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Abstract 

 

 Furfural is a byproduct of biomass hydrolysis and novel means of utilizing this 

platform chemical are at the forefront of biofuel research. This project investigated many 

of the various and viable means of catalytic upgrading of furfural to other value-added 

chemicals, before ultimately exploring the conversion of furfural to furfuryl alcohol over 

a copper catalyst on a magnesium oxide support. Reasonable reaction conditions, 

mechanisms, and catalysts for the conversion of furfural to various products and platform 

chemicals exist, but no circumstance represents an obviously preferred method. The 

objective of this research project was to design and conduct experiments that characterize 

this catalyst and qualify its applicability for the selective hydrogenation of furfural to 

furfuryl alcohol. The catalyst was explored in terms of its conversion of furfural, 

selectivity to furfuryl alcohol, BET-surface area, reaction rate, and performance over 

time. 

 It was found that the catalyst performs very well for the first five hours of reaction 

time with furfural conversion averaging 94% with selectivity of furfuryl alcohol around 

75%. But, issues arose beyond the first few hours and the reaction rate dropped by as 

much as 75% over 26 hours as the catalyst deactivated. There was also a reaction of 

furfural on the surface of the catalyst led to plugging of the reactor after approximately 

20 hours.   

 This project is very relevant to the field of chemical engineering and biofuel 

research. As biofuel production increases, so will the production of furfural, and finding 

ways to utilize this chemical in both an economical and environmentally friendly manner 

will greatly impact the growth and relevance of biofuels in the upcoming years. 
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1. INTRODUCTION 
 

 The effort to establish sustainable industrial practices reaches beyond our 

dependence on fossil fuels for their direct energy usage, but also to discover and 

implement replacements for fossil fuel-based organics in the products of chemicals, 

solvents, plastics, resins, and other widely manufactured items.
1
 To take this step away 

from fossil fuel dependency, a versatile and renewable platform chemical will be 

required, and furfural has the makings to be just that as it is capable of aiding in the 

production of a diverse array of solvents and other various value-added chemicals. This 

thesis studies furfural and the furan derivatives that can be produced via its catalytic 

hydrogenation and further explores one reactant pathway and catalyst in the laboratory. 

 

2. FURFURAL PROPERTIES & PRODUCTION 

 
Figure 1: Chemical structure of furfural 

 Furfural contains a heteroaromatic furan ring with a reactive aldehyde functional 

group. Its molecular formula is C5H4O2, and a few physical properties include: molecular 

weight of 96.08 g/mol, boiling point of 161.7°C, and minimal solubility in water, 8.3 

weight percent.
1
 It was first isolated in 1832 by the German chemist Johann Wolfgang 

Dӧbereiner when he noticed an oily byproduct during his synthesis of formic acid.
2
 

Furfural is a biobased alternative for the production of a diverse array of chemicals such 
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as fertilizers, paints, antacids, and plastics, and is considered one of the most promising 

chemicals for sustainable production of fuels and chemicals for this century.
3
  

 Furfural possesses physical properties that allow it to work very well as a 

selective extractant for uses such as removing aromatics from lubricating oils to improve 

the relationship of viscosity with temperature; to remove aromatics from diesel fuels to 

improve ignition properties; and to form cross-linked polymers.
1
 Furfural is produced 

from five carbon sugars, mainly xylose, but also arabinose, that can be obtained from 

hemicellulose biomass. 

 Furfural is produced by the hydrolysis of hemicellulose into monomeric pentoses, 

such as xylose and arabinose, which go through acid-catalyzed dehydration into furfural.
1
 

The first means of industrial production of furfural was designed by the Quaker Oats 

Company; they used batch reactors at 443-458K with aqueous sulfuric acid to achieve 

furfural yields of nearly 50%.
1
 Various researchers have studied the use of catalysts in the 

conversion of xylose to furfural and achieved conversions as high as 75% when utilizing 

mineral acids.
4
  

 Another method of furfural production that has gained footing is the Biofine 

Process, which takes biomass feedstocks to create biofuels and various value-added 

chemicals. The main product of the Biofine Process is levulinic acid with formic acid and 

furfural considered secondary prododucts.
2
 Levulinic acid is also a potent platform 

chemical, but wide scale, industrial, and profitable uses of furfural warrant more attention 

for improvement.  
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3. POTENTIAL PRODUCTS 
 

 There are many pathways and products for the catalytic upgrading of furfural such 

as 2-methylfuran (MF), methyltetrahydrofuran (MTHF), tetrahydrofuran (THF), 

tetrahydrofurfuryl alcohol (THFA), furan, and furfuryl alcohol (FA) to name the more 

viable possibilities. 

 

Figure 2: Furfural and the potential products considered during this research: methyltetrahydrofuran (MTHF), 

tetrahydrofuran (THF), tetrahydrofurfuryl alcohol (THFA), furan, and furfuryl alcohol (FA) 

  MF has chemical properties that give it merit as a solvent and a biofuel 

component that can me mixed with gasoline due to its high octane number and 

insolubility with water.
5
 MF can be produced by the hydrogenolysis of FA. The 

production of MF tends to deactivate catalysts and for its production to be economically 

viable impeding the deactivation while promoting regeneration of the catalyst would be 

the main focus of further research.
1
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 The two most common pathways to produce MTHF are hydrogenation through 

levulinic acid and hydrogenation of MF. Some of the main uses for MTHF include use as 

a specialty solvent, electrolyte formulation for secondary lithium electrodes
6 

and as a 

component in alternative fuels.
7
 

 Decarbonylation of furfural at high temperatures produces furan through the loss 

of CO, and as such can be produced as a side reaction when furfural undergoes 

hydrogenation. High temperatures (300 to 500°C) can cause the furan ring to open and 

lead to the production of heavy products, which can leave carbon deposits on the catalyst 

causing it to deactivate.
8
 

 Furan can be further hydrogenated to THF, another value-added downstream 

product of furfural. THF is attractive for its versatility as a solvent and can be utilized in 

several chromatographic techniques, and to produce spandex fibers and polyurethane 

elastomers.
9
 The hydrogenation of furfural to THF is often carried out with a Ni catalyst 

over a Pd support, but this approach faces challenges due to the coking that occurs, which 

leads to deactivation of the catalyst as the coke layer builds on its surface.
1
 

 THFA is soluble with water and is used as a green solvent in agricultural 

applications, printing inks, as well as for electronic and industrial cleaners.
1 

The most 

common pathway to THFA is the conversion of furfural to FA over a Cu-Cr catalyst 

followed by the conversion of FA to THFA over a Pd/C catalyst.
10

 There has been less 

success in creating a direct means of conversion from furfural to THFA, and as such an 

environmentally friendly and economically feasible conversion of furfural to FA, would 

benefit the production of THFA. 
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 Each of these chemicals and the pathways of formation warrant further research. 

They all pose realistic applications as biomass based fossil fuel alternatives that can be 

used diversely across pharmaceutical, manufacturing, and fuel industries. For the purpose 

of this research, FA has been chosen for further study with an emphasis on understanding 

the catalyst. Enhancing and better understanding the catalytic conversion of furfural to 

FA is invaluable not only for the production of FA, but for the products that can be 

produced from FA such as MF, furan, THF, and THFA. 

4. FURFURAL ALCOHOL PRODUCTION & CATALYSTS  
 

 FA is the most common value-added product utilizing furfural as a reactant; it is 

estimated that 62% of the globally produced furfural is converted to FA,
1
 though as seen 

above much of that conversion occurs with FA as an intermediate. FA is valuable as a 

monomer for crosslinked-polymers to produce furan resins, which are often used for 

foundry binders.
2
 These resins have excellent chemical, thermal, and mechanical 

properties, while having the capability of resisting corrosion.
11 

According to Alibaba, 

Hongye Holding Group sells furfural at 98.5% purity for $1350 per metric ton,
12 

while 

the same company sells FA at 98% purity for $1750.
13

 

 The commercial conversion of furfural to FA for many years was conducted over 

a Cu-Cr catalyst with an actual yield over 96% of the theoretical yield of FA at 175°C 

with no effect on the furan ring, though at 250°C hydrogenation would begin to occur on 

the furan ring.
1
 Despite the high yield associated with the Cu-Cr catalyst, it was not ideal 

due to the presence of Cr2O3 (chromium oxide), which is a severe environmental 

pollutant.
14

 There have been many studies on the catalytic conversion of furfural to FA 
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with varying levels of furfural conversion and FA selectivity. The catalyst and support for 

this conversion each play a pivotal role as selective hydrogenation of the carbonyl group 

to an alcohol is necessary without affecting the carbon-carbon double bonds of the furan 

ring. The following is an exploration of a few promising catalysts and their associated 

reaction conditions. 

 One study that examined the effect of Cu and Ni catalysts on the vapor phase 

hydrogenation of furfural at 10 bar H2 and reaction temperatures of 220°C and 300°C 

with a CuNi catalyst on a MgAlO support was conducted by Xu et al.
14

 During this 

experiment the Cu and Ni loadings were altered from 0 to 11.2 mole percent and 0 to 4.7 

mole percent, respectively. The highest conversion of furfural, 93.2%, and selectivity of 

FA, 89.2%, occurred at 300°C with a Cu loading of 11.2% and a Nickel loading of 

4.7%.
14

  

 An experiment that further examined the role of Cu catalysts in the conversion of 

furfural to FA was conducted by Sitthisa et al. where they examined the catalytic 

influence on furfural with Cu, Pd, and Ni catalysts supported on SiO2 at 230°C and 1 atm 

H2.
15

 Each reaction underwent about 75% conversion of furfural. The Cu catalyst caused 

no hydrogenation of the furan ring and thus led dominantly to FA (98%) with small 

amounts of MF (2%). Pd led mostly to furan (60%) with some THF (20%) and FA 

(14%), and Ni led to hydrogenation of the furan ring, as well as opening of the ring and 

thus products such as butanal, butanol, and butane. The Ni catalyst created the most 

dispersed products with 32% hydrogenation, 43% decarbonylation, and 25% ring 

opening. This experiment further supported the claim found across literature that Cu is 

preferred for the selective hydrogenation of the carbonyl group of furfural. Copper is the 
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main catalytic active component in many of the catalysts for the hydrogenation of 

furfural,
14

 and this is readily seen when one examines the hydrogenation pathways from 

furfural to FA. The catalytic centers for the furfural hydrogenation are predominantly Cu
0
 

species that were reduced from Cu
2+

.
14

 

 Nagaraja et al. conducted vapor phase hydrogenation of furfural to FA at 180°C 

and 1 atm H2 with co-precipitated Cu/MgO catalysts with Cu loadings varying from 5.2-

79.8 weight percent.
16

 In an earlier experiment, Nagaraja et al. analyzed and compared 

three catalyst preparation methods: co-precipitation, impregnation, and solid-solid 

wetting.
17

 Their findings were that the co-precipitated catalyst had the highest BET-

surface area and largest Cu-dispersion, while also having the smallest Cu particle size. 

These three metrics are closely related as the increased surface area of the co-precipitated 

catalyst occurred as the MgO surface was covered with a greater number of smaller Cu 

particles. The authors believe that the interaction of the Cu particles and the oxygen 

vacancies on the MgO surface may have aided in the larger surface area of the co-

precipitated catalyst.
17

 Likewise, the large number of Cu
0
 sites on the surface of the co-

precipitated catalyst led to a large yield of FA from furfural due to the highly active 

catalytic hydrogenation.
17

 During this experiment the hydrogenation converted 98% of 

the furfural with a selectivity of 98% to FA without experiencing any catalytic 

deactivation over the course of the five hour experiment. Further exploration of the 

catalytic performance should be conducted to better understand the functioning of the 

catalyst. Conducting experiments with less catalyst and or for longer experimental times 

will see under what circumstances that catalyst begins to deactivate. 
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 Thermodynamically, carbon-carbon double bond hydrogenation occurs more 

readily than hydrogenation of a carbonyl group, and the Cu particle size sterically 

prevents the carbon-carbon double bond hydrogenation, thus favoring selectivity towards 

FA.
16

 Some of the main influences on the hydrogenation of furfural to FA are:  metal 

support interactions with partially reducible supports, electronic and steric influence of 

the support, morphology of the metal particles, selective poisoning, effect of pressure, 

and steric effects of substituents at the conjugated double bond.
17

 

 

Figure 3: Reaction pathway for vapor phase hydrogenation of furfural to furfuryl alcohol over Cu/MgO 

 Ultimately there are many viable reaction pathways starting with furfural, but due 

to the flexible and wide uses of FA as a product and intermediate, the study of the 

catalytic hydrogenation of furfural to FA was chosen for further exploration (see Figure 

3). Of the many studied catalysts, the co-precipitated Cu/MgO catalyst was chosen due to 

its high selectivity to FA and conversion of furfural. The emphasis of these experiments 

will be on further understanding the catalytic performance through metrics such as 

conversion and catalytic activity versus time, while examining the reaction rates from the 

observed performance of the catalyst over time. 
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Table 1: Summary of Catalyst Selection Parameters 

Catalyst Researcher Conversion Selectivity 
Temperature 

(°C) 
Pressure 

H2 
Drawbacks 

Cu-Cr 
Industrial 
Standard 

53 51.9 260 1 bar Cr2O3 

Pd/SiO2 
Sitthisa & 
Resasco 

69 10 230 1 atm 
Low 

Selecvivity 

Ni/SiO2 
Sitthisa & 
Resasco 

84 31.9 210 1 atm 
Ring 

Opening 

Cu/SiO2 
Sitthisa & 
Resasco 

77 71 270 1 atm 

Adequate 
Conversion 

& 
Selectivity 

Cu11.2Ni2.4-
MgAlO 

Xu & Huang 93.2 89.2 300 10 bar 
Batch 

Reactor 

Cu/MgO 
Nagaraja & 

Rao 
98 98 180 1 atm 

5 Hour 
Experiment 

 

5. EXPERIMENTAL METHODS  
 

 As mentioned above, the motivation of this research project was to further 

characterize the performance, with an emphasis on time, of the co-precipitated copper-

magnesium oxide catalyst as prepared by Nagaraja & Rao (N&R). To accomplish this 

objective several analytical methods were of merit to be employed, and as such specific 

lab and equipment training were required. Some of the required instruments and 

analytical methods required for this research project were co-precipitated catalyst 

preparation, BET-surface area calculation, use of a trickle bed reactor for vapor phase 

hydrogenation, gas chromatograph-flame ionized detector (GC-FID) for quantitative 

product composition analysis. Some other methods that would have been valuable are 

elemental analysis, to determine the exact Cu loading of the catalyst and N2O pulse 
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chemisorption to determine the number of Cu surface sites to calculate the turnover 

frequency. 

Catalyst Co-precipitation 

 The first experimental step of this research was the co-precipitation of the 

Cu/MgO catalyst. The catalyst was prepared as follows: 

 1 M solutions of magnesium nitrate (Mg(NO3)2), copper nitrate (Cu(NO3)2), and 

potassium carbonate (K2CO3) were prepared from hydrates and an anhydrous salt 

obtained from Fischer Scientific. Calculations were made to yield 10 grams of Cu/MgO 

(See Table A-1). 25.2 mL Cu(NO3)2 was added with 208.5 mL Mg(NO3)2 to a 1000 mL 

beaker. K2CO3 was added slowly in increments of 5 mL with constant acidity monitoring 

with pH paper tests. After 350 mL of K2CO3 was added the solution was at a pH of 9.0. 

The simultaneous reactions taking place during this co-precipitation were the conversion 

of copper and magnesium nitrates to copper and magnesium carbonates, which can be 

seen in equations 1 and 2: 

𝐶𝑢(𝑁𝑂3)2 + 𝐾2𝐶𝑂3 → 𝐶𝑢𝐶𝑂3 +  2𝐾𝑁𝑂3
−    (1) 

  𝑀𝑔(𝑁𝑂3)2 + 𝐾2𝐶𝑂3 → 𝑀𝑔𝐶𝑂3 +  2𝐾𝑁𝑂3
−

  (2) 

At this point the solution was a thick slurry, which was rinsed with 250 mL of distilled 

H2O using a Buchner vacuum funnel and medium (particle size retention of 0.005-0.01 

mm) porosity filter paper. The light blue putty was then placed in a crucible and dried in 

a Thermodyne 4800 Furnace at 120°C for 15 hours and then calcined in air for 4 hours at 

450°C.  The calcination of the magnesium and copper carbonates resulted in magnesium 

and copper oxides, and according to N&R
16 

should have resulted in CuO particles 

supported on MgO. This powder was a light brownish/charcoal color, and as CuO is 
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black and MgO this color mix gives some indication that the two compounds are present. 

This reaction can be seen in equation 3: 

  𝑀𝑔𝐶𝑂3 +  𝐶𝑢𝐶𝑂3
450°𝐶 𝑖𝑛 𝑎𝑖𝑟
→         𝐶𝑢𝑂 +𝑀𝑔𝑂 +2𝑂2  (3) 

After the 4 hours of calcination the catalyst was ready for reduction and use. Once packed 

in the reactor the catalyst was heated to 250°C with hydrogen to reduce the copper oxide 

to Cu
0
 species, which can be seen in reaction 4: 

  𝐶𝑢𝑂 +𝑀𝑔𝑂 
250°𝐶 𝑖𝑛 𝐻2
→         𝐶𝑢0 +𝑀𝑔𝑂 + 𝐻2𝑂   (4) 

 

BET-Surface Area & Pore Size Distribution  

 BET-surface area is a measurement of the surface area of a catalyst per unit mass, 

and its name is derived from the individuals who created it, Brunauer, Emmett, and 

Teller. The theory works by monitoring equilibrium partial pressures of most commonly 

N2 gas as it adsorbs on the surface of the material right at the boiling point of N2. The 

Micromeritrics ASAP 2020 Surface Area and Porosity Analyzer measures the pressure of 

the room, the N2 gas equilibrium pressure, and the volume of N2 absorbed. The following 

equations are then used to calculate the volume of N2 absorbed on the catalyst (Equation 

5) before calculating the BET-Surface Area (Equation 6)
18

. 

  𝑉𝑚 = 𝑉𝑎 ∗
(𝑃0−𝑃)

𝑃0
  (5) 

Where: 

Vm = the volume of gas adsorbed when the entire surface is covered with a 

monomolecular layer (cm
3
) 

Va = volume of gas adsorbed at P (cm
3
) 

P0 = N2 saturation vapor pressure (mmHg) 

P = N2 vapor pressure (mmHg) 

Once Vm is known the specific BET-surface area can be calculated by using equation 6: 
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  𝑆𝐴 =
𝑉𝑚∗𝜎∗𝑁𝐴

𝑚∗𝑉0
  (6) 

Where: 

SA = BET-surface area (m
2
/g) 

Vm = volume of gas adsorbed when the entire surface is covered with a monomolecular 

layer (m
3
) 

σ = area of surface occupied by single adsorbed N2 molecule (m
2
) 

Na = Avogadro constant (6.023*10
23

 molecules/mole) 

m = mass of the adsorbing sample (g) 

V0 = molar volume of gas at standard temperature and pressure (m
3
) 

Now the average BET-surface area is calculated over the relative pressures (P/P0) from 

0.05 to 0.20.  

 BET-surface area was the only analytical technique employed for comparison 

with N&R’s catalyst. The setup involves weighing a small mass of catalyst in a sample 

tube. The tube is then placed in the Micromeritics ASAP 2020 to degas at 250°C for 4 

hours to remove any water left in the catalyst’s pores and to get the tube at vacuum 

conditions. The tube is then moved to another part of the machine with a gas chamber 

above it and insulated. The free space of the tube is then determined by filling the 

chamber above the sample tube with known volume and pressure of He gas, then the seal 

frit on top of the sample tube allows He to fill the tube and come to equilibrium and the 

pressure change for the space above the tube allows the calculation for free space. The He 

gas is then removed and N2 gas is pumped into the sample tube incrementally, allowing 

time for the system to come to an equilibrium pressure while monitoring the absorbed 

amount of N2 at various pressures ranging from 0 to 1atm.    

 The N2 adsorption results were used to estimate the pore size distribution of the 

catalyst. This is another valuable characterization metric as increasingly porous catalysts 

tend to have larger surface areas and thus more active sites. The same isotherm that is 
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calculated for the BET-surface area is considered here, but this time the focus is on the 

desorption curve. At each equilibrium pressure there is a measured amount of N2 that 

desorbs from the pores, based on the pressure, each pressure corresponds to a pore size 

diameter based on the Kelvin Equation, and the amount desorbed indicates the relative 

amount of pores at that particle diameter.
18

 

Reactor System  

 The vapor phase hydrogenation of furfural to FA was conducted in a trickle bed 

reactor (see FIGURE 4).  

 
Figure 4: Reactor setup for vapor phase hydrogenation of furfural to furfuryl alcohol  
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Furfural was contained in a 100 mL glass storage bottle with tubing connecting it to a 

Scientific Systems Inc. Series III HPLC pump, as was 20% Isopropyl Alcohol (IPA) by 

volume, which functions as a lubricating fluid for the pump. The furfural was pumped to 

the top of the trickle bed reactor tube with a flow rate controlled by the HPLC pump. The 

hydrogen was fed from a secured storage tank through a MKS Instruments Type 247 

Four Channel Mass Flow Controller (MFC). The hydrogen and furfural are fed through a 

0.25” reactor tube that has an internal diameter of 0.18” and a length of 22.6”. The 

reactor tube was packed with quartz wool above and below the catalyst (see Figure 5). 

The reactor tube, furfural inlet, and fittings above the hydrogen and furfural inlets were 

all wrapped with heat tape, which was powered by a Staco Energy 120V variable 

autotransformer (Variac), and this heat tape was insulated with a thin insulation and 

tinfoil. Temperature within the reactor was monitored by a thermocouple that was 

attached to a Micromega Autotune PID Temperature Controller. Temperature was 

monitored to ensure that the hydrogenation took place in the vapor phase. Once the vapor 

mixture passed through the reactor, the condensable vapors cooled and were collected as 

liquid products in the 100 mL sample collection vessel. The H2 flowed through the back 

pressure regulator (BPR), which moderated the pressure of the system, which for all these 

reactions was 15 psig. The H2 gas then passed through a rotameter before being vented 

through a hood to the atmosphere.   
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Figure 5: Reactor bed packing for reaction 2 with 1.0 gram catalyst and 0.063 gram quartz wool above and 

below catalyst 

 Above is an example of a catalyst packing (reaction 2) of the reactor bed, where 

0.063 gram quartz wool was packed above and below 1.0 gram of Cu/MgO. Based on the 

weight of catalyst, the depth of the packing, and the cross sectional area of the reactor 

tube, the density of the catalyst was calculated to be about 590 kg/m
3
 (see Table A-2). 
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Gas Chromatograph-Flame Ionized Detector (GC-FID) 

 GC-FID is a combined analytical tool that is very effective for identifying relative 

amounts of known compounds in a sample. The GC is a Thermo Scientific Trace GC 

Ultra with an attached Thermo Scientific Autosampler. It was essential to dilute the 

samples in an appropriate solvent, so that the analyzed compounds were placed on the 

column in the column’s and FID’s detectable range, which is on the magnitude of 10 ng. 

For the dilutions of the furfural and furfural hydrogenation products, ethyl acetate was 

chosen as it is a widely used solvent for GC-FID analysis and it has a much lower 

molecular weight than furfural or FA and as such a much faster retention time on the 

column. The GC-FID’s autosampler allows the analysis to be run based on a user-defined 

sequence, which was created in triplicate with samples to examine repeatability. The 

major factors that affect a compounds retention time are its molecular weight, volatility, 

and its solubility with the film of the column. A Parker Balston Hydrogen Generator 

hydrolyses water to feed H2 to the FID. The flame intensity of the flame ionized detector 

is based on the number of carbon atoms present in the compound, that said oxygen has a 

cancelling effect on the flame intensity, and as such an effective carbon number theory 

was created, which can also aid in determining relative sensitivities of compounds to the 

FID.
19 

 A standard was created by pipetting 0.02 mL each of furfural and FA into a 100 

mL volumetric flask with the balance filled with ethyl acetate. The autosampler then 

drew and injected 0.001 mL of the standard into the septum to the column. A split 

fraction of 100 was used, where He passes through at 100 mL/min, which further dilutes 

the sample so that 2.32 and 2.26 ng furfural and FA were injected to the column, 



17 

 

respectively. The retention times were then observed with furfural exiting the column 

after 22.06 minutes and FA exiting after 23.06 minutes. The Xcalibur program, which is 

the user interface attached to the GC-FID, can then be used to integrate for the areas 

under these peaks, and because equal amounts of furfural and FA were added it was 

necessary to normalize the peaks because of the FIDs sensitivity difference between the 

analyzed compounds; equal amounts of FA and furfural would lead to larger FA peaks. 

These sensitivities can be calculated on both a mass and molar basis based on equations 3 

and 4.
19 

𝐹𝑚𝑎𝑠𝑠 =
𝑎𝑟𝑒𝑎 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.∗𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑎𝑟𝑒𝑎 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  (7) 

Where: 

Fmass = relative mass sensitivity of furfural to FA 

area counts for reference = integrated peak area for furfural 

weight of component = injection mass of FA (ng) 

area counts for component = integrated peak area for FA 

weight of reference = injection mass of furfural (ng) 

 

𝐹𝑚𝑜𝑙𝑒 = 𝐹𝑚𝑎𝑠𝑠 ∗
𝑀𝑊 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑊 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
 (8) 

Where: 

Fmole = relative mole sensitivity of furfural to FA 

Fmass = relative mass sensitivity of furfural to FA 

MW of reference = molecular weight of furfural (g/mol) 

MW of component = molecular weight of FA (g/mol) 

The relative mass sensitivity and relative molar sensitivity of furfural to FA fluctuated 

from one GC-FID run to another, but the standards were always run twice per sequence 

and stayed in the 0.7 to 0.75 range. 

 Sample dilutions for the GC-FID were carried out by pipetting a 0.025 mL sample 

with Drummond Scientific Company Wiretrol II disposable pipets into a 10 mL 
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volumetric flask filled with ethyl acetate, this solution was mixed and then poured into a 

small beaker where 1 mL could be pipetted with a Fisherbrand 0.2-1.0 mL Finnpipette II 

into a second 10 mL volumetric flask with ethyl acetate. This solution was then poured 

into a 3 mL Luer-Lok tip Syringe and filtered through a Fisherbrand PTFE 4.5*10
-4

 mm 

filter to ensure no catalyst particles dirtied the sample, which could be harmful on the 

column of the GC-FID. All this corresponded to a dilution factor of 4000 (see Table A-

3). 

6. EXPERIMENT PLAN 
 

 The foundation of this research begins with the replication of N&R’s results with 

their co-precipitated 16% copper loading on their Cu/MgO catalyst with conversion of 

98% and selectivity of 98% to FA. The plan was to conduct selective vapor phase 

hydrogenation of furfural to FA under the same operating conditions, 15psi H2, 1.2 mL/hr 

furfural, H2/furfural ratio of 2.5, gas hourly space velocity (GHSV) of 0.05 mol/(hr*g 

catalyst), and  180°C. Once able to reproduce their results, the plan was to investigate 

reaction rate and catalyst performance over time.  

 As stated in N&R’s work examining copper loadings they found 16% copper 

loading by weight to be optimal for both conversion of furfural and selectivity towards 

FA. This copper loading also corresponded to the highest BET-surface area. A similar 

surface area was calculated for the catalyst prepared for this work, as well. 

 Each reaction began with packing the catalyst between two plugs of quartz wool. 

Once the reactor was fitted into place, the system was pressure tested to a pressure of at 

least 40 psi, and fittings were adjusted accordingly until pressure was maintained 
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constant for 15-30 minutes. Then the system was left overnight to further ensure pressure 

was maintained.  

 Once the system passed the overnight pressure test the reactor was wrapped with 

heat tape and heated to 250°C with a H2 flow rate of 15 standard cubic centimeters per 

minute (SCCM) and 15 psi for 4 hours. This process reduced the catalyst when the H2 

reacts with the CuO to produce Cu
0
, which is the critical copper site for the selective 

reaction of furfural to FA. 

 After the 4 hours of reduction, the temperature controller was turned off while the 

H2 flow and pressure were maintained. After the heat tape and reactor cooled enough to 

handle, 15-30 minutes, the heat tape was rewrapped to cover the furfural inlet to the 

reactor, as well as the fittings above the reactor tube to ensure that the furfural vaporized 

and stayed vaporized before passing through the catalyst bed. The system was then 

insulated and heated to 180°C for 45-60 minutes to ensure the system was at temperature 

before pumping furfural with a H2 flow rate of 8.2 SCCM (H2/furfural molar ratio of 2.5). 

The first two reactions were run with a  H2 flow rate of 8.2 SCCM, which was the 

calculated flow to keep the GSHV at 0.05 mol/(hr*g catalyst) with a H2/furfural ratio of 

2.5, but with a flow that low it was difficult to confirm H2 flow through the rotameter. 

For that reason, reactions 3-6 were conducted with excess H2 at 15 SCCM. The initial 

three reactions were run with 1 gram of catalyst with a focus on the first 5 hours with the 

objective of matching N&R’s furfural conversion of 98% and FA selectivity of 98% over 

the first 5 hours of reaction time. 

 Once their results were matched or my results were at least repeatable, the plan 

was to investigate longer reactions to see how the catalyst performed over time. Also, to 



20 

 

lower the catalyst amount and/or increase the furfural flow to lower the conversion, and 

thus further investigate the catalyst performance and calculate the reaction rate. Also of 

interest was reusability of the catalyst.  

7. DISCUSSION OF RESULTS 

BET-Surface Area & Pore Size Distribution 
 

 The Micromeritics ASAP 2020 calculated a BET-Surface Area of 49.7 m
2
/gm and 

the below figure shows how this surface area calculation compares to the results of N&R. 

 
Figure 6: Plot comparing the surface area of the current catalyst in this study to those of N&R. Note that Cu 

loading for the current study was estimated based on the synthesis procedure, while the Cu loading for N&R 

was measured by Atomic Absorption Spectroscopy (AAS) 

N&R calculated a BET-surface area of 46 m
2
/g for their 16% Cu loaded catalyst (see 

Figure 6). This comparison is a decent indication that the current co-precipitated catalyst 

had a similar Cu loading. Considering their next Cu loading was 37.3%, it is possible the 

BET-surface area rises for increased loading of Cu after 16%, but there is no definitive 

claim to be made from this data.  
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 Next, it is of interest to examine the isotherm of the volume of N2 absorbed and 

desorbed as influenced by the relative pressure. The main area of interest on this plot (see 

Figure 7) is the linear region of low relative pressure between 0.05 and 0.2, and it is from 

values in this region that the BET-surface area is calculated. It is also of note to observe 

that the desorption curve lies below the adsorption curve in the relative pressure range of 

0.75 to 1. This indicates the catalyst probably has mesopores as the N2 gas more readily 

desorbs than adsorbs at any given equilibrium pressure in this range. N&R calculated an 

average pore size for their catalyst to be 2060 Angstrom,
17

 which would actually be 

considered macropores, though N&R did not clearly state which synthesis method was 

used for that catalyst. Porosity diameter classifications are as follows, micropores up to 

20 Angstrom, mesopores between 20-500 Angstrom, and macropores above 500 

Angstrom.
18
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Figure 7: Plot of N2 absorption and desorption in response to relative N2 pressure, note that the difference 

between the absorption and desorption between relative pressures of 0.75 to 1 indicates mesopores, pores of at 

least 20 Angstrom 
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Figure 8: Plot of estimated pore size distribution based on N2 adsorption and desorption differences with a most 

common pore size of about 300 Angstrom 

 As can be seen in Figure 8, above, the majority of the pore sizes are between 100 

and 800 Angstrom in diameter with the most common pore diameter of about 300 

Angstrom. These pore sizes are classified as mesopores and are nearly 7 times smaller in 

diameter than the catalyst of N&R.  

Replication 
  

 The first several reactions run were designed to replicate N&R’s results of 98% 

both for furfural conversion and selectivity towards FA. Their paper was not explicitly 
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clear whether these values were constant, averages, or maximums over the course of their 

five hour experiment. My goal was to replicate their data at five hours. 

 

 
Figure 9: Plot examining reproducibility calculated conversion and selectivity, while comparing to N&R results 

(plotted as a flat line across the 5 hours experiment, but note it was not clear if these were averages, maximums 

or values after 5 hours), also note the error bars are the range of conversion and selectivity for reactions 2 & 3 

I conducted two experiments at exactly the same operating conditions as N&R, and for 

the third experiment I increased the H2 flow to 15 SCCM H2 due to difficulty verifying 

H2 flow on the rotameter at such a low H2 flow rate. The first experiment saw fairly 

sporadic results with initially very low selectivity to FA and a steady drop off in furfural 

conversion from the 4
th

 to 7
th

 hours of the reaction (see Table A-4). Figure 9, above, 

shows the average furfural conversion and FA selectivity for the 2
nd

 and 3
rd

 reactions. 

The selectivity fell well short of N&R’s results, but stayed fairly constant just below 

80%, while the conversion was much closer to N&R’s posted results with a fairly steady 

and average conversion of 94%, see Tables A-5 and A-6 for exact numbers on these 

reactions in the Appendix. Though these results did not perfectly match N&R, they did 

provide confidence towards the ability and reproducibility of the Cu/MgO catalyst to 

promote fairly high selectivity to FA and conversion of furfural. 

40%

50%

60%

70%

80%

90%

100%

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C
o

n
ve

rs
io

n
 &

 S
e

le
ct

iv
it

y 

Reaction Time (hr) 

Nagaraja & Rao
Conversion &
Selectivity

Reaction 2 & 3
Average Conversion

Reaction 2 & 3
Average Selectivity



25 

 

Performance over Time 

Reaction 4 
 

 With a decent idea of how the current co-precipitated catalyst performed in 

comparison with N&R, the next step was to examine how the catalyst performed over 

longer amounts of time to determine its appropriateness as a heterogeneous catalyst for 

continuous furfural hydrogenation to FA. The 4
th

 reaction was conducted again at 180°C, 

with excess H2 at 15 SCCM at 15 psi. The only difference with this reaction was that this 

time only 0.499 gram Cu/MgO was added to the reactor tube, but still surrounded by 

quartz wool. The objective of this reaction was to observe a steady furfural conversion in 

the region of 10-50% to calculate the reaction rate and assess the performance of the 

catalyst. 

 
Figure 10: Plot of furfural conversion & FA Selectivity and reaction rate for reaction 4 with 0.499 g Cu/MgO at 

180°C, with excess H2 at 15 SCCM at 15 psi 
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 Figure 10, above, illustrates how conversion fell with time, but steadied off at 

about 20% 20 hours into the experiment, whereas the FA selectivity actually rose above 

the fairly consistent 80% seen thus far. The selectivity even rose above 100% for R4-10 

and R4-11, but this is not possible. This stems from the GC-FID analysis and is likely an 

indicator that the furfural area was over calculated, thus indicating less furfural had 

reacted to produce the given amount of FA. The peaks for FA tended to be very 

symmetrical and straight forward to integrate, whereas the furfural peaks tended to tail 

off to the right, and as such a consistent determination of where to place the right end of 

the peak was difficult, but a systematic width of 0.08 minute was utilized.  

 Reaction rates were calculated (see Figure 10) with an emphasis on R4-8, R4-9, 

and R4-10, which correspond to the three samples taken 21, 23, and 26 hours into the 

experiment, respectively, which was where this steady state conversion of 20% occurred. 

The average reaction rate over that time period based on moles furfural reacted was 

1.634*10
-3

 mol/(kgcat*s) , The last sample, R4-11 was not included for this calculation 

because the reactor plugged at some point between R4-10 and R4-11, but the exact time 

of plugging was not known.  

 Some of the furfural was reacting to form other products, which is evident due to 

the FA selectivity that is less than 100%. Some of the most likely side products are 2-

methylfuran, furan, tetrahydrofuran, and tetrahydrofurfuryl alcohol, but the main focus of 

this experiment was quantifying the selectivity towards FA versus towards each potential 

product. That said, it was of interest to examine how much of the sample composition 

was accounted for via the GC-FID analysis. In Figure 11, below, it can be seen that for 

the first 9 hours of the experiment the percent composition of each sample that was 
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identifiable rose from below 80 to above 90%, before being nearly entirely accounted for 

after 19 hours through to the end of the reaction. It is possible that some of this unknown 

percentage is unaccounted for furfural due to small peak to noise ratios or unidentified 

side products, such those listed above or tars in the catalyst bed. This coupled with the 

steady furfural conversion after 19 hours indicates it may have taken this reaction more 

than 10 hours to reach a steady state. 

 
Figure 11: Molar composition balance for reaction 4 with 0.499 g Cu/MgO at 180°C, with excess H2 at 15 SCCM 

at 15 psi, calculated based on feed molar area 

 Another form of analysis was to observe how the composition of samples 

combined with the mass collected for each sample. This was done by measuring the mass 

collected of each sample, multiplying these values by the mass compositions of furfural 

and FA for each sample, and then converting those masses into moles. This allows us to 

examine a molar flow balance below. 
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Figure 12: Molar flow balance for reaction 4 (0.499 g Cu/MgO at 180°C, with excess H2 at 15 SCCM at 15 psi) as 

a comparison of the inlet flow rate of furfural and the known product composition and mass of product collected  

An exact molar flow balance, based on the furfural to FA stoichiometry of 1:1, would 

have had the same molar flow rate coming out with any given sample collection as was 

fed via the HLPC pump, based on an hourly mole flow rate. That did not prove to be the 

case, but the majority of the molar flow could be accounted for between the 2.5 and 26.0 

hour marks in the experiment (see Figure 12). Reasons these values may be low could be 

due to the potential unidentified side products of the hydrogenation reaction, missing 

small amounts from the collection vessel, minor inconsistencies in dilution method, 

and/or this could also be a result of error in the GC-FID area integration. It is likely that 

the 2 hour collection sample had such a low accounted for molar flow rate due to the 

system requiring time to reach steady state as furfural was slowly pumped through the 

system. The sample at 34 hours is low due to the aforementioned plugging of the reactor 

which occurred not too long after the sample was collected 26 hours into the experiment. 
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 Another means for examining steady state operation of the reactor is to look at the 

mass balance over time. A cumulative mass balance percentage accounted for can be seen 

below in Figure 13. As seen in this figure it takes nearly 20 hours before the accounted 

for mass percentage levels of near 85%. Potential reasons for such low accounted for 

mass percentage over the first 10 hours could be due to hold up in the catalyst bed,  the 

time it takes initially for the inlet furfural tube to fill with liquid furfural before it 

vaporizes, or the formation of non-condensable products or tars on the surface of the 

catalyst. The latter of these possibilities would be the most problematic and may explain 

some of the issues faced in this research. First, a buildup of non-condensable products on 

the surface of the catalyst would block active sites, thus lowering the available active 

sites for the furfural to react and the furfural conversion. If these tars were formed early 

in the reaction, it would explain the why the furfural conversion was so high and the mass 

closure was so low. That said the formation of tars would mean that the calculated 

selectivity to FA was inflated as these tars were not factored in the FA selectivity 

equation (see Sample Calculations B-3). If these non-condensable products and or tars 

continue to form eventually they will plug the catalyst bed, and these undesired products 

could be what made the reactor very difficult to clean after reaction 4 and 5.  

 Another issue to consider when trying to explain why the mass balance did not 

close is that of human error. Inefficiencies and human error in collecting from the 

collection vessel could have contributed to the lack of mass balance closure, but are 

unlikely major factors responsible for the lack of mass balance closure. When collecting 

from the collection vessel, the furfural and FA should have been cooled, based on their 

time in the room temperature collection vessel with no additional heat, so no vapor 
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should have escaped. The collection vessel was opened until a quick burst of vapor could 

be heard before being immediately closed, and it is possible some of that escaping gas 

was product. Also, after most collections there would typically be a drop or two of 

product that would fall from the vessel 15 to 30 seconds after the vessel was closed. 

These singular drops were occasionally missed, but it is improbable they would have had 

a major effect on the mass closure. Further data on the mass balance of the system can be 

seen in Table A-7. 

 

Figure 13: Cumulative mass percentage accounted for over time for reaction 4 determined by dividing mass of 

collected sample by mass flow rate set point times collection time; note this calculation does not consider the 

addition of H2 

 After 5 hours of the experiment, the mass closure for reaction 4 was at 60% with 

4.16 grams accounted for of the 6.96 grams expected to be collected. That is 2.8 grams 

unaccounted for over the first 5 hours of the experiment. N&R had no statement on mass 

closure in their results, so there is no comparison to be made with their research here. 
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Reaction 5 
 

 The reactor plugging was a significant issue, and the first attempt to prevent this 

from happening was to mix equal parts sand and catalyst before packing into the reactor 

bed. For reaction 5, I packed 0.5 gram catalyst with 0.503 gram sand to disperse the 

catalyst in an attempt to prevent potential decomposition. This actually led to the reactor 

bed plugging faster, roughly 21 hours into the experiment. FA selectivity stayed fairly 

constant with a few exceptions over the course of this reaction at about 0.75, while 

furfural conversion was still declining with time, which can be seen in Figure 14, below. 

 
Figure 14: Plot of furfural conversion, FA Selectivity, & reaction rate for reaction 5 with 0.500 g Cu/MgO and 

0.503 g sand at 180°C, with excess H2 at 15 SCCM at 15 psi 

This continued decline indicates that the system was not able to reach steady state before 

plugging, but it is also interesting that with the equal mass sand to catalyst, at just past 20 

hours the furfural conversion was near 40% versus near 20% without sand in reaction 4. 
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 Though this reaction did not reach steady state, the reaction rates were still 

calculated and observed. Unsurprisingly, the reaction rates for reaction 5 (see Figure 14) 

were higher than reaction 4 due to the higher furfural conversion at comparative reaction 

times. 

 Further indication that steady state had not yet been reached can be seen in the 

molar composition balance below (see Figure 15). The percent molar composition of 

furfural was still on the rise when the reactor plugged, and the overall accounted for 

composition was rising, as well, over the last three samples collected. 

 
Figure 15: Molar composition balance for reaction 5 with 0.500 g Cu/MgO and 0.503 g sand at 180°C, with 

excess H2 at 15 SCCM at 15 psi, calculated based on feed molar area 

 Though this reaction did not reach steady state, it is still of interest to examine the 

mass balance closure of the system (see Figure 16). The cumulative mass balance over 

time exhibited a very similar trend to reaction 4 with poor mass closure for the first ten 

hours before leveling off near 80% (see Table A-8). After 5 hours of the experiment, the 
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mass closure for reaction 5 was at 55% with 3.82 grams accounted for of the 6.96 

expected to be collected. That is 3.14 grams unaccounted for over the first 5 hours of the 

experiment. 

 
Figure 16: Cumulative mass percentage accounted for over time for reaction 5 determined by dividing mass of 

collected sample by mass flow rate set point times collection time; note this calculation does not consider the 

addition of H2 

Plugging of Reactor Tube 
 

 The most challenging cleanings of the reactor tube occurred after reactions 4 and 

5 where the reactor plugged. It usually took about 30 minutes to clean the reactor tube, 

but after these runs it took over 2 hours of meticulously scraping out the stuck remnants 

of quartz wool, tarry catalyst, and metallic flaky solid fragments that could even be found 

up in the fittings above the reactor tube. Several of these factors seemed to hint that the 

furfural may be either polymerizing or decomposing, while being fed through the reactor 

tube, possibly because the reactor fittings had become too hot, but the thermal 

decomposition temperature, without the presence of oxygen, is 230°C
20

, and it is 

improbable the reactor reached that high of temperature. In an attempt to isolate this issue 

and discover if the catalyst or furfural has been causing the problem, a 6
th
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conducted with 0.5 grams sand packed between quartz wool, while furfural was pumped 

at the same conditions as reactions 4 and 5 (1.2mL/hr, 180°C, 15SCCM H2, and 15 psi 

H2). 

Reaction 6 
 

 This reaction ended up running 50.5 hours with no plugging of the reactor, which 

indicates that the furfural is likely not the issue with the plugging of the reactor bed. This 

further supports the hypothesis that there may be side products such as tars or non-

condensable products forming in the Cu/MgO catalyst bed, which are responsible for the 

plugging of the reactor. The reaction 6 samples were run through the GC-FID and there 

was no appreciable conversion of furfural and no noticeable peaks to indicate any product 

was being formed. 

8. CONCLUSION 
 

 This investigation into the performance of the co-precipitated Cu/MgO catalyst 

supports N&R’s findings that this catalyst has great potential in terms of furfural 

conversion and FA selectivity over the first 5-10 hours of the reaction. That said, whether 

it is the catalyst, the furfural, or a reaction that occurs between the two that is responsible 

for the plugging of the reactor, there are certain hesitations to be had in regard to this 

catalytic experiment.  

 The major characterizations discovered for the current Cu/MgO catalyst: 

 Cu/MgO has promise for selective hydrogenation of furfural to FA with 

furfural conversion of 94% and FA selectivity of 76% (averages for 

reactions 2 & 3)  
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 Reaction rate at approximately 20% conversion of 1.634*10
-3

 

mol/(kgcat*s)  based on moles furfural reacted (reaction 4) 

 Reactor plugs after about 20-25 hours 

 

 Further effort should be placed to characterize the catalyst based on its elemental 

analysis to determine the exact Cu loading of the catalyst involved in this research. It 

would also be of interest to measure the Cu dispersion on the MgO to determine a 

turnover frequency. Beyond that a Thermal Gravitational Analysis should be conducted 

on the catalyst at 180°C for at least 30 hours to further understand if the catalyst has been 

responsible for the plugging of the reactor bed due to thermal decomposition. Furfural 

should, again, be run over a sand packed bed, without any catalyst, to see if furfural is 

repeatedly able to flow through the reactor without plugging it for at least 30 hours. Other 

areas of study would be to attempt conducting the reaction in the liquid phase by 

reducing the temperature and observing the effect on the furfural conversion and FA 

selectivity. 

 At this point I could not confidently suggest this catalyst for use in a continuous 

process due to the issues encountered with the reactor bed plugging, but the co-

precipitated Cu/MgO catalyst was observed to perform well at these conditions for the 

first ten hours of any given reaction with at least 1.0 gram of catalyst (reactions 2 & 3). 
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Appendix A 
 
Table A - 1: Co-precipitation Calculations for Desired 10 gram Cu/MgO 

Weight Composition 0.16 Cu (wt%) 0.84 MgO (wt%) 

Desired Amount (gm) 10 Gm     

Molar Composition 0.0252 mol Cu 0.208 mol MgO 

              

      0.025 mol Cu-Nit 0.21 mol Mg-Nit 

      6.08 gm Cu-Nit 53.44 gm Mg-Nit 

Required Volume of 1 M 25.18 mL 208.41 mL 

 

 
Table A - 2: Catalyst Density Calculations 

Reaction 
Catalyst 
Weight 

(gm) 

Catalyst 
Height 
(cm) 

Reactor 
Cross-

Sectional 
Area (cm3) 

Catalyst 
Volume 

(cm3) 

Density 
(kg/m3) 

2 1.000 11 0.164 1.80 554 

3 0.998 10 0.164 1.64 608 

4 0.499 5 0.164 0.82 608 

Average 590 

 
 

Table A - 3: Sample Dilution Example 

Sample 
Volume 

(mL) 

Volume 
1 Ethyl 
Acetate 

(mL) 

Dilution 
Factor 1 

Sample 
Volume 
2 (mL) 

Sample 
Volume 
2 (mL) 

Volume 2 
Ethyl 

Acetate 
(mL) 

Dilution 
Factor 

2 

Cumulative 
Dilution 
Factor 

0.025 10 400 1 1 10 10 4000 
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Table A - 4: Reaction 1 Summary Results 

Sample 
Notation 

Reaction 
Sample 

Time(hr) 

Furfural 
Conversion 

FA Selectivity 

Feed 0.0 - - 

R1-1 1.0 1.00 0.02 

R1-2 2.5 1.00 0.63 

R1-3 4.0 0.77 0.61 

R1-4 5.0 0.74 0.82 

R1-5 7.0 0.61 0.76 

 

 
 

Table A - 5: Furfural Conversion Reproducibility 

Sample 
Notation 

Reaction 
Sample 

Time(hr) 

Reaction 
1 

Reaction 
2 

Reaction 
3 

Average 
Standard 
Deviation 

Average 
2 & 3 

Feed 0.0 - - - - - - 

R#-1 1.0 1.00 0.91 1.00 0.97 0.05 0.95 

R#-2 2.5 1.00 1.00 1.00 1.00 0.00 1.00 

R#-3 4.0 0.77 1.00 0.88 0.89 0.11 0.94 

R#-4 5.0 0.74 0.95 0.79 0.83 0.11 0.87 

R#-5 7.0 0.61 1.00 0.90 0.84 0.20 0.95 

 
 

Table A - 6: FA Selectivity Reproducibility 

Sample 
Notation 

Reaction 
Sample 

Time(hr) 

Reaction 
1 

Reaction 
2 

Reaction 
3 

Average 
Standard 
Deviation 

Average 
2 & 3 

Feed 0.0 - - - - - - 

R#-1 1.0 0.02 0.42 0.83 0.42 0.40 0.62 

R#-2 2.5 0.63 0.76 0.83 0.74 0.10 0.79 

R#-3 4.0 0.61 0.89 0.78 0.76 0.14 0.83 

R#-4 5.0 0.82 0.78 0.79 0.80 0.03 0.78 

R#-5 7.0 0.76 0.86 0.85 0.82 0.05 0.86 
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Table A - 7: Reaction 4 Mass Balance Results 

Reaction 
Sample 

Time 
(hr) 

Cumulative 
Sample 

Collected 
Mass (g) 

Cumulative 
Mass Flow 

Rate 
Setting (g) 

% 
Cumulative 

Mass 
Accounted 

For 

Cumulative 
Unaccounted 

Mass (g) 

Unaccounted 
Mass (g) 

Unaccounted 
Mass (g/hr) 

0.0 - - - - - - 

2.0 0.73 2.78 0.26 2.05 2.05 1.03 

2.5 1.33 3.48 0.38 2.16 0.10 0.20 

4.0 2.97 5.57 0.53 2.60 0.44 0.29 

5.0 4.16 6.96 0.60 2.80 0.20 0.20 

7.0 6.62 9.74 0.68 3.13 0.33 0.16 

9.0 8.99 12.53 0.72 3.54 0.41 0.21 

19.0 21.71 26.45 0.82 4.74 1.20 0.12 

21.0 24.17 29.23 0.83 5.06 0.32 0.16 

23.0 26.73 32.02 0.83 5.29 0.23 0.12 

26.0 30.56 36.19 0.84 5.63 0.34 0.11 

 
 

Table A - 8: Reaction 5 Mass Balance Results 

Reaction 
Sample 

Time 
(hr) 

Cumulative 
Sample 

Collected 
Mass (g) 

Cumulative 
Mass Flow 

Rate 
Setting (g) 

% 
Cumulative 

Mass 
Accounted 

For 

Cumulative 
Unaccounted 

Mass (g) 

Unaccounted 
Mass (g) 

Unaccounted 
Mass (g/hr) 

0.0 - - - - - - 

2.0 0.41 2.78 0.15 2.37 2.37 1.19 

2.5 0.59 3.48 0.17 2.89 0.52 1.03 

4.0 2.46 5.57 0.44 3.11 0.22 0.15 

5.0 3.82 6.96 0.55 3.14 0.03 0.03 

7.0 6.44 9.74 0.66 3.30 0.17 0.08 

9.0 8.94 12.53 0.71 3.59 0.28 0.14 

12.5 13.60 17.40 0.78 3.80 0.22 0.06 

18.0 20.40 25.06 0.81 4.66 0.85 0.16 
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Appendix B 
 
Sample Calculation B - 1: Calculation of GC-FID mass and molar area count sensitivities 

   
 
Sample Calculation B - 2: Furfural fractional conversion (XF) 

  
 
Sample Calculation B - 3: Furfuryl alcohol selectivity (SFA) 
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Sample Calculation B - 4: Reaction rate based on furfural fractional conversion, flow rate fed to the reactor, and 

amount catalyst packed in reactor bed 

  
 
Sample Calculation B - 5: Cumulative mass accounted for after 9 hours of reaction based on mass of sample 

collected and set point of HPLC pump; note: this neglects influence of H2 gas 
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