example Grid of Blocks Layout and Shared Memory Timestep 0 ............. 101 

Figure 8.4:  Example Global Memory with Active Objects .......................................... 101 

Figure 8.5:  Example Grid of Blocks Layout and Shared Memory Timestep 1 ............. 102 

Figure 8.6:  Example Grid of Blocks Layout and Shared Memory Timestep 2 ............. 103 

Figure 8.7:  Example Shared Memory Just Prior to Timestep 3 .................................... 103 

Figure 8.8:  Example Global Memory Array During Timestep 3 .................................. 104 

Figure 8.9:  Grid of GPU Grids .................................................................................... 105 

  



1 

CHAPTER 1 

INTRODUCTION 

Dedicated Graphics Processing Units (GPUs), often referred to as graphics cards, 

have a long history, becoming common in video game consoles and early computers with 

their use being driven by the demand for better graphics for gaming.  This has fueled 

companies such as NVIDIA and AMD to create ever more powerful GPUs.  GPUs are 

highly parallel processors and General Purpose GPU (GPGPU) computing went 

mainstream in 2007 with the release of NVIDA’s CUDA toolkit [1]. 

GPGPUs are graphics processing units used for general purpose processing as 

opposed to strictly rendering graphics.  GPGPUs are one of the most popular types of 

accelerators, processors designed to speed up computation by leveraging high 

parallelism.  The massively parallel architecture of GPUs allows for much higher 

theoretical processing power compared to that of CPUs.  Figure 1.1 shows a comparison 

of the theoretical processing power between modern CPUs and GPUs. 
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Figure 1.1:  CPU and GPU Theoretical Floating Point Performance [2] 

As GPU development has continued, many scientific models, especially those 

originally designed for High Performance Computing (HPC) have begun including 

support for the use of GPUs as accelerators to decrease the runtime, often by an order of 

magnitude [3].  The increased GPU accelerator support is reflected in supercomputer 

designs, with 88 of the top 500 supercomputers including some form of accelerator/co-

processor technology to achieve faster computation [4].  Many programs that are 

computationally intensive may be good candidates for GPU acceleration.  Not all 

applications are suitable for GPU acceleration as there are unique limits imposed by GPU 

architecture not found in normal HPC architectures. 

The low entry cost of purchasing high end consumer GPUs that can be used for 

GPGPU programming has made it possible to run massively parallel scientific models on 

the desktop as opposed to requiring a supercomputer.  The GTX 980 has over 4.5 TFlops 
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of floating point processing power [5].  A desktop machine containing two GTX 980s 

would have enough processing power to be on the TOP 500 Supercomputer list in 2008. 

The focus of this thesis is the analysis of utilizing the highly parallel nature of 

GPUs to accelerate scientific models using consumer hardware. 

The first step in researching the application of GPUs in scientific computing is 

having strong hardware.  In order to accommodate model visualization for large scientific 

models, the use of multiple screens driven by a single computer to create large displays 

(visualization walls) is an excellent starting point.  The creation and maintenance of 

visualization walls is discussed in Chapter 2, followed by the design and building of 

GPGPU specific machines for scientific research in Chapter 3. 

The architectural differences between CPUs and GPUs offer unique challenges in 

developing models that effectively utilize the large computational power offered by 

GPUs.  Chapter 4 offers an introduction to GPU programming using CUDA. 

Chapters 5 through 7 discuss converting pre-existing models from CPU 

implementations to GPU implementations.  Chapter 5 focuses on an embarrassingly 

parallel problem while Chapters 6 and 7 covers some of the pitfalls associated with 

implementing GPU accelerated versions of models that seem, at first glance, like good 

candidates for GPU acceleration.    Chapter 7 also discusses creating tighter integration 

between existing models using MATLAB as a common interface.  Chapter 8 looks at 

designing a GPU sorting algorithm to overcome some of the limitations found in earlier 

chapters. 
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CHAPTER 2 

VISUALIZATION WALL 

As scientific models continue to grow in complexity and the amount of data they 

are able to process continues to increase, visualizing that data becomes more difficult.  

Viewing models on a large screen or projector has the drawback of losing low level 

resolution as the number of pixels doesn’t increase, only the size of the pixels.  The 

increasing prevalence of 4K screens will help mitigate this effect to some extent, but 4K 

screens are still much more expensive than 1080p and lower resolution screens.  

Visualization walls are much more affordable and can offer much higher resolution while 

still offering a large display area.  Visualization walls combine the output from multiple 

high resolution screens to form a single, much higher resolution, display.  The combined 

display of a visualization wall allows the big picture view while keeping smaller scale 

resolution so that fine detail isn’t lost.  As the prices of 4K screens drop, visualization 

walls using 4K screens will continue to offer extremely high resolution displays. 

This chapter outlines the creation of a visualization wall from standard consumer 

hardware with the only custom modifications applied to the xorg.conf configuration file.  

Several iterations of hardware are detailed including an analysis of the creation of the 

xorg.conf configuration file for each iteration. 

2.1    Driving Factors 

The original visualization wall in the Instrumentation Research Laboratory (IRL) 

located at the University of Maine in Barrows Hall was driven by an older machine that 

had experienced memory issues related to the motherboard rather than to the DIMMs.  

These issues required that either the motherboard be replaced or a different computer be 
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found.  Given the age of the machine and the financial constraints of the setup, a different 

computer was required.   

2.2    New Hardware 

The first step was to find a computer that would work.  The old machine had an 

AMD processor and it was determined that another computer with an AMD processor 

would be the easiest replacement.  A suitable replacement was located, the hard drive 

migrated, and xorg.conf reconfigured to adjust for the change in graphics card PCIe bus 

changes.  The same three NVIDIA Quadro NVS 420’s (Q420) were used in this 

configuration and no updates were made to the OS, a version of Arch Linux running a 3.x 

kernel with unknown custom configurations.  The cards were connected such that a card 

was located at PCIe address 03:0.0, one at address 07:0.0, and one at address 0c:0.0.  The 

top and bottom cards had four monitors connected to each with the middle card having a 

single monitor connected. 

2.2.1    Xorg.conf 

The previous version of the xorg.conf file (configuration file) was modified to 

work with the new configuration.  It wasn’t a one to one modification and the original 

configuration was not saved during this stage, which prevents any in depth analysis of the 

changes.  Changes were made to the ServerLayout, Device, and Screen sections and the 

entire modified configuration file can be seen in Appendix A.  It was determined through 

trial and error that five Screens were needed.   

2.2.1.1    PCIe Address 

The way that the Q420 handles the four connected monitors is such that ports one 

and two can be connected as TwinViews and ports three and four can also be connected 
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as TwinViews.  As there are nine monitors and three Q420’s, two cards were completely 

filled and the third had only a single monitor connected as described in Section 2.2.  Each 

card was defined in a Device section with the BusID specifying the PCIe address with the 

periods replaced by colons such that 03:0.0 becomes 3:0:0.  Each card is addressable at 

two specific addresses, the one at which it is specifically defined, and the next sequential 

address.  In the case of the card located at 03:0.0, the card, and two of the monitors 

attached to it, are addressable at 04:0.0.  For addresses above 09:0.0, such as 0c:0.0, the 

numerical value is used in the configuration file.  In the example, 0c:0.0, PCI:12:0:0 is 

used. 

2.2.1.2    Device Section 

Five devices were defined in the xorg.conf file.  Each device has a specific 

BusID.  The BusID’s used were PCI:3:0:0, PCI:4:0:0, PCI:7:0:0, PCI:8:0:0, and 

PCI:12:0:0.  The definition of the Device section is shown in Figure 2.1 where PCI:X:0:0 

is replaced by the correct address and DeviceX is replaced by sequentially increasing 

values starting at Device0. 
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Section "Device" 

Identifier  "DeviceX" 

Driver   "nvidia" 

VendorName  "NVIDIA Corporation" 

BoardName  "Quadro NVS 420" 

BusID   "PCI:X:0:0" 

EndSection 

Figure 2.1:  Example Quadro NVS 420 Xorg Device Section 

2.2.1.3    Screen Section 

For each device a screen was defined, resulting in five screens starting from 

Screen0 and increasing sequentially up to Screen4.  Many of the options are left over 

from the original configuration file.  The only options modified were the Identifier and 

the Device.  An example Screen section used is shown in Figure 2.2 where ScreenX and 

DeviceX are changed to the corresponding screen and device values. 
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Section "Screen" 

Identifier "ScreenX" 

Device  "DeviceX" 

Monitor  "Monitor0" 

DefaultDepth 24 

Option  "ConnectedMonitor" "DFP,DFP" 

Option  "UseDisplayDevice" "DFP-0,DFP-1" 

Option  "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

Option  "TwinView" "1" 

Option  "TwinViewXineramaInfoOrder" "DFP-0" 

Option  "metamodes" "DFP-0: nvidia-auto-select +0+0, 

DFP-1: nvidia-auto-select +0+1024" 

SubSection "Display" 

   Depth 24 

EndSubSection 

EndSection 

Figure 2.2:  Example Quadro NVS 420 Xorg Screen Section 

The options for TwinView and TwinViewXineramaInfoOrder allow the screen to 

encompass two monitors.  In Screen4, several options are slightly different and are shown 

in Figure 2.3. 
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Option  "TwinView" "0" 

Option  "TwinViewXineramaInfoOrder" "DFP-0" 

Option  "metamodes" "DFP-0: nvidia-auto-select +0+0" 

Figure 2.3:  Differing Xorg Screen Section Options for Single Monitor 

These options remove the use of TwinView and specify only a single monitor as 

this screen has only a single monitor attached. 

2.2.1.4    ServerLayout Section 

The physical layout of the nine monitors for the visualization wall is a three by 

three grid.  The ServerLayout section defines the positions of the screens as well as the 

input devices and the Xinerama option.  The screen positions are absolute, but relative 

positions could also have been used.  The SeverLayout section in use is shown in Figure 

2.4. 
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Section "ServerLayout" 

Identifier "Layout0" 

Screen  0  "Screen0" 0 0 

Screen  1  "Screen1" 1280 0 

Screen  2  "Screen2" 0 2048 

Screen  3  "Screen3" 2560 0 

Screen  4  "Screen4" 2560 2048 

InputDevice "Keyboard0" "CoreKeyboard" 

InputDevice "Mouse0" "CorePointer" 

Option  "Xinerama" "1" 

EndSection 

Figure 2.4:  Quadro NVS 420 Xorg ServerLayout Section 

Each monitor is set to the maximum resolution, 1280x1024.   Figure 2.5 shows 

the layout of the physical monitors with each monitor labeled and each screen color 

coded.   

 

Figure 2.5:  IRL Virtualization Wall Monitor and Screen Layout 

Screen0 is shown in red, Screen1 in green, Screen2 in blue, Screen3 in orange, 

and Screen4 in purple.  The working configuration file using the Quadro NVS 420 

graphics cards can be found in Appendix A. 
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2.2.2    Issues 

This setup worked, but it was impossible to update the system for several reasons.  

The system had not been updated for quite some time and several changes had been made 

to the file system used by Arch Linux in the interval.  There were also the unknown 

custom configurations that might be overwritten by an update.  The file system changes 

made to Arch Linux are difficult to apply all at once but an attempt was made to update 

the system.  The process predictably broke almost everything and it became necessary to 

reinstall the operating system.   

2.3    New Computer 

Due to budget constraints, a suitable computer could not be purchased and so 

existing hardware was utilized.  Several computers not currently in use were tested as 

viable replacements.   

2.3.1    First Try 

The intent for the first replacement computer was to simply use the old NVIDIA 

Quadro NVS 420’s that powered the previous version of the wall along with a new install 

of Arch Linux.  It is difficult to install an operating system on the wall when all the 

monitors are connected due to ergonomics, the size of the screen, and the limited range a 

wired keyboard and mouse have.  As such, an old video card was placed in the computer 

in place of the Q420’s for installation purposes.   

2.3.1.1    OS Installation 

The installation followed the Arch Linux Beginner’s Guide [6] and was 

reasonably straight forward.  The hard drive for the computer has a capacity of 320GB.  

The partitioning scheme chosen was 50GB for the root file system partition, 16GB for the 
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swap partition, and the remaining space for the home partition.  Once the OS had been 

installed, including a graphical environment, in this case KDE, the Q420’s were installed 

and the computer was moved to the wall. 

2.3.1.2    Issues 

After some research, it turns out that the current NVIDIA drivers no longer 

support the Q420 and the legacy drivers are not only difficult to come by, but not fully 

supported by newer versions of Xorg.  Since the purpose of this whole operation was to 

get the wall back up and running in such as state that updating the OS was possible, it 

was decided that the Q420’s were not the best choice of video cards for the job.    

2.3.2    Second Try 

A visualization wall that had previously been located at the Foster Center for 

Student Innovation was removed during the 2013-2014 school year and the machine 

driving that wall had been sitting unused since it’s removal.  The Innovation Center wall 

was a 16 monitor setup using three ATI Radeon HD 5870’s (R5870).  The R5870’s used 

are hex head graphics card with six mini-displayport outputs.  There were no known 

issues with the machine before it was removed from the Innovation Center and so the 

hard drive from the wall in the IRL was reconfigured for this hardware.  As it turns out, 

this computer also had an issue with its RAM.  Unfortunately, the CPU heatsink obstructs 

at least one of the RAM DIMMs and would require removal in order to test the RAM.  

This is a long process and would require purchasing thermal compound to reapply the 

heatsink and as other machines were available, this machine became undesirable for the 

wall. 



13 

2.3.3    Third Try 

At this point, the original replacement computer was configured to use two of the 

R5870’s and to drive the wall.  This configuration worked and the following sections use 

this computer.  The current configuration has an AMD Phenom 8650 Triple-Core 

Processor running at 1.15GHz with 4GB DDR2 RAM.  The same procedure for installing 

the OS was followed as outlined in Section 2.3.1.1 with the exception that the installation 

was done with a single R5870 installed.  With a working Arch Linux installation in place, 

the second R5870 was installed and the computer was moved for final installation. 

The R5870 has six mini-displayport heads that are enumerated starting at 

DisplayPort-0.  Figure 2.6 shows the first port as seen from the rear of the card when 

installed. 

 

Figure 2.6:  ATI Radeon HD 5870 Port Layout 

2.4    Xrandr 

With the installation of an up-to-date OS and kernel, xrandr was an available 

option for configuration.  When only a single graphics card was installed, xrandr worked 

very well at setting up screens.  However, when a second card was added, xrandr did not 

recognize it automatically.  When the command to link the second card to the screens was 

initialized, some of the screens would become available, but not all of them and other 
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commands to position them did not work correctly or were ignored.  It became evident 

that as of August of 2014, xrandr was still not suitable for multiple video cards and 

multiple monitors. 

2.5    Xorg 

At this point, Xorg seemed to be the only option left.  The majority of posted 

information regarding multihead configuration files focuses on NVIDIA graphics cards 

and uses TwinView as outlined in Section 2.2.1.3.  The TwinView option is only 

available for NVIDIA graphics cards and cannot be used with AMD cards.   

2.5.1    Default Configuration 

The first step to success was generating a default configuration file by running 

command shown in Figure 2.7.  This command must be run as the privileged user root. 

Xorg -configure 

Figure 2.7:  Command to Produce Xorg Default Configuration 

It is possible to run the command shown in Figure 2.7 using sudo, though the 

documentation suggests that using sudo may not work. The configuration command 

creates a default configuration file located at /root/xorg.conf.new.  The default 

configuration file can be seen in Appendix B.  The configuration file didn’t create a fully 

configured screen layout, but did correctly identify two graphics cards and create Device 

sections for each card with all options listed and commented out. 



15 

2.5.2    Device Section 

From the newly created configuration file and many Google searches, it was 

determined that the Device section has a Screen option that can be specified.  According 

to the xorg.conf man page [7], 

Screen number 

This option is mandatory for cards where a single PCI entity can 

drive more than one display (i.e., multiple CRTCs sharing a single 

graphics accelerator and video memory).  One Device section is 

required for each head, and this parameter  determines which 

head  each  of the Device sections applies to.  The legal values of 

number range from 0 to one less  than  the  total  number  of heads  

per entity.  Most drivers require that the primary screen (0) be 

present. 

This revelation led to creating separate Device sections for each port used on each 

card.  An example Device section is shown in Figure 2.8. 
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Section "Device" 

Identifier  "CardX" 

Driver   "radeon" 

BusID   "PCI:X:0:0" 

Screen   Y 

EndSection 

Figure 2.8:  Example Radeon HD 5870 Xorg Device Section 

The Identifier CardX is replaced by a sequentially increasing number starting at 

Card0.  Screen Y is replaced with a number between zero and one less than the number of 

heads on the card and refers to which head is being referenced.  For the R5870’s, the 

maximum screen number is five.  For a single card, the numerical values for CardX and 

Screen Y are the same.  When a second card is introduced, the first card will still have the 

same values, but while the CardX values for the second card will continue to increase, the 

Screen Y values will start over at zero. 

2.5.3    ZaphodHeads Option 

The example Device section in Figure 2.8 is still missing one option, 

ZaphodHeads.  The ZaphodHeads option is only available for AMD/ATI cards.  This 

option allows a specific device to be bound to a specific output.  Unfortunately, the man 

page for xorg.conf doesn’t contain any information regarding this option, though the 

ArchWiki ATI page has useful information [8].  The output value used can be referenced 

in two ways.  If xrandr is enabled, the name to use can be found by running the command 

shown in Figure 2.9. 
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xrandr -q 

Figure 2.9:  xrandr Command to List Video Port Names 

Each head has an associated name.  Most current systems have xrandr enabled, 

but in the event it has not been enabled, the xorg log file found at /var/log/Xorg.0.log can 

be used and should give the correct name for the output.  In the case of the R5870, each 

port’s name is of the form DisplayPort-X, where X is replaced by a numerically 

increasing value starting at zero on the first card.  A complete Device section including 

the ZaphodHeads option is shown in Figure 2.10. 

Section "Device" 

Identifier  "CardX" 

Driver   "radeon" 

BusID   "PCI:1:0:0" 

Screen   X 

Option   "ZaphodHeads" "DisplayPort-X” 

EndSection 

Figure 2.10:  Radeon HD 5870 Xorg Device Section With ZaphodHeads Option 

2.5.4    Screen Section 

Each individual monitor has a Screen section that binds a device to a screen.  

There should be one screen per device and so this setup has nine devices and nine 

screens.  A sample Screen section is shown in Figure 2.11. 
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Section "Screen" 

Identifier  "ScreenX" 

Device   "CardX" 

Monitor   "Default-Monitor" 

EndSection 

Figure 2.11:  Sample Radeon HD 5870 Xorg Screen Section 

ScreenX and CardX are replaced by previously defined values as described in 

Section 2.5.2.  The full configuration file using the R5870s can be found in Appendix C. 

2.6    Computer Failure 

The computer used and outlined in Section 2.3.3 finally died and another 

replacement computer was required.  Fortunately, the computer outlined in Section 2.3.2, 

that had previously been located at the Foster Center for Student Innovation, was still 

available.  The memory issues it had been experiencing were related to a poorly seated 

DIMM and were thus easily fixed.  The original assumption that the heat sink required 

removal in order to reseat the DIMM turned out to be fallacious.  This computer was used 

as a replacement for the previous computer and the only necessary changes to the Xorg 

configuration file were to reflect the different PCIe bus addresses as discussed in Section 

2.2.1.1.  The full Xorg configuration file can be found in Appendix D. 

2.7    Summary 

The visualization wall modifications outlined in this chapter are an excellent 

starting point for building visualization walls that can be easily maintained.  The 

visualization wall currently residing in the IRL has been continuously kept up to date and 
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is running the most current Linux kernel available through Arch Linux.  The only 

modification to the system is the custom Xorg configuration file shown in Appendix D. 
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CHAPTER 3 

BUILDING GPGPU MACHINES 

When considering how to build a GPGPU specific machine using consumer 

hardware, there are a number of differences from building a machine that focuses on 

CPU processing.  While one would normally start with processor selection and build the 

machine around the desired processor, the first step in building a GPGPU machine is to 

determine what type of GPU best fits one's purposes.  There are two major GPU 

manufacturers to choose from in the consumer market, NVIDIA and AMD.  While 

NVIDIA and AMD hold the majority market for consumer discrete GPUs, but the market 

isn't equally divided.  NVIDIA currently has a much higher market share compared to 

AMD.  In the fourth quarter of  2014, NVIDIA had 76% of the discrete GPU market 

leaving AMD with the remaining 24% [9].  It is also important to consider that AMD 

GPUs can only run programs written in OpenCL, while NVIDIA GPUs allow for 

programs to be run written in both OpenCL and CUDA.  Given this, NVIDIA is the best 

choice as it offers the largest number of options for programming. 

This chapter outlines the selection criteria for building GPGPU machines using 

consumer hardware and concludes with two GPGPU machine configurations created 

from the outlined selection criteria using the latest available NVIDIA consumer GPUs.   

3.1    NVIDIA GPUs 

When talking about NVIDIA GPU selection in the consumer space, compute 

capability is the main differentiating factor.  NVIDIA compute capability defines the 

physical CUDA features of a GPU.  This includes the number of CUDA cores, amount of 

shared memory, bus speeds, etc.    
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3.2    Compute Capability 

It was once easy to tell which card was “king” when looking at usefulness from a 

CUDA perspective as higher compute capability directly correlated to better CUDA 

specifications.  The highest level single GPU cards for any given generation were the best 

because they had more CUDA cores and all new cards supported the highest compute 

capability.  This is no longer the case.  The divergence of compute capability has made it 

much less clear as to what compute capability and what card is best in a given situation.  

Some of the 3.x level compute capabilities are better suited for shared memory tasks than 

the 5.x level compute capabilities.  Tables 3.1 and 3.2 show the comparison between 

compute capabilities for 2.x and higher. 
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Table 3.1:  Compute Capability Comparison Table Part 1 [2] 
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Table 3.2:  Compute Capability Comparison Table Part 2 [2] 
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3.2.1    Architecture Specifications 

The architecture of the GPU, Tesla (not to be confused with the Tesla line of 

cards), Fermi, Kepler, or Maxwell, shows the first part of the compute capability, 1, 2, 3, 

or 5 respectively.  Within each architecture there are various levels of compute capability.  

The most relevant compute capabilities when selecting a consumer grade GPGPU are 

currently 3.5 and 5.2.  Tables 3.1 and 3.2 above show a comprehensive list of differences 

between compute capabilities.  Upon inspection it becomes obvious that there are a large 

number of reference points for comparison.  However, only a few of these have any 

practical relevance to GPGPU programming.  By limiting the examination to only 

compute capabilities 3.5 and 5.2, many reference points become extemporaneous as these 

compute capabilities have many similarities.  The two main points of interest are the 

maximum number of resident blocks per multiprocessor and the maximum amount of 

shared memory per multiprocessor.  The maximum number of resident blocks per 

multiprocessor is an indication of the hard limit for how many simultaneous blocks a 

single multiprocessor can handle.  Having a higher maximum number of resident blocks 

allows for more efficient parallelism at the multiprocessor level.  Correlated to this is the 

maximum amount of shared memory per multiprocessor.  These are two of the limiting 

factors related to how many blocks will actually be run on a multiprocessor.  Compute 

capability 3.5 allows for 16 blocks per multiprocessor with 48K of shared memory while 

compute capability 5.2 allows for 32 blocks per multiprocessor with 96K of shared 

memory.  This is the same ratio of blocks to shared memory, but if fewer blocks are run 

per multiprocessor, then more shared memory is available for each block. 
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3.2.2    GPU Specifications 

While looking at compute capability can help narrow down what line of cards will 

work best, the actual specifications of the card are used to select the “best” card.  

NVIDIA provides a large list of specifications for their cards.  The specifications for the 

GTX 980 are shown below in Figure 3.1. 

 

Figure 3.1:  NVIDIA GTX 980 Specifications [5] 
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The extensive list of specifications provided can be overwhelming to parse, but 

for GPGPU use, many of the specifications can be safely ignored.  The specifications of 

interest lie in the Engine and Memory Specs sections.  The number of CUDA cores lists 

the total number of CUDA cores between all multiprocessors and so correlates to the 

number of threads that can be run in parallel.  When comparing GPUs of the same 

architecture, the number of CUDA cores can be directly compared with higher values 

being better. 

3.3    Top of the Line GPUs 

At the time of building the current GPGPU machines, the top of the line consumer 

GPU used for CUDA was the GTX 980.  The GTX 990 could be considered “better” than 

the GTX 980, though for GPGPU programming, this isn’t the case.  The GTX 990 is a 

dual processor GPU meaning that there are essentially two GTX 980s on the same 

physical card.  The reason this isn't considered the top of the line is that the bus speed is 

shared between the two GPUs and thus halves the data transfer rate to and from the 

separate GPUs on the card.  The better option in this case is to use two separate GTX 

980s so that the bus speed isn't affected.  This isn’t a consideration when picking a GPU 

for gaming, but the largest bottleneck in GPGPU programming is often transferring data 

to and from the GPU.  It therefore makes sense that the best way to minimize that 

bottleneck is to make sure not to limit the bandwidth for data transfers by trying to 

transfer data on the same PCIe bus.  This holds true for linked PCIe slots on the 

motherboard.  It is much better to have completely separate slots for each card than to 

have linked slots. 
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3.4    Precision vs. Cost 

There is a second consideration when looking at NVIDIA GPUs for GPGPU 

machines.  The GeForce family of GPUs is designed for single precision floating point 

calculations.  The physical architecture of the GPUs limits double precision calculations 

significantly compared to single precision calculations.  For applications where double 

precision is necessary, the Tesla line from NVIDIA offers greatly improved double 

precision performance, though at a much higher cost.  Tesla GPUs are cost prohibitive for 

most research projects, but are often found in supercomputers as accelerators. 

3.5    Supporting Hardware 

After selecting the appropriate GPU, the rest of the supporting hardware can be 

chosen.  The choice of supporting hardware follows a very similar path as when selecting 

hardware for a regular computer build.  However, unlike when building a regular 

computer, the motherboard and processor are given equal weighting for a GPGPU 

machine.  This is largely due to the fact that the PCIe slots need to be fully independent 

and, for the newest GPUs, support PCIe 3.0 x16. 

3.5.1    Processor 

Processor selection has less importance for a GPGPU machine than for a regular 

computer because the emphasis of a GPGPU machine is on the GPU rather than on the 

CPU.  This doesn't mean, however, that CPU selection isn't important.  For comparison 

sake, a strong CPU is needed.  Having a powerful CPU as a baseline gives what can be 

considered a worst case speedup compared to the GPU.  In most circumstances, the actual 

speedup when comparing a serial CPU implementation vs. a multi-threaded CPU 

implementation vs. a GPU implementation will heavily depend upon the CPU and GPU.  
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For existing systems, it's much more plausible to add a new GPU than to change the 

CPU.  Therefore, testing a strong GPU vs. a strong CPU shows the minimum speedup 

that can be expected for a program.  In most circumstances, the speedup will actually be 

higher because the difference between the CPU and the GPU will be greater with a less 

powerful CPU. 

It is also important to remember that for running any of the serial sections of a 

program, the CPU will still be utilized and that not all programs that will be run will 

support GPU acceleration or be good candidates for GPU acceleration.  For these 

reasons, CPU selection still has an impact, though less than for a regular computer. 

3.5.1.1    Processor Manufacturer 

There are two major CPU manufacturers, Intel and AMD.  Intel has a much larger 

market share compared to AMD, 72% vs. 28% [10], and thus there are often more 

motherboard choices for Intel processors than for AMD.  Intel processors are also often 

able to get more processing power out of fewer cores than AMD, but are usually more 

expensive. 

3.5.1.2    Processor Selection 

Having decided upon an Intel processor, the next step is to determine what type of 

processor fits both the budget and processing requirements.  The top of the line consumer 

Intel processor line is the 4th generation Core-i7 Haswell-E family.  The Haswell family 

is divided between the regular Core-i7s with up to quad-core processors and the E 

editions with either six or eight cores.  The three E edition processors are top of the line 

and the real choice is between the Core i7-5930K and the Core i7-5960X. 
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3.5.1.2.1    5930K vs. 5960X 

There are two major differences between the Core i7-5930K and the Core i7-

5960X.  The 5930K has six physical cores running at 3.5 GHz while the 5960X has eight 

physical cores running at 3.0 GHz.  Both processors use the LGA2011-3 socket, and so 

are interchangeable. Choosing between these two processors is heavily dependent upon 

use case of the machine and the budget.  The 5960X has two more physical cores and so 

multithreaded programs that aren’t as computationally intensive, but that benefit from 

good parallelism, will be a better fit for this processor.  The 5930K only has six physical 

cores, but runs 0.5 GHz faster, meaning that actual computation will be faster, but won’t 

have as high a level of parallelism.  It is also important to note that the 5960X is 

significantly more expensive, nearly twice the cost, compared to the 5930K.  Since 

GPGPU machines are built to utilize the GPU for high parallelism, the 5930K is a better 

compliment to the GPU than the 5960X because of the faster processor speed.  If the two 

speeds were closer, say only a difference of 0.2 GHz, then the choice would be less clear, 

though the price difference would still be a significant factor.  In that case, the extra cores 

could outweigh such a miniscule speed difference if the budget allowed for the extra 

expense.  Table 3.3 shows a comparison of the most important factors between the 5960X 

and the 5930K.  
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 Core i7-5960X Core i7-5930K 

Recommended Customer Price $1059.00 $594.00 

Number of Cores 8 6 

Number of Threads 16 12 

Processor Base Frequency 3 GHz 3.5 GHz 

Table 3.3:  Comparison of i7-5960X [12] and i7-5930K [11] 

3.5.1.2.2    Xeon vs. Core i7 

Another option would be to use a server processor such as one of the Intel Xeon 

processors.  These processors can be found with many more cores than a Core i7, but 

they often operate at a lower frequency and almost always cost considerably more than 

the Core i7 equivalent.  The same reasoning used to determine the better Core i7 

processor applies in this case as well.  Table 3.4 shows a comparison between two Xeon 

processors, the E7-4809 v2 and the E7-8890 v2, and the i7-5930K.   

 Xeon E7-

4809 v2 

Xeon E7-

8893 v2 

Core i7-

5930K 

Recommended Customer 

Price 

$1223.00 $6841.00 $594.00 

Number of Cores 6 6 6 

Number of Threads 12 12 12 

Processor Base Frequency 1.9 GHz 3.4 GHz 3.5 GHz 

Table 3.4:  Comparison of E7-4809 v2 [14], E7-8893 v2 [13], and i7-5930K [11] 

All three processors have six physical cores.  The main differences are the 

processor frequency and price.  The E7-4809 is more than twice the cost of the i7-5930K 

and runs at a significantly lower frequency, clearly making the E7-4809 a poor choice.  

The E7-8893 is much more closely matched to the i7-5930K in terms of processor 
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frequency, but costs 10x more than the i7-5930K.  This clearly shows that the speed 

tradeoffs and extra cost, make the Core i7-5930K not only a better deal but better suited 

for a GPGPU machine. 

3.5.2    Motherboard 

There are a number of considerations when selecting a motherboard, not least of 

which is checking CPU support and PCIe slot configuration.  One of the main selection 

criteria for the motherboard is PCIe compatibility.  Top of the line GPUs need to be in a 

PCIe 3.0 x16 slot in order to gain the best performance.  Both the GTX 980 and the GTX 

Titan Black are compatible with PCIe 3.0 x16.  When building a machine around either 

of these two cards, the motherboard should have the same number of PCIe 3.0 x16 slots 

as GPUs.  The GPUs can be run in PCIe 2.0 slots or PCIe 3.0 x8, but performance will 

suffer due to the slower bus speed. 

3.5.3    Storage 

Picking the right storage configuration depends upon two major factors, dataset 

size and long term retention.  If the machine needs to provide long term retention of 

research data, a RAID array is a good way to avoid data loss in the case of disk failure.  

RAID arrays can also be beneficial when dealing with large datasets as they can increase 

write and read speeds, depending upon the RAID type. 

3.5.3.1    RAID 

RAID or redundant array of independent disks is a data storage virtualization 

technology that utilizes multiple disks.  There are a number of RAID levels, but the most 
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common are 0, 1, and 5.  Figure 3.2 shows the layout for RAID levels 0, 1, and 5.  Each 

of the levels is then discussed in the following sections. 

 

Figure 3.2:  RAID Levels 0, 1, and 5 

3.5.3.1.1    RAID 0 

RAID 0 consists of striping data.  Striping refers to distributing the data in 

roughly equal chunks across all the disks, allowing for faster read and write operations 

due to the ability to concurrently perform the operations.  RAID 0 lacks mirroring or 

parity and thus results in utilizing the full capacity of all disks in the array.  The tradeoff 

is a lack of redundancy or error correction.  When using a RAID 0 array, the result of a 

disk failure is often an unrecoverable array and a total loss of data. 

3.5.3.1.2    RAID 1 

RAID 1 consists of mirroring.  Mirroring refers to identical copies of data on 

separate disks.  This requires at least two disks, but often more are used.  RAID 1 offers 

high sustained read throughput as all disks can be read simultaneously.  Write throughput 

suffers, however, as all disks must be updated. 
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3.5.3.1.3    RAID 5 

RAID 5 consists of block-level striping with distributed parity.  Block-level 

striping, as the name implies, performs striping at the block level, rather than at the bit-

level, byte-level, or some other stride.  Distributed parity utilizes parity across all disks, 

rather than having a dedicated disk for parity.  The benefit of using distributed parity is 

that a RAID 5 array can lose a single disk and rebuild the lost information from the 

remaining disks.  Using parity begins to limit the total capacity of usable disk space, but 

the tradeoff is disk failure tolerance.  A RAID 5 array requires a minimum of three disks.    

3.5.3.2    SSD vs. Hard Drive 

Solid State Drives (SSDs) can be a consideration when selecting hard drives.  

SSDs have much higher sequential read and write speeds compared to typical hard drives.  

Previous work by Jason Monk showed no significant use of included SSDs for the 

associated research [15].  These machines were built to continue similar research and so 

SSDs were not used. 

3.5.4    RAM 

One important feature is the amount RAM supported by the motherboard.  It's a 

good idea to get a motherboard that supports a large amount of RAM to give sufficient 

memory levels and to allow for future expansion should the need arise.  When using large 

datasets, having a large amount of RAM can improve performance because of the faster 

access speeds of RAM vs a disk drive.  As the price of RAM has dropped, the maximum 

amount of RAM a motherboard will support has continued to increase.  Many high end 

motherboards now support 64GB of RAM or more.  At a certain point, when building a 

GPGPU machine, the benefit of more RAM starts to drop off as most datasets aren’t large 
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enough to utilize all of the available RAM and the GPUs simply don’t have the same 

order of magnitude of RAM available. 

3.5.5    Power Supply 

Power supply selection depends mostly on the power requirements for the CPU 

and GPUs.  Most of the rest of components have fairly low power consumption in 

comparison.  A number of online power supply calculators exist.  Most of calculators 

take into account the CPU(s), GPU(s), number of disk drives, motherboard, and some of 

the other peripherals.  Newegg has a power supply calculator that can be used for a 

general idea of necessary wattage [16]. 

It’s important to remember that the calculator gives only a general idea of power 

requirements and that the values returned should be taken as a minimum in most cases.  It 

can be advantageous to make certain to have a large enough power supply for any future 

expansion as new GPUs become available, the system is expanded, and power 

requirements change. 

3.5.5.1    Power Supply Rating 

The rating system used for power supplies is the 80 PLUS system, a voluntary 

certification program that certifies efficiency greater than 80% at loads of 20%, 50%, and 

100% with a true power factor of greater than or equal to 0.9.  The levels of 80 PLUS 

certification are shown below in Table 3.5. 
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Table 3.5:  80 PLUS Certification Ratings [17] 

The higher levels of 80 PLUS certification are more desirable due to greater 

efficiency under load.  When selecting a power supply, a rating of 80 PLUS Gold is often 

sufficent. 

3.5.5.2    Modular 

Modular power supplies are highly desirable as they allow for more efficient wire 

management by eliminating unnecessary cables.  A fully modular power supply is best, 

but partially modular power supplies are more common and less expensive.  Figure 3.3 

shows the difference in cabling between a regular power supply and a fully modular 

power supply. 
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Figure 3.3:  Modular and Non-Modular Power Supplies [18][19] 

The main difference between fully modular and partially modular power supplies 

is that the 24-pin CPU power connector is removable for a fully modular power supply 

while it’s built in on the partially modular models. 

3.5.6    Cooling 

Cooling a computer can be done in one of two ways, air cooling or liquid cooling.  

Figure 3.4 shows two cooling systems installed in two different machines with the air 

cooling system on the right and liquid cooling system on the left. 
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Figure 3.4:  Liquid Cooling vs. Air Cooling 

3.5.6.1    Air Cooling 

The most common cooling technique is to use air and fans.  The CPU has a heat 

sink and a fan, each GPU has a heat sink and fan built in, the power supply has a fan, and 

there are usually between two and six other fans in the case to help move air around.  

Usually some of the fans are configured to pull air in while others are configured to push 

air out.  This creates a good flow that helps to keep all the components cool.  Most 

processors come with a heat sink and fan, but oftentimes the extreme editions of the 

Core-i7 family are sold without the heat sink and fan.   

3.5.6.2    Liquid Cooling 

The alternative to air cooling is liquid cooling.  There are several types of liquid 

cooling systems and the components that the system cools depends on how extensive the 

cooling system is.  It's common to use liquid cooling for the CPU and air cooling for the 

GPU.  There are systems that replace the air cooling on the GPU, but they aren't common 

and usually require a custom cooling system.  Liquid cooling systems for the CPU are 

fairly common and maintenance free systems are easily purchased.  These maintenance 

free system are completely sealed and don't require extra reservoirs or changing of the 
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cooling liquid.  This makes them ideal drop in replacements for the CPU heat sink and 

fan.  They also have the added benefit of being nearly silent.  These systems have a small 

closed heat sink attached to the CPU with two hoses running to the radiator with a pump 

to keep the cooling liquid circulating.  The radiator draws the heat from the circulating 

liquid and can often keep the CPU cooler than an air cooling system.  Fans are mounted 

directly on the radiator to either push cool air into the radiator or draw the hot air away. 

3.5.7    Case 

Choosing a good liquid cooling system ties directly into choosing the case for the 

machine.  It's important to make sure that there is enough room to mount the radiator and 

the fans either inside the case or on the back or top of the case. 

The choice of case for the machine is fairly important, but is more about 

aesthetics than functionality.  The main concerns when choosing a case are finding one 

that's compatible with the motherboard, large enough for the cooling system, has enough 

bays for the required number of drives, and has good routing for the wiring.  The case 

should be the final component selected. 

3.6    GPGPU Machine Configurations 

Following the procedures and reasoning outlined in the preceding sections, two 

GPGPU machines were constructed.  The difference between the two machines is that 

one has dual GTX 980 GPUs, machine A, while the other has dual GTX Titan Black 

GPUs, machine B.  The selection of the two different GPUs was entirely dependent on 

the intended research for each machine.  Machine A will primarily be used for research 

that heavily utilizes shared memory, for which the GTX 980 is better suited.  Machine B 

will primarily be used for research with lower shared memory requirements and larger 
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datasets, for which the GTX Titan Black is better suited.  Table 3.6 shows the 

configurations for the two GPGPU machines.  

 Machine A Machine B 

CPU: Intel Core i7-5930K Intel Core i7-5930K 

GPU: 2 x NVIDIA GTX 980 2 x NVIDIA GTX Titan Black 

Memory: 32 GB DDR4 2133 32 GB DDR4 2133 

Motherboard: ASUS Rampage V Extreme ASUS Rampage V Extreme 

Storage: 4 x 2TB 7200 RPM HDD 5 x 2TB 7200 RPM HDD 

Case: Rosewill Throne-Window - 

Black 

Rosewill Throne-Window - 

Black 

Cooling: Cooler Master Nepton 280L Cooler Master Nepton 280L 

Power Supply: Corsair 1500W Fully Modular Corsair 1500W Fully Modular 

Table 3.6:  GPGPU Machine Configurations 

Appendix E contains the full configuration specifications for both machines.  

3.7    Additional Considerations 

Even with careful selection criteria, there was a compatibility issue between the 

Rosewill Throne case and the Nepton 280L liquid cooling system.  The ASUS Rampage 

V Extreme motherboard didn’t leave enough room at the top of the case for the fans to be 

mounted internally below the radiator.  The top of the case is designed with plastic vents 

above the mesh of the case.  It was necessary to modify the plastic vents to allow the fans 

to be mounted on top of the case.  Figure 3.5 shows the top of the case after modification. 
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Figure 3.5:  Case Modification 

3.8    Summary 

The GPGPU machine configuration criteria outlined in this chapter served as the 

basis for the construction of the two GPGPU machines outlined.  The two machines were 

used for several of the tests contained in the remainder of this thesis.  NVIDIA GPU’s 

were selected for each machine to allow for the use of both CUDA and OpenCL 

progamming.  The machines are identical with the exception of the GPUs.  One machine 

contains two GTX 980s while the second machine contains two GTX Titan Blacks.  Each 

machine has room and sufficient power for additional GPUs. 
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CHAPTER 4 

CUDA PROGRAMMING 

This chapter serves as an introduction to Compute Unified Device Architecture 

(CUDA) programming starting with basic terminology and syntax.  Kernel writing and 

configuration are explored, followed by more advanced concepts including occupancy, 

memory management and data structures.  The chapter concludes by outlining the 

compilation process and multiple GPU programming. 

Effectively programming NVIDIA GPUs requires an understanding of the 

difference between a typical CPU architecture and a GPU architecture.  GPUs are highly 

parallel systems with many ALUs controlled by less sophisticated control structures.  

Figure 4.1 shows the difference between a typical CPU with a small number of ALUs and 

a sophisticated control structure and large cache and a typical GPU with many ALUs per 

control structure and much smaller cache. 

 

Figure 4.1:  Architecture Comparison from CUDA C Programming Guide [2] 

4.1    Terminology 

In order to become familiar with GPGPU programming in CUDA, a number of 

terms must be defined. 
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4.1.1    Host and Device 

In GPGPU programming, two important terms to understand are Host and Device.  

The host refers to the CPU running the the C/C++ CUDA program.  The device refers to 

the GPU being utilized.  It’s possible to have multiple devices per host, allowing the 

programmer to take advantage of all available GPUs.  The host and each device maintain 

separate memory spaces.  This separation used to require explicit copy requests to move 

data between memory spaces.  Since the introduction of Unified Memory, this is no 

longer the case.  Memory management is discussed in more detail in Section 4.4. 

4.1.2    Kernel 

A Kernel refers to functions that run on a device rather than on the host.  Kernels 

are launched from the host to run on a device with a specified number of CUDA threads 

that run in parallel.  The number of threads is specified at runtime. 

4.1.3    __global__ Keyword 

The __global__ keyword is used to declare kernels that can be launched from the 

host and run on a device.  The __global__ keyword is one of the most common keywords 

used in CUDA programming.  Functions marked as __global__ are configured to specify 

the dimensionality of parallelism.  This is discussed in more detail in Sections 4.2.2 and 

4.2.3.   

4.1.4    __device__ Keyword 

The __device__ keyword is used to declare a function that can be called by 

CUDA threads.  Functions marked as __device__ can be called in __global__ functions 

as well as by other __device__ functions.  They can’t be called directly from the host. 
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4.1.5    __host__ Keyword 

The __host__ keyword is an optional keyword used to declare a traditional 

function that is called by the host and run on the host.  All functions not specified 

otherwise are host functions.  The majority of the time, the __host__ keyword isn’t 

explicitly used, except to avoid duplicating functions that will be called on both the host 

and device.  In these cases, both the __device__ and __host__ keywords are used to 

declare the function. 

4.1.6    Threads, Blocks, and Grids 

A kernel is run as a series of thread.  The threads are organized into blocks that 

collectively make up the kernel grid.  All threads within a block are guaranteed to run at 

the same time and can share memory, using shared memory, amongst themselves.  There 

are restrictions on the number of threads in a block that are defined by the compute 

capability of the device.  Section 3.2 contains more information about compute 

capability. 

4.1.7    Warps 

CUDA threads are grouped into warps.  Warps have a Single Instruction Multiple 

Data (SIMD) architecture that results in a single instruction being run by all threads in the 

warp, all on separate data.  The largest impact of this SIMD architecture is seen with 

divergent code in conditional statements such as if statements.  If not all threads in a warp 

have the same path, such as when some threads execute a conditional and some do not, 

threads not executing the current instruction sit idle until the paths reconverge.  For all 

compute capabilities above 2.0, the warp size is 32 threads. 
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4.1.8    Global and Shared Memory 

The memory spaces for hosts and devices are completely separate. Devices have 

two major types of memory available, global memory and shared memory.  Global 

memory is the largest amount of memory, GDDR5 on the newest models, and can be 

accessed by all threads running on a device.  While global memory has the largest 

capacity, it also has the highest access latency.  Shared memory, on the other hand, is tied 

to a specific block of threads and can only be accessed by the threads within that block.  

The memory access times for shared memory are much faster, but the capacity is highly 

diminished.  The GTX 980 has 4GB of global memory while only 96KB of shared is 

available to a single multiprocessor, which must be split between up to 32 blocks [5][2]. 

4.2    Code 

With the necessary terminology defined, the process of writing CUDA code can 

begin. 

4.2.1    Internal Kernel Variables 

When writing a kernel, a number of automatically defined dim3 variables are 

provided.  These variables provide information related to thread location.  Table 4.1 

provides information about the automatically defined variables. 

Variable Description 

dim3 gridDim Dimensions of the grid. 

dim3 blockDim Dimensions of each block. 

dim3 blockIdx Current block index within the grid. 

dim3 threadIdx Current thread index with the block. 

Table 4.1:  Automatically Defined dim3 Variables 
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4.2.2    Kernel Configuration 

Once a kernel has been written, it is configured at runtime to define the 

dimensionality of how it’s executed on the GPU.  The syntax used for launching a kernel 

is the triple chevron, <<<...>>>.  The triple chevron syntax takes up to four parameters as 

shown in Figure 4.2 and explained in Table 4.2. 

kernel<<<numBlocks, threadsPerBlock, sharedMemPerBlock, stream>>>(A, B, 

C, ...); 

Figure 4.2:  Triple Chevron Parameters and Syntax 

Argument Name Description 

numBlocks Number of blocks in the grid. 

threadsPerBlock Number of threads in each block. 

sharedMemPerBlock Amount of shared memory within each block. 

(optional, defaults to 0) 

stream Associated stream. (optional, defaults to 0, see Section 

4.2.4) 

Table 4.2:  Triple Chevron Parameter Definitions [2] 

The regular function parameters A, B, C, … are passed to each thread.  Primitive 

types such int, float, char, etc are copied to device memory upon kernel launch.  Pointer 

types such as int*, float*, char*, etc are also copied, but the memory that they point to is 

not.  It is important to remember that when passing pointers in a kernel, the memory they 

map to must be device memory rather than host memory.  Section 4.4 has a more detailed 

explanation of explicit memory management. 

4.2.3    Dimensionality 

CUDA has a number of useful features for multidimensional programming in up 

to three dimensions.  Blocks of threads can have up to three dimensions, as can grids of 
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blocks.  In order to define multiple dimensions, the dim3 structure is used.  Figure 4.3 

shows the dim3 structure available in CUDA. 

struct dim3 { 

 unsigned int x, y, z; 

} 

Figure 4.3:  dim3 struct Variables 

When using the triple chevron syntax as described in Section 4.2.2, the 

parameters for the number of blocks and the number of threads can be specified with the 

dim3 structure for up to three dimensions.  When integers are specified in place of the 

dim3 structure, the value is used for the dimension in the X direction and the Y and Z 

dimensions default to one. 

4.2.4    Streams 

In CUDA, a stream is a sequence of operations performed sequentially.  Streams 

are not limited to kernel execution, but can also include memory transfers.  Streams are 

created using the cudaStreamCreate method.  Figure 4.4 shows an example of creating 

two streams.   

cudaStream_t streams[2]; 

for (int i = 0; i < 2; ++i) { 

 cudaStreamCreate(&streams[i]); 

} 

Figure 4.4:  Creation of Two CUDA Streams [2] 

To use an initialized stream, the optional stream triple chevron parameter is 

specified.  Streams are useful for issuing asynchronous memory transfers as any action 
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issued to the stream will wait for previously issued actions to complete before executing.  

Figure 4.5 shows an example of issuing a host to device memory transfer, followed by a 

kernel launch, followed by a device to host memory transfer using the example streams 

shown in Figure 4.4. 

cudaMemcpyAsync(device_ptr, host_ptr, size, cudaMemcpyHostToDevice, 

stream[1]); 

kernel1<<32, 1024, 0, stream[1]>>>(device_ptr); 

cudaMemcpyAsync(host_ptr, device_ptr, size, cudaMemcpyDeviceToHost, 

stream[1]); 

Figure 4.5:  Using Streams for Asynchronous Memory Transfers 

4.3    Occupancy 

Global memory accesses in CUDA have the most latency and can have a large 

impact on performance for programs heavy utilizing global memory.  CUDA attempts to 

hide this latency by warp switching if enough active warps exist.  Warp switching occurs 

when a warp contains more idle threads than active ones.  If a more active warp exists, 

the current warp is switched out and the more active warp begins to run.  The concept of 

occupancy relates to how many active warps exist compared to the maximum number of 

warps.  Equation 4.1 shows how occupancy can calculated. 

   (4.1) 

Full occupancy occurs when the number of active warps is equal to the maximum 

possible number of active warps.  The number of active warps depends on a number of 

factors, including register usage, shared memory usage, and block size [20]. 
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4.3.1    Occupancy Calculator Code 

The CUDA toolkit has an occupancy calculator API that can be used to predict 

kernel occupancy based upon block size and shared memory usage.  Figure 4.6 shows 

example code to calculate the occupancy of the kernel MyKernel. 

// Device code  

__global__ void MyKernel(int *d, int *a, int *b) {  

int idx = threadIdx.x + blockIdx.x * blockDim.x;  

d[idx] = a[idx] * b[idx]; 

}  

 

// Host code  

int main() {  

int numBlocks; // Occupancy in terms of active blocks  

int blockSize = 32; // These variables are used to convert occupancy to warps  

int device; cudaDeviceProp prop;  

int activeWarps;  

int maxWarps;  

cudaGetDevice(&device);  

cudaGetDeviceProperties(&prop, device); 

 

cudaOccupancyMaxActiveBlocksPerMultiprocessor( &numBlocks, MyKernel, blockSize, 0); 

activeWarps = numBlocks * blockSize / prop.warpSize;  

maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;  

std::cout << "Occupancy: " << (double)activeWarps / maxWarps * 100 << "%" << std::endl; 

return 0;  

} 

Figure 4.6:  Calculating MyKernel Occupancy Programmatically[2] 
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4.3.2    Alternative Versions 

The CUDA toolkit also provides a standalone version of the occupancy calculator 

located at <CUDA_Toolkit_Path>/include/cuda_occupancy.h.  In addition to the 

occupancy calculator API and standalone version, a spreadsheet is also provided that can 

be used to calculate occupancy based on a number of factors including block size and 

register and shared memory usage [2]. 

4.4    Memory Management 

Prior to CUDA 6.0, the only way to handle memory management was through 

explicit memory allocation and transfers between the independent memory spaces for 

host and device memory.  CUDA 6.0 introduced the concept of unified memory as an 

alternative approach to memory management.  Since memory transfers to and from the 

GPU often take much more time than the actual computation, memory management is an 

extremely important topic. 

4.4.1    Explicit Memory Management 

When using explicit memory management, several steps must be performed in 

order to use data on a device.  First, device memory is allocated.  Second, the desired data 

is copied to the device.  Third, the necessary operations are performed on the device 

memory.  Lastly, the results of the operations are copied back to the host.  Figure 4.7 

shows a typical CUDA program flow. 
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Figure 4.7:  Typical CUDA Program Flow from CUDA Wikipedia Article [21] 

Explicit memory management using the CUDA Runtime API is primarily based 

on the two functions cudaMalloc and cudaFree.  These functions respectively allocate 

and free device memory.  Figure 4.8 shows both function prototypes. 

cudaError_t cudaMalloc(void** device_ptr, size_t size); 

cudaError_t cudaFree(void* device_ptr); 

Figure 4.8:  cudaMalloc and cudaFree Function Prototypes 

The return value type, cudaError_t, describes the function completion.  CUDA 

error handling will be discussed in Section 4.6.  Both cudaMalloc and cudaFree behave 

similarly to their conventional C language counterparts, malloc and free.  The biggest 

difference between the CUDA and C allocation functions is that cudaMalloc takes a 

double pointer to device memory rather than single pointer.  The double pointer points to 
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the address of the allocated memory in the case of successful allocation rather than 

returning a pointer to the allocated memory. 

Copying memory between host memory space and device memory space is 

primarily handled by cudaMemcpy.  The cudaMemcpy prototype is shown in Figure 4.9. 

cudaError_t cudaMemcpy(void* dest, void* src, size_t count, enum 

cudaMemcpyKind kind); 

Figure 4.9:  cudaMemcpy Function Prototype 

As with cudaMalloc and cudaFree, cudaMemcpy is very similar to its C language 

counterpart used on Unix systems, memcpy.  The major difference is the addition of the 

kind parameter that specifies the copy domains.  Table 4.3 shows the possible values of 

the kind parameter. 

cudaMemcpyKind Value Memory Space Copy Direction 

cudaMemcpyHostToHost Copies from Host to Host 

cudaMemcpyHostToDevice Copies from Host to Device 

cudaMemcpyDeviceToHost Copies from Device to Host 

cudaMemcpyDeviceToDevice Copies from Device to Device 

cudaMemcpyDefault Used for Unified Virtual Memory Space 

Table 4.3:  cudaMemcpyKind Values 

Asynchronous memory copies are also possible using cudaMemcpyAsync.  The 

additional cudaStream_t parameter is used with cudaMemcpyAsync.  Streams are 

discussed in more detail in Section 4.2.4. 

4.4.2    Unified Memory 

CUDA 6.0 introduced the concept of managed unified memory.  Unified memory 

allows the same pointer to reference memory on both the host and device without 
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explicitly copying memory using cudaMemcpy.  The main advantage unified memory 

provides is the simplification of the program as host and device specific pointers and 

explicit memory copies are not required [2].  It’s important to note that memory copies 

are still taking place, so no speedup should be expected when using unified memory 

versus explicit memory management.  Unified memory is allocated using the function 

cudaMallocManaged, which takes the same arguments as cudaMalloc, outlined in Section 

4.4.1.  Figure 4.10 shows the prototype for cudaMallocManaged. 

cudaError_t cudaMallocManaged(void** data_ptr, size_t size); 

Figure 4.10:  cudaMallocManaged Function Prototype 

4.5    Data Structures 

Associated with memory management is the use of appropriate data structures.  

For sequential CPU based applications the choice of data structures, as it relates to 

memory management, matters considerably less than it does for GPU applications.  In 

sequential applications, often data can be stored in many different types of data structures 

without causing significant issues.  This isn’t the case for GPU applications as data will 

be accessed in parallel and memory coalescence (discussed next) becomes a primary 

concern. 

4.5.1    Memory Coalescence 

Global memory can only be accessed by 32, 64, or 128-byte memory transactions 

[2].  The effect of this memory access limitation is that extra memory is often included in 

memory transactions when accessing global memory.  In order to take advantage of this 

access pattern, having data stored in sequential locations that will be accessed by all 

threads in a warp becomes important.  Utilizing this access pattern to limit the number of 
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global memory accesses is known as memory coalescence.  Effectively planning data 

structures and algorithms to maximize memory coalescence is an important factor in 

GPU programming.  

4.5.2    Good Data Structures for GPUs 

Data structure selection can play an important role in GPU programming.  Arrays, 

and data structures such as vectors that are built upon arrays, are the preferred data 

structures for GPU programming due to fact that the elements of an array are held in 

sequential memory locations.  This sequential nature offers the best option for memory 

coalescence.   

4.5.3    Data Structures to Avoid 

Data structure such as linked lists are poor choices for GPU programming due to 

the fact that adjacent elements are not stored in adjacent memory locations but referenced 

by pointers from the preceding elements.  This causes linked lists to have poor memory 

coalescence and is the reason they should be avoided in GPU programming when 

possible. 

4.5.4    Array of Structures versus Structure of Arrays 

In a CPU based application, it’s very common to have arrays of structures that 

hold information about individual objects.  A good example of this would be a pixel in an 

image.  A pixel structure would typically have values for red, blue, green, and alpha.  For 

sequential access to pixels, it makes more sense to keep all the data related to a single 

pixel in a structure and create an array of structures to hold the data for an entire image.  

The SIMD architecture of the GPU means that instead of accessing each pixel one at a 

time and performing all of the operations on the associated data, multiple pixels values, 
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such as red values, are accessed at a single time and the operations performed on those 

values are performed in parallel.  To achieve better memory coalescence, it is preferable 

to store the pixel data as a structure of arrays for each type of data.  This results in 

separate arrays for the red, blue, green, and alpha values. 

4.5.5    Thrust Library 

When programming in C++, the Standard Template Library (STL) contains many 

useful data structures, such as vectors, that simplify memory management by 

encapsulating the necessary memory allocations for actions such as resizing.  

Unfortunately, the STL isn’t available for use on the GPU.  The CUDA toolkit does, 

however, contain the Thrust library that makes a number of the same containers available 

on the GPU. 

4.6    Error Handling 

Many CUDA API calls return a cudaError_t error type containing information 

regarding the call completion.  cudaError_t is an enum type with many possible values.  

The large number of possible return values complicates error handling.  Fortunately, the 

CUDA toolkit provides a good error checking macro for C++ called checkCudaErrors.  

The checkCudaErrors macro can be wrapped around CUDA calls to correctly handle and 

output error information.  The checkCudaErrors macro is located in the 

<nvidia_sdk_samples>/common/inc/helper_cuda.h header file.  Figure 4.11 shows an 

example of wrapping cudaMemcpy using checkCudaErrors. 

checkCudaErrors(cudaMemcpy(device_ptr, host_ptr, size, cudaMemcpyHostToDevice)); 

Figure 4.11:  Error Checking Using checkCudaErrors Macro 
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4.7    Multiple GPUs 

One way to increase the amount of GPU processing is to utilize multiple GPUs.  

CUDA has a set of API calls to obtain information about available GPUs and to select 

between the available devices.  Table 4.4 shows several useful functions for multiple 

GPU programming. 

Function Prototype Description 

cudaError_t cudaGetDeviceCount(int 

*count); 

Fills count with the number of 

available devices. 

cudaError_t cudaGetDevice(int *device); Fills device with a reference to the 

currently selected device. 

cudaError_t cudaGetDeviceProperties(struct 

cudaDeviceProp *prop, int device); 

Fills prop with the properties of the 

specified device. 

cudaError_t cudaSetDevice(int device); Sets the current device to the 

specified device. 

Table 4.4:  Multiple GPU CUDA Functions 

The cudaDeviceProp struct contains a number of useful device properties 

including device name, total global memory, shared memory per block, registers per 

block, and warp size.  This is by no means an exhaustive list of the properties contained 

in the cudaDeviceProp struct.   

The use of cudaSetDevice sets all future kernel launches and memory allocations 

to use the last selected device.  Each CPU thread can set its own device, allowing for 

multithreaded CPU applications where each thread leverages a single GPU.  This can 

make using multiple GPUs much more manageable.  Data can be directly transferred 

between GPUs using cudaMemcpy with the kind parameter set to 

cudaMemcpyDeviceToDevice. 
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4.8    CUDA SDK and Toolkit 

The NVIDIA drivers provide the necessary libraries in order to run CUDA 

applications, however, the CUDA toolkit is required in order to compile CUDA source 

code.  NVIDIA supports compilation for Windows, OS X, and a number of the most 

popular Linux distributions such as Fedora, Redhat, and Ubuntu.  Other distributions, 

such as Arch Linux, provide user constructed toolkit installers.  Arch Linux, for example, 

provides the cuda package from the community repository that contains both the CUDA 

SDK as well as the CUDA toolkit.  Due to the open source nature of the Linux operating 

system and the large community that has grown around it, this thesis focuses on CUDA 

in Linux as opposed to Windows or OS X. 

4.9    NVCC 

The NVIDIA CUDA Compiler (NVCC)  is used to compile device specific code, 

including host code containing kernel launches.  NVCC compiles object files or 

executables for host code by forwarding the applicable code to a compatible underlying 

compiler, usually GCC or G++ [2].   

4.9.1    PTX 

Device specific code and host code containing kernel launches is compiled into 

Parallel Thread Execution (PTX) code.  PTX code is usable by the device used at 

runtime.  During compilation, the minimum compute capability of the devices that will 

be used should be specified.  This allows the PTX code to use the best instruction set for 

a given device.  The -arch flag is used to specify the compute capability and it is possible 

to compile for multiple compute capabilities simultaneously.  Figure 4.12 shows an 

example of compiling for compute capabilities 2.0, 2.1, and 3.0. 
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nvcc x.cu \  

--generate-code arch=compute_20,code=sm_20 \  

--generate-code arch=compute_20,code=sm_21 \  

--generate-code arch=compute_30,code=sm_30 

Figure 4.12:  Compiling for Multiple Compute Capabilities with nvcc [22] 

4.9.2    Unsupported NVCC Compile Options 

It is possible to compile host code that doesn’t contain any device code directly 

with GCC or G++ and then link those files using NVCC.  This can be useful when 

NVCC doesn’t support necessary compile options.  Alternatively, the -Xcompiler option 

can be used to pass compile options directly to the underlying compiler.  Each option that 

must be passed to the underlying compiler must be preceded by the -Xcompiler option. 

4.10    Summary 

This chapter presented the basics of CUDA programming used for writing highly 

parallel programs to run on NVIDIA GPUs.  The highly parallel nature of the GPU 

architecture was discussed showing how threads are grouped into warps of 32 threads 

that are guaranteed to run concurrently and organized into blocks that aren’t guaranteed 

to run concurrently or in any particular order.  Basic code structure including kernel 

writing, memory management, and error checking were explored, as were more advanced 

topics such as occupancy and multiple GPU integration.  The chapter concluded by 

discussing program compilation. 
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CHAPTER 5 

IMAGE PROCESSING GPU ACCELERATION 

Image processing is inherently parallel as all actions in image processing are 

applied to either every pixel or groups of pixels and the outcome rarely has large internal 

dependency.  Many of the simplest image processing techniques are embarrassingly 

parallel, such as inversion and certain smoothing algorithms.  Embarrassingly parallel 

refers to the fact that splitting the operations for parallel execution requires little to no 

work.  A key feature of embarrassingly parallel problems is that there are almost no 

interdependency issues when parallelizing the problem.  The embarrassingly parallel 

nature of image processing makes it an excellent candidate for GPU acceleration and a 

perfect example of moving a highly parallel algorithm from the CPU to the GPU. 

This chapter explores a simple image processing library using the ImageMagick 

MagickWand C API to read and write image files.  Two filters, inversion and smoothing, 

are converted for GPU implementation and the inversion filter tested on several 

generations of NVIDIA GPU architectures. 

5.1    ImageMagick 

The image processing functions created utilize the ImageMagick C language API, 

MagickWand, in order to read in and write out the image files.  These functions could be 

removed and replaced by custom image reading and writing libraries, but that would be 

an excellent example of reinventing the wheel unnecessarily.  The ImageMagick API is 

capable of reading and or writing a very extensive list of image formats, over 200 to date 

[23].  Replacing the ability to work with all of these image formats would be no small 
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task, though supporting the most common image formats such as PNG and JPEG would 

be feasible, though outside the scope of the intention of this work. 

5.1.1    MagickWand API 

A small number of functions from the MagickWand API are necessary for image 

reading and writing.  The process for reading and writing images follow very similar 

steps.  When using the MagickWand API the environment must first be initialized.  After 

initialization, a new MagickWand is created into which the image to be manipulated is 

read.  Once the image is stored in a MagickWand object, the pixels are transferred to a 

custom image object and the associated MagickWand API objects are destroyed.  After 

all operations on the image have been performed, the modified image can be written out 

using a similar process.  First the environment is initialized and a blank MagickWand 

object is created to hold the modified image.  Next, the pixels are  transferred to the new 

MagickWand object and the image is written to a new image file.  Finally, all 

MagickWand API objects are destroyed.  Table 5.1 shows some helpful MagickWand 

API calls used in reading and writing images while Table 5.2 shows the MagickWand 

API objects useful for the same operations. 



60 

API Call Description 

MagickWandGenesis() Initializes the MagickWand environment. 

NewMagickWand() Creates a new MagickWand object. 

MagickReadImage(MagickWand* wand, 

const char* filename) 

Reads in an image from a file to store in a 

MagickWand object. 

MagickGetImageHeight(MagickWand* 

wand) 

Returns the pixel height of a MagickWand 

object. 

MagickGetImageWdith(MagickWand* 

wand) 

Returns the pixel width of a MagickWand 

object. 

NewPixelIterator(MagickWand* wand) Used for iterating over pixels in a 

MagickWand object. 

DestoryPixelIterator(PixelIterator* 

iterator) 

Use for PixelIterator destruction. 

DestroyMagickWand(MagickWand* 

wand) 

Used for MagickWand destruction. 

MagickWandTerminus() Cleans up the MagickWand environment. 

PixelSetRed/Green/Blue(PixelWand*, 

double value) 

Sets the red/green/blue pixel value. 

MagickWriteImage(MagickWand* wand) Writes a MagickWand object image to an 

image file. 

Table 5.1:  MagickWand API Functions for Reading and Writing Images 

Object Type Description 

MagickWand Object that holds the image for modification. 

PixelIterator Object for iterating over the pixels in a MagickWand object. 

PixelWand Object to reference the actual pixels in a MagickWand 

object. 

MagickBooleanType Boolean return value for error checking. 

Table 5.2:  MagickWand API Objects for Reading and Writing Images 
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5.1.2    GPU Compilation 

As explained in Section 4.9, to compile for the GPU rather than for the CPU, 

NVCC is used.  In order to compile the ImageMagick libraries, certain flags must be 

passed to the compiler.  The documentation for ImageMagick states that the necessary 

flags can be found using the command shown in Figure 5.1. 

pkg-config --cflags --libs MagickWand  

Figure 5.1:  Command to Generate MagickWand C++ Compiler Flags [24] 

Running the command shown in Figure 5.1 on an Arch Linux system produces 

the flags shown in Figure 5.2. 

-fopenmp -DMAGICKCORE_HDRI_ENABLE=1 -

DMAGICKCORE_QUANTUM_DEPTH=16 -fopenmp -

DMAGICKCORE_HDRI_ENABLE=1 -

DMAGICKCORE_QUANTUM_DEPTH=16 -I/usr/include/ImageMagick-6 -

lMagickWand-6.Q16HDRI -lMagickCore-6.Q16HDRI 

Figure 5.2:  Arch Linux MagickWand C++ Compiler Flags 

The nvcc compiler doesn’t recognize the -fopenmp flag, which must be passed 

directly to the gcc/g++ compiler.  This is accomplished by adding the –Xcompiler option, 

discussed in Section 4.9.2, directly before the -fopenmp option.  It is important to notice 

that the -fopenmp option is included twice from the output of the command from Figure 

5.1 and thus the -Xcompiler option must be placed in front of each occurrence.  This 

means that the easiest way to include the options shown in Figure 5.2 is to manually 

include them rather than using the backtick method of insertion suggested in the 

MagickWand documentation.  
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5.2    GPU Filters 

A number of filters were designed for the CPU version of the image processing 

library.  These filters offer processing tasks such as inversion, smoothing, binary 

conversion, dilation, erosion, and histogram equalization.  Only the inversion and 

smoothing filters were adapted for use on the GPU as they are both excellent examples of 

embarrassingly parallel algorithms.  The inversion filter inverts the pixel values for red, 

blue, and green by subtracting the current value from the maximum possible pixel value.  

The smoothing filter uses a square mask of a user supplied size, with only odd sizes 

between three and twenty-one available, to implement a uniform filter.  The uniform 

filter uses the same value for all mask locations and averages over the entire mask area. 

5.3    Timing 

In order to compare the differences between GPU runtimes, timers were used for 

each section of relevant code as well as for the total time the process took.  The 

subsections timed were image opening, setup, GPU runtime, image saving, and total 

runtime. 

5.3.1    Timer Functions 

The timer class used is a custom class that utilizes clock_gettime functions to act 

as a simple stopwatch. Table 5.3 shows the available functions and describes their use. 
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MonkTimer(const char* name); Creates a new timer with the specified 

name. 

start(); Starts the timer. 

stop(); Stops the timer. 

Display(); Prints the associated timer information. 

Table 5.3:  MonkTimer Functions 

5.3.2    Timers 

The opening timer records the time it takes to actually open the image using the 

MagickWand API and to move that data into custom arrays for processing.  The setup 

timer looks at the time to set up the filter, including moving the image to and from the 

GPU, and the time required to apply the filter on the GPU.  The GPU timer only records 

the time to apply the filter on the GPU.  The saving timer records the time it takes to 

write the image to file, including moving the data back into the format used by the 

MagickWand API. 

5.4    Image Conversion 

The original image selected is an ultra-high resolution image from the Hubble 

Space Telescope with a resolution of 15852x12392 [25].  Smaller resolutions of the 

image were generated using the command shown in Figure 5.3, where X is the percentage 

of the original image resolution for the new image. 

convert <inputImage> -resize X% <outputImage> 

Figure 5.3:  Example Image Convert Command  

The reduction in image resolution began at ninety-five percent of the original 

image resolution and went down to five percent of the original resolution, with versions 
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created every at every five percent difference.  Table 5.4 shows the image resolutions for 

each image produced. 

Image Name % Size Resolution 

images/hs-2006-10-a-full_jpg.jpg 100 15852x12392 

images/hs-2006-10-a-full_95.jpg 95 15059x11772 

images/hs-2006-10-a-full_90.jpg 90 14267x11153 

images/hs-2006-10-a-full_85.jpg 85 13474x10533 

images/hs-2006-10-a-full_80.jpg 80 12682x9914 

images/hs-2006-10-a-full_75.jpg 75 11889x9294 

images/hs-2006-10-a-full_70.jpg 70 11096x8674 

images/hs-2006-10-a-full_65.jpg 65 10304x8055 

images/hs-2006-10-a-full_60.jpg 60 9511x7435 

images/hs-2006-10-a-full_55.jpg 55 8719x6816 

images/hs-2006-10-a-full_50.jpg 50 7926x6196 

images/hs-2006-10-a-full_45.jpg 45 7133x5576 

images/hs-2006-10-a-full_40.jpg 40 6341x4957 

images/hs-2006-10-a-full_35.jpg 35 5548x4337 

images/hs-2006-10-a-full_30.jpg 30 4756x3718 

images/hs-2006-10-a-full_25.jpg 25 3963x3098 

images/hs-2006-10-a-full_20.jpg 20 3170x2478 

images/hs-2006-10-a-full_15.jpg 15 2378x1859 

images/hs-2006-10-a-full_10.jpg 10 1585x1239 

images/hs-2006-10-a-full_5.jpg 5 793x620 

Table 5.4:  Generated Image Resolutions 

5.5    Results 

Table 5.5 shows the GPU timer values for applying inversion filters on the 

various image resolutions shown in Table 5.4. 
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GPU Timer 

Image 

Resolution 

GTX 580 

#1 

GTX 580 

#2 GTX 680 

GTX 980 

#1 

GTX 980 

#2 

793x620 0.00447 0.00417 0.00477 0.00213 0.00217 

1585x1239 0.01016 0.00993 0.01258 0.00451 0.00461 

2378x1859 0.02074 0.02053 0.02937 0.00727 0.00774 

3170x2478 0.03593 0.03552 0.05006 0.02070 0.02533 

3963x3098 0.05635 0.05620 0.07558 0.04451 0.05386 

4756x3718 0.08581 0.08551 0.11173 0.06848 0.08177 

5548x4337 0.11442 0.11411 0.15051 0.08755 0.10681 

6341x4957 0.14890 0.14859 0.20137 0.13074 0.15970 

7133x5576 0.18138 0.18109 0.24994 0.17177 0.20912 

7926x6196 0.22115 0.22092 0.30870 0.21266 0.25953 

8719x6816 N/A N/A 0.37558 0.25551 0.31061 

9511x7435 N/A N/A 0.44697 0.30280 0.36920 

10304x8055 N/A N/A N/A 0.36121 0.44257 

11096x8674 N/A N/A N/A 0.43466 0.52400 

11889x9294 N/A N/A N/A 0.58338 0.62538 

12682x9914 N/A N/A N/A 0.79818 0.81874 

13474x10533 N/A N/A N/A 0.97888 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table 5.5:  GPU Timer Values for Five GPUs 

Table 5.6 shows the setup timer values for applying inversion filters on the 

various image resolutions shown in Table 5.4. 
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Setup Timer 

Image 

Resolution GTX 580 #1 GTX 580 #2 GTX 680 GTX 980 #1 

GTX 980 

#2 

793x620 0.06793 0.06646 0.06983 0.17005 0.15652 

1585x1239 0.14771 0.14149 0.15169 0.20072 0.20169 

2378x1859 0.28203 0.26742 0.29257 0.28463 0.27282 

3170x2478 0.47098 0.44347 0.48668 0.40936 0.40518 

3963x3098 0.71133 0.67344 0.73529 0.55955 0.54639 

4756x3718 1.00294 0.93329 1.04171 0.75449 0.75243 

5548x4337 1.35162 1.27654 1.38539 0.92489 1.00996 

6341x4957 1.74896 1.61217 1.82514 1.28526 1.24104 

7133x5576 2.19037 2.03059 2.27789 1.47909 1.53798 

7926x6196 2.68658 2.53414 2.75602 1.79652 1.84085 

8719x6816 N/A N/A 3.38904 2.13404 2.23138 

9511x7435 N/A N/A 3.97476 2.52831 2.60918 

10304x8055 N/A N/A N/A 2.91457 2.99937 

11096x8674 N/A N/A N/A 3.40801 3.51061 

11889x9294 N/A N/A N/A 3.96724 4.02279 

12682x9914 N/A N/A N/A 4.65806 4.67136 

13474x10533 N/A N/A N/A 5.27606 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table 5.6:  Setup Timer Values for Five GPUs 

Many of the images were too large to fit into device memory uncompressed and 

the library doesn’t currently support splitting the image for processing.  No timing data is 

available for those images.  The values for each timer can be seen in Appendix F. 

Figure 5.4 shows the graphical results of the values listed in Table 5.5. 
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Figure 5.4:  GPU Timer Comparison for GTX 580, GTX 680, GTX 980 

The newer GTX 980s were able to perform the inversions on larger images due to 

the increased amount of device memory.  The discrepancy between the two GTX 980s 

comes from the fact that one card was driving the display for the computer while the tests 

were being conducted.  This is also the reason that one card was able to handle an 

additional image resolution. 

Figure 5.5 shows the graphical results of the values listed in Table 5.6. 
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Figure 5.5:  Setup Timer Comparison for GTX 580, GTX 680, GTX 980 

The machines tested are the original GPGPU machine built by Jason Monk [15] 

and the new GPGPU machine with specifications outlined in Section 3.6.  The 

comparison isn’t necessarily apples to apples because of the differing computational 

capacities of the supporting hardware.  However, useful information can still be gleaned 

by comparing the GPU runtime.  The GPU runtime is a direct measure of how well the 

given GPU processes the image and doesn’t rely on the supporting hardware.  The setup 

time can also be useful as it relates directly to the transfer times to and from the GPU, 

though it remains important to remember that the differences in supporting hardware 

have an effect on these times and so they offer only general information.  Note that the 

setup time is considerably longer than the computation time.  In CUDA programming, 

this is often the case and reinforces the importance of proper memory management in 

order gain appreciable speedup. 
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As expected, the GTX 980s performed much better than the earlier architecture 

cards when comparing the GPU computation time. 

5.6    Summary 

This chapter covered the conversion of two simple image processing filters for 

use on NVIDIA GPUs using the ImageMagick MagickWand C API to read and write the 

image files.  The inversion filter was explored on several generations of NVIDIA GPU 

architectures and the computational time was compared to show the evolution of CUDA 

processing power for an embarrassingly parallel problem. 
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CHAPTER 6 

TETRIS GENETIC ALGORITHM AND PATHFINDING 

As part of a project for a video game design class, a Tetris AI genetic algorithm 

utilizing A* pathfinding was designed using the Unity3d game engine.  The AI was 

written in the C# programming language and was considered for GPU acceleration.   

This chapter discusses genetic algorithms, including basic genome selection, 

individual evaluation and breeding, as well as mutation and elitism.  The specific Tetris 

genome is then explored followed by A* pathfinding.  The chapter concludes with an 

examination of the difficulties involved in moving to a GPU implementation as well as 

potential workarounds for the associated issues. 

6.1    Genetic Algorithms 

Genetic algorithms are biologically inspired heuristic search algorithms based on 

natural selection used to search large search spaces that would otherwise be difficult to 

traverse.  Genetic algorithms start with an initial population of individuals who are often 

randomly generated.  Each individual has a “genome” that defines selection 

characteristics.  Each individual in the population is evaluated using a fitness function 

and given a score.  This score is used to breed the current generation to create the next 

generation.  Individuals with “better” scores have a higher likelihood of being chosen to 

breed and thus of passing on their genome, much like natural selection.  As generations 

progress, individuals who are more fit pass on their genomes whilst individuals who are 

less fit die out and overall the entire population becomes more fit. 
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6.1.1    Genome 

In genetic algorithms, the genome of an individual is the collection of selection 

criteria against which the individual is measured.  The genome is made up of 

chromosomes that are usually represented by floating point values.  Each chromosome 

correlates to a specific aspect of the problem of interest.  This means that chromosome 

selection is problem dependent and thus difficult to generalize.  Section 6.2.2 shows the 

chromosome selection for an actual problem. 

6.1.2    Initial Population 

The genome for the initial population is often generated randomly.  This is one of 

the benefits of using genetic algorithms because the first generation doesn’t require any 

specific knowledge to have the genetic algorithm work.  The values can be chosen in 

other ways to improve the initial population, but it isn’t necessary.  In fact, seeding the 

initial population can be detrimental in the long run as the practice can cause sections of 

the search space to be eliminated, potentially missing “better” values.  The size of the 

population can have an effect on the quality of the final solution.  Up to a certain point, 

larger populations are generally better because there is a more diverse genome and a 

larger space is searched in fewer generations. 

6.1.3    Evaluation 

To evaluate individuals, a fitness function is created.  The fitness function is 

problem dependant and picking a good fitness function is an important part of using 

genetic algorithms.  Sometimes the fitness function will be obvious and is thus trivial to 

find.  In other circumstances, there may be a number of ways to measure fitness and none 

may be obviously better than the others.  Keep in mind that the fitness function is 
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attempting to measure how well a given genome solves a problem and that it’s possible to 

choose a fitness function that breeds for a different problem than the intended problem.  

This represents a potential hazard when using biologically inspired search algorithms and 

is especially prevalent in neural networks.  The output of the fitness function is the score 

for that genome. 

6.1.4    Breeding 

After all of the individuals have been evaluated, breeding occurs.  In genetic 

algorithms, it is important to make sure that the most fit individuals have the highest 

chance of breeding.  The most common way to ensure this is to use the roulette wheel 

selection method to pick individuals for breeding.  Roulette wheel selection is discussed 

in more detail in the next section.  Individuals are usually considered gender neutral, 

allowing any individual to breed with any other individual.  They are often also allowed 

to breed with themselves, though this simply results in the individual being carried into 

the next generation.  

6.1.4.1    Roulette Wheel Selection 

Roulette wheel selection is a weighted selection method.  The scores for all of the 

individuals are summed to get a total.  The assumption when using this method is that the 

scores are all positive.  Each individual is assigned a group of numbers between zero and 

the total.  The size of the group of numbers is equal to the individual’s score.  To select 

individuals for breeding, random numbers are chosen between zero and the total and the 

resulting individuals are bred.  The best way to visualize this is with an example. 
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6.1.4.2    Roulette Wheel Example 

In this example, there are five individuals whose properties are shown in the 

below in Table 6.1.  A pie chart, Figure 6.1, is often used to visualize such data. 

ID Score Range 

1 3 0-2 

2 5 3-7 

3 7 8-14 

4 1 15 

5 8 16-23 

Table 6.1:  Example Roulette Wheel Selection Ranges 

 

Figure 6.1:  Example Roulette Wheel Selection Pie Chart 

The total for this example is 24 and each individual has a range of values between 

0 and 23.  By choosing a random value from the set [0,24), any value chosen will fall into 

one of the ranges associated with a specific individual.  The individuals with the largest 
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scores, individuals three and five in this case, have a higher chance of being chosen than 

those with lower scores.  However, it’s important to notice that while the likelihood of 

choosing a low scoring individual is low, it can still happen. 

6.1.4.3    Crossover 

After two parents have been selected, their genomes must be combined.  This is 

achieved by selecting a crossover point in the genome and taking all of the chromosomes 

from one side of the crossover point from one parent and the rest from the other parent.  

The crossover point is often randomly chosen for each pairing.  Sometimes two 

individuals are created from each pair of parents, rather than a single individual, by 

swapping the chromosomes up to the crossover point.  Figure 6.2 shows an example of 

creating a single child from two parents using a crossover point after the second 

chromosome. 

 

Figure 6.2:  Example Breeding with Random Crossover 

6.1.5    Mutation 

In nature, chromosomes can mutate and add the potential for extra variation.  The 

same principle applies in genetic algorithms.  The mutation rate is used to occasionally 



75 

mutate chromosomes.  This can often help spread the search area, moving beyond local 

maxima, and may help find better solutions.  The mutation rate is often very small, 

especially for large populations. 

6.1.6    Elitism 

In genetic algorithms, elitism involves keeping some small portion of the most fit 

individuals alive into the next generation unchanged.  This technique can be useful to 

ensure that good individuals aren’t be lost by bad luck in the breeding process and 

crossover point selection.  Elitism is usually limited to an extremely small selection of the 

population. 

6.2    Tetris Genome 

The genome used for the Tetris AI has six chromosomes, holes, blockades, row 

removal, max height, average height, max block height, and average block height.  The 

description of each chromosome is expressed in Table 6.2. 

Chromosomes Description 

Holes number of holes created 

Blockades number of blockades created 

Row Removal number of rows removed 

Max Height maximum height of highest occupied space 

Average Height average height of all occupied spaces 

Max Block Height maximum height of current piece 

Average Block Height average height of current piece 

Table 6.2:  Tetris Chromosome Descriptions 

In order to choose the best location for piece placement, each end location 

is given a score according to Equation 6.1. 
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score = hole chromosome * number of holes +  

blockade chromosome * num of blockades +  

row removal chromosome * number of rows removed +   (6.1) 

max height chromosome * max height +  

average height chromosome * average height +  

max block height chromosome * max block height +  

average block height chromosome * average block height 

6.2.1    Chromosomal Terminology 

In order to discuss the selected chromosomes that make up the genome, two terms 

must be defined.  The term hole refers to any empty space that is completely surrounded 

by blocks.  A blockade refers to the number of occupied blocks above a hole.  Figure 6.3 

shows an example of a Tetris board to illustrate how each chromosome is calculated. 
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Figure 6.3:  Example Tetris Board with Highlighted Scoring Criteria  

Holes are outlined in green, blockades in blue, and the selected placement 

location in red.  The calculated values for each of the chromosome are shown in Table 

6.3. 

Chromosomes Value 

Holes 2 

Blockades 3 

Row Removal 0 

Max Height 7 

Average Height 2.94 

Max Block Height 6 

Average Block Height 5.5 

Table 6.3:  Example Calculated Chromosome Values 
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Most the values in Table 6.3 can simply be read directly from Figure 6.2.  The 

number of holes, blockades, rows removed, the max height, and the max block height can 

all be counted directly.  The average block height and average height are merely 

calculated using the arithmetic mean. 

6.2.2    Chromosome Selection 

The first set of chromosomes chosen included holes, blockades, row removal, 

max height, and average height.  This set of chromosomes failed to achieve good results.  

In an attempt to keep the height of placed pieces lower, the max block and average block 

height chromosomes were added.  The addition of these chromosomes made a noticeable 

difference and allowed the resulting individuals to place many more pieces and remove 

many more lines before reaching the top of the board. 

6.2.3    Additional Considerations 

In order to ensure that the genetic algorithm was training for the desired outcome, 

all individuals were given the same sequence of pieces generated at the beginning of each 

new generation.  Two different approaches to this were considered, testing all generations 

on the same sequence and testing each generation on several distinct sequences and 

averaging the scores.  The first approach was discarded as it had a high potential of 

resulting in training for a single sequence and not an arbitrary one.  The second approach 

was implemented and training was done for three sequences per generation.  The end 

condition for training was set such that an individual that could place 500 pieces without 

breaking the board.  This was achieved in a reasonably small number of generations, once 

in as few as the second generation simply by good luck on the initial population 
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6.3    Tetris Piece Placement with A* Pathfinding 

A* Pathfinding is the process of selecting the shortest path from a starting 

location to an ending location, often without prior knowledge of the landscape.  

Pathfinding algorithms are a form of graph traversal. A* pathfinding breaks up the 

traversal area into small regions that are either walkable or not walkable.  Examples of 

real world non-walkable regions include areas such as walls, steep slopes, and water. 

6.3.1    Costs 

Each region has three associated cost values, the G, H, and F costs.  The G and H 

costs are discussed in next two sections.  The F Cost is simply the combination of the H 

and G costs.  The F cost is used to find the next region. 

6.3.1.1    G Cost 

The G cost defines how far a given region is from the starting region.  Certain 

types of movement require different G costs.  Generally, moving horizontally or 

vertically has a single G cost while moving diagonally has a greater G cost because the 

actual movement distance is greater.   

6.3.1.2    H Cost 

Each region also has an H cost, known as the heuristic cost.  The heuristic cost is 

defined by a heuristic that estimates how far the region is from the end region.  This is 

only an estimation because to know the exact distance, the path would have to be known, 

which is the point of A* pathfinding.  Any number of obstacles can be in the way of the 

path estimated by the heuristic making the path longer than a straight path.  The main 

point of the H cost is that it cannot overestimate the distance.  A common simple 

heuristic used is the Manhattan method.  The Manhattan method looks at the necessary 
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movement vertically and the necessary movement horizontally, sums them, and 

calculates the cost based on those values. 

6.3.2    A* Basics 

With the traversal area divided up into regions, the starting region is added to an 

open list as are all regions immediately adjacent to the starting region.  Each of the 

adjacent regions has the starting region as its parent.  From the open list, the region with 

the smallest F cost is found and is used as the next region.  That region is removed from 

the open list and moved to the closed list.  All of its adjacent regions are added to the 

open list.  If one of the adjacent regions already exists in the open list and has a lower G 

cost coming from the current region than from the previous region, its costs are updated 

and its parent is changed from the previous region to the current region.  This process 

continues until the end region exists in the closed list.  From there, the path is found by 

simply following the end region backwards from its parent until the starting region is 

reached. 

6.3.3    Tetris Specific Implementation 

Using the basic A* pathfinding information outlined in Section 6.3.2, a Tetris 

specific A* pathfinding algorithm was designed.  There are some differences from the 

basic algorithm, including what regions are applicable and how the costs were selected. 

6.3.3.1    Regions 

A region is defined as any space the current piece will fit into in a given rotation.  

Each rotation at a given location is its own region.  However, these regions don’t all have 

the same parent.  The initial rotation, the one that is the same as the previous regions 

rotation, has the previous region as a parent.  Each rotation in the new location has the 
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previous rotation as its parent and is only added to the open list if the previous rotation 

was also added.  It is also important to note that movement is limited to either left, right, 

or down.  Movement up is not an option.  Diagonal movement isn’t a direct option as 

diagonal movement is achieved through a combination of vertical and horizontal 

movement.  Given the differences for movement, there are a maximum of twelve 

adjacent regions if all rotations are viable, four rotations for each of the three available 

movements, left, right, and down. 

6.3.3.2    Costs 

Costs were given round values, but are otherwise completely arbitrary.  The three 

types of costs are horizontal, vertical, and rotational.  2:1 cost ratios were used for 

horizontal to rotational and vertical to rotational movement.  Rotational movement has a 

lower cost in an attempt to encourage rotational movement before vertical or horizontal 

movement.  The current costs are set to ten for each horizontal and vertical movement 

and five for rotational movement.  These costs work well enough, though there may be 

better cost ratios.  It’s worth noting that it is the cost ratios and not the actual cost values 

that matter. 

6.4    C# CPU Results 

The C# algorithm was run a number of times with varying numbers of 

generations.  Table 6.4 shows three of the best individuals over the longest run, 40 

generations, starting with the best individual labeled as individual A, along with their 

associated chromosome values. 
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Individuals A B C 

Generation 35 17 40 

Hole -4.914 -3.303 -4.914 

Rows Removed  1.4331 1.4331 1.252 

Blockade  -1.484 -1.484 0.363 

Max Height  -3.235 -3.235 -3.235 

Average Height  0.893 0.893 0.3768 

Max Block Height  -1.569 -0.5643 -1.569 

Average Block Height  -1.042 -1.042 -1.042 

Table 6.4:  Best C# CPU AI Individuals Produced 

Most of the chromosomes values are fairly close, if not exactly the same.  The 

low variation in values suggests that the piece placement scoring function and the fitness 

function are both working.  The fact that individuals in widely spaced generations share 

the same values indicates that the piece placement scoring function may not be well tuned 

beyond a certain point and a local maximum of the search space has been reached.  It is 

possible that the search space is rough with a number of local maxima that produce 

reasonable results.  All three of the listed individuals were able to place 500 pieces before 

breaking the field, but it should be possible to do better with a better piece placement 

scoring function. 

6.5    Additional Considerations 

It is important to note the differences between normal Tetris and the version 

tested.  In a normal game of Tetris, the scoring mechanism is built into the removal of 

rows and could be directly mapped to the fitness function.  Also, there is a speed element 

in normal Tetris that causes the pieces fall faster as the levels increase.  The version 
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implemented doesn’t take either of these into consideration as the actual game the AI was 

developed for is only based upon Tetris.  The other main difference is that the piece set is 

slightly increased.  Figure 6.4 shows the pieces in a standard game of Tetris. 

 

Figure 6.4:  Normal Tetris Pieces 

Additional pieces were added as part of the game mechanic and these additional 

pieces are shown in Figure 6.5. 

 

Figure 6.5:  Additional Tetris Pieces 

6.6    GPU Implementation 

Genetic algorithms are often good candidates for GPU acceleration due to the fact 

that the majority of the computation is highly parallelizable.  The same process is applied 

to each member of the population and intermediate generations are usually not saved, if 

only because they aren’t needed except for record keeping.  Given this highly parallel 
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nature, the Tetris AI genetic algorithm seemed like an excellent candidate for GPU 

acceleration.  The original intent was to have each thread perform the necessary 

calculations and pathfinding for a single individual, thus allowing for very large 

populations.  

6.6.1    C# to C++ 

With a working model written in C#, the next step was to convert the necessary 

portions of the program to run in C++.  Only after a working C++ version was 

implemented could a GPU accelerated version could be explored.  The conversion from 

C# to C++ is non-trivial, partially due to the fact that C++ requires explicit memory 

management while C# has a garbage collector that, expect in the case of unmanaged 

resources such as files, network connections, database connections, etc, handles memory 

management [26].  While explicit memory management isn’t overly complicated, it can 

be extremely tedious and improper management often results in segmentation faults and 

memory leaks. 

6.6.2    Issues 

During the conversion from C# to C++, it started to become obvious that the 

assumption that this genetic algorithm was a good candidate for GPU acceleration might 

be false.  The open and closed lists used in the A* pathfinding algorithm are vectors in 

C# that are dynamically resized as objects are added and removed.  C++ has a Standard 

Template Library (STL) vector that works in a similar fashion, but cannot be used on the 

GPU.  For small vectors, simply using a predefined sized array would be sufficient, but 

the open and closed lists can get quite large and local and shared memory constraints 

become a concern.  The open lists ranges in size anywhere from the low teens to upwards 
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of two hundred objects.  The closed list ranges in size anywhere from low teens upwards 

of four hundred objects.  These large ranges make implementing dynamic lists on the 

GPU much more difficult. 

Due to time constraints, these memory concerns ended development of the GPU 

accelerated version of the program until a workaround could be devised.   

6.6.3    Potential Solutions 

Three possible solutions to the memory concerns have been identified, but none 

have yet been implemented.   

6.6.3.1    Global Memory Solution 

The first solution is the simplest and uses global memory to store all open and 

closed lists for each individual.  This solution should work for reasonably sized 

populations, though it has the potential to be considerably slower than the second solution 

due to utilizing global memory rather than shared memory.   

6.6.3.2    Thrust Library Solution 

The second solution involves using the Thrust library provided as part of the 

CUDA toolkit.  The reason the Thrust library wasn’t used in the first place is that it was 

believed that dynamic allocation on a device was not possible.  The Thrust vector 

documentation implies this is not the case, though verifying this will require testing.  If 

the Thrust vector can be dynamically modified, a shared memory Thrust vector, or even 

global memory Thrust vector, could provide a good option for open and closed lists in the 

A* pathfinding algorithm, though size may still become an issue as the lists have the 

potential to be larger than the available shared memory.  Since A* pathfinding is type of 

graph problem, a third solution exists.   
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6.6.3.3    Warp Pathfinding Solution 

The third solution would be to use a single warp of threads to do the pathfinding 

for each individual with the open and closed lists in either shared memory, if possible, or 

global memory.  Bleiweiss et al. showed that A* pathfinding was capable of running on 

the GPU [27] and so this approach may well be the most effective as the pathfinding 

should be quickly solved by multiple threads.  Keep in mind though that the population 

size may suffer for the same reasons outlined in the first two solutions. 

6.7    Summary 

This chapter discussed genetic algorithms in general and a Tetris AI genetic 

algorithm with A* pathfinding specifically.  A GPU implementation of the Tetris AI 

genetic algorithm was explored as well as the issues associated with the adaptation.  

Potential workarounds for the GPU specific issues were also covered.  
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CHAPTER 7 

CHILD 

The Channel-Hillslope Integrated Landscape Development Model (CHILD) is a 

landscape evolution model developed by the Department of Civil and Environmental 

Engineering at the Massachusetts Institute of Technology [28].  CHILD is written in C++ 

and calculates topographical evolution over time.  Many types of models can be 

simulated using CHILD’s numerous options. 

Previous work showed that CHILD was a good candidate for multithreading and 

indicated potential for GPU parallelization.  Profiling from that work indicated the 

functions taking the largest percentages of time, tLNode::EroDep and 

tBedErodePwrLow::DetachCapacity [15]. 

This chapter explores the process of creating MATLAB executables to access 

custom C/C++ functions, followed by the creation of a MATLAB interface for CHILD.  

The chapter concludes by exploring potential GPU acceleration of CHILD and the 

underlying issues associate therewith. 

7.1    MATLAB Integration 

CHILD is written in C++ and doesn’t currently have MATLAB integration.  

Within the research team, interest in tighter MATLAB integration has been discussed.  

The current method has been to use a system call within MATLAB to launch CHILD.  

An alternative to this is to compile CHILD as a MEX application so that it can be 

launched directly from within MATLAB. 
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7.1.1    MEX 

MEX stands for MATLAB executable and allows custom C, C++, and 

FORTRAN functions to be called directly from within MATLAB.  The output is a MEX-

file, a shared library that MATLAB can run directly. 

7.1.2    MEX Modifications 

At least one modification must be made to any function that will be compiled 

into, or accessed by, a MEX-file.  Any exit() call must be replaced with a call to 

mexErrMsgTxt(const char *c).  This is done to avoid MATLAB exiting when an exit() 

call is reached.  MATLAB doesn’t create new processes when a MEX function is called 

and so any exit() call issues from a MEX function will exit MATLAB rather than the 

intended function.  The mexErrMsgTxt(const char *c) passes the error message pointed 

to by the const char *c back to MATLAB and exits the MEX program as intended, 

returning control to MATLAB.  Figure 7.1 shows an example of wrapping an exit() call 

for use within a MEX-file. 

#ifdef MATLAB 

        const char* c = ""; 

        mexErrMsgTxt(c); 

#endif 

        exit(EXIT_FAILURE); 

Figure 7.1:  Wrapping exit() Functions for MEX Compilation 

A number of CHILD’s source files required modification for wrapping exit() 

calls.  Modifications following the approach outlined in Figure 7.1 were made to the files 

listed in Table 7.1. 
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Files Requiring MATLAB Specific 

Modifications 

errors.cpp 

TipperTriangulatorError.cp 

tOption.cpp 

tStratGrid.cpp 

meander.cpp 

tStreamNet.cpp 

Table 7.1:  CHILD Source Files Requiring Modification for MEX Compilation 

Each of the files shown in Table 7.1 also require that the file mex.h be added as 

an #include to access the mexErrMsgTxt(const char *c) function call.  In order to allow 

compilation of both regular CHILD and CHILD with a MATLAB interface, the #define 

MATLAB constant was included for all MATLAB specific calls, including the #include 

for mex.h.  MEX compilation defines the MATLAB constant on the command line. 

7.1.3    MATLAB to MEX Interface 

When creating MEX-files, the mexFunction() is used as an interface between 

MATLAB and the MEX-file.  The four mexFunction parameters are described in Table 

7.2. 
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Argument Description 

int nlhs Number of mxArray pointers in plhs 

mxArray* plhs Left hand side mxArray pointers passed in from MATLAB 

int nrhs Number of mxArray pointer in prhs 

const mxArray* prhs Right hand side mxArray pointers to return to MATLAB 

Table 7.2:  mexFunction() Parameters 

Since CHILD doesn’t need to return any values to MATLAB, both nrhs and prhs 

can be ignored.  It is important to note that plhs should never be modified as this can 

cause undesirable side effects [29].  Using this function as a stepping stone, it would be 

possible to both pass data into and out of CHILD for greater MATLAB integration 

between models. 

7.1.4    MEX Compilation 

In order to compile a MEX-file, a MATLAB compiler is used.  In Linux, this 

compiler is called mex.  To compile CHILD, no extra mex specific options were 

necessary, though the compilation was a three step process.  The first step of the process 

was to compile CHILD outside of MATLAB to generate the correct object files.  CHILD 

compilation uses the make program to compile the source code and defaults to using the 

G++ compiler.  Figure 7.2 shows the command used to compile CHILD on a Linux 

system from the main CHILD directory. 

make -f Code/childir.mk 

Figure 7.2:  Command to Compile CHILD from CHILD Main Directory 

Once the full CHILD source has been compiled, the necessary object files should 

have been created in their respective subfolder within the CMakeFiles/child-shared.dir 

directory.  With the majority of the CHILD object files created, the modified files from 
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Table 7.1 must have object files generated with the MATLAB constant passed from the 

command line.  From the matlabInterface/objects directory, this compilation is achieved 

as shown in Figure 7.3. 

mex -c ../../errors/errors.cpp ../../tMesh/TipperTriangulatorError.cpp 

../../tOption/tOption.cpp ../../tStratGrid/tStratGrid.cpp 

../../tStreamMeander/meander.cpp ../../tStreamNet/tStreamNet.cpp 

CFLAGS="-fPIC -DMATLAB" 

Figure 7.3:  Command to Compile CHILD matlabInterface Object Files 

The final step is to link all the necessary object files together to create the MEX-

file.  The second and third steps are both achieved by running the matlabCompile.sh bash 

script from the matlabInterface directory.  The full file can be found in Appendix J. 

7.2    GPU Implementation 

Knowing that CHILD was potentially suitable for GPU acceleration [15], a more 

detailed analysis of the code was undertaken to determine if the EroDep and or 

DetachCapacity functions could be adapted for the GPU.  At first glance, both functions 

appear to be good candidates for acceleration due to little interdependency and the fact 

that each function is called for each individual node.  This design is perfect for 

implementing on a GPU; however, further examination reveals significant issues.   

Two major issues prevent CHILD in its current form from being a good candidate 

for GPU acceleration.  The underlying data structures used throughout CHILD are 

problematic as are the large number of transfers to and from the GPU. 
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7.2.1    Underlying Data Structures 

All nodes in CHILD are set up as a linked list, rather than in an array or vector.  

Linked lists are great for certain types of data management, specifically adding or 

removing elements.  In a linked list, the link between each element is described by a 

pointer rather than having elements located at sequential memory locations.  To add or 

remove an element, the pointer from the previous element is simply redirected.  To insert 

an element, the previous element’s pointer is directed to the new element and the new 

element’s pointer is directed to the next element.  To remove an element, the previous 

element’s pointer is directed to what becomes the new next element.  Figure 7.4 shows 

the insertion and removal operations in a linked list.  

 

Figure 7.4:  Linked List Insertion and Removal 
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When a pointer to the element in question already exists, the operation is O(1), 

though traversing the list to an element is O(n).  As outlined in Section 4.5.2, the best 

data structure for GPGPU computation is an array.  Linked lists are used heavily 

throughout the CHILD code base and in order to effectively move to the GPU, all 

instances where linked list data would be accessed on the GPU would have to be 

modified to use an array or vector.  Rewriting the underlying data structure of CHILD is 

outside of the scope of what a single person could manage in any sort of reasonable 

timeframe since CHILD has some 100,000+ lines of source code. 

7.2.2    Memory Transfers 

The second major issue to consider is that for each timestep both EroDep and 

DetachCapacity are called on all nodes, but those calculations must be pushed to and 

from the GPU at each timestep.  As is discussed and illustrated in Section 5.5 the data 

transfer times to and from the GPU are often much higher than the computation times.  In 

order to make the best use of the GPU and to see any sort of meaningful speedup, 

minimal data transfers should be implemented compared to the amount of computation.  

This simply wouldn’t be the case in CHILD unless more than EroDep and 

DetachCapacity functions could be moved to the GPU or both functions could be run on 

the GPU without moving data back to the CPU.  Taking these limitations into account, 

CHILD is not a good candidate for GPU acceleration without extensive modification to 

the underlying data structures and perhaps not even then. 

7.3    Summary 

This chapter discussed generating MATLAB executables from C/C++ functions.  

The steps necessary to create a MATLAB interface for CHILD were also explored, 
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including a three step compilation process.  The issues associated with potential GPU 

acceleration of CHILD were also discussed.   
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CHAPTER 8 

PARALLEL SPATIAL SORTING ALGORITHM 

The algorithm outlined in this chapter is intended as a replacement for a spatial 

sorting algorithm for models where objects move through three dimensional space.  The 

original concept for this algorithm came from the intent to replace a radix sort in a 

smooth particle hydrodynamics (SPH) implementation [30].  The new implementation 

was intended to model landscape evolution.  The original implementation used SPH to 

model avalanche flow, which is closely related to landscape evolution. 

This chapter will explore a parallel spatial sorting algorithm and the steps required 

to implement the algorithm on NVIDIA GPUs.  The potential for multiple GPU 

scalability will be discussed.  The chapter will conclude with a discussion of potential 

applications of the algorithm. 

8.1    Related Work 

Satish et al. showed the design of a CUDA based parallel radix sort algorithm 

with high efficiency.  This approach was able to achieve a 4x speedup compared to 

GPUSort [31]. 

Domínguez et al. evaluated cell-linked and Verlet lists to create neighbor lists for 

use in smoothed particle hydrodynamics.  They proposed an approach utilizing dynamic 

Verlet list updating for neighbor searches [32]. 

Gonnet et al. described a parallel hierarchical cell decomposition approach to 

neighbor finding in smoothed particle hydrodynamics.  This approach achieved a 40x 

speedup over the Gadget-2 simulation code [3]. 
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8.2    Algorithm Explanation 

Consider an array of objects in global memory that have positions in three 

dimensional space and move within the confines of a defined three dimensional 

rectangular prism.  Further, consider the blocks in a grid on a GPU as representing 

rectangular prisms in three dimensional space.  Each block is made of up a group of 

threads as discussed in Section 4.1.7.  Figure 8.1 shows a visual representation of the grid 

of blocks. 

 

Figure 8.1:  Grid of Blocks with Coordinates 

The defined three dimensional space of the grid of blocks in Figure 8.1 is three 

meters long by three meter wide by three meters tall.  Each block encompasses one cubic 

meter. 
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Each thread in a block represents a “hole” that can either be filled by an object 

making the thread active or is empty making the thread inactive.  Objects move through 

three dimensional space and cross the boundaries from one block into another as time 

progresses.  Each block may contain static information related the three dimensional 

space it represents.  Blocks map directly to sections of the object array in global memory.  

Figure 8.2 shows how four blocks, each with six threads, map to an example global 

memory object array. 

 

Figure 8.2:  Example Block to Global Memory Object Array Mapping 

8.3    Algorithm Steps 

In order to perform the movement actions, the following steps should be followed.  

Note that step ten is optional for most timesteps, but required after the last timestep to 

return the objects to the host. 

1. Initialize the global memory and fill it with active and inactive objects such that 

the objects are grouped by their three dimensional positions in the appropriate 

blocks.  This may result in having a number of inactive objects in the array within 

each block. 

2. Each block pulls the section of the global memory array it is associated with into 

a shared memory array. 

3. Perform the calculations to determine how the objects move and, if applicable, 

interact with each other.  The results of these calculations overwrite the values in 

the shared memory array. 
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4. Push the new values from the shared memory array back to the global memory 

array.  At this point, each object’s position has been updated, but objects have not 

yet moved from their original blocks. 

5. Each block counts the number of inactive objects currently located within that 

block. 

6. Each block creates a second shared memory array to hold the objects that will be 

moved neighboring blocks into their section of the global memory array. 

7. Each block searches the global memory array for objects in adjacent blocks that 

will be moved into it, copies the objects to the shared memory array, and marks 

each object to be moved in the global memory array as inactive.  There may be 

multiple blocks reading the same array values, but simultaneous reads from global 

memory do not cause race conditions the way that simultaneous writes would.  It 

is important to make certain that there are enough inactive objects currently in the 

array to hold the objects to be moved.  This is where the values from step five are 

utilized. 

8. Each block combines the new objects in the second shared memory array together 

with the objects in the first shared memory array, using inactive objects to hold 

the new objects.  As long as there are enough inactive objects to hold the new 

objects, no issues arise.  At this point, the objects have been updated with new 

positions. 

9. The first shared memory array, now holding all of the objects, is pushed back to 

the global memory array.  All objects have now been placed in the appropriate 
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locations in the global memory array associated with the block their position is 

located within. 

10. The global memory array is transferred back to the host for further processing or 

writing to disk.  This step is optional and only performed after all timesteps have 

been taken or if a snapshot of the current state of the objects is desired. 

11. If more timesteps must still be performed, repeat the cycle starting at Step 2. 

8.4    Caveats 

Some of steps in the algorithm have caveats associated with them that need to be 

explored.  Possible solutions for each caveat are discussed when available. 

8.4.1    Caveat 1 

Mapping a block to three dimensional space is potentially non-trivial.  In the 

simplest case, the grid is comprised of blocks of equal size and as long as the grid and the 

number of blocks are chosen appropriately, no issues arise.  The major issue comes when 

some blocks might be different sizes.  The layout of a grid with blocks of varying size 

represents a problem that requires the user to specify how each block maps to three 

dimensional space and requires extra memory, most likely in global memory, to hold the 

necessary block and neighbor mappings. 

8.4.2    Caveat 2 

The second shared memory array used at step six needs to be an additional array, 

separate from the array that holds the objects pulled from global memory.  At this point, 

the amount of shared memory starts to come into play and a GPU with a high enough 

compute capability needs to be used. 
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8.4.3    Caveat 3 

Searching adjacent blocks in step seven requires searching up to twenty-seven 

adjacent blocks when the movement in a single timestep of any object remains less than 

single block distance.  If it’s possible for an object to move farther than one full block, 

the number of blocks to search becomes much larger and may encompass the entire grid.  

The increased number of blocks to search increases the likelihood of running out of space 

in a block for more objects. 

8.4.4    Caveat 4 

Combining the new objects with the current objects in step eight is more 

complicated than it sounds.  A potential approach to this would be use a single thread to 

move all new objects from the second shared memory array into the first shared memory 

array.  This approach will take longer, but will make certain that no objects are 

overwritten. 

8.5    Example 

The steps outlined in Section 8.3 can be confusing to visualize without an 

example.  A simple example should suffice for clarification.  This example contains two 

blocks, each with eight threads.  Four active objects start in each block at random 

locations.  Figure 8.3 shows the grid layout of the blocks, with three dimensional spatial 

coordinates at each corner, associated color coded shared memory arrays for each block, 

and the active objects located within each block. 
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Figure 8.3:  Example Grid of Blocks Layout and Shared Memory Timestep 0 

Figure 8.4 shows the global memory array color coded to match the blocks in 

Figure 8.3.  The active objects are highlighted in green.  Notice that the global memory 

array is exactly same as the combination of the two shared memory arrays because each 

block pulls the corresponding sections of global memory into shared memory. 

 

Figure 8.4:  Example Global Memory with Active Objects 

In the first timestep, the active objects move to new locations within the same 

block in three dimensional space.  When the objects move and don’t leave their current 

block, only their own position data must change.  Therefore, when the shared memory 

arrays are pushed back to update the global memory array, it still looks exactly the same 

as that shown in Figure 8.4.   
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In the first timestep, no active objects move outside of their current block.  Figure 

8.5 shows the same grid layout of the blocks as Figure 8.3, with the updated active 

objects locations after the first timestep. 

 

Figure 8.5:  Example Grid of Blocks Layout and Shared Memory Timestep 1 

In the second timestep, some of the active objects move from one block to the 

other.  Object E2 moves from the blue block to the orange block and object E6 moves 

from the orange block to the blue block.  Figure 8.6 shows the grid layout of blocks after 

the second timestep. 
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Figure 8.6:  Example Grid of Blocks Layout and Shared Memory Timestep 2 

At this point, the global memory array still looks exactly the same as shown in 

Figure 8.4. 

Before the third timestep occurs, the shared memory arrays are updated to reflect 

object movement.  This step takes place before every timestep, but until now hasn’t had 

any effect.  Each block searches the other block for any objects that have moved.  In this 

case object E2 is moving into the orange block and object E6 is moving into the blue 

block.  Figure 8.7 shows the first shared memory arrays after they have been updated. 

 

Figure 8.7:  Example Shared Memory Just Prior to Timestep 3 

The values shown in Figure 8.7 are used in the third timestep, before which the 

global memory array is updated as shown in Figure 8.8. 
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Figure 8.8:  Example Global Memory Array During Timestep 3 

This simple example shows how a small number of active object move between 

blocks and should suffice as a starting point to scale up the problem domain to include 

more blocks, threads, and active objects. 

8.6    Scalability 

The spatial sorting algorithm outlined shows promise for scaling to multiple 

GPUs.  The inherent ability of the algorithm to split the spatial domain makes it an 

excellent candidate for multiple GPU parallelism.  The theoretical maximum number of 

inter-GPU transfers occurs when the individual GPU grids are arranged such that the 

inner GPUs have a maximum of twenty-seven neighbors.  Figure 8.9 shows an example 

GPU grid arrangement with twenty-eight GPUs with the center GPU highlighted.  The 

surrounding GPU grids are the twenty-seven possible neighbors. 
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Figure 8.9:  Grid of GPU Grids 

8.7    Dimensionality 

The intent for this algorithm is as a replacement for sorting algorithms in three 

dimensional space.  The algorithm cannot handle models in higher dimensions, and the 

concept of objects moving through higher dimensions doesn’t make sense for modeling 

the physical world at the macro scale.  However, the algorithm should work just as well 

in lower dimensions, though finding reasons to model object movement in a single 

dimension might prove difficult. 

8.8    Potential Applications 

Two applicable applications for this spatial sorting algorithm include SPH and 

agent based modeling. 
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8.8.1    SPH 

SPH or Smoothed Particle Hydrodynamics is a particle based mesh-free 

Lagrangian method for modeling fluid flows.  SPH was originally developed in 1977 by 

Gingold and Monaghan for use with astrophysics and is often used to model fluid 

dynamics [33]. 

In SPH, each particle has several associated parameters, including, but not limited 

to, position, velocity, density, and smoothing length.  The smoothing length defines the 

spherical radius around a particle in which all other particles therein contribute influence.  

One of the strengths of SPH is that the smoothing length need not be constant across all 

particles, though this makes finding neighboring particles more difficult.  Approaches to 

sorting for locating neighbors include cell-linked or Verlet lists, or more efficient variants 

thereof [32], and radix sort [34].  The parallel spatial sorting algorithm outlined in this 

chapter provides a potential replacement for these and other neighbor sorting algorithms. 

8.8.2    Agent Based Modeling 

Agent Based Modeling (ABM) involves modeling a system using a collection of 

autonomous agents.  The behavior of the agents is defined by a set of basic rules.  The 

interaction between the agents and between the agents and the environment in the system 

can be used to study emergent phenomena.  Since the agents in ABMs interact with each 

other related to their spatial locality, the parallel spatial sorting algorithm outlined in this 

chapter again provides a potential replacement for other neighbor finding algorithms. 

8.9    Summary 

This chapter outlined an algorithm for a parallel spatial sorting algorithm for 

NVIDIA GPUs.  The basic algorithm is discussed, including the steps necessary to 
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implement the algorithm on a GPU.  A simple example was explored, followed by 

multiple GPU scalability of the algorithm.  Two potential applications into which the 

algorithm fits are also discussed. 

  



108 

CHAPTER 9 

FUTURE WORK 

The models and methods outlined in this thesis show the potential for GPU 

acceleration in large and small scale modeling.  While these models provide a basis for 

GPU acceleration, a number of opportunities are left for exploration, several of which are 

discussed in this chapter. 

9.1    Visualization Wall 

The current setup for the IRL visualization wall is fully maintainable and running 

the latest kernel.  However, it would be beneficial to replace the operating system with a 

more stable, long term Linux distribution if possible as actively maintaining Arch Linux 

is a time consuming process.  An alternative to choosing a different Linux distribution 

would be to utilize the Arch Linux LTS kernel for added stability. 

9.2    Testis Genetic Algorithm and Pathfinding 

The opportunity still exists to implement a GPU accelerated Tetris AI genetic 

algorithm using A* pathfinding.  One of the three suggested solutions to the memory 

management of the open and closed lists outlined in Section 6.6.3 should allow progress 

to continue.  Other areas of consideration for future work include implementing a 

chromosome for lookahead and finding a better scoring function for piece placement.  

Currently the upcoming pieces, including the next piece, are completely ignored.  Taking 

the next piece into consideration has the potential to improve placement considerably.  

Improving the piece placement scoring function, Equation 6.1, could allow for better 

genomes to be produced, perhaps in fewer generations. 
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9.3    Image Processing 

The CPU version of the image processing library contains several more filters that 

have not yet been adapted for GPU acceleration.  None of the filters utilize algorithms 

that present issues for GPU adaptation.  The library is also an excellent candidate to 

explore unified memory more thoroughly due to the embarrassingly parallel nature of the 

filters.  Another possible avenue for exploration includes the use of multiple GPUs.  As 

discussed in Section 5.5, a number of the images produced were too large for the device 

memory and a multiple GPU implementation would allow for those larger images to be 

processed.  In addition to implementing multiple GPU support, it would be beneficial to 

implement the ability to split the images for processing so that large images could be 

processed on a single GPU. 

9.4    CHILD 

While the underlying data structures used in CHILD make it a poor candidate for 

GPU acceleration, greater MATLAB integration remains promising.  Continuing 

development of the MATLAB to MEX interface by adding the ability to pass MATLAB 

arrays directly into CHILD and return arrays to MATLAB could greatly improve 

MATLAB integration.  Using similar tactics for other models would allow multiple 

models to interface through MATLAB. 

9.5    Parallel Spatial Sorting Algorithm 

The parallel spatial sorting algorithm outlined has yet to be implemented on a 

GPU, but looks to be a good candidate, especially for multiple GPU acceleration.  The 

two modeling methods outlined in Sections 8.8.1 and 8.8.2 are promising possibilities for 
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testing the algorithm, though any model requiring spatial sorting could benefit from the 

use of the algorithm, especially on multiple GPUs.   

While all reference to multiple GPU acceleration within this thesis have focused 

on GPUs within the same machine, the parallel spatial sorting algorithm has the best 

opportunity to leverage a large number of GPUs across multiple machines, such as seen 

within a supercomputer.  The University of Maine supercomputer recently purchased 

several new NVIDIA Tesla GPUs that would be an excellent test bed for this algorithm. 
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CHAPTER 10 

CONCLUSION 

GPGPUs offer significant computational power for programmers to leverage.  

This computational power is especially useful when utilized for accelerating scientific 

models.  The construction of hardware for visualization and computation of scientific 

models was discussed in this thesis, as was a basic understand of GPGPU programming 

to utilize said hardware. 

This thesis discussed several models that were examined for GPU acceleration.  

Each model offered a new perspective on the benefits of, and issues associated with, GPU 

acceleration.  The image processing library showed how to recognize embarrassingly 

parallel problems and served as an excellent example of converting from a serial CPU 

implementation to a GPU accelerated implementation.  The Tetris genetic algorithm with 

A* pathfinding discussed memory bound limitations that can prevent direct algorithm 

conversions from the CPU to the GPU.  Analyzing CHILD for GPU acceleration showed 

that even when a model shows promise for GPU acceleration, the underlying data 

structures, as well as the necessity to transfer data back to the CPU too often, can have a 

significant impact upon that ability to move to a GPU implementation.  Integrating 

CHILD more closely into MATLAB by creating a MEX executable provided a path 

towards tighter integration between scientific models with MATLAB as a common 

access point.  Lastly, the parallel spatial sorting algorithm discussed is a possible 

replacement for current spatial sorting algorithms implemented in models such as 

smoothed particle hydrodynamics and shows promise for scalability to multiple GPUs. 
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APPENDIX A 

NVIDIA QUADRO NVS 420 XORG.CONF 

Section "ServerLayout" 

 Identifier  "Layout0" 

 Screen   0  "Screen0" 0 0 

 Screen   1  "Screen1" 1280 0 

 Screen   2  "Screen2" 0 2048 

 Screen   3  "Screen3" 2560 0 

 Screen   4  "Screen4" 2560 2048 

 InputDevice  "Keyboard0" "CoreKeyboard" 

 InputDevice  "Mouse0" "CorePointer" 

 Option   "Xinerama" "1" 

EndSection 

 

Section "Files" 

EndSection 

 

Section "InputDevice" 

 # generated from default 

 Identifier "Mouse0" 

 Driver  "mouse" 

 Option  "Protocol" "auto" 

 Option  "Device" "/dev/psaux" 

 Option  "Emulate3Buttons" "no" 

 Option  "ZAxisMapping" "4 5" 

EndSection 

 

Section "InputDevice" 

 # generated from default 

 Identifier  "Keyboard0" 

 Driver   "kbd" 

EndSection 

 

Section "Monitor" 

 Identifier  "Monitor0" 

 VendorName  "Unknown" 

 ModelName  "DELL 1907FP" 

 HorizSync  30.0 - 81.0 

 VertRefresh  56.0 - 76.0 

 Option   "DPMS" 

EndSection 

 

Section "Device" 

 Identifier  "Device0" 
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 Driver   "nvidia" 

 VendorName  "NVIDIA Corporation" 

 BoardName  "Quadro NVS 420" 

 BusID   "PCI:3:0:0" 

EndSection 

 

Section "Device" 

 Identifier  "Device1" 

 Driver   "nvidia" 

 VendorName  "NVIDIA Corporation" 

 BoardName  "Quadro NVS 420" 

 BusID   "PCI:4:0:0" 

EndSection 

 

Section "Device" 

 Identifier  "Device2" 

 Driver   "nvidia" 

 VendorName  "NVIDIA Corporation" 

 BoardName  "Quadro NVS 420" 

 BusID   "PCI:7:0:0" 

EndSection 

 

Section "Device" 

 Identifier  "Device3" 

 Driver   "nvidia" 

 VendorName  "NVIDIA Corporation" 

 BoardName  "Quadro NVS 420" 

 BusID   "PCI:8:0:0" 

EndSection 

 

Section "Device" 

 Identifier  "Device4" 

 Driver   "nvidia" 

 VendorName  "NVIDIA Corporation" 

 BoardName  "Quadro NVS 420" 

 BusID   "PCI:12:0:0" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen0" 

 Device   "Device0" 

 Monitor   "Monitor0" 

 DefaultDepth 24 

 Option   "ConnectedMonitor" "DFP,DFP" 

 Option   "UseDisplayDevice" "DFP-0,DFP-1" 
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 Option   "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

 Option   "TwinView" "1" 

 Option   "TwinViewXineramaInfoOrder" "DFP-0" 

 Option   "metamodes" "DFP-0: nvidia-auto-select +0+0, DFP-1: 

nvidia-auto-select +0+1024" 

 SubSection  "Display" 

  Depth  24 

 EndSubSection 

EndSection 

 

Section "Screen" 

 Identifier  "Screen1" 

 Device   "Device1" 

 Monitor   "Monitor0" 

 DefaultDepth 24 

 Option   "ConnectedMonitor" "DFP,DFP" 

 Option   "UseDisplayDevice" "DFP-0,DFP-1" 

 Option   "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

 Option   "TwinView" "1" 

 Option   "TwinViewXineramaInfoOrder" "DFP-0" 

 Option   "metamodes" "DFP-0: nvidia-auto-select +0+0, DFP-1: 

nvidia-auto-select +0+1024" 

 SubSection  "Display" 

  Depth  24 

 EndSubSection 

EndSection 

 

Section "Screen" 

 Identifier  "Screen2" 

 Device   "Device2" 

 Monitor   "Monitor0" 

 DefaultDepth 24 

 Option   "ConnectedMonitor" "DFP,DFP" 

 Option   "UseDisplayDevice" "DFP-0,DFP-1" 

 Option   "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

 Option   "TwinView" "1" 

 Option   "TwinViewXineramaInfoOrder" "DFP-0" 

 Option   "metamodes" "DFP-0: nvidia-auto-select +0+0, DFP-1: 

nvidia-auto-select +1280+0" 

 SubSection  "Display" 

  Depth  24 

 EndSubSection 

EndSection 
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Section "Screen" 

 Identifier  "Screen3" 

 Device   "Device3" 

 Monitor   "Monitor0" 

 DefaultDepth 24 

 Option   "ConnectedMonitor" "DFP,DFP" 

 Option   "UseDisplayDevice" "DFP-0,DFP-1" 

 Option   "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

 Option   "TwinView" "1" 

 Option   "TwinViewXineramaInfoOrder" "DFP-0" 

 Option   "metamodes" "DFP-0: nvidia-auto-select +0+0, DFP-1: 

nvidia-auto-select +0+1024" 

 SubSection  "Display" 

  Depth  24 

 EndSubSection 

EndSection 

 

Section "Screen" 

 Identifier  "Screen4" 

 Device   "Device4" 

 Monitor   "Monitor0" 

 DefaultDepth 24 

 Option   "ConnectedMonitor" "DFP,DFP" 

 Option   "UseDisplayDevice" "DFP-0,DFP-1" 

 Option   "CustomEDID" "DFP-0:/etc/X11/edid.bin;DFP-

1:/etc/X11/edid.bin" 

 Option   "TwinView" "0" 

 Option   "TwinViewXineramaInfoOrder" "DFP-0" 

 Option   "metamodes" "DFP-0: nvidia-auto-select +0+0" 

 SubSection  "Display" 

  Depth  24 

 EndSubSection 

EndSection 

 

Section "Extensions" 

 Option  "Composite" "Disable" 

EndSection 
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APPENDIX B 

AUTO CONFIGURED XORG.CONF 

Section "ServerLayout" 

 Identifier  "X.org Configured" 

 Screen   0  "Screen0" 0 0 

 Screen   1  "Screen1" RightOf "Screen0" 

 InputDevice  "Mouse0" "CorePointer" 

 InputDevice  "Keyboard0" "CoreKeyboard" 

EndSection 

 

Section "Files" 

 ModulePath  "/usr/lib/xorg/modules" 

 FontPath  "/usr/share/fonts/misc/" 

 FontPath  "/usr/share/fonts/TTF/" 

 FontPath  "/usr/share/fonts/OTF/" 

 FontPath  "/usr/share/fonts/Type1/" 

 FontPath  "/usr/share/fonts/100dpi/" 

 FontPath  "/usr/share/fonts/75dpi/" 

EndSection 

 

Section "Module" 

 Load  "glx" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Keyboard0" 

 Driver   "kbd" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Mouse0" 

 Driver   "mouse" 

 Option   "Protocol" "auto" 

 Option   "Device" "/dev/input/mice" 

 Option   "ZAxisMapping" "4 5 6 7" 

EndSection 

 

Section "Monitor" 

 Identifier  "Monitor0" 

 VendorName  "Monitor Vendor" 

 ModelName  "Monitor Model" 

EndSection 

 

Section "Monitor" 
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 Identifier  "Monitor1" 

 VendorName  "Monitor Vendor" 

 ModelName  "Monitor Model" 

EndSection 

 

Section "Device" 

  ### Available Driver options are:- 

  ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", 

  ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", 

  ### <percent>: "<f>%" 

  ### [arg]: arg optional 

  #Option  "Accel"      # [<bool>] 

  #Option  "SWcursor"      # [<bool>] 

  #Option  "EnablePageFlip"   # [<bool>] 

  #Option  "ColorTiling"   # [<bool>] 

  #Option  "ColorTiling2D"    # [<bool>] 

  #Option  "RenderAccel"   # [<bool>] 

  #Option  "SubPixelOrder"    # [<str>] 

  #Option  "AccelMethod"   # <str> 

  #Option  "EXAVSync"      # [<bool>] 

  #Option  "EXAPixmaps"    # [<bool>] 

  #Option  "ZaphodHeads"   # <str> 

  #Option  "EnablePageFlip"   # [<bool>] 

  #Option  "SwapbuffersWait"  # [<bool>] 

 Identifier   "Card0" 

 Driver      "radeon" 

 BusID      "PCI:1:0:0" 

EndSection 

 

Section "Device" 

  ### Available Driver options are:- 

  ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", 

  ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", 

  ### <percent>: "<f>%" 

  ### [arg]: arg optional 

  #Option  "Accel"      # [<bool>] 

  #Option  "SWcursor"      # [<bool>] 

  #Option  "EnablePageFlip"   # [<bool>] 

  #Option  "ColorTiling"   # [<bool>] 

  #Option  "ColorTiling2D"    # [<bool>] 

  #Option  "RenderAccel"   # [<bool>] 

  #Option  "SubPixelOrder"    # [<str>] 

  #Option  "AccelMethod"   # <str> 

  #Option  "EXAVSync"      # [<bool>] 

  #Option  "EXAPixmaps"    # [<bool>] 

  #Option  "ZaphodHeads"   # <str> 
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  #Option  "EnablePageFlip"   # [<bool>] 

  #Option  "SwapbuffersWait"  # [<bool>] 

 Identifier   "Card1" 

 Driver      "radeon" 

 BusID      "PCI:2:0:0" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen0" 

 Device   "Card0" 

 Monitor   "Monitor0" 

 SubSection  "Display" 

  Viewport 0 0 

  Depth  1 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  4 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  8 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  15 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  16 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  24 

 EndSubSection 

EndSection 

 

Section "Screen" 

 Identifier  "Screen1" 

 Device   "Card1" 

 Monitor   "Monitor1" 

 SubSection  "Display" 

  Viewport 0 0 

  Depth  1 

 EndSubSection 

 SubSection "Display" 
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  Viewport 0 0 

  Depth  4 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  8 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  15 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  16 

 EndSubSection 

 SubSection "Display" 

  Viewport 0 0 

  Depth  24 

 EndSubSection 

EndSection 
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APPENDIX C 

FIRST RADEON HD 5870 XORG.CONF 

Section "ServerLayout" 

 Identifier  "X.org Configured" 

 Screen   0  "Screen0" 0 0 

 Screen   1  "Screen1" 1280 0  

 Screen   2  "Screen2" 2560 0  

 Screen   3  "Screen3" 0 1024 

 Screen   4  "Screen4" 1280 1024  

 Screen   5  "Screen5" 2560 1024  

 Screen   6  "Screen6" 0 2048  

 Screen   7  "Screen7" 1280 2048  

 Screen   8  "Screen8" 2560 2048  

 InputDevice  "Mouse0" "CorePointer" 

 InputDevice  "Keyboard0" "CoreKeyboard" 

 Option   "Xinerama" 

EndSection 

 

Section "Files" 

 ModulePath  "/usr/lib/xorg/modules" 

 FontPath  "/usr/share/fonts/misc/" 

 FontPath  "/usr/share/fonts/TTF/" 

 FontPath  "/usr/share/fonts/OTF/" 

 FontPath  "/usr/share/fonts/Type1/" 

 FontPath  "/usr/share/fonts/100dpi/" 

 FontPath  "/usr/share/fonts/75dpi/" 

EndSection 

 

Section "Module" 

 Load  "glx" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Keyboard0" 

 Driver   "kbd" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Mouse0" 

 Driver   "mouse" 

 Option   "Protocol" "auto" 

 Option   "Device" "/dev/input/mice" 

 Option   "ZAxisMapping" "4 5 6 7" 

EndSection 
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Section "Monitor" 

 Identifier  "Default-Monitor" 

EndSection 

 

Section "Device" 

 Identifier  "Card0" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   0 

 Option   "ZaphodHeads" "DisplayPort-0" 

EndSection 

 

Section "Device" 

 Identifier  "Card1" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   1 

 Option   "ZaphodHeads" "DisplayPort-1" 

EndSection 

 

Section "Device" 

 Identifier  "Card2" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   2 

 Option   "ZaphodHeads" "DisplayPort-2" 

EndSection 

 

Section "Device" 

 Identifier  "Card3" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   3 

 Option   "ZaphodHeads" "DisplayPort-3" 

EndSection 

 

Section "Device" 

 Identifier  "Card4" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   4 

 Option   "ZaphodHeads" "DisplayPort-4" 

EndSection 

 

Section "Device" 
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 Identifier  "Card5" 

 Driver   "radeon" 

 BusID   "PCI:1:0:0" 

 Screen   5 

 Option   "ZaphodHeads" "DisplayPort-5" 

EndSection 

 

Section "Device" 

 Identifier  "Card6" 

 Driver   "radeon" 

 BusID   "PCI:2:0:0" 

 Screen   0 

 Option   "ZaphodHeads" "DisplayPort-6" 

EndSection 

 

Section "Device" 

 Identifier  "Card7" 

 Driver   "radeon" 

 BusID   "PCI:2:0:0" 

 Screen   1 

 Option   "ZaphodHeads" "DisplayPort-7" 

EndSection 

 

Section "Device" 

 Identifier  "Card8" 

 Driver   "radeon" 

 BusID   "PCI:2:0:0" 

 Screen   2 

 Option   "ZaphodHeads" "DisplayPort-8" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen0" 

 Device   "Card0" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen1" 

 Device   "Card1" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen2" 

 Device   "Card2" 
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 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen3" 

 Device   "Card3" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen4" 

 Device   "Card4" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen5" 

 Device   "Card5" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen6" 

 Device   "Card6" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen7" 

 Device   "Card7" 

 Monitor  "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier  "Screen8" 

 Device   "Card8" 

 Monitor  "Default-Monitor" 

EndSection 
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APPENDIX D 

SECOND RADEON HD 5870 XORG.CONF 

Section "ServerLayout" 

 Identifier     "X.org Configured" 

 Screen      0  "Screen0" 0 0 

 Screen      1  "Screen1" 1280 0  

 Screen      2  "Screen2" 2560 0  

 Screen      3  "Screen3" 0 1024 

 Screen      4  "Screen4" 1280 1024  

 Screen      5  "Screen5" 2560 1024  

 Screen      6  "Screen6" 0 2048  

 Screen      7  "Screen7" 1280 2048  

 Screen      8  "Screen8" 2560 2048  

 InputDevice    "Mouse0" "CorePointer" 

 InputDevice    "Keyboard0" "CoreKeyboard" 

 Option         "Xinerama" 

EndSection 

 

Section "Files" 

 ModulePath   "/usr/lib/xorg/modules" 

 FontPath     "/usr/share/fonts/misc/" 

 FontPath     "/usr/share/fonts/TTF/" 

 FontPath     "/usr/share/fonts/OTF/" 

 FontPath     "/usr/share/fonts/Type1/" 

 FontPath     "/usr/share/fonts/100dpi/" 

 FontPath     "/usr/share/fonts/75dpi/" 

EndSection 

 

Section "Module" 

 Load  "glx" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Keyboard0" 

 Driver      "kbd" 

EndSection 

 

Section "InputDevice" 

 Identifier  "Mouse0" 

 Driver      "mouse" 

 Option     "Protocol" "auto" 

 Option     "Device" "/dev/input/mice" 

 Option     "ZAxisMapping" "4 5 6 7" 

EndSection 
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Section "Monitor" 

 Identifier   "Default-Monitor" 

EndSection 

 

Section "Device" 

 Identifier  "Card0" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      0 

 Option      "ZaphodHeads" "DisplayPort-0" 

EndSection 

 

Section "Device" 

 Identifier  "Card1" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      1 

 Option      "ZaphodHeads" "DisplayPort-1" 

EndSection 

 

Section "Device" 

 Identifier  "Card2" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      2 

 Option      "ZaphodHeads" "DisplayPort-2" 

EndSection 

 

Section "Device" 

 Identifier  "Card3" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      3 

 Option      "ZaphodHeads" "DisplayPort-3" 

EndSection 

 

Section "Device" 

 Identifier  "Card4" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      4 

 Option      "ZaphodHeads" "DisplayPort-4" 

EndSection 

 

Section "Device" 
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 Identifier  "Card5" 

 Driver      "radeon" 

 BusID       "PCI:2:0:0" 

 Screen      5 

 Option      "ZaphodHeads" "DisplayPort-5" 

EndSection 

 

Section "Device" 

 Identifier  "Card6" 

 Driver      "radeon" 

 BusID       "PCI:6:0:0" 

 Screen      0 

 Option      "ZaphodHeads" "DisplayPort-6" 

EndSection 

 

Section "Device" 

 Identifier  "Card7" 

 Driver      "radeon" 

 BusID       "PCI:6:0:0" 

 Screen      1 

 Option      "ZaphodHeads" "DisplayPort-7" 

EndSection 

 

Section "Device" 

 Identifier  "Card8" 

 Driver      "radeon" 

 BusID       "PCI:6:0:0" 

 Screen      2 

 Option      "ZaphodHeads" "DisplayPort-8" 

EndSection 

 

Section "Screen" 

 Identifier "Screen0" 

 Device     "Card0" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen1" 

 Device     "Card1" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen2" 

 Device     "Card2" 
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 #Monitor    "DisplayPort-2" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen3" 

 Device     "Card3" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen4" 

 Device     "Card4" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen5" 

 Device     "Card5" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen6" 

 Device     "Card6" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen7" 

 Device     "Card7" 

 Monitor    "Default-Monitor" 

EndSection 

 

Section "Screen" 

 Identifier "Screen8" 

 Device     "Card8" 

 Monitor    "Default-Monitor" 

EndSection 

 

 

  



131 

APPENDIX E 

GPGPU MACHINE CONFIGURATION SPECIFICATIONS 

Part Name Specification Price Qty Cost 

Case 

Rosewill Throne-

Window Black ATX Full Tower $169.99 1 $169.99 

Power 

Supply Corsair AX1500i 

1500W ATX 80 PLUS 

Titanium Full Modular $461.81 1 $461.81 

Motherboard 

ASUS Rampage V 

Extreme LGA 2011-v3 Intel X99 $498.99 1 $498.99 

CPU Intel Core i7-5930K 

Haswell-E LGA 2011-

v3 140W 6-core 3.5 

GHz 15MB $670.24 1 $670.24 

GPU 

EVGA 

Superclocked GTX 

980 

GTX 980 4GB GDDR5 

PCIe 3.0 x16 $622.78 2 $1,245.56 

RAM 

G.Skill Ripjaws 4 

Series 32GB 

32GB (4 x 8GB) 288-

Pin DDR4 2133 

$479.99 

1 $479.99 

Optical 

Drive 

Lite-On It 24x DVD-RW $17.71 

1 $17.71 

Hard Drives 

Seagate 2TB 

Barracuda 

2TB 7200 RPM SATA 

6.0 G/s 64MB 

$104.99 

4 $419.96 

Total Cost  $3,964.25 

Table E.1:  First Machine Configuration 
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Part Name Spec Price Qty Cost 

Case 

Rosewill Throne-

Window Black ATX Full Tower $169.99 1 $169.99 

Power 

Supply Corsair AX1500i 

1500W ATX 80 PLUS 

Titanium Full Modular $461.81 1 $461.81 

Motherboard 

ASUS Rampage V 

Extreme LGA 2011-v3 Intel X99 $498.99 1 $498.99 

CPU Intel Core i7-5930K 

Haswell-E LGA 2011-

v3 140W 6-core 3.5 

GHz 15MB $670.24 1 $670.24 

GPU 

EVGA 

Superclocked GTX 

Titan Black 

GTX Titan Black 6GB 

GDDR5 PCIe 3.0 x16 $1,222.22 2 $2,444.44 

RAM 

G.Skill Ripjaws 4 

Series 32GB 

32GB (4 x 8GB) 288-

Pin DDR4 2133 

$479.99 

1 $479.99 

Optical 

Drive 

Lite-On It 24x DVD-RW $17.71 

1 $17.71 

Hard Drives 

Seagate 2TB 

Barracuda 

2TB 7200 RPM SATA 

6.0 G/s 64MB 

$104.99 

5 $524.95 

Total Cost  $5,268.12 

Table E.2:  Second Machine Configuration 
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APPENDIX F 

IMAGE PROCESSING TESTS 

Open Timer 

Image 

Resolution GTX 580 #1 GTX 580 #2 GTX 680 GTX 980 #1 GTX 980 #2 

793x620 0.06022 0.06053 0.06014 0.07141 0.05917 

1585x1239 0.26126 0.26566 0.26526 0.23433 0.22368 

2378x1859 0.61919 0.61967 0.61762 0.52405 0.49091 

3170x2478 1.09994 1.12566 1.12504 0.94441 0.95717 

3963x3098 1.78247 1.80044 1.80112 1.49596 1.50720 

4756x3718 2.58364 2.62191 2.61840 2.21637 2.13052 

5548x4337 3.56217 3.61459 3.56201 2.92795 2.91538 

6341x4957 4.70008 4.45329 4.71567 3.80094 3.85230 

7133x5576 5.94769 5.88825 6.04672 4.91367 4.89208 

7926x6196 7.43774 7.29170 7.23369 6.02091 6.18280 

8719x6816 N/A N/A 8.94446 7.09851 7.29531 

9511x7435 N/A N/A 10.74893 8.77665 8.71247 

10304x8055 N/A N/A N/A 9.99032 10.26523 

11096x8674 N/A N/A N/A 11.31017 11.95100 

11889x9294 N/A N/A N/A 13.46067 13.75117 

12682x9914 N/A N/A N/A 15.66043 15.71900 

13474x10533 N/A N/A N/A 17.68167 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table F.1:  Image Processing Open Timer Values 
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Setup Timer 

Image 

Resolution GTX 580 #1 GTX 580 #2 GTX 680 GTX 980 #1 GTX 980 #2 

793x620 0.06793 0.06646 0.06983 0.17005 0.15652 

1585x1239 0.14771 0.14149 0.15169 0.20072 0.20169 

2378x1859 0.28203 0.26742 0.29257 0.28463 0.27282 

3170x2478 0.47098 0.44347 0.48668 0.40936 0.40518 

3963x3098 0.71133 0.67344 0.73529 0.55955 0.54639 

4756x3718 1.00294 0.93329 1.04171 0.75449 0.75243 

5548x4337 1.35162 1.27654 1.38539 0.92489 1.00996 

6341x4957 1.74896 1.61217 1.82514 1.28526 1.24104 

7133x5576 2.19037 2.03059 2.27789 1.47909 1.53798 

7926x6196 2.68658 2.53414 2.75602 1.79652 1.84085 

8719x6816 N/A N/A 3.38904 2.13404 2.23138 

9511x7435 N/A N/A 3.97476 2.52831 2.60918 

10304x8055 N/A N/A N/A 2.91457 2.99937 

11096x8674 N/A N/A N/A 3.40801 3.51061 

11889x9294 N/A N/A N/A 3.96724 4.02279 

12682x9914 N/A N/A N/A 4.65806 4.67136 

13474x10533 N/A N/A N/A 5.27606 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table F.2:  Image Processing Setup Timer Values 
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GPU Timer 

Image 

Resolution GTX 580 #1 GTX 580 #2 GTX 680 GTX 980 #1 GTX 980 #2 

793x620 0.00447 0.00417 0.00477 0.00213 0.00217 

1585x1239 0.01016 0.00993 0.01258 0.00451 0.00461 

2378x1859 0.02074 0.02053 0.02937 0.00727 0.00774 

3170x2478 0.03593 0.03552 0.05006 0.02070 0.02533 

3963x3098 0.05635 0.05620 0.07558 0.04451 0.05386 

4756x3718 0.08581 0.08551 0.11173 0.06848 0.08177 

5548x4337 0.11442 0.11411 0.15051 0.08755 0.10681 

6341x4957 0.14890 0.14859 0.20137 0.13074 0.15970 

7133x5576 0.18138 0.18109 0.24994 0.17177 0.20912 

7926x6196 0.22115 0.22092 0.30870 0.21266 0.25953 

8719x6816 N/A N/A 0.37558 0.25551 0.31061 

9511x7435 N/A N/A 0.44697 0.30280 0.36920 

10304x8055 N/A N/A N/A 0.36121 0.44257 

11096x8674 N/A N/A N/A 0.43466 0.52400 

11889x9294 N/A N/A N/A 0.58338 0.62538 

12682x9914 N/A N/A N/A 0.79818 0.81874 

13474x10533 N/A N/A N/A 0.97888 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table F.3:  Image Processing GPU Timer Values 
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Save Timer 

Image 

Resolution GTX 580 #1 GTX 580 #2 GTX 680 GTX 980 #1 GTX 980 #2 

793x620 0.25422 0.25558 0.25367 0.24702 0.45319 

1585x1239 0.99420 0.99518 0.99659 0.96172 1.33285 

2378x1859 2.17783 2.18110 2.18906 1.94356 2.68687 

3170x2478 3.66344 3.68839 3.80651 3.36115 4.64885 

3963x3098 5.50760 5.46167 5.53940 5.11637 7.07745 

4756x3718 7.81318 7.86898 7.84524 7.14361 10.03811 

5548x4337 10.60433 10.67557 10.54413 9.49074 13.50097 

6341x4957 13.86053 13.80147 13.88243 12.48383 17.57727 

7133x5576 17.32810 17.58893 17.33497 15.81620 22.13507 

7926x6196 21.58243 21.50620 21.43030 19.39990 27.57047 

8719x6816 N/A N/A 26.14163 23.81357 33.41327 

9511x7435 N/A N/A 31.48467 28.34207 39.93007 

10304x8055 N/A N/A N/A 33.23827 46.75543 

11096x8674 N/A N/A N/A 38.56040 54.05287 

11889x9294 N/A N/A N/A 44.20510 61.85707 

12682x9914 N/A N/A N/A 50.70307 71.73130 

13474x10533 N/A N/A N/A 57.62500 N/A 

14267x11153 N/A N/A N/A N/A N/A 

15059x11772 N/A N/A N/A N/A N/A 

15852x12392 N/A N/A N/A N/A N/A 

Table F.4:  Image Processing Save Timer Values 
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APPENDIX G 

IMAGE PROCESSING SOURCE 

The full source code for the implemented image processing library is available on 

github at https://github.com/fostro/ECE533ImageProcessing.  This library is licensed 

under GNU General Public License Version 2. 

  

https://github.com/fostro/ECE533ImageProcessing
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APPENDIX H 

TETRIS GENETIC ALGORITHM SOURCE 

The full source code and working Unity3d project for the Tetris AI genetic 

algorithm with A* pathfinding implementation is available for download for personal use 

via Google Drive at the following address 

https://drive.google.com/file/d/0B49gTqY3DhdmNkVBUG1QV19wOVE/view?usp=sha

ring.  The Tetris AI Unity implementation is Copyright 2014 Dream-Crusher Labs, LLC. 

 

  

https://drive.google.com/file/d/0B49gTqY3DhdmNkVBUG1QV19wOVE/view?usp=sharing
https://drive.google.com/file/d/0B49gTqY3DhdmNkVBUG1QV19wOVE/view?usp=sharing
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APPENDIX I 

TETRIS GENETIC ALGORITHM FULL RESULTS 

The full results of running the Tetris genetic algorithm within Unity3d can be 

found at the following link  

https://drive.google.com/file/d/0B49gTqY3DhdmdVdNZ1p4YlRxRWc/view?usp=sharin

g. 

  

https://drive.google.com/file/d/0B49gTqY3DhdmdVdNZ1p4YlRxRWc/view?usp=sharing
https://drive.google.com/file/d/0B49gTqY3DhdmdVdNZ1p4YlRxRWc/view?usp=sharing
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APPENDIX J 

MATLABCOMPILE.SH 

#!/usr/bin/bash 

 

#MATLAB=mex_matlab; 

MATLAB=mex; 

OUTPUT_DIR=runTest/build/; 

 

cd objects; 

./compile.sh; 

 

cd ..; 

 

$MATLAB matlabChildDriver.cpp MatlabToCppArgument.cpp \ 

../CMakeFiles/child-shared.dir/tInputFile/tInputFile.cpp.o \ 

../CMakeFiles/child-shared.dir/Erosion/erosion.cpp.o \ 

../CMakeFiles/child-shared.dir/MeshElements/meshElements.cpp.o \ 

../CMakeFiles/child-shared.dir/tMesh/ParamMesh_t.cpp.o \ 

../CMakeFiles/child-shared.dir/tMesh/TipperTriangulator.cpp.o \ 

../CMakeFiles/child-shared.dir/tStreamMeander/tStreamMeander.cpp.o \ 

../CMakeFiles/child-shared.dir/tVegetation/tVegetation.cpp.o \ 

../CMakeFiles/child-shared.dir/tLNode/tLNode.cpp.o \ 

../CMakeFiles/child-shared.dir/tStorm/tStorm.cpp.o \ 

../CMakeFiles/child-shared.dir/tWaterSedTracker/tWaterSedTracker.cpp.o \ 

../CMakeFiles/child-shared.dir/tTimeSeries/tTimeSeries.cpp.o \ 

../CMakeFiles/child-shared.dir/ChildInterface/childDriver.cpp.o \ 

../CMakeFiles/child-shared.dir/ChildInterface/childInterface.cpp.o \ 

../CMakeFiles/child-shared.dir/tListInputData/tListInputData.cpp.o \ 

../CMakeFiles/child-shared.dir/tUplift/tUplift.cpp.o \ 

../CMakeFiles/child-shared.dir/tEolian/tEolian.cpp.o \ 

../CMakeFiles/child-shared.dir/tFloodplain/tFloodplain.cpp.o \ 

../CMakeFiles/child-shared.dir/globalFns.cpp.o \ 

../CMakeFiles/child-shared.dir/tIDGenerator/tIDGenerator.cpp.o \ 

../CMakeFiles/child-shared.dir/tLithologyManager/tLithologyManager.cpp.o \ 

../CMakeFiles/child-shared.dir/tRunTimer/tRunTimer.cpp.o \ 

../CMakeFiles/child-shared.dir/Predicates/predicates.cpp.o \ 

../CMakeFiles/child-shared.dir/Mathutil/mathutil.cpp.o \ 

objects/*.o; 

 

mv matlabChildDriver.mex* $OUTPUT_DIR; 
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APPENDIX K 

CHILD MATLAB PATCH 

diff -rupN child/Code/errors/errors.cpp CHILD_MATLAB/Code/errors/errors.cpp 

--- child/Code/errors/errors.cpp 2015-07-24 20:36:09.639036529 -0400 

+++ CHILD_MATLAB/Code/errors/errors.cpp 2015-07-24 20:06:59.007029043 -

0400 

@@ -16,6 +16,10 @@ 

 #define CHILD_ABORT_ON_ERROR "CHILD_ABORT_ON_ERROR" 

 #define CHILD_ABORT_ON_WARNING "CHILD_ABORT_ON_WARNING" 

  

+#ifdef MATLAB 

+ #include <mex.h> 

+#endif 

+ 

 

/***********************************************************************

******\ 

 ** 

 **  ReportFatalError:  This is an error-handling routine that prints the 

@@ -30,6 +34,10 @@ void ReportFatalError( const char *errMs 

 { 

   std::cout << errMsg <<std::endl; 

  

+#ifdef MATLAB 

+ mexErrMsgTxt(errMsg); 

+#endif 

+ 

   std::cout << "That was a fatal error, my friend!" <<std::endl; 

   if (getenv(CHILD_ABORT_ON_ERROR) != NULL) 

     abort(); 

diff -rupN child/Code/matlabInterface/matlabChildDriver.cpp 

CHILD_MATLAB/Code/matlabInterface/matlabChildDriver.cpp 

--- child/Code/matlabInterface/matlabChildDriver.cpp 1969-12-31 

19:00:00.000000000 -0500 

+++ CHILD_MATLAB/Code/matlabInterface/matlabChildDriver.cpp 2015-07-24 

20:06:59.630355966 -0400 

@@ -0,0 +1,57 @@ 

+/**********************************************************************

****/ 

+/** 

+**  matlabChildDriver.cpp: This file modifies the childRDriver.cpp example 

+**  file which uses the interface functions.  This file wraps those calls 

+**  for use with matlab. 

+** 
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+**  October 2013 

+** 

+**  For information regarding how to use the matlab wrapper functions, 

+**  please contact Forrest Flagg at: 

+**    raymond.flagg@maine.edu 

+** 

+**  For information regarding this program, please contact Greg Tucker at: 

+** 

+**     Cooperative Institute for Research in Environmental Sciences (CIRES) 

+**     and Department of Geological Sciences 

+**     University of Colorado 

+**     2200 Colorado Avenue, Campus Box 399 

+**     Boulder, CO 80309-0399 

+** 

+*/ 

+/**********************************************************************

****/ 

+ 

+#include "../ChildInterface/childInterface.h" 

+#include "MatlabToCppArgument.h" 

+#include "mex.h" 

+ 

+void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { 

+ childInterface myChildInterface; 

+  

+ MatlabToCppArgument* arguments = new MatlabToCppArgument(nrhs, prhs, 

"test"); 

+ 

+ //myChildRInterface.Initialize( argc, argv ); 

+ myChildInterface.Initialize( arguments->getNumArguments(), arguments-

>getCArguments() ); 

+ 

+ if(1) // make this zero to use "example 2" below 

+ { 

+  // Example 1: using "Run" method, and setting run duration to zero so 

model reads duration from input file 

+  myChildInterface.Run( 0 ); 

+ } 

+ else 

+ { 

+  // Example 2: using "RunOneStorm"  

+  double mytime = 0; 

+  double myrunduration = 100000; 

+   

+  while( mytime<myrunduration ) 

+  { 
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+   mytime = myChildInterface.RunOneStorm(); 

+  } 

+ } 

+  

+ // Note that calling CleanUp() isn't strictly necessary, as the destructor will 

automatically clean it 

+ // up when myChildInterface is deleted ... but it's nice to be able to do this at will 

(and free up 

+ // memory) 

+ myChildInterface.CleanUp(); 

+} 

diff -rupN child/Code/matlabInterface/matlabCompile.sh 

CHILD_MATLAB/Code/matlabInterface/matlabCompile.sh 

--- child/Code/matlabInterface/matlabCompile.sh 1969-12-31 19:00:00.000000000 -

0500 

+++ CHILD_MATLAB/Code/matlabInterface/matlabCompile.sh 2015-07-24 

20:06:59.637022565 -0400 

@@ -0,0 +1,38 @@ 

+#!/usr/bin/bash 

+ 

+#MATLAB=mex_matlab; 

+MATLAB=mex; 

+OUTPUT_DIR=runTest/build/; 

+ 

+cd objects; 

+./compile.sh; 

+ 

+cd ..; 

+ 

+$MATLAB matlabChildDriver.cpp MatlabToCppArgument.cpp \ 

+../CMakeFiles/child-shared.dir/tInputFile/tInputFile.cpp.o \ 

+../CMakeFiles/child-shared.dir/Erosion/erosion.cpp.o \ 

+../CMakeFiles/child-shared.dir/MeshElements/meshElements.cpp.o \ 

+../CMakeFiles/child-shared.dir/tMesh/ParamMesh_t.cpp.o \ 

+../CMakeFiles/child-shared.dir/tMesh/TipperTriangulator.cpp.o \ 

+../CMakeFiles/child-shared.dir/tStreamMeander/tStreamMeander.cpp.o \ 

+../CMakeFiles/child-shared.dir/tVegetation/tVegetation.cpp.o \ 

+../CMakeFiles/child-shared.dir/tLNode/tLNode.cpp.o \ 

+../CMakeFiles/child-shared.dir/tStorm/tStorm.cpp.o \ 

+../CMakeFiles/child-shared.dir/tWaterSedTracker/tWaterSedTracker.cpp.o \ 

+../CMakeFiles/child-shared.dir/tTimeSeries/tTimeSeries.cpp.o \ 

+../CMakeFiles/child-shared.dir/ChildInterface/childDriver.cpp.o \ 

+../CMakeFiles/child-shared.dir/ChildInterface/childInterface.cpp.o \ 

+../CMakeFiles/child-shared.dir/tListInputData/tListInputData.cpp.o \ 

+../CMakeFiles/child-shared.dir/tUplift/tUplift.cpp.o \ 

+../CMakeFiles/child-shared.dir/tEolian/tEolian.cpp.o \ 
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+../CMakeFiles/child-shared.dir/tFloodplain/tFloodplain.cpp.o \ 

+../CMakeFiles/child-shared.dir/globalFns.cpp.o \ 

+../CMakeFiles/child-shared.dir/tIDGenerator/tIDGenerator.cpp.o \ 

+../CMakeFiles/child-shared.dir/tLithologyManager/tLithologyManager.cpp.o \ 

+../CMakeFiles/child-shared.dir/tRunTimer/tRunTimer.cpp.o \ 

+../CMakeFiles/child-shared.dir/Predicates/predicates.cpp.o \ 

+../CMakeFiles/child-shared.dir/Mathutil/mathutil.cpp.o \ 

+objects/*.o;  

+ 

+mv matlabChildDriver.mex* $OUTPUT_DIR; 

diff -rupN child/Code/matlabInterface/matlabDefines.h 

CHILD_MATLAB/Code/matlabInterface/matlabDefines.h 

--- child/Code/matlabInterface/matlabDefines.h 1969-12-31 19:00:00.000000000 -

0500 

+++ CHILD_MATLAB/Code/matlabInterface/matlabDefines.h 2015-07-24 

20:06:59.630355966 -0400 

@@ -0,0 +1 @@ 

+#define MATLAB 1 

diff -rupN child/Code/matlabInterface/MatlabToCppArgument.cpp 

CHILD_MATLAB/Code/matlabInterface/MatlabToCppArgument.cpp 

--- child/Code/matlabInterface/MatlabToCppArgument.cpp 1969-12-31 

19:00:00.000000000 -0500 

+++ CHILD_MATLAB/Code/matlabInterface/MatlabToCppArgument.cpp 2015-

07-24 20:06:59.630355966 -0400 

@@ -0,0 +1,83 @@ 

+#include <iostream> 

+#include <string> 

+#include <cstring> 

+#include "MatlabToCppArgument.h"  

+#include "mex.h"  

+ 

+MatlabToCppArgument::MatlabToCppArgument(int nrhs, const mxArray* prhs[], 

string n) { 

+ // set the name 

+ name = n; 

+ 

+ // create the argument array 

+ createArgumentList(nrhs, prhs); 

+ 

+ // create the c style char** array from the string array 

+ convertStringPtrToCharPtrPtr(); 

+} 

+ 

+MatlabToCppArgument::MatlabToCppArgument(int nrhs, const mxArray* prhs[], 

const char* n) { 

+ // set the name 
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+ name = n; 

+ 

+ // create the argument array 

+ createArgumentList(nrhs, prhs); 

+ 

+ // create the c style char** array from the string array 

+ convertStringPtrToCharPtrPtr(); 

+} 

+ 

+MatlabToCppArgument::~MatlabToCppArgument() { 

+ // clean up the allocated memory for the argument array 

+ delete[] argv; 

+ 

+ // clean up memory allocated for the c string version 

+ // of the argument array 

+ for (int i = 0; i < argc; ++i) { 

+  free(cargv[i]); 

+ } 

+ 

+ // finish cleaning up the memory allocated 

+ free(cargv); 

+} 

+ 

+void MatlabToCppArgument::createArgumentList(int nrhs, const mxArray* prhs[]) { 

+ // add one to the number of arguments to allow 

+ // for the first argument to be the program name 

+ argc = nrhs + 1; 

+ 

+ // allocate memory for the argument array 

+ argv = new string[argc]; 

+ 

+ // set the first element of the array to be 

+ // the passed in program name 

+ argv[0] = name; 

+ 

+ // convert each mxArray element to the char type 

+ // and store the resulting string in the argument 

+ // array. 

+ for (int i = 1; i < argc; ++i) { 

+  char* str = mxArrayToString(prhs[i-1]); 

+ 

+  argv[i] = str; 

+ 

+  // mxArrayToString allocates memory for the char* 

+  // and it must be freed, usually as soon as it 

+  // is no longer needed 
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+  mxFree(str); 

+ } 

+} 

+ 

+void MatlabToCppArgument::convertStringPtrToCharPtrPtr() { 

+ 

+ // allocated memory for the char** cargv 

+ cargv = (char**)malloc(argc * sizeof(char*)); 

+ 

+ // for each element of cargv, allocate the necessary ammount of 

+ // memory to hold the string 

+ for (int i = 0; i < argc; ++i) { 

+  cargv[i] = (char*)malloc((argv[i].length() + 1) * sizeof(char)); 

+  strcpy(cargv[i], argv[i].c_str()); 

+ } 

+ 

+} 

+ 

diff -rupN child/Code/matlabInterface/MatlabToCppArgument.h 

CHILD_MATLAB/Code/matlabInterface/MatlabToCppArgument.h 

--- child/Code/matlabInterface/MatlabToCppArgument.h 1969-12-31 

19:00:00.000000000 -0500 

+++ CHILD_MATLAB/Code/matlabInterface/MatlabToCppArgument.h 2015-07-24 

20:06:59.630355966 -0400 

@@ -0,0 +1,86 @@ 

+#include <iostream> 

+#include <string> 

+#include "mex.h" 

+ 

+using namespace std;  

+ 

+class MatlabToCppArgument { 

+ public: 

+  /* 

+   Constructor setting name using c++ string class 

+   prhs is a mxArray of matlab arguments 

+   nrhs is the number of elements in prhs 

+   */ 

+  MatlabToCppArgument(int nrhs, const mxArray* prhs[], string n); 

+ 

+  /* 

+   Constructor setting name using c style char* 

+   prhs is a mxArray of matlab arguments 

+   nrhs is the number of elements in prhs 

+   */ 

+  MatlabToCppArgument(int nrhs, const mxArray* prhs[], const char* n); 
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+ 

+  /* 

+   Destructor that cleans up allocated memory for the 

+   argument string array 

+   */ 

+  ~MatlabToCppArgument(); 

+ 

+  /* 

+   Method to return the name set with the constructor. 

+   The name is automatically set as the first element 

+   of the argument string array. 

+   */ 

+  string getName() { return name; }  

+ 

+  /* 

+   Method to return the argument of the given index. 

+   The index applies to the argument string array, not 

+   the mxArray.  Therefore, to get the first argument 

+   passed to the matlab function, use index 1 and not 

+   index 0 as the first index is, in the c/c++ style, 

+   the name of the program. 

+   */ 

+  string getArgument(int index) {return argv[index]; } 

+ 

+  /* 

+   Method to return a pointer to the argument string 

+   array. 

+   */ 

+  string* getArguments() { return argv; } 

+ 

+  /* 

+   Method to return a pointer to the c style char**  

+   argument array. 

+   */ 

+  char** getCArguments() { return cargv; } 

+ 

+  /* 

+   Method to return the number of arguments in the  

+   string array, not the number of arguments passed 

+   to the matlab function.  Therefore, if the matlab 

+   function was passed no arguments this method will 

+   return 1 and not zero as the first element of 

+   the argument string array is the name of the  

+   program as is the c/c++ style. 

+   */ 

+  int getNumArguments() { return argc; } 
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+  

+ private: 

+  string name; 

+  string* argv; 

+  int argc; 

+  char** cargv; 

+ 

+  /* 

+   Function to create the argument string array from the 

+   mxArray. 

+   */ 

+  void createArgumentList(int nrhs, const mxArray* prhs[]); 

+ 

+  /* 

+   Function to create the c style char** argument array from  

+   the string array. 

+  */ 

+  void convertStringPtrToCharPtrPtr(); 

+}; 

diff -rupN child/Code/matlabInterface/objects/compile.sh 

CHILD_MATLAB/Code/matlabInterface/objects/compile.sh 

--- child/Code/matlabInterface/objects/compile.sh 1969-12-31 19:00:00.000000000 -

0500 

+++ CHILD_MATLAB/Code/matlabInterface/objects/compile.sh 2015-07-24 

20:06:59.630355966 -0400 

@@ -0,0 +1,4 @@ 

+#/bin/bash 

+ 

+#mex_matlab -c ../../errors/errors.cpp ../../tMesh/TipperTriangulatorError.cpp 

../../tOption/tOption.cpp ../../tStratGrid/tStratGrid.cpp ../../tStreamMeander/meander.cpp 

../../tStreamNet/tStreamNet.cpp CFLAGS="-fPIC -DMATLAB" 

+mex -c ../../errors/errors.cpp ../../tMesh/TipperTriangulatorError.cpp 

../../tOption/tOption.cpp ../../tStratGrid/tStratGrid.cpp ../../tStreamMeander/meander.cpp 

../../tStreamNet/tStreamNet.cpp CFLAGS="-fPIC -DMATLAB" 

diff -rupN child/Code/tInputFile/test_input_file.cpp 

CHILD_MATLAB/Code/tInputFile/test_input_file.cpp 

--- child/Code/tInputFile/test_input_file.cpp 2015-07-24 20:39:26.533699667 -0400 

+++ CHILD_MATLAB/Code/tInputFile/test_input_file.cpp 2015-07-24 

20:06:59.003695744 -0400 

@@ -25,6 +25,10 @@ int main( int argc, char** argv ) 

   if( argc<2 ) 

   { 

     cout << "Must include name of input file on the command line\n"; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 
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+#endif 

     exit(0); 

   } 

    

diff -rupN child/Code/tMesh/TipperTriangulatorError.cpp 

CHILD_MATLAB/Code/tMesh/TipperTriangulatorError.cpp 

--- child/Code/tMesh/TipperTriangulatorError.cpp 2015-07-24 20:36:16.465633747 -

0400 

+++ CHILD_MATLAB/Code/tMesh/TipperTriangulatorError.cpp 2015-07-24 

20:06:59.017028941 -0400 

@@ -15,6 +15,10 @@ 

  

 void tt_error_handler(void){ 

 #if defined(TIPPER_TEST) 

+ #ifdef MATLAB 

+  const char* c = ""; 

+  mexErrMsgTxt(c); 

+ #endif 

   exit(1); 

 #else 

   ReportFatalError( "Fatal error in Tipper Triangulator" ); 

diff -rupN child/Code/tOption/tOption.cpp CHILD_MATLAB/Code/tOption/tOption.cpp 

--- child/Code/tOption/tOption.cpp 2015-07-24 20:38:57.963990440 -0400 

+++ CHILD_MATLAB/Code/tOption/tOption.cpp 2015-07-24 20:06:59.617022771 -

0400 

@@ -17,6 +17,10 @@ 

 #include "tOption.h" 

 #include "../Definitions.h" 

  

+#ifdef MATLAB 

+ #include <mex.h> 

+#endif 

+ 

 tOption::tOption(int argc, char const * const argv[]) 

   : exeName(argv[0]), 

     silent_mode(false), checkMeshConsistency(true), no_write_mode(false),  

@@ -30,6 +34,10 @@ tOption::tOption(int argc, char const * 

   } 

   if (inputFile ==NULL){ 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 
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 } 

@@ -59,6 +67,10 @@ void tOption::ProcessOptionsFromString( 

     parseOptions( s ); 

   if (inputFile ==NULL){ 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 

 } 

@@ -83,18 +95,34 @@ int tOption::parseOptions(char const * c 

   } 

   if (strcmp(thisOption, "--help") == 0){ 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_SUCCESS); 

   } 

   if (strcmp(thisOption, "--version") == 0){ 

     version(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_SUCCESS); 

   } 

   if (thisOption[0] == '-') { 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 

   if (inputFile != NULL)  { 

     std::cerr << exeName << ": Several input files given." << std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 
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@@ -119,18 +147,34 @@ int tOption::parseOptions(string thisOpt 

   } 

   if (thisOption.compare("--help") == 0){ 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_SUCCESS); 

   } 

   if (thisOption.compare("--version") == 0){ 

     version(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_SUCCESS); 

   } 

   if (thisOption[0] == '-') { 

     usage(); 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 

   if (inputFile != NULL)  { 

     std::cerr << exeName << ": Several input files given." << std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

     exit(EXIT_FAILURE); 

   } 

   

diff -rupN child/Code/tStratGrid/tStratGrid.cpp 

CHILD_MATLAB/Code/tStratGrid/tStratGrid.cpp 

--- child/Code/tStratGrid/tStratGrid.cpp 2015-07-24 20:40:50.582844125 -0400 

+++ CHILD_MATLAB/Code/tStratGrid/tStratGrid.cpp 2015-07-24 

20:06:59.617022771 -0400 

@@ -26,6 +26,11 @@ 

  

 #include <iostream> 

  

+#ifdef MATLAB 
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+ #include <mex.h> 

+#endif 

+ 

+ 

 

/***********************************************************************

***\ 

  **         tSTRATGRID 

  **  @fn tStratGrid( tInputFile &infile, tMesh<tLNode *mp) 

@@ -549,6 +554,10 @@ void tStratGrid::CheckSectionBase(int mo 

  } 

  std::cout<<"Number of layers is "<<numlayers<<", Total thickness is: 

"<<totalthickness<<std::endl; 

  if(totalthickness > 0.0){ 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

    exit(1); 

  } 

       } 

@@ -1322,6 +1331,10 @@ double tStratNode::getAgeAtDepth( double 

  std::cout<<"l-1= "<<l-1<<" Rtime = "<<getLayerRtime(l-1) 

      <<"Ctime= "<<getLayerCtime(l-1)<<" "<<std::endl; 

  std::cout<<"Rsed = "<<Rsed<<std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

  exit(1); 

       } 

  

@@ -1664,6 +1677,10 @@ void tStratNode::EroDepSimple( int l, tA 

    else if(remainder <= maxregdep+10.){ 

           std::cout<<"Loads of deposition at " << x <<' '<< y <<" time= " <<tt<< '\n'; 

           std::cout<<"Make extra layers ??? \n"; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

           exit(1); 

    } 

  

@@ -1798,6 +1815,10 @@ void tStratNode::EroDepSimple( int l, tA 

       std::cout<<"z-columnheight= "<<z-columnheight_after<<"diff = "<< 

(sectionBase_after)- (z-columnheight_after)<<std::endl; 
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       std::cout<<" "<<std::endl; 

       std::cout<<" "<<std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

       exit(1); 

     } 

   } 

diff -rupN child/Code/tStreamMeander/meander.cpp 

CHILD_MATLAB/Code/tStreamMeander/meander.cpp 

--- child/Code/tStreamMeander/meander.cpp2015-07-24 20:41:26.422479260 -0400 

+++ CHILD_MATLAB/Code/tStreamMeander/meander.cpp 2015-07-24 

20:06:59.613689472 -0400 

@@ -17,6 +17,10 @@ 

 #include "meander.h" 

 #include "../Definitions.h" 

  

+#ifdef MATLAB 

+ #include <mex.h> 

+#endif 

+ 

 #define integer int 

 #define doublereal double 

  

@@ -483,6 +487,10 @@ void getcurv_(const integer *stnserod, c 

  b = dels[s - 1]; 

  if (a == 0. || b == 0.) { 

    std::cout << "dels(s) or dels(s-1) equals zero" << std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

    exit(1); 

  } 

  c__ = sqrt((delx[s - 1] + delx[s]) * (delx[s - 1] + delx[s]) + (dely[ 

diff -rupN child/Code/tStreamNet/tStreamNet.cpp 

CHILD_MATLAB/Code/tStreamNet/tStreamNet.cpp 

--- child/Code/tStreamNet/tStreamNet.cpp 2015-07-24 20:36:27.028859616 -0400 

+++ CHILD_MATLAB/Code/tStreamNet/tStreamNet.cpp 2015-07-24 

20:06:59.697021948 -0400 

@@ -21,6 +21,10 @@ 

 #include "../errors/errors.h" 

 #include "tStreamNet.h" 

  

+#ifdef MATLAB 
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+ #include <mex.h> 

+#endif 

+ 

 tStreamNet::kChannelType_t tStreamNet::IntToChannelType( int c ){ 

   switch(c){ 

     case 1: return kRegimeChannels; 

@@ -1523,6 +1527,10 @@ void tStreamNet::FlowDirs() 

           std::cout<< "Voronoi area <  0.0 at \n"; 

           std::cout<< curnode->getX() <<' '<<curnode->getY()<<std::endl; 

           std::cout<< "Area= "<<curnode->getVArea()<<std::endl; 

+#ifdef MATLAB 

+ const char* c = ""; 

+ mexErrMsgTxt(c); 

+#endif 

           exit(1); 

         } 
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