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 The surface of the Earth retains an imperfect memory of the diverse geodynamic, 

climatic, and surface transport processes that cooperatively drive the evolution of Earth. In 

this thesis I explore the potential of using topographic analysis and landscape evolution 

models to unlock past and/or present evidence for geodynamic activity. I explore the 

potential isolated effects of geodynamics on landscape evolution, particularly focusing on 

two byproducts of tectonic strain: rock displacement and damage. Field evidence supports 

a strong correlation between rock damage and erodibility, and a numerical sensitivity 

analysis supports the hypothesis that an order of magnitude weakening in rock, well within 

naturally occurring weakening levels, can have significant effects on the rates and patterns 

of landscape evolution. More specifically, weak zones associated with fault damage erode 

relatively quickly and hence attract a greater proportion of surface runoff, causing many 

rivers to become confined to the exposed structures of fault zones. In many cases this 

influence is independent of how evolved a landscape is prior to weak zone introduction. 

When combined, displacement and damage along a fault cooperatively control the drainage 

network pattern, hillslopes, and channel gradients. Quantitative methods for measuring 

topographic anisotropy indicate signature patterns associated with specific scale-dependent 



geodynamic and geomorphic processes that could otherwise go unnoticed when attempting 

to identify features from raw topographic data alone. The sharp relief associated with weak 

zone erosion leads to a significant perturbation of the near surface stress field that can 

potentially localize crustal failure under active tectonic conditions. Models used to study 

interactions between climate, surface processes, and crustal tectonics suggest a strong 

positive feedback between erosion and strain caused by the mechanical link between rock 

damage and erodibility. The rapid erosion of shear zones leads to greater topographic stress 

and hence greater strain localization. The link between erodibility and strain localization 

scales with greater damage, particularly due to structurally confined drainage patterns 

focusing a greater degree of fluvial incision in regions that already accommodate the 

majority of strain, resulting in a greater concentration and greater longevity of strain in 

narrow shear zones.  



DEDICATION 

 

For Teagan, Evangeline, and Baxter 

iii



ACKNOWLEDGEMENTS 

 

 I am grateful for the many research funding sources provided to me through my 

graduate career. In no particular order these sources include the National Science 

Foundation, the University of Maine Graduate Student Government Grant, the Geological 

Society of America, the Community Surface Dynamics Modeling System, the Society of 

Economic Geologists, the American Geophysical Union, and the University of Maine 

School of Earth and Climate Sciences.  

 Personally, I would like to thank Peter Koons for his guidance, his friendship, and 

his understanding through this entire process, beginning when I was an undergraduate. 

Peter has inspired me to live a life of constant learning in a world rich with unknowns. I 

thank Chris Gerbi for his authenticity and for his sneaky ability to motivate me with 

pertinent questions. I thank Phaedra Upton for keeping my research ideas grounded in 

reality and for the countless hours she spent reading my doggerel verse. I thank Sean Smith 

for his sense of humor, his hops, and his guidance in the realm of geomorphology. I thank 

Greg Tucker for guiding me through the philosophy of modeling and introducing me to the 

languages used therein. Outside of my committee members, I want to thank Dan Lux for 

his bad jokes and his good scotch, and Dan Capps for our enlightening discussions on K-

12 science education. Thanks to Andy Reeve for helping me to see the importance of open 

source software, even if it took me too long to catch on. Thanks to Scott Johnson for 

suggesting I embrace numerical modeling, and thank you to Daniel Belknap for helping 

me to learn strategies for communicating my research. I must also thank Steve Norton for 

convincing me to enroll at the University of Maine in the first place and for hiring me on 

iv



as a lab assistant. Of course I must also give a great big thank you to all faculty and staff 

in the School of Earth and Climate Sciences for cultivating such a positive culture of 

exploration and friendship. 

 I have many people to thank when it comes to my research. In no particular order 

this includes Nancy Price, Jeff Marsh, Felice Naus-Thijssen, Ben Frieman, Jamie Howarth, 

Nicholas Richmond, Won Joon Song, Bora Song, Bipush Osti, Deborah Shulman, Maura 

Foley, Stephanie Mills, Brett Gerard, Lauren Wheeler, Annie Boucher, Lynn Kaluzienski, 

Bess Koffman, Jason Monk, Forrest Flagg, Seth Campbell, Alison Duval, Chris Thomas, 

James O’Neil, Cory Johnson, Adam Rogers, Tim Paylor, and the countless others who met 

me at poster and oral presentations. 

 Finally, thanks to my family and friends who have always motivated me to do 

greater things. In particular I want to thank my wife Teagan for putting up with my monkish 

work ethic. You and Evie have helped me to understand what life is really all about and 

how it ought to be lived. I am truly blessed to have been able to pursue my Ph.D. without 

sacrificing time with my family and friends. I’m sure each and every one of you was 

wondering when I would finally graduate for the last time. Thank you all for your patience 

and support. 

v



TABLE OF CONTENTS 

DEDICATION ................................................................................................................... iii 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ........................................................................................................... xvi 

LIST OF FIGURES ........................................................................................................ xvii 

LIST OF EQUATIONS .................................................................................................. xxii 

CHAPTER 

1. INTRODUCTION ...........................................................................................................1 

 1.1. Memoirs of a Landscape ...................................................................................1 

 1.2. Mechanical Properties and Erosional Processes ...............................................2 

 1.3. Topographic Anisotropy ...................................................................................3 

 1.4. Dynamics ..........................................................................................................4 

 1.5. Education ..........................................................................................................4 

 1.6. Fundamental Equations .....................................................................................5 

 1.6.1. Thermogravitational Instability in the Mantle ...................................5 

 1.6.2. Flow Dynamics ..................................................................................6 

 1.6.3. Brittle Failure .....................................................................................9 

2. FIELD MEASUREMENTS OF BULK ROCK STRENGTH.......................................12 

 2.1. Chapter Introduction .......................................................................................12 

 2.2. Method and Technique of Strength/Grain Size Measurement ........................12 

 2.2.1. Structural Competence .....................................................................13 

 2.2.2. Base Rock Competence ...................................................................14 

  

vi



 2.3. Field Locations................................................................................................15 

 2.3.1. Alpine Fault .....................................................................................15 

 2.3.1.1. Gorge Near Waikukupa River, New Zealand ...................16 

 2.3.1.2. Gaunt Creek, Whataroa, New Zealand .............................19 

 2.3.1.3. Martyr River, New Zealand ..............................................19 

 2.3.2. Splay from Fowlers Fault, Exposure North of Henry Saddle,  

 Lewis Pass Region ...........................................................................24 

 2.3.3. Fiddlers Flat: Blue Lake Fault, Central Otago, New Zealand .........27 

 2.3.4. Ostler Fault, Twin Stream, New Zealand ........................................30 

 2.4. Chapter Conclusions .......................................................................................33 

3. THE INFLUENCE OF CRUSTAL STRENGTH FIELDS ON THE  

PATTERNS AND RATES OF FLUVIAL INCISION .....................................................34 

 3.1. Chapter Abstract .............................................................................................34 

 3.2. Chapter Introduction .......................................................................................35 

 3.3. Methods...........................................................................................................37 

 3.3.1. Approach and Scope ........................................................................37 

 3.3.2. Surface-Dynamics Model ................................................................40 

 3.3.3. Relationship between Crustal Strength and Erodibility in 3D .........43 

 3.3.4. Analytical Comparison ....................................................................45 

 3.4. Model Set 1: Fluvial Incision Sensitivity to Variations in Weak  

 Zone Strength .................................................................................................46 

 3.4.1. Description of Geometry and Strength ............................................46 

 3.4.2. Steady State Topography .................................................................47 

vii



 3.4.3. Tortuosity .........................................................................................48 

 3.4.4. Knickpoints ......................................................................................49 

 3.4.5. Model Set 1 Results .........................................................................51 

 3.4.5.1. Steady State Landscape Patterns .......................................51 

 3.4.5.2. Knickpoint Migration Rate, Regional Response Rate ......54 

 3.4.5.3. Stationary Knickpoints Associated with Erodibility 

 Gradients ..........................................................................56 

 3.5. Model Set 2: Fluvial Incision Sensitivity to Variations in Weak Zone  

 Geometry ........................................................................................................61 

 3.5.1.   Lateral Shifting ..............................................................................61 

 3.5.2.   Valley Asymmetry .........................................................................62 

 3.5.3.   Strength, Width, Asymmetry Sensitivity .......................................64 

 3.6. Discussion .......................................................................................................67 

 3.6.1.   Drainage Network Pattern and Controls on Relief ........................67 

 3.6.1.1. Drainage Network Pattern .................................................67 

 3.6.1.2. Relief of Hillslopes ...........................................................68 

 3.6.2.   Response Rate ................................................................................69 

 3.6.3.   Stationary Knickpoints...................................................................70 

 3.6.4.   Lateral Shifting ..............................................................................72 

 3.6.5.   Natural Examples of Structurally Confined Drainage ...................73 

 3.6.5.1. Homogeneous Example ....................................................76 

 3.6.5.2. Low Relative Strength Factor Examples ..........................76 

 3.6.5.3. Moderate Relative Strength Factor Examples ..................77 

viii



 3.6.5.4. High Relative Strength Factor Examples ..........................78 

 3.6.5.5. Summary of Natural Examples .........................................80 

 3.7.   Chapter Conclusions .....................................................................................82 

4. MODELING THE GENESIS AND TRANSPORT OF HETEROGENEOUS  

GRAIN SIZE DISTRIBUTIONS IN A FAULT-DAMAGED LANDSCAPE .................83 

 4.1. Chapter Abstract .............................................................................................83 

 4.2. Introduction .....................................................................................................84 

 4.3. A Natural Example of Fault Erosion: Lewis Pass Region, New Zealand ......87 

 4.3.1. Geological Background ...................................................................87 

 4.3.2. Strength and Sediment Texture Summary .......................................87 

 4.3.3. Distribution of Alluvium along Channel Reach ..............................92 

 4.4. Methods...........................................................................................................92 

 4.4.1. Surface Dynamics Model .................................................................92 

 4.4.1.1. Bedrock River Incision .....................................................94 

 4.4.1.2. Fluvial Sediment Transport...............................................95 

 4.4.1.3. Additional Parameters .......................................................98 

 4.4.2. Erodibility and Climatic Parameters ................................................98 

 4.4.2.1. Erodibility .........................................................................98 

 4.4.2.2. Texture ..............................................................................99 

 4.4.2.3. Storms .............................................................................102 

  

 

 

 

ix



 4.4.3. Predicting Landscape Response .....................................................104 

 4.4.3.1. Alluvium Experiments ....................................................104 

 4.4.3.2. Bedrock and Mixed Bedrock-Alluvium  

  Experiments ....................................................................105 

 4.4.4. Landscape evolution models: Geometry, Initial and Boundary  

  Conditions ......................................................................................106 

 4.5. Model Results ...............................................................................................107 

 4.5.1. Topographic Pattern and Sediments ..............................................107 

 4.6. Discussion .....................................................................................................111 

 4.6.1. Drainage Network Pattern ..............................................................111 

 4.6.2. Aggradation in Structurally Confined Channels ............................111 

 4.6.2.1. Weak Zones and Sediment Storage ................................111 

 4.6.2.2. Downstream Fining .........................................................112 

 4.6.2.3. Occasional Bedrock Exposure in the Weak Zone ...........114 

 4.6.2.4. Sediment Residence Time...............................................115 

 4.7. Conclusions ...................................................................................................116 

5. MULTI-SCALE CHARACTERIZATION OF TOPOGRAPHIC  

ANISOTROPY ................................................................................................................118 

 5.1. Chapter Abstract ...........................................................................................118 

 5.2. Chapter Introduction .....................................................................................119 

  

 

 

x



 5.3. Every-Direction Variogram Analysis (EVA) ...............................................120 

 5.3.1. Statistical Method ..........................................................................120 

 5.3.2. Computational Method for Generating Anisotropy Maps with  

 EVA ...............................................................................................124 

 5.3.3. Methods for Delivering Anisotropy Data ......................................125 

 5.4. Topographic Fabric in New Zealand ............................................................127 

 5.4.1. EVA Results: Anisotropy Maps.....................................................127 

 5.4.1.1. Dendritic: Natural Example - Wairoa .............................130 

 5.4.1.2. Deformational: Natural Example - Central Otago ..........132 

 5.4.1.3. Fault Damage and Deformation: Natural Example –  

  Marlborough ...................................................................135 

 5.4.1.4. Planar: Natural Example - Canterbury Plains .................137 

 5.4.1.5. Monolithic: Natural Example - Taranaki ........................139 

 5.4.1.6. South Island, New Zealand .............................................141 

 5.5. Discussion .....................................................................................................143 

 5.5.1. Generalized Landform Fabrics ......................................................143 

 5.5.2. Comparison of EVA to Self-Affine Power Law Scaling ...............146 

 5.5.3. Future Work ...................................................................................149 

 5.6. Chapter Conclusions .....................................................................................150 

 5.7. Chapter Acknowledgements .........................................................................151 

 

 

 

xi



6. ROCK STRENGTH HETEROGENEITY AND ITS EFFECTS ON FLUVIAL 

INCISION AT THE REGIONAL (100 KM) SCALE AND IMPACTS ON THE  

NEAR SURFACE STRESS FIELD ................................................................................152 

 6.1. Chapter Abstract ...........................................................................................152 

 6.2. Chapter Introduction .....................................................................................152 

 6.3. Methods.........................................................................................................154 

 6.4. Model Set 1: Landscape Sensitivity to 3D Fault Orientations ......................156 

 6.4.1. Homogeneous ................................................................................156 

 6.4.2. Convergent .....................................................................................157 

 6.4.3. Oblique ...........................................................................................157 

 6.4.4. Transverse ......................................................................................159 

 6.5. Model Set 2: Later Introduction of Weak Zone by Exhumation or  

  Emplacement.................................................................................................159 

 6.6. Model Set 3: Sediment Routing Through Structurally Confined  

  Channels ........................................................................................................164 

 6.7. Model Set 4: High Frequency Fault Damage ...............................................165 

 6.8. Model Set 5: Exhumation of a Granitic Pluton .............................................167 

 6.8.1. Model Setup ...................................................................................167 

 6.8.2. Uniform Strength Pluton ................................................................168 

 6.8.3. Pluton with Joints ...........................................................................168 

  

 

 

xii



 6.9. Implications for Topographic Stress and Tectonic Strain.............................169 

 6.9.1. Overview of Topographic Stress ...................................................169 

 6.9.2. Results and Discussion ..................................................................171 

 6.9.3. Natural Example: Cromwell Gorge ...............................................173 

 6.10. Chapter Conclusions and Future Work .......................................................174 

7. EROSION OF ACTIVE FAULTS AND INFLUENCES ON TOPOGRAPHIC  

SLOPE AND DRAINAGE NETWORK PATTERN ......................................................177 

 7.1. Chapter Abstract ...........................................................................................177 

 7.2. Chapter Introduction .....................................................................................177 

 7.3. Methods.........................................................................................................179 

 7.3.1. Landscape Evolution Model ..........................................................179 

 7.3.2. Surface Displacement Model .........................................................180 

 7.3.2.1. Tectonic Regimes............................................................180 

 7.3.2.2. Slip Rate ..........................................................................181 

 7.3.3. Rock Damage and the Link to Erodibility .....................................182 

 7.4. Results ...........................................................................................................183 

 7.4.1. Model Set 1: Lateral Topographic Advection and Channel  

  Slope ..............................................................................................183 

 7.4.2. Model Set 2: Rock Displacement, Damage, and Topographic 

  Shape ..............................................................................................184 

 7.4.2.1. Reverse Dip-Slip Fault ....................................................185 

 7.4.2.2. Normal Fault Slip ............................................................186 

  

xiii



 7.4.2.3. Left Lateral Strike-Slip Fault ..........................................188 

 7.4.2.4. Reverse Oblique Fault.....................................................188 

 7.4.3 Model Set 3: Lateral Channel Shifting Along a Gently  

 Dipping Fault ...........................................................................................190 

 7.5. Discussion .....................................................................................................192 

 7.5.1. Lateral Advection and Channel Slope ...........................................192 

 7.5.2. Structural Confinement ..................................................................192 

 7.5.3. Persistent Drainage Orientations in the Mobile Block ..................193 

 7.6. Chapter Conclusions .....................................................................................193 

8. DYNAMIC LINKS BETWEEN ROCK DAMAGE, EROSION, AND  

TECTONIC STRAIN IN ACTIVE OROGENS..............................................................195 

 8.1. Chapter Abstract ...........................................................................................195 

 8.2. Chapter Introduction .....................................................................................196 

 8.3. Crustal Mechanics and Tectonic Conditions ................................................198 

 8.4. Surface Processes ..........................................................................................200 

 8.5. Orographic Precipitation ...............................................................................202 

 8.6. Scaling Rule for Rock Strength-Erodibility Link .........................................203 

 8.7. Model Results ...............................................................................................204 

 8.7.1. Experiment 1: Tectonics with Erosion ...........................................204 

 8.7.2. Experiment 2: Tectonics, Erosion, and the Strength- 

  Erodibility Link ..............................................................................206 

 8.7.3. Supplemental Experiment 0: Tectonics with No Erosion ..............208 

 

xiv



 8.8. Discussion .....................................................................................................209 

 8.9. Conclusions ...................................................................................................211 

9. CONCLUSIONS AND FUTURE WORK ..................................................................213 

 9.1. Summary of Chapter Conclusions ................................................................213 

 9.2. Future Work ..................................................................................................215 

 9.2.1. A Failure-Based Model for Landscape Evolution .........................215 

 9.2.2. Landscapes with Greater Tectonic Complexity .............................216 

REFERENCES ................................................................................................................223 

APPENDIX A: NUMERICAL MODELING IN THE CLASSROOM ..........................243 

APPENDIX B: BEDROCK INCISION, SEDIMENT STORAGE, AND  

SENSITIVITY TO STORMS ..........................................................................................259 

APPENDIX C: GRID MAINTENANCE FOR KINEMATIC-TECTONIC 

 LANDSCAPE EVOLUTION MODELS .......................................................................261 

BIOGRAPHY OF THE AUTHOR ..................................................................................265 

xv



LIST OF TABLES 

 

Table 3.1 Natural examples of structurally confined drainages ........................................81 

Table 4.1. Field characterization of the four rock types including the Hoek-Brown  

 parameters used to estimate cohesion and median grain size ..........................90 

Table 6.1. Conjugate fault zone pair orientation data ......................................................156 

Table 8.1. Mechanical model parameters ........................................................................200 

xvi



LIST OF FIGURES 

 

Figure 1.1. Dynamic links between tectonics, surface processes, and climate ....................2 

Figure 2.1. Gorge near Waikukupa River ..........................................................................17 

Figure 2.2. Hoek-Brown parameters for Waikukupa site ..................................................18 

Figure 2.3. Gaunt Creek .....................................................................................................20 

Figure 2.4. Hoek-Brown parameters for Gaunt Creek site ................................................21 

Figure 2.5. Martyr River ....................................................................................................22 

Figure 2.6. Hoek-Brown parameters for Martyr River site ...............................................23 

Figure 2.7. Henry Saddle ...................................................................................................25 

Figure 2.8. Hoek-Brown parameters for Henry Saddle site ...............................................26 

Figure 2.9. Fiddlers Flat .....................................................................................................28 

Figure 2.10. Hoek-Brown parameters for Fiddlers Flat site ..............................................29 

Figure 2.11. Twin Stream ..................................................................................................31 

Figure 2.12. Hoek-Brown parameters for Twin Stream site ..............................................32 

Figure 3.1. Hydrographic map of a dendritic drainage network ........................................36 

Figure 3.2. Schematic of model set 1 domains ..................................................................39 

Figure 3.3. Steady state elevation fields for all Model Set 1 experiments.........................50 

Figure 3.4. Maximum (black dots) and mean (grey dots) topographic relief ....................51 

Figure 3.5. Mean tortuosity values for each experiment ...................................................51 

Figure 3.6. Slope versus drainage area plots ......................................................................53 

Figure 3.7. Knickpoint migration rate (Vk) increase factor with respect to the  

 strength gradient increase factor .....................................................................55 

xvii



Figure 3.8. Longitudinal profile data for each Model Set 1 experiment............................57 

Figure 3.9. Channel-wise knickpoint migration rate (solid black) and erodibility  

 (dashed grey) as a function of downstream distance from point P-P’ ............59 

Figure 3.10. Schematic for Model Set 2 ............................................................................61 

Figure 3.11. Example time series of lateral migration of a river channel confined to  

 an asymmetric weak zone .............................................................................63 

Figure 3.12. Cross-sectional valley profiles for faults with indicated dip .........................64 

Figure 3.13. Plots of west-east channel outlet position (horizontal axis) as a function  

 of uplifted height or time (x104 years, increasing downward) ......................65 

Figure 3.14. Mean tortuosity values for natural examples ................................................74 

Figure 4.1. Henry Saddle field site ....................................................................................88 

Figure 4.2. Field photos .....................................................................................................89 

Figure 4.3. Data from Henry Saddle ..................................................................................91 

Figure 4.4. Dimensionless reference shear stress for gravel (top) and sand (bottom) .......97 

Figure 4.5. Schematic of the model geometry used for strength and texture  

 sensitivity analysis ........................................................................................100 

Figure 4.6. Plot of mean elevation over time for the five experiments ...........................103 

Figure 4.7. Channel profiles.............................................................................................105 

Figure 4.8. Experimental results ......................................................................................108 

Figure 4.9. Slope versus drainage area plots for Experiments control (1X) to  

                  3000X ...........................................................................................................109 

Figure 4.10: Revisiting texture map of 3000X experiment .............................................113 

Figure 4.11. Longitudinal channel profiles for 3000X experiment .................................115 

xviii



Figure 5.1. An example grid in which I apply my variance algorithm ............................123 

Figure 5.2. Flow chart for the EVA algorithm.................................................................125 

Figure 5.3. Topographic maps .........................................................................................128 

Figure 5.4. Anisotropy of dendritic landform ..................................................................131 

Figure 5.5. Anisotropy of deformational landform ..........................................................133 

Figure 5.6. Anisotropy of structural landform .................................................................136 

Figure 5.7. Anisotropy of planar landform ......................................................................138 

Figure 5.8. Anisotropy of monolithic landform ...............................................................140 

Figure 5.9. Anisotropy of South Island, New Zealand ....................................................142 

Figure 5.10. Example of self-affine method ....................................................................148 

Figure 6.1. Surface exposure of conjugate pairs in map view .........................................155 

Figure 6.2. Topography, after 2 Ma of erosion and uplift ...............................................158 

Figure 6.3. Incremental exposure and subsequent rapid erosion of weak zones .............161 

Figure 6.4. Hydrography maps for Model Sets 1 and 2 ...................................................162 

Figure 6.5. Comparison of different tectonic regimes .....................................................163 

Figure 6.6. Time sequence of progressive damage zone emplacement ...........................164 

Figure 6.7. Sediment maps...............................................................................................165 

Figure 6.8. Model topography (greyscale images) with maps of rock strength and 

channel tortuosity superimposed ..................................................................166 

Figure 6.9. Pluton elevation maps....................................................................................169 

Figure 6.10. Topographic stress maps .............................................................................172 

Figure 6.11. Cromwell Gorge ..........................................................................................174 

Figure 7.1. Model geometry and kinematic fields ...........................................................180 

xix



Figure 7.2. Elevation and slope data ................................................................................184 

Figure 7.3. Reverse dip slip model results .......................................................................186 

Figure 7.4. Normal dip slip model results........................................................................187 

Figure 7.5. Left lateral strike slip model results ..............................................................189 

Figure 7.6. Reverse oblique slip model results ................................................................190 

Figure 7.7. Comparison of lateral channel shifting pattern .............................................191 

Figure 8.1. Model schematics ..........................................................................................199 

Figure 8.2. Experiment 1 .................................................................................................205 

Figure 8.3. Experiment 2 .................................................................................................207 

Figure 8.4. Experiment 0 .................................................................................................209 

Figure 8.5. Cross-sectional profiles for Experiments 1 and 2 (A and B,  

 respectively) .................................................................................................211 

Figure 9.1. Himalayan Eastern Syntaxis ..........................................................................219 

Figure 9.2. Example corner model ...................................................................................221 

Figure 9.3. Time series of corner model elevation ..........................................................222 

Figure A.1. Main menu of CHILDGUI ...........................................................................245 

Figure A.2. Examples of plot options ..............................................................................246 

Figure A.3. Additional map options ................................................................................247 

Figure A.4. More options .................................................................................................249 

Figure A.5. Lithology experiment ...................................................................................251 

Figure A.6. Fault erosion experiment ..............................................................................252 

Figure A.7. Pluton, rainfall gradient, and strike-slip fault experiments ..........................253 

Figure A.8. Example of topography-dependent ecology .................................................255 

xx



Figure B.1. Storm sensitivity experiment ........................................................................260 

Figure C.1. Algorithm for KCHILD ................................................................................261 

Figure C.2. Cartoon scenarios for the three different cases for grid reinterpolation .......263 

xxi



LIST OF EQUATIONS 

 

Equation 1.1. ........................................................................................................................5 

Equation 1.2. ........................................................................................................................6 

Equation 1.3. ........................................................................................................................6 

Equation 1.4. ........................................................................................................................6 

Equation 1.5. ........................................................................................................................7 

Equation 1.6. ........................................................................................................................7 

Equation 1.7. ........................................................................................................................7 

Equation 1.8. ........................................................................................................................7 

Equation 1.9. ........................................................................................................................8 

Equation 1.10. ......................................................................................................................8 

Equation 1.11. ....................................................................................................................10 

Equation 1.12. ....................................................................................................................10 

Equation 3.1. ......................................................................................................................41 

Equation 3.2. ......................................................................................................................41 

Equation 3.3. ......................................................................................................................41 

Equation 3.4. ......................................................................................................................44 

Equation 3.5. ......................................................................................................................46 

Equation 3.6. ......................................................................................................................48 

Equation 3.7. ......................................................................................................................54 

Equation 4.1. ......................................................................................................................93 

Equation 4.2. ......................................................................................................................93 

xxii



Equation 4.3. ......................................................................................................................94 

Equation 4.4. ......................................................................................................................94 

Equation 4.5. ......................................................................................................................94 

Equation 4.6. ......................................................................................................................95 

Equation 4.7. ......................................................................................................................95 

Equation 4.8. ......................................................................................................................95 

Equation 4.9. ......................................................................................................................96 

Equation 4.10. ....................................................................................................................96 

Equation 4.11. ....................................................................................................................98 

Equation 4.12. ....................................................................................................................98 

Equation 4.13. ....................................................................................................................99 

Equation 4.14. ....................................................................................................................99 

Equation 4.15. ..................................................................................................................101 

Equation 4.16. ..................................................................................................................101 

Equation 5.1. ....................................................................................................................121 

Equation 5.2. ....................................................................................................................122 

Equation 5.3. ....................................................................................................................122 

Equation 5.4. ....................................................................................................................122 

Equation 5.5. ....................................................................................................................146 

Equation 6.1. ....................................................................................................................170 

Equation 6.2. ....................................................................................................................170 

Equation 6.3. ....................................................................................................................170 

Equation 6.4. ....................................................................................................................170 

xxiii



Equation 6.5. ....................................................................................................................170 

Equation 7.1. ....................................................................................................................179 

Equation 7.2. ....................................................................................................................181 

Equation 7.3. ....................................................................................................................183 

Equation 8.1. ....................................................................................................................201 

Equation 8.2. ....................................................................................................................201 

Equation 8.3. ....................................................................................................................202 

Equation 8.4. ....................................................................................................................203 

 

xxiv



CHAPTER 1 

INTRODUCTION 

 

1.1. Memoirs of a Landscape 

 In this thesis I explore the simple observation that the shape of landscapes tends to 

reflect the shape of tectonic activity, both past and present. The surface of the Earth retains 

valuable information about tectonic strain, generated by mantle flow and distributed by the 

rheological responses of the lithosphere; processes that are otherwise impossible to directly 

observe. However, the memory of tectonic strain at the surface is often obscured by other 

interconnected processes (Figure 1.1). For example, in orogenic regions, relief generated 

by tectonic strain gives a gravitational potential to various surface processes that can erode 

and transport material downslope. In addition to relief, tectonic strain can mechanically 

weaken the crust through shear damage along fault slip surfaces. These heavily 

disaggregated zones of fault gouge tend to erode rapidly relative to surrounding intact rock 

and as a result often control the drainage network pattern. As a consequence, erosion and 

transport reduce stresses from the topographic load and promotes further tectonic strain. 

This effect of stress unloading is amplified locally in fault damage zones due to rapid, 

localized erosion but also because the damage zones already host large strain rates. 

Additionally, many of these surface processes rely on climate to deliver precipitation, 

which is strongly influenced by the topography generated from tectonic strain and reshaped 

by erosion.  

 It becomes clear that using topography purely as a proxy for tectonic activity is 

problematic due to the dynamic links introduced above. However, if there is some 
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understanding of the sensitivity of these links, particularly between tectonics and surface 

processes, then one can obtain a greater understanding of topography and what information 

it contains. Many have explored the links between tectonics, surface processes, and climate 

over the last several decades and many unanswered questions have been raised as a result. 

I pursue some of these questions and explore possible answers in the following chapters. 

 
Figure 1.1. Dynamic links between tectonics, surface processes, and climate. In this thesis 
I explore tectonics as two interconnected components: displacement, and damage. 
 

1.2. Mechanical Properties and Erosion Processes 

 One major unanswered question is, what is the role of rock strength in erosion? 

Moore et al. (2009) found a relation between the volume of sediment yield and the angular 

coincidence of slope to joints and fractures, suggesting that these mechanical defects have 

a measurable influence on erosion rate. Additionally, Sklar and Dietrich (2001; 2004) 

found a robust inverse relationship between rock anelastic strength and fluvial erosion rate. 

Rock disaggregation through tectonic fracture is often perceived as the first step in erosion 

2



(Scheidegger, 1979; Scheidegger, 1998; Scheidegger, 2001; Molnar et al., 2007; Koons et 

al., 2012) and there are several examples in which the rapid erosion of faults leads to the 

confinement of rivers to structural features, such as fault damage zones (Thomson, 1993; 

Koons et al., 2012; Roy et al., 2015).  

 From these observations it is clear that there is an important link between the 

mechanical properties of rock and the fluvial and hillslope processes of erosion and 

transport, but there has been little effort to explore the sensitivity between the two. In 

Chapters 2 and 3 I study the link between mechanics and erosion in a combined approach 

that utilizes field measurements of rock strength and damage zone geometry with 

numerical models that incorporate these data in a landscape evolution framework. Strain-

induced disaggregation generates heterogeneous grain size distributions in league with 

heterogeneous mechanical strength, so I also explore the sensitivity of sediment transport 

across faulted landscapes using a mixed bedload model in Chapter 4.  

 

1.3. Topographic Anisotropy 

 Another major question that has been posed is, what kind of information is really 

contained in topographic shape? To begin to answer this question, I introduce a statistical 

method for measuring topographic anisotropy, or the directional dependence of landscape 

features, in Chapter 5. Measuring anisotropy over multiple scales can yield information 

about the dominant processes that shape topography and the scale at which they typically 

operate. I use this method on a number of characteristic landforms to determine if they 

yield signature patterns of anisotropy, to be used diagnostically in other landscapes on 

Earth and potentially other planets. 
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1.4. Dynamics 

 How does strain weakening alter the dynamic responses between tectonics, climate, 

and surface processes? In Chapter 6 I first explore this question by measuring the stress 

field underneath a faulted landscape to determine whether fault erosion can perturb the near 

surface stress field enough to influence the distribution of further tectonic strain. Simple 

fault motion is then combined with shear damage in a landscape evolution model to 

determine how different forms of fault slip can generate different landscape patterns in 

Chapter 7. In Chapter 8, I incorporate the rock damage-erosion link into a dynamically 

coupled rheological-erosion model of the upper crust. A sensitivity analysis is later 

performed to determine how rock damage and rapid erosion contribute to evolution of the 

drainage network pattern, stress field, strain, and strain rate. Chapter 9 is used to share 

some concluding remarks and explore more complex tectonism in collisional plate corners. 

 

1.5. Education 

 How can numerical models of coupled tectonic-geomorphic systems serve in a 

student’s education? In Appendix A I describe a graphical user interface in which users 

can easily access a sophisticated model of landscape evolution with relative ease. A number 

of theoretical course modules are included with suggestions on how they can be 

supplemental to other common modules in geology, ecology, economics, and sociology. 
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1.6. Fundamental Equations 

 Before I begin a thorough discussion of the questions posed above, it is important 

to explain the fundamental equations that make this form of coupled numerical modeling 

possible. These equations are needed to describe the driving forces and differential motion 

behind tectonic strain, the erosional potential of rivers, the circulation patterns of the 

atmosphere and implications for climate, and the brittle behavior of the upper crust. Each 

of these components plays a fundamental role in landscape evolution. 

 

1.6.1. Thermogravitational Instability in the Mantle 

 Tectonism is often what initiates topography on Earth, and large scale tectonics are 

driven by a thermogravitational anomaly between the lithosphere and the asthenosphere, 

the cause of which is a difference in density associated with a temperature gradient. Decay 

of radionuclides throughout the Earth (plus some heat saved from the violent formation of 

Earth) produces a vertical thermal gradient, with temperature decreasing with distance 

from the Earth’s center. Transient perturbations to this gradient can be adequately 

described by the Fourier heat equation  

 ∂T

∂t
= κ

∂2T

∂z2
+ w

∂T

∂z
+

H

Cpρ
 (1.1.)  

where T is temperature, t is time, κ is thermal diffusivity, z is depth, w is velocity parallel 

to the axis of z, H is heat generation, Cp is specific heat, and ρ is density. The equation is 

split into heat transfer mechanisms of conduction and advection, the heat source, and heat 

transience. One crucial phenomenon in the thermogravitational instability is that 

temperature can continuously alter the density of matter by affecting volume through the 

expansion or contraction of atomic bonds. An object with mass is acted upon by the force 
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of gravity, therefore temperature can alter the relative influence of gravity on an object, 

and hence its buoyancy, by changing its density 

 ∆ρ = ρ0αv∆T (1.2.)  

where αv is the coefficient of volumetric thermal expansion that changes the initial density 

ρ0 over a change in temperature ∆T. Like most materials in Earth, the density of the mantle 

will increase with a decrease in temperature. This means that there is an inherent 

gravitational instability established by the thermal gradient: the mantle is naturally 

stratified in such a way that places dense mantle lithosphere over a more buoyant 

asthenosphere, assuming uniform assemblage and increasing pressure with depth. This 

arrangement can initiate subduction and ultimately drive flow within the mantle. Flow 

within the mantle drives plate deformation, which is reflected in the surface topography. 

 

1.6.2. Flow Dynamics 

 The buoyancy instability described above drives flow within the mantle. I use the 

Navier-Stokes equations to quantitatively describe this flow in a 3D non-rotating reference 

frame, considering conservation of mass 

 ∇ ∙ Vx,y,z = 0 (1.3.)  

and momentum 

 
∆ρ

∂Vx,y,z

∂t
= ∆ρg − ∇P + μ∇γ̇ 

Acceleration = volume force – pressure gradient + viscosity 

(1.4.)  

where ∂Vx,y,z

∂t
 represents unsteady acceleration in 3D, g is acceleration due to gravity, ∇P is 

the pressure gradient, μ is viscosity, and ∇γ̇ is the shear strain rate gradient in an 

incompressible fluid. Viscosity is the resistance to shear strain, representing the diffusion 
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of momentum, and decreases with increasing temperature, much like density. The mantle 

is incapable of significant acceleration values because of its large inertia, and flow is driven 

predominantly by gravitational forcing with insignificant contributions from pressure 

gradients created by variable mantle thickness, therefore we can simplify mantle flow to 

the Stokes flow equation 

 ∆ρg = μ∇γ̇ (1.5.)  

where flow is driven by gravitational forcing, dependent on the thermal gradient, and 

resisted by viscosity. The mantle may therefore be able to convect if gravitational forcing 

exceeds viscosity, which is exactly the case at plate subduction boundaries. 

 The Navier-Stokes equations can also be adapted to model flow dynamics in rivers, 

a crucial component of coupled modeling because it is flow that can impose the stresses 

needed to detach and transport rock on the bed of a river. This problem is commonly framed 

using the shallow water approximation to describe conservation of mass 

 ∂R

∂t
= i − (

∂uR

∂x
+

∂vR

∂y
) (1.6.)  

and momentum 

 ∂uR

∂t
+

∂

∂x
(Ru2) +

∂

∂y
(Ruv) + gR

∂R

∂x
+ gR

∂η

∂x
+

τbx

ρ
= 0 (1.7.)  

 ∂vR

∂t
+

∂

∂y
(Rv2) +

∂

∂x
(Ruv) + gR

∂R

∂y
+ gR

∂η

∂y
+

τby

ρ
= 0 

(Acceleration + inertia + fluid pressure + gravity + friction = 0) 

(1.8.)  

where R is hydraulic radius or flow area divided by wetted perimeter of the channel, t is 

time, i is the rate of precipitation minus losses to evapotranspiration and groundwater 

(contribution to surface runoff only), u is velocity in the x direction, v is velocity in the y 

direction, η is topographic relief, τbx is x coordinate bed shear stress, and τby is y 
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coordinate bed shear stress. A simplified verbal form of the momentum equations is given 

under the equations. These equations include all components needed to fully describe 

shallow fluid flow. However, the downstream components of gravitationally driven flow 

and bed shear stress are often considered to be the only two of interest when estimating the 

ability of the river to incise into bedrock and transport the disaggregated material over 

thousand- to million-year timescales (Whipple and Tucker, 1999). Using only these two 

components we create an equation for bed shear stress 

 
gR

∂η

∂y
+

τ0

ρ
= 0, 

τ0 = ρgRS 

(1.9.)  

Where S is slope (change in relief η with channel length y) and R is the hydraulic radius or 

flow area divided by wetted perimeter (Wobus et al., 2006; Wilcock et al., 2009; Tucker 

and Hancock, 2010). This equation can then be used to estimate the erosional power of a 

river reach as a scalar value. The basal shear stress applied to sediments within the bed load 

is therefore dependent on the density of water, acceleration due to gravity, the hydraulic 

radius of the channel, and channel slope for the studied channel length, assuming that all 

flow is driven by gravitational force and resisted by friction at the bed of the channel. 

 Atmospheric circulation can also be modeled by Navier-Stokes when described in 

a rotating reference frame 

 
∆ρ

∂Vx,y,z

∂t
= ∆ρ(gn − Ω2R) + μ∇γ̇ − ∇P − 2Ω × Vx,y,z 

Acceleration = effective gravity

+ viscosity(diffusion of momentum)

− pressure gradient − coriolis 

(1.10.)  
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where gn is acceleration due to gravity, Ω is vorticity, and R is the Earth's radius. Flow in 

the atmosphere is generally driven by pressure gradients, established by thermal gradients, 

but because airflow occurs over the surface of a rotating sphere, there is a component of 

angular acceleration that deflects flow orthogonally. This is called geostrophic winds, in 

which packets of air migrate from high to low pressure on an indirect route that follows 

generally parallel to isobars. The pattern of geostrophic winds is critical to understanding 

the general distribution of climate, and consequently the accumulation and routing of 

precipitated water, across Earth. Components of acceleration, force of gravity, and the 

diffusion of momentum are assumed to be negligible when considering circulation at the 

orogenic scale (>100 km) and over geologic time (thousands to millions of years). 

 

1.6.3. Brittle Failure 

 There is a need to understand how mantle flow imposes stress on the lithosphere 

and what rheological responses are triggered in the eroding crust in order to make 

predictions about the geometry and magnitude of rock strength across a landscape. 

Convection of the underlying mantle leads to deformation in the overlying lithosphere. The 

lithosphere hosts numerous rheological boundaries separating temperature- and pressure-

dependent responses to tectonic stress, but for this thesis I am interested in the plastic, 

pressure-dependent responses to stress located in the upper 15 km of the Earth’s crust (e.g. 

Brace and Kohlstedt, 1980; Bürgmann and Dresen, 2008). The Plastic rheology is 

characterized by the rupture of atomic bonds, or slip on a frictional surface, by achieving a 

yield stress threshold that is met where an elastic rheology is no longer capable of 
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accommodating increasing amounts of strain (Coulomb, 1773). We can define the critical 

yield stress of plastic rheology using the Mohr-Coulomb failure criterion 

 τcrit = μ(σn − Pf) + C (1.11.)  

where σn is a stress applied normal to the plane of failure and opposed by pore fluid 

pressure Pf, μ is the coefficient of friction equal to the ratio of shear to normal stress 

partitioning for a given friction angle tan(φ) (typically about 0.6), and C is the cohesion, or 

bond strength, of the material. At depth, where the normal stress is large, the friction 

coefficient is dominant in controlling strength. However, cohesion becomes singularly 

important right at the surface of the Earth. Cohesion is therefore a critical gauge for 

mechanical strength for the purposes of this thesis and it is used in the proceeding chapters 

as a link to rock erodibility. 

 Upon failure, the crust tends to form fault planes to accommodate strain. The 

seismic energy released upon formation of faults leads to fragmentation and cataclasis in 

rock surrounding the slip plane, generating a fault damage zone (Sammis et al., 1987; Ben-

Zion and Sammis, 2003; Faulkner et al., 2010). The particle size distribution resulting from 

cataclasis is important to predict because it controls the initial grain size distribution freed 

upon the erosion of bedrock and can have major implications for the transportability of 

bedload across a landscape. Fragmentation of the neighboring rock is generally fractal in 

that the size distribution of rock particles follows a power law frequency distribution  

 N(>r) = kr−D (1.12.)  

where N(>r) is the cumulate frequency of particles with radius greater than or equal to r, D 

is the power law scaling parameter (also known as the fractal dimension), and k is a 

coefficient for scaling (Mandelbrot, 1967; Sammis et al., 1986; Jébrak, 1997). The scaling 
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parameter, and hence the grain size distribution, varies depending on the mechanism, 

intensity, and frequency of fragmentation. For this reason there can be potentially 

interesting dynamics associated with different grain size sources detached and transported 

across a landscape, which is the focus of Chapter 4. 

 The basic equations of Fourier heat and thermal expansion describe the driving 

force for mantle flow, Navier-Stokes describes the flow dynamics in the mantle, rivers, and 

the atmosphere, and the Mohr-Coulomb equation and the power law distribution equations 

can describe the plastic response of the crust to excess shear stress and the resulting pattern 

of fragmentation in damage zones. The proceeding chapters of this thesis rely on these 

equations in order to explore the link between tectonics, climate, and surface processes. 

But first, I start by measuring rock mass strength and observing some mechanical controls 

on erosion in various field sites across New Zealand that host heavily eroded fault damage 

zones. 
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CHAPTER 2 

FIELD MEASUREMENTS OF BULK ROCK STRENGTH 

 

2.1. Chapter Introduction 

 In this section I discuss methods of measuring rock mass strength and grain size in 

the field and report rock mass strength data for a number of field sites in New Zealand. 

Field measurements are an important first step in quantifying rock mass strength at the 

outcrop scale and this information is necessary for determining rock strength and 

erodibility gradients across an evolving landscape. All measurements were taken in 

exposed bedrock regions host to or adjacent to fault damage. These numbers are used to 

scale the erodibility values needed for landscape evolution modeling in Chapters 3-8.  

 

2.2. Method and Technique of Strength/Grain Size Measurement 

 The Hoek-Brown (Hoek and Brown, 1980; Hoek and Brown, 1997; Hoek, 2001) 

Criterion was used to estimate rock mass strength from field measurements of structural 

competence and base rock competence. The Hoek-Brown criterion is based on the Rock 

Mass Rating of Bieniawski (1974) but features a greater rating accuracy for rocks with very 

low cohesive strength (Hoek and Brown, 1997), and is therefore the most suitable rating 

method for fault damaged rock. The Slope Mass Rating index implemented by Moore 

(2009) is a similar rating method which puts a greater focus on joint orientation relative to 

surface slope. However, I do not use this method because I am interested in bulk rock 

strength, rather than the strength of exposed hillslopes. Structural competence data is also 
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useful for estimating the grain size distribution of sediments that would be produced upon 

erosion of the bedrock units. 

 

2.2.1. Structural Competence 

Structural competence is estimated by using the Geological Strength Index (GSI), 

which is a basic measure of outcrop structure and surface quality over a representative 

outcrop area (see Figure 2.2 for an example worksheet). Rock structure is a function of 

fracture spacing, fracture orientation, and the degree of interlocking between rock 

fragments. GSI measurements require an outcrop sample large enough to include a good 

representation of the local fracture spacing and all dominant fracture orientations. In many 

cases, fractures and joints play the largest role in the strength of rock and their inclusion 

will provide a much more accurate GSI measurement. The degree of fracture spacing, 

combined with the number of fracture orientations, provides quantitative information about 

rock fabric and the degree of interlocking between larger rock fragments. Fracture spacing 

and orientation data can also be used to estimate the expected grain size distribution of 

sediments produced upon the erosion of the rock unit. Surface conditions provide 

information on the strength of fracture surfaces through observations of surface 

weathering, roughness, evidence for fluid flow, and indications of slip accommodation. 

Surface conditions are poor for fracture surfaces that have previously accommodated slip 

and will probably accommodate slip in the future. 

For example, fault gouge is generally so damaged that it generally lies in the 

DISINTEGRATED or FOLIATED/LAMINATED structural fields, where rock fabric is 

defined by a disaggregated, thick clayey matrix. Surface conditions are generally rated 
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POOR to VERY POOR indicating evidence for slip accommodation, weathering, clay 

coating, and/or presence of fluids. Conversely, cataclasites along the flanks of fault damage 

zones may fall in the BLOCKY/DISTURBED to DISINTEGRATED fields where there is 

still some interlocking between coarse rock fragments. Surface conditions along fractures 

are generally rated as FAIR to POOR, indicating smooth fractures with some weathering, 

little or no soft clay, and a lesser degree of slip accommodation when compared to gouge. 

Rocks that are well out of the range of fault damage may be BLOCKY or VERY BLOCKY, 

having inherited a small amount of fracturing associated with past tectonic activity. Surface 

conditions may range from VERY GOOD to FAIR indicating less slip accommodation 

along rough fractures and no clay filling. 

 

2.2.2. Base Rock Competence 

Base rock competence is a function of rock type and uniaxial compressive strength 

(UCS). Obtaining a truly representative estimation of rock type and UCS requires a rock 

sample size that is larger than the average spacing of fractures that allow the rock pieces to 

slide and rotate under different stress conditions (Hoek and Brown, 1997). It is possible to 

obtain a rough estimate of UCS from the field. UCS field estimates are adequate for 

analysis in fault damage zones because the range of error is miniscule compared to the 

degree of strength difference between fault gouge and solid rock. Rock mass strength is 

also dependent on base rock type. The base rock type value can change if rock failure 

occurs along a plane of weakness, so you can expect a smaller number for a schist that 

became fault gouge through shear abrasion. However, base rock type plays a minimal role 

in rock mass strength compared to joints and fractures. 
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2.3. Field Locations 

 Field locations were chosen based on accessibility, degree of strain weakening, 

quality of damage zone exposure, and whether the exposure is expansive enough to see all 

(or a large portion) of the damage gradient from the center of the fault zone to local intact 

bedrock. The best damage zone exposures tend to be along saddles or drainage divides, but 

some can be found stranded up on the flanks of river valleys. In many cases, rivers that 

follow fault structures often cover up a large portion of the damage zone, making it nearly 

impossible to measure strength. 

 

2.3.1. Alpine Fault  

 The Alpine Fault is a dextral oblique reverse fault that divides the Indo-Australian 

and Pacific Plates on the South Island of New Zealand. The Alpine Fault became a distinct 

tectonic feature at circa 45 Ma (Sutherland, 1999). 460 km of dextral strike-slip shear has 

accommodated along the Alpine Fault (Norris et al., 1990), and a total of 850 km of dextral 

shear is thought to have occurred across the South Island (Sutherland, 1999). The fault is 

inferred to dip 50-55˚ SE to a depth of 25-30 km (Norris and Cooper, 1995; Kleffmann et 

al., 1998). Pacific Plate motion is directed WSW with a relative motion of 35.5 mm a-1 

parallel to the fault and 10 mm a-1 perpendicular (DeMets et al., 1994). Exhumation rates 

are estimated to be 6-9 mm a-1 immediately adjacent to the Alpine Fault in the Central 

Southern Alps and much lower east of the main divide (Wellman, 1979; Simpson et al., 

1994; Norris and Cooper, 2001; Little et al., 2005). Rapid exhumation of the Pacific Plate 

has exposed mylonites and high grade schist along the Alpine Fault. The Indo-Australian 

side of the fault is composed of greywacke schists, granites, and Pleistocene glacial 
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sediments. Almost all rock damage associated with motion along the Alpine Fault is 

located in the mylonite, and there are a number of locations where the gradient of rock 

damage is visible on the west coast of the South Island, three of which I discuss below. 

 

2.3.1.1. Gorge Near Waikukupa River, New Zealand 

 One of the best exposures of the Alpine Fault is located beside the Waikukupa 

River. The four rock units located within the Waikukupa gorge are mylonite, cataclasite, 

and fault gouge associated with the Alpine Fault, and Western Province Greywacke (Figure 

2.1). Incision in the gorge exposed the damage gradient between gouge and cataclasite, but 

strength measurements of the two intact rock types were taken from nearby locations 

(mylonite: Franz Joseph Valley; Western Province Greywacke: outcrop by state highway 

6). The Hoek-Brown parameters for each unit are shown in Figure 2.2. Intact mylonite is 

the strongest unit with a massive to blocky structure hosting widely spaced fractures. 

Fracture surface conditions are very good to good, with predominantly fresh and 

unweathered surfaces. The cataclasite and gouge units are associated with localized 

seismogenic cataclasis along the Alpine Fault. These units are much weaker, having a much 

higher fracture density that increases with proximity to the primary slip surface. Fracture 

surface quality decreases with proximity to the primary slip surface, and fractures are 

largely wet, slickensided, and coated with clay. The greywacke unit has a relatively higher 

fracture density than the mylonite, producing a very blocky rock mass with rough, slightly 

weathered fracture surfaces. The gouge unit is approximately 25 to 6500 times less 

cohesive than the intact mylonite. 
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Figure 2.1. Gorge near Waikukupa River. (A) Reference map. (B) View of slide debris 
along Hare Mare gorge, Waikukupa River in foreground. (C) Evidence of mass wasting, 
fault gouge in background. (D) Fault gouge. (E) Cataclasite. (F) Intact mylonite, Franz 
Josef Valley. 
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Figure 2.2. Hoek-Brown parameters for Waikukupa site. 
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2.3.1.2. Gaunt Creek, Whataroa, New Zealand 

 Erosion along Gaunt Creek has exposed cataclasite, ultracataclasite, and gouge 

units of the Alpine Fault (Figure 2.3), and it is also the location of the first Deep Fault 

Drilling Project (DFDP-1). In this location, fault gouge is thrust over Pleistocene glacial 

deposits (Figure 2.3C). Surface conditions indicate that the gouge exposure is rapidly 

eroding. The Hoek-Brown parameters are shown in Figure 2.4. Cataclasite is the strongest 

exposed unit with very blocky to blocky/disturbed structure and good to poor surface 

conditions. Rock quality gradually worsens towards the ultracataclasite unit, with 

blocky/disturbed to disintegrated structure and fair to very poor surface conditions. The 

gouge unit is weakest, consisting of a foliated mix of soft and indurated clay with a 

disintegrated to foliated/laminated structure and poor to very poor surface conditions. From 

cataclasite to gouge unit there is an estimated 5 to 100 times difference in cohesion. 

 

2.3.1.3. Martyr River, New Zealand  

 Erosion along the Martyr River has exposed indurated fault gouge from the Alpine 

Fault (Figure 2.5). Nearby there is an exposure of Western Province Greywacke. I have 

split the gouge unit into two components: stiff gouge, which appears within 30 cm of the 

primary slip surface (Figure 2.5C, D), and indurated gouge located outside of the 30 cm 

range (Figure 2.5B). Stiff gouge shows disintegrated to foliated/laminated structure and 

surface quality is poor (Figure 2.6). The indurated gouge is well cemented and is exposed 

as steep cliff faces several meters tall. Structure of the indurated gouge is very blocky to 

blocky/disturbed, and surface conditions are fair. There is an estimated 1 to 100 times 

difference in cohesive strength between the two gouge units. 
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Figure 2.3. Gaunt Creek. (A) Reference map. (B) View of fault gouge from Gaunt Creek, 
glacial debris in foreground. (C) Fault gouge thrust over glacial debris. (D) Ultracataclasite. 
(E) Cataclasite close-up. (F) Cataclasite. 
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Figure 2.4. Hoek-Brown parameters for Gaunt Creek site. 
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Figure 2.5. Martyr River. (A) Reference map. (B) View of fault damage zone from Martyr 
River. (C) Stiff fault gouge thrust over glacial debris. (D) Fault gouge close-up.  
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Figure 2.6. Hoek-Brown parameters for Martyr River site. 
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2.3.2. Splay from Fowlers Fault, Exposure North of Henry Saddle, Lewis Pass Region 

 Lewis pass is host to the Fowlers Fault, an east-northeast striking dextral fault 

located between the Awatere and Clarence Faults in the Marlborough Fault System (Figure 

2.7). The Marlborough Fault System probably formed at around 5 Ma in the early Pliocene 

due to changes in relative plate motion (Wilson et al., 2004). There is no evidence of recent 

motion along the Fowlers fault (Richardson, 1982), but estimates of Holocene slip rates on 

the Clarence and Awatere Faults are 3.5-5 mm yr-1 (Browne, 1992; Nicol and Van Dissen, 

2002; Mason et al., 2006). Bedrock in the Lewis Pass region consists of Torlesse 

greywacke (Rattenbury et al., 2006). 

 The four rock units located within the Henry Saddle region are intact greywacke 

(Figure 2.7E), greywacke with anastomosing shear zones (Figure 2.7C, D), fault gouge 

(Figure 2.7B), and cataclasite (Figure 2.7C). We focused our study on damage zone 

exposures to the north of Henry Saddle, on another saddle that straddles a north trending 

structural feature potentially related to the Fowlers Fault (Figure 2.7C). Stream incision in 

the saddle exposed the damage gradient. The strength measurements for the intact 

greywacke were taken further downstream, approximately 3 km away from the damaged 

rocks in the saddle. The Hoek-Brown parameters for each unit are listed in Figure 2.8.  

 The greywacke is the strongest unit with a blocky structure hosting widely spaced 

fractures. Fracture surface conditions are very good to good, with predominantly fresh and 

unweathered surfaces. The greywacke unit with anastomosing shear zones hosts a wide 

range of strength measurements, ranging from very blocky-good to disintegrated- 
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Figure 2.7. Henry Saddle. (A) Reference map. (B) View of fault gouge in the saddle. (C) 
View of saddle: jointed greywacke to the west (center), cataclasite to the east (right). (D) 
Greywacke with anastomosing shear zones associated with argillite beds. (E) Strong, 
jointed greywacke. 
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Figure 2.8. Hoek-Brown parameters for Henry Saddle site. 
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very poor over the meter scale. The sub-meter scale shear zones are heavily incised and 

host small ravines. The cataclasite and gouge units are associated with localized 

seismogenic cataclasis along the Alpine Fault. These units are much weaker, having a much 

higher fracture density that increases with proximity to the primary slip surface. Fracture 

surface quality decreases with proximity to the primary slip surface, and fractures are 

largely wet, slickensided, and coated with clay. The greywacke unit has a relatively higher 

fracture density than the mylonite, producing a very blocky rock mass with rough, slightly 

weathered fracture surfaces. 

 

2.3.3. Fiddlers Flat: Blue Lake Fault, Central Otago, New Zealand 

 The Blue Lake Fault Zone defines the lithological boundary between Torlesse 

Greywacke to the northeast and Otago Schist to the southwest (Figure 2.9A). Mid-

Cretaceous normal faulting along this boundary led to shortening of the original 

metamorphic gradient in the schist formed in the Jurassic (Henne et al., 2011). This 

lithological boundary represents a significant contrast in rheology with major implications 

for the pattern of tectonic deformation in the South Island (Upton et al., 2009). The Blue 

Lake Fault is well exposed in cross-section along the banks of the Manuherikia River 

(Figure 2.9B). The Fiddlers Flat gouge zone is a particularly well preserved exposure of 

the Blue Lake Fault within Textural Zone 1 (TZ 1) greywacke (Henne et al., 2011), and it 

is where the following strength measurements were taken. 

 Rock mass strength measurements were taken for the gouge zone (Figure 2.9B, C) 

and the adjacent greywacke (Figure 2.9D, E, F). The gouge zone, approximately 200 m in 

width, is a mixture of brecciated greywacke and heavily sheared argillite. The texture of  

27



Figure 2.9. Fiddlers Flat. (A) Reference map. (B) View of fault gouge from Manuherikia 
River. (C) Gouge close-up. (D) Fragmented block. (E) Fractured greywacke adjacent to 
fault gouge. (F) Cataclasite. 
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Figure 2.10. Hoek-Brown parameters for Fiddlers Flat site. 
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the gouge zone ranges from a very fine grained gouge matrix to meter-scale fragmented 

blocks of greywacke. Hoek-Brown parameters are listed in Figure 2.10. The gouge matrix 

is in the foliated/laminated structural range and very poor surface quality range, while the 

fragmented greywacke clasts lie in the disintegrated and fair to very poor structural and 

surface quality ranges, respectively. A widening of the Manuherikia River coincides with 

the gouge zone but otherwise there is no influence of rock damage on the local drainage 

network pattern. Greywacke outside of the shear zone has a noticeably lower fracture 

density and higher surface quality, with a very blocky to disintegrated structural rating and 

good to poor surface quality rating. 

 

2.3.4. Ostler Fault, Twin Stream, New Zealand 

 The Ostler Fault is a north trending reverse fault along the outboard side of the 

Southern Alps (Figure 2.11). Active slip on the Ostler Fault through the Late Pleistocene 

has played a major role in sedimentation and landscape evolution in the Mackenzie Basin 

(Ghisetti et al., 2007) (Figure 2.11F). Rock mass strength measurements were taken in an 

exposure of the Ostler Fault along a tributary of Twin Stream (Figure 2.11B), located on 

the flanks of the Ben Ohau Range (Figure 2.11E). The exposed gouge unit is moderately 

indurated by a calcareous cement, and though the fabric of the gouge unit is suggestive of 

heavy shear abrasion, cementation has reintegrated the rock structure (Figure 2.11C, D). 

For this reason I give a structure rating of disintegrated to foliated/laminated and a surface 

quality rating of poor, despite the pervasiveness of a foliated texture and evidence of very 

poor surface quality conditions in the past (Figure 2.12). 
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Figure 2.11. Twin Stream. (A) Reference map. (B) Eroded fault gouge. (C) Fault gouge 
close-up. (D) Sediments from eroded fault gouge. (E) Coarse sediments further down Twin 
Stream. (F) Lake Pukaki. 
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Figure 2.12. Hoek-Brown Parameters for Twin Stream site. 
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 The more interesting observation at the Twin Stream exposure of the Ostler Fault 

is the downstream change in average grain size with respect to the nearby streambed. 

Upstream sediments are dominated by the eroded fault gouge material with a much smaller 

average grain size (Figure 2.11D) than the downstream collection of coarse gravel 

associated with glacial sediments deposited above the gouge exposure (Figure 2.11E). This 

is an example of rock mass strength having a significant channel-scale effect on grain size 

distribution in fluvial systems, a topic I study further in Chapter 4. 

 

2.4. Chapter Conclusions 

 Fault damage zones host some of the sharpest rock strength gradients on Earth. For 

example, many intact rock examples exhibit cohesive strength on the order of 10-20 MPa, 

while fault gouge cohesion is on the order of 10 kPa or less. If there is an influence of rock 

mass strength on fluvial incision, we would expect to see the greatest effect in fault damage 

zones. Use of the Hoek and Brown (1980; 1997) criterion provides a relatively easy method 

for rating rock mass strength while providing reasonable relative estimates of cohesive 

strength from widely jointed greywacke to loose fault gouge. These values of rock strength 

can then be used to calibrate landscape evolution models with a heterogeneous distribution 

of erodibility. In the next chapter, I study the potential influence these fault damage zones 

have on the rates and patterns of fluvial erosion. 
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CHAPTER 3 

THE INFLUENCE OF CRUSTAL STRENGTH FIELDS ON THE PATTERNS 

AND RATES OF FLUVIAL INCISION 

 

3.1. Chapter Abstract 

 Gradients in the bedrock strength field are increasingly recognized as integral to 

the rates and patterns of landscape evolution. To explore this influence, I incorporate data 

from fault strength profiles into a landscape evolution model, under the assumption that 

erodibility of rock is proportional to the inverse square root of cohesion for bedrock rivers 

incised by bedload abrasion. My model calculations illustrate how patterns in the crustal 

strength field can play a dominant role in local fluvial erosion rates and consequently the 

development of fluvial network patterns. Fluvial incision within weak zones can be orders 

of magnitude faster than for resistant bedrock. The large difference in erosion rate leads to 

the formation of a straight, high order channel with short, orthogonal tributaries of low 

order. In comparison, channels incising into homogeneous strength fields produce dendritic 

drainage patterns with no directional dependence associated with erodibility gradients. 

Channels that cross the strength gradient experience local variations in knickpoint 

migration rate and the development of stationary knickpoints. Structurally confined 

channels can shift laterally if they incise into weak zones with a shallow dip angle, and this 

effect is strongly dependent on the magnitude of the strength difference, the dip angle, and 

the symmetry and thickness of the weak zone. The influence of the strength field on 

drainage network patterns becomes less apparent for erodibility gradients that approach 

34



homogeneity. There are multiple natural examples with drainage network patterns similar 

to those seen in my numerical experiments. 

 

3.2.   Chapter Introduction  

 The rich and varied topography of the Earth’s surface takes shape under the 

combined influence of three players: tectonics, climate, and lithology. Much research effort 

has gone into unraveling the first two, with considerable success. Progress in understanding 

lithology’s role, however, has lagged behind. Although lithologic variation gives many 

landscapes their distinctive character, such as in the fold belts of the Zagros and 

Appalachian Mountains, much remains to be discerned about the quantitative relations 

among rock properties, erosion rates, and landscape evolution.  

 The rock strength field, defined here as the three dimensional (3D) watershed-scale 

distribution of anelastic crustal strength, is particularly sensitive to pervasive crustal failure 

in the form of joints, fractures, and fault damage zones. Molnar et al. (2007) suggested that 

crustal failure is an inherent process of deformation that enhances all forms of erosion. 

Others have recognized the importance of material strength and joint orientations in 

measuring slope stability and landsliding (e.g. Densmore et al., 1998; Scheidegger, 1998; 

Brideau et al., 2006; Brideau et al., 2009; Moore et al., 2009; Clarke and Burbank, 2010; 

Goode and Wohl, 2010; Ambrosi and Crosta, 2011; Clarke and Burbank, 2011; Egholm et 

al., 2013). Sklar and Dietrich (2001; 2004) showed that erodibility can be linked to material 

strength, and suggest that it could play a fundamental role in landscape evolution (e.g. 

Judson and Andrews, 1955; Moglen and Bras, 1995; Tucker and Slingerland, 1996; Stock 

and Montgomery, 1999; Koons et al., 2012). Others (e.g. Zernitz, 1932; Lubowe, 1964) 

35



have recognized the strong influence structural features have on the development of 

common drainage network patterns (Figure 3.1). 

 

Figure 3.1. Hydrographic map of a dendritic drainage network (A), region east of Palmyra, 
VA (37.861˚ N, -78.2633˚ W). Channels traced from Palmyra quadrangle, Virginia, 
1:24,000, 7.5 minute series, Washington D.C.,USGS, 1897; see also Zernitz (1935). (B) 
Hydrographic map of the drainage network around part of the Salween River, eastern 
Himalayan Syntaxis (26.7259˚ N, 98.8973˚ E). Channels in (A) formed in largely 
homogeneous rock while those in (B) formed amid several steeply dipping tectonic 
structures striking due north (Liu et al., 2011). 
 
 Observations such as these, however, leave several questions unanswered. It is not 

clear, for example, how large a strength contrast must be in order to have a discernable 

impact on topography and drainage network patterns. In the specific case of tectonic 

damage, there is a need for studies that make theoretical predictions about patterns of 

topographic evolution in rock that contains tabular damage zones created by seismogenic 

cataclasis along previously active faults. In this paper, I address the latter issue, by using a 

numerical landscape evolution model to determine how, according to current and relatively 
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simple geomorphic theory, the strength, width, and dip angle of planar weak zones are 

predicted to influence topography, drainage patterns, and knickpoint development. The 

calculations help generate insight into how different lithologically mediated landforms 

evolve, and they provide a set of testable predictions that can be compared to observed 

topography.   

 

3.3.   Methods    

 This section is used to describe my numerical approach to landscape evolution, the 

components and methods I employ in my models, and the important assumptions I make 

when designing my models to replicate natural conditions on Earth. 

 

3.3.1.   Approach and Scope 

 I generate field-testable theoretical predictions of the ways in which the near 

surface strength field might influence fluvial incision rates and drainage patterns. 

Specifically, I aim to identify the logical consequences of the hypothesis that fluvial 

erosion rate varies inversely with bulk-rock cohesion (Sklar and Dietrich, 2001; Sklar and 

Dietrich, 2004). This hypothesis has been suggested on the basis of field studies of soil 

erosion (e.g. Mirtskhoulava, 1966; Mirtskhoulava, 1991; Hanson and Simon, 2001), and to 

the extent that a similar principle applies to bedrock, its potential consequences are far-

reaching. Rock cohesion varies by approximately three orders of magnitude between intact 

crystalline rock and fault-damaged rock (e.g. Thomson, 1993; Faulkner et al., 2003; 

Lockner et al., 2009; Faulkner et al., 2010; Mitchell et al., 2011). How would such a 

contrast be manifest in topography and landscape dynamics? How would the presence of 

37



vertically dipping fault-damage zones be expected to influence drainage network patterns, 

relief, and transient responses to baselevel perturbations? Does the erosion of obliquely 

dipping fault-damage zones produce distinctive topographic signatures, and if so, what do 

they look like? 

 To begin to answer these questions, I ran a series of experiments with a numerical 

model of landscape evolution in which three dimensional (3D) planar weak zones were 

introduced as an initial condition (Figure 3.2A). These weak zones are meant to represent 

tectonically inactive fault damage zones, but they could also potentially be used to 

represent other planar geologic features such as lithostratigraphic units, dikes, and sills that 

introduce a local strength minimum.  A suite of values (Figure 3.2B) is used to describe 

weak zone strength and geometry based on sub-meter scale structural and material strength 

measurements from naturally occurring weak zones (Thomson, 1993; Ben-Zion and 

Sammis, 2003; Mooney et al., 2007; Lockner et al., 2009; Mitchell et al., 2011). I describe 

the strength of the weak zones using cohesion, which I translate into erodibility.  The 

considered geometric variables are weak zone dip, width, and geometric symmetry of the 

strength gradient. 

My numerical experiments are divided into two model sets in order to isolate the 

individual effects of strength and geometry. The first set of models is used to measure 

changes in drainage pattern and knickpoint migration rate caused by the presence of fault 

weak zones with variable strength. The second set addresses drainage patterns associated 

with weak zones with moderate to shallow dip angle and variable strength, width, and 

symmetry.  
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Figure 3.2. Schematic of model set 1 domains (A) with simplified material strength field 
resembling a symmetric fault damage zone (e.g. Ben-Zion and Sammis, 2003; Mooney et 
al., 2007; Koons et al., 2012). Weak zone dips vertically, strikes orthogonal to outlet 
boundary (white dashed line). Strength field is divided into four distinct, symmetric units. 
From strongest to weakest the units are intact bedrock, cataclasite, ultracataclasite, and 
gouge. (B) Plot of cohesion vs. width to represent the different modeled strength gradients. 
Colors represent weak zone units in (A). Erodibility values are displayed on the right-hand 
axis. Eight different strength gradients are used for model set 1, indicated by the individual 
dashed line patterns. I refer to the magnitude difference between the intact bedrock and the 
gouge unit in the weak zone to differentiate each strength gradient, which range from 1X, 
in which no weak zone exists and all bedrock has a uniform cohesion of 30 MPa, to 3000X, 
in which the gouge unit has a cohesion reduced by 3000X or from 30 MPa to 10 kPa. The 
other weak zone units also reduce in cohesion to maintain the common gradient pattern. 
(C) Example of a channel used to gather longitudinal profile data, white line. All profiles 
begin at the fixed position (P) on the northern divide boundary. The position of the outlet 
can change between experiments but is always along the southern outlet boundary (P’). (D) 
Channel profile time-series of elevation after imposition of an instantaneous 10 m uplift, 
knickpoint originates at the southern boundary (P’ in Figure 3.2A). Position is measured at 
the knickpoint face, as the location where 50% of knickpoint height remains (circles). 
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3.3.2.   Surface-Dynamics Model 

 I use a configuration of the Channel-Hillslope Integrated Landscape 

Developmental (CHILD) model (Tucker et al., 2001) to approximate the physics that 

control the rate of mechanical wear of the substrate by assuming that fluvial erosion rate 

scales with unit stream power. This form of model is preferred because there is much 

published evidence showing that rivers can erode bedrock and transport sediments at a rate 

roughly proportional to unit stream power (or its near-equivalent, boundary shear stress) 

(Bagnold, 1966; Howard and Kerby, 1983; Seidl and Dietrich, 1992; Howard et al., 1994; 

Howard, 1994; Stock and Montgomery, 1999; Whipple and Tucker, 1999; Kirby and 

Whipple, 2001; Tucker et al., 2001; Hancock and Anderson, 2002; Whipple, 2002; 

Whipple, 2004; Whittaker et al., 2007b; Yanites et al., 2010; Attal et al., 2011; Kirby and 

Whipple, 2012). Except for the dependency of erodibility on anelastic rock strength, 

CHILD has successfully been used to model many surface phenomena including influences 

of tectonic forcing (Tucker and Slingerland, 1996; Whittaker et al., 2007a; Attal et al., 

2008; Attal et al., 2011), sediment transport (Gasparini et al., 2004; Gasparini et al., 2007), 

and storm events (Tucker and Bras, 2000; Sólyom and Tucker, 2004). 

The landscape surface is divided into irregularly discretized elements, each 

representative of a small equant area (average 81 m2) and connected to adjacent elements 

by a Delaunay triangulation. A steepest descent routing algorithm controls the spatial 

pattern of surface runoff for channels, which are embedded in cells as subgrid-scale 

features. Surface runoff leaves the model domain through a flow outlet boundary. Closed 

boundaries represent drainage divides and are assumed to be symmetric. To maintain 

continuity of crustal mass, the rate of change in surface elevation ∂h

∂t
 must be the sum of 
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bedrock detachment and transport by surface processes and vertical motion relative to 

baselevel. I assume a supply-limited system wherein all detached material is immediately 

transported from the domain; this assumption is based on studies that provide evidence for 

supply-limited behavior (e.g. Howard and Kerby, 1983; Stock et al., 2005; Whittaker et al., 

2007a; Attal et al., 2008; Attal et al., 2011; Hobley et al., 2011). I model processes of 

landscape evolution using the following equation (Tucker et al., 2001; Tucker and 

Hancock, 2010)  

 ∂h

∂t
= −kb(x,y,z)ω + kd∇2h + Vz + Vh∇h (3.1.)  

 where the rate of elevation change ∂h

∂t
 at any point on a surface depends on spatially 

variable erodibility kb(x,y,z), stream power ω per unit width, hillslope diffusivity kd, 

hillslope curvature ∇2h, vertical rock motion relative to baselevel Vz, and lateral 

topographic advection Vh∇h, which I assume here to be negligible. My description of the 

heterogeneous 3D erodibility field is in Section 3.3.3 below.  

 The first term on the right-hand side of Equation 3.1 represents the average rate of 

channel-bed incision, which I assume is proportional to stream power per unit width ω at 

every element  (Whipple and Tucker, 1999; Whipple, 2004; Tucker and Hancock, 2010) 

 
ω = kt (

Q

W
) S (3.2.)  

where kt is the unit weight of water (9800 kg m-2 s-2), Q is fluid discharge, W is channel 

width, and S is channel slope. Channel width is calculated using the empirical method 

(Leopold and Maddock, 1953) 

 W = kwQb (3.3.)  
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where b is the width-discharge exponent, here given a value of 0.5, and kw is the width-

discharge coefficient, here given a value of 10 s0.5 m-0.5. 

 Fluid discharge through each element is the sum of runoff (precipitation minus 

evapotranspiration), at that element and the accumulated downslope routing of water and 

sediment along a steepest-descent path from all interconnected upstream elements (Tucker 

et al., 2001; Tucker and Hancock, 2010). Because I assume a spatiotemporally 

homogeneous runoff distribution, I calculate Q = RA, where R is runoff rate and A is 

drainage area. However, others have explored the importance of storm events (Tucker and 

Bras, 2000; Sólyom and Tucker, 2004) and the orographic precipitation associated with 

high relief (Smith, 1979; Smith and Barstad, 2004; Roe, 2005). A steady runoff rate of 1 

m y-1 is used for all models (Tomlinson and Sansom, 1994; Hicks et al., 2011). 

  Hillslope mass transport is expressed as a diffusion process. In many cases, a 

scarcity of regolith makes  hillslope diffusion minimal in high relief cohesive bedrock 

substrates, and there is evidence that the traditional nonlinear hillslope diffusion function 

breaks down in these regions because steeper slopes may actually represent greater stability 

(Moore et al., 2009; Koons et al., 2012). Hillslope stability in these regions is therefore a 

function of cohesion, the spacing and orientation of fractures relative to the face of the 

hillslope, and fluid flow along joints (Scheidegger, 1998; Scheidegger, 2001; Scheidegger, 

2004; Brideau et al., 2006; Brideau et al., 2009; Moore et al., 2009). Notwithstanding these 

complications, for the sake of simplicity and for my focused interest in the fluvial regime 

I employ a uniform linear hillslope diffusion equation with a kd value of 4.4x10-4 m2 y-1 

(Nash, 1980) and neglect material-dependent variations in diffusivity and landslide erosion 

in these models. However, if I were to employ nonlinear diffusion with diffusivity values 
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scaled to cohesion, I would expect greater sensitivity of surface processes to mechanical 

weaknesses. It is appropriate to consider my numerical results as displaying the minimal 

possible sensitivity of hillslopes to weak zones. 

 A steady, uniform rate of rock uplift relative to baselevel, 0.1 mm y-1, is used in 

order to represent a gently rising and completely exposed crustal basement initially at sea 

level. Sub-meter random noise is applied to the initial model relief in order to stimulate the 

development of a dendritic drainage pattern that strongly contrasts with the expected 

drainage pattern influenced by weak zone erosion. Because the focus here is on erosion of 

inactive weak zones, none of the modeled weak zones allow for slip or further weakening. 

 

3.3.3.   Relationship between Crustal Strength and Erodibility in 3D 

 Experimental and observational evidence suggests that erosion rate is inversely 

proportional to rock anelastic strength for bedrock rivers host to a saltating bedload (Sklar 

and Dietrich, 2001; Sklar and Dietrich, 2004; Stock et al., 2005). However, scaling 

erodibility to rock strength is still not well understood for the problem of fluvial erosion, 

particularly for use in shear stress/stream power models. I choose to scale erodibility (kb) 

to cohesive strength because 1) it is a fundamental component of the Mohr-Coulomb failure 

criterion and is frequently used to report the anelastic strength of both rock and soil at the 

Earth’s surface (Bieniawski, 1974; Brace and Kohlstedt, 1980; Hoek and Brown, 1980; 

Hoek and Brown, 1997; Enlow and Koons, 1998; Schellart, 2000), 2) it is a measure of 

shear strength (Coulomb, 1773; Sibson, 1977; Koons et al., 2012), which seems appropriate 

for shear stress/stream power-based fluvial incision models, and 3) a conservative scaling 
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relation exists for stream power models that is based on empirical study (Hanson and 

Simon, 2001).  

The coefficient kb is a function of rock strength, water density, gravitational 

acceleration, and channel geometry and roughness. All else being equal, a large value of 

kb represents weak or highly erodible rock, and a small value represents strong, resistant 

rock (Stock and Montgomery, 1999). Erodibility has units equal to the inverse of stress 

(units m s2 kg-1), which is in agreement with the inverse proportionality of anelastic 

strength and erosion rate (Sklar and Dietrich, 2001; Sklar and Dietrich, 2004). Studies of 

cohesive soil erodibility exist (Mirtskhoulava, 1966; Mirtskhoulava, 1991; Hanson and 

Simon, 2001) but few data exist for bedrock erodibility (Stock et al., 2005). I use the 

empirical relation put forward by Hanson and Simon (2001) for cohesive soils, modified 

for use in a stream power model framework 

 kb(x,y,z) = kcC(x,y,z)
−1 2⁄  (3.4.)  

where C is cohesion and kc is a coefficient equal to 0.2 with units m1/2 s kg-1/2.  

An argument can also be made for scaling erodibility to tensile strength based on 

an empirically derived proportionality between erosion rate and the inverse square of 

tensile strength (Sklar and Dietrich, 2001). However, the presence of fractures or joints can 

reduce tensile strength almost completely or make for difficult and imprecise 

measurements (Bieniawski, 1974; Hoek and Brown, 1980; Hoek and Brown, 1997). 

Tensile strength-based scaling may be accurate for intact, unjointed rocks and cements, but 

materials such as cataclasites and fault gouge have essentially no tensile strength, while 

cohesion is still consistently measureable over many orders of magnitude (Hoek and 

Brown, 1980; Hoek and Brown, 1997; Molnar et al., 2007). The occurrence of mechanical 
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defects increases with scale, making cohesion the more reliable and more conservative (C-

1/2 versus T-2) scale for erodibility of rock and soil strength at the resolution of my 

experiments. If the experiments show sensitivity to my conservative scaling method, results 

for tensile strength scaling would be even more dramatic. 

It is necessary to approximate a relative strength factor when sources provided 

either alternative measurements of rock strength or strictly qualitative information about 

rock quality. I used the Hoek-Brown failure criterion to estimate rock cohesion based on 

lithology and the Geological Strength Index (GSI), a measure of fracture density and 

roughness (Hoek and Brown, 1997). The Hoek-Brown failure criterion is a well-recognized 

method used in the geotechnical (e.g. Read et al., 2000), mining (e.g. Demirel, 2011; 

Schumacher and Kim, 2014), and engineering (e.g. Brideau et al., 2006; Brideau et al., 

2009) literature. 

 

3.3.4. Analytical Comparison 

 Equations 3.1 and 3.4 allow us to predict the difference in erosion rates 

between intact and weakened bedrock. If fault-damaged rock is on the order of 300 times 

less cohesive than intact bedrock, as suggested by several studies (Thomson, 1993; Ben-

Zion and Sammis, 2003; Lockner et al., 2009; Mitchell et al., 2011), then I can expect fault 

zones to erode approximately 17 times faster than intact rock with all else being equal. 

Variations in the slope-area trend with rock strength reflect the expected scaling: 

combining Equations 3.1-3.4, applying the steady state condition ω ∗ kb = Vz, and solving 

for slope, the slope-area relationship is 
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s = (

kwVz

kbkt
) (RA)−1 2⁄ = (

kwVzC1 2⁄

kckt
) (RA)−1 2⁄  (3.5.)  

Assuming the same scaling of cohesion, fluvial slopes in fault damaged rock will be  √300, 

or approximately 17 times lower than the intact rock assuming equal drainage area.  

These simple approximations suggest that the strong rate and slope contrasts should 

be reflected in drainage-network development and topographic evolution. However, this 

analytical method ignores heterogeneous strength-related complexities such as the 

connectivity of weak elements along weak zone strike and the 2D implications for drainage 

network patterns, spatial controls on channel gradient and erosion rate associated with 

different rock strengths, effects on regional relief, lateral shifting of the weak zone 

exposure with continued erosion, or other effects that a 3D weak zone geometry may 

impose on a landscape surface. Additionally, it is useful to visualize results using a 

numerical model, especially when considering 3D strength fields.  

 

3.4.   Model Set 1: Fluvial Incision Sensitivity to Variations in Weak Zone Strength 

3.4.1.   Description of Geometry and Strength 

In the first set of experiments, the initial model configuration consists of a vertically 

dipping damage zone with a cohesion field that increases progressively away from the 

zone’s center, in a manner similar to that of naturally occurring fault weak zones 

(Thomson, 1993; Ben-Zion and Sammis, 2003; Mitchell et al., 2011) (Figure 3.2). The 

gradual change in cohesion/erodibility is discretized by dividing the weak zone width into 

parallel planar layers that strengthen with distance from the weak zone interior (Figure 

3.2A,B). This stepwise transition in strength is an approximate representation of the 

strength gradient from weak fault gouge to ultracataclasite, cataclasite, and finally the 
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strongest unit, intact bedrock (Figure 3.2B, the stepwise pattern is referred to as a gradient 

henceforth). The entire weak zone is 140 m wide. The exception to this is a supplemental 

experiment in which the weak zone width is doubled in order to test width scaling effects 

on channel tortuosity and regional relief; these model results are displayed as supplemental 

data.  

Eight experiments are run to test the sensitivity of fluvial incision to different 

crustal strength gradients (Figure 3.2B), representing varying degrees of rock damage due 

to brittle failure. The first example is homogeneous with cohesion/erodibility equal to the 

intact bedrock strength value (strength difference factor of 1), while each ensuing value 

hosts a progressively weaker, centrally located weak zone. The cohesion contrast between 

undamaged rock and weak zone core is varied from a factor of 3 to 3000. The weak zone 

strikes normal to the flow outlet boundary for all experiments excepting a supplemental 

experiment in which vertically dipping weak zones strike parallel to the outlet boundary; 

these model results are displayed as supplemental data. For the sake of model simplicity I 

impose a uniform scale for weak zone width and do not incorporate the scale-independent 

properties of material fragmentation (e.g. Sammis et al., 1986; Sammis et al., 1987; 

Blenkinsop, 1991; Shimamoto and Nagahama, 1992; Jébrak, 1997; Roy et al., 2012) In this 

study I model weak zone widths that overlap with the typical range of river channel widths 

(Finnegan et al., 2005). 

 

3.4.2. Steady State Topography 

 Each experiment is allowed to approach a steady state topography condition under 

the conditions described above, in which the erosion rate is approximately spatially 
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uniform and equal to the applied rate of uplift relative to baselevel and there is no change 

in drainage network geometry or topography. I use steady state topography to compare 

topographic relief, drainage network patterns, and longitudinal channel profiles for the 

differing rock strength configurations. Relief is measured as the maximum and average 

elevations relative to a base level fixed at sea level. Longitudinal profiles follow the 

channel-wise distance of the highest order channel from the center of the northern flow 

divide to the outlet boundary (Figure 3.2C). My method of quantifying drainage network 

pattern is described in Section 3.4.3 below. 

 

3.4.3.   Tortuosity 

 Rapid erosion of weak zone material will potentially confine a developing drainage 

network to the structure of the weak zone, limiting the direction of flow. I characterize the 

drainage network pattern in each experiment by using tortuosity, a measurement of change 

in channel orientation over a prescribed wavelength  

 
T = 1 −

ls

ln
 (3.6.)  

where tortuosity T equals the ratio of straight line distance ls over channel-wise distance ln 

between two points along a channel. Tortuosity is related to sinuosity via S = (1-T)-1. The 

step length must be greater than element resolution and the channel-wise distance is 

calculated at element resolution. Tortuosity is measured with ls equal to 200 m for the 

highest order channel from flow divide to outlet. I use river channel tortuosity as a measure 

of directional dependence because it is a simple spatial representation of orientation 

preference for a prevalent landscape feature, and I feel that it expands on the use of other 
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measurements of directional dependence as a landscape characterization tool (e.g. Judson 

and Andrews, 1955; Moglen and Bras, 1995). 

 

3.4.4.   Knickpoints 

I test the influence of the strength field on fluvial incision by measuring knickpoint 

migration rates into preexisting vertically dipping weak zones with varied erodibility 

values. Knickpoints are localized convex features that migrate up concave channel profiles 

when in a transient state (Gardner, 1983). Upstream knickpoint migration is often a primary 

erosional response to internal or external perturbations within a watershed and are often 

used to define the spatial progression of erosion in an evolving landscape (e.g. Crosby and 

Whipple, 2006; Berlin and Anderson, 2007).   

Model topography is allowed to approach a steady state condition as explained 

above, then a sudden 10 m step in elevation is uniformly introduced to create a knickpoint 

at the outlet boundary. The landscape is once again allowed to approach a steady state 

condition. I measure the response rate by tracking the knickpoint position every 100 to 

10,000 years along a longitudinal profile that follows the channel-wise profile explained 

above. The position of the knickpoint is taken at the location where half of its original 

height has eroded (Figure 3.2D). I compare the knickpoint’s behavior, as it traverses the 

strength gradient, to the analytical solution for knickpoint propagation in a uniform 

medium in Section 3.4.2. (e.g. Gardner, 1983; Whipple and Tucker, 1999; Niemann et al., 

2001). 
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Figure 3.3. Steady state elevation fields for all Model Set 1 experiments. Numbers 
represent the different strength gradients introduced in Figure 3.2B. Length scale is in 
meters. The greyscale maps display relief overprinted in color by tortuosity values for the 
largest fluvial channel in each simulated domain. Color represents degree of tortuosity, 
measured at the 200 m wavelength. The path of the highest order channel (colored line) is 
used for measuring knickpoint migration rate (Figure 3.7) and longitudinal profiles (Figure 
3.8, 9). 
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Figure 3.4. Maximum (black dots) and mean (grey dots) topographic relief. Data for 
doubled weak zone width (stars) and weak zone parallel to outlet (squares) are for the 
supplemental experiments shown in Figure 3.S1. 
 

 
Figure 3.5. Mean tortuosity values for each experiment. Values measured for the highest-
order channel. Error bars represent two standard deviations. Experiments are divided into 
three patterns: 1) dendritic, where mean tortuosity is high and the range of values is 
relatively narrow, 2) transitional, where mean tortuosity is moderate and the range of values 
is wider, representing the presence of both dendritic and confined patterns in a single high-
order channel, and 3) confined, where mean tortuosity is low and the range of values once 
again narrows. The grey marker is from a 3000X experiment with doubled width. 
 
 
3.4.5.   Model Set 1 Results 

3.4.5.1.   Steady State Landscape Patterns 

Results of the steady state experiments in Figure 3.3 indicate that the presence of a 

weak zone leaves a lasting influence on the landscape in the form of a straight, high-order 

channel with short, orthogonal tributaries of low order. Additionally, the local presence of 

weak zones reduces total relief in a region (Figure 3.3, 3.4). In comparison, the 1X 
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experiment is completely homogeneous and produces a drainage pattern with no strong 

directional dependence caused by strength (Figure 3.3), the highest maximum relief (Figure 

3.4), and relatively high average tortuosity (Figure 3.5, dendritic; see also supplemental 

videos). 

 A low relative strength difference is included in the 3X experiment, causing 

topography to locally reflect the weak zone in tributaries, saddles, and local channel slope 

(Figure 3.3). Figure 3.6A displays the marked step in slope-area relationship between 

different erodibility values for the 3X experiment. For a given drainage area, slope in the 

weak zone is up to √3  less than for intact bedrock, but this is not great enough to influence 

the dendritic path of the high-order channel. However, the presence of a weak zone does 

limit the maximum relief within the model domain (Figure 3.4).  

Tortuosity values from the 6X to 30X experiments reflect the transition from 

unconfined and dendritic to a channel that is confined to the structure of the weak zone, 

where the northern section of the drainage network has low tortuosity values and a strong 

directional dependence, but the southern section remains dendritic. This pattern is 

represented in Figure 3.5 as a transition from a high mean tortuosity with a relatively 

narrow range of values to a lower average tortuosity with a wider range representing a 

combination of dendritic and structurally confined drainage patterns. There is a gradual 

decrease in maximum and mean relief with increasing relative strength difference for these 

transitional experiments (Figure 3.4). 

The 60X to 3000X experiments confine the main drainage network completely 

within the weak zone. Though these high-order channels are structurally confined and as a 

consequence have relatively low tortuosity values, they nonetheless traverse the full width 
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of the damage zone in the 60X to 600X experiments. The ability of the weak zone to reduce 

maximum relief begins to plateau at 300X. At this magnitude of weakening the slope of 

the highest order channel begins to approach zero and therefore cannot further reduce the 

regional relief. 

 

Figure 3.6. Slope versus drainage area plots. (A) 3X and (B) 3000X experiments. Color 
scale denotes magnitude of erodibility for the slope versus drainage area plots, in addition 
to drainage area and slope for the inset maps. For equal drainage area, slope differs by 
erodibility. The weaker units host low slope features such as saddles and tributaries in the 
3X experiment, seen in the drainage area, kb, and slope insets. The 3X strength gradient is 
small enough to have little difference in erodibility between gouge and ultracataclasite units 
(see also Figure 3.2B). The 3000X experiment has a higher magnitude strength gradient 
between intact rock and weak zone, leading to greatly reduced slopes in the gouge unit and 
confinement of the high-order channel to the gouge and ultracataclasite units, seen for 
drainage area values greater than approximately 4x104 m2.Color bar: blue to red range for 
slope: 0 to 1.8, erodibility: 3.6x10-5 to 2x10-3 m s2 kg-1, and drainage area 81 to 5x105m2. 
 

For the 3000X experiment, slope in the weak zone is up to √3000, or ~55X, less 

than for intact bedrock (Figure 3.6B, Equation 3.6) and the high-order channel is 
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completely confined to the gouge and ultracataclasite units. All high order drainage is 

dominated by the weak zone and the majority of low order drainage is dominated by intact 

bedrock (Figure 3.6B). In Figure 3.5 the structurally confined pattern is represented by low 

mean tortuosity with a narrow range. These steady state experiments are used as the initial 

condition for the knickpoint models discussed below. 

 

3.4.5.2.   Knickpoint Migration Rate, Regional Response Rate 

 The modeled crustal strength fields influence the rate of knickpoint migration into 

an eroding landscape (Figure 3.7A), however, the rate of knickpoint migration is non-

uniform for all simulations. The average rate of knickpoint migration, calculated as the 

average of all migration rates measured along the channel-wise distance, increases with 

decreasing strength. The linear stream-power erosion law predicts that convexities in a 

stream longitudinal profile should travel upstream as knickpoints, with a wave celerity that 

depends on rock erodibility (e.g. Rosenbloom and Anderson, 1994; Whipple and Tucker, 

1999; Loget and Van Den Driessche, 2009), and hence on cohesion, 

 
Vk =

kbkt

kw

(RA)1 2⁄  =  
kckt

C1 2⁄ kw

(RA)1 2⁄  (3.7.)  

Using Equation 3.7, knickpoint migration rate in the 60X experiment should be up to ~7.7X 

faster than in the homogeneous 1X example, while the 3000X example should show a 

knickpoint migration speed up to ~55X faster (Figure 3.7A, grey bars). Experimental rates 

are less, with an approximately 7X faster average knickpoint migration rate for the 60X 

example and an approximately 35X faster average rate for the 3000X example (Figure 3.7, 

black bars). In the homogeneous case, reduction in knickpoint speed arises solely from the 

progressive loss in drainage area as the knickpoint moves upstream (Figure 3.8). In 
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experiments with weak zones, lower than expected migration rates and local fluctuations 

in migration rate arise from variations in erodibility along the channel profile (Figure 3.8, 

Figure 3.9). For the 60X to 3000X simulations, structurally confined channels are mostly 

constrained to the gouge unit, but the channel winds across the erodibility gradient, 

intermittently crossing into the stronger and slower to erode ultracataclasite or cataclasite 

units. Channel occupation of the stronger units is more common in the 3X to 30X 

simulations, which have a less erodible gouge unit and a smaller relative strength difference 

(Figure 3.9). 

 

Figure 3.7. Knickpoint migration rate (Vk) increase factor with respect to the strength 
gradient increase factor. (A) The rate increase factor is the ratio of knickpoint migration 
rate with respect to the homogeneous 1X experiment, a simplified method to compare 
relative knickpoint migration rates with respect to crustal weakening. Grey bars: expected 
values using Equation 3.7. Black bars: measured average migration rate from experimental 
data. (B) Total response time from the start of the base level perturbation event to the time 
at which a steady state topography is reestablished. Lines represent 3000X (solid), 300X 
(dotted), 30X (dashed), 3X (short dash-dot), and 1X (long dash-dot). 
 

 In addition to hosting higher knickpoint migration rates, weak zones reduce the 

total response time of a region to base-level perturbations (Figure 3.7B). The 3000X 

experiment is characterized by a rapid drop in mean perturbation height associated with 

total erosion of the weak zone, followed by a protracted period in which steep gradients 
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traverse the low order tributaries and hillslopes that transect the strong adjacent rock. Steep 

gradients associated with the base-level perturbation cause local increases in erosion rate, 

both by fluvial and hillslope processes, until the landscape again approaches steady-state. 

A similar pattern exists for other examples where the highest order channel is at least 

partially confined to the weak zone (30X, 300X) but the initial response from the 3X 

example is identical to the homogeneous 1X experiment, increasing in rate later on. This 

is due to the weak zone’s control on low order, rather than high order channels; the response 

rate does not increase until the perturbation is felt in the lower order tributaries. 

 

3.4.5.3.   Stationary Knickpoints Associated with Erodibility Gradients 

Fluvial incision across the erodibility gradient causes local stationary knickpoints which 

are not associated with the externally introduced transient knickpoint (Figure 3.8, Figure 

3.9). The stationary knickpoints are best seen in the 3X, 6X, and 30X experiments when 

the high-order channel transitions from a steep sloped intact bedrock reach to a gently 

sloped weak zone reach (Figure 3.8-9B-D red arrows). These knickpoints remain in the 

channel profile after the landscape has approached a steady state condition. The 600X and 

300X experiments also host stationary knickpoints that correlate with a transition from 

cataclasite to ultracataclasite units (Figure 3.8-9F-G). The 30X experiment hosts stationary 

knickpoints with the greatest relief, which correlate to a transition from intact bedrock to 

gouge unit (Figure 3.8-9D, arrows). The profile for the homogeneous 1X experiment does 

not host any stationary convex features (Figure 3.8A). The positioning of these stationary 

knickpoints also correlates with local reductions in transient knickpoint migration speeds 

as discussed above (Figure 3.9).
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Figure 3.8. Longitudinal profile data for each Model Set 1 experiment. (A) 1X, (B) 3X, 
(C) 6X, (D) 30X, (E) 60X, (F) 300X, (G) 600X, (H) 3000X. Channel-wise elevation 
(solid black) is displayed for a series of time steps just after the base level perturbation is 
introduced until the channel again approaches a steady-state condition. Drainage area is 
displayed in dotted grey. Arrows point to stationary knickpoints formed across an 
erodibility gradient. Snapshots of knickpoint progression in map view are shown for (A) 
1X and (I) 3000X experiments. White stars represent the start and finish of the 
longitudinal profiles. 
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Figure 3.9. Channel-wise knickpoint migration rate (solid black) and erodibility (dashed 
grey) as a function of downstream distance from point P-P’. Plot organization is identical 
to Figure 3.8. Arrows point to stationary knickpoints formed across an erodibility gradient, 
also where knickpoint migration rate decreases. The knickpoint position and migration rate 
are measured at every time step, and migration rate is plotted with respect to downstream 
distance. 
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3.5.   Model Set 2: Fluvial Incision Sensitivity to Variations in Weak Zone Geometry 

 I use my second set of numerical experiments to test the sensitivity of fluvial 

incision to variations in weak zone dip, width, symmetry (Figure 3.10), and erodibility 

(Figure 3.1B). Model set 2 experiments feature symmetric and asymmetric weak zones, 

both forms of which are naturally common (Faulkner et al., 2003; Faulkner et al., 2010; 

Mitchell et al., 2011; Rempe et al., 2013) and could produce different erosional patterns 

under these geometric conditions. 

While the previous models incorporated vertically continuous erodibility fields, 

erosion into dipping weak zones requires a truly 3D erodibility field. Steady state is not 

possible with these complex erodibility fields because the exposure will continuously shift 

down-dip as bedrock is constantly uplifted and eroded. For this reason I elect to study 

fluvial incision sensitivity beginning from a low-relief surface, as described above. 

 
Figure 3.10. Schematic for Model Set 2. Fault dip varies from 30 to 90 degrees. Model set 
2 uses symmetric and asymmetric weak zones. The same strength values are used from 
Figure 3.1. The gouge unit is always on the footwall side of the weak zone. True weak zone 
width values are displayed below the schematic, two values are used for sensitivity 
analysis: wide 140 m and narrow 45 m weak zones.  

 

3.5.1.   Lateral Shifting 

 Figure 3.11 displays time series of elevation, fluid discharge Q, and erodibility, 

respectively for an asymmetric 30˚ dip example in which cohesion varies by a factor of 
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3000X. Initially the high-order channel is structurally confined near the western boundary 

(Figure 3.11, 150 ky). As bedrock is uplifted and the surface erodes, the weak zone 

exposure shifts laterally to the east at a rate set by the weak zone dip angle. The strong 

hanging wall must erode to expose the underlying weak zone. The structurally confined 

high-order channel experiences a series of eastward trending channel-shifting events that 

correlate with the lateral shift and subsequent erosion of the weak zone exposure Figure 

3.11, 750 ky, 1650 ky). This response is similar to fluvial incision into vertically dipping 

faults in that the channel remains within the confines of the weak zone, but is dissimilar in 

that the lateral position of the structurally confined channel is transient and does not 

approach a steady state condition.  

 

3.5.2.   Valley Asymmetry 

Unlike the symmetric tributaries developed in Model Set 1, Model Set 2 tributaries are 

steep and tortuous on the headwall side of the valley, while footwall tributaries are straight 

and gently sloping at an angle that approaches that of the weak zone dip (Figure 3.11). 

Hanging wall tributaries are more widely spaced and shorten in length as the high-order 

channel shifts eastward and the footwall tributaries lengthen. Valley profiles for variable 

dip (Figure 3.12A) display a degree of asymmetry inversely proportional to weak zone dip. 

Valley asymmetry is a product of lateral shifting by the structurally confined channel and 

asymmetry increases with decreasing dip angle (Figure 3. 12B). For a given drainage area, 

channel slope on the footwall side is noticeably more shallow than on the head wall side, 

despite an identical erodibility value on both sides (Figure 3.12C). 
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Figure 3.11. Example time series of lateral migration of a river channel confined to an 
asymmetric weak zone. (A) elevation, (B) fluid discharge, and (C) erodibility. The 
erodibility color scheme matches the scale in Figure 3.2B, 3000X. Length scale is in 
meters. 
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Figure 3.12. Cross-sectional valley profiles for faults with indicated dip. (A) Relief is 
always greatest downdip, in the hanging wall bedrock, while the updip, footwall bedrock 
gradually steepens with increasing dip angle. (B) The expected distance of channel lateral 
shifting as a function of total uplift (100 m) after 1 Ma and the inverse tangent of fault dip. 
Dots indicate the weak zone dip for the experiments in (A). Valley asymmetry increases 
with decreasing fault dip. (C) slope-area plot of hanging wall (grey dots) and footwall 
(black dots) tributaries for the example shown in Figure 3.11, time 750 ky. Though both 
regions are composed predominantly of the same bedrock unit, slopes along footwall 
tributaries are noticeably less steep. Channel slope in the footwall is influenced by the dip 
of the eroded weak zone, though its signal is slowly removed by incising tributaries and 
steepening gullies. The scatter of shallow slope values in the hanging wall is associated 
with the weaker bedrock units that the tributaries cross before reaching the main channel. 
There is no strong slope-area relation associated with erodibility because the weak zone is 
continuously exposed and eroded, never reaching a stable slope condition. 
 
 

3.5.3.   Strength, Width, Asymmetry Sensitivity 

 Sensitivity to strength and geometry is displayed using plots of lateral shifting for 

channels confined to 30˚ dipping weak zones (Figure 3.13A-D). The plots represent the 

west-east position of the outlet for the largest drainage as it shifts in time and uplifted 

height. The plots contain strength sensitivity data for asymmetric 140 m wide (Figure 

3.13A), symmetric 140 m wide (Figure 3.13B), asymmetric 45 m wide (Figure 3.13C), and 
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symmetric 45 m wide weak zone experiments (Figure 3.13D). In summary, lateral channel 

shifting is generally hindered by 1) decreasing the strength differential between weak zone 

and intact bedrock, 2) decreasing weak zone width, and 3) geometric symmetry in the weak 

zones as detailed below (Figure 3.13).  

 
Figure 3.13. Plots of west-east channel outlet position (horizontal axis) as a function of 
uplifted height or time (x104 years, increasing downward). A transparency of the strength 
field indicating the different units is included to better interpret the correlation between 
shifting pattern and weak zone position. Each plot contains data on strength sensitivity, 
results are divided between asymmetric, symmetric, 140 m wide, and 45 m wide weak 
zones. Strength experiments are indicated by line color and represent the values featured 
in Figure 3.1C: red: 3000X, green: 600X, cyan: 300X, blue: 60X, black: 30X. (A) 
Asymmetric, 140 m wide weak zone experiment. (B) Symmetric, 140 m wide weak zone 
experiment. (C) Asymmetric, 45 m wide weak zone experiment. (D) Symmetric, 45 m wide 
weak zone experiment. 
 

For the asymmetric 140 m wide experiments (Figure 3.11, 13A), the 3000X 

experiment hosts a structurally confined channel that takes short (~25-75 m), frequent 

eastward shifts, matching the dip of the gouge unit (Figure 3.13A, red line, gouge unit). 

Lateral channel-switching events are longer (~75-100 m) and less frequent with shifting 

events less able to keep up with the gouge unit exposure as the strength gradient reduces 

in the 600X (green), 300X (cyan), and 60X (blue) experiments. No lateral shifting occurs 
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for the 30X weakened experiment; the channel continues to incise vertically through the 

weak zone and into the resistant, underlying footwall. 

In the case of a wide, symmetric weak zone (Figure 3.13B), structurally confined 

channels from the 3000X and 600X experiments migrate laterally and match the shifting 

exposure of the gouge unit. Lateral channel-switching events are longer (~75-125 m) and 

less frequent than the asymmetric experiments in Figure 3.13A. The 100X experiment 

begins to migrate laterally but shifts back to a previous position before 1500 ky. No lateral 

shifting occurs for the 60X weakened experiment. 

The asymmetric 45 m wide experiments (Figure 3.13C) resemble the wide, 

asymmetric cases (Figure 3.13A) in that the 3000X experiment hosts a structurally 

confined channel whose position strongly correlates with the gouge unit exposure. Lateral 

channel-switching events are very short (~10-50 m) and frequent up to about 1500 ky, after 

which they become longer (~75-100 m) and less frequent. Lateral channel-switching events 

become much less frequent in the 600X and the 100X experiments and they incise deeply 

into the strong footwall. The 60X experiment incises vertically with no lateral shifting. 

In the symmetric, narrow experiments (Figure 3.13D), the 3000X experiment hosts 

a structurally confined channel that jumps laterally in concert with the gouge unit exposure, 

though the channel comes in contact with the strong footwall before every shifting event 

(red line crossing into dark blue background). Lateral channel-switching events are shorter 

(~50-75 m) and more frequent than the wide symmetric experiment. Shifting becomes far 

less frequent for the 600X weakened experiment, in which the main channel shifts eastward 

even though it almost never touches the weak zone and lags behind in the intact bedrock. 

This weak influence also occurs to a lesser extent for some of the lower strength gradient 
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experiments described above. The 300X experiment incises vertically with no lateral 

shifting. 

 

3.6.   Discussion 

3.6.1.   Drainage Network Pattern and Controls on Relief 

The drainage network patterns in Model Set 1 reflect the underlying crustal strength 

field, but the degree of correlation between the main channel position and the outcrop of 

the weakest rocks is sensitive to the strength difference between intact bedrock and the 

weak zone. Structural confinement of high order channels is attributed to comparably 

minimal channel slopes within the weakest units, subsequently reducing the local relief and 

accumulating surface runoff, which is then able to pass through the weak zone to the outlet 

boundary. Fluvial incision into extremely weak zones causes the rock strength field to 

dominate the drainage network pattern of a landscape (Figure 3.3, 60X to 3000X), while 

moderately weak zones influence drainage patterns further up channel (Figure 3.3, 6X to 

30X) or only influence the position and orientation of tributaries and saddles (Figure 3.3, 

3X). The strength gradients associated with naturally occurring crustal failure fall within 

the limits of simulated fluvial incision sensitivity.  

 

3.6.1.1. Drainage Network Pattern 

The unconfined, dendritic pattern represented by greater long-wavelength 

tortuosity in the 1X to 30X experiments is a consequence of the random noise applied to 

the initially flat domain, as explained in Section 2.2. This drainage pattern conforms to a 

dendritic classification (e.g. Zernitz, 1932; Lubowe, 1964), in which channel orientation is 
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not strongly influenced by any gradient and therefore has no strong directional dependence. 

The dendritic drainage pattern is replaced by a structurally controlled pattern for large 

strength gradients (60X to 3000X experiments), while the dendritic pattern persists for 

smaller strength gradients (1X to 30X experiments). Structurally confined channels are still 

able to traverse the width of the weak zone, and the tortuosity at this scale is a function of 

weak zone width and the random height field within the weak zone. For example, doubling 

the width of the 3000X weak zone will still produce a structurally confined drainage 

pattern, but the increase in weak zone width allows for less constriction at my scale of 

observation. As a result there is a greater range of tortuosity values with higher average 

tortuosity, despite the highest order channel still being confined to the weak zone (Figure 

3.5, grey point, Figure 3.S1). Once this drainage pattern is established it will remain 

unchanged as the landscape approaches a steady state. The drainage network pattern 

reflects the orientation of weak zones associated with prominent structural features and as 

such could be an indicator of past or present tectonic strain.  

 

3.6.1.2. Relief of Hillslopes 

It is well recognized that rivers have the potential to control orogenic relief (e.g. 

Whipple and Tucker, 1999; Whipple et al., 2013) but their ability to limit relief is amplified 

by the presence of weak zones that introduce localized, relatively low channel slope 

corridors. Tabular weak zones have a regional effect on relief (Figure 3.4) and hillslope 

gradients (Figure 3.6). The effect on maximum relief is apparent even without a structurally 

confined high order channel (3X to 30X experiments). For examples when the highest 

order channel becomes structurally confined, any increase in relative strength difference 
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will have almost no progressive effect on maximum relief as the channel slope approaches 

zero and the weak zone essentially becomes an extension of the outlet boundary (Figures 

3, 4, 60X to 3000X). Please see Supplemental Figure 3.1 to see the sensitivity of relief to 

1) doubling weak zone width and 2) weak zones that do not intersect the outlet boundary.  

Though I do not test strength-dependent nonlinear hillslope diffusion, it is 

instructive to explore a situation in which slope thresholds are set equal to the internal angle 

of friction of the substrate (Roering et al., 2001). For such a model, strong bedrock 

generally has an internal angle of friction equal to 35˚ (slope of 0.7), whereas highly 

fractured rock can be as low as 5˚ (slope of 8.75x10-2) in extreme cases (Hoek and Brown, 

1980; Hoek and Brown, 1997). The gouge unit in the 3000X experiment never obtains a 

slope that would exceed 5˚ under the chosen model conditions, while the intact bedrock 

unit does exceed 35˚ in locations where hillslope processes already dominate (Figure 3.6). 

The regions that would feel the influence of greater diffusivity appear to be limited to 

hillslopes for intact bedrock and therefore should not produce significantly different results 

within the scope of this paper. 

 

3.6.2.   Response Rate 

The rate at which a landscape responds to a base-level perturbation is strongly 

sensitive to the magnitude and geometry of the crustal strength field. The simple relative 

comparison of knickpoint migration rate in Figure 3.7A shows that a landscape responds 

more quickly when crustal strength is reduced (the response time scales inversely with kb 

and hence with kcC-1/2; Whipple and Tucker (1999)), but the local rate of knickpoint 

migration depends strongly on 1) the predictable, steady decrease of drainage area 
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upstream and 2) local variations in erodibility. The regional response rate to base-level 

perturbations is also highly sensitive to local weak zones (Figure 3.7B). I focus further 

discussion on effects caused by the applied strength field: local variations in erodibility.  

Fluvial incision in the 60X to 3000X experiments produces channels that are 

confined to the width of the weak zone, and are flanked on either side by sharp strength 

gradients. The majority of the main channel is confined to the gouge unit, but the channel 

frequently crosses into the ultracataclasite unit, and occasionally into cataclasite (Figure 

3.8E-H, 9E-H). Tortuosity generally increases, channel-wise erodibility fluctuations 

become more pervasive, and knickpoint migration rate decreases at the local and catchment 

scale as the strength gradient between gouge and intact bedrock reduces. The experimental 

results suggest that structurally confined channels should have comparably fast rates of 

knickpoint migration overall, but the local rate of knickpoint migration should vary as a 

function of the erodibility gradient. Because knickpoint migration is slowest in locations 

where the channel traverses a resistant unit, transient knickpoints are statistically more 

likely to be found in resistant units when observed in the field.  

 

3.6.3.   Stationary Knickpoints 

Knickpoints are not necessarily transient, migratory features in natural landscapes 

and it can be difficult to interpret the possible migratory conditions of a knickpoint based 

on its morphology (Stock and Montgomery, 1999; Kirby et al., 2003; Crosby and Whipple, 

2006; Kirby and Whipple, 2012; Whipple et al., 2013). However, based on my theoretical 

predictions it is possible to partially predict knickpoint morphology and migration rate if 

the strength field is well constrained. For my experiments with vertically continuous 
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strength fields, channel-wise transitions in erodibility create stationary knickpoints that 

persist as the landscape approaches steady state. The magnitude of the erodibility gradient 

and the widths of the damage zone units determines the relief of the knickpoint; however 

the magnitude must be large enough to generate the knickpoint, but not so large as to 

prevent the channel from incising across the gradient and confine drainage to the weaker 

unit (Figure 3.6). For example, the highest-order channel in the 3X experiment traverses 

the relatively small strength gradient and hosts stationary knickpoints, while the highest-

order channel in the 3000X experiment is unable to cross the large strength gradient and 

becomes structurally confined.  

The natural presence of these stationary features could cause confusion in the field, 

where the ability to determine whether a knickpoint is migrating is extremely limited over 

observational timescales (Crosby and Whipple, 2006; Whipple et al., 2013). However, 

researchers have been able to recognize transient and stationary knickpoints in the South 

Fork Eel River, California (Foster and Kelsey, 2012). Tabular weak zones create a situation 

in which large strength-induced knickpoints are not likely to exist because the 

interconnectedness of erodible bedrock does not require a structurally confined channel to 

cross extreme strength thresholds. Further still, weak zones associated with faulting can 

traverse different lithological units and mitigate the strength difference between them. The 

geometry of weak units can potentially explain why in the field, knickpoints based on 

lithology may be uncommon (e.g. Robl et al., 2008; Stüwe et al., 2008; Wagner et al., 2010; 

Wagner et al., 2011).  
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3.6.4.   Lateral Shifting 

Structurally confined channels can migrate laterally in response to the continuously 

shifting exposure of a weak zone, but the effect is strongly dependent on the dip of the 

weak zone, magnitude of the strength gradient, weak zone width, and geometric symmetry. 

My experiments underestimate lateral channel migration because they rely on a shifting 

exposure of the weak zone to stimulate lateral channel-shifting events rather than solving 

for lateral erosion in a channel. However, the model results are considered to be robust 

because lateral shifting occurs even without lateral channel erosion. Lateral shifting occurs 

as successive events of river capture as the weak zone exposure continues to migrate away 

from the incising channel at a rate controlled by erosion into the hanging wall (Figure 3.11, 

see supplemental videos). Channels begin to incise vertically into the strong footwall rather 

than migrate laterally with the weak zone exposure in cases where the strength gradient is 

reduced or the weak zone width is reduced.  

Lateral shifting persists for asymmetric weak zones at lower strength gradients. 

This is probably due to the extreme strength gradient between gouge unit and intact 

bedrock on the footwall, which cannot be traversed as easily as the gradient between gouge 

and ultracataclasite (Figure 3.12C, Figure 3.13A, C). Unlike footwall tributaries, hanging 

wall tributaries must completely cross the strength gradient to reach the structurally 

confined channel. The resulting combination creates asymmetric valleys: the hanging wall 

valley side hosts tributaries with high tortuosity values and steep slopes, while the footwall 

tributaries are relatively straight and have slopes that are partially limited to the dip angle 

of the weak zone (Figure 3.12C). 
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3.6.5.   Natural Examples of Structurally Confined Drainage 

My numerical experiments have provided a number of testable predictions for determining 

strength controls on landscape, including 1) the presence of anomalously straight channels 

of high order with frequent low order, orthogonal tributaries; 2) the potential presence of 

small stationary knickpoints, 3) relatively fast transient knickpoint migration rates and 

response time in regions responding to base level perturbations, 4) reduced relief close to 

the drainage divide caused by low slope in structurally confined channels, and if the weak 

zone is dipping at a less than vertical angle, 5) asymmetric valleys with possible lateral 

channel migration. The only prediction that is mutually exclusive to strength heterogeneity 

is channel pattern. Effects on relief, knickpoint positioning, or response rate can also be a 

function of past changes in climate, tectonics, sedimentation, or glaciation, and their 

interpretation would require a great deal of additional information. For this reason I have 

chosen field examples where 1) the structural field is well mapped, 2) strength data exist, 

and 3) rivers appear to be anomalously straight and tend to correlate with weak zone strike. 

Several natural examples exist for structurally confined drainages. The examples listed in 

Table 1 and discussed below (Figure 3.14) host strength differences that span several orders 

of magnitude, varied width, and varied weak zone dip angle. Where necessary, the Hoek 

and Brown (1997) criterion was used to determine the relative strength difference for a 

field location. 
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Figure 3.14. Mean tortuosity values for natural examples. (A) Error bars represent two 
standard deviations. Natural examples include (B) Rivanna River, VA (37.861˚ N, -
78.2633˚ W), (C) Shenandoah River, VA (38.9661˚ N, -78.2425˚ W), including (C1) the 
north fork, (C2) south fork, (C3) Passage Creek, and (C4) the section below the confluence, 
(D) Cottonwood Creek on the Eastern Kaibab Monocline, UT (37.3289˚ N, -111.8778˚ W), 
stars indicate the position of stationary knickpoints, (E) Big Rock Creek on the Punchbowl 
Fault, CA (34.405˚ N, -117.8212˚ W), (F) Bright Angel Gorge on the Bright Angel Fault, 
AZ (36.1737˚ N, -112.049˚ W), (G) Lone Pine Canyon on the San Andreas Fault, CA 
(34.303˚ N, -117.53˚ W), (H) Yoshino River partially following the Median Tectonic Line, 
Japan (33.9089˚ N, 134.0332˚ E), and the (I1) Salween, (I2) Mekong, and (I3) Yangtze 
Rivers (27.194˚ N, 99.2848˚ E) following the Bangong-Nujiang suture, Longmu Co-
Shuang hu suture, and Jinsha suture, respectively (Hallet and Molnar, 2001a; Sol et al., 
2007; Liu et al., 2011). (J) Stationary knickpoint where Passage Creek traverses resistant 
quartzite unit, and (K) another knickpoint where the Shenandoah River traverses another 
quartzite unit. (L) Satellite image of the Eastern Kaibab Monocline with Cottonwood Creek 
following the San Rafael Group (source: 37.3289˚ N, -111.8778˚ W, Google Earth, 
imagery date 5/30/2013, accessed 10/2/2014). (M-M’) Transect taken across the monocline 
displays an asymmetric gorge. 
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3.6.5.1. Homogeneous Example 

The Rivanna River and adjacent tributaries near Palmyra, Virginia (Figure 3.1A) 

are part of a dendritic drainage network (Zernitz, 1932) in the Piedmont Province of the 

Eastern United States. This location is horizontally homogeneous in strength and there are 

no structural features that directly influence the drainage pattern (Figure 3.14A). The 

chosen section of river has an average tortuosity value of 0.35 with a wide range between 

0.07 and 0.52, measured at a wavelength of 10 km. These tortuosity values are comparable 

to measurements taken for the 1X and 3X experiments (Figure 3.5) in which structural 

confinement is weak or nonexistent. 

 

3.6.5.2. Low Relative Strength Factor Examples 

The north fork of the Shenandoah River (Figure 3.14C1) is largely confined to the 

erodible shale of the Martinsburg Formation bound on either side by relatively resistant 

quartzite (Dicken et al., 2005). Large mean tortuosity values in the confined channel are 

associated with a foliation in the shale that is normal to the orientation of the valley, yet 

the overall orientation of the channel is valley-parallel (Hack and Young, 1959). A similar 

pattern can be seen in the south fork, where the Martinsburg Formation is also exposed 

(Figure 3.14C2). The drainage pattern of both forks of the Shenandoah reflect two different 

scales of structural confinement: strength variations caused by shale foliations control the 

spacing of meanders at sub-kilometer scales, while the thickness of the shale unit controls 

the kilometer scale drainage orientation. Tortuosity diminishes further downriver as the 

Shenandoah crosses into a weak limestone unit (Figure 3.14C4) (Dicken et al., 2005). 

Conversely, Passage Creek (Figure 3.14C3) is also confined to a sandstone-shale unit of 
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similar strength that is approximately the same width, but does not share the foliated 

structure of the Martinsburg Formation and subsequently hosts a much lower tortuosity 

value. There are two instances where the Shenandoah, or one of its tributaries, hosts a 

stationary knickpoint associated with crossing the quartzite units (black lines, Figure 

3.14C). In both cases, channel profiles exhibit convexities similar to my experimental 

results (Figure 3.14J, K). 

The Eastern Kaibab Monocline, located in southeastern Utah, is not associated with 

an exposed fault zone but does host shallowly dipping sedimentary units with varying 

erodibility, similar to some of the lower strength gradients featured in my numerical 

experiments. In this region the monocline dips at a maximum of 45˚ eastward, exposing 

resistant Navajo Sandstone, the erodible San Rafael Group of sandstones and shales, and 

resistant Dakota Sandstone (Babenroth and Strahler, 1945). Cottonwood Creek (Figure 

3.14D) follows the exposed San Rafael Group for 15 miles as it flows south to the Paria 

River. The difference in erodibility between weak units in the San Rafael Group and the 

surrounding sandstone units is comparable to my 30X model example, resulting in 1) 

structural confinement of Cottonwood Creek in the erodible San Rafael Group, and 2) a 

highly asymmetric valley as influenced by the eastward dip of the monocline (Figure 

3.14L,M). Tortuosity in Cottonwood Creek is relatively moderate but reaches maximum 

values to the north and south where it departs from the San Rafael Group (Figure 3.14D). 

 

3.6.5.3. Moderate Relative Strength Factor Examples 

Channels that follow the strike of the Punchbowl Fault in the San Gabriel 

Mountains of California, USA, display a low mean tortuosity value with minimal range 
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(Figure 3.14E). The Punchbowl Fault is an inactive shear zone of the San Andreas system 

that has become partially indurated at its core (Chester and Logan, 1986; Chester and 

Logan, 1987). The relative strength factor is low due to the cemented gouge unit, however 

the weak zone still hosts a confined channel. 

The Bright Angel Gorge (Figure 3.14F) follows the strike of the Bright Angel Fault 

Zone, a collection of steeply dipping and tectonically inactive shear zones that trend 

northeast across the Grand Canyon in southwestern North America (Hodgson, 1961; 

Shoemaker et al., 1978). Motion on the fault dates back to Precambrian time, when the 

feature formed initially as a reverse fault. The Bright Angel Fault Zone was later 

reactivated as a normal fault in the Cenozoic, vertically displacing Paleozoic strata by as 

much as 60 m (Huntoon and Sears, 1975). Tortuosity values for the gorge average 0.21 for 

a 1 km wavelength.  

 

3.6.5.4. High Relative Strength Factor Examples  

The San Andreas Fault is a large active strike-slip fault system in California that 

has accommodated possibly over 300 miles of displacement over the past 20 million years 

(Crowell, 1962). There are many examples where the San Andreas Fault transects 

mountain ranges, creating anomalously straight channels with divides that expose loose 

fault scarps (Crowell, 1962). The active strand of the San Andreas Fault north of the San 

Gabriel Mountains in California, USA, hosts a ~200 m wide weak zone with an 

approximate 1000X strength difference between host rock and gouge (Rempe et al., 2013). 

Relief in the area around the damage zone is limited by the amount of vertical displacement 

associated with oblique collision along the bend of the San Andreas Fault (Lifton and 
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Chase, 1992; DiBiase et al., 2010). Tortuosity values from Lone Pine Canyon average 

0.078.  

A large section of the Yoshino River is structurally confined to the Median Tectonic 

Line in Southwest Japan. This section of the river hosts very few, long wavelength 

meanders represented by a minimal tortuosity. However, the river diverges from the 

Median Tectonic Line for a time, then eventually intersects a minor structural feature 

further up river. The relative strength difference between weak and resistant rock often 

exceeds 3000X in this region (Wibberley and Shimamoto, 2003; Faulkner et al., 2010). 

Similar to my example shown in Figure 3.14B, D, the river crosses resistant bedrock and 

connects with other structural features that parallel the Median Tectonic Line.  

The Salween, Mekong, and Yangtze Rivers located in the Himalayan Eastern 

Syntaxis (Figure 3.14I, 1B) are three examples of structurally confined rivers in which 

active deformation plays a significant role in drainage morphology. Each river follows a 

north trending suture zone (Liu et al., 2011) associated with active tectonic deformation 

between India and South China, with approximately 2000 km of shortening north of India 

and an equivalent amount of right lateral shear displacement along the east (Hallet and 

Molnar, 2001b; Sol et al., 2007). The Salween, Mekong, and Yangtze River channels come 

within 70 km of one another and follow nearly parallel courses for almost 300 km. The 

mean tortuosity value from all three rivers is 0.168 and values range from 0.07 to 0.43 

within two standard deviations, measured at a wavelength of 10 km. The topography in 

this region is not simply a product of differential strength but also of differential 

displacement. However, if it were simply a question of the latter, river patterns would be 

79



 
 

deformed but not necessarily aligned with the weak zones, as can be clearly seen in this 

region. 

 

3.6.5.5. Summary of Natural Examples 

The examples of muted tortuosity from the Salween, Mekong, and Yangtze Rivers, 

Bright Angel Gorge, the Punchbowl Fault, and the San Andreas Fault are all comparable 

to the measurements taken for the structurally confined examples (Figure 3.5, 60X to 

3000X experiments), in which mean tortuosity values are low and the range of values is 

narrow. Valley asymmetry on the Eastern Kaibab Monocline is comparable to my 

numerical predictions for a similar dip angle. High mean tortuosity in the north fork of the 

Shenandoah River opposes my hypothesis that structurally confined drainages tend to be 

straighter, however the increase in tortuosity is explained by shorter scale strength patterns 

with an orientation that opposes the larger scale orientation of the confining unit. Further 

still, the divergence of the Yoshino River and subsequent increase in tortuosity is 

associated with the orientation of inland structures relative to the flow outlet.  

These examples have large implications for the scale-dependent controls that rock 

strength may have on topographic development and the significance of geometry and 

orientation of weak zones. My results suggest that drainage network patterns are strong 

indicators of the crustal strength field, and although the theory explored here grossly 

simplifies the physics associated with the development of these natural rivers, it 

nonetheless can help to explain the development of naturally occurring drainage network 

patterns. 
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Table 3.1. Natural examples of structurally confined drainages 
Figure 3.14 letter, 
weak zone 
Name/location 

Estimated 
strength 
difference 

Weak 
zone 
width 

Type of contact, 
condition 

Tortuosity, 
length 
scale (km) 

Weak 
zone dip, 
valley 
asymmetry 

B Rivanna R., VA 1X N/A Homogeneous 0.347, 10  N/A 
C Shenandoah R., 

VA      
     

C
1 

   North Fork 10X 4 km Unconformity, 
fold belt, 
inactive 

0.424, 4 N/A 

C
2 

   South Fork 10X 4 km Unconformity, 
fold belt, 
inactive 

0.326, 4  

C
3 

   Passage Ck. 10X 3.5 
km 

Unconformity, 
fold belt, 
inactive 

0.319, 4 N/A 

C
4 

   Below 
confluence 
 

10X 4 km Unconformity, 
fold belt, 
inactive 

0.171, 4  

D Eastern Kaibab 
Monocline, UT 

30X 300 
m 

Unconformity, 
some shear 
damage, 
inactive 

0.237, 1 45˚ 

E Punchbowl Fault, 
San Bernardino 
Mtns., CA 

100X 100 
m 

Strike-Slip, 
partly indurated, 
inactive 

0.092, 1 60-70˚ 

F Bright Angel 
Gorge, AZ 

300X 100 
m 

Normal, 
inactive 

0.211, 1 70˚ 

G San Andreas, San 
Gabriel Mtns., 
CA 

1000X 200 
m 

Strike-Slip, 
active trace 

0.078, 1 Steeply 
dipping 

H Median Tectonic 
Line, Japan 

3000X 0.8 to 
>1 
km 

Oblique thrust, 
active 

0.155, 10 Steeply 
dipping 

I Himalayan 
Eastern Syntaxis 

     

I
1 

   Salween R. 3000X 0.1 to 
>1 
km 

Oblique Strike-
Slip, active 

0.177, 10 Steeply 
dipping 

I
2 

   Mekong R. 3000X 0.1 to 
>1 
km 

Oblique Strike-
Slip, active 

0.178, 10 Steeply 
dipping 

I
3 

   Yangtze R. 3000X 0.1 to 
>1 
km 

Oblique Strike-
Slip, active 

0.149, 10 Steeply 
dipping 
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3.7.   Chapter Conclusions 

 I use numerical experiments with a landscape evolution model to demonstrate the 

strong sensitivity of fluvial incision to the potentially extreme erodibility gradient between 

fault weak zones and the surrounding intact bedrock. The model calculations illustrate how 

patterns in the crustal strength field can play a dominant role in local fluvial erosion rates 

and consequently the development of fluvial network patterns. Fluvial incision can 

potentially be orders of magnitude faster within weak zones, as compared with incision 

rates for intact bedrock. The large incision rate difference leads to the formation of a valley 

along the strike of the weak zone, and confinement of the main channel to the weak zone 

structure. Structurally confined drainage takes the form of a straight, low tortuosity, high 

order channel with short, orthogonal tributaries of low order. In comparison, channels 

incising into homogeneous strength fields produce a dendritic, unconfined drainage pattern 

with high tortuosity values. Structurally confined channels occasionally cross the strength 

gradient represented by the weak zone units, leading to local variations in knickpoint 

migration rate and the development of stationary knickpoints. Structurally confined 

channels can migrate laterally if they incise into dipping weak zones with less than vertical 

dip. The influence of the strength field on drainage network patterns lessens as the 

erodibility gradient reduces between weak zone and intact bedrock, until the signal is 

completely removed in a homogeneous strength field. 
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CHAPTER 4 

MODELING THE GENESIS AND TRANSPORT OF HETEROGENEOUS 

GRAIN SIZE DISTRIBUTIONS IN A FAULT-DAMAGED LANDSCAPE 

 

4.1. Chapter Abstract 

 I explore two ways in which the mechanical properties of rock potentially influence 

fluvial incision of rock and transport of sediments within a watershed: 1) rock erodibility 

is inversely proportional to rock strength, and 2) fracture density influences the initial grain 

sizes produced upon erosion. Fault weak zones show these effects particularly well because 

of the sharp strength and texture gradients associated with localized shear abrasion. A 

natural example of fault erosion is used to guide my calibration and use of a landscape 

evolution model. A suite of numerical experiments are used to study the sensitivity of river 

erosion and transport processes to variable degrees of rock weakening. In my numerical 

experiments, surface runoff is steered by the rapid erosion and transport of fault gouge, 

causing high order channels to become confined within the structure of fault weak zones. 

Erosion of adjacent, intact bedrock produces relatively coarser grained gravels that 

accumulate in the low relief of the eroded weak zone. The thickness and residence time of 

sediments stored in the weak zone depends on the degree of rock weakening, which 

determines the rock erodibility gradient and the sand and gravel texture gradient 

transported by runoff. As a consequence the frequency at which the weak zone is armored 

by bedload increases with greater weakening, causing the bedload to control local channel 

slope rather than the intermittently exposed bedrock. Conversely, small tributaries feeding 

into the weak zone are predominantly detachment-limited. The amplitude and frequency 
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of storm events also influence sediment storage by modulating the competence and 

capacity of accumulated runoff. The prevalence of features that impose strength and texture 

heterogeneity on the Earth’s surface exert significant controls on the rates and patterns of 

erosion, and it will be important to recognize the role of heterogeneity in future quantitative 

studies of landscape evolution. 

 

4.2. Introduction 

Mechanical defects such as faults, joints, and fractures are commonplace in the 

brittle crust, and there is clear evidence that their existence and distribution influence rates 

and patterns of erosion. Some have argued that brittle failure is the first step in erosion and 

is therefore fundamental to all landscape evolution processes (e.g. Gilbert, 1877; Davis, 

1899; Scheidegger, 1979; Scheidegger, 2001; Scheidegger, 2004; Molnar et al., 2007; 

Koons et al., 2012). Despite the scientific advances made by these arguments, there is still 

much left to be learned about the quantitative influence of rock mechanics on erosion rates 

and landscape evolution in general. 

Mechanical defects influence surface processes in at least two ways. First, the 

presence of defects such as fractures and joints facilitates rock disaggregation and particle 

removal; greater defect frequency leads to smaller blocks that are more easily dislodged by 

various geomorphological processes (e.g. Molnar et al., 2007). Second, rock bodies with 

more closely spaced defects yield finer grains when disaggregated (e.g. Sammis et al., 

1986); finer grains are more frequently transported by fluid- and gravity-driven processes 

(e.g. Gilbert, 1877; Davis, 1899). Defect spacing can vary dramatically in space. Often it 

reflects the inherited tectonic fabric of the landscape in question, and may ultimately lead 

84



to the formation of structurally controlled drainage and topography (e.g. Koons et al., 

2012). Roy et al. (2015) studied the first of these effects—that of varying rock resistance 

to disaggregation—and found theoretical support for the hypothesis that naturally 

occurring strength gradients have a strong influence on the development of drainage 

network patterns. More specifically, drainage network patterns tend to reflect the geometry 

of underlying active or inactive tectonic structures due to the more efficient erosion of pre-

existing fault-weak zones, causing channels to become structurally confined. However, 

still little is known about the influence of mechanical failure on the texture of sediments, 

and hence whether variations in the size of sediment released by erosion of faulted rock are 

likely to have a significant influence on patterns of landscape evolution. It is not clear, for 

example, how the need to transport sediments with varying texture will influence the 

evolution of drainage network patterns. 

Here I build on the results of Roy et al. (2015) and address the combined effects of 

rock strength and sediment texture by assuming that mechanical defects in bedrock take 

the form of fault weak zones, establishing a fracture density gradient that controls the 

heterogeneous distribution of both bedrock strength and initial sediment texture. Here I 

define texture as the ratio of median sand and gravel grain sizes. I integrate four previously 

published hypotheses into my models.  These are: 1) fluvial erosion rate scales inversely 

with bulk-rock plastic strength (Sklar and Dietrich, 2001; Sklar and Dietrich, 2004), 2) the 

spacing of fractures and joints often exhibit power law scaling with implications for initial 

sediment texture upon erosion (Jébrak, 1997), 3) sediment transport rate scales inversely 

with grain diameter (Wilcock, 2001; Wilcock, 2005; Wilcock et al., 2009; Julien, 2010), 

and 4) the presence of sand enhances mobility of gravel, while the presence of gravel 
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hinders the mobility of sand (Wilcock, 2005). As part of the study, I explore how inclusion 

of mechanical heterogeneities influences the spatial distribution, texture, and residence 

times of alluvial sediments. My numerical results are meant to build field-testable 

theoretical predictions by studying the combined influence of mechanical defects using a 

combination of long-term detachment theory for bedrock incision and transport theory for 

sediment movement.  

I begin to explore the problem of mechanical heterogeneity in landscape evolution 

first by studying a natural example of an eroding fault weak zone. I then incorporate field 

measurements of rock strength and fracture spacing into numerical landscape evolution 

models with 3D planar fault weak zones introduced as an initial condition. My first set of 

numerical experiments test the sensitivity of fluvial incision and transport to changes in 

relative strength difference between weak zone and intact rock, while my second set 

explores the sensitivity of incision and transport to variations in storm frequency and 

intensity. The planar weak zones in my models are meant to represent tectonically inactive 

structural features, but they could also potentially be used to represent other planar geologic 

features such as lithostratigraphic units, dikes, and sills that introduce local strength and 

texture gradients. However, it is advantageous to study the effects of fault weak zones over 

other lithological features because their presence introduces extremely sharp strength and 

texture gradients over a scale shared by channel width, their planar geometry is largely 

predictable or measurable in the field, and they are an extremely common and well 

documented structural feature (Sibson, 1977; Sammis and Biegel, 1989; Ben-Zion and 

Sammis, 2003a; Mooney et al., 2007).  
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4.3. A Natural Example of Fault Erosion: Lewis Pass Region, New Zealand 

4.3.1. Geological Background 

I have observed the processes I am modeling in the Lewis Pass region of the South 

Island of New Zealand, along a strand of the Fowlers Fault (Figure 4.1A) (Rattenbury et 

al., 2006).  The Fowlers Fault is one of a series of strike-slip faults that make up the 

Marlborough Fault System, a component of the Australian/Pacific Plate boundary that runs 

through the South Island of New Zealand (Wilson et al., 2004). The Fowlers and associated 

faults cut through Torlesse greywacke (Rattenbury et al., 2006).  I chose to study the fault 

weak zone adjacent to the Fowlers Fault (Figure 4.1C) because it is a relatively minor 

structure and thus preserves the features I am interested in.  These features have been 

eroded or covered by sediments along the more developed fault zones. The weak zone is 

oriented to the northeast and dips steeply to the northwest, and it is best exposed near the 

saddle indicated in Figure 4.1B. The fault gouge unit (Figure 4.2A) is ~150 m wide and is 

flanked by a cataclasite unit to the southeast (Figure 4.2B, C) and a stronger unit of jointed 

greywacke with widely spaced anastomosing shear zones to the west (Figure 4.2C, D, E). 

The drainage network pattern in this region tends to follow the strike of the weak zone 

(Figure 4.1C, 4.2F).  

 

4.3.2. Strength and Sediment Texture Summary 

 I estimated rock strength, using cohesion, and texture, using grain size, in the field. 

Cohesion was used as a proxy for rock resistance to detachment because cohesion is an 

easily measureable form of plastic yield strength and because of its important role in  
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Figure 4.1. Henry Saddle field site. (A) Reference map. Square indicates Lewis pass 
region, South Island New Zealand. Lines indicate trend of major tectonic structures. (B) 
Weak zone is exposed along a saddle. (C) Local channel follows strike of weak zone.  
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Figure 4.2. Field photos. (A) Gouge unit. The valley walls are composed of cataclasite (B, 
C), a relatively weak bedrock unit, and jointed greywacke (C, D, E), a relatively strong 
bedrock unit that produces coarse gravel and boulders upon erosion. Further downchannel 
the structure is partially buried in coarse alluvium (F), with an average grain size much 
larger than that of eroded fault gouge. 
 
the Mohr-Coulomb failure criterion (Bieniawski, 1974; Brace and Kohlstedt, 1980; Hoek 

and Brown, 1980; Hoek and Brown, 1997; Enlow and Koons, 1998; Schellart, 2000). 

Cohesion was estimated using the Hoek-Brown criterion (Hoek and Brown, 1980; Hoek 

and Brown, 1997), based on measurements of the Geological Strength Index (GSI), rock 

type, and an estimate of uniaxial compressive strength (UCS). GSI is a 0-100 scale measure 

of fracture density and quality with a versatile range that has proven useful as a field 

estimate of rock strength (Hoek, 1999; Read et al., 2000; Brideau et al., 2006). Obtaining 

a truly representative estimation of rock type and UCS requires a rock sample size that is 

larger than the average spacing of fractures that allow the rock pieces to slide and rotate 

under different stress conditions (Hoek and Brown, 1997). The rock type parameter was 

taken from Read et al. (2000).  

Results are displayed in Table 4.1. Fault gouge is by far the weakest bedrock unit, 

with a GSI range of 5-15. Gouge is so thoroughly disintegrated and chemically altered that 
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it often has the consistency of clayey soil. Fracture surfaces are coated in soft, wet clay. 

The surrounding cataclasite is also relatively weak, with a GSI range of 20-40. However 

fractures in the cataclasite tend to be dry, relatively rough, and uncoated, with little 

evidence for shearing or alteration except from landsliding (Figure 4.2B, C). The jointed 

greywacke to the northwest (Figure 4.2C) has a bulk GSI range of 55-80 (Figure 4.2E), 

punctuated by highly localized, sub-meter scale shear zones with GSI range of 15-25 

(Figure 4.2D). This rock unit provides the steepest relief in the region (Figure 4.2C). 

Table 4.1. Field characterization of the four rock types including the Hoek-Brown 
parameters used to estimate cohesion and median grain size. 

Sample GSI UCS 
estimate 

Rock type 
parameter 

Cohesion 
(Pa) 

Average joint 
spacing range 
(mm) 

Median 
grain size 
(mm)* 

Jointed 
greywacke 

55-
80 100-250 12 2.5 x107-

8.5x106 100-500 
189 
(60,318) 
Skew: 3.3 

Cataclasite 20-
40 5-25 12 1.0x105-

9.2x105 5-100 
8.8 
(1.9,18.9) 
Skew: 2.6 

Gouge 5-15 0.25-1 12 2.8x103-
1.7x104 <1 5.1 (0.3,8) 

Skew: 8.2 
Downstream 
alluvium - - - - - 19 (3.7,35) 

Skew: 3.8 
*Values in parentheses represent one standard deviation below and above the mean value, 
respectively. The grain size skewness calculated here is the moment coefficient of 
skewness (Bulmer, 2012). 

 
I used field GSI measurements to create a map of rock strength in the Henry Saddle 

region (Figure 4.3A) in order to explore the potential controls of rock strength on slope 

(Figure 4.3B) and drainage area (Figure 4.3C). The relationship between slope and 

drainage area differs significantly between jointed greywacke and the fault weak zone 

(Figure 4.3D). Slope histogram plots (Figure 4.3E) display a significant division in median 

slope between the two rock units. These cursory results suggest that natural levels of rock 
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damage can exert a sufficiently strong influence on landscape evolution to be reflected in 

the slope-area relationship. 

 
Figure 4.3. Data from Henry Saddle. (A) Digital elevation map (DEM), red areas indicate 
approximate extent of fault-damaged rock based on field GSI measurements. Black dashed 
line indicates region of satellite imagery in Figure 4.1C. (B) Slope and (C) drainage area 
data from the DEM. (D) Slope versus area plot. Points represent locations in jointed 
greywacke (blue) and weak zone (red). (E) Slope histogram for weak zone (red) and jointed 
greywacke (blue). Vertical axis is the slope frequency normalized by total sample size. 
 

Grain sizes were measured from loose material that showed evidence for imminent 

separation from the fresh rock surface. I estimated the median grain size by measuring the 

intermediate length axis of randomly chosen grains (Wolman, 1954), and use it only for 

relative comparison between rock units, and between the average joint spacing range for 

each rock unit. This method of grain size measurement is subject to uncertainty, but I 

attempted to keep methods consistent between rock types. Fault gouge produces 

predominantly fine grained sediments upon erosion, whereas the average grain size for the 
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cataclasite is greater, and the average size for the jointed greywacke is much greater (Table 

4.1). 

 

4.3.3. Distribution of Alluvium along Channel Reach 

The gouge unit is predominantly covered by alluvium in all locations except at the 

drainage divide and intermittent locations along the reach of the channel. The texture of 

the downstream alluvium is on average much coarser than the sediment produced from 

eroding the underlying fault gouge, but less coarse than boulders and cobbles that come 

from the jointed bedrock. The valley formed along the weak fault zone acts as storage for 

nearby sources of sediment. These field observations suggest that rock strength and fracture 

spacing can influence the drainage network pattern and the distribution of sediment. To 

gain a better understanding of this relation I require methods for scaling the mechanical 

properties of rock to fluvial processes of erosion and transport, as well as a robust 

sensitivity analysis to determine the significance of rock damage. The methods I use are 

described below. 

 

4.4. Methods 

4.4.1. Surface Dynamics Model 

 I use the Channel-Hillslope Integrated Landscape Development (CHILD) model 

(Tucker et al., 2001) to compute the erosion of bedrock and transport of sediment by fluvial 

and hillslope processes in a hypothetical terrain underlain by fault-damaged rocks. The 

landscape surface is divided into irregularly discretized elements, each representative of a 

small equant area and connected to adjacent elements by a Delaunay triangulation (Lee and 
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Schachter, 1980). A steepest descent routing algorithm is used to calculate the spatial 

pattern of surface runoff accumulation over the discretized landscape surface. I use a 

general theory for mass continuity 

 𝜕ℎ

𝜕𝑡
= 𝐹 + 𝐻 + 𝑈 (4.1.)  

where 𝜕ℎ
𝜕𝑡

 is time rate of change of land surface elevation (L T-1), 𝐹 is the fluvial component 

of erosion or aggradation, 𝐻 is the hillslope processes component of erosion or aggradation, 

and 𝑈 represents all factors contributing to uplift or depression of the surface relative to 

baselevel. I use a combined rule set for the fluvial component to account for the occurrence 

of both bedrock detachment and sediment transport conditions in channels. Specifically, 𝐹 

is limited by either the detachment competence and capacity of the flow to detach material, 

𝐷𝑐, or by the spatial gradient in sediment transport capacity: 

 𝐹 = 𝑚𝑎𝑥(−𝐷𝑐, ∇𝑞𝑐) (4.2.)  

where 𝐷𝑐 is the detachment capacity (dimensions of L T-1), 𝑞𝑐 is the total volumetric 

sediment-transport capacity per unit width for the available surface grain size mix 

(dimensions of L2 T-1), and 𝑚𝑎𝑥 is the maximum function. Equation 4.2 expresses the 

assumption that bedrock detachment occurs where a channel’s capacity to mobilize and 

transport sediments exceeds the local sediment supply; otherwise, the rate of erosion or 

deposition is set by spatial gradients in sediment transport capacity, which itself depends 

on the particular grain size mixture on the bed (Gasparini et al., 2004). This approach means 

that a particular location within the model may be either detachment-limited or transport-

limited, and may change behavior over time in response to changes in topography, water 

discharge, sediment supply, and surface grain size. 
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4.4.1.1. Bedrock River Incision 

Bedrock channels frequently occur in high relief topography (Howard and Kerby, 

1983; Sklar and Dietrich, 1994; Tucker and Slingerland, 1996; Stock et al., 2005; Attal et 

al., 2008; Attal et al., 2011). I approximate the physics that control the rate of mechanical 

wear of bedrock by assuming that fluvial detachment capacity scales with unit stream 

power (Seidl and Dietrich, 1992; Howard et al., 1994; Stock and Montgomery, 1999; 

Whipple and Tucker, 1999; Tucker et al., 2001; Hancock and Anderson, 2002; Whipple, 

2002; Whipple, 2004; Whittaker et al., 2007; Yanites et al., 2010; Attal et al., 2011) 

 𝐷𝑐 = −𝑘𝑏(𝑥,𝑦,𝑧)𝜔 (4.3.)  

where the fluvial contribution to erosion rate 𝐷𝑐 any point on a bedrock surface depends 

on spatially variable erodibility 𝑘𝑏(𝑥,𝑦,𝑧), stream power per unit width 𝜔, and rock uplift 

rate. Note that the detachability of alluvium is assumed to be effectively infinite, while that 

of bedrock varies in space as described below. I assume that the average rate of channel-

bed incision is proportional to stream power per unit width 𝜔 at every element 

 
𝜔 = 𝛾 (

𝑄

𝑊
)𝑆 (4.4.)  

where 𝛾 is the unit weight of water (9800 kg m-2 s-2), 𝑄 is water discharge, 𝑊 is channel 

width, and 𝑆 is channel slope. Channel width 𝑊 is calculated using the empirical method 

(Leopold and Maddock, 1953) 

 𝑊 = 𝑘𝑤𝑄
𝑏 (4.5.)  

where 𝑏 is the width-discharge exponent, here given a value of 0.5, and 𝑘𝑤 is the width-

discharge coefficient, here given a value of 10 s0.5 m-0.5. 
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4.4.1.2. Fluvial Sediment Transport  

Bedrock incision produces sediments. The texture of the newly produced sediments 

can depend on the bedrock unit that has been eroded, as discussed previously. When 

sediment supply exceeds the capacity or competence of flow, bedrock becomes covered by 

accumulating sediments (Wilcock et al., 2009). Alluvial channels frequently occur within 

sedimentary basins and in regions with low relief topography (Tucker and Slingerland, 

1996). I use a pair of sediment carrying capacity equations developed by Gasparini et al. 

(1999; 2004) for transport-limited alluvial channels. The transport model is based on the 

work of Wilcock (2001), who developed sediment transport laws for sand and gravel 

mixtures from field and flume data (Wilcock, 1998). The median sand and gravel grain 

sizes are used to represent transport for the full distribution of grain sizes. The transport 

capacities for each of these two size components are given by:  

 
𝑄𝑠𝑔 = 𝑘𝑓𝑔𝐴

0.95𝑆1.05 [1 −
𝜏𝑐𝑔

𝜌𝑔
𝑛−0.6𝑃𝐴−0.3𝑆−0.7]

4.5

 (4.6.)  

 
𝑄𝑠𝑠 = 𝑘𝑓𝑠𝐴

0.95𝑆1.05 [1 −
𝜏𝑐𝑠
0.5

(𝜌𝑔)0.5
𝑛−0.3𝑃𝐴−0.15𝑆−0.35]

4.5

 
(4.7.)  

 
𝑘 =

11.2𝑘𝑤
0.1𝑃0.95𝑔0.5𝑛0.9

(𝑠 − 1)𝑔
 (4.8.)  

 

where 𝑄𝑠𝑔 and 𝑄𝑠𝑠 are sediment carrying capacity for gravel and sand, respectively 

(dimensions of L3 T-1), 𝑓𝑔 and 𝑓𝑠 are the fraction of gravel and sand, respectively, 𝑃 is 

runoff rate, 𝐴 is drainage area, 𝑛 is Manning’s roughness coefficient (here given a value of 

0.03), 𝜌 is water density, 𝑔 is gravitational acceleration, s is the specific gravity of the 

sediment, and 𝜏𝑐𝑔 and 𝜏𝑐𝑠 are critical shear stresses for gravel and sand, respectively. 
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 The critical shear stresses for sand and gravel depend on grain size and the fraction 

of sand present in the bed sediment. The critical shear stress 𝜏𝑐 is calculated using a 

nondimensional reference shear stress 𝜏𝑟∗ 

 𝜏𝑐 = 𝜏𝑟
∗(𝜌𝑎 − 𝜌𝑤)𝑔𝐷sin(𝛼) (4.9.)  

Where 𝜌𝑎 is the density of sediment grains, 𝜌𝑤 is the density of water, 𝐷 is the grain 

diameter, and 𝛼 is the bed friction angle. The value of 𝜏𝑟∗ depends on 𝑓𝑠, the fraction of 

sand present (Figure 4.4). Generally speaking, the presence of sand enhances the mobility 

of gravel, while the presence of gravel hinders the mobility of sand (Wilcock, 1998; 

Gasparini et al., 1999; Gasparini et al., 2004). If sand makes up less than one-tenth of the 

alluvium, gravel creates an interlocking framework and hinders the transport of both grain 

sizes. Sand mobility therefore becomes a function of gravel mobility. The gravel 

framework becomes less influential for the range 0.1 < 𝑓𝑠 < 0.4, where a greater 

abundance of sand supports a matrix-dominated alluvium. For 𝑓𝑠 > 0.4, the alluvium is 

largely sand-matrix dominated and there is a significant decrease in critical shear stress for 

both sand and gravel (Wilcock, 1998; Wilcock, 2001). 

The mass conservation equation (Equation 4.1) is solved on a Voronoi/Delaunay 

grid using a finite-volume method (Tucker et al., 2001; Tucker and Hancock, 2010). For 

model cells in which the detachment capacity is greater than the local excess transport 

capacity, rate of change of local height depends on the difference between incoming 

sediment and the capacity to transport sediments 

 
∇𝑞𝑐 =

∑ 𝑄𝑠𝑖
𝑖𝑛 − ∑ 𝑄𝑠𝑖

𝑜𝑢𝑡2
𝑖=1

2
𝑖=1

𝑎
 (4.10.)  

where ∑ 𝑄𝑠𝑖
𝑖𝑛2

𝑖=1  (L3 T-1) is the sum of all gravel and sand discharge rates coming into the 

element, ∑ 𝑄𝑠𝑖
𝑜𝑢𝑡2

𝑖=1  (L3 T-1) is the sum of all gravel and sand discharge rates leaving the 
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element, i varies from 1 to 2 representing the two grain sizes, and 𝑎 is the element area. 

Erosion and deposition are calculated for each individual grain size, and sediment-transport 

divergence is calculated using Equation 4.10 and the proportions of the two size classes in 

the active layer. I employ the same active layer configuration as Gasparini et al. (2004) to 

measure bedload texture.  

 
Figure 4.4. Dimensionless reference shear stress for gravel (top) and sand (bottom) 
(modified from Gasparini et al., 2004). Circles represent data from Wilcock (1998). Lines 
represent the transport model designed by Wilcock (2001) and adapted for stream power 
models by Gasparini et al. (1999). Dashed black lines separate zones dominated by gravel 
framework, sand-matrix, and the transition between the two. When 𝑓𝑠 < 0.1, the 
dimensionless reference shear stress for sand 𝜏𝑟𝑠∗ = (0.8𝐷𝑔 𝐷𝑠⁄ )𝜏𝑟𝑔

∗ , where 𝐷𝑔 is gravel 
diameter, 𝐷𝑠 is sand diameter, and 𝜏𝑟𝑔∗  is the dimensionless reference shear stress for gravel. 
This means that 𝜏𝑟𝑠∗  in the range 𝑓𝑠 < 0.1 will vary as a function of grain size ratio. All 
other dimensionless reference shear stress values are independent of grain size. The solid 
grey line shows the sand transport model used in this paper; it is based on my choice of 
grain sizes. The dashed grey line is from Gasparini et al. (1999) and follows the 
experimental data of Wilcock (1998), who used a smaller grain size ratio. Triangle, square, 
and star represent jointed greywacke, fault weak zone, and alluvium units, respectively, 
described previously and explored analytically later in this chapter. 
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4.4.1.3. Additional Parameters 

For the sake of simplicity and because of my focused interest in the fluvial regime 

I approximate natural hillslope processes by a linear diffusion equation 

 𝐻 = 𝑘𝑑∇
2ℎ (4.11.)  

where 𝑘𝑑 is a creep coefficient for alluvium (regolith) with a value of 10-3 m2 a-1 and ∇2ℎ 

is hillslope curvature. There is no soil-creep transport of bedrock, and creep occurs only in 

locations where alluvium thickness is greater than zero.  

The tectonic component of Equation 4.1 

 𝑈 = 𝑉𝑧 + 𝑉ℎ∇ℎ (4.12.)  

is the sum of vertical rock motion relative to baselevel, 𝑉𝑧, and lateral topographic 

advection, 𝑉ℎ∇ℎ, which I assume here to be negligible. A steady, uniform rate of rock uplift 

relative to baselevel, 0.1 mm a-1, is used in order to represent a gently rising and completely 

exposed crustal basement. Sub-meter random noise is applied to the initial model relief in 

order to stimulate the development of a dendritic drainage pattern that strongly contrasts 

with the expected drainage pattern influenced by weak-zone erosion. Because the focus 

here is on erosion of inactive weak zones, none of the modeled weak zones allow for slip 

or further weakening.  

 

4.4.2. Erodibility and Climatic Parameters 

4.4.2.1. Erodibility 

 I require erodibility and texture values for my landscape evolution models. The 

parameters I use are based on measurements from naturally occurring fault weak zones 

such as the one described previously and from the efforts of others (Thomson, 1993; 
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Faulkner et al., 2003; Lockner et al., 2009; Faulkner et al., 2010; Mitchell et al., 2011) 

(Figure 4.5A, B). I assume that bedrock anelastic strength is inversely proportional to 

erodibility (Sklar and Dietrich, 2001; Sklar and Dietrich, 2004) and use the cohesive 

strength-erodibility relation applied by Roy et al. (2015) and adapted from Hanson and 

Simon (2001) 

 𝑘𝑏(𝑥,𝑦,𝑧) = 𝑘𝑐𝐶(𝑥,𝑦,𝑧)
−1 2⁄  (4.13.)  

where 𝐶 is cohesion and 𝑘𝑐 is a coefficient equal to 0.2 with units m1/2 s kg-1/2. Similar 

assumptions have been made for the erosion of cohesive soils (Mirtskhoulava, 1966; 

Mirtskhoulava, 1991; Hanson and Simon, 2001) in attempts to link the mechanical 

properties of the soils to erosion rates.  

 
4.4.2.2. Texture 

Brittle failure governs the initial sediment texture that is introduced by the erosion 

of bedrock (Molnar et al., 2007). Shear abrasion and tectonically inherited fractures are 

both potentially capable of generating PSDs that can be fit to a power law curve with an 

inverse proportionality between grain size and the cumulative abundance of grains 

(Sammis et al., 1986; Sammis and Biegel, 1989; Blenkinsop, 1991; Jébrak, 1997; Bonnet 

et al., 2001; Roy et al., 2012)  

 𝑁≥𝑟 = 𝑘𝑟−𝐷 (4.14.)  

where 𝑁≥𝑟 is the number of grains with median radius ≥ r, k is equal to 𝑁≥1, and D is an 

exponent that determines the scaling of PSDs. A strong argument for power law scaling of 

PSDs produced by the intersection of fractures is the lack of scale dependency in fracture 

growth processes above the molecular level (Sornette and Davy, 1991; Bonnet et al., 2001; 

Saether and Ta’asan, 2004). The exponent D can vary substantially between mechanisms  
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Figure 4.5. Schematic of the model geometry used for strength and texture sensitivity 
analysis. (A) The weak zone dips vertically and strikes orthogonal to the outlet boundary 
(dashed boundary). The strength field is divided into four distinct units to create a 
symmetric strength gradient. From strongest to weakest the units are intact bedrock, 
cataclasite, ultracataclasite, and gouge. (B) Plot of cohesion versus fault width to represent 
the different modeled strength gradients. Colors represent the different weak zone units in 
(A). Erodibility values based on Equation 4.13 are displayed on the right-hand axis for 
reference, and sediment texture data are shown on the right hand axis. Five different 
strength gradients are used for model set 1. I refer to the magnitude difference between the 
intact bedrock and the gouge unit in the weak zone to differentiate each strength gradient. 
Cases range from control, in which no weak zone exists and all bedrock has a uniform 
cohesion of 30 MPa, to 3000X, in which the gouge unit has a cohesion reduced by 3000X, 
from 30 MPa to 10 kPa. The other weak zone units also reduce in cohesion to maintain the 
common gradient pattern. Also included are PSDs for the (C) control, (D) 3X, (E) 30X, (F) 
300X, and (G) 3000X experiments. Ambient tectonic jointing is the primary fragmentation 
mechanism in intact rock, which produces a relatively low D value and relatively high 
proportion of coarse grains by volume. From 3X to 3000X the degree of fragmentation is 
increased and the separation of D values between intact bedrock and gouge becomes more 
significant. Shear abrasion is the dominant fragmentation mechanism in gouge and the 
increase in D value represents an increase in the number of shear abrasion events that 
previously damaged the bedrock. The two circles represent the two grain sizes used to 
represent the PSDs in the sand-gravel transport model. 
 

and the number of fragmentation events (Sammis et al., 1986; Blenkinsop, 1991; Jébrak, 

1997), and can be used to diagnose the fragmentation mechanism (Jébrak, 1997; Barnett, 

2004; Roy et al., 2012).  
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For example, almost all rocks with no deformation history exhibit a low ambient 

fracture density associated with a possible combination of tectonically inherited fractures, 

exfoliation jointing, and bedding planes (Molnar et al., 2007). Infrequent fracture 

intersections are characterized by a relatively small scaling exponent D, reflecting a slight 

preference for small grains at the expense of fractured larger grains. Conversely, frequent 

shear abrasion events in fault weak zones drive grain size reduction and increase the 

cumulate frequency of finer grains at the expense of disintegrating coarse grains. The 

degree of grain size reduction increases significantly within meters from the ambient 

fracture density to the core of a fault weak zone (Ben-Zion and Sammis, 2003b). Localized 

shear abrasion increases fracture density and the scaling exponent D with closer proximity 

to the primary slip surface, until the ambient fracture density signal is no longer discernable 

from the more pervasive shear abrasion mechanism (Figure 4.5C-G). 

The sediment transport model requires these power law PSDs to be represented by 

one population of sand and gravel sized grains each. The two grain sizes should both 

properly represent the transportability of the entire distribution and therefore should have 

significantly different diameters while still representing two abundant grain sizes. The 

cumulate frequency of both grain sizes are calculated using Equation 4.14, and then the 

raw number of grains of each size is calculated by subtracting the number of grains larger 

than the chosen grain size. Sand and gravel volumetric fractions are then calculated, 

assuming all grains are spherical 

 
𝑉 =

4

3
𝜋𝑟3(𝑁≥𝑟 − 𝑁≥𝑟+𝑏) (4.15.)  

 
𝑓𝑠 =

𝑉𝑠
𝑉𝑠 + 𝑉𝑔

 (4.16.)  
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where b is the binning interval for r and 𝑉𝑠 and 𝑉𝑔 are the volumes of sand and gravel, 

respectively. These data are used to determine the volumetric ratio of sand to gravel sized 

grains for use in the sand-gravel sediment transport model. For the purposes of my 

experiments, sand and gravel diameters are 1 mm and 100 mm, respectively, and the 

binning interval is 0.1 mm. The binning interval is necessary to make sure that my volume 

calculation for the sand grain size does not include the cumulate volume of grain sizes 

represented by gravel. 

 

4.4.2.3. Storms 

Discharge is calculated from the product of runoff rate and local contributing 

drainage area. Drainage area in turn is determined using a single-direction downslope 

routing algorithm (Tucker et al., 2001; Tucker and Hancock, 2010). Discharge rates are fed 

by a temporally stochastic distribution of storm events associated with a rainfall intensity, 

a storm duration, and an inter-storm duration chosen at random from exponential 

probability distributions (Tucker and Bras, 2000; Sólyom and Tucker, 2004). Due to the 

large gap between climatic and geomorphic time scales, storm and interstorm durations are 

magnified such that average event spacing is 1000 years; this approach preserves the 

frequency distribution of discharge while improving computational efficiency (Tucker et 

al., 2001). I set mean annual precipitation for my main experiments to 1 m a-1 and assume 

that storm events occur 10% of the time on average in order to replicate the typical climate 

around Henry Saddle (Tomlinson and Sansom, 1994). The experiments must approach a 

steady state elevation condition before I conduct my sensitivity analysis. The use of storm 

events causes the steady state mean elevation to fluctuate within a narrow range (Figure 
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4.6). Due to these frequent storm-induced fluctuations, figures representing sediment 

texture, thickness, and cover are mean values taken after the model has stabilized within 

that narrow range of mean elevation. Sediment transport rates are highly sensitive to the 

frequency and magnitude of storm events (Tucker and Bras, 2000; Sólyom and Tucker, 

2004; Tucker, 2004; Lague et al., 2005), however I choose to include my storm sensitivity 

analysis as Supplementary Material to better focus my discussion on the main objectives 

of this paper. 

 

 
Figure 4.6. Plot of mean elevation over time for the five experiments. All experiments 
approach a condition in which mean height varies only slightly over time, which I interpret 
as a steady state condition (grey region). The model data displayed in Figure 4.7 (except 
elevation) are averaged over the steady state time interval. 
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4.4.3. Predicting Landscape Response 

4.4.3.1. Alluvium Experiments 

 In this section I use the fluvial incision and transport equations described above to 

predict drainage network geometry and the spatial patterns of sediment thickness and 

texture as a channel traverses heterogeneous distributions of rock strength and texture. 

First, consider a simpler comparison between two uniformly textured alluvial substrates 

with no underlying bedrock: one with a texture resembling the coarse grained material 

produced upon the erosion of jointed greywacke in Section 4.2 (9% 1 mm sand, 91% 100 

mm gravel), and the other with a texture resembling the eroded fault gouge (95% 1 mm 

sand, 5% 100 mm gravel). I use Equations 4.6, 4.7, and 4.10 in a 1D version of CHILD to 

determine channel slope and surface texture under the steady state condition of uniform 

and constant erosion rate into alluvium with infinite depth exposed by constant uplift rate. 

The 1D model represents a river longitudinal profile along which the erosion rate is steady 

and uniform, and the discharge increases linearly downstream. 

With a uniform alluvial bed, the model predicts an approximately 16 times contrast 

in channel gradient between profiles developed on coarse (Figure 4.7a, red line) and fine 

sediments (Figure 4.7a, green line). Next, consider a channel that crosses a divide between 

upstream coarse alluvium and downstream fine alluvium (Figure 4.7a, blue line). Under 

these conditions, the texture difference causes a transition in slope, but it occurs further 

downstream. The channel profile above this slope transition reflects the profile of the 

coarse alluvium model, while the downstream slope is similar to the fine grained alluvium 

model. Much of the fine textured substrate is buried by transport of upstream coarse 

alluvium. This reflects adjustment of size fractions in the active layer to allow transport of 
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both fractions at the rate at which they are supplied (Gasparini et al., 1999; Gasparini et al., 

2004). 

 
Figure 4.7. Channel profiles. (A) 1D alluvial models. Red and green lines: uniform coarse 
and fine alluvium substrates, respectively. Blue line: channel crosses coarse alluvium 
upstream and fine alluvium downstream. Location of the texture transition is indicated by 
the black arrow. (B) Channel profiles for 1D alluvial, bedrock, and combined fluvial 
erosion models. Dashed blue line: detachment-limited model in which channel traverses 
strong upstream bedrock and weak downstream bedrock. Solid blue line: mixed bedrock-
alluvial fluvial incision and transport rules; channel traverses strong, coarse-textured 
bedrock upstream and weak, fine-textured bedrock downstream. 
 
 
4.4.3.2. Bedrock and Mixed Bedrock-Alluvium Experiments 

 Now consider an experiment in which I assume the entire channel profile forms by 

fluvial incision into bedrock, and erosion is described exclusively by Equations 4.3 and 

4.13. The channel is divided into strong jointed greywacke (1.7x107 Pa) upstream and weak 

fault gouge (9.9x103 Pa) downstream. Under these conditions, there is an approximately 

42 times difference in slope between the two rock units, occurring at the strength divide 
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(Figure 4.7b, dashed blue line). Finally, I consider both alluvial transport and bedrock 

incision in my experiment, with a combined texture and strength divide halfway down the 

channel profile. Under these conditions (Figure 4.7b, solid blue line), carrying capacity 

across the jointed greywacke exceeds the supply produced by incision, and the upstream 

channel profile is similar to that of the previous experiment (Figure 4.7b, blue dashed line). 

Conversely, the downstream channel section resembles my uniform coarse alluvium 

model, rather than the low relief profile that would be produced if bedrock detachment 

were the rate-limiting process (Figure 4.7b, red line). The downstream channel profile is 

therefore largely shaped by the upstream source of coarse alluvium, not by the underlying 

weak bedrock, leading to a channel that is approximately 16 times steeper than it would be 

if erosion were limited only by the need to detach weak cataclasite material. The texture of 

this alluvium is 10% sand, 90% gravel, which is very similar to the source texture from the 

jointed greywacke.  

 These simple 1D experiments provide basic information about channel profile 

shape across different lithological and alluvial conditions, but they do not take into account 

the 2D distribution of drainage network patterns across a surface, or the 3D distribution of 

heterogeneous mechanical properties of rock. In order to more adequately predict the 

influence of weak zones on the drainage network pattern and the spatial distribution of 

sediments, I turn next to planform (2D) models. 

 

4.4.4. Landscape evolution models: Geometry, Initial and Boundary Conditions 

 Figure 4.5A illustrates the 3D spatial pattern of lithology in the landscape evolution 

model runs. The model domain initially consists entirely of bedrock, with sediments being 
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produced as the rock erodes. The topography is initially flat with a sub-meter scale noise 

applied to the surface; a uniform uplift rate of 0.1 mm a-1 relative to baselevel is applied 

throughout each run. A single, vertically dipping zone of greater erodibility is located in 

the center of the model and strikes orthogonal to the flow outlet boundary on the southern 

terminus of the domain. The cohesion and texture gradients are discretized by dividing the 

weak zone width into parallel planar layers representing the transition from intact, 

crystalline bedrock to cataclasite, ultracataclasite, and fault gouge located at the center of 

the weak zone. Five experiments are run to test the sensitivity of surface processes to 

different bedrock strength and texture gradients; each represents a different increment of 

brittle failure, including a control case with homogeneous cohesion and texture. Cohesion 

in the gouge unit is 1X to 3000X lower than that of the intact bedrock (Figure 4.5B). The 

entire weak zone is 140 m wide. Texture gradients are based on power law PSDs for the 

dominant mechanisms of fragmentation (Figure 4.5C-G), as explained previously.  

 

4.5. Model Results 

4.5.1. Topographic Pattern and Sediments 

 Results of the steady state experiments in Figure 4.8A-E indicate that topography, 

and hence the drainage network pattern, reflects the presence of a weak zone, agreeing with 

the detachment-limited models of Roy et al. (2015). Despite this basic similarity, it is clear 

that in the experiments presented here, particularly those with large strength and texture 

gradients, the conditions within the weak zone can lead to a dominantly alluvial regime. In 

contrast, the control (Figure 4.8A) is completely homogeneous and therefore shows no 

morphologic variations influenced by a strength gradient. In addition, channel conditions  
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Figure 4.8. Experimental results. From left to right are control to 3000X experiments: (A-
E) elevation maps, (F-J) average texture, (K-O) average alluvium thickness, (P-T) the 
percentage of time bedrock is covered by any alluvium thickness, (U-Y) average residence 
time of alluvium. 
 
in the control experiment lead to detachment-limited behavior. The drainage pattern within 

the control is dendritic with no strong directional dependence. Bedrock is only rarely 

covered by relatively thin alluvium (Figure 4.8K, P). Sediment texture becomes 

increasingly fine downstream, as a result of the active-layer enrichment mechanism that 

Gasparini et al. (Gasparini et al., 1999; Gasparini et al., 2004) described, but the fine 

fraction never exceeds 9%, which is the texture contributed by erosion of the intact bedrock 
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(Figure 4.8F). Sediment residence times, calculated as the volume of sediment divided by 

the average sediment flux for every element, approach zero (Figure 4.8U). 

The 3X experiment hosts a small strength gradient, causing tributaries and saddles 

to form in the location of the weak zone. However, the main channel crosses the strength 

gradient and is not strongly influenced by it. Much as in the control, sediments only 

occasionally cover bedrock. Sediment thicknesses do not exceed 1.5 m. The texture field 

is similar to that of the control, except that there is a greater abundance of fine sediments, 

particularly where sediment thickness is greatest. A slope versus area plot for the 3X 

experiment (Figure 4.9B, E) shows that much of the bedrock remains exposed and the 

relationship between channel slope and drainage area matches the expected trend for 

detachment-limited conditions. However, when drainage area exceeds ~3x104 m2, 

sediments begin to influence this relationship. Sediment residence times are similar to the 

control (Figure 4.8V). 

 
Figure 4.9. Slope versus drainage area plots for Experiments control (1X) to 3000X. (A-
E) Colors represent average alluvium texture, grey color represents bedrock channels. (F-
J) Colors represent the percentage of time bedrock is covered by alluvium. Lines represent 
slope-area trends using the stream power equation for intact bedrock (solid), cataclasite 
(dashed), ultracataclasite (dot-dashed), and fault gouge (dotted). 
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Topography produced from the 30X to 3000X strength gradient experiments 

indicates that the weak zones are reflected by straight, high-order channels while the 

surrounding intact bedrock hosts short, orthogonal tributaries of low order (Roy et al., 

2015). These experiments also show an increased prevalence of an alluvial regime 

overlying the weak zone. For the 30X to 3000X experiments, the weak zone is more easily 

eroded and its local sediments are more readily transported by the high order channel 

confined to the structure of the weak zone, leading to relatively low relief. However, 

erosion of the adjacent, more resistant bedrock produces an abundance of coarse-grained 

sediments that are transported down steep tributaries into the weak zone. Sediment 

thickness in the 3000X example can exceed 8 m above the weak zone (Figure 4.8O). From 

tributaries, the weak zone accumulates sediments that are much coarser than the textures 

that would be produced by erosion of the weak zone itself (Figure 4.8H-J). The abundant 

coarse sediments continue to armor the weak zone (Figure 4.8M-O) for the majority of 

steady state time (Figure 4.8R-T). Armoring in the tributaries is minimal by comparison, 

and many of the coarse sediments produced by erosion are quickly deposited as small fans 

in the large valley, as can be seen by the red patches located at the bottom of the tributaries 

in Figure 4.8H-J. The weak zone is less frequently exposed and sediment thicknesses are 

greater for larger strength gradient examples. The relationship between slope and drainage 

area for the 3000X experiment (Figure 4.8E, J) shows that only low order tributaries are 

bedrock dominant. Sediment residence times for the 30X experiment are noticeably larger 

than results from those in the control and 3X experiments (Figure 4.8W), and residence 

time continues to increase for the 300X and 3000X experiments (Figure 4.8X, Y). 
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4.6. Discussion 

4.6.1. Drainage Network Pattern 

  The regional drainage network patterns in my sensitivity analysis reflect the local 

underlying strength and texture gradients when the gouge unit is ≥30X weaker than 

surrounding intact bedrock (Figure 4.8A-E). For my experiments, weak bedrock takes the 

form of a straight corridor that steers surface runoff, leading to the formation of a straight, 

high order trellis channel with orthogonal tributaries of low order. Greater strength 

gradients lead to a greater attraction of surface runoff, but for strength gradients less than 

30X the influence is only local and the main channel is largely dendritic. The control is not 

affected by a strength gradient and therefore produces a dendritic drainage pattern.  

 

4.6.2. Aggradation in Structurally Confined Channels 

4.6.2.1. Weak Zones and Sediment Storage 

The relatively low bedrock relief in the model’s fault weak zones leads to 

intermittent aggradation of coarse sediments. The alluvium thickness, percentage of time 

bedrock is armored, and the residence time of sediments, are all proportional to the 

magnitude of strength difference between intact rock and weak zone. Channel slopes in the 

model’s weak zone exceed the equilibrium slope expected for detachment-limited 

channels, implying that sediment transport is the rate-limiting factor (Figure 4.9E). The 

tributaries that connect orthogonally to the structurally confined channel cross the strength 

and texture gradients, bringing gravel-dominant alluvium downslope from steep bedrock 

channels into the low relief weak zone.  
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Much as in my 1D experiments in the previous section, the sharp decrease in slope 

expected between intact bedrock and the gouge unit, up to ~55 times for the 3000X 

experiment, causes a sharp decrease in carrying capacity in the structurally confined 

channel. The structurally confined channel attracts drainage from a relatively large area 

with multiple sources of coarse sediment (Figure 4.8A-E). Coarse sediments aggrade above 

the weak zone in the 30X-3000X experiments, establishing an equilibrium slope dependent 

predominantly on the texture of incoming gravel-dominant alluvium, rather than on the 

erodibility of underlying bedrock (Figure 4.8F-J). Armoring by gravel-dominant alluvium 

reduces the frequency of bedrock exposure, and frequency decreases with greater 

erodibility.  

The relationship between channel slope and drainage area depends on the 

percentage of time that bedrock is covered by alluvium, and if it is often covered, the 

texture of the overlying sediment. For the weak zone, coarse sediments increase the 

steepness of the main channel to the point at which channel slope is set by the flux and 

texture of alluvium rather than by the erodibility of the underlying bedrock.  

 

4.6.2.2. Downstream Fining 

The modeled alluvial active layer fines downstream, particularly at the major slope 

transition for tributaries that pass from intact bedrock to weak zone. Fans of coarse 

alluvium deposit at the confluence of the tributaries and the structurally confined channel 

(Figure 4.8F-J) and cause a local increase in frequency of bedrock armoring (Figure 4.8P-

T). Texture fining from tributary to main channel also correlates with an increase in the 

percentage of time bedrock is covered, and both are due to the sharp transition in slope and 
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the distance from the gravel sediment source. The path of the structurally confined channel 

is occasionally deflected by the coarse alluvial fans (Figure 4.10). Along the structurally 

confined channel the average alluvial texture is finer than in these coarse fans. In nature it 

is common for rivers to bend around growing alluvial fans formed by tributaries with high 

sediment yield. For example, the Salween River, located in the Eastern Syntaxis of the 

Himalayas, is a large river that follows the Bangong-Nujiang tectonic suture (Hallet and 

Molnar, 2001; Liu et al., 2011). Short, steep tributaries along the Salween deposit large 

amounts of coarse sediments in fluvial fans, such as the Fugong fan shown in Figure 4.10B, 

causing the path of the high order river to deflect around the fan. Similar fluvial responses 

to large sediment pulses exist in the Navarro River (Sutherland et al., 2002; Cui, 2003) and 

Lava Falls on the Colorado River (Webb et al., 1999).  

 
Figure 4.10: Revisiting texture map of 3000X experiment. (A) Black box indicates section 
of high order, structurally confined channel deflected by coarse alluvial fans deposited by 
steep tributaries. (B) Along the Salween River, located at yellow dot on reference map of 
Eastern Himalayan Syntaxis, similar coarse alluvial fans form. Fugong alluvial fan, 
highlighted in red, is fed by steep bedrock tributaries indicated by dotted white lines. Black 
lines indicate flow direction of Salween River. 

 

The model equations that I use to approximate landscape evolution create a 

simplified balance between uplift and erosion averaged over geologic time scales, yet by 

incorporating stochastic variations in discharge, the model accounts for the formation of 
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the short-term, transient alluvial fans. This pattern suggests that, for my purposes, storm 

events are adequately approximated with a stochastic distribution and that the model 

equations provide sufficient theory to account for transitions between the rate-limiting 

fluvial processes of erosion and transport. 

 

4.6.2.3. Occasional Bedrock Exposure in the Weak Zone 

Under steady-state conditions, bedrock in the weak zone must occasionally become 

exposed and erode, in order for bedrock erosion to keep pace (on average) with the rate of 

baselevel fall. Figure 4.11 displays longitudinal profiles of the structurally confined 

channel in the 3000X experiment at three time steps. Based on my numerical experiments, 

the weak zone can act as a sediment storage location but bedrock is expected to become 

exposed intermittently. Intermittent bedrock exposure can lead to intermittent knickpoint 

migration (Figure 4.11C) because upon exposure the channel slope exceeds the equilibrium 

slope of weak zone bedrock without alluvial armoring (Figure 4.9C-E, H-J). The armored 

bedrock will increase in slope in concert with the alluvium until sediments mobilize and 

the alluvium layer thins, exposing the weak bedrock for a relatively short duration. The 

irregular bedrock topography underlying the alluvium implies that the channel periodically 

avulses and then re-incises whenever the bedrock becomes exposed, presumably creating 

epigenetic gorges that eventually become filled with alluvium from tributaries (e.g. Ouimet 

et al., 2007). The frequency of bedrock exposure decreases upchannel in the weak zone 

and increases upchannel in the tributaries (Figure 4.8 P-T). However, based on my 

numerical experiments I suggest that in a natural setting, the intermittent exposure and 
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incision of bedrock only plays a short-term role in the local evolution of channel slope in 

the weak zone, which is dominated by the upstream gravel source. 

 These experimental results agree well with observations from the Peikang River in 

Taiwan. Yanites at al. (2011) noted that incision rates in the Peikang River are proportional 

to 1) the frequency of bedrock exposure and 2) stream power. This field analysis occurred 

after the 1999 Chi Chi earthquake, in which an excess of sediments was introduced from 

hillslopes into the river, increasing the average thickness of alluvium, decreasing the 

frequency of bedrock exposure, and subsequently decreasing incision rates (Hsu et al., 

2010; Yanites et al., 2010; Yanites et al., 2011).  

 
Figure 4.11. Longitudinal channel profiles for 3000X experiment. (A) time 0.5 Ma, (B) 
time 7.5 Ma, (C) time 10 Ma. Black area represents alluvium covering bedrock. Before 
approaching a steady state, few gravel-dominant sediments are transported from outside of 
the weak zone. Bedrock in the weak zone is largely exposed, and the sand-dominant 
sediments produced by weak zone erosion have a short residence time. Tributaries begin 
to mobilize gravels by eroding the intact bedrock, causing them to armor the weak, low 
relief weak zone. Bedrock must occasionally become exposed due to the steady and 
uniform uplift pattern. Dashed blue line is the profile of a detachment-limited experiment 
with an identical strength gradient. 
 
 
 
4.6.2.4. Sediment Residence Time 

 The occasional exposure of bedrock in the weak zone limits the residence time of 

the armoring sediments (Figure 4.8U-Y). Sediment residence time correlates with the 

relative strength difference between weak zone and intact rock. A greater relative strength 

difference reduces relief above the weak zone and allows for greater sediment volumes to 
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accumulate during aggradation. Conversely, average sediment residence times in the 

control are negligible and agree with the extremely low percentage of time bedrock is 

covered by alluvium. Residence times are greatest near where the weak zone intersects the 

northern boundary for the 30X to 3000X experiments, which reflects the tendency for 

bedrock exposure to initiate near the flow outlet boundary and intermittently migrate 

upchannel. In these numerical experiments, sediments are stored along the edges of the 

channel (small colored packets, Figure 4.8W-Y) and remain in place until the channel 

changes course. 

 

4.7. Conclusions 

 My model-based analysis of lithologic controls on grain size and rock erodibility 

implies that drainage network patterns should be highly sensitive to the mechanical 

weakness, fine texture, and persistent low relief associated with fault weak zones. Field 

observations of fault weak zone erosion in the South Island of New Zealand also suggest a 

strong sensitivity between rock damage, grain size distribution, and erosion susceptibility. 

The sharp transition in erodibility and sediment texture between intact and damaged rock 

can cause rivers to become structurally confined. Coarse gravel generated from erosion of 

steep bedrock channels leads to pervasive armoring of the low relief weak zone. The 

alluvium that armors the weak zone is coarser than the sediments produced by its erosion, 

causing the relief within the structurally confined channel to increase as a function of 

alluvium texture, rather than the erodibility of the underlying rock. Occasionally the 

damaged rock becomes exposed for short periods of time. This periodic exposure allows 

for continued incision of bedrock, but has a negligible long-term influence on channel 

116



slope. Sediment residence times increase with greater strength difference between intact 

and damaged rock as a function of relief. Storms that are more frequent but less intense are 

less able to transport the coarse gravel that deposits in structurally confined channels. 

Structurally confined channels can store sediment between storms and act as pathways for 

sediment transport during storms, and their influence can be pervasive through a landscape 

due to the extreme difference in strength and texture. 
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CHAPTER 5 

MULTI-SCALE CHARACTERIZATION OF TOPOGRAPHIC ANISOTROPY 

 

5.1. Chapter Abstract 

 I present a method for quantifying orientation and scale dependence of topographic 

anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface 

evolution. Using multi-directional variogram statistics to track the spatial persistence of 

elevation values across a landscape, I calculate anisotropy as a multiscale, direction-

sensitive variance in elevation between two points on a surface. Tectonically derived 

topographic anisotropy is associated with the three-dimensional kinematic field, which 

contributes 1) differential surface displacement and 2) crustal weakening along shear 

zones, both of which amplify processes of surface erosion. Based on my analysis, tectonic 

displacements dominate the topographic field at the scale of mountain ranges, while a 

combination of the local displacement and strength fields are well represented at the ridge 

and valley scale. Drainage network patterns tend to reflect the geometry of underlying 

active or inactive tectonic structures due to the rapid erosion of faults and differential 

displacement across the fault. The persistence and complexity of correlated anisotropic 

signals depends on how the strain field evolves with time: new tectonic regimes can 

overprint the original topographic signal, or the signal can slowly recede as tectonism halts. 

Regions that have been largely devoid of strain, such as passive coastal margins, have 

predominantly isotropic topography with typically dendritic drainage network patterns. 

These methods can be used successfully to infer the settings of past or present tectonic 
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regimes, and can be particularly useful in predicting the location and orientation of 

structural features that would otherwise be impossible to interpret in the field. 

 

5.2. Chapter Introduction 

 Landforms are shaped by the coupled tectonic and climatic processes that drive 

advection and erosion of rock and transport of sediments. This allows us to make robust 

interpretations about the geological history of a landscape purely by study of its 

topography. It is well recognized (e.g. Bercovici and Ricard, 2014; Koons, 1995; Koons et 

al., 2012; Montési and Zuber, 2002; Montési, 2004; Upton and Craw, 2014; Upton et al., 

2009) that the rheological responses of rock to tectonic and topographic stresses determine 

how strain and associated weakening are partitioned at and below the Earth’s surface. The 

typical rheological response in the upper crust is to localize strain along fault damage 

zones, which introduces discontinuities in rock strength and uplift relative to baselevel (e.g. 

Ben-Zion and Sammis, 2003; Faulkner et al., 2010; Mooney et al., 2007; Sammis et al., 

1986; Sibson, 1977). Further still, the planar geometry and orientation of fault damage 

zones are grossly predictable based on the tectonic stress field (Coulomb, 1773; Terzaghi, 

1944; Enlow and Koons, 1998). Tectonic strain therefore introduces directionally 

dependent characteristics of rock displacement and damage, both of which influence the 

pace of geomorphic responses (Molnar et al., 2007; Roy et al., in press). As a result, 

drainage network patterns often reflect the underlying anisotropy of fault damage zones, 

whereas in the absence of strain, drainage network patterns are largely isotropic (Roy et 

al., 2015). 

119



 By measuring topographic anisotropy, or the directional dependence of landforms 

from the scale of valleys and ridges to entire basins and orogens, I can make an assessment 

of the magnitude and orientation of past or present tectonic strain fields across multiple 

length scales. My approach is to create and utilize an every-direction variogram analysis 

(EVA) technique to quantify topographic anisotropy at multiple scales for any point on a 

surface. My goal is to make useful first-order interpretations of how topography contains 

multiscale, spatially dependent information about past and present tectonic strain 

conditions using simple parallel CUDA code. Specifically, I use EVA on landforms with 

distinct patterns of anisotropy associated with tectonic strain, river incision, and/or 

sediment deposition, in order to establish a generalized model for linking the topographic 

fabric to its formative process. Several synthetic landscapes and natural landscapes from 

New Zealand are featured in order to test the versatility of my method. I then compare EVA 

to the self-affine power law scaling method, a popular method for examining the directional 

dependent and fractal properties of landscapes (Xu et al., 1993; Dodds and Rothman, 2000; 

Sung and Chen, 2004), in order to understand how these two methods differ in sensitivity 

to directional dependent landscape fabrics. I conclude with a short discussion on possible 

future uses and improvements to EVA.  

 

5.3. Every-Direction Variogram Analysis (EVA) 

5.3.1. Statistical Method 

 There is no single method of classification that will adequately characterize and 

compare the spatial distribution of directional dependence. Some have characterized 

directional dependence by drawing correlations between the orientations of streams and 
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bedrock joints (e.g. Ericson et al., 2005; Judson and Andrews, 1955), while others have 

made useful qualitative descriptions of drainage patterns with respect to strength and uplift 

gradients and thresholds (e.g. Lubowe, 1964; Zernitz, 1932). Watershed hypsometry (e.g. 

Lifton and Chase, 1992; Walcott and Summerfield, 2008) and directional dependent fractal 

analysis (Sung and Chen, 2004) have recently become useful tools for interpreting the 

influence of spatially variable conditions. Still others have used tortuosity to determine the 

directional dependence of individual rivers and their correlation to structural features (Roy 

et al., in press). However, these methods provide limited information about the spatial 

distribution or directional dependence of anisotropy, are often limited to a single spatial 

scale, or they do not fully represent all components of the landscape. For this reason I 

explore the directional and scale dependencies of topography using the variance of 

elevation along a surface (Kitanidis, 1997; Trevisani et al., 2009; Koons et al., 2012). EVA 

is an improvement on previous variogram methods because elevation variance is calculated 

between multiple points at multiple scales and multiple directions, leading to a rich 

quantitative determination of anisotropy magnitude and orientation at multiple scales for 

every point on a landscape. I measure variance  𝑣2 using the statistical method 

 𝑣2 = [𝑧(𝑥, 𝑦) − 𝑧(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)]2 (5.1.)  

where 𝑧(𝑥, 𝑦) is the elevation at a point with coordinates 𝑥, 𝑦, and 𝑧(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) is 

the elevation at a point with a separation distance, or wavelength, equal to ∆𝑥, ∆𝑦 using a 

2D Cartesian coordinate system (Figure 5.1A). In order to measure directional dependence 

I must calculate variance over multiple separation distances and directions within a large 

population of elevation data. Separation distance s is a length scale equal to or greater than 

the spatial resolution of topographic data. Divided into Cartesian components: 
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 ∆𝑥 = 𝑠 cos 𝜑 , 

∆𝑦 = 𝑠 sin 𝜑 
(5.2.)  

where 𝜑 is the angle between the two points, taken at 5˚ intervals for my analysis. For 

simplicity I average variance in opposing directions, assuming that directional dependence 

is symmetric (Figure 5.1A). Variance is also averaged over separation distance in order to 

reduce the signal of small scale features over long separation distances 

 
𝑣2(𝑠, 𝜑) =

1

2𝑠
∑[𝑣2(𝑖, 𝜑) + 𝑣2(𝑖, 𝜑 + 180)]

𝑠

𝑖=1

 (5.3.)  

where 𝑣2(𝑠, 𝜑) is the variance, averaged along all separation distances i = 1 to s for angles 

𝜑  and 𝜑 + 180 (Figure 5.1B). In other words, 𝑣2(𝑠, 𝜑) represents the average variance 

over all separation distances up to and including s for one orientation. The minimum 

variance for every separation distance and its respective angle are recorded in addition to 

the variance values orthogonal to the minimum values (Figure 5.1C, D). Anisotropy is the 

ratio between these two variance values 

 
𝛼𝑠 =

𝑣𝑐
2 + 𝑣2(𝑠, 𝜑𝑚𝑖𝑛 + 90)

𝑣𝑐
2 + 𝑣2(𝑠, 𝜑𝑚𝑖𝑛)

 (5.4.)  

where 𝛼𝑠 is anisotropy measured at multiple separation distances, and 𝑣𝑐
2 is equal to the 

variance of the relative vertical error estimate of the dataset (𝑣𝑐
2 = 36 m2 for SRTM3 data, 

𝑣𝑐
2 = 100 m2 for SRTM30 data) used to diminish extreme variance sensitivity at the smallest 

scales that could be attributed to error (Rabus et al., 2003). The anisotropy can then be used 

to quantitatively interpret the directional dependence of elevation at a single point (Figure 

5.1E, F), or multiple points on a surface, which I discuss in Section 5.4. This method can 

be used to quantify the anisotropy of any spatially variable parameter, but I limit the scope 

of this paper to elevation. 
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Figure 5.1. An example grid in which I apply my variance algorithm. (A) Starting at 𝜑 =
0˚ with separation distance equal to the grid resolution, calculate variance between center 
point and points 0˚ and 180˚ and separation distance 1 away from center (red arrows). Also 
calculate variance for points orthogonal to 0˚ and 180˚ (blue arrows). (B) Separation 
distance is doubled and variance values are calculated for the new scale. The variance for 
this scale is the average of the new variance and the variance calculated at the previous 
separation distance. (C) Variance is now measured for 𝜑 = 10˚, 190˚ and 𝑠 = 1. The new 
variance value does not exceed the previously calculated value at the given scale and is 
therefore not used to measure anisotropy. (D) The calculation is repeated at the second 
scale, variance is less than the previous calculation and so is now used to measure 
anisotropy for s = 2. (E) Anisotropy is taken by dividing the minimum variance from the 
variance value measured at a perpendicular angle. The anisotropy value is the magnitude 
difference in variance for the two perpendicular directions, represented by an ellipse in the 
figure. (F) The azimuth and magnitude of anisotropy is measured over multiple scales. Red 
ellipses represent topographic anisotropy magnitude (ellipticity), orientation (direction of 
semimajor axis), and wavelength (length of semimajor axis). 
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5.3.2. Computational Method for Generating Anisotropy Maps with EVA 

 The statistical method mentioned above is deployed in parallel for CUDA, a C-

based programming model developed by NVIDIA to accelerate the execution time of 

numerous parallel statistical calculations by taking advantage of a Graphical Processing 

Unit (GPU) (Wilt, 2013). The elevation files read by EVA contain elevation integer data 

in meters for coordinates in degree decimal units at an isotropic resolution of 30 arc seconds 

for Section 5.4.1.6. and 3 arc seconds for all other examples. All of the elevation data are 

used for the calculation, but anisotropy is only calculated for points that are at least 

separation distance s away from the boundaries of the elevation data due to the lack of data 

beyond the spatial limits. For every point, anisotropy is measured over a scale interval 

covering three orders of magnitude. Data processing follows the flow chart in Figure 5.2. 

First, the integer values of elevation are extracted from the elevation data file and stored in 

a C matrix. Then the matrices and variables required in the CPU and the GPU are 

initialized. A CUDA kernel is then launched such that each point in the matrix containing 

the elevation data is a thread. The data passed to the kernel are the elevation matrix and the 

angle array that contains angles in five degree intervals from 0 to 175. For each of the 

threads in the GPU the code loops through the scales to calculate variance for all angles in 

the angle array and determines the azimuth and anisotropy for that particular scale. At the 

end of the kernel for each (x,y) point in the elevation data matrix, azimuth and anisotropy 

values are produced for all scales and these values are transferred to the CPU where they 

can be saved to disk. 
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Figure 5.2. Flow chart for the EVA algorithm. 

 

5.3.3. Methods for Delivering Anisotropy Data 

 Using the equations above it is possible to quantify anisotropy magnitude and 

direction at any wavelength and any point on a landscape. Information about anisotropy 

magnitude, orientation, and wavelength for every point on a surface can become difficult 

to visualize in a meaningful way, so I choose to pursue a three-stage method for delivering 

anisotropy data from EVA.  
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I. First, I create surfaces that resemble very simplified versions of my natural 

landscape examples, and measure anisotropy at a single point on each surface. 

I do this in order to understand the basic shape of anisotropy produced by the 

process that builds that characteristic shape.  

II. Second, after I have determined the basic pattern of anisotropy from the simple 

surfaces, I perform the same analysis on the natural landscape example. The 

position of the point used for this analysis should be similar to the point 

measured in stage one to validate a comparison. In both cases I use ellipses to 

represent anisotropy (see Figure 5.3F).  

III. Third, I use EVA to calculate anisotropy data for all points on the landscape in 

order to fully represent the regional topographic fabric and the spatial variations 

found within. The analysis of multiple points enhances my ability to see local 

changes in anisotropy that could otherwise become lost in the average 

topographic fabric or misrepresented by a single point analysis. The use of 

thousands of ellipses is prohibitive for this multipoint analysis, so I plot two 

different colors representing the magnitude and orientation of anisotropy for a 

single scale at every point. The use of color to represent the orientation and 

magnitude of anisotropy is not unlike electron backscatter diffraction maps 

produced for interpretation of crystallographic preferred orientations (Dingley, 

2004; Schwartz et al., 2009). 
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5.4. Topographic Fabric in New Zealand 

 I use field locations in New Zealand for my statistical analysis of topographic 

anisotropy. The Southern Alps of New Zealand (Figure 5.3A) are an orogenic mountain 

range wrought from the oblique collision of the Australian and Pacific tectonic plates. 

Uplift of crust relative to the regional baselevel has produced a mountain range with a 

directional dependence dictated by the orientation of the Alpine Fault (Koons, 1990; 

Koons, 1994; Little et al., 2005) and rheological variations along strike (Upton et al., 2009; 

Upton and Craw, 2014) (Figure 5.3C). Within the Southern Alps, typically at length scales 

of 20 km or less (Koons, 1994; Koons, 1995; Koons et al., 2012), rock damage in fault 

structures influences the position and erosive power of streams and rivers as they incise 

into the uplifting orogen. The largest rivers in the Marlborough district are influenced by 

damage and deformation along major active tectonic structures (Wilson et al., 2004; Craw 

et al., 2008) (Figure 5.3D). Conversely, in the Wairoa region fluvial incision produces 

dendritic drainage patterns as it incises into a largely homogeneous and uniformly uplifted 

siltstone (Crosby and Whipple, 2006) (Figure 5.3B). Sediments course through drainage 

networks in the Southern Alps and some deposit in the large, planar delta of the Canterbury 

Plains region (Figure 5.3E) (Leckie, 1994). On the North Island, volcanism has led to the 

creation of monolithic stratovolcanoes, such as Mt. Taranaki (Figure 5.3F) (Grant-Taylor, 

1964; Harrison and White, 2004). 

 

5.4.1. EVA Results: Anisotropy Maps 

 I apply EVA to the dendritic (Wairoa, Figure 5.4), deformational (Central Otago, 

Figure 5.5), fault damage and deformation (Marlborough, Figure 5.6), planar (Canterbury  
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Figure 5.3. Topographic maps. (A) New Zealand and the regions of (B) Wairoa, (C) 
Central Otago, (D) Marlborough, (E) Canterbury Plains, and (F) Taranaki. These locations 
are used for further analysis. Map A uses topographic data from the SRTM30 mission (~1 
km resolution) and bathymetric data from the ETOPO1 mission (~2 km resolution). Maps 
B-F use topographic data from the SRTM3 mission (~90 m resolution) (Rabus et al., 2003). 
Please note scale change between maps and the difference in scale between bathymetric 
and terrestrial elevation data in map A. 
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Plains, Figure 5.7), and monolithic (Mt. Taranaki, Figure 5.8) topographic patterns of New 

Zealand, as well as a larger scale analysis of the entire South Island (Figure 5.9). 

Topographic anisotropy was measured from 0.1-10 km for the local examples and 1-200 

km for the South Island example. 

 

5.4.1.1. Dendritic: Natural Example - Wairoa 

Dendritic fluvial networks can display significant relief, but directional dependence 

may vary significantly with the variable scale of river meanders. I replicate the dendritic 

shape of a fluvial landscape by using the landscape evolution model CHILD (Figure 5.4A) 

(Tucker et al., 2001). This model surface is the product of stream power under uniform 

environmental and geomorphic conditions.  

Changes in orientation are common over multiple wavelengths of measurement in 

the synthetic experiment (Figure 5.4A). Anisotropy measurements are taken at a point 

located on a low order channel just before confluence with a higher order channel. At a 

wavelength up to 0.4 km, anisotropy is dominated by the low order channel, but at the 1 

km wavelength the high order channel begins to influence anisotropy, and it eventually 

dominates at longer wavelengths. Meandering rivers and streams in the Wairoa District of 

New Zealand display a similar spectrum of anisotropy magnitude and orientation from the 

reference of a single point (Figure 5.4B). In this natural case there are four wavelengths 

that display a significant shift in orientation. Anisotropy magnitude is greatest at short 

wavelengths, before the first large shift in orientation (below 6.25 km), but wanes at longer 

wavelengths as the orientation of dendritic channels become less consistent.  
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Figure 5.4. Anisotropy of dendritic landform. Dendritic surface (A) created from a stream 
power-based landscape evolution model created on a uniform substrate. Greyscale: black 
is low, white is high elevation for this and all proceeding synthetic examples. Anisotropy 
of single point represented by red ellipses for this and all following figures (see Figure 
5.2E,F). (B) Anisotropy measured at single point in Wairoa region. Numbers represent the 
wavelength in kilometers for the indicated ellipses. Anisotropy measured up to maximum 
wavelength of 18.75 km. See Figure 5.1A for elevation color scale for this and all 
proceeding natural examples. (C) Anisotropy magnitude (Equation 5.4) and (D) orientation 
map at 1 km, (E) (F) 5 km, and (G) (H) 10 km wavelength. Color scales for both map types 
on left are used for this and all following figures.  
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 The Wairoa region hosts a mélange of anisotropy at a short wavelength, in 

agreement with the single point analyses above. Anisotropy magnitude (Figure 5.4C) and 

orientation (Figure 5.4D) are highly variable across sub-kilometer distances. Anisotropy is 

greatest at 1 km wavelength (Figure 5.4C-G). There are some cases where anisotropy 

persists at 10 km wavelength along the large ridges separating higher order channels, 

otherwise the topography becomes generally isotropic (Figure 5.4G). At 5-10 km 

wavelength, there is generally a divide between an average west-northwest orientation on 

the west side of the Wairoa River and an east-northeast trend on the eastern side (Figure 

5.4F, H). To the south, the Wairoa River valley generally trends to the north-northeast.  

 

5.4.1.2. Deformational: Natural Example - Central Otago  

The deformational signal in topography is associated with tectonic strain from 

differential plate motion. I replicate a fold pattern formed in convergent margins with a 

simple sinewave function (Figure 5.5A). This deformation pattern is similar to the fold-

thrust belts of the Appalachian and Zagros Orogens (Chapple, 1978; Williams and Hatcher, 

1982; Tucker and Slingerland, 1996). A point chosen at the trough of the synthetic 

waveform notices a gradual increase in anisotropy with increasing wavelength and 

orientation remains parallel to the fold axis (Figure 5.5A).  

Central Otago is characterized by widely distributed deformation caused by 

tectonic strain in a weak lower crust (Upton et al., 2009). Limited rainfall in this region 

(~200 mm a-1 (Tomlinson and Sansom, 1994)) has preserved the antiform-synform pairs 

associated with this type of deformation (Figure 5.3C). I measure anisotropy at two points: 

one in the Manuherikia River valley (Figure 5.3C; red ellipses, Figure 5.5B), and one in 
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Figure 5.5. Anisotropy of deformational landform. Sine wave surface (A) used as a 
simplified replication of synform-antiform pairs found in Central Otago. (B) Anisotropy 
measured at two points in Manuherikia River Valley  (red) and the secondary gorge 
(yellow). Numbers represent the wavelength in kilometers for the indicated ellipses. 
Anisotropy measured up to maximum wavelength of 25 km in the valley, 7.5 km in the 
gorge. (C) Anisotropy magnitude  and (D) orientation map at 1 km, (E) (F) 5 km, and (G) 
(H) 10 km wavelength. 
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a secondary gorge on the Dunstan Range (Figure 5.3C; yellow ellipses, Figure 5.5B). As 

expected from the synthetic example, the fold axis-parallel trend in anisotropy exists at 

both locations, but only beyond a wavelength of 6.25 km at Manuherikia River Valley and 

1.25 km in the secondary gorge. Below these wavelengths, both locations exhibit a 

northwest trend that matches the trend of small gorges, ravines, and streams, but opposes 

the general northeast orientation of the synform-antiform pairs and the larger rivers. 

Anisotropy magnitude increases with wavelength for both cases. 

 At a wavelength of 1 km, anisotropy is strongest along the reach of the Clutha River 

and the anisotropy signal is dominated by rivers, streams, and ravines (Figure 5.5C). The 

Clutha River follows the axis of a synform valley to the north but crosses the Dunstan 

Range through Cromwell Gorge (Figure 5.3C), which follows the active River Channel 

Fault (Thomson, 1993). Orientation is spatially variable at the 1 km wavelength (Figure 

5.5D), dominated by streams that incise into the antiform ridges and generally trend 

orthogonal to the fold axis. At greater length scales (Figure 5.5E-G), anisotropy 

orientations begin to follow the fold axes of the antiform-synform pairs and the anisotropy 

signal begins to increase along the fold axes of the synforms. The Clutha River anisotropy 

signal is mostly diminished at this longer wavelength except for where it follows the 

synform axis at Lake Dunstan. Anisotropy along the antiform ridges has a somewhat 

uniform orientation at the 10 km wavelength but a much lower anisotropy compared to the 

synform valleys. 
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5.4.1.3. Fault Damage and Deformation: Natural Example - Marlborough 

Topographic patterns associated with fault damage features suggest that surface 

processes are sensitive to the rapid erosion of faults, fractures, and other mechanical defects 

in the crust (e.g. Becker et al., 2014; Ericson et al., 2005; Koons, 1994; Koons et al., 2012; 

Molnar et al., 2007; Scheidegger, 1979). I replicate the shape of fault erosion and uplift in 

my synthetic landscape by applying a narrow trough of low elevation in a flat plateau of 

high elevation (Figure 5.6A). The ridge and valley fabric associated with drainages 

confined or influenced by fault damage leads to extreme local anisotropy in the form of 

long, anomalously straight river reaches (Figure 5.6A). Ridges that separate the eroded 

fault zones are wider and exhibit the same directional dependence but with lower 

magnitude anisotropy. 

The region of Marlborough, New Zealand hosts a series of nearly vertically dipping 

NE trending strike-slip faults associated with pervasive distributed strain in the lower crust 

(Wilson et al., 2004; Craw et al., 2008). However, there is also a component of shortening 

perpendicular to fault strike that has led to orogenesis (Van Dissen and Yeats, 1991). For 

this reason the topographic shape of Marlborough cannot be attributed completely to fault 

damage, but the drainage network pattern in this region does appear to reflect the 

Marlborough Fault System. In this natural example, anisotropy is greatest in the large river 

valleys that coincide with large fault zones (Figure 5.6B). This strong signal of anisotropy 

persists at longer wavelengths.  

 Anisotropy along the anomalously straight valleys is extremely high and orientation 

is persistent at all wavelengths (Figure 5.6C-H). The small tributaries that incise into the 

valley walls and ridges influence the topographic fabric at the 1 km wavelength, producing  
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Figure 5.6. Anisotropy of structural landform. Low relief trough bisecting high relief 
plateau (A); a simplified replication of fault damage influenced topography. (B) 
Anisotropy measured at single point in Marlborough. Anisotropy measured up to 
maximum wavelength of 37.5 km. (C) Anisotropy magnitude  and (D) orientation map at 
1 km, (E) (F) 5 km, and (G) (H) 10 km wavelength. 
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a high local signal of anisotropy with an orientation roughly orthogonal to the large rivers 

draining northeastward (Figure 5.6D). From 1 km to 5 km wavelength, topographic 

orientation in ridges and valley walls tends to align with the large rivers, shifting in an east-

northeast direction, particularly in eastern and southern Marlborough (Figure 5.6F). In 

Western Marlborough and around Lewis Pass, the dominant orientation becomes north-

northwest following other valleys that correlate with other fault structures (Craw et al., 

2013). There is a significant decrease in anisotropy magnitude in ridges and valley walls 

at greater wavelength, coinciding with the change in orientation (Figure 5.6G, H). In the 

western part of the Marlborough region, erosion along intersecting faults causes 

segmentation of ridges, further reducing ridge anisotropy.  

 

5.4.1.4. Planar: Natural Example - Canterbury Plains 

 Planar topographic patterns offer minimal topographic relief over kilometer length 

scales. I replicate the flat, gently dipping form of large deltas in my synthetic landscape by 

applying a flat plane with low dip angle (Figure 5.7A). Variance tends to be relatively low 

in all directions due to the lack of relief, represented by circular, generally equant ellipses 

at short length scales (Figure 5.7A). Anisotropy does increase with greater separation 

distance along the contour of the plane because variance persistently approaches zero 

perpendicular to the slope. If the planar feature had no slope, the signal would be isotropic. 

The degree of anisotropy is proportional to the surface gradient. In Canterbury Plains, New 

Zealand, large amonts of alluvium have deposited to form a planar delta gently dipping to 

the southeast (Leckie, 1994). The natural example follows a similar trend but shows slight  
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Figure 5.7. Anisotropy of planar landform. Plane gently dipping southeast (A); a simplified 
replication of low relief planar topography found in Canterbury Plains. (B) Anisotropy 
measured at single point in center of Canterbury Plains delta. Anisotropy measured up to 
maximum wavelength of 25 km. (C) Anisotropy magnitude  and (D) orientation map at 1 
km, (E) (F) 5 km, and (G) (H) 10 km wavelength. 
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changes in orientation associated with small, kilometer scale lateral changes in surface 

slope (Figure 5.7B).  

 The 1 km wavelength pattern displays homogeneous isotropy across the Canterbury 

Plains delta, in agreement with the single point analysis (Figure 5.7C). The delta is 

dominantly isotropic but there is a small degree of anisotropy and orientation change 

associated with the Waimakariri River and small local hills and ridges. Orientation on the 

delta is more variable but there is a small majority of northeast trending data points south 

of the Waimakariri River (Figure 5.7D). Outside of the delta the pattern of anisotropy 

reflects a ridge and valley topography associated with fluvial incision, particularly visible 

on Banks Peninsula. Anisotropy in the delta is slightly greater at 5-10 km wavelengths, and 

orientation is parallel to the general northeast strike of the tilted delta surface (Figure 5.7E-

H). The steep topography along the Southern Alps to the northwest and the Banks 

Peninsula to the southeast create a spike in anisotropy along the perimeters in the delta 

(Figure 5.7G).  

 

5.4.1.5. Monolithic: Natural Example - Taranaki 

 Monoliths tend to be largely isotropic at their peaks, due to their isolation from 

other high relief features. I replicate the shape of an isolated stratovolcano in my synthetic 

landscape by applying a cone shape with maximum elvation centered on the surface (Figure 

5.8A). Unlike previously discussed topographic patterns, monolith peaks are persistently 

isotropic at all scales because variance is extremely high in all directions from the peak, as 

can be seen in the the concentric equant ellipses of Figure 5.8A. Mt. Taranaki dominates  
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Figure 5.8. Anisotropy of monolithic landform. Idealized cone shape (A); a simplified 
replication of monolithic stratovolcano Mt. Taranaki. (B) Anisotropy measured at single 
point at peak of Mt. Taranaki. Anisotropy measured up to maximum wavelength of 25 km. 
(C) Anisotropy magnitude  and (D) orientation map at 1 km, (E) (F) 5 km, and (G) (H) 10 
km wavelength. 
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its regional topographic field as an isolated feature of high relief and is represented by the 

same pattern of radial isotropy (Figure 5.8B). 

 Anisotropy maps display a strong signal of isotropy about the peak, closely 

surrounded by a radially oriented distribution of extremely high magnitude anisotropy at 

all wavelengths (Figure 5.8C-H). The slopes of the stratovolcano increase in anisotropy 

magnitude at greater wavelength, but their orientation remains relatively unchanged. 

Changes in anisotropy magnitude along the slopes reveal the imperfect symmetry of the 

stratovolcano and the presence of two other extinct and largely incised stratovolcanoes 

trending northwest (Grant-Taylor, 1964). Anisotropy is particularly low at the peaks of the 

extinct volcanoes and along the eastern flank of Mt. Taranaki. To the east of Mt. Taranaki 

relief is largely influenced by fluvial processes and anisotropy in that region is greatest at 

the 1 km wavelength. Anisotropy on Mt. Taranaki is greatest at 10 km wavelength and 

could become greater at wavelengths I do not measure here. 

 

5.4.1.6. South Island, New Zealand 

 Figure 5.9A is an example of EVA used to measure the directional depedence of a 

single point on the Southern Alps at separation distances up to 450 km. There is an obvious 

topographic anisotropy in the South Island associated with the trend of the Southern Alps 

that initially increases, then persists with greater wavelength. This single point analysis is 

apparently insensitive to more diverse landforms, some of which were explored above, that 

appear at shorter wavelengths and in other locations (Figure 5.1).  

 The characteristic patterns of these shorter wavelength landforms are revealed with 

anisotropy maps covering all of South Island (Figure 5.9B-G). Bathymetric data were used  
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Figure 5.9. Anisotropy of South Island, New Zealand. (A) Anisotropy measured at point 
near Southern Alps divide. Maximum wavelength: 450 km. (B) Anisotropy magnitude  and 
(C) orientation map at 10 km, (D) (E) 50 km, and (F) (G) 200 km wavelength. 
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to calculate anisotropy for terrestrial points, but anisotropy was not measured for any 

bathymetric points. Topographic anisotropy magnitude and orientation were measured 

from 1 km to 200 km for all points on South Island. At 10 km wavelength, anisotropy is 

greatest in the eastern glacial valleys of the Southern Alps and along the river valleys in 

the Marlborough region (Figure 5.9B, C). Orientations are diverse but follow the local 

directions of ridges and valleys. At 50 km wavelength, the edges of the Southern Alps, 

particularly the west coast, Fiordland, and Canterbury Plains, exhibit high magnitude 

anisotropy while anisotropy in the glacial valleys is diminished (Figure 5.9D, E). The 

orientation data in these regions generally follow the northeast trend of the Southern Alps. 

At 200 km wavelength, anisotropy increases along the Southern Alps divide, and the 

orientation data are dominated by the trend of the orogen except in Central Southland, 

Banks Peninsula, and Tasman regions (Figure 5.9F, G).  

 

5.5. Discussion 

5.5.1. Generalized Landform Fabrics 

The five types of landforms that I explore (dendritic, deformational, fault damage, 

planar, and monolithic) host unique patterns of anisotropy associated with the processes 

that shaped them. In general, tectonic activity can introduce and amplify anisotropy at any 

wavelength. At the orogenic scale (>100 km wavelength), tectonism dominates the 

topographic fabric by controlling the gross shape of the Southern Alps (Figure 5.9A). The 

orogen is the product of oblique collision and so is a deformational landform under my 

characterization. Below the orogenic scale, the shape of topography, and hence anisotropy, 
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is dependent on fluvial processes reflecting the presence or absence of tectonic deformation 

and/or damage gradients.  

 Regions that lack past or present tectonism or consist of a uniform lithology are 

generally isotropic. Homogeneous landscapes do not provide a directionally dependent 

advantage for rivers and a dendritic drainage pattern is the common result. River meanders 

can occur at a multitude of wavelengths and as a result, topographic anisotropy gradually 

decreases and orientation frequently changes with increasing wavelength. For this reason 

dendritic landforms commonly exhibit high anisotropy magnitude with sporadic 

orientation at short wavelengths and low anisotropy magnitude with sporadic orientation 

at large wavelengths. This is the case for the Wairoa region, in which a largely 

homogeneous siltstone unit uplifted uniformly is incised by a series of dendritic rivers. A 

similar case is made for the region east of Mt. Taranaki.  

The influence of glacial/fluvial incision is apparent at wavelengths less than 50 km 

according to my South Island-scale analysis (Figure 5.9), and 30 km according to other 

analyses of New Zealand topography (Koons, 1994; Koons, 1995; Koons et al., 2012). The 

tectonic signature of large anisotropy persists at shorter wavelengths through the 

introduction of damage and differential uplift along fault structures and the strong 

sensitivity of fluvial processes to these heterogeneous changes. This is the case for Central 

Otago, in which distributed deformation is reflected by the topography, and in 

Marlborough, in which a combination of localized deformation and fault damage is also 

reflected by the topography. In both cases, rivers conform to the heterogeneous damage 

and displacement fields, causing high order rivers to follow synforms or fault damage 

zones while short, low order tributaries convene at an orthogonal angle and incise into the 
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ridges. The presence of these tributaries causes a shift in anisotropy orientation at a 

wavelength equal to half of the ridge width. The synthetic landscape in Figure 5.6A fails 

to replicate this scale-dependent shift in the ridge because it lacks fluvial contributions to 

topography. In the case of Marlborough, ridge width is a function of the fault spacing width. 

In the case of Central Otago, ridge width is a function of crustal rheology and the thickness 

of the deforming layer (Chapple, 1978; Upton et al., 2009). As a consequence, ridge 

anisotropy contains important quantitative information about scale-dependent interactions 

between crustal rheology and the drainage network pattern. Deformational landforms do 

not require fluvial incision to produce their characteristic long wavelength anisotropy. 

Fault damage landforms depend on fault erosion to produce their characteristically extreme 

multiscale anisotropy. However, topography in the Marlborough region is more likely 

attributed to a combination of deformation and river incision along fault structures. 

 Coastal depositional processes tend to create a wide distribution of low relief and 

consequently exhibit low anisotropy on their own, but this pattern is commonly punctuated 

by the edges of the basin in which they are located. This is the case for Canterbury Plains, 

in which a large delta maintains a consistent shallow dip angle towards the sea. Large rivers 

may have a small local effect on anisotropy, but in general the weak contour-parallel 

anisotropy pattern is pervasive. This pattern quickly dissipates when the wavelength is long 

enough to reach the edge of the basin, at which point there is a significant increase in 

anisotropy at an orientation parallel to the edge of the basin. 

 Monoliths are characterized by an isotropic signal at their peak surrounded by 

concentric high anisotropy along the slopes and a radial pattern of orientation. The pattern 

of anisotropy remains unchanged over all measured wavelengths because the stratovolcano 
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is radially symmetric, and the topography surrounding it is relatively consistent. This is the 

case for Mt. Taranaki, a symmetric stratovolcano. This generalization breaks down slightly 

in this region due to asymmetric fluvial incision along the flanks of the volcano and the 

presence of two nearby smaller cones that diminish the symmetry along the flanks of the 

stratovolcano. 

 

5.5.2. Comparison of EVA to Self-Affine Power Law Scaling 

 Over the past ~45 years a large body of work has demonstrated that many systems 

can be described as self-similar, meaning that specific patterns become statistically 

invariant across multiple scales (e.g. Barnsley et al., 1988; Jébrak, 1997; Klinkenberg and 

Goodchild, 1992; Mandelbrot, 1967; Roy et al., 2012), or self-affine, meaning the scale-

invariant behavior is apparent but limited by directional dependence (Xu et al., 1993; 

Dodds and Rothman, 2000; Sung and Chen, 2004). I have already recognized directional 

dependence in my examples, therefore I test for self-affinity.  

 Measurements of variance in elevation may tend to increase as a power law function 

with increasing length scale 

 𝑣2(𝑠) = 𝑘𝑠𝛼 (5.5.)  

where 𝑣2(𝑠) is the variance at separation distance, or wavelength 𝑠, 𝛼 is the scaling 

parameter, and 𝑘 is equal to 𝑣2(1). For a truly self-affine system the scaling parameter 

remains constant and contains information about the complexity or roughness of a 

topographic surface (Chase, 1992; Klinkenberg and Goodchild, 1992; Lifton and Chase, 

1992; Shepard et al., 1995). A larger scaling parameter symbolizes a larger increase in 

surface complexity with scale, requiring a power law increase in variance with increasing 
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wavelength. A fractal dimension can be calculated from the scaling parameter 

(Klinkenberg and Goodchild, 1992; Lifton and Chase, 1992; Shepard et al., 1995; Wilson 

and Dominic, 1998; Sung and Chen, 2004), but I choose to use the scaling parameter on its 

own as a diagnostic tool for landscape complexity. 

 I first test the self-affine method on a single, randomly chosen point in Central 

Otago (Figure 5.3C, Figure 5.5) and measure variance for separation distances up to 9 km 

in 360 directions in 1˚ intervals (Figure 5.10A). There is an obvious spread in data owing 

to the directionally dependent roughness of the landscape. As more points are included in 

the averaging for each orientation (Figure 5.10B), an apparent power law distribution 

emerges for all orientations within my range of separation distances. The scaling parameter 

and the coefficient both vary as a function of orientation. The lowest scaling parameter of 

0.52 occurs along 36˚, east-northeast, which happens to be virtually parallel to the fold axes 

in Central Otago (Figure 5.10C). The largest scaling parameter of 0.74 occurs along 124˚, 

north-northwest, virtually orthogonal to the dominant ridge orientation.  

 These results are suggestive of a distinct fabric that is pervasive throughout the 

sampled region, with a more complex fabric that exists orthogonal to the main ridge-valley 

orientation, and less complexity parallel to it. In this way the basic fabric of the landscape 

is recognized by this analysis and is in agreement with EVA. Despite this result, it is clear 

that this method is not sensitive to the spatial dependence of topographic fabric. The need 

to average variance values over 960,000 points spanning a 9600 km2 area in order to 

generate the expected power-law distribution diminishes the information about local 

changes in fabric. Additionally, the need to average variance across large areas to produce 

the expected power-law trend is not necessarily a self-affine characteristic and it may be 
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inappropriate to analyze the landscape by such a statistical method (Clauset and Shalizi, 

2007).  

 
Figure 5.10. Example of self-affine method. Variance measured at single, randomly 
chosen point (A) along 1 degree intervals for 360 degrees up to 20 km separation distance 
at ~100 m intervals. Black dots indicate the variance, red line indicates trend of the 
averaged data. (B) Plot similar to A but for all points in the domain, variance values are 
averaged by direction to compare scaling by orientation. Maximum scaling parameter 
indicated in red (0.74), minimum indicated in green (0.52), mean indicated in blue. (C) 
Central Otago with the maximum and minimum scaling parameter orientations indicated. 
 
 EVA is a useful tool for quantifying landscape anisotropy because it gives 

orientation and magnitude data captured by the analysis at locally representative points. 

Giving spatial relevance to orientation data provides a better understanding of the 

topographic fabric in general by being sensitive to local, scale-dependent changes in 

topographic anisotropy. It is not possible to obtain this resolution by confining the results 

to regional-scale analysis using the self-affine scaling parameter, which is limited by either 

lack of directional data or lack of spatial relevance, depending on how data are averaged. 
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For example, the shift in anisotropy orientations associated with fluvial terrains and fault 

damage terrains, as seen in the Marlborough region, would preclude these types of terrains 

from analysis by self-affine statistics because this transition suggests scale-dependent 

changes in the scaling parameter, which cannot be appropriately defined as self-affine. By 

rejecting the assumption for self-affinity I are able to more completely determine and 

characterize the scale dependencies that arise when multiple mechanisms contribute to the 

landscape at differing wavelengths. 

 

5.5.3. Future Work 

 My method and analysis provide a small example of the strength of topographic 

anisotropy in determining and disseminating the scale-dependent contributions of tectonic 

and fluvial processes. My code allows for the rapid calculation of variograms for every 

direction and each point on a surface for multiple scales. The next step would be to use 

EVA to interpret the topographic record of past and present changes in climate and 

tectonics. I have only explored generalized landscape patterns associated with specific 

processes, which can be expanded upon by studying a larger sampling of less generalizable 

landforms, and pursuing more situations in which several processes, occurring at different 

times or simultaneously, have created an integrated landform that does not reflect a single 

generalizable shape. Another possibility is to use EVA to explore topographic anisotropy 

that is not associated with tectonic activity. For example, it would be possible to use EVA 

to find the edges of paleoshorelines, or to quantify lithological controls on topographic 

shape that are not specifically related to tectonism. EVA can be used for any spatially 

variable characteristic, so there are applications beyond elevation variance. The potential 
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for unearthing the geological history of an area purely from topographic form is an old 

concept, and the utilization of multiscale EVA can drastically increase the capabilities of 

these first-order interpretations of landforms. 

 

5.6. Chapter Conclusions 

 I apply multiscale every-direction variograms analysis (EVA) to quantify the fabric 

of multiple landforms. Topographic anisotropy, defined as the ratio of minimum variance 

to the orthogonal variance, is found to be a useful metric for linking generalized 

topographic landforms to their influential tectonic and fluvial processes. I apply this 

method in a multiscale approach to help interpret scale-dependent changes in topographic 

fabric. Generally speaking, fluvial processes tend to reduce anisotropy while tectonic 

processes tend to increase anisotropy. Depositional environments, such as deltas and 

basins, are largely isotropic but increase in anisotropy at longer wavelengths. Monolithic 

landforms, such as stratovolcanoes, are generally isotropic at their peaks with strong radial 

anisotropy along the surrounding flanks. Other methods for determining topographic fabric 

such as self-affine power law statistics provide useful information but may lack the 

sensitivity to spatial and directional fabrics that reveal the relative contributions of 

tectonics and climate. Further work on this topic should focus on a greater extent of testing 

upon more landforms with ambiguous or variable tectonic, climatic, and geomorphological 

histories.  
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CHAPTER 6 

ROCK STRENGTH HETEROGENEITY AND ITS EFFECTS ON FLUVIAL 

INCISION AT THE REGIONAL (100 KM) SCALE AND IMPACTS  

ON THE NEAR SURFACE STRESS FIELD 

 

6.1. Chapter Abstract 

 I explore regional scale implications for fault erosion, the sensitivity of surface 

processes to the timing of fault zone exposure/introduction, erosion of exhumed plutons, 

and overall effects of localized fault erosion on the near surface stress field. Results suggest 

that damage zones influence topographic shape to a greater degree by the erosion of 

multiple intersections. Whether damage zones are eventually exposed by exhumation or if 

they are imposed on the landscape at a later time, there is still a strong influence on the 

drainage network pattern. However, this influence diminishes with greater rate of uplift 

relative to baselevel. Exposure of damage zones and subsequent localized incision can 

significantly perturb the near surface stress field to the advantage of continued failure 

within the damage zone. This stress pattern is expected to play a significant role in the link 

between tectonics and surface processes. 

 

6.2. Chapter Introduction 

A simple scaling rule was applied in Chapter 3 to relate the cohesive strength of 

damaged and undamaged rock to an erodibility coefficient for use in a stream power model. 

This scaling rule provided a means to test the effects of localized crustal weakening on the 

patterns and rates of surface processes. From my results I suggested that the presence of 
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planar weak zones can strongly influence the evolution of drainage network patterns, limit 

maximum relief in a region, increase knickpoint migration rates along high order channels, 

and reduce the overall response time of topography to baselevel perturbations. These 

experiments were limited in spatial scope: single weak zone sections were isolated at the 

sub-kilometer scale from the broader scale distribution of weak zones associated with 

specific tectonic regimes. I use this chapter to explore some of the unanswered questions 

brought up in Chapter 3, namely 1) the significance of damage zone spacing and orientation 

in limiting relief and controlling the drainage network pattern, 2) the significance of weak 

zones as corridors for sediment flux, and 3) the significance of timing between topographic 

evolution and the emplacement or exhumation of weak zones.  

To begin to answer these questions, I produced five experiments in which planar 

3D conjugate weak zone pairs were imposed on a numerical model of landscape evolution. 

The geometry of conjugate weak zone sets was determined analytically by using the Mohr-

Coulomb yield criterion (Coulomb, 1773). The weak zones impose a predictable pattern of 

heterogeneous erodibility within the landscape evolution model with my intent to influence 

the rates and patterns of fluvial incision. Next, I tested the sensitivity of surface processes 

to weak zones that are exposed at a later time, both by exhumation and by direct 

emplacement to represent the uncovering of damaged rock caused by an instantaneous 

tectonic event, respectively. Finally, I tested sediment transport within the weak zones 

using a model that combines rock erosion and sediment transport. 
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6.3. Methods 

 I use the same unit stream power-based fluvial incision model, assuming 

detachment-limited conditions, and the same cohesion-erodibility scaling rule as discussed 

in Chapter 3. Please refer to that chapter for more information. 

 I model five different groups of weak zones representative of five different 

currently inactive fault sets, described in Table 1 (Figure 6.1A-E). For a Mohr-Coulomb 

crustal rheology, damage zone spacing and orientation are a function of 1) the stress regime 

that caused brittle failure in the crust, 2) the possibility of symmetric, conjugate faults to 

form upon brittle failure, and 3) the vertical distance from the surface to the decollement. 

The orientation of these fault zones is broadly predictable for any deformation regime if 

the principal stress orientations are known (Coulomb, 1773). The internal angle of friction 

is used to determine fault set orientations but it is not incorporated into the erodibility 

calculation. The fault orientations, cohesion values, and Equation 3.4 define the 3D 

erodibility field used in the landscape evolution model.  

 For my models, the first principal stress axis is fixed normal to the single open 

boundary along the horizontal plane, and the second and third principal stress axes rotate 

90˚ counter-clockwise from convergent to transverse regimes (Figure 6.1). The weak zones 

convene at the decollement assumed to lie on the Frictional-Viscous Transition at 15 km 

depth (Price et al., 2012). I change the reference frame for my strike-slip model so that the 

fault zone strikes orthogonal to the single outlet boundary. I determine fault strike and dip 

by the intersection between fault plane and the horizontal model surface (Table 1). A 

uniform uplift rate of 1 mm a-1 is applied to perturb an initially flat model domain. Models 

were run to reach a steady topography at 1 Ma. 
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Figure 6.1. Surface exposure of conjugate pairs in map view. (A) Convergent, (B) 
convergent-oblique, (C) oblique, (D) transverse-oblique, and (E) transverse tectonic 
regimes. (F-H) the general pattern for failure planes for convergent, oblique, and 
transverse, respectively.   
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Table 6.1. Conjugate fault zone pair orientation data  
Tectonic regime Fault set dips Fault set strikes 
None – homogeneous N/A N/A 
Convergent 30 N and 30 S Due E-W 
Oblique convergent 40 NW and 40 SW 10 SW and 10 NW 
Oblique 60 NW and 60 SW 30 SW and 30 NW 
Oblique strike-slip 80 NW and 80 SW 50 SW and 50 NW 
Strike-slip Vertical Due N-S 

 

6.4. Model Set 1: Landscape Sensitivity to 3D Fault Orientations 

 Results of Model Set 1 (Figure 6.2) indicate a strong influence of weak zone pairs 

on the drainage network pattern and topography in a landscape, taking the form of long, 

anomalously straight valleys containing high order channels. The only experiment that 

does not display this characteristic is the uniform strength example. The difference between 

these two channel patterns is evident from tortuosity measurements (Chapter 3) and 

topographic anisotropy measurements taken with EVA (Chapter 5). Where present, fault 

zones control the spatial distribution of ridge and valley topography and in doing so control 

the spatial distribution of runoff and erosion for the entire duration of the model run. 

 

6.4.1. Homogeneous 

 The homogeneous experiment (Figure 6.2A) produces a drainage pattern with no 

strong directional dependence caused by heterogeneous strength. Low and high order 

channels form a dendritic drainage pattern (Figure 6.2G). Topographic anisotropy is widely 

dispersed at the 3 km wavelength and generally does not exceed 101.5 at the 10 km 

wavelength (Figure 6.2M), indicating that there are few topographic features that have a 

consistent orientation at 10 km length. Anisotropy orientation is also widely distributed for 

both wavelengths. 
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6.4.2. Convergent 

 For convergent deformation regimes (Figure 6.2B) fault zones exposed at the 

surface are parallel and do not intersect one another or the outlet boundary. High order 

channels are confined to the weak zones and they are connected to the outlet boundary by 

a dendritic channel that is generally oriented transverse to the strength gradient. For this 

reason, erosion of intact rock along the transverse channel limits erosion in the weak zone 

pair. Most tributaries tend to branch orthogonal to fault zone strike. Tortuosity is generally 

lower where channels follow weak zones and higher along the transverse channel section, 

but the highest tortuosity values exist where the channel leaves, crosses, or enters the weak 

zones (Figure 6.2H). Topographic anisotropy exceeds 102.5 in the valleys confined to the 

weak zones at both studied wavelengths and anisotropy orientation strongly reflects the E-

W strike of the weak zones (Figure 6.2N). 

 

6.4.3. Oblique 

 For oblique slip deformation regimes (Figure 6.2C, D) fault zones intersect and the 

drainage network relies less on erosion into the strong host rock as displayed by an overall 

decrease in tortuosity but with a local increase where faults intersect. The conjugate weak 

zone pair crossing in the convergent-oblique experiment (Figure 6.2I) leads to a significant 

change in topographic form relative to the convergent experiment. However, the valleys 

confined to both weak zones are still connected to the outlet boundary by a transverse 

channel. Extreme tortuosity values in the oblique-convergent (Figure 6.2I) and oblique 

(Figure 6.2J) are associated with a high order channel crossing between weak zones near 

their intersection. This is also the case for the oblique-transverse experiment (Figure 6.2K), 
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but the decrease in maximum tortuosity reflects the wider angle at which the weak zones 

cross one another. For the oblique experiment, anisotropy magnitude exceeds 102.5 along 

the weak zone controlled valleys and orientations show consistent ENE and WNW across 

both tested wavelengths (Figure 6.2O). 

 

6.4.4. Transverse 

 Topography strongly reflects the transverse weak zone by producing a single high 

order channel fed by multiple short, low order tributaries (Figure 6.2F). Erosion on this 

vertically dipping weak zone creates an anomalously straight valley oriented normal to the 

outlet boundary. Tortuosity values are minimal along the high order channel (Figure 6.2L). 

Anisotropy magnitude exceeds 102.5 along the weak zone controlled valley at both 

wavelengths, and orientations display a strong N direction in the valley and more scattered 

orientations along the tributaries (Figure 6.2P). 

   

6.5. Model Set 2: Later Introduction of Weak Zone by Exhumation or Emplacement 

 I now explore the possibility of weak zones that are introduced to a domain after 

topography has approached a steady state condition in homogeneous crust. There are two 

methods by which I introduce the weak zone: 1) the weak zone is exhumed to the surface 

by progressive fluvial erosion, and 2) the weak zone is emplaced on the surface 

instantaneously. In the first case I explore the plausible situation that weak zones may exist 

at depth but due to some unconformity they are not immediately exposed at the surface and 

therefore will not immediately affect the drainage network pattern. For this method the 

unconformity is always completely horizontal. In the second case I am roughly estimating 
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damage sustained by the crust during an instantaneous seismogenic tectonic event. For this 

method I do not include deformation of the surface that would be associated with this 

tectonic event.  

 Experimental results in Figure 6.3A-I display an incremental change in topography 

associated with incremental exhumation of the weak zones. The basic topographic shape 

of the exhumed convergent, oblique, and transverse experiments resemble results from 

Model Set 1. Similarly, weak zones that are instantaneously emplaced on the landscape 

lead to production of the same topographic form. Similar patterns exist for weak zones that 

are instantaneously emplaced (Figure 6.3J-L). 

 Despite the similar topographic forms between Model Set 1 and 2, I see that the 

drainage network patterns associated with weak zone exhumation differ from patterns 

associated with initially exposed weak zones (Figure 6.4A, B). In the convergent example, 

weak zones are strongly reflected by topography but only by erosion along tributaries that 

feed into the higher order channels, which are not significantly influenced by appearance 

of the weak zones. The oblique experiment does display a greater influence on the drainage 

network pattern, and the vertically dipping transverse experiment strongly influences the 

weak zone geometry after exhumation.  

 The rate at which crust is exhumed has major implications for the ability of weak 

zones to influence topography (Figure 6.5) and the drainage network pattern (Figure 6.4C), 

but only for weak zones with shallow dip angle. Figure 6.5 displays results identical to 

Model Set 2.1 in all respects except uplift rate is increased by an order of magnitude. At 

this rate, weak zones become exposed more quickly after steady state topography is 

achieved. The result is a diminished influence of the weak zones on the drainage network  
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Figure 6.3. Incremental exposure and subsequent rapid erosion of weak zones. Convergent 
(A, D, G), oblique (B, E, H), and transverse (C, F, I) regimes. Instantaneously emplaced 
weak zones (J-L) display a similar topographic pattern.  

161



 
Figure 6.4. Hydrography maps for Model Sets 1 and 2. 
 
pattern and an associated lack of influence on topography. However, the influence of weak 

zones still increases with weak zone dip angle. This influence is associated with the weak  

zone’s exhumation being less dependent or independent of topography (Figure 6.5, kb 

maps). 

 Modeled topographic anisotropy remains relatively unchanged once it becomes 

established, but perturbations in the strength field may alter the preferred orientation of 

prominent valleys over time. For example, any shift in the deformation regime will 

overprint the strength field with new fault zone orientations and a combination of new and 
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old topographic features (Figure 6.6). This leads to new structurally confined features in 

the drainage network patterns, potentially causing flow reversals and stream capture among 

preexisting channels.  

 

Figure 6.5. Comparison of different tectonic regimes. From top to bottom row, maps of 
elevation, erodibility, and difference in elevation between homogeneous and 
heterogeneous strength experiments, respectively. From left to right column, maps are of 
convergent, oblique, and transverse regimes, respectively. 
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Figure 6.6. Time sequence of progressive damage zone emplacement. (A) Initially 
convergent regime superimposed by (B) oblique regime, both of which continue to steer 
topography (C). Later on a transverse regime is superimposed over both (D) and this causes 
rapid and significant changes to the drainage network pattern (E). 
 
 
6.6. Model Set 3: Sediment Routing Through Structurally Confined Channels 

 I now explore the residence and transport of sediments across the drainage network 

patterns explored above. The grain size distributions and equations for sediment transport 

and bedrock incision used here are identical to the 3000X example used in Chapter 4.  

 Much like in Chapter 4, the majority of sediments reside in fault damage zones in 

part because they tend to attract surface runoff through rapid erosion, and also because they 

maintain comparably very low relief due to a high erodibility value (Figure 6.7). 

Conversely, tributaries that traverse the intact bedrock contain very little sediments. In the 

case of convergent and convergent-oblique regimes, sediments can reside in large 

transverse channels that connect the damage zones and lateral channel migration creates a 

wider distribution of sediments (Figure 6.7A, B). For oblique and transverse regimes 

(Figure 6.7C-E), faults intersect the flow outlet boundary and there are no transverse 

channels, in which case the majority of sediments reside in the damage zones. 
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Figure 6.7. Sediment maps. (A) Convergent, (B) convergent-oblique, (C) oblique, (D) 
oblique-transverse, and (E) transverse regimes. Red indicates presence of bedload, blue 
indicates exposed bedrock. 
 

6.7. Model Set 4: High Frequency Fault Damage 

 A higher frequency of fault damage within the crust is possible for more complex 

tectonic regimes, particularly where more than one decollement may exist. In these cases 

there is no limit to the minimum spacing between damage zones. For this reason 

structurally confined channels may become more prominent and there may be a greater 

limit on total landscape relief. Figure 6.8 displays results from experiments in which a 

number of damage zones are distributed randomly in a 625 km2 domain. High frequency 

damage zones have a similar effect as the damage zones in Experiment 1, using the same 

rules for erosion. However, there are a greater number of instances in which the intersection  
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Figure 6.8. Model topography (greyscale images) with maps of rock strength and channel 
tortuosity superimposed. (A) Convergent, (B) convergent-oblique, (C) oblique, (D) 
transverse-oblique, and (E) transverse tectonic regimes. (F-H) the general pattern for 
failure planes for convergent, oblique, and transverse, respectively.   
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of damage zones can cause a distinct shift in channel orientation as shown by extreme 

tortuosity values around these intersections. There is also a greater distribution of 

topographic anisotropy attributed to a greater number of channels and tributaries incising 

into a greater number of damage zones. 

 

6.8. Model Set 5: Exhumation of a Granitic Pluton 

 Plutons that are gradually exposed by exhumation often form steep relief relative 

to their surroundings. For example, the Cairngorm Mountains of Scotland are a low relief 

plateau consisting of a granitic pluton. The Cairngorms lie 900-1200 m above sea level and 

peaks are separated by deep troughs eroded into structural weaknesses (Goodfellow et al., 

2014). In this section, I explore the influence of lithology and structural weaknesses on 

landscape evolution by modeling a region with eventual exposure of a resistant granitic 

pluton. I provide two experiments: one in which the pluton is uniformly more resistant than 

the surrounding host rock, and another in which the pluton hosts fractures that are less 

resistant than all other units. 

 

6.8.1. Model Setup 

 A cube-shaped pluton with a cohesive strength of 30 MPa lies 5 km beneath the 

surface, surrounded by 3 MPa schist. The pluton takes up 1/9th of the model domain and is 

centrally located upon exposure. There is no strength gradient associated with contact 

metamorphism. Fractures hosted by the pluton, applied only to the second experiment, 

strike in a N-S direction and have 3 MPa cohesive strength to match the schist. The model 

domain is uplifted relative to baselevel at a rate of 1 mm yr-1. All other conditions are equal 
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to values used in the previous experiments. The combination of pluton depth, domain size, 

uplift rate, and climate parameters ensure that topography achieves a steady-state condition 

before the pluton becomes exposed. An initial steady-state condition is important to ensure 

that the strength differential associated with pluton exhumation does not have an inherited 

influence on topography, but rather a late stage effect that may perturb the inherited 

drainage network pattern. 

 

6.8.2. Uniform Strength Pluton 

 Before pluton exposure, the landscape is dominated by dendritic drainage patterns 

and low relief topography (Figure 6.9A, D, G). The pluton is exposed after 5 My of uplift 

and immediately perturbs the steady-state topography, particularly in low order tributaries 

and hillslopes in the center of the model domain (Figure 6.9B). Channel slopes in the pluton 

region steepen (Figure 6.9H) and there is small reorganization of the drainage network 

pattern along the perimeter of the pluton (Figure 6.9E). Reorganization here is associated 

with stream piracy when channels that previously traversed the pluton lose tributaries 

across the erodibility gradient. 

 

6.8.3. Pluton with Joints 

 The topographic response during pluton exposure with embedded fractures is 

identical to the previous experiment except the fractures influence the drainage network 

pattern (Figure 6.9C). Channels reorganize to align with the weak fractures as the pluton 

is exposed, leading to a strong N-S trend in drainage (Figure 6.9F). Low relief along 

fractures produces a sawtooth topographic profile along the E-W direction (Figure 6.9I). 
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Erosion along these fractures reduces the local elevation and produces a greater amount of 

windgaps deep within the pluton. 

 
Figure 6.9. Pluton elevation maps. (A) before pluton exposure, (B) after exposure with 
uniform erodibility, (C) after exposure with N-S trending weak fractures. White dashed 
line indicates position of topographic profiles in (G-I). Hydrography maps for (D) before 
exposure, (E) after exposure with uniform strength, and (F) after exposure with N-S 
trending weak fractures. 
 
 
6.9. Implications for Topographic Stress and Tectonic Strain 

6.9.1. Overview of Topographic Stress 

 Drainage network patterns, and subsequently topography, may reflect the pattern 

of strain weakening in the crust. As a consequence, the near surface stress field can be 

influenced by the topography that results in the rapid erosion of faults and other features 

with heterogeneous erodibility. Topographic stresses are the result of the force of gravity 
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on a nonhorizontal surface. They are an internally buffered component of stress dependent 

on the surface topography. Shear stresses result from when principal stress eigenvectors 

diverge from Cartesian coordinate axes, and the slope deflects the vertical normal stress to 

produce a component of vertical coordinate shear. For any topographic load, each tends to 

deflect deformation from the load to the region at the base of the confining slopes (England 

and Searle, 1986). If I assume that the slope is at constant failure (i.e. the shear stress 

imposed on it is always critical) and the crust behaves as a Mohr-Coulomb material then I 

can determine the critical shear stress required to produce failure by use of the equation 

 
τiz = σzz tanφ + C, 

σzz = ρgz 
(6.1.)  

Where τiz is the topographic stress with respect to a horizontal cartesian axis (x or y), σzz 

is the normal vertical stress, φ is the material’s internal angle of friction, and C is cohesion. 

A cohesionless material that slopes greater than its internal angle of friction is beyond 

critical and will fail. It is also useful to use the shear yield function 

 f s = σ1 − Nσ3 + 2C√N (6.2.)  

Using principal stresses and N, which is equal to 

 N = tan2 [
π

4
+
φ

2
] (6.3.)  

 N ≡
1 + sinφ

1 − sinφ
 (6.4.)  

 No ≅
σ1
σ3

 (6.5.)  

These equations only hold true if the topographic slope is at failure, which is often not the 

case for a location without any tectonic forcing. Equation 1 can be used to determine the 

amount of topographic stress exists for a slope which will be exacerbated by any external 
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tectonic forcing. The ratio of the stress determinant, approximately N, to No, the stress 

determinant at failure, can be used to determine how close topography lies to failure for 

cohesionless materials, known as topographic stress index (TSI, 1 is failure). 

 

6.9.2. Results and Discussion 

 I study the stress state of the crust underneath the homogeneous and transverse 

regimes of Experiment 1 (Figure 6.10A). The stress state is generated by applying the force 

of gravity on a 3D elastic-plastic model (2700 kg m-3, 1010 Pa bulk modulus, 3x109 Pa 

shear modulus, 3x107 Pa cohesion, 30˚ friction angle) of the crust with lateral dimensions 

of 100 km, vertical dimension of 15 km, and an elevation raster used to shape the surface 

topography. Surface elevation is five times greater than in the experiments of Model Set 1 

in order to produce a level of topographic stress that would be expected in a tectonically 

active region. 

 The image of topographic stress in Figure 6.10B, taken as the difference of normal 

stress between the surface with topography and a flat surface with elevation equal to mean 

elevation (approximately 2 km for both experiments), indicates that at 5 km depth the stress 

field reflects the pattern of surface topography for both regimes. The topographic stress 

index (Figure 6.10C), measured at 1 km below sea level, indicates a near-failure condition 

at the base of the structurally confined channel. Dendritic channels do not approach failure 

under these conditions. On the surface, differential stress (Figure 6.10D), calculated as the 

difference of first and third principal stresses, is maximal in the structurally confined 

channel and along major tributaries. At depth, the structurally confined valley influences  
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Figure 6.10. Topographic stress maps. (A) Elevation rasters imposed on 3D elastic-plastic 
crustal model. (B) Normal topographic stress, defined as the difference in vertical 
coordinate normal stress for this model subtracted by vertical coordinate normal stress for 
a flat surface model with ~2 km elevation. (C) TSI measured at 1 km depth below sea level. 
(D) Differential stress and (E) vertical coordinate shear stress magnitude at (top to bottom) 
surface, sea level, 1 km depth, and 2 km depth.  
 
the differential stress field to a depth of at least 2 km while the stresses imposed by large 

tributaries start to diminish at that same depth. Likewise, large channels in the 

homogeneous regime have less impact on differential stress at depth than the structurally 

confined channel. Plots of vertical coordinate shear stress magnitude (Figure 6.10E), 

reflecting the vertical shear stresses attributed to topographic slope, impose a strong signal 

up to 14 km below sea level.  

 The models of topographic stress suggest that erosion of fault damage zones can 

nucleate further crustal failure through the accumulation of differential stresses that exceed 
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the local crustal strength at depths exceeding 2 km, given the chosen amplitude of 

topography. Dendritic channels may produce high differential stress near the surface but 

they come in an irregular form not conducive to influencing the deeper stress field (Figure 

6.10C), nor does their shape create conditions that encourage localized plane strain. Below 

the surface, vertical coordinate shear stress magnitude is greatest along the valley walls of 

the structurally confined channel (Figure 6.10E). The TSI (Figure 6.10C) indicates a state 

of near failure within the damage zone attributed to this steep relief. The effect of this 

amplitude topography perturbs the near surface stress field to a depth of at least 14 km, 

indicating that it can have a potentially significant influence on the positioning of tectonic 

strain in the upper crust. I further explore the impact of topographic stress on tectonic strain 

in Chapter 8. 

 

6.9.3. Natural Example: Cromwell Gorge 

 Cromwell Gorge (Figure 6.11A) in the Dunstan Range of South Island, New 

Zealand, is one example of a structurally influenced channel. The Cromwell Gorge section 

of the Clutha River sits above the seismically active River Channel Fault with a damage 

zone that is ~1000 times weaker than the surrounding intact quartzofeldspathic rock 

(Thomson, 1993). Incision into the damage zone has produced a steep walled gorge in 

weakened bedrock host to frequent hillslope failure events (Thomson, 1993). Differential 

stress (Figure 6.11B) reaches a local maximum of 10 MPa in the gorge, and as a result TSI 

values (Figure 6.11C) indicate near failure in the gorge and along the surrounding valley 

walls, purely as a product of topographic slope. Continued shear and mechanical failure is 

expected in Cromwell Gorge. 
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Figure 6.11. Cromwell Gorge. (A) Elevation map of Cromwell Gorge, Dunstan Range 
area. (B) Surface differential stress. (C) Surface TSI. Maxima occur in Cromwell Gorge. 
 

6.10. Chapter Conclusions and Future Work 

 Heterogeneity in the material strength field contributes much to the development 

and rate of landscape form and response. One critical and predictable source of spatially 

variable strength is seismogenic cataclasis accompanying tectonic deformation (Molnar et 

al., 2007; Koons et al., 2012). As I demonstrate in my landscape models which incorporate 

material strength anisotropy, the form and response rate of mountain ranges are strongly 

sensitive to: 1) the major contrast in erodibility between the damaged fault zones and the 
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surrounding intact rock and 2) the fault zone orientations as a function of the present 

deformation regime.  

 The rate of landscape response to a tectonic or climatic perturbation is linked to the 

orientation of faults derived from the prevailing tectonic regime. Modeled knickpoint 

migration rates are approximately an order of magnitude faster in fault zones when 

compared to intact rock, and the migration rate increases with greater fault dip (Figure 6.3). 

The modeled topographic anisotropy (Figure 6.4) resulting from heterogeneous strength 

fields reflects multiple overlapping erosion rates also apparent in natural orogens (Figures 

6.1, 6.5). Weakened fault zones allow for a rapid orogenic response to tectonic and climatic 

perturbations, while the intact rock responds relatively slowly (e.g. Scheidegger, 1979; 

Molnar et al., 2007).  

 The contrast in relative erosion rate confines much of the early stage fluvial erosion 

and establishes a major drainage network that reflects the orientations of exposed fault 

zones. Erosion into the surrounding intact rock occurs more slowly and typically leads to 

small tributaries that link orthogonally to the larger, structurally confined channels. The 

large divide in fluvial erosion rate preserves the tectonic signal in the landscape and partly 

contributes to landscape response rates. In time the structurally confined drainage network 

pattern can persist, but the abundance of exposed, highly erodible fault zones will diminish 

with continued erosion, leaving behind a larger areal proportion of strong, intact rock. The 

very large differences in material strength resulting from cataclasis imposes a preliminary 

heterogeneity and anisotropy that strongly influence landscape fabric and response rates.  

Future exploration of natural material behavior and evolving formulations of surface 

processes will permit further quantification of the relationships discussed above including 
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exploration of the dependence of landslides, sediment transport, and other surface 

processes on heterogeneous and anisotropic material strength. 

 Fault damage zone incision leads also to significant perturbations of the stress field 

in the upper 14 km of crust. Topographic stresses alone can increase the likelihood of 

mechanical failure in the base and slopes of valleys. Damage zones can potentially attract 

tectonic strain by rapid erosion and greater concentration of differential stress. This effect 

compounds with the already reduced mechanical strength of the damage zone. I study the 

implications of amplified tectonic-geomorphic feedbacks in Chapter 8. 
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CHAPTER 7 

EROSION OF ACTIVE FAULTS AND INFLUENCES ON TOPOGRAPHIC 

SLOPE AND DRAINAGE NETWORK PATTERN 

 

7.1. Chapter Abstract 

 The combined role of fault displacement and fault damage is explored in this 

chapter. I initiate the model with rock strength-erodibility scaling rules described in 

Chapter 3 and a new regrid method implemented to maintain a high mesh quality. Results 

suggest that the lateral motion attributed to slip along a fault plane can drastically increase 

channel slope in reverse thrust regimes and decrease slope in normal rift regimes. Greater 

rock damage associated with fault slip leads to a greater mechanical control on the drainage 

network pattern, causing a greater potential for fault-parallel flow. Further, greater rates of 

strike-slip generate greater fault-parallel flow. Dip-slip motion can also induce fault-

parallel flow by shifting sections of river channel toward the slip plane. 

 

7.2. Chapter Introduction 

 Orogenesis is commonly framed as the interaction of tectonically driven material 

advection and dominantly gravity-driven erosion (Penck and Penck, 1924). Two tectonic 

processes that play a significant role in this interaction are strain-induced surface 

displacement and rock damage. It is well recognized that tectonic strain drives surface 

displacement and produces the relief that initiates gravitationally driven erosive 

geomorphic mechanisms (Beaumont, 2004; Koons, 1990, 1989; Koons et al., 2013). It is 

also recognized that strain weakening causes permanent mechanical damage to rock (Ben-
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Zion and Sammis, 2003; Hoek and Brown, 1980; Mooney et al., 2007; Sibson, 1977) and 

evidence is clear that rock damage has a significant influence on the local rates and patterns 

of erosion (Koons et al., 2012; Molnar et al., 2007; Moore et al., 2009; Roy et al., 2015; 

Scheidegger, 1979). Some have argued that rock damage associated with strain weakening 

is the first stage in erosion and is therefore influential for all erosional processes (Gilbert, 

1877; Molnar et al., 2007; Scheidegger, 1979).  

 Despite the recognized influences of surface displacement and rock damage on 

landscape evolution, there has so far been little exploration of their combined influence. 

My objective is to build upon previous theory by applying different combinations of these 

tectonic processes to explore their importance in shaping topography. More specifically, 

my focus in this chapter is to study the combined influence of rock damage, the focus of 

Chapter 3, and surface displacement on the patterns and rates of fluvial incision by 

combining a landscape evolution model with simple models of surface displacement and 

rock damage. I intend to build on previous work that explored the geomorphic implications 

of heterogeneous rock strength (e.g. Moglen and Bras, 1995; Roy et al., 2015) and 

differential uplift (e.g. Attal et al., 2011; Whittaker et al., 2007a, 2007b) by combining the 

two in a simple kinematic and stream power-based framework.  

 My analysis is divided into three model sets. In Model Set 1, I explore the 

contributions of lateral and vertical surface displacement to changes in surface slope in 

convergent and divergent tectonic settings. In Model Set 2 I study the combined influence 

of surface displacement and rock damage on topographic shape and drainage network 

pattern within reverse dip slip, left lateral strike slip, reverse oblique slip, and normal dip 
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slip tectonic regimes. In Model Set 3 I explore additional questions regarding the potential 

for lateral channel migration imposed by fault dip (Roy et al., 2015).  

 

7.3. Methods 

7.3.1. Landscape Evolution Model 

 The Channel-Hillslope Integrated Landscape Developmental (CHILD) model 

(Tucker et al., 2001) is again used in this chapter to approximate the physics behind fluvial 

incision into bedrock by assuming that fluvial erosion rate scales with unit stream power.  

Erosion rate is calculated at every node on an irregularly discretized surface (Figure 7.1a) 

using a variation of Equation 3.1 

 𝜕ℎ

𝜕𝑡
= −𝑘𝑏𝜔 + 𝑤 + 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
 (7.1.)  

where the rate of elevation change 𝜕ℎ

𝜕𝑡
 at any point on a surface depends on spatially variable 

erodibility 𝑘𝑏, stream power 𝜔 per unit width, vertical tectonic displacement relative to 

baselevel 𝑤, and lateral topographic advection 𝑢
𝜕ℎ

𝜕𝑥
 and 𝑣

𝜕ℎ

𝜕𝑦
. Contributions to surface 

displacement relative to baselevel and erodibility are explained further below. For the sake 

of simplicity and my interest in the fluvial regime, I do not include hillslope processes in 

my model. Eroded material is assumed to be immediately removed from the model domain 

through a single flow outlet boundary (Figure 7.1a). Steady state topography is achieved 

when 𝑘𝑏𝜔 = 𝑤 + 𝑢
𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
 and there is no change in mean surface elevation. I use the 

same stream power per unit width equation shown in Chapter 3. I use a uniform runoff rate 

of 1 m yr-1 and the domain area is 100 km2.  
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Figure 7.1. Model geometry and kinematic fields. (A) irregularly discretized mesh used 
for landscape evolution model surface. Single flow outlet boundary is on west side, parallel 
to fault strike. Model domain is 50x50 km. Kinematic solution (left) and the associated 
damage zone (right) for (B) reverse dip slip, (C) reverse oblique slip, (D) left lateral strike 
slip tectonic regimes. 
 

7.3.2. Surface Displacement Model 

7.3.2.1. Tectonic Regimes 

 Fault slip and the subsequent pattern of surface displacement require localized 

brittle failure in the upper crust. Failure in the upper crust occurs when there is sufficient 

differential stress to exceed rock mass strength (Bieniawski, 1974; Hoek and Brown, 1980). 

The pattern of failure in the elastic-plastic upper crust often takes the form of planar faults 
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whose orientation depends on the local  stress tensor and the internal angle of friction at 

the moment of failure (Coulomb, 1773), assuming that there are no inherited mechanical 

defects that would complicate the distribution of stress (Koons et al., 2012).  

 For my experiments I use the Andersonian model (Twiss and Moores, 1992) to 

determine the fault orientation for reverse dip slip, left lateral strike slip, reverse oblique 

slip, and normal dip slip regimes. In every experiment, all tectonic strain is accommodated 

on a single fault slip plane. Reverse dip slip motion is exhibited along convergent tectonic 

boundaries. Strike slip motion is associated with transform boundaries, and reverse oblique 

slip motion is associated with a combination of the two. Normal fault slip occurs in regions 

of local extension, such as in rift margins (e.g. Huismans and Beaumont, 2011, 2014) and 

backarc basins (e.g. Billen, 2008). Fault geometries are all described in Figure 7.1. 

 

7.3.2.2. Slip Rate 

 The model domain is divided into two blocks: one moves along a fault slip surface 

relative to a second block with no motion associated with fault slip. The fault is centrally 

located in the model domain and strikes north. Dip direction is east for reverse slip tectonic 

regimes, west for normal slip regimes and the strike slip regime dips vertically. As the 

mobile block rides along the slip surface, surface nodes are shifted accordingly in three 

dimensions at each model time step 

 𝑆 = √𝑢2 + 𝑣2 + 𝑤2, 

𝑢 = 𝑆 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛼), 

𝑣 = 𝑆 𝑠𝑖𝑛(𝜃), 

𝑤 = 𝑆 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛼) 

(7.2.)  
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where 𝑆 is the total slip rate, 𝑢 is the horizontal slip rate parallel to dip, 𝑣 is the horizontal 

slip rate parallel to strike, 𝑤 is the vertical slip rate, 𝜃 is the slip obliquity, or the difference 

in angle between slip direction and the direction normal to fault strike, and 𝛼 is the dip 

angle, the values of which change between my three kinematic solutions outlined above. 

There is no variation in dip angle along strike and so 𝑣 is simply a function of total slip rate 

and slip obliquity. Values for 𝑢 and 𝑤 are functions of total slip rate, the dip of the slip 

surface, and slip obliquity. Under these kinematic conditions I expect 𝑢 and 𝑤 to dominate 

in the dip-slip experiments and 𝑣 to dominate in the strike-slip experiment. In order to 

generate some topography in experiments without dip-slip motion, I apply a small ambient 

uplift rate relative to baselevel over the entire domain, given a value of 0.1 mm yr-1 unless 

otherwise noted. Please see Appendix C for an overview of grid maintenance techniques. 

 

7.3.3. Rock Damage and the Link to Erodibility 

 I test the sensitivity of fluvial incision to rock damage by varying the maximum 

degree of damage surrounding the slip plane, within natural limits (e.g. Carpenter et al., 

2011; Faulkner et al., 2010; Lockner et al., 2009; Mitchell et al., 2011; Rempe et al., 2013; 

Thomson, 1993). The initial cohesive strength of rock is set to 10 MPa, and I use one series 

of experiments with no damage (1X, 10 MPa), one series in which the damage zone is 10 

times weaker than its host (10X, 1 MPa), and one series in which the damage zone is 1000X 

weaker than its host (1000X, 10 kPa). Rock damage is introduced as a stepwise gradient 

that decreases in cohesive strength with proximity to the slip surface, contained in a planar 

fault damage zone (Figure 7.1). I assume that bedrock anelastic strength is inversely 
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proportional to erodibility (Sklar and Dietrich, 2004, 2001) and use the cohesive strength-

erodibility relation used by Roy et al. (2015) and adapted from Hanson and Simon (2001) 

 𝑘𝑏(𝑥,𝑦,𝑧) = 𝑘𝑐𝐶(𝑥,𝑦,𝑧)
−1 2⁄  (7.3.)  

where 𝐶 is cohesion and 𝑘𝑐 is a coefficient equal to 0.2 with units m1/2 s kg-1/2. Similar 

assumptions have been made for the erosion of cohesive soils (Hanson and Simon, 2001; 

Mirtskhoulava, 1991, 1966) in attempts to link the mechanical properties of the soils to 

stream power rules. It is possible to use alternative measures of anelastic rock strength, 

such as tensile strength, to define erodibility, but I choose to use cohesion based on 

previous arguments (Roy et al., 2015). 

 

7.4. Results 

7.4.1. Model Set 1: Lateral Topographic Advection and Channel Slope 

 The lateral component of reverse fault slip steepens channel slopes within the 

mobile block. I show this by comparing a reverse dip-slip experiment with vertical and 

lateral components of slip to a block uplift experiment with an equal vertical, but no lateral, 

slip rate (Figure 7.2a,b). During the same amount of simulation time, slopes within the dip-

slip experiment meet or exceed the steady state slope-area relationship of the block uplift 

experiment (Figure 7.2e). Slopes in the reverse dip slip experiment tend to be greatest along 

the edge of the fault, but the increase in slope is felt throughout the mobile block (Figure 

7.2d). Slopes in the block uplift experiment have a more evenly distributed pattern and 

follow a power law scaling to drainage area (Figure 7.2e). An opposite effect occurs under 

normal slip conditions, assuming the same dip-slip angle of 30˚ (Figure 7.2c). Under these 
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conditions channel slopes are equal to or less than the slope-area relationship from the 

block uplift experiment (Figure 7.2e). None of these experiments incorporate rock damage.  

 
Figure 7.2. Elevation and slope data. (A) Block uplift, (B) reverse dip slip motion, and (C) 
normal dip slip motion. (D) Averaged topographic profiles for a, b, c. Dashed red line is a 
reverse dip slip example with material added to the hanging wall with continued reverse 
motion. (E) Slope versus area plot for a, b, c. 
 

7.4.2. Model Set 2: Rock Displacement, Damage, and Topographic Shape 

 In this section I test the sensitivity of drainage network patterns and topography to 

rock displacement and damage along a fault slip plane. Sensitivity analysis includes 5 mm 

yr-1, 10 mm yr-1, and 20 mm yr-1 slip rates and no weakening, 10X weaker, and 1000X 

weaker fault damage zones surrounding the slip surface. In addition, an ambient uplift rate 

of 0.1 mm yr-1 is applied uniformly to the model surface. I am primarily interested in how 
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the drainage network patterns may respond to the different rates and degrees of damage 

associated with fault slip, so for visualization purposes I provide maps of elevation and 

drainage area for each experiment.  

 

7.4.2.1. Reverse Dip-Slip Fault 

 Natural levels of fault rock damage attract more surface runoff and lead to the 

development of channels that are confined to the fault structure. Figure 7.3 shows results 

for the reverse dip slip fault experiments. The 1x (homogeneous strength) 5 mm yr-1 

experiment displays a small preference for structurally confined tributaries, while a small 

decrease in fault rock strength in the 10x, 5 mm yr-1 experiment causes a small change in 

drainage network pattern attributed to slightly greater structural confinement along the fault 

plane. This effect increases significantly for the 1000x, 5 mm yr-1 experiment in which a 

structurally confined channel spans the entire width of the model domain. 

 Natural rates of reverse slip also encourage structural confinement, but to a lesser 

degree. All examples with reverse surface displacement show at least a small degree of 

structurally confined drainage even without rock damage (Figure 7.3: 1x, 5-20 mm yr-1). 

The degree of structural confinement may increase with slip rate. However, this influence 

is limited to tributaries or short sections of larger channels. An increase in slip rate and 

rock damage leads to an even greater increase in structural confinement.  
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Figure 7.3. Reverse dip slip model results. For this and all following figures, images by 
row represent common degree of shear damage, images by column represent common slip 
rate. Topography and drainage area are displayed. 
 

7.4.2.2. Normal Fault Slip 

 Natural rates of normal slip also encourage structural confinement, but to a lesser 

degree (Figure 7.4). Normal fault slip exposes new surface material at a slope of 60˚. 

Channels that cross the fault are extended in the direction of surface displacement and there 

is a strong westward orientation in these channel sections, particularly in the 20 mm yr-1 
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slip rate experiments. Slip along the fault plane introduces a greater drainage area adjacent 

to the fault, and as a consequence previously small tributaries become larger, anomalously 

straight channels that intersect the fault. These channels follow the fault structure until they 

intersect a large channel that traverses the fault and reaches the outlet boundary.  

 
Figure 7.4. Normal dip slip model results. 
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7.4.2.3. Left Lateral Strike-Slip Fault 

 Strike-parallel fault motion encourages structural confinement of channels. Figure 

7.5 shows experiment results for the left-lateral strike-slip fault experiments. As I discussed 

above, rock damage encourages a greater degree of structural confinement. However, even 

without damage along the slip plane, the drainage network pattern is influenced by slip and 

the influence increases with slip rate. The 1x, 20 mm yr-1 experiment displays a greater 

degree of structural confinement than 10x experiments at lower slip rates, and shows 

almost as much structural confinement as the 1000x experiments. For all experiments with 

1000x rock damage or 20 mm yr-1 slip rate, a significant portion of the main channel is 

structurally confined. This forces many large channels to intersect and contribute to the 

structurally confined channel. 

 

7.4.2.4. Reverse Oblique Fault 

 Reverse oblique fault slip encourages structural confinement of channels to a lesser 

degree than strike slip motion, but to a greater degree than dip slip motion. Figure 7.6 

shows experiment results for the reverse oblique-slip fault experiments. This tectonic 

regime combines the mechanisms from dip slip motion and strike-slip motion that promote 

structural confinement of channels. As a result, there is a similar but less prominent fault-

parallel drainage pattern that arises in the reverse oblique-slip regime even without fault 

damage. When fault damage is incorporated, there is a strong range-parallel pattern of 

drainage. Interestingly, the 1x 20 mm yr-1 experiment has the least amount of structural 

confinement of them all.  

 

188



 
Figure 7.5. Left lateral strike slip model results. 
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Figure 7.6. Reverse oblique slip model results. 
 

7.4.3 Model Set 3: Lateral Channel Shifting Along a Gently Dipping Fault 

 In Chapter 3 I hypothesized that if a river becomes confined to a gently dipping, 

planar weak zone structure, the position of the river will shift laterally with the changing 

exposure of the weak zone as the surface continues to uplift and erode. This numerical 

experiment did not consider active motion, so I have chosen to revisit this problem and 

apply 1 mm yr-1 of slip along the fault plane. The channel continues to be confined to the 
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structure of the weak zone (Figure 7.7), however the rate of lateral migration is now not 

just a function of fault dip and ambient uplift rate relative to baselevel but also a function 

of slip rate along the fault. Greater fault slip will hinder lateral migration because the 

hanging wall continues to rebuild the downdip valley side, causing the channel to become 

perched and be less able to incise into the hanging wall. 

 
Figure 7.7. Comparison of lateral channel shifting pattern. (A) Kinematic and (B) static 
model from Chapter 3. 
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7.5. Discussion 

7.5.1. Lateral Advection and Channel Slope 

 The lateral advection of topography can increase or reduce channel slope depending 

on fault dip angle, slip rate, and slip direction. Slope increases under reverse slip, where 

steep topography is advected laterally downstream faster than the erosion rate needed to 

equilibrate slope. Slope may decrease under normal slip if the slip plane dips at an angle 

that is shallower than what could be produced by river incision. For example, in Model Set 

1 my normal dip slip experiment with a dip angle of 30˚ is significantly lower than the 

slope expected for the majority of channels incising into the mobile block. However, most 

normal faults dip at a greater angle than 30˚ and could potentially cause an increase in 

channel slope.  

 

7.5.2. Structural Confinement 

 Surface displacement and rock damage both influence the drainage network pattern 

along faults. Based on my results, rock damage affects the drainage network pattern by 

creating a corridor of erodible material, while surface displacement collects drainage where 

the slip surface accommodates differential motion. First, erosion across rock erodibility 

gradients associated with fault damage leads to low relief corridors that attract more surface 

runoff (Roy et al., 2015). I have shown that natural levels of fault damage can strongly 

influence the drainage network pattern regardless of which tectonic regime caused the 

damage.  

 Second, under dip slip motion, channels in the mobile block are advected laterally 

toward the fault. As they reach the fault, on many occasions fault parallel channel sections 
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will remain along the fault because they continue to connect channels to the flow outlet 

boundary. Third, strike slip motion leads to shearing and extension of channels along fault 

strike. 

 

7.5.3. Persistent Drainage Orientations in the Mobile Block  

 Channels oriented parallel to the plate vector will persist whereas channels oriented 

at an acute angle will be removed through lateral advection. For example, in Figure 7.6A-

C, E, F, H, and I, the channel in the bottom right of model domain seems to persist because 

it has the same orientation as plate vector. However, the persistence of these channels also 

depends on a change in the divide position. For example, the divide may shift laterally, 

causing the channel orientation to change in time regardless of its previous orientation. The 

persistence of the channel in Figure 7.6 is partially due to its orientation but also due to the 

drainage divide being pinned to the corner of the domain. 

 

7.6. Chapter Conclusions 

 Tectonics play a significant role in geomorphology by influencing the slope and 

drainage pattern of river channels. Accurate measurement of channel steepness requires a 

good sense of the full 3D kinematic field. Using only the vertical component of surface 

displacement does not adequately predict channel steepness near active tectonic 

boundaries. Surface displacement and rock damage play a significant role in topographic 

shape and drainage network patterns locally near the slip surface. Under conditions where 

a channel incises into a damage zone with a shallow dip angle, the channel will often shift 
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laterally in concert with the damage zone exposure. The rate of lateral migration is 

dependent on the ambient uplift rate, erosion rate, and the fault slip rate. 

 The application of simple block motion has been useful in determining the 

combined influence of rock damage and displacement on landscape evolution, however it 

is important to consider the stresses that drive the velocity conditions behind surface 

displacement. Models of block motion and erosion fall short of resolving the dynamic 

rheological responses of orogens to tectonic stresses and the more complex deformation 

patterns that arise from them. In the next chapter I explore a dynamic crustal model and 

couple it to landscape evolution and climate to determine its contribution to the landscape 

evolution cycle. 
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CHAPTER 8 

DYNAMIC LINKS BETWEEN ROCK DAMAGE, EROSION, AND TECTONIC 

STRAIN IN ACTIVE OROGENS 

 

8.1. Chapter Abstract 

 We provide model evidence for the amplification of tectonic strain within heavily 

eroded shear zones under the assumption that strain weakening increases the erodibility of 

rock. Plastic shear strain permanently damages the upper crust within planar shear zones 

and provides a greater ease for detachment and transport by fluvial processes. The 

subsequent rapid erosion of exposed shear zones reforms the topographic stress field in a 

way that encourages continued accommodation of strain. Greater shear damage leads to 

greater erosion and subsequently greater accommodation of strain localized within the 

eroded shear zone structure. Two experiments are used to study this occurrence, followed 

by a sensitivity analysis. For Experiment 1 we assume that strain weakening in the crust 

does not influence erodibility and therefore has no direct influence on the processes eroding 

the surface. For Experiment 2 we assume that erodibility is inversely proportional to the 

square root of rock cohesion. Experiment 1 produces an orogen in which strain is diffusely 

distributed and there is a dominant range-perpendicular drainage pattern. Conversely, 

Experiment 2 produces a strong range-parallel dominated drainage pattern and a greater 

partitioning of strain within eroded shear zones ~2 km wide. Further, these eroded shear 

zones remain active for a longer period of time. We then study the sensitivity of strain 

partitioning to a spectrum of shear weakening and determine that greater weakening leads 

to greater strain accommodation. 
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8.2. Chapter Introduction 

 The rheological properties of the lithosphere clearly dictate how the Earth’s surface 

will deform with respect to tectonic stress, but there is also evidence that these same 

properties exert significant controls on the rates and patterns of surface processes as well. 

On the one hand, rheology controls the partitioning of tectonic strain and potentially 

initiates topographic relief through deformation, providing the gravitational potential for 

various hillslope, fluvial, and glacial transport processes (e.g. Penck and Penck, 1924). 

Relief can also partition climate and hence affect the distribution of surface runoff by 

vertical deflection of geostrophic winds (e.g. Smith, 1979; Roe, 2005). On the other hand, 

tectonic strain damages the brittle crust within meter- to kilometer-scale shear zones, which 

allows not only for a greater partitioning of strain but also facilitates rock disaggregation 

and removal by the same transport processes (e.g. Scheidegger, 1979; Molnar et al., 2007; 

Moore et al., 2009).  

 The connection between rock damage and erodibility is well recognized in the field 

and there are many studies that draw correlations between the mechanical strength of the 

substrate and rates of erosion (e.g. Mirtskhoulava, 1966; Hanson and Simon, 2001; Sklar 

and Dietrich, 2001; Sklar and Dietrich, 2004; Brideau et al., 2009; Moore et al., 2009). Still 

others have provided field evidence for tectonic responses to localized fluvial incision (e.g. 

Montgomery and Stolar, 2006). Despite these valuable efforts, there has been minimal 

progress in exploring the direct role of damage in the tectonic-surface processes link (e.g. 

Scheidegger, 1979; Molnar et al., 2007; Koons et al., 2012). For example, it is not clear 

how heterogeneous patterns of rock strength associated with the localized partitioning of 
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shear zones may influence the evolving drainage network patterns in an orogen, nor is it 

clear how sensitive strain partitioning will be to focused erosion in shear damaged rock.  

 In this paper, we explore orogenic-scale (>100 km) landscape evolution under the 

assumption that rheology is the link between tectonic activity and surface processes. More 

specifically, we make some theoretical predictions regarding the significance of damage in 

the tectonic-surface processes link by studying how patterns of shear damage can 

potentially 1) steer surface runoff and ultimately focus a greater amount of erosion in shear 

zones, and 2) encourage greater strain localization, partitioning more deformation within 

kilometer-scale shear zones relative to adjacent, intact crustal blocks, deep within active 

orogens. 

 Our method employs numerical models that use the rheological properties of the 

crust to couple tectonic strain, surface erosion, and orographic precipitation. In our first 

experiment, we combine a deforming mechanical model of the crust to deform the surface, 

a fluvial erosion model to erode the surface, and an orographic precipitation model to 

synthesize climate asymmetry across mountainous relief. In our second experiment, we use 

the first arrangement but introduce a link between rock cohesion and erodibility to relate 

fluvial erosion  patterns and rates to the degree and orientation of mechanical shear 

weakening (e.g. Roy et al., 2015). For all experiments we track the time-dependent 

evolution of topography, strain, strain rate, and drainage network patterns. We find that 

shear weakening and the associated local increase in erodibility of rock causes shear zones 

to remain active for longer periods of time, leading to greater strain localization. 

Additionally, erosion in shear zones can help explain common range-parallel orogenic 

drainage network patterns. 
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8.3. Crustal Mechanics and Tectonic Conditions 

 In order to investigate the pattern of surface deformation during orogenesis, we 

model a 3D section of crust 200 km wide (= y), 400 km long (= x), and 20 km thick (=z)  

extending to the lower crust (Figure 8.1A). Orogenesis is the product of collision between 

two tectonic plates along a north-south trending plate boundary (Figure 8.1B). The western 

plate consists of an elastic block to simulate negligible deformation, while the eastern plate 

consists of a two-layered crust that is free to deform upon collision with the elastic block. 

The collision is driven by an imposed traction velocity at the base of the crust to 

approximate contributions from horizontal mantle advection. Lateral boundaries are 

sufficiently distant from the focus of deformation that they do not influence the solution.  

 We assume a vertical strength profile similar to that predicted by Brace and 

Kohlstedt (1980), with a rheological transition located at 14 km depth associated with the 

sharp reduction in flow stress at temperatures greater than 300-350˚ C for quartz/feldspar-

dominated crust (Sibson, 1982; Handy et al., 2007; Bürgmann and Dresen, 2008). We 

describe the upper 14 km of crust as pressure-dependent with an elastic/strain softening 

plastic rheology. The strain softening rheological behavior imposes a permanent reduction 

in local cohesive strength and friction angle when plastic shear strain exceeds 20% (e.g. 

Buck, 1988). The lower crust is represented by a temperature dependent elastic/von Mises 

rheology with a post-yield non-associated flow rule based on published creep laws for 

quartzo-feldspathic crust at a reference strain rate of 10-14 s-1 and average geothermal 

gradient of 20˚ C km-1 (e.g. Upton and Koons, 2007; Upton et al., 2009). Model parameters 

are listed in Table 8.1.  
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Figure 8.1. Model schematics. (A) Crustal geometry, grid resolution is 4 km on the 
horizontal plane and 3 km in the vertical. Grid resolution for the surface model is 2 km on 
average. Elastic plate is indicated in grey, strain softening crust is indicated in green, and 
the middle crust is indicated in red. Dashed and solid lines indicate open and closed flow 
boundaries for the surface model, respectively. Line P-P’ is location of (B) a cartoonized 
topographic profile, indicating the general pattern of rainfall, wind motion, and the position 
and sense of nascent shear zones. (C) Example map of precipitation, the direction of the 
wind vector relative to the topography determines the rainfall distribution, rivers collect 
the surface runoff and erode (hydrography map). (D) Local peaks of plastic shear strain 
from the mechanical model translate to rock damage and a local increase in erodibility. In 
Experiment 1, erodibility is homogeneous, only the orographic precipitation and stream 
power models are used. In Experiment 2, erodibility is linked to the degree of rock damage 
caused by plastic shear strain, all model components are used. 
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Table 8.1. Mechanical model parameters. Strain softening 
values in parentheses active after 20% plastic shear strain 
Bulk Modulus (Pa) 1x1010 
Shear modulus (Pa) 3x109 
Density (kg m-3) 2700 
Friction angle (deg) 35 (30) 
Cohesion (Pa) 3x107 (1x106) 
Plastic Yield stress (Pa) 5x107 
Decollement slip rate (mm yr-1) 50 

 
 Solution of the mechanical equations is accomplished by using FLAC3D, using a 

modified Lagrangian technique (Cundall and Board, 1988). We use modifications by 

Koons et al. (2002) and Upton et al. (2009) that allow for large strains and spatiotemporally 

variable erosion. The equations of motion are solved across a uniform, rectilinear grid of 

nodes, and velocity derivatives are discretized across a series of interconnected polyhedral 

3D elements. The rheology of each element is mathematically approximated with a 

prescribed linear or nonlinear stress/strain or stress/strain rate relationship in response to 

applied forces or boundary restraints.  

 

8.4. Surface Processes 

 We use a configuration of the Channel-Hillslope Integrated Landscape 

Developmental (CHILD) model (Tucker et al., 2001) to approximate the physics behind 

mechanical wear of the substrate under the assumption that rivers can erode bedrock and 

transport sediments at a rate roughly proportional to unit stream power, or the near-

equivalent boundary shear stress  (e.g. Bagnold, 1966; Howard and Kerby, 1983; Seidl and 

Dietrich, 1992; Howard et al., 1994; Stock and Montgomery, 1999; Kirby and Whipple, 

2001; Hancock and Anderson, 2002; Whipple, 2004; Whittaker et al., 2007b; Yanites et 

al., 2010; Attal et al., 2011; Kirby and Whipple, 2012). CHILD has been used previously 
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to explore landscape sensitivity to tectonic forcing (Tucker and Slingerland, 1996; Miller 

et al., 2007; Whittaker et al., 2007a; Attal et al., 2008; Attal et al., 2011), sediment transport 

(Gasparini et al., 2004; Gasparini et al., 2007), storm events (Tucker and Bras, 2000; 

Sólyom and Tucker, 2004), and heterogeneous rock mass strength (Roy et al., 2015).  

 A steepest descent routing algorithm controls the spatial distribution of surface 

runoff in channels that are embedded as subgrid-scale features. Surface runoff leaves the 

domain through open flow boundaries. We assume a supply-limited condition in which all 

detached bedrock is immediately transported from the domain (e.g. Howard and Kerby, 

1983; Stock et al., 2005; Whittaker et al., 2007b; Attal et al., 2008; Attal et al., 2011; 

Hobley et al., 2011). We model processes of landscape evolution using the following 

equation 

 ∂h

∂t
= −kb(x,y,z)ω + Vz + Vh∇h (8.1.)  

where the rate of elevation change ∂h

∂t
 at any point on a surface depends on spatially variable 

erodibility kb(x,y,z), stream power ω per unit width, vertical rock motion relative to 

baselevel Vz, and lateral topographic advection Vh∇h. Our description of the heterogeneous 

3D erodibility field is in Section 8.6 below. Rates of channel bed incision are assumed to 

be proportional to stream power per unit width 

 
ω = kt (

Q

W
) S (8.2.)  

where kt is the unit weight of water (9800 kg m-2 s-2), Q is fluid discharge, W is channel 

width, and S is channel slope. Upstream precipitation and drainage area values are 

integrated for every point in order to calculate fluid discharge. Channel width is calculated 
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using the empirical method (Leopold and Maddock, 1953) W = kwQ0.5, where kw is the 

width-discharge coefficient, here given a value of 10 s0.5 m-0.5. 

 The stream power model shares the model free surface described in Section 8.3. 

However, we use a finer element resolution (2 km on average, Figure 8.1A) for the stream 

power model in order to better capture the scale at which fluvial processes influence 

topography. An irregular mesh discretization is used to seed the dendritic drainage patterns 

that tend to form in homogeneous landscapes (Roy et al., 2015). We use a linear 

interpolation to transfer changes in surface shape between the mechanical model and the 

surface dynamics model. 

 

8.5. Orographic Precipitation 

 Atmospheric circulation is strongly sensitive to topography and can potentially lead 

to significant climate heterogeneity across mountainous relief (Smith, 1979; Tomlinson 

and Sansom, 1994; Roe, 2005; Galewsky et al., 2006; Gasparini and Whipple, 2014), with 

major implications for the distribution of runoff routing, stream power, and fluvial erosion 

rates. For our purposes we define an orographic model in which precipitation rate is a 

function of the vertical deflection of wind caused by surface slope and wind speed, the 

change in air temperature with elevation, and the loss of air moisture with distance traveled 

over the orogen.   

 P = S u sin(α) e−
z
H (8.3.)  

where P is precipitation, S is precipitable water, u is lateral wind velocity, α is the angle of 

the surface topography, z is elevation, and H is the e-folding altitude representing the 

decrease in atmospheric moisture due to decreasing temperature. Equation 8.3 is meant to 
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reflect the typical heterogeneous pattern of orographic precipitation, producing a greater 

amount of precipitation on the inboard slopes facing the windward direction and low 

precipitation rates on the outboard slopes (Figure 8.1C). If the inboard slopes are large, 

more water is lost through precipitation sooner and there will be less precipitation across 

the outboard slopes. As a consequence, drainage density is higher and erosion rate tends to 

be greatest along the inboard side of the orogen. 

  

 8.6. Scaling Rule for Rock Strength-Erodibility Link 

 We choose to link processes of fluvial incision to rock mass strength through the 

erodibility parameter kb(x,y,z). The rock mass strength values we use are based on 

measurements and observations published in geotechnical and structural geology literature 

(Hoek and Brown, 1980; Thomson, 1993; Faulkner et al., 2003; Lockner et al., 2009; 

Tembe et al., 2009; Faulkner et al., 2010; Mitchell et al., 2011; Rempe et al., 2013). 

Assuming that bedrock anelastic strength is inversely proportional to erodibility (Sklar and 

Dietrich, 2001; Sklar and Dietrich, 2004), we apply the scaling rule used by Roy et al. 

(2015) and adapted from Hanson and Simon (2001) 

 kb(x,y,z) = kcC(x,y,z)
−1 2⁄  (8.4.)  

where C is cohesion and kc is a coefficient equal to 0.2 with units m1/2 s kg-1/2. We elected 

to use cohesion as our gauge of anelastic strength because of its importance in the Mohr-

Coulomb failure criterion and because of the greater accuracy of measurement over tensile 

strength in heavily damaged rock (Hoek and Brown, 1980; Hoek and Brown, 1997). We 

model rock damage as a function of plastic shear strain accommodation from deformation 

in the strain softening upper crust of the mechanical model. The mechanical weakening in 
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shear zones translates to a proportional increase in erodibility using Equation 8.4 (Figure 

8.1D). Rock cohesion values are interpolated into the surface processes model along with 

the elevation data. 

 

8.7. Model Results 

 In both experiments, the convergent plate shortens laterally upon collision with the 

elastic plate, leading to vertical displacement of the free surface (Figure 8.2A, 3A). A high 

strain decollement forms beneath the rheological boundary. Plastic shear strain is 

transferred to the stronger mid and upper crustal layers. The rheological response in the 

upper crust localizes strain in shear zones that grow toward the east with continued 

deformation. We allow for the mechanical model and the surface processes model to 

cooperatively influence topographic evolution (Figure 8.2A, 3A). 

 

8.7.1. Experiment 1: Tectonics with Erosion 

 Assuming uniform erodibility and orographic precipitation, channels incise into the 

orogen following a general downslope direction, trending perpendicular to the collisional 

boundary. This dendritic drainage pattern persists despite channels crossing large strain 

gradients and sharp contrasts in strain rate associated with the outward growth of the 

orogen (Figure 8.2B, C). Conversely, channels on the inboard slope are more densely 

distributed and tend to be short, straight, and steep. The inboard network pattern correlates 

with maximum uplift and precipitation rates in addition to maximum strain along the 

collisional boundary, while the outboard pattern correlates with lower rates (Figure 8.2A, 

8.5A).  

204



 

 

 
 
 

Fi
gu

re
 8

.2
. E

xp
er

im
en

t 1
. (

A
) T

op
og

ra
ph

y,
 (B

) p
la

st
ic

 st
ra

in
, (

C
) s

tra
in

 ra
te

. F
ro

m
 le

ft 
to

 ri
gh

t, 
su

rf
ac

es
 fr

om
 5

0 
km

, 7
5 

km
, 1

00
 k

m
, a

nd
 1

25
 k

m
 o

f c
ru

st
al

 s
ho

rte
ni

ng
. A

rr
ow

he
ad

s 
in

di
ca

te
 th

e 
lo

ca
tio

n 
of

 s
he

ar
 z

on
es

. C
irc

le
 

in
di

ca
te

s a
 lo

ca
l t

op
og

ra
ph

ic
 e

ff
ec

t o
n 

pl
as

tic
 st

ra
in

 a
cc

om
m

od
at

io
n.

 C
ol

or
 sc

al
es

 lo
ca

te
d 

at
 lo

w
er

 le
ft.

 
 

205



 The overall width of the orogen grows to approximately 150 km (Figure 8.2A, 125 

km shortening) and tends to widen in a slow, continuous pattern rather than with distinct 

thrusts (see Figure 8.4 in Section 8.7.3 for an example with no erosion displaying a wider 

orogen and distinct fold-thrusts). Plastic strain maps (Figure 8.2B) indicate significant 

localization of strain in eroded shear zones along the inboard side of the orogen and a 

gradual decrease in strain with distance from the drainage divide, a pattern that persists as 

deformation continues in time. This uniform pattern of diffuse strain in the outboard side 

of the orogen is perturbed slightly by the river network, which generates sharp relief at the 

sub-orogen scale (Figure 8.2B, 125 km shortening, dashed circle). As the orogen continues 

to build the strain field grows to the east. Strain rate maps (Figure 8.2C) indicate a relatively 

high strain rate along the indentor front and high strain rate along the growing eastern edge 

of the orogen. Within the orogen strain rate is relatively low and more diffuse, but does 

tend to concentrate approximately 40 km to the west of the growing edge of the orogen. 

 

8.7.2. Experiment 2: Tectonics, Erosion, and the Strength-Erodibility Link 

 For Experiment 2 we use Equation 8.4 to link erodibility to rock cohesive strength 

values taken from the mechanical model. Results suggest that initially, the topographic 

pattern is nearly identical to that of Experiment 1 (Figure 8.3A, 50 km shortening). 

However, there is a noticeable increase in range-parallel channels in correlation with the 

strike of emerging shear zones, while range-perpendicular channels that correlate with the 

larger scale downslope gradient become less frequent (Figure 8.3A, 75 to 125 km 

shortening). The two or three major range-perpendicular channels must each accommodate 

a greater amount of surface runoff than each of the smaller, more frequent channels in  
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Experiment 1. As a result there is significantly greater relief between the eroded shear 

zones and adjacent ridges when compared to Experiment 1 (Figure 8.5A versus Figure 

8.5B). The inboard river network pattern is similar to Experiment 1 (Figure 8.3A versus 

Figure 8.2A). 

 The majority of strain in the orogen is concentrated along the eroding shear planes, 

but strain does also accumulate between the shear zones (Figure 8.3B). After 125 km of 

shortening in the orogen, eroded shear zones accommodate approximately 35% more strain 

than shear zones in Experiment 2, while crustal blocks between shear zones accommodate 

approximately 10% less strain. Again, strain rate tends to be greatest along the growing 

eastern edge of the orogen, but high strain rates do persist in the eroded shear zones even 

after they have migrated to the interior of the orogen (Figure 8.3C). 

 

8.7.3 Supplemental Experiment 0: Tectonics with No Erosion 

 In supplemental Experiment 0, shear zones form iteratively with increasing 

distance from the plate boundary (Figure 8.4B). The shear zones host relatively large 

strain rates, but the greatest strain rate occurs along the growing outboard boundary of the 

orogen (Figure 8.4C). As a consequence, surface deformation takes the form of low 

amplitude fold-thrusts that grow outward from the indentor collectively in a wedge shape. 

This deformation pattern is similar to the fold-and-thrust belts and submarine 

accretionary complexes that generally follow critical wedge theory (Davis et al., 1983; 

Dahlen, 1984). Due to a lack of precipitation and erosion there is no river network pattern 

to compare for Experiment 0. 
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Figure 8.4. Experiment 0. (A) Topography, (B) plastic strain, (C) strain rate, and (D) 
Elevation profile. From left to right, surfaces from 50 km, 75 km, and 100 km of crustal 
shortening. Arrowheads indicate the location of shear zones. Color scales located at lower 
left. 
 

8.8. Discussion 

 The noticeable difference in drainage network pattern between experiments 

coincides with a different pattern of tectonic strain partitioning in each orogen. The 

structurally confined drainage pattern of Experiment 2 indicates that strain weakening 

directly influences surface processes by locally increasing erosional efficiency and 

subsequently attracting a greater accumulation of surface runoff to power further erosion. 

Focused incision in shear zones leads to a subsequent increase in differential stress 

associated with range-parallel topographic relief. Consequently, as shear damage 

progresses with continued strain, greater erosion and greater strain is the expected result. 

The potential positive feedback attributed to rock damage can therefore play a significant 
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role in the evolution of strain within an orogen. For example, Norris and Toy (2014) 

hypothesize that the perseverance of oblique shear on the Alpine Fault of New Zealand 

may be partially attributed to heavy orographic precipitation and rapid exhumation of the 

shear zone. 

 In order to explore the potential sensitivity between erosion and strain, we measure 

strain localization, taken as the ratio of plastic shear strain inside the shear zone versus 

outside the shear zone over a distance spanning ~20 km (Figure 8.5C). Results from five 

experiments, each with a differing degree of strain-induced rock damage, indicate that 

strain localization is expected to increase with greater damage (Figure 8.5C). The most 

significant increase in strain localization occurs between 1x to 30x, when the pattern 

transitions from range-perpendicular (1x) to range-parallel (30x), indicating river channels 

that become confined to shear zone structures.  

 The damage scale in which the drainage pattern transition occurs is in agreement 

with Roy et al. (2015), who found that when using Equation 8.1, channels can become 

structurally confined when shear zones are more than 6 to 60 times weaker than intact rock. 

This degree of damage is well within the natural strength range of fault gouge and 

cataclasites (e.g. Ben-Zion and Sammis, 2003; Faulkner et al., 2010; Rempe et al., 2013) 

and many natural examples of structurally confined drainage exist (e.g. Ericson et al., 2005; 

Becker et al., 2014; Roy et al., 2015). The Three Rivers region along the eastern edge of 

the Himalayan Eastern Syntaxis is one such example where a strong correlation exists 

between the positioning of three larger rivers and three major shear zones (Hallet and 

Molnar, 2001; Liu et al., 2011). Similar correlations exist in New Zealand (Craw et al., 
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2012), the Grand Canyon (Hodgson, 1961; Huntoon and Sears, 1975; Shoemaker et al., 

1978), and the San Andreas Fault of California (Crowell, 1962), among other places. 

 Fluvial incision of outboard shear zones in Experiment 2 generates relief on the 

order of 2.5 km, generally over a distance of less than 20 km in an orientation conducive 

to local orographic effects (Figure 8.5B). The slight increase in rainfall associated with the 

erosional relief accounts for a small increase in fluid discharge and consequently an 

increase in erosional power in the structurally confined channel. Rainfall patterns in New 

Zealand are also sensitive to steep relief over similar length scales (Tomlinson and Sansom, 

1994), but the magnitude is minimal compared to the large scale orographic pattern 

associated with the inboard side of the orogen in both the natural and model cases (Figure 

8.5A, B). 

 
Figure 8.5. Cross-sectional profiles for Experiments 1 and 2 (A and B, respectively). 
Black: elevation, green: plastic strain, red: mean uplift rate, blue: precipitation rate. In all 
cases, peak values are located on the inboard side of the orogen, along the edge of the 
elastic plate. (C) Plot of strain localization factor versus degree of rock damage. 
 
 
8.9. Conclusions 

 The strength-erodibility link explored in this work amplifies the cooperative 

responses between processes of erosion and tectonics. Crustal deformation facilitates the 

mechanical weakening of rock in distinct shear zones, establishing a network for 
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partitioning strain in permanently weakened rock. In addition, the efficient erosion of 

mechanically weakened rock amplifies the contrast of strain partitioning by unloading the 

topographic stresses that resist shear failure right above the shear zones. The geometry of 

shear zones is reflected by a shift in the drainage network pattern from range-perpendicular 

to range-parallel, matching the position and orientation of the eroding shear zones. Greater 

rock damage leads to a higher contrast of strain between shear damaged zones and the 

surrounding undamaged rock. Consequently, shear zones remain active for a longer period 

of time under these erosional conditions. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

9.1. Summary of Chapter Conclusions 

 Field evidence is suggestive of a fundamental link between the mechanical strength 

of rock and the rates and patterns of erosion by rivers. When this relation is applied in a 

numerical model of landscape evolution, results support the hypothesis that natural levels 

of rock damage, an order of magnitude weakening or more, positively influence the pattern 

of fluvial erosion and lead to structurally confined drainage network patterns. Erosion rates 

in weak zones can be an order of magnitude faster than in undamaged rock, due in part to 

the ease of greater erodibility but also to the greater attraction of runoff due to topographic 

steering by the eroded weak zone. The effect of runoff accumulation is great enough that 

rivers confined to weak zones with a shallow dip angle exhibit lateral shifting to coincide 

with the shifting exposure of the eroded weak zone.  

 Later exposure of weak zones, either by progressive erosion through a 

homogeneous medium or by some other mechanism of instantaneous emplacement on the 

surface, will still influence the drainage network pattern at the regional scale (100 km), and 

through it, topography. The introduction of multiple faults with nonparallel strike, for 

example produced by oblique collision or a combination of different tectonic events, may 

generate high tortuosity upon their intersection by a structurally confined river, the 

magnitude of which is equal to the difference in strike angle. The influence of late exposure 

weak zones is diminished with faster uplift rates. The eventual exposure of plutons will 

also alter the drainage network pattern. 
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 The high rock erodibility and fracture density found in weak zones promotes rapid 

detachment and transport of fine grained materials after incision. Weak zones tend to erode 

far more quickly than surrounding intact rock and as a consequence, coarse grained 

sediments begin to accumulate in the low relief of the eroded damage zone. Field evidence 

also suggests that sediments armor the majority of weak zones except high up on valley 

walls or along channel heads. As a consequence, weak zones with structurally confined 

channels are armored for the majority of the time by sediments with coarser median grain 

size than expected from erosion of the weak zone itself. As a consequence, channel gradient 

in the weak zone is governed by alluvium rather than bedrock, while the opposite is true 

for the short, steep tributaries that incise into intact bedrock and deposit the coarse 

alluvium. Greater fault weakening leads to a greater reduction in relief and subsequently a 

greater residence time for sediments in or adjacent to the structurally confined channel. 

 The shape of topography holds valuable information about the scale dependency of 

tectonic and geomorphic forces. The signal of rivers is generally dominant at the 50 km 

wavelength or less, but this scale limit will vary by location. The tectonic signal dominates 

at the 100 km scale and greater, however features such as eroded faults, fault scarps, or 

heterogeneous lithology can influence topographic shape at any scale, including the scale 

traditionally dominated by fluvial processes. Different characteristic landforms exhibit 

signature multiscale patterns of anisotropy that can be used diagnostically to explore the 

geological history of a region. Our use of multiscale, every-directional variogram analysis 

has certain advantages over more traditional methods, including the ability to measure 

anisotropy for any spatially variable parameter, a strong sensitivity to spatial changes, a 

214



fast calculation of directional-dependent elevation variance on a CUDA platform, and the 

ability to quantify variance at multiple scales. 

 Weak zone erosion is capable of perturbing the near surface stress field and may be 

capable of influencing the partitioning of tectonic strain in a tectonically active landscape. 

Coupled models used to explore this dynamic behavior suggest that localized erosion 

amplifies localized strain through an efficient unloading of normal topographic stress in a 

structural feature that is already accommodating a significant amount of shear strain. This 

response supports greater total accommodation of strain in shear zones, greater longevity 

for active shear zones, and a range-parallel drainage network pattern that is common in 

natural orogenic landscapes. 

 

9.2. Future Work 

9.2.1. A Failure-Based Model for Landscape Evolution 

 The future of tectonic-geomorphic-climate coupled modeling is in the creation of a 

failure-based landscape evolution model. My work uses traditional equations for stream 

power to parameterize the degree of work done on the bed of a river and a hypothetical 

scaling rule to relate rock mass strength to erodibility. My major conclusion from this thesis 

is that the mechanical properties of rock, largely controlled by tectonic strain, play a 

primary role in landscape evolution, and I reach this conclusion by using parametric models 

for river incision and a hypothetical scaling rule to relate cohesive strength to the nebulous 

parameter of erodibility. Ideally the determination of substrate detachment and transport 

should be based on the stress tensor at the surface, and recent improvements to 

computational fluid dynamics, combined with rapid advances in computational power, 
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mean that a physics-based model such as this may be well within reach. A lightweight 

engine for fluid dynamics is needed to generate the full stress tensor required to better 

understand the stress state along the wetted perimeter of a channel as well as the potential 

failure mechanisms that can occur along the base and sides of a channel. The strength of 

the bed would be derived from the mechanical strength of the rock and alluvium units it is 

composed of, which would account for anisotropies associated with mineralogy, 

stratigraphy, or structure. The flow dynamics of the river channel would impart stresses 

that are geometrically far more complex than assumed when using the scalar value of 

stream power or bed shear stress. An interesting experiment would be to see in what cases 

the solution diverges between a physics based and a parameterized model. 

 

9.2.2. Landscapes with Greater Tectonic Complexity 

 Many of the tectonic regimes explored in this thesis are very simple and are not 

representative of the most interesting tectonic problems on Earth, namely collisional plate 

corners (Figure 9.1). For example, the Himalayan Eastern Syntaxis represents the tectonic 

edge of over 2000 km of crustal shortening between the Indian and Eurasian Plates (Hallet 

and Molnar, 2001). The resulting pattern of Tibetan uplift is a product of shallow slab 

subduction and thermal weakening north of the Himalayas. There is a significant degree of 

clockwise vorticity in the Eastern Syntaxis thought to be driven by a foundering Burma 

slab, which has widened the scale of deformation (Liu and Bird, 2008). Along the eastern 

edge in the Three Rivers region, active north striking strike-slip features host large rivers 

(Hallet and Molnar, 2001; Henck et al., 2011). The degree of tectonic strain, subsequent 

crustal weakening, and highly focused fluvial incision has led to extreme uplift/incision 
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rates and ~4 km of relief between Tsangpo Gorge and Gyala Peri-Namche Barwa Massif 

(Zeitler et al., 2001; Koons et al., 2002; Koons et al., 2013).  

 Patterns of deformation in these regions cannot be completely explained by fault 

block models or even the simple crust-scale dynamic models of Chapter 8, but require a 

numerical solution that takes into account spatially variable tectonic strain associated with 

spatiotemporal changes in mantle advection and lithospheric strength. In this section I 

provide preliminary results for a plate corner model that does not account for dynamic 

mantle advection or heterogeneous lithosphere strength at depth, but does provide some 

insight on the surface response to the intersection of horizontal and vertical coordinate 

shear strain. 

 My preliminary models of convergent plate corners (Figure 9.2.) are able to 

replicate some expected patterns of crustal deformation within the colliding plate corner. I 

implement the same tectonic, climatic, and surface processes conditions as in Chapter 8, 

except I limit the traction velocity on the middle crust to ¾ of the model base to enforce 

the creation of a corner. As a result, the colliding crust deforms in a pattern similar to a 

fold-thrust belt (Figure 9.2A, B). Shear strain localizes between thrusts, along the 

transverse fault, and along the decollement near the base (Figure 9.2C). Much like the 

experiments from Chapter 8, shear strain rate persists on the shear zones within the orogen 

but are greatest along the growing edge of the orogen (Figure 9.2D). There is a small 

amount of range-parallel displacement associated with the corner geometry (Figure 9.2E). 

The magnitude of vorticity is minimal, but I have indicated the basic trend with unscaled 

arrows in Figure 9.2E. This displacement and subsequent range-perpendicular shortening 

is enough to cause a small amount of uplift outside of the corner. Experiments with erosion 
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are shown in Figure 9.2F, G. Maximum elevation is approximately 6 km and vertical 

displacement is approximately double. Rivers tend to incise the orogen from the corner 

because of the relief pattern generated upon collision. In the experiment with the fault 

damage-erodibility link (Figure 9.2G), there is significant erosion along the transverse 

fault. This pattern of uplift leads to a strong range-parallel drainage pattern. 

 Time series data (Figure 9.3) reveal how the orogen builds through a series of 

outward stepping fold-thrusts. A distinct orogen forms by 800 ka and soon after, new 

thrusts initially form near the transverse fault, then propagate across the orogen. This 

pattern of uplift is probably due to the damage propagation along the decollement and the 

transverse fault: uplift initiates while the upper crust is still strong.  

 Despite these interesting results, the simple boundary conditions I use cannot 

replicate patterns of deformation associated with large corner vorticity, nor can I replicate 

plateau uplift associated with thermal weakening of the crust. However, model results act 

as a suitable first order attempt at corner collision because we can at least attribute these 

patterns of deformation to something beyond my simple constraints. An improved model 

would allow for thermal weakening of the crust and a larger model domain to account for 

wider deformation patterns and inclusion of the full lithosphere. In addition, models will 

need to be run to higher strains to better replicate the conditions of real plate corners. Such 

a model will require dedicated regridding algorithms to help stabilize the model solution. 

Such models do exist, and the incorporation of surface processes and a damage-erodibility 

link would be straightforward. 
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Figure 9.2. Example corner model. (A-E) Model with no erosion, (F) model with erosion 
but no damage-erodibility link, and (G) model with erosion and damage-erodibility link. 
(A) Total convergence, (B) vertical displacement, (C) total shear strain, (D) shear strain 
rate, (E) closeup of total displacement in x (range parallel) direction, small images on right 
indicate region of zoom. (F, G) surface elevation (top) and drainage area (bottom) maps. 
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Figure 9.3. Time series of corner model elevation. Orogen grows by distinct fold-thrusts, 
which initiate near the transverse fault. A small amount of uplift occurs outside of the 
corner. 
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APPENDIX A 

NUMERICAL MODELING IN THE CLASSROOM 

 

 Models are simplified or idealized concepts used to determine how different 

phenomena, agents, or conditions are related within a system. Regardless of what form 

they take, models allow the curious mind to make connections between seemingly 

unrelated observations of instances and by doing so expand our understanding of how 

systems operate. They are therefore an integral component of the scientific method because 

they allow us to build, test, and revise hypotheses. Their ability to expand and give meaning 

to observations and measurements make models an invaluable tool in research and 

education.  

 In this appendix I explore the educational capabilities of a numerical model of 

landscape evolution, known as the channel-hillslope integrated landscape dynamics 

(CHILD) model. CHILD uses formulae that produce patterns resembling natural patterns 

of river and hillslope erosion, and can therefore be used not only to estimate short and long 

term changes in landscape form, but also can be compared directly to natural landscape 

patterns and rates of erosion. I first describe the organization of a graphical user interface 

used to prepare, run, and visualize simulations, then I provide some example modules that 

can be used in the undergraduate classroom. 

 

A.1. Approach: Graphical User Interface 

 There are many examples of robust numerical models that can be used to predict 

the sensitivity of processes that drive landscape evolution. However, their design is for 
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advanced users who need flexibility and a wide control of parameterized processes. In its 

current state, students and other beginners may feel too intimidated to use such code. For 

this reason I have designed a graphical user interface (GUI) for the CHILD code to allow 

for greater ease of use. The CHILDGUI simplifies the method for choosing parametric 

values used to drive the simulation and it provides clear options for visualization and the 

import of data. 

 

A.2. GUI framework 

A.2.1. Preprocessing simple parametric controls and running the simulation 

 The CHILDGUI (Figure A.1) consists of a series of menu windows that list the 

model parameters. Each parameter has a dropdown menu that provides a natural range of 

parametric values. In the main window, three panels allow the user to control rock type, 

environment, and uplift rate. Rock type represents the cohesive strength of the surface that 

is eroded, and this value is used to calculate the erodibility. Environmental conditions are 

represented by the mean annual precipitation rate and the frequency of rainstorms per year. 

Uplift rates reflect typical low, medium and high rates seen in natural tectonic settings. 

Other model parameters include the amount of simulated time and the size of the model in 

meters (the model is assumed to be square, so all dimensions are of the same length). 

Experiments are executed by pressing the red button, and model progress can be tracked 

from the Matlab terminal. When complete, the experiment is listed in the model listbox in 

the lower right corner of the main window. 
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Figure A.1. Main menu of CHILDGUI. Additional options are accessed from dropdown 
menu, plot options are accessed from popup menu, model parameter values are accessed 
through radio buttons. Big red button runs experiment. 
 
 
 
A.2.2. Visualize the model results 

 You can choose any simulation to visualize by clicking on the simulation name in 

the model listbox. Plot the results by clicking the plot variable dropdown box. Options 

include: elevation, discharge, slope, stream power, total erosion, and erosion rate (Figure 

A.2). These options give the user simple controls to track the evolution of topography and 

the drainage network pattern in time, as well as locations of high stream power and the 

progression of erosion rate as rivers cut into the landscape. 
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Figure A.2. Examples of plot options. Clockwise from top left: elevation, discharge, slope, 
erosion rate, and total erosion. 
 
 
 
A.2.3. Advanced Options  

A.2.3.1. Heterogeneity 

 In many natural landscapes, heterogeneous conditions of climate, tectonics, or 

lithology play a primary role in landscape evolution. It is therefore useful to include these 

heterogeneities in a model if we want to make connections between the shape of the 

landscape and the initial conditions. Under the advanced options / maps menu, there are 

options to incorporate maps of rock strength and displacement and climate. Checking Rock 

strength variability under the rock strength map option (Figure A.3A, B) initiates either a 

fault zone or a pluton geometry in your model. General options include strength versus 

host, strength difference factor, size, and depth to exposure. Fault specific options include 

one or multiple faults, position, and geometric data to position the planar fault zone in the 

landscape. When switched to pluton, the options are to have a square or circular pluton, 
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and to allow the presence of weak joints. To turn off all of these options you must click the 

check box before closing the window. 

 
Figure A.3. Additional map options. (A) Fault zone, (B) pluton, (C) precipitation, (D) 
surface displacement map options. 
 
 Precipitation variability is turned on by clicking the check box under precipitation 

map (Figure A.3C). There are two options: one divides precipitation in the landscape with 

a sharp transition, and another applies a smooth precipitation gradient. There are additional 

controls for the magnitude difference between high and low precipitation and the direction 

in which precipitation increases.  

 Rock displacement maps are activated by checkbox next to variable rock 

displacement (Figure A.3D). Here there are options to displace the surface according to 
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simple fault block motions. CHILDGUI assigns simple kinematic velocity conditions to 

both fault blocks. Options include the strike direction of the slip plane, the rate of dip-slip, 

the rate of strike-slip, and the shear sense. 

 

A.2.3.2. Landscape Response Tests 

 In addition to spatial variability, landscape and environmental conditions can 

change in time as well. Geomorphologists are interested in studying how landscapes are 

able to respond to changes in these conditions, and one way to do this is by using a 

landscape evolution model. In the CHILDGUI advanced options menu, choose landscape 

response tests (Figure A.4A). The response test is activated by clicking the checkbox next 

to run a landscape response test. The type of responses include knickpoint, change in uplift 

rate, change in environment, and change in rock type. Adding a knickpoint is meant to 

replicate a sudden and sharp change in baselevel, which could be caused by a sudden 

change in sea level or a sudden seismic event. A change in uplift rate could represent a 

sudden change in tectonic activity, while environmental changes represent a shift in 

atmospheric circulation that forces climate change. A change in rock type may occur due 

to the exposure of a new rock unit with different rock strength. The options for each 

example generally represent the magnitude of change; for example, you can indicate how 

large the initial knickpoint is. These tests double the simulation time so you have plenty of 

time to reach steady surface conditions, then see how the surface changes shape under the 

new conditions. 
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Figure A.4. More options. (A) Response test, (B) Plotting biome range, (C) Using initial 
topography. 
 

A.2.3.3. Biome Proxy Modeling 

 Landscapes can host a diverse distribution of organisms depending on gradients of 

tectonics, climate, and even lithology. Spatial information about topography, rivers, and 

climate can be used to determine the probability field for the existence of various organisms 

within the landscape (Figure A.4B). I have written code that allows a user to visualize a 

probability field for specific organisms based on topography and precipitation rate. The 

probability field is a function of comfort range of proximity to fluid discharge threshold, 

precipitation, elevation, and slope, an attempt to quantitatively plot the major factors that 

would allow for the existence of an organism. The code is only a way of visualizing the 

probability of organism accommodation, it is not a dynamic contributor to the landscape 

model. It does not track the progress of an organism using an agent-based or cellular 

autonomy method, but it is possible to include such methods. 
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A.2.3.4. Importing Maps, Using Preloaded Surfaces 

 All of the examples I have given so far are for idealized landscapes that start off 

with a flat surface. If you are interested in discovering landscape evolution in a real location 

on Earth, it is possible to run experiments on a number of preloaded surfaces or import an 

elevation map of your own (Figure A.4C). CHILDGUI accepts geotiff format as well as 

any ASCII- or column vector-based data formats. 

 

A.3. Hypothetical Course Modules 

 CHILDGUI has applications for any course involving earth surface dynamics. It 

has been used in combination with dynamic models of mantle and lithospheric advection 

to study how erosional processes will respond to real tectonic activity. It has also been used 

to determine the potential capacity for various locations on Earth to sequester atmospheric 

CO2 by silicate weathering in physically disaggregated rock. It has also been used to 

compare general rates of river incision and glacial incision in landscapes from Southeast 

Alaska. Apart from these more sophisticated applications, it is a useful tool for predicting 

simple landscape sensitivity to various internal and external drivers. Below I have provided 

a few thought questions and modules that can be incorporated in any geoscience classroom. 

A.3.1. Basic modules: Sensitivity of landscape to tectonic, climate, and lithological 

perturbations 

1) How does lithology affect relief? Run three simulations with uniform uplift and 

environment conditions, each with a unique lithology (Figure A.5). How different 

is the relief between each example and why? 
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Figure A.5. Lithology experiment. From left to right: Granite (strong), basalt, and shale 
(weak). 
 

2) Can heterogeneous lithology affect the shape of topography? Using the rock 

strength map option it is possible to see how a landscape will evolve under 

conditions of heterogeneous lithology. For example: fault damage zones versus 

homogeneous rock (Figure A.6) or the exposure of resistant plutons (Figure A.7). 

3) How does the landscape respond to an aseismic drop in base-level? Using the 

Landscape Response Tests option, it is possible to observe the pattern of landscape 

response to a sudden seismic shift and to track the total amount of time it takes the 

landscape to respond to the shift. 

4) How is sediment yield linked to tectonic uplift rate? Using the total erosion plot 

option provides the total volume of sediment produced by erosion and uplift, 

making it simple to compare between uplift rates, climate, and rock type. 

5) Do landscapes keep a record of past tectonic activity? The landscape response tests 

option allows the user to track the change in landscape shape based on a shift in 

tectonic activity. 

6) How can climate change reshape a landscape? Do landscapes keep a record of past 

climate? Similarly, the landscape respone tests option can be used for climate 

change. 
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Figure A.6. Fault erosion experiment. Counter-clockwise from top left: Elevation for 
homogeneous experiment, faulted experiment, discharge for faulted experiment, 
homogeneous experiment. 
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Figure A.7. Pluton, rainfall gradient, and strike-slip fault experiments. Clockwise from top 
left: erosion of resistant pluton, discharge map for landscape with precipitation gradient 
increasing to the east, erosion of left-lateral strike slip fault, plot of response rate for the 
three separate experiments from Figure A.5. 
 
 
 
A.3.2. Outlined Theme Modules 

A.3.2.1. Exploring the Role of Physical Weathering in Carbon Sequestration: 

Geomorphology, Tectonics, and Geochemistry 

 Upon completion of this module students will be able to model the physical erosion 

of bedrock using CHILDGUI and make estimates for the volume of atmospheric CO2 

sequestered under different tectonic, lithological, or climatic conditions, and in doing so be 

able to provide an educated prediction for the efficiency of carbon sequestration for 
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different locations on Earth. The students are given a location to study, with information 

on lithology, tectonics, and climate. They will feed these values into CHILDGUI to get a 

measure of mean erosion rate and total eroded bedrock in the landscape. These numbers 

provide the volume of sediment that could sequester CO2 upon chemical weathering. Based 

on the mineralogy of their rocks, they can then calculate the volume of sequestered CO2, 

understanding that this is probably a maximum estimate. This method can be replicated for 

any location on Earth, and the students can get an estimate for a global potential. The 

estimate can then be refined by determining how the sediments will be exposed to chemical 

weathering in the atmosphere, how much sediments will be shunted into the ocean without 

chemical weathering, and how much will be buried without undergoing the necessary 

reactions. 

 

A.3.2.2. Biome Mapping: Geology, Ecology  

 Upon completion of this module, students will understand the importance of 

landscape and climate in ecology, and will be able to model the probability field for certain 

organisms within varying landscapes and under changing tectonic and environmental 

conditions. This module utilizes the basic sensitivity analysis described above with the 

biome modeling option (Figure A.8). 

1) What tectonic and climatic conditions would be ideal for an organism? Come up 

with an example organism whose preferred living conditions are well understood, 

and try replicating those conditions with the CHILDGUI. Using the biome proxy 

tool, track the probability field for that the organism’s existence. Can that organism 
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survive in this landscape? why or why not? Run a few sensitivity tests to find the 

right match. What tectonic and climate conditions are ideal for the organism? 

2) How sensitive would the organism be to perturbations in climate or tectonics? Try 

a model in which climate or uplift rate changes suddenly. Could it possibly become 

endangered, extinct, separated into isolated groups, or required to move a 

significant distance across the landscape? What is the change is only temporary? 

Will the organism be able to survive a short-term change in its environment? 

 
Figure A.8. Example of topography-dependent ecology. From left to right: probability 
field for an organism comfortable at a moderate elevation with close proximity to large 
rivers, elevation map used to create the biome proxy map. 
 
 

A.3.2.3. Dynamics of Natural Resources; Geology, Ecology, and Economics 

 Upon completion of this module students will be able to understand the importance 

of tectonics, climate, and surface processes in how natural resources are distributed across 

the Earth. Additionally, students will learn the economic significance of tectonic and 

environmental factors using simple board games. Tectonics plays a critical role in shaping 

the earth’s surface and influencing climate. As a result, landscapes reflect tectonic 

processes through topographic shape and the distribution of surface water, both of which 
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play a fundamental role in ecology and the distribution of natural resources on Earth. In 

this module, tectonic models are used to shape the surface of the Earth and arrange the 

distribution of biomes and natural resources. To make this connection, the board game 

Settlers of Catan (http://www.catan.com/) is used to play a game of resource collection 

across the landscape created by the tectonic model. Students should then be able to see the 

primary role tectonics plays in global ecology and the economy. 

1) Students choose a geologic setting and see how the landscape evolves. Which 

setting was chosen and why? What biomes do you predict will arise from the 

patterns of topography and climate? Run the biome proxy model over this 

landscape and replicate the results with the Settlers of Catan board.  

2) What does the surface look like? How do different settings influence the spatial 

distribution of natural resources? Do some conditions lead to greater diversity than 

others? Greater concentration of resources? Isolation? Difficulty in building trade 

networks? Port access?  

3) How does the rain shadow effect alter the productivity of some natural resources 

(ample wood and stone on windward side, ample sheep, wheat, brick on lee side)? 

4) How does geology play into bargaining, trade agreements, conflict, and strategy? 

5) Are there societal timescale transient effects of geology and climate? How would 

these dynamic changes affect your model economy?  
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A.3.2.4. Stream power and the inland expansion of Maine settlements: 

geomorphology, American history, and microeconomics.  

 Maine has a robust history of watermill-based industries starting as early as the 18th 

century. New settlers were able to take advantage of the vast array of natural resources 

inland Maine has to offer by building communities near reliable sources of stream power. 

Watermills became an essential part of the burgeoning Maine economy, producing goods 

used locally and abroad from grist mills, sawmills, carding mills, tanneries, shingle mills, 

woolen mills, and edge tool mills. Stream power played a singular role in Maine settlement 

throughout the 18th to 20th centuries and its mark is left on the many old mill towns that 

remain today. But, where does the power come from? This module focuses on what 

contributes to stream power, how we can predict the distribution of stream power using 

models, and why some locations were chosen for settling over others (access to stream 

power, resources, transportation). 

1) Contributions to stream power: taking a close look at water flowing down a stream: 

driving and resisting components (simple navier-stokes), what optimizes stream 

power? 

2) Models for stream power in Maine using elevation and climate data. 

3) Historical locations and why they were settled: Rumford, Freedom, Oakland. Have 

students do some internet searches and see what they can find. Use the biome proxy 

code combined with Maine elevation and stream data to determine optimal 

locations for stream power. Do these locations correlate to actual towns? Do they 

correlate to regions with other natural resources (woods, arable land, ore) were they 
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accessible to early pioneers? Is there a common trend? Are resources, stream 

power, and transportation factors all supportive of a settlement? Why or why not? 

4) Why is stream power no longer used no longer heavily relied on? Use this 

opportunity to shift into another module about energy resources and a discussion 

about relative cost effectiveness of hydro power, oil, wind, solar, nuclear, etc. 
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APPENDIX B 

BEDROCK INCISION, SEDIMENT STORAGE, AND SENSITIVITY TO 

STORMS 

 

Here we explore the predicted influence of storm frequency, duration, and 

magnitude on the mean elevation (Figure B.1A-D) and sediment thicknesses (Figure B.1E-

G) in a landscape using three experiments with variable mean rainfall intensity and storm 

frequency. In all experiments, the drainage network pattern reflects the fault weak zone. 

Infrequent, high intensity storms lead to less aggradation of sediments in the weak zone 

(Figure B.1B, E). By increasing the storm/interstorm ratio and reducing the mean rainfall 

intensity proportionately to preserve a common 1 m a-1 rainfall occurrence, alluvium 

thickness increases in the weak zone and there is some aggradation in larger tributaries 

(Figure B.1C, D, F, G). Frequent, low intensity storms reduce bedrock slopes (Figure B.1B, 

C, D) and cause an overall reduction in mean elevation (Figure B.1A). It might seem 

surprising that bedrock erosion is more efficient when flow is less variable. This reflects 

the particular formulation we have used, in which bedrock detachment rate is proportional 

to discharge per unit channel width, and width is proportional to the square root of 

discharge. This combination of assumptions means that incision rate scales with the square 

root of discharge. The less-than-linear dependence on discharge means that incision rate 

decreases when discharge becomes more variable. This would not necessarily be the case 

if we had included a threshold for detachment (for more on this issue, see (Tucker and 

Bras, 2000; Molnar, 2001; Snyder, 2003; Tucker, 2004; Lague et al., 2005; Molnar and 

Burlando, 2005)).  
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 The frequency and amplitude of storm events can influence the supply and 

residence time of gravel-dominant alluvium. Model watersheds with large, infrequent 

storms host steep bedrock relief and relatively thin alluvium in the banks of the structurally 

confined channel. Conversely, watersheds with small, frequent storms host shallow 

bedrock relief and relatively thick alluvium. Alluvium thickness depends on the frequency 

of large storm events that are more likely to mobilize sediment.  

 

Figure B.1. Storm sensitivity experiment. (A) Plot of mean elevation over time for three 
different storm arrangements. (B-D) Elevation of the three experiments, (E-G) mean 
alluvium thickness for the three experiments. 
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APPENDIX C 

GRID MAINTENANCE FOR KINEMATIC-TECTONIC LANDSCAPE 

EVOLUTION MODELS 

 

 Surface regridding is necessary to maintain a consistent grid resolution and domain 

size and to ensure that the 3D kinematic solution is applied to the correct surface points. 

The need to continually regrid the surface stems from the differential lateral motion along 

the fault. The regrid algorithm fits within the full algorithm for KCHILD, a series of 

MatLab scripts I have written to control the input, output, and execution of CHILD (Figure 

C.1).  

 
Figure C.1. Algorithm for KCHILD. Grid is initialized, parameters are applied to the 
model, and the kinematic field is assigned to the model surface before simulation begins. 
Within the simulation cycle, check and update the condition of the rock damage field in 
3D, erode the surface using CHILD, apply the displacement based on the kinematic field, 
and if mesh quality is reduced, regrid. With every cycle data are saved to disk. 
 

261



 There are three different cases where regridding is necessary: reverse motion leads 

to the convergence of surface points, normal motion leads to the divergence of surface 

points, and any lateral motion leads to points departing from or crossing through the model 

domain boundaries. 

 

A.1. Case 1 

 For reverse motion models, surface points representing the mobile block (MB) 

converge on and rise above points representing the fixed block (FB). Two situations may 

arise. First, points representing the MB may thrust over points representing the FB (Figure 

C.2). In this case, the FB points are buried by the overlying points and they are removed 

from the grid. However, the elevation of the overlying points is corrected to equal the 

elevation of the now buried FB points and the thickness of the MB at each point. 

Alternatively, erosion at MB points may exceed the thickness of the MB before they thrust 

over the FB (Figure C.2). In this case the points become fixed with the FB and their position 

is either reinterpolated or they are removed in order to maintain a consistent point grid 

resolution.  

 

A.2. Case 2 

 For normal motion models, the MB diverges from the FB and this leads to a local 

decrease in grid resolution (Figure C.2). New points are added to the domain in regions 

where spacing between points exceeds twice the average spacing length. New nodes are 

added with a small randomized irregularity in order to match the initially irregularly 

discretized grid. 
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Figure C.2. Cartoon scenarios for the three different cases for grid reinterpolation. MB: 
mobile block. FB: fixed block. 
 

A.3. Case 3 

 This case of grid maintenance is used for Model Set 2 only. In all cases with lateral 

motion the shape and size of the model domain will change with continued surface 

displacement unless points are added or removed along boundaries. I apply periodic 

tectonic boundary conditions on the north and south borders to conserve the shape and size 

of the model domain (Figure C.2). Under strike slip motion, points that approach the 

northern or southern boundaries are relocated to the opposing boundary.  

 Under reverse dip slip motion, points are added on the eastern boundary to account 

for area lost through convergence (Figure C.2). When the easternmost located points 

exceed twice the average point spacing distance from the boundary, new points are added 

at the boundary. The elevations of these new points are equal to their nearest neighbors 

with an additional amount of random noise applied. This is a simple boundary condition 

that assumes the MB is semi-infinite and experiences a uniform degree of erosion. 
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 Conversely, points are removed on the eastern boundary to account for area gained 

by divergence (Figure C.2). When points exceed the boundary position, they are removed 

from the model domain. The western boundary is adjacent to the fixed block and is 

therefore a passive margin; it only experiences the small ambient uplift rate relative to 

baselevel. 
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