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Computer simulations have been used in forestry and forest operations since 

around 1960. In many cases such simulations can be used to answer questions that 

would be time consuming and expensive to investigate in a real-life environment. This 

dissertation focuses on the use of computer simulation in forest operations to answer 

questions regarding the profitability of technological advancements, investments in 

precommercial thinning (PCT), and the use of different harvesting systems. To explore 

the benefits of decoupling a harvesting system, a new simulation method, called agent 

based modeling was used. Agent based modeling is primarily used in social sciences 

but now is increasingly used in other fields due to its flexibility in assigning behavior rules 

to individual object (agents). Other computer simulations in this study were based on 

growth & yield models and harvest time simulations.  

Results clearly showed that technological advancements in a grapple skidder 

and stroke delimber system marginally increased profits, whereas the use of two grapple 

skidders proved to be most profitable in the majority of scenarios tested. Further, results 

showed that the same profit per unit can be achieved at the first commercial thinning, 



 

 
 

whether a stand was previously precommercially thinned or not. Thus, there is no 

financial gain or loss in investing in PCT at the first thinning, although there will be a 

faster supply of sawlogs in the future. The last simulation clearly showed that delaying a 

commercial thinning does not result in a change of maximum net present value (NPV), 

however, it does change the time in which this NPV can be achieved. The simulation 

further showed that a cut-to-length harvesting system is the most profitable one in the 

final harvest of softwood stands in northern Maine. 

Overall, these simulations have provided data that in most cases would 

otherwise not have been possible to collect for years to come. In the future each 

individual study can be expanded to refine the questions asked or to include an 

increasing variety of harvesting equipment. 
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PROLOGUE 

The forest resources industry is one of the most important businesses in Maine. 

Approximately 82% of Maine’s land area is forested (McCaskill et al. 2011), which 

makes it, by percentage of forest cover, one of the most forested states in the nation. 

Total revenue from Maine’s forest in 2005 was $6.47 billion or $916.58 per forested 

hectare (NESFA 2007). The forest resources industry, and in particular the logging 

industry, are not without challenges. More than 60% of the logging business owners in 

Maine are over fifty years of age and the average business owner age is in the low fifties 

(Leon and Benjamin 2013). Informal and private discussions with several logging 

contractors in 2013 and 2014 showed that recruiting their own children to take over the 

logging business proves to be difficult, mostly due to the odd working hours and the 

comparatively small compensation for it. Some logging business owners even suggest 

that their own children do not start a logging business.  

Another challenge is that harvesting equipment is very capital intensive and the 

cost of a single machine ranges from approximately $300,000 to $600,000 (Rankin 

2015). Other challenges include the uncertainty of the volume of timber that can be 

contracted in the near future. Often land managers are not willing or able to supply a 

logging contractor with a timber supply contract for an extended period of time, such as 

the four to five years of equipment financing period (personal communication with 

logging contractors). This uncertainty of timber to cut makes it difficult for logging 

contractors to invest in new equipment. But there are also challenges that are out of the 

control of a logging contractor or land manager. Leon and Benjamin (2013) reported that 

weather conditions are the number one factor influencing productivity, followed by 

market price, and mechanical breakdowns.  
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Road conditions are also a factor that influence productivity (Leon and Benjamin 

2013) but are often out of the hand of logging contractors and sometimes even out of the 

hand of land managers. In recent years, several mills in Maine closed which presents a 

new challenge to the forest industry.  The closure of mills causes an increase in the 

transportation distance of wood products to the buyer, and subsequently causes an 

increase in transportation costs. Leon and Benjamin (2013) further reported other factors 

that influence the productivity of a logging business which are of lesser concern. 

With this in mind it is therefore important to effectively and efficiently manage and 

operate harvesting equipment. In many cases, innovation plays a vital role in achieving 

such goals, however, innovation can be costly and it is not guaranteed that an 

investment in innovation bears any returns (Stone et al. 2011). Rather than doing costly 

and time consuming experiments to ascertain the outcomes of innovations, it may be 

more appropriate to simulate the outcome of investments in innovative technology. The 

use of computer simulation models is often warranted as simulations are less expensive 

and faster than actual field trials (Winsauer and Underwood 1980; Bradley et al. 1976; 

Newnham 1968). Computer simulations have long been used to answer forest 

harvesting questions and to investigate the relationship between system configurations 

and the operating environment (Baumgras et al. 1993; Winsauer and Underwood 1980; 

Goulet et al. 1980b; Goulet et al. 1979; Bradley et al. 1976; Newnham 1968). Often the 

simulation of costs is of further importance. Contreras and Chung (2011), for example, 

were interested in the costs of thinning operations, while Abbas et al. (2013) modeled 

and analyzed supply chain cost of forest biomass. Both studies show the importance of 

simulations in the analysis of costs in the forest industry. In addition, forest succession 

and management are also common topics for simulations (e.g. Ranatunga et al. 2008; 

Shifley et al. 2006). 
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Improving forest operations in Maine can happen at two levels: (1) a technical 

improvement on the machine level, and (2) a change in system configuration by using 

alternative equipment. A technical improvement, for example, could be the use of new 

technology such as Geographic Information Systems (GIS) and Global Position Systems 

(GPS). A change in system configuration could be the use of a smaller machine or a 

change from a whole-tree harvesting system to a cut-to-length harvesting system in the 

same stand. According to Stone et al. (2011) these types of improvement can be seen 

as a form of process innovation. Being innovative in the logging business has been 

shown to lessen a company’s aversion to financial risk and increased its motivation to 

invest in new equipment (Allen et al. 2008). This means, that the results of our 

simulations might encourage logging businesses to invest in innovative tools and 

technology, which could potentially strengthen their business.  

The objective of this study was to use computer simulation methods to evaluate 

the effect of such technical improvements and changes in system configuration on its 

profitability. This dissertation consists of four chapters and a concluding Epilogue. 

Chapters 1 and 2 describe a technical improvement, where the use of GIS and GPS 

information within grapple skidders and stroke delimbers to decrease machine idle time 

and unit cost of production is simulated. In addition, the effect of decreasing stroke 

delimber processing time per tree by one second and the use of two grapple skidders is 

evaluated as well. Chapter 1 describes the complete model in its detail, while Chapter 2 

applies the model to a case scenario and analyses its results. 

Chapters 3 and 4 describe the effect of a change in harvesting system 

configuration. Chapter 3 focuses on the productivity and costs of a cut-to-length (CTL) 

and whole-tree (WT) harvesting system operating in treatment units with and without 

earlier precommercial thinning treatments, respectively. Chapter 4 investigates the 
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optimal economic rotation time of six spruce/fir stands using three different harvesting 

systems and six different treatments. In addition to the CTL and WT harvesting system 

this chapter also simulates the use of a hybrid system consisting of a feller-buncher, 

processor, and forwarder. 
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CHAPTER ONE: 

THE EFFECT OF STAND HARDWOOD COMPONENT ON GRAPPLE SKIDDER  

AND STROKE DELIMBER IDLE TIME AND PRODUCTIVITY –  

AN AGENT BASED MODEL 

 

ABSTRACT 

The forest industry is a capital intensive business and therefore high efficiency in 

management and forest operations is a must. Maine has millions of acres of forest 

stands with tree diameters smaller than 30 cm. The harvest productivity in such stands is 

low compared to stands with larger diameter trees. A recent harvest productivity study in 

Maine identified operational constraints for whole tree harvest systems, but efforts to 

improve active harvest operations by implementing experimental system configurations 

would be expensive and time consuming. A common practice to reduce costs and time 

consumption of research projects is to develop simulation models and implement new 

ideas within them. We developed a production efficiency model that leverages an agent-

based modeling approach to investigate the effectiveness of different experimental 

equipment configurations and technical improvements within the communication of 

harvesting equipment. The model is based on the interaction of two common forest 

machines (grapple skidder and stroke delimber) and incorporates empirical cycle time 

estimates from research in Maine. Four scenarios have been developed to investigate 

baseline conditions, two GPS/GIS improvements, and the use of two grapple skidders.  

The goal of this paper is to document a new agent based model that investigates 

the effectiveness of experimental harvesting system changes and to investigate the 

effect of hardwood component on machine idle time and productivity. Results showed 

that system productivity was affected by skidding distance, bunch spacing, and removal 
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intensity. An increase in hardwood component led to a decrease in stroke delimber idle 

time but did not affect grapple skidder idle. Further, hardwood component did not affect 

system productivity, and none of the three single-skidder scenarios tested performed 

any better than another. We verified the model by conducting a sensitivity analysis to 

confirm previous research results. Data used to verify the model was from the same 

harvest sites that were used to develop the cycle time equations used in this model. The 

modeled waiting times are well within the range of observed values and therefore 

suggest that this model is accurate and well calibrated. Our conclusions are that when 

operating under average harvesting conditions there is no loss in productivity due to a 

change in hardwood component and that a stroke delimber idle time of 40% or more is 

unavoidable unless the stroke delimber can work independently. Future applications of 

this model may target specific production forestry conditions. Suggested analyses 

include productivity gains from technological improvements as well as the unit cost of 

production under a variety of stand and site conditions. 

 

INTRODUCTION 

Due in part to regenerating clearcuts from the spruce budworm era in the 1970s 

and 1980s, forest operations managers in Maine must currently manage an increasing 

percentage of stands that consist of small-diameter stems (dbh <30 cm). Approximately 

11 million acres of forest land in Maine contain or are dominated by trees smaller than 

30 cm in dbh (McCaskill et al. 2011). Forest operations are an important part of the 

forest industry but are also very capital intensive (Purfürst 2010). Due to the high capital 

investment in harvesting equipment, and the cost of running the machines, it is important 

to know machine productivity to fully utilize the individual machines. Effective 

management of forest operations therefore requires accurate estimates of harvest costs 
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and productivity, although the monitoring of these variables may be difficult (Holzleitner 

et al. 2011; Wang et al. 2004), especially in small diameter stands with an increased 

number of stems. The two dominant and fully mechanized harvesting systems in Maine 

are whole-tree (feller-buncher, grapple skidder, stroke delimber) and cut-to-length 

(harvester, forwarder) (Leon and Benjamin 2013). As the names suggest, whole-tree 

harvesting operations severe the tree from the stump and then transport it to the 

roadside including all branches as a whole tree. Cut-to-length harvesting operations 

severe trees from the stump and then cut off the branches and crosscut the bole into 

specific length logs, which are then transported to the roadside. These harvesting 

systems are generally very productive when operating in large diameter tree stands but 

have a reduced productivity when operating in small diameter tree stands (Hiesl and 

Benjamin 2013b). With high investments in equipment it is therefore crucial to achieve 

high machine productivities to keep the unit cost at a low level. To increase the 

productivity of individual machines and the harvesting system it is therefore necessary to 

improve or change existing harvesting processes. 

The primary goal of any logging contractor is to generate revenue to pay for the 

equipment and to create income. Maximizing machine utilization is one way to reach this 

goal (Bolding 2008), but often a contractors focus is more on increasing throughput and 

productivity, with a minor focus on overall machine utilization. Increasing throughput and 

productivity will increase revenue and create more income, but to truly maximize the 

productive potential of each machine, it is necessary to work with a high machine 

utilization. In order to maximize the utilization of a machine it is important to know where 

bottlenecks are.  

Several methods are available to identify these bottlenecks. Time studies are a 

common tool to evaluate harvesting operations and identify bottlenecks, however, they 
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can be rather time consuming (Bazghandi 2012; Bolding 2008; Bradley et al. 1976). 

Another accepted method to analyze the productivity and impact of a harvesting system 

are simulation models (Li et al. 2006; Wang and LeDoux 2003; Baumgras et al. 1993; 

Polley 1987; Goulet et al. 1979; Garner 1978; Bradley et al. 1976). Also often used are 

individual tree growth simulators such as Forest Vegetation Simulator (FVS) (Dixon 

2002), and regional volume and taper equations (e.g. Li et al. 2012; Weiskittel and Li 

2012). Individual tree growth models are especially useful in combination with cycle time 

equations for harvesting equipment that are based on individual trees (e.g. Hiesl and 

Benjamin 2015; Hiesl and Benjamin 2013a; Spinelli et al. 2010; Adebayo et al. 2007). 

Simulation models have several benefits compared to time and motion studies, such as 

fast execution of models and the possibility of changing system settings without 

changing the real system (Bazghandi 2012; Polley 1987; Bradley et al. 1976). The use of 

simulation models is not new to the forestry community as simulation models have been 

available since the 1960’s (Polley 1987; Goulet et al. 1979).  

Before 2013, no harvesting productivity studies were conducted in Maine and 

therefore no up-to-date productivity information for harvesting systems operating in 

Maine’s forests was available to conduct such computer simulations (Hiesl and Benjamin 

2013b). In 2012 and 2013, researchers at the University of Maine collected cycle time 

and productivity data for five pieces of equipment (feller-buncher, harvester, grapple 

skidder, forwarder, stroke delimber) commonly used in Maine, and developed cycle time 

and productivity equations (Hiesl and Benjamin 2015a; Hiesl 2013; Hiesl and Benjamin 

2013a; Hiesl and Benjamin 2013c). With these newly developed equations it is now 

possible to simulate the time consumption and productivity of different harvesting 

systems in a variety of site and stand conditions. The logical extension of the time and 

motion study conducted by Hiesl (2013) therefore is to use this data to identify 



 

5 
 

bottlenecks and to develop simulations with the new productivity data to test various 

scenarios of possible improvements in forest operations. Observations during the field 

study showed that harvesting operations consist of a large amount of non-productive 

waiting time that costs the logging business owner money but does not return any 

valuable product.  

Harvesting equipment used in whole-tree and cut-to-length harvesting systems, 

respectively, mostly operate independent from each other. The interactions between 

stroke delimbers (Figure 1.1) and grapple skidders (Figure 1.2) are an exception to this. 

The grapple skidder delivers wood to be processed by the stroke delimber and often has 

to wait for the stroke delimber to finish processing wood from the previous load. Polley 

(1987) found that waiting times between 20% and 40% of productive machine hours 

have to be expected due to this dependency. The recommendation from Polley’s 

research was to avoid such technological coupling of new equipment. Today, however, 

these two machines are still very much dependent on each other. Huth et al. (2004) 

commented that the existence of harvesting systems for many years and decades does 

not necessarily mean that their use is sustainable. Today with decreasing profit margins 

(Timber Harvesting 2011), large percentages of idle time due to technical coupling of 

grapple skidder and stroke delimber cannot be tolerated.  

Whole-tree harvesting systems are the most important harvesting systems in 

Maine in terms of volume cut (Leon and Benjamin 2013). Unpublished data of Hiesl 

(2013) showed that there is a waiting time ranging from 0% to 57% observed when a 

grapple skidder and stroke delimber work together at a variety of commonly encountered 

site and stand conditions in Maine (Figure 1.3).  
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Figure 1.1: A grapple skidder generally transports several trees in a bunch from the 
forest to the roadside where the whole trees get processed by a stroke delimber. 

 

 

Figure 1.2: A stroke delimber generally processes one tree at a time by cutting of 
branches and the top above a specific merchantable diameter. 
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Figure 1.3: Observed percent idle time for stroke delimber and grapple skidder from six 
different harvest sites as recorded between May and August 2012 by Hiesl (2013). The 
sites represent a common range of site and stand conditions in Maine.   
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With the feller-buncher working independently, and mostly days ahead of a 

grapple skidder, we can therefore identify the interaction of the grapple skidder and the 

stroke delimber as the bottleneck in most whole-tree harvesting systems. Research has 

further shown that the processing time of stroke delimbers is negatively impacted when 

processing hardwoods (Hiesl 2013). As with harvesters (Glöde 1999), the generally 

larger branch size of hardwoods, but also some softwood species such as eastern 

Hemlock, increases the processing time for stroke delimbers as well. Maine’s forest land 

consists of over 50% of hardwood forest types (McCaskill et al. 2011), and land 

managers and logging contractors alike have to deal with the negative impact of 

hardwoods on harvesting productivity. This highlights the importance to understand the 

impact of an increasing hardwood component on stroke delimber and grapple skidder 

idle time. 

Presently, there are three computer simulation methods commonly used for 

modeling different abstraction levels, such as System Dynamics, Discrete Event, and 

Agent Based (Borshchev and Filippov 2004). All methods have their strengths and 

weaknesses. ABM is versatile and can be used in a range of low to high abstraction 

levels, depending on the needs of the simulation. With ABM the focus is on individual 

objects (agents) that can vary in their scope and nature, such as people, vehicles, 

machines, customers, competing companies, etc. (Borshchev and Filippov 2004). The 

novel aspect of ABM is that behavior rules of individual agents and their interactions can 

be specified. This is the most outstanding difference of ABM from the other simulation 

methods, and makes this method especially useful in modelling forest harvesting with 

different machines. We have chosen an agent-based modeling technique because we 

are focused on individual agents (stroke delimber and grapple skidder) with unique and 

interacting behaviors.  
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Epstein (1999) described five characteristics of agent based modeling (ABM), of 

which at least one should be met, to ensure a successful application of ABM to a certain 

research question: (1) heterogeneity of the agents, (2) autonomy of the agents, (3) 

explicit space, (4) local interactions, and (5) bounded rationality. All five characteristics 

hold true in our simulation of stroke delimber and grapple skidder interactions. Although 

often used in social sciences, agent based modeling (ABM) also experiences 

widespread popularity among other disciplines (Bazghandi 2012; Gilbert 2007; Manson 

2003). Examples include traffic simulations in metropolitan areas (Bazghandi 2012), and 

the simulation of harvesting scenarios in mangrove forest plantations (Fontalvo-Herazo 

et al. 2011). There is growing interest among researchers in using agent based models 

to explore ecological and silvicultural consequences of harvesting prescriptions (Arii et 

al. 2008) and to investigate the harvest decision making of forest landowners (Leahy et 

al. 2013). Our model will expand the use of agent based models to include forest 

operations research questions at the machine level. 

Due to the large amount of data generated by this model and the multitude of 

research questions that can be asked we will focus in this paper on a detailed model 

description and investigate the effect of an increasing hardwood component on stroke 

delimber and grapple skidder idle time and productivity. A separate analysis of skidding 

distance, payload, and a two skidder scenario is detailed in Chapter 2.  

 

METHODS 

To better understand the interactions of stroke delimber and grapple skidder and 

to test new processing techniques we create the stroke delimber and grapple skidder 

agent based model (SDGS-ABM). The model was created using the agent based 
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modeling tool NetLogo v5.0.5 (Wilensky 1999). We present this model following a 

modified version of the overview, design concepts, and details (ODD) protocol (Grimm et 

al. 2010; Grimm et al. 2006). The ODD protocol represents a well-adapted standard to 

communicate model descriptions consistently and effectively. The model has been 

developed in English units as the model is based on harvesting conditions in the 

Northeastern US and intended for the use in this region.  

 

Purpose 

The purpose of the model was to investigate the productivity of stroke delimber 

and grapple skidder working on harvest tracts of different sizes and removal intensities. 

The goal was to gain knowledge about the productivity and time consumption of four 

different skidding and delimbing behaviors (Table 1.1) to gauge the benefit and 

applicability of different system configurations.  

Balsam fir (Abies balsamea (L.) Mill.) and red maple (Acer rubrum L.) were used 

as reference species for softwood and hardwood species, respectively, as these are two 

common species in Maine’s forests. Results from this model will be used to determine 

whether a change in system configuration and operator communication features would in 

fact increase machine productivity and reduce waiting times. 
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Table 1.1: Description of four different skidding and delimbing behaviors as included in 
the model. 

Scenario Description 

  1 In this scenario there is no active communication between the grapple skidder and stroke 
delimber. There is no optimization of skidding times through additional processing information.  
This is our baseline scenario. 
 

2 In this scenario the stroke delimber knows the processing time for each bunch. In addition, the 
grapple skidder knows the traveling time for each bunch. Through the combination of the two 
sources of information the grapple skidder is able to select a bunch that will keep the waiting 
time for the stroke delimber at a minimum. 
 

3 This scenario uses the same information as scenario 2, but in addition a process improvement 
feature for the stroke delimber is introduced. The processing time for each tree is reduced 
between 0.5 and 8 seconds to improve the stroke delimber productivity. 
 

4 This scenario is similar to scenario 1 but uses two grapple skidders instead of one. This will 
increase the stroke delimber productivity by reducing the waiting time. (Details of the analysis 
of Scenario 4 are discussed in Chapter 2) 

   

Entities, State Variables, and Scales 

The model has four kinds of entities: grapple skidders, stroke delimbers, 

bunches, and square patches of land. Grapple skidders and stroke delimbers have no 

state variables, however, several pieces of information are recorded in global variables 

after each skidding cycle (Table 1.2). Each bunch consists of a differing number of trees 

with different diameters, and has two state variables: one that describes the bunch size , 

and another for the distance of the bunch to the landing, given a previously laid out trail 

network exists. Patches are described by their patch size and the patch landuse (such 

as trail or forest land). 

The grapple skidder is a moving agent that travels along a trail network and 

collects one bunch at a time. A bunch is located along the trail network with a user-

defined spacing between individual bunches. Bunches can only move when a grapple 

skidder picks them up and carries them to the landing, where they are processed by the 

stroke delimber. The stroke delimber is a static agent that sits permanently at the landing 

and processes individual trees from a bunch. Several environmental variables are 
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defined by the user: length of the main trail, removal per acre, bunch spacing, hardwood 

content, delimber processing time improvement, stroke delimber machine rate, and 

grapple skidder machine rate. The user can further choose to create bunches with 

random or equal sizes, and also selects one of the four behavioral scenarios. Total width 

of the harvest tract is predefined at 612 feet. The road is 36 feet wide and next to a 

landing of 144 feet by 300 feet. The trail system consists of one main trail with side trails 

leaving the main trail in a 45 degree pattern and 60 foot trail spacing. The temporal 

extent of the model is the time it takes to skid and process all bunches along the trail.  

 

Table 1.2: State and global variables of the four model entities. 

Entity State / Global Variable 

Grapple Skidder Total waiting time in minutes 
Current waiting in minutes 
Current skidding time in minutes 
Total number of bunches skidded 
 

Stroke Delimber Total waiting time in minutes 
Current waiting time in minutes 
Current delimbing time in minutes 
Total number of bunches delimbed 
 

Bunch Bunch size in tons 
Distance to the landing along trail in feet 
 

Patch Patch size (12 feet x 12 feet) 
Landuse type (trail, forest, landing, road) 

 

Process Overview and Scheduling 

During the model setup the following information is calculated based on the user 

chosen input variables and displayed in output monitors: area harvested (acres), 

average bunch size (tons), length of main trail (feet), maximum skidding distance (feet). 
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The trail system is put in place during the model setup by the submodel “create trail” and 

populated with bunches by the submodel “place bunches”. The model further includes 

the following processes that are executed in this order during each time step. 

Skid bunch: The grapple skidder moves to the nearest bunch along the main trail 

and brings the bunch back to the landing. Once the main trail is cleared the skidder 

moves to the nearest bunch amongst the side trails. If the user selects scenario 2 or 3 

the skidder moves to the farthest bunch that is within the distance that the skidder can 

travel during the time the delimber takes to process the previous bunch. The total 

skidding time is calculated using a regional grapple skidder cycle time function (Table 

1.3). 

Table 1.3: Description of values used in this model, including source of information. 

Description Value Source 

Cycle time equation for grapple 
skidder 

Cycle Time (min) = exp(1.618 + 0.0005 x  
OneWayDistance (ft)) 
 

Hiesl and 
Benjamin (2013c) 

Cycle time equation for stroke 
delimber 

Cycle Time (min) = exp(-1.247 + 0.099 x DBH 
(in) – 0.135 x SpeciesGroup (1 = softwood,  
2 = hardwood)) 
 

Hiesl and 
Benjamin (2013c) 

Standard deviation for the spread of 
bunch sizes across a harvest site 

0.8 
 
 

unpublished 
results of Hiesl 
(2013) 
 

Lamda-value for a poisson 
distribution that represents the 
distribution of tree diameters in a 
given bunch 

8.43 
 
 
 

unpublished 
results of Hiesl 
(2013) 
 

Average removal intensity used in 
this study (in tons/acre) 

40 
 
 

unpublished 
results of Hiesl 
(2013) 
 

Average spacing between individual 
bunches (in ft) 

48 unpublished 
results of Hiesl 
(2013) 
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Skid Two Bunches: This process is only called for in scenario 4 when two 

grapple skidders are skidding wood from the harvest tract. The process is similar to “skid 

bunch”, however, each skidder delivers wood to their own drop zone at the landing, so 

that the stroke delimber has two bunches to work with. 

Process bunch: During the first run of the “skid bunch” process the stroke 

delimber has no trees to process and therefore has to wait for the skidder to come back. 

After the skidder brings a bunch the sub-model “select trees” calculates the number of 

trees and individual tree sizes for the bunch. The stroke delimber then processes one 

tree at a time. The time consumption for each tree is calculated using a regional cycle 

time function for stroke delimber estimated from empirical data (Table 1.3). 

Update output: This process updates all output monitors and advances time 

accordingly. Output monitors record the following information: total skidded volume, total 

time consumption, current grapple skidder time for this cycle, current grapple skidder 

waiting time for this cycle, total grapple skidder waiting time, grapple skidder waiting time 

in percent of total time, current stroke delimber time for this cycle, current stroke 

delimber waiting time for this cycle, total stroke delimber waiting time, stroke delimber 

waiting time in percent of total time, system productivity (tons/PMH), grapple skidder and 

stroke delimber total cost of operation ($), grapple skidder and stroke delimber harvest 

cost ($/ac), and grapple skidder and stroke delimber unit cost of production ($/ton). 

 

Design Concepts 

The basic principle is to simulate the interactions between grapple skidders and 

stroke delimbers in four different scenarios that include (1) a “normal” harvest, (2) a 

harvest with perfect knowledge of processing times, (3) a harvest with perfect knowledge 
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of processing times and increased delimbing speed, and (4) the use of two grapple 

skidders. The choice of perfect knowledge is based on potential technological 

developments (such as enhanced communication and location-tracking technology) 

within equipment cabs to accurately estimate processing times.  

Grapple skidders interact with bunches by removing them from the trail and 

skidding them to the landing. The stroke delimber processes one bunch, tree by tree, 

and in scenarios 2 and 3 estimates the processing time for each bunch. In these 

scenarios grapple skidder and stroke delimber interact directly with each other by 

exchanging information which alters the skidding behavior of the grapple skidder.  

The bunch size is randomly chosen using the average bunch size - calculated 

based on the user chosen removal intensity, bunch spacing, and length of trails – and a 

previously observed standard deviation of common bunch sizes (Table 1.3). The tree 

diameters in each bunch were randomly chosen using a previously observed Poisson 

distribution (Table 1.3). A differentiation is made between hardwoods and softwoods, as 

tree heights and volumes at a given diameter are different. 

 

Initialization 

The simulated harvest tract is created with a fixed width of 51 pixels (612 feet) 

and a user defined length of between 40 and 210 pixels (480 to 2520 feet). The main 

trail is located in the center of the harvest tract parallel to the length of the harvest tract. 

Side trails join the main trail at 45 degree angles and a spacing of 5 pixels (60 feet). 

Bunches are placed along the trail system with user defined bunch spacings. One 

grapple skidder and one stroke delimber are created in scenarios 1 to 3, while a second 

grapple skidder is created in scenario 4. All equipment starts at the landing. 
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All time and productivity counters are set to zero. Each bunch has a randomly 

assigned bunch volume and a distance to the landing calculated based on their location 

on the trail. The harvest area in acres is calculated during the setup based on the trail 

system and a 25 foot swath on each side of the trail to represent feller-buncher reach. 

The average bunch size, main trail length, and maximum skidding distance are also 

calculated during the setup. 

 

Submodels 

Create Trail: The main trail is placed at the center of the harvest tract with 26 

pixels (312 feet) to the left and right to the harvest tract boundary. Starting at the landing 

the side trails join the main trail at a 45 degree angle and reach all the way to the 

boundary. The spacing between trails is 5 pixels (60 feet). 

Place Bunches: The number of bunches on the main trail and for each side trail 

are calculated during the trail setup based on the user defined bunch spacing. Based on 

harvest area, removal intensity, and number of bunches the average bunch size is 

calculated. Using a standard deviation of 0.8 tons (Table 1.3) the bunch size for each 

bunch is randomly drawn. All bunches are placed at the end of each side trail and trails 

are then populated with bunches towards the main trail. This feature represents common 

harvesting techniques used in whole-tree harvesting in Maine. During the placement the 

model periodically checks the total bunch size of all bunches placed on trails and 

compares it with the total removal for the harvest tract and makes the necessary 

adjustments in bunch size if the total bunch size is too high.  
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Select Trees: When a bunch is being processed by the stroke delimber the 

bunch size is divided into softwood (SW) and hardwood (HW) size based on the 

hardwood content chosen by the user. SW and HW tree diameters are chosen from a 

Poisson distribution (Table 1.3). Each diameter is associated with an average tree size. 

Individual tree sizes were calculated using Honer’s equations (Honer 1967). Balsam fir 

(Abies balsamea (L.) Mill.) and red maple (Acer rubrum L.) were used as reference 

species for softwood and hardwood, respectively. We used average tree heights from 

unpublished data of Hiesl (2013) for the calculations (Table 1.4).  The tree size of each 

tree is added up until the bunch size for SW and HW is reached. 

 

Graphical User Interface 

To increase the usability of this model a user friendly interface was created 

(Figure 1.4). This interface includes several sliders with pre-defined options to adjust 

various input variables such as the removal per acre, bunch spacing, or hardwood 

content. Four groupings of output monitors exist to show the user (1) important time 

information during each skid, (2) cumulative waiting time information, (3) cumulative 

productivity and cost information, and (4) general harvest tract information. A full list of 

output variables can be found in the previous “Update output” section. 
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Figure 1.4: Screenshot of the model interface. 

 

 

Simulation Analysis Methods 

To analyze the effect of hardwood component on stroke delimber and grapple 

skidder idle time the model was run using an average bunch spacing of 48 ft (Table 1.3), 

an average removal intensity of 40 tons/acre (Table 1.3), and varying degrees of 

hardwood composition (Table 1.5). To analyze the effect of the different behavioral 

scenarios we also run this setup for Scenarios 1 to 3. We used NetLogo’s 

BehaviorSpace module to run each configuration. The output was analyzed using the 

statistical software package R (R Core Team 2015). To analyze the effect of bunch 

spacing and removal intensity on the baseline scenario (Scenario 1) we included a total 

of six bunch spacings and six removal intensities in the simulation. 
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Table 1.4: Tree diameter, height, and volume for softwood and hardwood trees used in 
the model. 

   
Dbh (in) Tree height (ft) Tree volume (tons) 

    
  

Softwood Hardwood 
4 37 0.078 0.071 

5 43 0.138 0.126 

6 48 0.215 0.201 

7 53 0.315 0.280 

8 56 0.429 0.408 

9 59 0.563 0.540 

10 61 0.711 0.657 

11 63 0.880 0.854 

12 64 1.059 1.030 

13 66 1.270 1.241 

14 70 1.532 1.512 

15 74 1.825 1.819 

16 76 2.112 2.116 

17 78 2.425 2.440 

18 78 2.719 2.736 

19 79 3.054 3.080 

20 86 3.570 3.658 
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Table 1.5: Variables used in the simulation to analyze the effect of hardwood component 
on stroke delimber and grapple skidder idle time. 

User-Defined Variable Min-Value Max-Value Step-Size # values tested 

Scenario 1 3 1 3 
Removal per acre (tons) 40 40 0 1 
Bunch spacing (ft) 48 48 0 1 
Hardwood content (%) 0 100 10 11 
Max One-Way Skidding Distance (ft) 732 2,892 240, 10 

     

   Parameter  
Combinations 

150  

   Simulations 15,000 

 

Sensitivity Analysis 

A local sensitivity analysis was conducted based on the Railsback and Grimm 

(2012) analysis structure. The goal of any sensitivity analysis is to understand how 

sensitive a model is to small changes in the value of input variables. Such information 

can help to verify the model structure by assessing whether or not specific sensitivities 

exist in the model. A local sensitivity analysis changes one input parameter at a time and 

therefore represents the sensitivity of such one parameter to a baseline of the other 

input parameters only. In contrast to that, a global sensitivity analysis changes several 

input values at the same time over a wide range of baseline scenarios to fully investigate 

the sensitivity of a model. For this local sensitivity analysis we increased the input values 

of three variables (skidding distance, hardwood component, bunch size) by 10% to 

calculate the sensitivity value. The baseline values of the three input variables reflect 

average skidding and delimbing conditions in Maine. Baseline values were determined 

from unpublished data of Hiesl (2013). The three input variables were chosen based on 

their known influence on system productivity from other research. 
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SIMULATION RESULTS 

Results of baseline scenario (Scenario 1) of the model showed that the system 

productivity of grapple skidder and stroke delimber was heavily influenced by skidding 

distance, removal per acre and bunch spacing (Figure 1.5). System productivity 

increased with increasing removal intensity, increasing bunch spacing and decreasing 

skidding distance. Bunch spacing (p<0.001) and removal intensity (p<0.001) clearly 

indicated a difference in system productivity. 

The analysis of the effect of hardwood component on stroke delimber waiting 

time showed that there is a reduction in waiting time with increasing hardwood 

component (p<0.001). This reduction is up to 13% at short skidding distances and 

decreases to 7% at the longest skidding distance (Figure 1.6). No difference was found 

in the stroke delimber waiting time between Scenario 1 and Scenario 2 (p=0.999), 

however, there was a difference between Scenario 3 and the other two scenarios 

(p=0.004). Grapple skidder waiting time was not affected by the change in hardwood 

component and stayed below 1%. 

Even though there is a decrease in stroke delimber idle time with increasing 

hardwood component, our results show that the system productivity is not affected by 

hardwood component (p=0.922). Further, there was no difference (p=0.998) found in 

system productivity between the three tested scenarios (Figure 1.7). Thus, the 

productivity stays the same whether or not the hardwood component increases, a 

GIS/GPS based communication system is used (Scenario 2), or the stroke delimber 

increases processing speed (Scenario 3). The only influential factor on system 

productivity is skidding distance (p<0.001). An increase in skidding distance causes a 

decrease in system productivity.  
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Waiting time data from Figure 1.1 shows that a stroke delimber generally waits 

between 4% and 56% of the time, while a grapple skidder waits between 0% and 27%. 

These values have been collected from harvest sites with removal intensities ranging 

from 25 tons/acre up to 67 tons/acre. The waiting times produced by this model (Figure 

1.8) are similar to the range of observed waiting times. This shows that the model is an 

accurate representation of a stroke delimber and grapple skidder harvesting system.  

 

Model Evaluation 

The relationship between system productivity and site specific variables such as 

skidding distance and removal intensity, in combination with the correct representation of 

waiting times supports the assumption that this model is well calibrated. To increase the 

usefulness of this model to other researchers and the logging community, however, it is 

crucial to test the model for its sensitivity to parameter combinations.  

Local and global sensitivity analyses were used to evaluate the sensitivity of our 

model to a change in input variables. Results showed that average bunch size had the 

greatest impact on system productivity, followed by skidding distance (Table 1.6). The 

impact of hardwood content on system productivity was very low compared to the other 

two input variables. Such an analysis is a snapshot of the effect of input variables on 

system productivity based on baseline conditions that represent average harvesting 

conditions in Maine. To gain more insight of the effect of these variables based on a 

variety of harvesting conditions we conducted a global sensitivity analysis (Figure 1.9).  
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Figure 1.5: Grapple skidder and stroke delimber system productivity based on removal intensity and bunch spacing with a 50% 
hardwood component when using the baseline scenario (Scenario 1). PMH = productive machine hours. 
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Figure 1.6: Stroke delimber waiting time based on various hardwood components and an average bunch spacing of 48 ft and a 
removal intensity of 40 tons per acre. No difference was found between Scenario 1 and Scenario 2 and both lines are approximately 
on top of each other. 
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Figure 1.7: System productivity of a grapple skidder and stroke delimber system based on various hardwood components and an 
average bunch spacing of 48 ft and a removal intensity of 40 tons per acre. The productivity of all three scenarios is similar and thus 
the individual lines are overlaying each other.  
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Figure 1.8: Waiting time for grapple skidder and stroke delimber based on skidding distance and removal intensity. 
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The global sensitivity analysis shows that the effect of bunch size on system 

productivity is less pronounced at short skidding distances and high bunch sizes and 

increases with skidding distance and a reduction in bunch size. The effect of skidding 

distance on system productivity intensifies with an increase in skidding distance. This 

effect, however, is reduced with an increase in bunch size. A higher softwood 

component increases system productivity at short skidding distances and high bunch 

sizes but loses intensity with longer skidding distances. 

 

Table 1.6: Local Sensitivity Analysis of three input variables. 

Parameter Reference value Sensitivity value Change in 
productivity (%) 

Change in 
productivity 
(tons/PMH) 

Skidding Distance (ft) 1,380 -10.51 -4.82 -1.05 

Hardwood Content (%) 50 -0.20 -0.09 -0.02 

Average Bunch Size (tons) 3.0 22.44 10.29 2.24 

Note: Parameter values were increased by 10%. 
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Figure 1.9: Global Sensitivity Analysis of three input variables based on baseline 
conditions consisting of a variety of skidding distances (x-axis), average bunch sizes (y-
axis), and a 50% hardwood component. 

 

  



 

29 
 

DISCUSSION 

The use of agent based modeling in forestry is fairly new. Agent-based modeling 

has been used to investigate and model harvesting decision making of landowners 

(Leahy et al. 2013), simulate landscape-scale forest ecosystem dynamics (Seidl et al. 

2012), and model harvesting scenarios in mangrove forest plantations (Fontalvo-Herazo 

et al. 2011). Our model is one of the first to apply an agent-based approach to 

production forestry in a developed country. We further created a graphical user interface 

in NetLogo (Wilensky 1999) that allows users to vary input variables such as removal 

intensity, hardwood content, and bunch spacing.  

This model uses cycle time equations specifically developed for harvesting 

systems in Maine. In addition to that, all the values and probabilities used in this 

simulation are from unpublished data of a harvesting cycle time and productivity study by 

Hiesl (2013). Such empirical data increases the applicability and plausibility of this 

model. For example, the sensitivity analysis returned skidding distance and bunch size 

as important factors affecting system productivity. Skidding distance is a well-known 

factor that affects skidder productivity and has been reported by several researchers 

(Hiesl 2013; Han et al. 2004; Kluender et al. 1997; Andersson and Evans 1996). Bunch 

size, or payload, has also been described as a factor influencing grapple skidder 

productivity (Wang et al. 2004; Kluender et al. 1997).  As our model aligns with this 

previous literature we are confident that the core model dynamics are accurate and well 

calibrated including the relationship between input variables and system productivity. 

With the open source characteristic of this model it is possible for other researchers to 

extend the existing model to include other harvesting systems and management 

treatments. Such extension could include further calibration, development of other sub-
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models, or the inclusion of new data. The benefit of our agent-based model is that these 

changes are relatively simple to implement. 

Our results showed that an increase in hardwood component can reduce the 

waiting time for a stroke delimber but has no effect on the waiting time of a grapple 

skidder. This result is not surprising as the literature indicates that the stroke delimber 

processing time is higher for hardwood than it is for softwood species (Hiesl 2013). One 

reason for this increase in time consumption can be found in the larger branch size and 

the increased number of forks in the crown. Research with harvesters showed that a 

large branch size negatively affected processing speed and productivity (Glöde 1999). A 

stroke delimber uses a similar movement to delimb trees as a harvester does, so it is a 

reasonable assumption that the same applies here. With the lowest waiting time being 

approximately 40% it is not surprising that the grapple skidder waiting time is close to 

zero. Even though there is a negative effect of hardwoods on processing speed, there 

was a positive effect on waiting time. This is due to the large number of excess time that 

a stroke delimber has before the grapple skidder can deliver a new bunch. This excess 

time can be used to process hardwood trees without increasing the idle time, as more of 

the excess time is used to process hardwoods. The presented simulation, however, was 

done based on average bunch spacing and removal intensity. In many situations a land 

manager or logging contractor has to deviate from these standards and may encounter a 

more positive or negative effect of a change in hardwood component. 

A decrease in stroke delimber idle time, however, does not necessarily mean that 

there will be an increase in system productivity. Our results showed that hardwood 

component did not affect system productivity. This can be attributed to the fact that in the 

presented case the skidding time is not affected by the species mix in each bunch and 

thus stays the same regardless of hardwood component. This further means that the 
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overall time consumptions stays the same, even though the stroke delimber spends less 

time waiting for a new bunch. Research indicated that grapple skidder productivity is 

affected by payload (Hiesl 2013; Li et al. 2006; Wang et al. 2004; Kluender et al. 1997) 

and thus the results might be different when changing the average bunch size in our 

simulation. In our analysis, however, we were interested in the effect of varying 

hardwood components on system productivity and machine idle time when operating 

under average harvesting conditions. The fact that there is no effect on system 

productivity therefore indicates that mixed-wood and hardwood stands in Maine can be 

treated without losing any productivity or increasing harvest costs. 

When looking at the system productivity the results further showed that there is 

no difference in productivity between the three tested scenarios. The surprise was that 

the use of GIS/GPS (Scenario 2) did not result in any production increase. One reason 

for this might be the use of one main trail only. This fact limits the grapple skidder in the 

number of bunches that can be chosen to minimize stroke delimber waiting time. 

Another reason might be the chosen behavior rule of selecting the bunch that is farthest 

away but does not cause any more stroke delimber delay. This behavior rule did not 

include the clearing of the main trail first and thus limited the number of bunches that 

were accessible. The third scenario included an increase in processing speed of 1 

second per tree. This increase in processing time resulted in an increase in stroke 

delimber idle time. This can be attributed to the fact that the grapple skidder was not 

delivering bunches any faster and thus the increased processing time left more time for 

the stroke delimber to wait for the grapple skidder. 

In Figure 4, system productivity is shown for varying removal intensities and 

bunch spacings. Individual productivity curves are fairly uniformly distributed among the 

different bunch spacings with the exception of the 60 and 72 ft bunch spacing. These 
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two productivity curves are very close and almost overlay each other. The reason for this 

lies in the bunch placing process of the simulation. Bunches were placed on a side trail 

starting at the end of a trail and then spacing them by the user defined bunch spacing. 

For all bunch spacings the number of bunches per side trail decreased with increasing 

bunch spacing, with the exception of the 60 and 72 ft bunch spacing. In this special 

case, the number of bunches in each side trail stayed the same, with the exception of a 

few side trails at the end of the harvest block. Lengthening or shortening the side trails 

only shifted this process to a different pair of bunch spacings. It is important to notice, 

however, that this effect also happens at real harvest sites, and thus a change in bunch 

spacing might not have the sought after effect of increasing bunch size. 

Extensions of this work can include the application of the model to investigate 

system productivity change, and skidder and delimber wait time that emerge from real 

world harvesting scenarios. For instance, an analysis might seek to answer the question 

whether or not an investment in various types of communication or spatial awareness 

technology will result in any productivity gains across varying stand and site conditions, 

and if so, whether or not this investment will pay for itself during the lifetime of these 

machines. Further economic calculations should include the unit cost of production as a 

measure of applicability of any system in the real world at the current market conditions. 

Many additional alternative management configurations are also possible with an agent-

based system because the design of machine behavior and machine-machine 

interaction is greatly simplified over traditional approaches. 

 

  



 

33 
 

CONCLUSION 

Our conclusion is that under average harvesting conditions in Maine it does not 

pay to invest in a GIS/GPS based communication system, at least not with the modeled 

behavior rules for such a system. Further, increased harvested hardwood component, 

under these average harvesting conditions, does not affect system productivity. This 

leaves current market conditions as one of the remaining limitations of treating mixed-

wood and hardwood stands in Maine. 

Unless the system of grapple skidder and stroke delimber is de-coupled, logging 

contractors and land managers have to accept that under average harvesting conditions 

the stroke delimber will wait for trees to be processed at least 40% of its operational 

time. With machine rates upwards of $100 USD/PMH this means that over $40 

USD/PMH are spent sitting at the landing and waiting for wood. This is money spent 

without getting any return. Clearly there is a need to find new ways to use these to 

machines to further reduce the waiting time of either machine and to limit to money 

spent on processes that do not return any revenue. 
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CHAPTER TWO: 

CAN TECHNOLOGY HELP IMPROVE GRAPPLE SKIDDER AND STROKE 

DELIMBER INTERACTIONS? A SIMULATION APPROACH 

 

ABSTRACT 

In this paper we analyze the results of an agent-based model focusing on the 

interaction of a grapple skidder and a stroke delimber within a simulated harvest 

operation. Four different operational scenarios were tested to show whether it is possible 

to influence idle time, unit cost, and productivity of the system. The scenarios included a 

conventional skidding pattern where the main trail is cleared first, a modified skidding 

pattern assisted by GPS/GIS technology to reduce idle time, a change in delimbing 

behavior to decrease processing time by one second per cycle, and the use of two 

grapple skidders to increase utilization of the delimber. Results showed that stroke 

delimber idle time increases with increasing skidding distance, but decreases with 

increasing bunch size. The use of new technology and a change in stroke delimber 

processing speed did not drastically change percent idle time, productivity, or unit costs. 

Using an average harvesting scenario in Maine, there was only a minimal change in unit 

cost of production by using GPS/GIS technology. The use of two grapple skidders had 

the most influence on percent idle time, productivity, and unit cost for the system. Our 

conclusions are that an investment in new technology depends on the cost of the 

investment and the annual production to assess the full benefit of the investment. The 

use of two grapple skidders, however, resulted in the biggest benefits across most 

tested scenarios and should be considered as an improvement for a grapple skidder and 

stroke delimber system. 
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INTRODUCTION 

Owning and operating harvesting equipment is very capital intensive, and one 

key goal of a logging business owner is to reduce and eliminate unnecessary costs. 

Such costs are often hidden in day to day operations and might not be easily identified 

without careful and focused observation. During the summer of 2012, researchers of the 

University of Maine conducted time and motion studies on several whole-tree harvesting 

operations and then developed regional cycle time and productivity equations (Hiesl 

2013). It was apparent from the field observations that the interaction between grapple 

skidders and stroke delimbers often resulted in a high percentage of idle time for both 

machines (Figure 2.1). In most cases the grapple skidder was the bottleneck of the 

operation, and a high percentage of stroke delimber idle time was accumulated due to 

an insufficient supply of trees to the landing.  

It is common practice in Maine to have a grapple skidder and stroke delimber 

work at the same harvest site. Generally the landings are only big enough so that one 

bunch at a time can be delivered to the stroke delimber. A bunch consists of an 

accumulation of trees that were cut by a feller-buncher and piled into a bunch of 

appropriate size to be moved by a grapple skidder. Such a set-up inevitably causes one 

machine to wait for the other at times. The stroke delimber waits when it has processed 

all the trees of the current bunch, and a new bunch has not yet been delivered. The 

grapple skidder waits when a bunch is skidded to the landing but the stroke delimber has 

not yet finished processing all the trees of the previous bunch. The interaction between 

grapple skidders and stroke delimbers has been simulated in the past with the result that 

waiting times between 20% and 40% of productive machine hours have to be expected 

due to the technical coupling of these machines (Polley 1987). Based on Polley’s 

simulation, waiting times of between 10% and 15% could be achieved when one 
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machine was fully utilized. The recommendation by Polley (1987) was that technological 

coupling should be avoided in the development of new equipment. Today, however, 

grapple skidder and stroke delimber are still very much dependent on each other, and 

are used extensively in harvest activities.  

 

 

Figure 2.1: Stroke delimber and grapple skidder idle times as observed during a study 
by Hiesl (2013). 

 

It is well established that skidding distance influences extraction time of a grapple 

skidder (Hiesl 2013; Han et al. 2004; Kluender et al. 1997; Gingras 1994). Additionally, a 

small bunch that consists of only a few trees will be processed by a stroke delimber in a 

shorter period of time than a large bunch with many trees. The combination of a small 

bunch size and a long skidding distance will subsequently lead to an increased idle time 

for the stroke delimber as this machine will process the bunch faster than a new bunch 
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can be extracted. General practice in Maine is to extract all wood from the main trail first 

and then extract wood from the side trails. Other extraction practices, such as working 

more than one trail at a time to alternate between bunches that are close to the landing 

and further away however, have been observed by the authors as well. This particular 

practice could be greatly improved with the use of Geographic Information System (GIS) 

and Global Positioning System (GPS) technology. An agent-based computer simulation 

model was developed to compare system productivity for different wood extraction and 

processing practices. 

Nowadays, three computer simulation methods are available for modeling 

different abstraction levels. These are System Dynamics, Discrete Event, and Agent 

Based Modeling. System Dynamics (SD) and Discrete Event (DE) are traditional 

simulation methods, whereas Agent Based Modeling (ABM) is a more recently 

developed modeling method (Borshchev and Filippov 2004). ABM is versatile and can 

be used to simulate low to high abstraction levels. With ABM, the focus is on individual 

objects (agents) that can vary in their scope and nature; agents can represent people, 

vehicles, machines, customers, or competing companies (Borshchev and Filippov 2004). 

The novel aspect of ABM is that behavior rules of individual agents and their interactions 

can be specified. ABM is commonly used in social sciences research (Janssen and 

Ostrom 2006; Bousquet and Le Page 2004), as system behaviors have not yet been 

mathematically formulated (Helbing and Balietti 2011), and an equations-based 

modelling technique would not be possible. In ABM the behavior of a system and its 

interactions are simulated by using multiple agents that interact with each other and the 

environment (Bazghandi 2012; Gilbert 2007; Brown 2006). Although often used in social 

sciences, ABM experiences widespread popularity among other disciplines (Bazghandi 

2012; Gilbert 2007; Manson 2003). There is growing interest among researchers in 
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using agent based models to explore ecological and silvicultural consequences of 

harvesting prescriptions (Arii et al. 2008) and to investigate the harvest decision making 

of forest landowners (Leahy et al. 2013). 

The work environment and the work object of forest harvesting are quite variable 

(Polley 1987) and the assessment of costs, especially in natural stands, is rather 

complex (Abbas et al. 2013). The use of computer simulation models is often warranted 

as simulations are less expensive and faster than actual field trials (Winsauer and 

Underwood 1980; Bradley et al. 1976; Newnham 1968). Computer simulations have 

been well established for decades (Bazghandi 2012; Gilbert 2007; Polley 1987; Bradley 

et al. 1976), and early on, computer simulations have been found to be useful in 

studying present and future harvesting systems (Cavalli et al. 2011; Goulet et al. 1980a; 

Winsauer and Underwood 1980; Goulet et al. 1979; Newnham 1968). Computer 

simulations also provide valuable insight to potential relationships between system 

configurations and operating environments (Baumgras et al. 1993; Winsauer and 

Underwood 1980).  

Our objectives with this study were to investigate (1) whether or not a high 

percentage of idle time for grapple skidder and stroke delimber is avoidable, (2) whether 

or not a change in skidding practice through the use of information from a GIS/GPS will 

reduce the idle time and unit cost by increasing system productivity, and (3) assess the 

productivity and unit costs of a de-coupled grapple skidder and stroke delimber system.  
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METHODS 

Agent Based Model 

We developed an agent based model to simulate the interaction between a 

grapple skidder and a stroke delimber in a whole tree harvest system. In such a system 

the feller-buncher cuts a main trail from which side trails disperse. The feller-buncher 

further forms bunches of trees and puts them into the trail, with the butt ends parallel to 

the trail facing the way of extraction. To represent this pattern in our model, we created 

one main trail in our simulation with side trails branching off at a 45 degree angle and a 

trail spacing of 18.3 m (Figure 2.2). In our model we developed three simulation 

scenarios using one grapple skidder and one stroke delimber and a fourth scenario 

using two grapple skidders and one stroke delimber. Scenario 1 represents the baseline 

by using a common skidding approach, while Scenario 2 is used to minimize the idle 

time of each machine. Scenario 3 builds on Scenario 2 but adds an improvement in 

processing time by an average of one second per cycle. Scenario 4 is similar to 

Scenario 1 but uses two grapple skidders instead of one. The time consumption for 

either machine was estimated using regional cycle time equations for grapple skidder 

and stroke delimber (Hiesl 2013; Hiesl and Benjamin 2013c). 

Our model was developed using the agent based modeling tool NetLogo 

(Wilensky 1999). Each of the four scenarios was simulated 100 times for each 

combination of input variables to assess the impact on idle time, productivity, and unit 

cost. A full model description using the overview, design concepts, and details (ODD) 

protocol (Grimm et al. 2010; Grimm et al. 2006) can be found in Chapter 1. The model 

was developed using Imperial units but all measurements have been converted to SI 

units for this paper. 



 

40 
 

 

Figure 2.2: Screenshot of the trail pattern used in our model, consisting of one main trail 
and several side trails branching off at a 45 degree angle and a trail spacing of 18.3 m. 
Individual bunches (green trees on trails) have their butt ends facing towards the 
extraction route. 

 

Tested Scenarios and Technical Improvements 

Scenario 1. The general rule for grapple skidders was to extract bunches from 

the main trail first before extracting bunches from the side trails. After the extraction of 

one bunch by the grapple skidder the stroke delimber would process all trees in that 

bunch. The grapple skidder could not drop another bunch before the previous bunch 

was completely processed. 

Scenario 2. Our assumption is that a GIS exists in which the feller-buncher 

operator marks every trail and every bunch on the trail. The GIS in the grapple skidder 

can estimate the travel time to each individual bunch. We further assume that the stroke 

delimber operator is able to accurately estimate the processing time for each bunch. 

With such information the grapple skidder operator is able to select the bunch that 

reduces the idle time for the stroke delimber the most. The implementation of such a 
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GIS/GPS system is technologically feasible but might not be readily available in practice. 

This scenario can also be viewed as the operators having perfect information on 

skidding and processing times and also working with perfect communication during the 

operations. 

Scenario 3. This is an expansion of Scenario 2 and introduces best operating 

practices that allow the stroke delimber operator, on average, to decrease the 

processing time for each tree by one second. Results of a video analysis of stroke 

delimber operators showed that such a decrease in processing time is possible through 

a simple adoption of good processing practices (Benjamin and Hiesl 2013). 

Scenario 4. In this scenario, two grapple skidders and one stroke delimber are 

using the same rules as laid out in Scenario 1. Observations of the authors included a 

frequent use of two grapple skidders and one stroke delimber at the same landing. We 

included this behavior to compare the idle time, productivity, and costs of such a system 

to the other three simulations. 

 

Range of Conditions 

Our model consists of four input variables that are changed for each simulation 

run and each of the four scenarios (Table 2.1). The variables “removal per acre” and 

“bunch spacing” were chosen as they influence individual bunch size, which has been 

shown to affect grapple skidder productivity (Hiesl 2013; Kluender et al. 1997). The 

processing time of a stroke delimber for hardwoods is longer than for softwoods (Hiesl 

2013) and therefore the variable “hardwood content” was chosen to represent this 

difference in processing times in the simulation model. Skidding distance has been 
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found a major factor influencing the extraction time of grapple skidders (Hiesl 2013; 

Kluender et al. 1997) and is represented in our model by  the variable “maximum 

skidding distance”.  

 

Table 2.1: Input variables and their range of values. 

User-Defined Variable Min-Value Max-Value Step-Size # values tested 

Removal per ha (tonnes) 67 157 45 3 

Bunch spacing (m) 11 25 7 3 

Hardwood content (%) 50 50 0 1 

Max One-Way Skidding Distance (m) 223 880 73 10 

   
Parameter 

Combinations 
90 

Number of Simulations (100 repetitions) 9,000 

 

 

Data Analysis 

A two-way analysis of variance (ANOVA) was used to compare the results of 

individual scenarios to detect significant changes in the four desired output variables of 

percent idle time (stroke delimber and grapple skidder), system productivity, and unit 

cost of production of the system. Percent idle time was calculated by dividing the 

observed idle time for each machine by the total time. System productivity is an output 

variable that is provided by the model used. Unit cost of production was calculated by 

dividing system cost by system productivity. System cost was calculated assuming a 

machine rate of 100 $/productive machine hour (PMH) for grapple skidder and 130 

$/PMH for stroke delimber. Both machine rates represent the average of unpublished 

machine rate data from an early commercial thinning study in Maine by Benjamin et al. 

(2013). 
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To assess the cost savings in GPS/GIS technology we chose an example using 

average stand and site conditions in Maine. Based on observations from a study by 

Hiesl (2013) we chose a bunch spacing of 18 m, a removal intensity of 112 tonnes/ha, 

and an average skidding distance of approximately 365 m. To quantify the percent 

difference in unit cost of production between Scenario 1 and Scenario 2 we divided the 

unit cost of Scenario 2 by the unit cost of Scenario 1. Multiplying the difference in unit 

cost by the annual production of one whole-tree harvesting system (9,000 tonnes) 

approximates the annual cost savings achieved by using a GIS/GPS with stroke 

delimber and grapple skidder. 

To assess the productivity and unit cost of a de-coupled grapple skidder and 

stroke delimber system we used the total productive time spent skidding and delimbing 

of our base scenario (Scenario 1), respectively. We then divided the total wood volume 

by the time for each machine to estimate machine productivity. Unit cost of production 

for each machine was calculated using the same machine rates as mentioned before. To 

estimate the unit cost of the system we added the unit cost of the two machines 

together. 

 

RESULTS 

Stroke Delimber Percent Idle Time 

Stroke delimber percent idle times ranged from 0% to 79% across all four 

scenarios tested in our model (Figure 2.3). A great variation in stroke delimber percent 

idle time could be found between the individual scenarios and changes in bunch size, as 

represented by changes in bunch spacing and removal intensity (Figure 2.3). There 

were no significant differences (p>0.092) in percent idle time between Scenarios 1 and 2 
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for bunch spacings of 11 m or removal intensities of 67 tonnes/ha. For bunch spacings 

of 18 and 25 m and removal intensities of 112 and 157 tonnes/ha there were significant 

differences (p<0.001) between the two scenarios. Stroke delimber percent idle time in 

Scenario 3, when the delimbing process is sped up by one second per tree, is generally 

higher than the percent idle time in Scenario 1 or 2. Two exceptions occurred when the 

bunch spacing was 18 or 25 m and the removal intensity was 157 tonnes/ha (Figure 

2.3). The percent idle time in Scenario 4 was always less than for any other scenario. 

The results clearly show that there is no significant difference in stroke delimber 

percent idle time between clearing the main trail first (Scenario 1) and achieving the 

lowest stroke delimber idle time possible (Scenario 2) for short bunch spacings and low 

removal intensities. At larger bunch spacings and higher removal intensities the 

difference can mostly be seen at short skidding distances and the effect gets smaller 

with longer skidding distances. The results also clearly show that speeding up the 

processing times for individual trees (Scenario 3) results in a higher percent idle time 

than observed in Scenarios 1 or 2. Using two skidders (Scenario 4), however, clearly 

reduced the percent idle time of a stroke delimber by up to two thirds.   
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Figure 2.3: Stroke delimber idle time for four different model scenarios, various 
maximum one-way skidding distances, and different bunch spacings and removal 
intensities. Scenario 1 is the base scenario with one grapple skidder and one stroke 
delimber where the main trail is cleared first. Scenario 2 implements the use of GIS/GPS 
to reduce the waiting time of the stroke delimber to a minimum. Scenario 3 uses the 
same technology as Scenario 2 but introduces best processing practices that lead to a 
decrease in stroke delimber processing time by one second per tree. Scenario 4 uses 
two skidders and one stroke delimber. 
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Grapple Skidder Idle Time 

Grapple skidder percent idle times ranged from 0% to 63% across all four 

scenarios tested in our model (Figure 2.4). No statistical difference (p>0.457) was found 

between grapple skidder percent idle time for Scenarios 1 and 2 at a bunch spacing of 

11 m and removal intensities of 67 and 112 tonnes/ha. Grapple skidder percent idle time 

in Scenario 4 increased with increasing bunch spacing and removal intensity but 

decreased with increasing skidding distance (Figure 2.4). A similar effect was seen in 

the other three scenarios with a smaller effect on percent idle time. The most distinct 

differences (p<0.001) between all four scenarios could be found at a bunch spacing of 

25 m and a removal intensity of 157 tonnes/ha. Scenarios 1 and 4 had the highest 

percent idle times, while Scenarios 2 and 3 resulted in the lowest (Figure 2.4).  

 

System Productivity 

System productivity ranged from 6.0 tonnes/PMH to 43.4 tonnes/PMH across all 

four scenarios tested in our model (Figure 2.5). The results showed that there is no 

difference (p>0.240) in system productivity between Scenarios 1, 2 and 3 at a bunch 

spacing of 11 m and a removal intensities of 112 tonnes/ha. Other combinations of 

bunch spacing and removal intensities between the four scenarios resulted in significant 

differences (p<0.010). The results clearly show that Scenario 4 had the highest 

productivity. However, at large bunch spacings, high removal intensities, and short 

skidding distances the differences were minimal. The productivity in Scenario 3 was 

higher than for Scenario 2 which was higher than the productivity in Scenario 1. 
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Figure 2.4: Grapple skidder percent idle time for four different model scenarios, various 
maximum one-way skidding distances, and different bunch spacings and removal 
intensities. Scenario 1 is the base scenario with one grapple skidder and one stroke 
delimber where the main trail is cleared first. Scenario 2 implements the use of GIS/GPS 
to reduce the waiting time of the stroke delimber to a minimum. Scenario 3 uses the 
same technology as Scenario 2 but introduces best processing practices that lead to a 
decrease in stroke delimber processing time by one second per tree. Scenario 4 uses 
two skidders and one stroke delimber. 
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Figure 2.5: System productivity for four different model scenarios, various maximum 
one-way skidding distances, and different bunch spacings and removal intensities. 
Optimal system productivity is shown based on a de-coupled system. Scenario 1 is the 
base scenario with one grapple skidder and one stroke delimber where the main trail is 
cleared first. Scenario 2 implements the use of GIS/GPS to reduce the waiting time of 
the stroke delimber to a minimum. Scenario 3 uses the same technology as Scenario 2 
but introduces best processing practices that lead to a decrease in stroke delimber 
processing time by one second per tree. Scenario 4 uses two skidders and one stroke 
delimber. 
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Further, the results clearly show that the stroke delimber could achieve high 

productivities when there is no need to wait for a grapple skidder (e.g. a de-coupled 

system). Productivity remained constant across a range of skidding distances, but 

increased with an increase in bunch size, as is represented by an increase in bunch 

spacing and removal intensity (Figure 2.5). In all cases the optimal system productivity of 

a de-coupled system was higher than the productivity of any other scenario. However, at 

large bunch spacings and high removal intensities all four scenarios tested were 

approaching optimal productivity levels. 

 

Unit Cost of Production 

The unit cost of production for grapple skidder and stroke delimber combined 

ranged from 5.30 $/tonne to 38.36 $/tonne across all four scenarios tested in our model 

(Figure 2.6). The unit cost increased with increasing skidding distance for all behaviors 

tested, but decreased with increasing bunch size, as is represented by increasing bunch 

spacing and removal intensity. At large bunch spacings and high removal intensities, 

however, the unit cost of Scenario 4 decreased with increasing skidding distance. 

Scenario 4 was consistently different from the other three scenarios (p<0.001). No 

differences were found between Scenario 1 and Scenario 2 at a bunch spacing of 11 m 

(p>0.137) and a removal intensity of 112 tonnes/ha (p=0.735). Similar differences and 

similarities were found between the unit cost of Scenario 1 and Scenario 3, and Scenario 

2 and Scenario 3. Results clearly show that using two skidders (Scenario 4) lowers the 

unit cost when skidding small bunches but increases the unit cost when skidding large 

bunches, especially at short skidding distances. 
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Figure 2.6: Unit cost of productivity for four different model scenarios, various maximum 
one-way skidding distances, and different bunch spacings and removal intensities. 
Scenario 1 is the base scenario with one grapple skidder and one stroke delimber where 
the main trail is cleared first. Scenario 2 implements the use of GIS/GPS to reduce the 
waiting time of the stroke delimber to a minimum. Scenario 3 uses the same technology 
as Scenario 2 but introduces best processing practices that lead to a decrease in stroke 
delimber processing time by one second per tree. Scenario 4 uses two skidders and one 
stroke delimber. 
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Optimal system unit cost of the de-coupled system increased with increasing 

skidding distance and decreased with increasing bunch spacing and removal intensity 

(Figure 2.6). Optimal system unit cost differences compared to the baseline unit cost 

(Scenario 1) were smaller at short skidding distances but increased with increasing 

skidding distance. Differences also decreased with increasing bunch spacing and 

removal intensity. At large bunch spacings and high removal intensities the unit cost of 

Scenarios 1 to 3 were approaching the optimal unit cost, while the unit cost of Scenario 

4 was higher than any of the other unit costs.  

 

Cost Savings by using GPS/GIS Technology 

Based on average skidding and delimbing conditions in Maine our results 

showed that the average system unit cost for Scenario 2 was significantly lower 

(p<0.001) than the unit cost of Scenario 1 with a difference of 0.18%. This amounts to a 

saving of 0.015 $/tonne. Multiplying this cost saving by an average annual production of 

9,000 tonnes resulted in annual saving of $135, when using a GIS/GPS based 

communications system and assuming a perfect flow of information.  

 

DISCUSSION 

Computer simulations are well respected tools in forestry and have been 

available since the 1960’s (Polley 1987; Goulet et al. 1979). Conducting operations 

specific time and motion studies to answer the question of whether or not a change in 

harvesting behavior would result in a change of productivity, unit cost, or individual 

machine idle time, is time consuming and expensive. The model developed in Chapter 1 

was developed to specifically answer this question without changing the real system and 
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ensuring a fast execution. The results presented in this paper clearly show that changes 

in operational behavior can have an impact on the variables of interest mentioned 

before. However, the results also show that the differences are partial to initial 

operational conditions such as skidding distance, bunch spacing, and removal intensity. 

Bunch spacing and removal intensity are variables that subsequently control bunch size. 

Stroke delimber percent idle time is mostly influenced by the use of two grapple 

skidders and a decreased processing time per tree. The use of two grapple skidders in 

Maine is not uncommon and has been observed during the data collection period of a 

study by Hiesl (2013). The major reason for a significant drop in percent idle time when 

using two grapple skidders is the fact that the wood flow to the landing is increased and 

the stroke delimber is less likely to be waiting for a bunch of wood that can be 

processed. Our results clearly show that the stroke delimber percent idle time, the time 

the machine is waiting for the grapple skidder to deliver a bunch of wood to the landing, 

can be close to 80%, depending on the initial site conditions. A decrease in percent idle 

time with an increase in bunch size is not surprising. A larger bunch size is associated 

with more trees that need to be processed, which increase the time needed to process a 

bunch. Further, a larger bunch size might also include trees with a larger diameter. Tree 

diameter has been shown to affect stroke delimber cycle time in Maine (Hiesl 2013; 

Hiesl and Benjamin 2013c).   

For the grapple skidder the percent idle time is mostly influenced by large bunch 

sizes. However, this effect is negated with increasing skidding distance. The reason for 

this is that a large bunch size increases the processing time of the stroke delimber. The 

grapple skidder and stroke delimber systems in Maine commonly operate on small 

landings where only one bunch can be placed in front of the delimber at any given time. 

With an increased processing time for the stroke delimber this means that the grapple 
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skidder has to wait before the next bunch can be dropped. With longer skidding 

distances the skidding time increases (Hiesl and Benjamin 2013c; Kluender et al. 1997), 

and therefore the waiting time at the landing decreases. Even though results showed 

that the use of two grapple skidders (Scenario 4) significantly decreased stroke delimber 

percent idle time, it also increased grapple skidder percent idle time. This increase was 

most prominent at large bunch sizes, which can be attributed to the fact that stroke 

delimber waiting time at large bunch sizes is already minimal. This is especially true at 

short skidding distances.  

The biggest impact, however, on stroke delimber and grapple skidder percent 

idle time is the coupled nature of these machines (Polley 1987). A coupled system 

consists of two or more machines that are dependent on each other in terms of 

production (Polley 1987). In this case the stroke delimber is dependent on the grapple 

skidder as the machine has to wait for bunches of wood to be delivered to the landing by 

the grapple skidder. This negative impact of a coupled system has been reported by 

Polley (1987) with the suggestion that this system needs to be decoupled in the future. 

De-coupling of this system would clearly result in zero idle time for either machine. The 

de-coupled operation of these machines was a common picture in Maine in the past 

(personal communication with several foresters, October, 2013). During that time, 

individual bunches were placed along the roadside and stacked on top of each other. 

The stroke delimber would start processing trees from one end and work its way through 

the pile of trees. This way, neither machine was immediately dependent on the other. 

The downside of this system was that a large area along the road was used as a landing 

and therefore temporarily taken out of production (personal communication with several 

foresters, October, 2013). Around 1990, landownership in northern Maine was changing 
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(Jin and Sader 2006) and it is likely that this change in ownership prohibited the piling of 

wood along roads to preserve the standing timber along the road in a productive stand. 

The analysis of machine productivity of such a de-coupled system showed that 

stroke delimber productivity stayed reasonably constant, regardless of skidding distance, 

as was to be expected. Reason for the variation in stroke delimber productivity is the 

stochasticity of tree diameter selection in the model (see Chapter 1). Stroke delimber 

productivity increases with an increase in bunch spacing and removal intensity. This 

increase in productivity can be attributed to stochasticity of the model as well, as a larger 

removal intensity leads the model to increase the number, diameter, and volume of 

individual trees in each bunch, which subsequently affect productivity. Grapple skidder 

productivity, however, is strongly affected by skidding distance, as has been shown in 

several research studies (e.g. Hiesl and Benjamin 2013; Kluender et al. 1997). In 

addition to skidding distance, bunch size is also known to affect grapple skidder 

productivity (Hiesl 2013; Hiesl and Benjamin 2013c). This effect can be seen by the 

increase in grapple skidder productivity with increasing bunch spacing and removal 

intensity. The use of two grapple skidders increased system productivity the most across 

the full range of bunch spacings and removal intensities tested. The reason for this is the 

reduction in stroke delimber percent idle time. Due to this reduction in percent idle time 

more wood is being processed in the same amount of time which subsequently leads to 

an increase in system productivity. However, at wider bunch spacings and high removal 

intensities the productivity of the other three scenarios tested is almost as high that the 

productivity of a system using two grapple skidders, at least at short skidding distances. 

Productivity barely increases from the baseline (Scenario 1) when looking at any of the 

other two scenarios. A larger increase in productivity, however, can be seen at higher 

removal intensities and wider bunch spacings. As before, the reduction in stroke 
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delimber percent idle time, associated with Scenario 2 and 3, is the major driver in this 

increase in productivity.  

Clearly, at the end of the day the unit cost of production is the variable of interest 

in judging whether or not a change in operating behavior is economically desirable. It is 

not surprising to see that the unit cost is decreasing with increasing bunch size. Unit cost 

is a function of machine rate and productivity, and it has already been proven that bunch 

size affects grapple skidder productivity (Hiesl 2013; Hiesl and Benjamin 2013c). The 

use of two grapple skidders results in a much lower unit cost, especially when the bunch 

size is small. With larger bunch sizes the difference in unit costs between using two or 

one skidder(s) decreases and even reverses. Reason for this is that with larger bunch 

sizes the stroke delimber percent idle time of a system consisting of one grapple skidder 

and one stroke delimber is so low that the use of two grapple skidders cannot lower this 

percent idle time as much as it can when operating with small bunch sizes. Due to this, 

at wider bunch spacings and higher removal intensities, grapple skidder percent idle 

time increases and therefore causes higher costs. Looking at the combined unit cost of 

stroke delimber and grapple skidder, when they operate as a de-coupled system, clearly 

showed that the optimal unit cost could be over 40% lower than the system unit cost of 

Scenario 1, when dealing with small bunch sizes and long skidding distances. This 

difference, however, decreases with an increase in bunch size, which can be attributed 

to the low percent idle time for either machine in these instances.  

The major limitation of this analysis is that we only looked into skidding and 

delimbing scenarios that consisted of 50% hardwood content. It has been shown that 

stroke delimber cycle time (the processing time of one tree), is lower for softwood than 

hardwood species (Hiesl 2013; Hiesl and Benjamin 2013c). This means that in a stand 

consisting of softwood species only, the stroke delimber productivity will be higher than 
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the productivity in a mixed-wood stand, as used in this simulation. The model developed 

in Chapter 1 is clearly capable of simulating an increase or decrease in hardwood 

content and therefore change the results in terms of idle time, productivity, and unit cost. 

An analysis of these scenarios might be more useful to individual land managers and 

logging contractors to determine whether or not an investment in new technology or a 

second grapple skidder would be worth the investment for their average operating 

conditions.  

 

CONCLUSION 

Whether or not to invest in new technology is a question that many logging 

contractors face in recent time. Our analysis showed that an investment in GPS/GIS 

technology minimally decreases the unit cost of production. However, with small profit 

margins this decrease in unit cost might make the difference between making a profit or 

loss. Whether or not this decrease in unit cost is worth an investment in new technology 

depends on the cost of this new technology but also on the annual production. The more 

surprising results, however, were the high productivity and low unit cost of a system 

working with two grapple skidders across most skidding distances and bunch sizes 

simulated. The results clearly indicate that using such a system could significantly 

increase the throughput of a system and subsequently profit, especially when operating 

with small bunch sizes. Even though such a system shows all these benefits, it is not as 

commonly used in Maine as one would expect. Clearly there is room for improvement in 

Maine’s forest operations, and investing in a second grapple skidder might be just one. 

Using this information as a base scenario, the next step in research could be to evaluate 

the effects new technology could have in such a system. 
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In the best case, stroke delimber or grapple skidder percent idle time is 

approximately 5%, when skidding bunches of large sizes. The large bunch sizes 

necessary to achieve such a low percent idle time, however, are not common in Maine. 

De-coupling the system of grapple skidder and stroke delimber would eliminate any 

waiting time and also increase productivity and decrease unit cost. However, to assess 

whether or not these machines can be de-coupled in an industry setting, it is necessary 

to gather more information about the loss of stand production when piling bunches along 

the road, and whether or not this method would work with today’s landownership pattern. 
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CHAPTER THREE: 

EVALUATING HARVEST COSTS AND PROFIT OF COMMERCIAL THINNINGS IN 

SOFTWOOD STANDS IN WEST-CENTRAL MAINE: A CASE STUDY1 

 

ABSTRACT 

Precommercial thinning (PCT) is a common silvicultural treatment in the 

management of young conifer forests. The positive effects of PCT on tree growth are 

well documented, however, there have been few operational studies of thinning 

productivity associated with later harvests in such stands and associated cost 

comparison with high-density, small-diameter stands. In the winters of 2012/2013 and 

2013/2014 a long-term herbicide and PCT study in west-central Maine was commercially 

thinned using cut-to-length (CTL) and whole-tree (WT) harvesting systems in PCT and 

non-PCT stands, respectively. Thinning prescriptions consisted of three nominal removal 

intensities (33 %, 50 %, and 66 % of the standing softwood volume) in a randomized 

block design with three to four replications. Stand density, basal area, hardwood content, 

and removal intensity were not significant in explaining variation in harvester and feller-

buncher productivity. An analysis of unit cost of production indicated that wood chip 

production using a WT system in non-PCT stands is less costly than the production of 

roundwood using a CTL system in PCT stands. Profit, however, is similar for products 

harvested by either system. Our conclusion is that the WT system used in the study is 

economically feasible to treat high-density, small-diameter stands in a commercial 

thinning. 

 

                                                
1 Hiesl, P., J.G. Benjamin, and B.E. Roth. 2015. Evaluating harvest costs and profits of commercial thinnings 
in softwood stands in west-central Maine: A case study. The Forestry Chronicle, 91 (2), pp. 150-160. 
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INTRODUCTION 

Precommercial thinning (PCT) is a common silvicultural treatment used in the 

early management of conifer forests across North America and Europe (Bataineh et al. 

2013; Olson et al. 2012; Zhang et al. 2006). The effects of PCT on tree growth have 

been investigated and documented for a wide range of forest types (Bataineh et al. 

2013; Olson et al. 2012; Pitt and Lanteigne 2008; Zhang et al. 2006; Brissette et al. 

1999; Balmer et al. 1978), however, this treatment represents a significant financial 

investment by the landowner which must be carried  many years before a commercial 

harvest. Long-term results of growth responses and financial returns by PCT treatments 

are limited in the Acadian forest region (Bataineh et al. 2013; Pitt et al. 2013b; Saunders 

et al. 2008). Results from a 40-year spruce-fir (Picea rubens Sarg., Abies balsamea (L.) 

Mill.) study in west-central Maine involving a combination of early herbicide and PCT 

show that 13 to 24 years following PCT, the diameter and height increment was greater 

than that for non-PCT trees (Bataineh et al. 2013). The authors further reported that the 

total stumpage value of PCT stands was on average USD $907/ha higher than for non-

PCT stands of the same age. A long-term PCT study from New Brunswick, Canada 

found that PCT increased diameter growth rates with responses proportional to the 

thinning intensity (Pitt et al. 2013a). Half the plots were clear-cut in 2008 at ages 55 and 

62, and results showed that harvester productivity increased in proportion to PCT 

intensity due to the positive effect of PCT on average stem size (Plamondon and Pitt 

2013). Another benefit of PCT is that it can increase regeneration and thus function 

similar to a shelterwood establishment cut (Olson et al. 2014). This study was conducted 

in Maine and shows that the abundance of medium (0.61–1.40 m tall) and large (≥1.41 

m tall to 9.90 cm dbh) softwoods increased with increasing thinning intensity.  
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Typically, a commercial thinning (CT) is prescribed many years after PCT to 

further improve residual stand conditions and stand growth and yield (Pekol et al. 2012; 

Smith 1986). Clune (2013) studied spruce-fir response to a combination of commercial 

thinning methods, timings and intensities of removal over the past decade in Maine, with 

results showing the benefit of CT on stand stability and growth. CT has been shown to 

focus diameter and volume growth on a selected number of stems and therefore 

decreases the growing time to a specific merchantable volume (Pelletier and Pitt 2008).  

Maine consists of millions of acres of small-diameter forest land (McCaskill et al. 

2011) that either are in need of PCT or have already passed the right time for an 

economical treatment. One of the challenges regarding such stands is to determine how 

they can be operationally treated in a cost-effective manner to increase growth and yield 

of individual trees. During the winters of 2012/2013 and 2013/2014, the long-term Austin 

Pond study in west-central Maine (Newton et al. 1992a; Newton et al. 1992b), which 

began as a herbicide screening trial and was later expanded into a long-term PCT study, 

received a first-entry commercial thinning. Two stand conditions were harvested: (1) a 

42-year-old stand that received PCT at age 16 and, (2) a 43-year-old stand that did not 

receive a PCT treatment. Three different thinning intensities were prescribed with three 

to four replicates (non-PCT and PCT respectively) in a randomized block design. 

Harvest systems were matched to stand conditions with a cut-to-length system assigned 

to harvest PCT stands and a whole-tree system assigned to non-PCT stands. The 

harvest systems chosen are currently operational in Maine and represent one possible 

combination of equipment to conduct a CT in the described stands. Our first objective 

was to compare productivity of harvester and feller-buncher operating with three different 

removal intensities. The second objective was to compare the harvest costs and profit of 

CT in PCT and non-PCT stands to assess the economic feasibility of such a treatment. 



 

61 
 

METHODS  

Site  

Detailed information about the Austin Pond study site are described in the 

publications of Newton et al. 1992a, 1992b; Bataineh et al. 2013. The study site is 

located in Somerset County, Maine (45.20°N, 69.70°W). Mean annual precipitation is 

100 cm with 40 % occurring from June through September. The site was clear-cut in 

1970 and an herbicide screening trial designed to release naturally regenerated conifers 

from competing hardwoods was installed seven years later. Sixteen years after the 

harvest, each herbicide treatment unit (approximately 1 ha) was split, with one half pre-

commercially thinned to approximately 1730 trees/ha. In 2012, 21 measurement plots 

(809 m2) were installed in a subset of the original herbicide x PCT treatment units. 

Species, diameter at breast height (dbh), total height, and height to the base of the live 

crown were recorded for all trees >7.6 cm in dbh. Mean dbh for PCT stands ranged from 

13.1 cm to 18.7 cm with stand densities ranging from 1309 to 2594 trees/ha (Table 3.1). 

For non-PCT stands, mean dbh ranged from 9.6 cm to 12.8 cm with stand densities 

ranging from 3211 to 5496 trees/ha (Table 3.1). Based on the number of stems, all 

stands were dominated by balsam fir (Abies balsamea (L.) Mill.) and consisted of 4 % 

and 28 % red spruce (Picea rubens Sarg.), 1 % to 30 % quaking aspen (Populus 

tremuloides Michx.), and up to 35 % of other species such as paper birch (Betula 

papyrifera Marshall), yellow birch (Betula alleghaniensis Britt.), eastern white pine (Pinus 

strobus L.), and northern white cedar (Thuja occidentalis L.). Individual treatment units 

ranged in size from 0.40 to 0.71 ha (Table 3.1). 
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Table 3.1: Individual tree and stand attributes for PCT and non-PCT harvest treatments 

Plot Block 
Treatment 
unit (ha) 

Mean  
dbh 
(cm) 

Mean 
height 

(m) 

Mean 
height  

to crown 
(m) 

Stand 
density 

(trees/ha) 

Basal 
area 

(m2/ha) 

Piece 
size  
(m3) 

Hardwood 
component 

(%) 
 
PCT Treatments 

       

1T T1 0.57 13.7 12.8 7.2 2334 37.7 0.08 35 
3T T2 0.61 15.6 12.3 6.2 1778 36.7 0.11 3 
4T T3 0.49 13.1 11.7 6.4 2470 36.8 0.07 22 
7T T2 0.61 13.9 11.3 4.5 1581 26.0 0.08 9 

10T T2 0.45 18.7 13.5 6.4 1309 37.6 0.17 0 
11T T4 0.53 14.1 10.8 4.2 1618 27.3 0.08 1 
12T T1 0.40 12.5 12.1 6.2 2495 33.5 0.06 32 
15T T4 0.49 14.0 12.8 6.9 2198 37.1 0.09 23 
17T T4 0.49 15.2 13.4 7.3 2062 41.4 0.12 16 
21T T3 0.61 13.4 12.1 6.5 2594 41.4 0.08 24 
23T T3 0.45 14.2 12.7 6.8 2297 40.6 0.09 16 
27T T1 0.57 15.4 13.1 7.1 1976 42.0 0.13 18 
 
Non-PCT Treatments        

2U U1 0.49 10.6 11.2 7.2 4162 40.7 0.04 21 
4U U1 0.40 10.5 11.2 6.5 4211 41.5 0.04 27 

10U U3 0.49 11.0 11.2 6.7 3668 39.2 0.05 23 
13U U2 0.61 9.8 10.4 6.4 5496 45.6 0.03 14 
16U U3 0.57 12.8 13.0 8.5 3211 47.6 0.08 7 
18U U2 0.65 9.6 10.2 6 5372 42.8 0.03 10 
22U U2 0.71 10.2 10.9 7.2 5483 49.8 0.04 2 
24U U3 0.53 11.1 11.3 7.2 3507 38.6 0.04 37 
27U U1 0.49 10.9 11 6.4 3668 38.7 0.04 15 
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Experimental Design  

Three different thinning prescriptions were implemented with three to four 

replicates across non-PCT and PCT-treated stands (Table 3.2). Nominal thinning 

prescriptions were to remove 33 %, 50 %, or 66 % of the standing softwood volume 

using a modified thinning from below prescription, which included the removal of large 

balsam fir (dbh > 20 cm) to ensure utilization of such trees before butt rot will decrease 

their value (Tian 2002; Seymour 1995). To achieve this goal, a computer program 

developed by the Cooperative Forestry Research Unit at the University of Maine was 

used to mark individual trees in the field. The program used regional volume equations 

to accurately calculate the total volume removed as trees are marked for removal to 

reach the target removal % for each plot.   

 

Table 3.2: Nominal description of three prescriptions across PCT and non-PCT stands. 
The prescription was marked without the inclusion of trails. Due to this exclusion the 
effective removal is larger than the prescription indicates. The three prescriptions consist 
of a thinning from below with the addition of removing large balsam fir (dbh > 20 cm). 

Prescription Description 

33% 
 

 
Removal of 33% of softwood volume, with 100% removal of hardwoods. Softwoods 
are to be thinned to 3.0 m to 4.6 m spacing for PCT stands and 2.4 m to 3.0 m 
spacing for non-PCT stands. Priority for retention: RS > WP > WC > BF 

50% 
 

 
Removal of 50% of softwood volume, with 100% removal of hardwoods. Softwoods 
are to be thinned to 3.0 m to 4.6 m spacing for PCT stands and 2.4 m to 3.0 m 
spacing for non-PCT stand. Priority for retention: RS > WP > WC >BF  

66% 
 

 
Removal of 66% of softwood volume, with 100% removal of hardwoods. Softwoods 
are to be thinned to 3.0 m to 4.6 m spacing for PCT stands and 2.4 m to 3.0 m 
spacing for non-PCT stands. Priority for retention: RS > WP > WC > BF 
 

Note: RS = red spruce, WP = eastern white pine, WC = northern white cedar, BF = balsam fir 
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The blocking of individual treatment units with one of the three prescriptions was 

based on relative stand density (RD) and the quadratic mean diameter (QD). An analysis 

of stand information showed that several groups with similar RD and QD values existed. 

In each of these groups the prescriptions were randomly assigned. This approach 

ensured that each prescription was implemented across a variety of RD and QD 

conditions.  

As the Austin Pond study is predominantly a softwood research project, the 

prescription further included the removal of all hardwood trees unless they would fill a 

gap in the stand. All crop trees were marked before the thinning, and harvest trails were 

overlaid using a trail spacing of 15.2 m (centre of trail to centre of trail). Therefore as a 

result, the effective total removal of softwood volume is greater than the nominal 

prescription indicates.  

The nominal thinning prescriptions resulted in basal area removals of 33 % to 75 

%, and 57 % to 80 % in PCT and non-PCT stands, respectively. Prescriptions for 

thinnings in excess of 50 % of the basal area are not common in this region, however, 

such high removal intensities increase the amount of softwood regeneration (Olson et al. 

2014). The highest removal intensities therefore represent an extreme entry that will be 

used to gain information about stand responses to such a treatment in future research 

projects. 

 

Equipment Selection 

PCT treatment units were thinned using a cut-to-length harvesting system 

consisting of a Ponsse Ergo harvester and a Timberjack 1110 forwarder. This system 

was chosen for its efficiency in thinning operations, the narrow trail width necessary, and 
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availability of the contractor at the time of harvest. Non-PCT treatment units were 

thinned using a whole-tree harvesting system consisting of a CAT 501 feller-buncher 

and a John Deere 648 GIII grapple skidder. The CAT 501 feller-buncher was chosen for 

its narrow track width and small machine size. Although this machine is not widely used 

in Maine, its productivity data in similar high density stands showed a great potential for 

economically feasible thinnings (Benjamin et al. 2013). Unpublished data from research 

conducted by Benjamin et al. (2013) and Hiesl (2013) in this region further showed that 

cut-to-length systems commonly used in Maine were not cost efficient in thinning high 

density small diameter softwood stands such as the non-PCT stands in this study. A 

truck mounted Prentiss 325 loader was used to load roundwood trucks and to feed a 

Morbark Model 23 disk chipper.  

Equipment operators in this study had between seven and thirty years of 

experience working in similar stand conditions. Experienced operators were chosen to 

minimize residual stand damage and to ensure high harvest productivity, as the operator 

can have a large effect on machine productivity (Hiesl 2013; Hiesl and Benjamin 2013a; 

Purfürst and Erler 2011; Kärhä et al. 2004).   

 

Measurements 

Twelve PCT and nine non-PCT treatment units were thinned by the harvester 

and feller-buncher, respectively. During active operations, machine operators were 

required to maintain a record of harvesting time for each treatment unit including delays 

less than 15 minutes. Due to the randomized harvest design, up to three treatment units 

were situated in one row with trails running their length (Figure 3.1). As the travel time 

from one trail to another trail would be greater for the second and third unit in a row, the 
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machine operators were asked to only record the productive time from the harvest unit 

boundary onwards. This ensured that only times that were associated with the 

immediate thinning were recorded and analyzed. Wood extraction time (e.g., forwarder 

and skidder) was modelled using regional cycle time equations (Hiesl 2013; Hiesl and 

Benjamin 2013c).  

Three different products were processed by the harvester: spruce/fir pulpwood 

(3.6 m), spruce/fir saw logs in three lengths (3.6 m, 4.3 m, 4.9 m), and tree-length 

hardwood pulpwood. To ensure accurate measurements of the harvested volume, we 

asked the forwarder and skidder operators to separate each product at the landing by 

harvest plot. Individual log and whole-tree piles were painted with the plot number for 

later reference.  

These piles were measured (width x length x height) at the landing for plot-level 

volume before being trucked to the mill. The plot-level fractions of total wood harvested 

were later multiplied by the mill-delivered total to estimate mill-scaled removals from 

each harvest unit. This approach was deemed to be more efficient than weighing a sub-

sample of each plot in the field based on results from Benjamin et al. (2013). All 

roundwood was transported and scaled within two days of harvest. Total weight 

measured in short tons, as determined from mill scales, was converted to metric tonnes 

using a conversion factor of 0.907 tonnes: ton. Productivity (tonnes/PMH) for the 

harvester and feller-buncher per treatment unit was then calculated (Table 3.3).  
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Figure 3.1: Map of Austin Pond harvest layout for PCT and non-PCT treatment units in 
Somerset County, Maine (45.20°N, 69.70°W). Three prescriptions were applied to PCT 
and non-PCT treatment units. Plot numbers followed by a ‘T’ received a PCT treatment 
in 1986 while those followed by a ‘U’ did not. PCT stands were harvested in 2013 with a 
cut-to-length system while non-PCT plots were harvested with a whole-tree system. 
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Table 3.3: Harvest information for PCT and non-PCT stands by thinning treatment. 

Plot Block Machine type 
Treatment 
unit (ha) 

Prescription 
(%)* 

Basal area 
removed 

(%) 

Harvest  
time 
(min) 

Removal 
(tonnes) 

Productivity 
(tonnes/PMH) 

 
PCT Treatments 

    
   

1T T1 Harvester 0.57 50 63 468 47.5 6.1 
3T T2 Harvester 0.61 50 51 290 41.3 8.5 
4T T3 Harvester 0.49 50 57 375 39.4 6.3 
7T T2 Harvester 0.61 66 64 370 45.5 7.4 

10T T2 Harvester 0.45 33 42 117 39.6 20.3 
11T T4 Harvester 0.53 33 33 160 24.9 9.3 
12T T1 Harvester 0.40 33 49 185 25.8 8.4 
15T T4 Harvester 0.49 50 61 313 56.1 10.8 
17T T4 Harvester 0.49 66 71 370 51.2 8.3 
21T T3 Harvester 0.61 33 48 427 35.0 4.9 
23T T3 Harvester 0.45 66 75 356 37.2 6.3 
27T T1 Harvester 0.57 66 63 361 50.6 8.4 

 
Non-PCT Treatments  

  
   

2U U1 Feller-buncher 0.49 33 57 293 99.6 20.4 
4U U1 Feller-buncher 0.40 66 77 330 58.1 10.6 

10U U3 Feller-buncher 0.49 33 62 334 58.2 10.5 
13U U2 Feller-buncher 0.61 33 63 626 74.5 7.1 
16U U3 Feller-buncher 0.57 66 80 509 90.2 10.6 
18U U2 Feller-buncher 0.65 66 79 542 125.4 13.9 
22U U2 Feller-buncher 0.71 50 68 509 125.7 14.8 
24U U3 Feller-buncher 0.53 50 68 448 94.1 12.6 
27U U1 Feller-buncher 0.49 50 69 285 66.9 14.1 

*Removal of standing softwood volume. 
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Unit Cost of Production 

Hourly machine costs were developed using the approach outlined by Brinker et 

al. (2002). The machine rates used in this paper refer to the costs to own and operate a 

piece of equipment, however they do not include other business related expenses (e.g. 

moving of equipment, service trucks, administration). Machine rates for the Ponsse Ergo 

harvester, CAT 501 feller-buncher, Timberjack 1110 forwarder, and John Deere 648 GIII 

grapple skidder were adapted from unpublished data of an early commercial thinning 

study by Benjamin et al. (2013). Loader and chipper rates were supplied by an 

anonymous source and are representative of regional rates between 2011 and 2014 

(Table 3.4).  The total unit cost of production includes the costs of wood products from 

stump to mill. 

 

Table 3.4: Hourly machine rates used in this analysis. Common hourly rates are 
represented by the range of values. 

Machine Machine type 
Hourly rate  
(USD $ PMH-1) 

Ponsse Ergo Harvester 121–161 

Timberjack 1110 Forwarder 92–119 

CAT 501 Feller-Buncher 103–135 

John Deere 648 GIII Grapple Skidder 90–115 

Prentiss 325 Loader 40 

Morbark Model 23 Chipper 62–94 

 

Unit cost calculations for the harvester and feller-buncher were based on the 

productivity measured in each harvest unit. As the forwarding and skidding times were 

not measured, we used regional cycle time equations (Hiesl 2013; Hiesl and Benjamin 
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2013c) to estimate extraction times. In this analysis, we assumed that each harvest unit 

consisted of five trails with a maximum distance to the landing of 210 m, 240 m, 250 m, 

270 m, and 280 m. For each trail, 75 m were within the harvest unit while the remaining 

distance was from the landing to the beginning of the harvest unit. These assumptions 

ensured the accurate comparison of thinning productivity and costs between the 

individual treatments.  

The number of loads per treatment unit for the forwarder was calculated based 

on the harvested volume. For this calculation we used the average piece size of each 

unit (Table 3.1). A forwarder load consisted of 150 or fewer logs. For the grapple 

skidder, the number of twitches/treatment unit was calculated based on the harvest 

volume using an average twitch size of 3.0 tonnes. We assumed that the twitches were 

evenly distributed along the trails within the treatment unit. Time accumulated was 

multiplied by the hourly rate for each machine to calculate the total extraction costs per 

treatment unit.  

Trucking costs to the mill in this region are USD $1.67/km (Benjamin 2014). 

Roundwood is generally transported in a wider radius than wood chips and therefore we 

assumed a round-trip distance of between 80 and 160 km for roundwood and 50 to 100 

km for wood chips. The average load per truck was 35.1 tonnes for roundwood and 24.2 

tonnes for wood chips. Based on personal communications with various logging 

contractors the average loading times for roundwood and wood chips were assumed to 

be 25 minutes and 35 minutes, respectively. 

 



 
 

71 
 

 

Profit Calculation  

For the calculation of profit, we subtracted the unit cost of production from the 

product revenue. In PCT units where three products were produced, we averaged the 

revenue per tonne based on individual product recoveries. Product specific values were 

supplied by anonymous sources in the industry and consisted of spruce/fir sawlogs at 

USD $79.97/tonne ($68/ton), spruce/fir pulpwood at $44.10/tonne ($40/ton), hardwood 

pulpwood at $55.13/tonne ($50/ton), and biomass chips at $38.59/tonne ($35/ton). All 

product values are mill delivered prices. A second profit calculation included the costs for 

PCT at $445/ha, the actual cost for PCT in 1986 (Bataineh et al. 2013). 

 

Analysis 

Data were analyzed using R (R Core Team 2015) and four additional analysis 

packages: car (Fox and Weisberg 2011), nlme (Pinheiro et al. 2015), gplots (Warnes et 

al. 2013) and multcomp (Hothorn et al. 2008)). Two linear mixed-effects models with a 

random intercept were developed to explain the variation in harvester and feller-buncher 

productivity. The original blocking of treatment units was included as a random effect 

while the actual removal, basal area, initial stand conditions, and hardwood content in 

each treatment unit were included as a fixed effect. The underlying model assumptions 

for linear regression (normality, equal variances) were all met and data were not 

transformed.  

An analysis of variance in combination with Tukey HSD pairwise group 

comparison was used to compare the unit cost of production and profit between 

individual treatments that were thinned by the cut-to-length and whole-tree systems, 
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respectively. Data from the first plot thinned by each machine (plots 10T and 10U) were 

removed from further analysis as these plots were used as training plots for each 

operator.  

 

RESULTS 

Product Recovery  

Product recovery in PCT stands consisted of spruce/fir pulpwood, spruce/fir 

sawlogs and hardwood pulpwood (Table 3.5). Overall, 54 % of the harvested volume 

consisted of sawlogs while 39 % and 7 % was spruce/fir pulpwood and hardwood 

pulpwood, respectively. In non-PCT stands, product recovery was 100 % biomass chips 

of mixed species. 

 

Table 3.5: Product recovery in PCT stands. 

Plot Block Prescription 
Spruce/Fir 

pulp 
Spruce/Fir 
sawlogs 

Hardwood 
pulp Total 

  (%)* (tonnes) (tonnes) (tonnes) (tonnes) 
1T T1 50 18.7 19.9 9.0 47.5 
3T T2 50 17.6 22.7 1.0 41.3 
4T T3 50 23.7 14.9 0.8 39.4 
7T T2 66 17.6 23.4 4.5 45.5 
10T T2 33 17.7 21.9 0.0 39.6 
11T T4 33 13.2 9.1 2.5 24.9 
12T T1 33 7.3 10.0 8.5 25.8 
15T T4 50 19.0 30.8 6.2 56.1 
17T T4 66 11.5 36.4 3.4 51.2 
21T T3 33 15.8 19.2 0.0 35.0 
23T T3 66 14.0 22.0 1.2 37.2 
27T T1 66 16.0 34.6 0.0 50.6 

*Removal of standing softwood volume. 
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Harvester Productivity in PCT Stands 

A linear mixed-effects model with a random intercept was developed for the 

harvester with the covariates of stand density before thinning (DENS), basal area (BA), 

hardwood component in the stand (HWC), actual removal in tonnes (REM), and piece 

size of merchantable trees (PIECE) (Equation 3.1, R2
fixed = 0.36). The blocking factor (α) 

was included as a random effect. None of the covariates (pDENS = 0.456, pBA = 0.409, 

pHWC = 0.620, pREM = 0.662 , pPIECE = 0.450), or any of the interactions, were significant 

predictors for harvester productivity (PROD). The blocking factor (α) explains 42 % of the 

random variation in harvester productivity. Average productivity across all three 

treatments was 7.7 tonnes/PMH (Figure 3.2).   

𝑃𝑃𝑃𝑃 = −1.115 + 0.010 × 𝑃𝐷𝐷𝐷 − 0.635 × 𝐵𝐵 − 0.095 × 𝐻𝐻𝐻 + 0.045 × 𝑃𝐷𝑅 +

125.480 × 𝑃𝑃𝐷𝐻𝐷 + ∝        Equation (3.1) 

Feller-Buncher Productivity in Non-PCT Stands 

A linear mixed-effects model with a random intercept was developed for the feller-

buncher with the covariates of stand density before thinning (DENS), basal area (BA), 

hardwood component (HWC), and actual removal in tonnes (REM) (Equation 3.2, R2
fixed 

= 0.14). The blocking factor (α) was included as a random effect. None of the covariates 

(pDENS = 0.770, pBA = 0.915, pHWC = 0.877, pREM = 0.137) or any of the interactions were 

significant predictors for feller-buncher productivity (PROD). The blocking factor (α) 

explains 90 % of the random variation in feller-buncher productivity observed. Average 

productivity across all three treatments was 13.0 tonnes/PMH (Figure 3.3).  

 𝑃𝑃𝑃𝑃 = 4.379− 0.001 × 𝑃𝐷𝐷𝐷 − 0.052 × 𝐵𝐵 + 0029.×𝐻𝐻𝐻 + 0.172 × 𝑃𝐷𝑅 + ∝    

           (Equation 3.2) 
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Figure 3.2: Harvester productivity in PCT stands for three different treatments. The 
dashed line represents overall mean productivity, while the solid black lines represent 
the average productivity for each prescription. Treatments with the same letter are not 
significantly different from each other. 
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Figure 3.3: Feller-buncher productivity in non-PCT stands for three different treatments. 
The dashed line represents overall mean productivity, while the solid black lines 
represent the average productivity for each prescription. Treatments with the same letter 
are not significantly different from each other. 
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Unit Cost of Production 

The unit cost of production of roundwood from PCT stands ranged from USD 

$20.56/tonne to $50.66/tonne with an average of $33.46/tonne. Biomass harvest costs 

from non-PCT stands ranged from $15.08/tonne to $34.08/tonne with an average of 

$22.33/tonne. An analysis of variance in combination with Tukey HSD pairwise group 

comparison showed that there is no difference in unit cost of production between 

individual prescriptions within PCT (p = 0.309) and non-PCT (p = 0.672) stands, 

respectively. However, there are differences (p = 5.86e-04) between PCT and non-PCT 

stands (Figure 3.4). The unit cost of production in PCT and non-PCT treatment units of 

the same prescription are different from each other with the exception of the 66 % 

removal prescription. In that prescription there is no difference between the unit cost of 

production in PCT and non-PCT stands.  

 

Profit 

The profits for roundwood from PCT stands ranged from USD $10.37/tonne to 

$42.45/tonne. Profits on wood chips from non-PCT stands ranged from $4.51/tonne to 

$23.51/tonne. An analysis of variance in combination with Tukey HSD pairwise group 

comparison showed that there is no difference in profit between individual prescriptions 

within PCT (p = 0.086 ) and non-PCT (p = 0.672 ) stands, respectively (Figure 3.5). 

Profits between PCT and non-PCT stands are not different from each other with the 

exception of profits from the 66 % removal prescription (p = 0.003). The average profits 

in PCT and non-PCT stands across all treatments were $27.59/tonne and $16.26/tonne, 

respectively.   
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Figure 3.4: Boxplot of unit cost of production ($/tonne) of roundwood and biomass from 
PCT and non-PCT stands trucked and delivered to a mill. Treatments with the same 
letter above their box have means that are not significantly different from each other. 
Bold lines represent the median productivity. The upper and lower whiskers represent 
the minimum and the maximum, respectively.  
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Figure 3.5: Boxplot of profits ($/tonne) of roundwood and biomass from PCT and non-
PCT stands trucked and delivered to a mill. Initial costs for PCT treatment have not been 
discounted for. Treatments with the same letter above their box have means that are not 
significantly different from each other. Bold lines represent the median productivity. The 
upper and lower whiskers represent the minimum and the maximum, respectively. 
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A second profit calculation included the costs for PCT at $445/ha. Without 

discounting for any interest rate, the results of an analysis of variance show that there is 

no difference between the profit achieved from harvesting roundwood in PCT stands or 

biomass chips from non-PCT stands with the same prescription (Figure 3.6). The only 

difference (p = 0.024) exists between the profit gained from harvesting roundwood in 

PCT stands of a 33 % removal and 66 % removal prescription. 

 

DISCUSSION 

Harvester and Feller-Buncher Productivity 

Research indicates that several factors influence the productivity of harvesting 

equipment. Stand density, for example, has been reported to be an influential factor on 

feller-buncher and harvester productivity (Eliasson 1999; Gingras 1988). In our study we 

found that neither stand density, basal area, hardwood component, actual removal, or 

piece size explain the variation in machine productivity. We used a linear-mixed effects 

model to test for explanatory variables and found that stand density had no explanatory 

significance even though we operated in stand densities ranging from 1309 to 2594 and 

3211 to 5496 trees/ha for harvester and feller-buncher, respectively.  

Eliasson (1999) reported that stand density affects harvester productivity the 

most when harvesting large diameter trees. The reasoning was that directional felling of 

large trees is more difficult and time-consuming in high density stands. Our harvest site 

consists of only small-diameter trees with piece sizes of less than 0.17 m3. We believe 

that there is no increased difficulty of felling such small trees. One contributing factor to 

this assertion is that we used a trail spacing of 15.2 m which reduces the distance a 
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machine has to reach into the matrix and therefore allows trees to be pulled or lifted onto 

the trail more easily.  

The amount of volume removed has been shown in other studies to influence 

harvester and feller-buncher productivity (Li et al. 2006; Légère and Gingras 1998). 

Three different thinning prescriptions (33 %, 50 %, and 66 % of the standing softwood 

volume) were implemented in our study. Model results showed that the actual removal 

intensity did not influence productivity for either harvest system. There may be three 

reasons for this result: (1) technological advancement of equipment since the 1990s and 

2000s when these studies were conducted; (2) use of highly skilled and experienced 

operators; or, (3) marking of crop trees prior to harvest. The latter might have reduced 

the time spent making harvesting decisions and hence increased the productivity, 

especially in the low removal treatment. However, results from an early commercial 

thinning study in Maine showed that there is no difference in time consumption for 

common softwood and hardwood species between 10 and 28 cm dbh (Hiesl and 

Benjamin 2012). Due to the blocking of treatment units, the same range of stand 

conditions can be found within each prescription. The effect of blocking these treatment 

units can be seen in the high explanatory power of 42 % and 90 % of the random 

variation for harvester and feller-buncher productivity, respectively. Taking into 

consideration all the factors mentioned before, we believe that small tree size is the 

major reason why there is no difference in productivity between individual prescriptions. 

Both harvester and feller-buncher productivity compare well with previous results of an 

early commercial thinning study in a similar stand in Maine (Benjamin et al. 2013) and 

productivity study results of Hiesl (2013). 
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Figure 3.6: Boxplot of profits ($/tonne) of roundwood and biomass from PCT and non-
PCT stands trucked and delivered to a mill. Initial costs for PCT treatment have been 
accounted for, but do not include any interest. Treatments with the same letter above 
their box have means that are not significantly different from each other. Bold lines 
represent the median productivity. The upper and lower whiskers represent the minimum 
and the maximum, respectively. 
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Commercial thinnings in this region have been observed by the authors to 

exceed 50 % of the basal area. In our study, this would be reflected in the 33 % and 50 

% removal prescriptions. The removal intensities in the 66 % prescription are extreme 

values that will be used to gain knowledge about tree and stand responses to such 

measures. Since a higher removal intensity has been linked to a greater number of 

softwood regeneration (Olson et al. 2014), we are hopeful that this extreme entry will 

result in an abundance of regeneration. A treatment based on softwood volume removal 

instead of basal area removal was chosen so that stand and individual tree responses 

could be compared to results from the Commercial Thinning Research Network (Clune 

2013). Equipment operators in the current study had between seven and thirty years of 

experience working in similar stand conditions. Research indicates that operators can 

have a large effect on machine productivity (Hiesl 2013; Hiesl and Benjamin 2013a; 

Purfürst and Erler 2011; Kärhä et al. 2004). The effect of operators on harvester 

productivity has been as large as 40 % (Kärhä et al. 2004). A recent study in Maine 

showed that the effect of operator, machine, and stand and site conditions in small-

diameter timber stands is up to 7 % for harvesters, 54 % for forwarders and 30 % for 

grapple skidders (Hiesl 2013). For a feller-buncher, this effect can be as high as 32 % 

(Hiesl and Benjamin 2013a). As this study was conducted only at one location in Maine 

with only one operator for each machine, the results are of limited use in other areas and 

therefore this research should be seen as a case study. Further research is needed to 

investigate the variation in machine productivity in different locations and with a 

multitude of operators. 
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Unit Cost of Production 

In this study we made a conscious decision to use two different harvesting 

systems for PCT and non-PCT stands of the same age to show an option for treatment 

of high-density, small-diameter stands with a comparison of unit cost of production to 

PCT stands. This decision was based on unpublished results from an early commercial 

thinning trial by Benjamin et al. (2013) which showed that a harvester in non-PCT stands 

has an increased number of delays due to thrown chains and breaking trees. Similar 

results have been seen in unpublished data from a harvest productivity study by Hiesl 

(2013). Due to increased downtime of a harvester in high-density, small-diameter 

stands, we can expect that the thinning of such stands with a cut-to-length system is 

more costly than the thinning of PCT stands and subsequently also more costly than the 

use of a whole-tree system. We would further expect a loss of harvest volume, as only 

roundwood would be processed.  

The lack of differences between the unit cost of production between individual 

prescriptions of PCT and non-PCT stands, respectively, is not surprising, as the there 

was no difference in productivity either. Also not surprising is the lower unit cost of 

production for biomass chips. This is due to two reasons: (1) the higher productivity of 

the thinning and extraction equipment; and, (2) the use of whole-trees which increased 

the total volume harvested. Within each prescription the unit cost of production of 

roundwood is higher than the one for biomass chips. One exception may be found in the 

prescription with the highest removal intensity, where the unit cost of production for 

roundwood and biomass is not different from each other. One reason for this might be 

the wide range of actual removals of roundwood and biomass. Since common practice in 

this region is to commercially thin up to 40 % of the basal area, this observed equality of 
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unit cost production in the 66 % removal prescription, however, is not meaningful to the 

industry, as this represents a basal area removal of between 63 % and 80 %. 

 

Profit 

Proper reasoning would imply that producing a higher value product from PCT 

stands should result in a higher profit. Except for the 66 % removal prescription however, 

there is no statistical difference between the profits per tonne for any of the other 

prescriptions. Our explanation for this is twofold: (1) on average, almost twice as much 

biomass chips than roundwood logs were harvested from the individual treatment units. 

Such a surplus was enough to balance the revenue from more valuable roundwood logs 

in the 33 % and 50 % removal prescription; (2) the 66 % removal prescription produced 

the largest amount of sawlogs across all prescriptions. With sawlogs being the most 

valuable product, we know that the surplus of biomass chips in that prescription was not 

enough to balance the revenue.  

All these profit calculations, however, were made without including the costs for 

the initial PCT. When accounting for the costs of PCT without discounting for any 

interest rate, the results show that the profit is the same for roundwood from PCT stands 

and biomass chips from non-PCT stands. Once the PCT costs are discounted by any 

interest rate, the profit of roundwood from PCT stands will decrease even further. These 

results support the conclusion that high-density stands that have not been treated with 

PCT can receive a first thinning at the same time that PCT stands would and still 

generate a profit. However, it has to be acknowledged that one commercial thinning is 

not the end of forest management in these stands. Rather, it is another step towards 
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creating a softwood stand consisting of sawlog quality trees. Because of that, other 

treatments will occur in the future and therefore discounting for the initial investment of 

PCT at the first commercial thinning might not be completely appropriate. The costs for 

PCT rather need to be discounted for across the total rotation length to investigate 

whether or not there is a financial gain on doing such a treatment.  

Calculations by Bataineh et al. (2013) clearly show a higher net present value 

(NPV) for PCT stands in the Austin Pond study. One major reason for this outcome is 

that their analysis included sawlogs and pulpwood only. Their calculations did not 

account for biomass chips, which was the sole product in non-PCT stands in this study. 

Another reason for their high NPV values is that they used average stumpage values 

that were much higher than what would have been economically feasible at this site. 

When looking at the numbers presented in the current study, it becomes clear that the 

NPV of non-PCT stands is at least as high as the one for PCT stands if not even higher.  

 

CONCLUSION  

Several studies show that the use of PCT increases individual tree growth and 

returns sawlog-sized trees in a shorter period of time (Pitt et al. 2013a; Olson et al. 2012; 

Weiskittel et al. 2009; Pitt and Lanteigne 2008). Based on stumpage rates and premiums 

paid for thinned wood, the NPV for PCT stands is higher than for non-PCT stands 

(Bataineh et al. 2013; Pitt et al. 2013b). However, results from our study show that the 

unit cost of production in PCT and non-PCT stands are similar. The increased product 

volume in non-PCT stands makes up for the lower product value of biomass chips and 

roundwood and leads to similar profits. The outcome of this case study, therefore, is that 
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a first thinning of high-density, small- diameter stands such as the described non-PCT 

stands using the whole-tree system is economically feasible. One prerequisite, however, 

is the existence of a biomass market within a 100 km radius. What needs to be 

investigated in the future is the individual tree response and the regeneration following 

such thinnings, so that the effectiveness of these treatments can be evaluated. 
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CHAPTER FOUR: 

EVALUATING THE LONG-TERM INFLUENCE OF ALTERNATIVE COMMERCIAL 

THINNING REGIMES AND HARVESTING SYSTEMS ON PROJECTED NET 

PRESENT VALUE OF PRECOMMERCIALLY THINNED SPRUCE-FIR  

STANDS IN NORTHERN MAINE 

 

ABSTRACT 

Commercial thinning (CT) is an important silvicultural practice in the northeastern 

US, but little is known about its long-term influence on stand development and the role of 

harvest system selection on profitability. To address this question, existing data from a 

network of plots in Maine were used to project growth forward in time. Specific objectives 

were to: (1) compare individual CT treatments for their effect on max net present value 

(NPV), (2) compare individual treatments for their effect on the timing of max NPV, and 

(3) investigate the effect of three different harvesting systems on max NPV. A regional 

growth and yield model (Acadian Variant of the Forest Vegetation Simulator) was used 

to project tree growth and mortality into the future. Harvest costs for three different 

harvesting systems were estimated based on regional cycle time equations. A stem 

merchandiser and local product values were used to estimate NPV for all treatments. 

Results showed that there was no difference in NPV across three timings of thinning, 

however, there was a difference in NPV between the removal intensities of 33% and 

50% relative density reduction. On average, NPV for the 33% removal was 56% higher 

than for the 50% removal. In addition, the time to reach max NPV after CT was different 

between, but not within, the two removal intensities. In general, the treatments with a 

higher removal intensity reach their max NPV earlier (6 to 18 years after CT). Using a 
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cut-to-length harvesting system resulted in the highest NPV for all three harvesting 

systems compared. Overall, our results indicate that there is no economic benefit in the 

final harvest of a stand that has received a PCT treatment, when delaying the first 

commercial thinning.  

 

INTRODUCTION 

Herbicides and precommercial thinning (PCT) have long been used in the early 

management of conifer forests in North America and Europe (e.g. Hiesl et al. 2015; 

Bataineh et al. 2013; Olson et al. 2012; Zhang et al. 2009). The use of herbicides has 

been shown to reduce undesired ground vegetation and increase softwood growth 

(Harrington et al. 1995; Newton et al. 1992a; Newton et al. 1992b). Herbicide application 

has especially been an important factor in regenerating spruce (Picea spp.) – balsam fir 

(Abies balsamea (L.) Mill.) stands in the Northeastern US and Canada following the 

harvests due to the spruce budworm (Choristoneura fumiferana Clem.) outbreak in the 

1970s and 1980s (Newton et al. 1992b). A large number of studies have been 

conducted to investigate the effects of herbicide treatments on tree growth, species 

competition, and wildlife biodiversity. Reviews of such studies can be found in 

Thompson and Pitt (2003), Wagner et al. (2004), and Wagner et al. (2006). 

Density management of naturally regenerated spruce-fir stands is needed, 

especially where herbicide application provided conifers with an early competitive 

advantage (Newton et al. 1992b). Precommercial thinning (PCT) is a common tool for 

density management and is widely applied (Nyland 2002; Smith 1986). Usually, PCT is 

applied to manage density, control composition, accelerate growth, reduce time to 
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merchantability, improve commercial operability, reduce harvesting and processing 

costs, and increase revenue (Hiesl et al. 2015; Bataineh et al. 2013; Prévost and 

Gauthier 2012; Olson et al. 2012; Weiskittel et al. 2011; Pitt and Lanteigne 2008; 

Pelletier and Pitt 2008; Zhang et al. 2006; Varmola and Salminen 2004; Balmer et al. 

1978). PCT has been shown to increase diameter and height growth and yield on 

residual crop trees (Weiskittel et al. 2011; Weiskittel et al. 2009; Pitt and Lanteigne 2008; 

Zhang et al. 2006). In general, a commercial thinning (CT) is prescribed many years 

after a PCT treatment to further increase tree growth (Pekol et al. 2012). The benefits of 

CT on short-term stand stability and growth have been shown by Clune (2013). He 

analyzed 10-years of growth and yield data from the Commercial Thinning Research 

Network (Wagner et al. 2001; Wagner and Seymour 2000) in Maine and results 

suggested that there was a positive influence of early, light thinning on short-term growth 

and yield. Pelletier and Pitt (2008) showed an increase in growth and yield as a 

response to CT, and noted a shorter time to grow merchantable trees.  

Three of the major long-term studies of herbicide and PCT effects on tree growth 

in eastern North America are the Green River Study in northwestern New Brunswick, 

Canada (Pitt and Lanteigne 2008; Baskerville 1959), the Austin Pond Study in 

westcentral Maine, USA (Newton et al. 1992a; Newton et al. 1992b), and the 

Commercial Thinning Research Network (CTRN) across the state of Maine (Wagner et 

al. 2001; Wagner and Seymour 2000). The Green River Study was established between 

1959 and 1961 with the goal to study the long-term responses of balsam fir (Abies 

balsamea (L.) Mill.) and red spruce (Picea rubens Sarg.) to PCT. Results from this study 

clearly showed the positive effect of PCT on diameter growth and the subsequent effect 

of a shorter rotation time (Pitt et al. 2013a). In addition, results from this study showed 
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that the final harvesting productivity in precommercially thinned stands is up to 35% 

higher than in unthinned stands (Plamondon and Pitt 2013). The Austin Pond Study, with 

a focus on the response of softwoods and hardwoods to herbicide application, was 

established in 1977 in a naturally regenerated seven-year old clear-cut. In 1986, half of 

the study area was treated with PCT, to investigate the response of balsam fir and red 

spruce (Picea rubens Sarg.)(Bataineh et al. 2013). Results of this study showed that 

herbicides can reduce ground vegetation and hardwood competition significantly enough 

to allow increased softwood growth (Newton et al. 1992a; Newton et al. 1992b). The 

combination of herbicide and PCT further allowed for a higher sawlog volume and NPV, 

compared to unthinned stands (Bataineh et al. 2013). An analysis of harvest costs and 

NPV at CT in stands with and without PCT treatment showed that there is no difference 

in NPV between the two treatment conditions (Hiesl et al. 2015; Chapter 3). For the 

CTRN, six unthinned and six precommercially thinned sites across Maine were chosen 

to investigate the response of balsam fir and red spruce to CT of differing removal 

intensities and timings of entry. Saunders et al. (2008) used CTRN data for their analysis 

and found that the projected quadratic mean diameter of precommercially thinned stands 

30 years after treatment is between 3.0 and 5.8 cm larger than in unthinned stands. 

They further found that the NPV for stands that received PCT and CT treatments are 

higher and occur earlier than for unthinned stands. 

Spruce and fir are the most harvested timber species in Maine (Maine Forest 

Service 2014) and represent a tremendous economic value. Herbicide application, PCT, 

and CT are common tools used in the management of spruce-fir stands, however, long-

term results of tree growth and financial returns of these treatments are limited in this 

region (e.g. Hiesl et al. 2015; Bataineh et al. 2013; Pitt et al. 2013c; Saunders et al. 
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2008). Growth and yield information is available to simulate the growth of existing stands 

into the future to assess their net present value (NPV) based on timber volume, 

stumpage rates, and previous treatment costs. Such simulations have been done in the 

past for other study sites in Maine (Bataineh et al. 2013; Saunders et al. 2008; Daggett 

2003). Their limitations, however, are that their projections were provided for a limited 

number of sites in central Maine, did not include subsequent treatments such as CT, and 

used a growth and yield model that didn’t directly modify predictions to account for PCT 

and/or CT. With new and specialized harvesting equipment available, there is also a 

need to assess the influence of harvesting system on optimal rotation time and 

magnitude of max NPV. 

The goal of this study was to understand the long-term response of PCT spruce-

fir stands to CT, based on two removal intensities and three different timings of entry. 

Our specific research objectives were to (1) compare individual CT treatments for their 

effect on max NPV, (2) compare individual treatments for their effect on the timing of 

max NPV, and (3) investigate the effect of three different harvesting systems on max 

NPV. The working hypothesis is that a delayed thinning will return a higher net present 

value due to an increased timber volume at the time of final harvest. 

 

METHODS 

Study Area 

 
For this study, data from six study sites across northern Maine were used. All 

sites are part of the CTRN and are naturally regenerated, and previously received 



 
 

92 
 

 

herbicide and PCT treatments (Wagner et al. 2001). Site composition and structure are 

influenced by their respective climatic zones. Briggs and Lemin, Jr. (1992) found that 

Maine is divided into nine climatic zones, and the CTRN study sites represent three of 

the climatic zones of the north. Parent material of soils is glacial till and alluvium 

(Ferwerda et al. 1997). All study sites lie within the Acadian forest, a conifer-dominated 

mixedwood ecosystem that covers much of Maine and the Canadian Maritimes. Red 

spruce and balsam fir are the most dominant tree species in these stands. Other conifer 

species include white spruce (Picea glauca (Moench) Voss), eastern white pine (Pinus 

strobus L.), black spruce (Picea mariana (Mill.) Britton, Sterns &  Poggenburg), eastern 

hemlock (Tsuga Canadensis (L.) Carrière), and northern white-cedar (Thuja occidentalis 

L.). Common hardwood species include red maple (Acer rubrum L.), yellow birch (Betula 

alleghanensis Britt.), paper birch (Betula papyrifera Marshall), and quaking aspen 

(Populus tremuloides Michx.). 

 

Study Sites 

Data from six CTRN sites, each consisting of seven plots, was used for this 

simulation. Each site consisted of one control plot and six treatment plots including two 

different removal intensities and three different timings of entry. The CTRN study was 

established in 2000 and the removal intensities were 33% and 50% relative density 

reduction with three different timings of entry (2002,2007,2012) that represent the 

normal timing of thinning, and a five and ten year delay of thinning, respectively 

(McConville et al. 2003; Wagner and Seymour 2000). All study sites in the CTRN were 

chosen based on the stands’ readiness for a commercial thinning. This means that 
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individual trees were large enough to generate enough revenue to pay for the thinning 

and provide a profit. Due to the varying degrees of site productivity, the age of these 

stands ranged from 23 to 42 years. A typical CT would be applied at this age, whereas 

the two delayed treatments are used to evaluate the effect of such a delay on tree 

growth and NPV compared to a normal thinning. At some sites, the actual year of 

harvest varied by one year due to the availability of a logging crew. 

Detailed information about the experimental design can be found in Clune (2013) 

and Wagner et al. (2001). All sites previously received a PCT treatment, were dominated 

by balsam fir, and consisted of good to excellent site quality (16 – 21 m at 50 years 

breast-height) (Clune 2013; Wagner et al. 2001). Rectangular permanent plots, 809 m2 

in size, were fully inventoried on an annual or semi-annual basis between 2002 and 

2012, and diameter at breast height (DBH) and total tree height were recorded for each 

tree. Stand density ranged from 384 to 2,046 trees per ha, quadratic mean diameter 

(QMD) ranged from 15.4 to 23.3 cm, basal area ranged from 12.2 to 46.5 m2·ha-1, and 

average tree height ranged from 12.1 to 16.6 m (Table 4.1). For more detailed plot and 

site information see Table A.1 in the Appendix. 
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Table 4.1: Stand and site information for six treatments and one control plot in 2012. Values shown are the means across all six 
study sites with minimum, maximum, and standard deviation in parentheses.  

Treatment  

      CT Removal Delay CT Age  Time since TPH QMD BA Height 

(%) (yrs) Year (yrs) PCT (yrs) 

 

(cm) (m2·ha-1) (m) 

33 0 2002 45 (35; 54;7) 28 (27;29;1) 901 (694;1141;156) 20.9 (19.1;23.0;1.3) 30.4 (27.9;32.6;2.3) 14.7 (12.1;16.6;1.5) 

33 5 2007 45 (35; 54;7) 28 (27;29;1) 893 (670;1141;170) 19.5 (18.4;21.8;1.3) 26.4 (17.9;30.2;4.5) 15.0 (14.0;16.5;0.8) 

33 10 2012 45 (35; 54;7) 28 (27;29;1) 984 (756;1290;187) 18.3 (17.2;21.5;1.6) 25.4 (21.4;29.9;2.9) 15.0 (12.8;16.6;1.3) 

50 0 2002 45 (35; 54;7) 28 (27;29;1) 639 (546;769;83) 22.2 (20.8;23.3;1.0) 24.8 (21.2;32.0;3.8) 14.4 (13.2;16.5;1.3) 

50 5 2007 45 (35; 54;7) 28 (27;29;1) 544 (446;670;96) 20.6 (18.6;22.5;1.7) 18.2 (12.2;23.4;3.8) 14.5 (13.1;15.1;0.7) 

50 10 2012 45 (35; 54;7) 28 (27;29;1) 591 (384;744;132) 19.2 (16.5;21.7;1.9) 16.6 (14.1;19.7;2.3) 14.8 (12.9;16.4;1.4) 

control 

 

 45 (35; 54;7) 28 (27;29;1) 1835 (1612;2046;200) 17.3 (15.4;18.7;1.2) 42.9 (37.9;46.5;3.5) 14.6 (13.1;16.5;1.1) 

Notes: TPH = trees per hectare; BA = basal area; QMD = quadratic mean diameter 
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Growth & Yield 

Growth and yield for each plot was simulated from the last plot measurement 

(2012) for 35 years using the Acadian Variant of the Forest Vegetation Simulator (FVS-

ACD) (Weiskittel et al. 2012). This variant projects the growth and mortality of individual 

trees on an annual basis using species-specific equations developed for the Acadian 

Region. In addition to using FVS-ACD, we also included a newly developed diameter 

growth modifier for balsam fir and red spruce that adjusts predicted growth of individual 

trees based on information from the last commercial thinning (Weiskittel et al. 2015). 

This growth modifier relies on time since commercial thinning, % basal area removed, 

and the ratio of QMD post- and pre-thinning. We also used individual plot data measured 

in 2002 and 2007 to calculate net present values for all treatments in the past. 

 

Product Merchandising 

For every year in the projection we merchandised individual trees by using an R 

(R Core Team 2015) based product merchandiser developed by Hutchinson (2014). This 

merchandiser estimates merchantable sawlog and pulpwood volume based on regional 

taper and volume equations (Weiskittel and Li 2012; Li et al. 2012). Biomass volume 

was not estimated or included in this study. Minimum top diameters for all relevant 

species were 10.2 cm for pulpwood, and between 12.7 and 25.4 cm for sawlogs 

(depending on species). 

 

 



 
 

96 
 

 

Harvest Cost and Revenue 

In accordance with values used by Saunders et al. (2008) for a study using the 

same sites, we assumed a cost of $500 USD·ha-1 (in 2015 dollars) for PCT treatment 

across all six study sites. The costs for CT were estimated using the approach outlined 

by Saunders et al. (2008). They used a simplified version of the model of Randolph et al. 

(2001), who estimated CT harvesting costs using PPHARVST harvest cost simulator 

(Fight et al. 1999). The thinning system chosen by these authors was a cut-to-length 

(CTL) system with a machine rate of $74.56 USD·ha-1 for a harvester, and $51.88 

USD·ha-1 for a forwarder. As the majority of study sites were thinned using a CTL 

system (Wagner et al. 2001), this method resulted in a good approximation of the real 

thinning costs. At the time of thinning, harvest costs and volume removal were not 

recorded and therefore had to be estimated. Volume removal for each CT was estimated 

by using average piece size before the thinning and the number of trees removed during 

the thinning in an equation provided by Saunders et al. (2008). The average piece size 

was estimated by inserting QMD and stand density before the thinning into an equation 

provided by Wilson et al. (1999) that was solved for piece size. Saunders et al. also 

reported a mill delivered product value of $147.23 USD·m-3 that was used for revenue 

calculation of the CT. This product value is from Maine in the early 2000s and does not 

reflect current product values for pulpwood, which are between $40 USD·m-3 and $50 

USD·m-3. For comparability of all treatments, however, this value was used in all CT 

estimations. Detailed information before and after CT for all treatments can be found in 

Table 4.2.  

To estimate final stand harvest costs, lists of trees created by the growth and 

yield simulation were expanded to represent a one ha harvest block for each plot. The 
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growth and yield simulation returned such a list of trees for every year for 35 years. In 

this simulation, final stand harvest costs were estimated for every year after the initial 

tree list, and there was no definition of the final stand in terms of age. Harvest time for 

three harvesting systems was estimated using regional cycle time equations for 

harvesting equipment (Hiesl and Benjamin 2015a; Hiesl 2013; Hiesl and Benjamin 

2013a; Hiesl and Benjamin 2013c). A cut-to-length (CTL) system consists of a harvester 

and forwarder, a whole-tree (WT) system consists of a feller-buncher, grapple skidder, 

and stroke delimber, and a hybrid (HYB) system consists of a feller-buncher, processor, 

and forwarder. These systems were chosen as they represent harvesting equipment that 

is commonly used in this region. A processor in a HYB system does not have to fell trees 

and therefore uses less time to process individual trees. Processor cycle time of the 

HYB system was estimated using 70% of the estimated harvester cycle time of a CTL 

system. Research by Simões et al. (2008) suggests that a harvester spends 

approximately 30% of its time felling trees. Similar results were found by an unpublished 

video analysis of harvesters from two different studies in Maine. Time consumption for a 

loader/crane to load one truck was assumed to be 25 min. We used an average skidding 

and forwarding distance of 300 m, a forwarder payload of 10 m3, and a bunch size of 3 

m3, which are consistent with regional values. 

Harvest costs were calculated using the estimated time consumption for each 

machine multiplied with the appropriate machine rate (Table 4.3). Machine rates 

represent averages estimated as part of an early commercial thinning study in Maine 

(Benjamin et al. 2013). Cost of delivering roundwood to the mill at a round-trip distance 

of 160 km and a cost of $1.67·km-1 were also included. This distance was chosen as it 

represents a common trucking distance in Maine. Payload for one truck was assumed to 
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be 28 m3, to ensure that the truck and the load are within state specifications of gross 

weight. Revenue was estimated for every year using the projected merchandised sawlog 

and pulpwood volume from each plot and multiplying it with average product values of 

$72 USD·m-3 for sawlogs and $42 USD·m-3 for pulpwood. All product values are based 

on information from the forest industry in Maine in 2014. We did not adjust product value 

for possible changes in the future. 

Net present value (NPV) is the sum of all cash flows, positive or negative, 

discounted or compounded to a base year (= 2015). In this study there were three cash 

flows: PCT costs, CT costs and revenue, and final harvest costs and revenue (Eqn. 4.1). 

Other management costs of the stand, such as reforestation, and future values past the 

final harvest are not included. 

 

𝐷𝑃𝑁($ · ℎ𝑎−1) = 𝑃𝑃𝑃
(1+𝑖)𝑡1−𝑡

+ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔−𝐻𝑃𝐶𝐶
(1+𝑖)𝑡2−𝑡

+ 𝐹𝐻𝑔𝑔𝑔𝑔𝑔−𝐻𝑃𝐹𝐹
(1+𝑖)𝑡3−𝑡

           Eqn. 4.1 

 

PCT was included as a cost of $500 USD·ha-1. CTgross and FHgross are gross 

revenues from the CT and final harvest, respectively, whereas HCCT and HCFH are the 

harvest costs associated with these treatments. The years of PCT, CT, and final harvest 

are described by 𝑡1, 𝑡2, and 𝑡3, respectively. The base year, 𝑡, is 2015. We used as 4% 

discount rate, 𝑖, based on the adopted recommendation of the US Forest Service in 

long-term resource planning (Row et al. 1981). NPV was calculated for every year in this 

simulation. 
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Table 4.2: Stand and commercial thinning information for six treatments. Values shown are the means across all six study sites with 
standard deviation in parentheses.  

Treatment 
 

Pre-harvest  Post-harvest 
Removal Delay CT TPH BA QMD Piece size  BA QMD 

(%) (yrs) Year  (m2·ha-1) (cm) (m3)  (m2·ha-1) (cm) 
33 0 2002 1,691 (252) 31.9 (3.3) 15.6 (1.3) 0.12 (0.03)  19.0 (0.9) 14.0 (1.9) 
33 5 2007 1,888 (203) 36.0 (2.5) 15.6 (0.8) 0.13 (0.02)  21.6 (1.5) 14.4 (0.8) 
33 10 2012 1,853 (300) 40.3 (3.0) 16.8 (1.6) 0.16 (0.04)  25.3 (2.9) 15.5 (1.7) 
50 0 2002 1,691 (252) 26.6 (2.7) 14.2 (0.7) 0.09 (0.01)  12.5 (1.4) 12.7 (0.84) 
50 5 2007 1,692 (313) 30.9 (2.8) 15.4 (1.4) 0.12 (0.03)  14.1 (1.8) 13.8 (1.6) 
50 10 2012 1,484 (397) 34.3 (4.6) 17.5 (2.0) 0.17 (0.05)  16.6 (2.2) 16.0 (2.2) 

 

Treatment  
     Removal Delay CT  Trees  BA  Vol. rem. Cost Revenue 

(%) (yrs) Year removed removal (%) (m3·ha-1) ($·ha-1) ($·ha-1) 
33 0 2002 703 (169) 40 (5) 85.4 (27.2) 941 (203) 2,170 (690) 
33 5 2007 924 (98) 40 (4) 119.2 (18.8) 1,233 (121) 3,029 (479) 
33 10 2012 836 (127) 37 (3) 132.6 (16.5) 1,209 (87) 3,370 (419) 
50 0 2002 1,084 (171) 53 (3) 99.4 (14.3) 1,294 (173) 2,526 (362) 
50 5 2007 1,083 (239) 54 (4) 124.5 (16.9) 1,378 (206) 3,164 (429) 
50 10 2012 865 (235) 52 (2) 140.4 (22.0) 1,259 (222) 3,569 (559) 

Notes: CT = commercial thinning; TPH = trees per hectare; QMD = quadratic mean diameter; BA = basal area 
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Table 4.3: Machine rates for all three harvesting systems including labor. 
Machine Machine 

 
 ($·PMH-1) 

Harvester 160 
Processor 160 
Forwarder 110 
Feller-Buncher 140 
Grapple Skidder 100 
Stroke Delimber 130 
Loader/Crane 40 
Note: PMH = productive machine hour 

 

Data Analysis 

To assess the influence of treatment on the value and timing of max NPV, we 

developed two linear mixed-effect analysis of variance (ANOVA) models. Since the sites 

were previously thinned by a CTL system (Wagner et al. 2001), we used a CTL system 

as our baseline for NPV calculations. For the assessment of the influence of harvesting 

system and treatment on max NPV, we developed an additional ANOVA model using 

NPV data from all three harvesting systems simulated in this study. Random effects for 

plots nested within site were estimated to account for variation from factors that have not 

been identified and may have influenced the dependent variables. Pairwise comparison 

tests among thinning treatments were performed using Tukey’s method of multiple 

comparisons at a significance level of 0.05. All analyses were implemented in R (R Core 

Team 2015) using the nlme (Pinheiro et al. 2015), multcomp (Hothorn et al. 2008), and 

lsmeans (Lenth and Herve 2015) packages. 
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RESULTS 

Five different variables were measured to evaluate the response of spruce-fir 

stands to the various CT treatments. All responses were measured from the time of CT 

and included merchantable volume, gross merchantable volume MAI, percent sawlog 

volume, and net present value (NPV) differences from the control. With the exception of 

percent sawlog volume, a light thinning (33% relative density removal) returned higher 

values than a heavy thinning (50% relative density removal) for all values measured 

(Figure 4.1). Ten years after thinning all treatments resulted in a percent sawlog volume 

above 90% of the total merchantable volume.  

Total merchantable volume increased over a longer period of time for the light 

thinning than it did for the heavy thinning. With the heavy thinning, merchantable volume 

growth slows down approximately 15 years after thinning. Fifteen years after thinning, 

total merchantable volume ranged from approximately 150 to 400 m3·ha-1 for both 

thinning treatments, whereas 35 years after thinning the merchantable volume ranged 

from approximately 175 to 700 m3·ha-1. Gross merchantable volume MAI for heavy 

removal treatments peaked approximately 15 years after thinning. The MAI for light 

thinnings peaked at a later time, possibly more than 35 years after thinning. With the 

exception of a light thinning without any delay, all treatments returned a lower NPV than 

the control plot. The treatment with a light thinning without any delay, however, returned 

a higher NPV for the first 10 years after thinning (Figure 4.1). See Figure A.1 in the 

Appendix for NPVs of all treatments and study sites. 
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Figure 4.1: Response of treatments to commercial thinning with regards to 
merchantable volume, gross merchantable volume MAI, percent sawlog volume, net 
present value, and net present value difference from the control. Time since thinning 
represents the numbers of years since the last commercial thinning. For the control plot 
the time since thinning is defined as the time since study establishment in 2002. Data 
shown represents the average for each treatment across all six study sites.  
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Treatment Effect on NPV 

Across all treatments and final harvest years, the max NPV ranged from $4,670 

USD·ha-1 to $19,484 USD·ha-1. The ANOVA showed that treatment has a significant 

effect (p<0.001) on NPV. Pairwise comparisons indicated that there is no difference 

between the NPV of the three timings of thinning within the 33% and 50% removal, 

respectively (Figure 4.2). Results further suggest that the average NPV of the 33% 

removal (12,848 $·ha-1 (±2,293)) is higher than the average NPV of the 50% removal 

(8,215 $·ha-1 (±1,779)). The average NPV of the control plot (15,711 $·ha-1 (±4,249)) is 

the highest across all treatments (Table 4.4). Most of the variation was captured by the 

fixed effect of treatment, while there was some site to site variation in the relationship of 

max NPV and treatment (Table 4.5).  

 

Table 4.4: Maximum NPV and rotation length information for all six treatments and 
control plots at final harvest. All values are based on a CTL harvesting system. 

Treatment 
 

Net Present Value 
 

Rotation Length 
Removal Delay 

 
mean min max sd 

 
mean min max sd 

(%) (yrs) 
 

($) 
 

(yrs) 
33 0 

 
12,572 9,353 14,519 1,948 

 
54 47 63 6 

33 5 
 

12,997 10,128 16,636 2,415 
 

51 39 65 9 
33 10 

 
14,593 11,494 17,938 2,585 

 
56 43 71 9 

50 0 
 

9,092 7,769 11,706 1,561 
 

48 36 58 8 
50 5 

 
9,173 6,018 11,557 2,360 

 
39 29 48 7 

50 10 
 

11,579 7,905 15,084 2,823 
 

44 34 53 7 
Control - 

 
15,711 9,350 19,484 4,249 

 
64 54 72 7 
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Treatment Effect on Time of max NPV 

Across all treatments the timing of max NPV ranged from 6 to 22 years after thinning. 

The control plot reached max NPV between 25 and 31 years after the CT study began in 

2002. The ANOVA showed that treatment has a significant effect (p<0.001) on the time 

of max NPV. Pairwise comparisons indicated that it takes the same time to reach max 

NPV for plots that either received a 33% or 50% relative density removal (Figure 4.3). 

However, there are also some similarities between the two removal intensities and 

timing of thinning. The control plots take the longest time to reach max NPV. Most of the 

variation was captured by the fixed effect of treatment, while there was some site to site 

variation in the relationship of timing of max NPV and treatment (Table 4.5). The 

average rotation length ranges from 39 to 64 years (Table 4.4). A 33% removal intensity 

resulted in a rotation length of between 41 and 56 years, whereas a 50% removal 

intensity resulted in a rotation length of between 39 and 48 years. The control plot had 

the longest rotation time at 64 years. The longer rotation time, however, also resulted in 

a higher NPV (Figure 4.4). This is also true for the differences in NPV between the 33% 

and 50% removal intensity. 
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Figure 4.2: Max net present value (NPV) and error bars for six treatments and one 
control plot across six study sites based on final harvest with a CTL system. The letters 
above the individual bars show the statistical significance between treatments. The 
number following the “T” in the treatment labels represents the delay in commercial 
thinning in years, while the last two numbers represent the relative density removal in 
percent. Control plots were never commercially thinned. 
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Figure 4.3: Timing of max net present value (NPV) and error bars for six treatments and 
one control plot across six study sites. The letters to the right of the individual bars show 
the statistical significance between treatments. The number following the “T” in the 
treatment labels represents the delay in commercial thinning in years, while the last two 
numbers represent the relative density removal in percent. Control plots were never 
commercially thinned, and time since thinning therefore refers to the time since study 
establishment in 2002. 
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Figure 4.4: Average net present value and rotation length of six treatments and control 
plots. The beginning of each curve represents the average age at commercial thinning. 
The curves do not represent any time before the commercial thinning. 
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Table 4.5: ANOVA results for fixed and random effects on the effect of treatment on max NPV and timing of max NPV. The number 
following the “T” in the treatment labels represents the delay in commercial thinning in years, while the last two numbers represent 
the relative density removal in percent. 

Max Net Present Value                       
Fixed effects              Random Effects         R2   

Treatment Value Std. Error DF t-value p-value   Variable Std. Dev. Variance Percent 
 

    
Intercept (T0.33) 12,571.98 1004.841 30 12.511 <0.001   STAND 1450.667 2104435 35 

 
  R2fixed effects 0.624 

T5.33 -526.812 1148.012 30 -0.459 0.650   PLOT (in 
STAND) 1838.907 3381579 56   

R2random effects 
(STAND) 0.783 

T10.33 1,354.43 1148.012 30 1.18 0.247   
 

  
T0.50 -3479.961 1148.012 30 -3.031 0.005   Residual 

 
756.446 
 

572210.6 
 

9 
 

  
R2random effects 
(all) 
 

0.995 
 T5.50 -5,313.50 1148.012 30 -4.628 <0.001       

T10.50 -4276.266 1148.012 30 -3.725 <0.001                   
Control 3,139.43 1148.012 30 2.735 0.010                   

                              
                              

Timing of Max Net Present Value                     
Fixed effects              Random Effects         R2   

Treatment Value Std. Error DF t-value p-value   Variable Std. Dev. Variance Percent 
 

    
Intercept (T0.33) 18.333 1.377 30 13.317 <0.001   STAND 1.959 3.838 34     R2fixed effects 0.772 

T5.33 -2.333 1.585 30 -1.472 0.151   PLOT (in 
STAND) 2.540 6.452 57   

R2random effects 
(STAND) 0.866 

T10.33 -3.833 1.585 30 -1.419 0.022       
T0.50 -6.000 1.585 30 -3.786 <0.001   Residual 

 
1.041 

 
1.084 

 
10 
 
 

 
R2random effects 
(all) 
 

0.997 
T5.50 -6.500 1.585 30 -4.102 <0.001   

 
T10.50 -7.833 1.585 30 -4.943 <0.001                   
Control 10.167 1.585 30 6.416 <0.001                   
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Harvesting System Effect on max NPV 

Across all treatments, the max NPV ranged from 4,670 $·ha-1 to 19,484 $·ha-1 

when using a CTL system, from 4,545 $·ha-1 to 19,184 $·ha-1 when using a HYB system, 

and from 4,423 $·ha-1 to 18,004 $·ha-1 when using a WT system. The ANOVA showed 

that both treatment and harvesting system have a significant effect (p<0.001) on max 

NPV. Pairwise comparisons within each individual treatment indicated that using a CTL 

system results in a higher NPV than using a HYB system or a WT system (Figure 4.5). A 

final harvest using a CTL system returns a NPV that is between 5.6% and 8.2% higher 

than that of a WT system. This could mean a gain of $247 USD·ha-1 to $1,480 USD·ha-1 

when using CTL system. Most of the variation was captured by the fixed effect of 

treatment and harvest system, while there was some site to site variation in the 

relationship of max NPV and treatment and harvest system (Table 4.6). 
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Figure 4.5: Max net present value (NPV) and error bars for six treatments and one 
control plot across six study sites, with three different harvesting systems. The letters 
above the individual bars show the statistical significance between systems within each 
treatment but do not compare across treatments. The number following the “T” in the 
treatment labels represents the delay in commercial thinning in years, while the last two 
numbers represent the relative density removal in percent. Control plots were never 
commercially thinned. Products harvested by a WT system included roundwood only 
and did not include biomass chips.  
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Table 4.6: ANOVA results for fixed and random effects on the effect of treatment and 
harvesting system on max NPV. 
Fixed effects  

     Treatment Value Std. 

 

DF t-value p-value 
Intercept 

 

12,571.982 981.235 70 12.812 <0.001 
T0.50 -3,479.961 1,121.751 30 -3.102 0.004 
T5.33 -526.812 1,121.751 30 -0.47 0.642 
T5.50 -5,313.502 1,121.751 30 -4.737 <0.001 
T10.33 1,354.426 1,121.751 30 1.207 0.237 
T10.50 -4,276.266 1,121.751 30 -3.812 <0.001 
Control 3,139.434 1,121.751 30 2.799 0.009 
HYB -255.518 59.613 70 -4.286 <0.001 
WT -678.683 59.613 70 -11.385 <0.001 
T0.50:HYB 30.715 84.3049 70 0.364 0.717 
T5.33:HYB 39.704 84.3049 70 0.471 0.639 
T5.50:HYB 104.336 84.3049 70 1.238 0.220 
T10.33:HYB 56.566 84.3049 70 0.671 0.504 
T10.50:HYB 117.286 84.3049 70 1.391 0.169 
Control:HYB -14.196 84.3049 70 -0.168 0.867 
T0.50:WT 268.013 84.3049 70 3.179 0.002 
T5.33:WT 22.033 84.3049 70 0.261 0.795 
T5.50:WT 350.227 84.3049 70 4.154 <0.001 
T10.33:WT -144.100 84.3049 70 -1.709 0.092 
T10.50:WT 246.345 84.3049 70 2.922 0.005 
Control:WT -461.040 84.3049 70 -5.469 <0.001 

      Random Effects 
     Variable Std. Dev. Variance Percent 

 
 Site 1414.906 2001959 35 
 Plot (in Site) 1940.184 3764314 65 
 Residual 103.252 10661 0 
 

      R2 
     R2

fixed effects 0.622 
    R2

random effects (Site) 0.781 
    R2

random effects (all) 0.9995 
    Note: CTL = cut-to-length; WT = whole-tree; HYB = hybrid 
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Sensitivity of NPV 

To understand the robustness of our results it was necessary to conduct a sensitivity 

analysis of the major input variables (skid distance, trucking distance, trucking costs, 

pulpwood value, sawlog value). Results of such an analysis showed that a change in 

sawlog value has the greatest impact on NPV (Figure 4.6). For example, a 10% 

decrease in sawlog value resulted in a 14% decrease in NPV. All other variables 

impacted NPV by less than 4% for a 20% change in the input variable.  

  

DISCUSSION 

Our results showed that delaying a CT does not result in a higher NPV, however, 

a late CT results in a higher average merchantable volume. NPV is strongly affected by 

thinning intensity. A light thinning resulted in a higher NPV than a heavy thinning. In this 

analysis we simulated the use of three different harvesting systems. With a whole-tree 

harvesting system being the most commonly used system in Maine (Leon and Benjamin 

2013) we wanted to investigate whether or not a CTL and hybrid harvesting system 

would be economically feasible. The results showed that a CTL harvesting system 

resulted in the highest NPV across all three harvesting systems tested. 

A previous study of the same sites and plots with data from 2010 showed that 

plots with a 33% relative density removal and a five year delayed CT resulted in the 

highest standing total volume (Clune 2013). At the time of that study, the ten year 

delayed CT was not yet conducted and therefore was not included in the data analysis. 

Clune (2013) further noted that the early CT with a 50% relative density reduction 

resulted in the lowest standing volume among all treatments.  
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Figure 4.6: Sensitivity of net present value to changes in input variables. A change of 
0% in input variables represents the baseline conditions as outlined in this manuscript. 
The curves for a change in trucking distance and trucking costs overlay each other and 
are not distinct from each other. 
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Clune (2013) also reported that the merchantable volume for plots with a 33% 

reduction in relative density was higher than for plots with a 50% reduction in relative 

density. It is therefore not surprising that the NPV of plots with a low removal intensity is 

higher than for plots with a high removal intensity. Clune (2013) also reported that the 

control plots consisted of the highest merchantable volume, so it is also not surprising 

that in our study the control plots have the highest NPV across all treatments. This can 

easily be explained by the fact that control plots were never thinned. 

The results clearly show that delaying the first CT by five or ten years has no 

effect on max NPV for either removal intensity. So it is possible to achieve the same 

profit whether or not a CT was delayed from the point a stand becomes economically 

viable for a CT. However, the time when this NPV is achieved is of importance, as this 

can have implications on the rotation length of a stand. For both removal intensities, the 

time to reach max NPV after a CT was similar among the three delays in thinning. It is 

important to consider, however, that this time does not include the additional five or ten 

years that trees were growing before they were thinned. When including this additional 

growing time, the ten year delay in thinning resulted in the longest rotation time, for 

either removal intensity. Research in Norway spruce (Picea abies L.) stands in Finland 

showed that a delayed thinning reduced basal area increment when compared with CT 

at a normal time or intensive CT (Jaakkola et al. 2006). Their results confirm our findings 

that a ten year delayed thinning does not return the same NPV in the same amount of 

time as a CT at normal times or five years delayed. A normal thinning would generally 

take place as soon as a stand could support a thinning and provide a profit. 

A CT is used to decrease stand density and to focus diameter growth on a 

smaller number of trees (Nyland 2002; Smith 1986). Research in this region confirms 
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that a CT increases the diameter and volume growth of a reduced number of trees in 

spruce plantations (Pelletier and Pitt 2008). Saunders et al. (2008) reported that the 

unthinned controls were not able to “catch up” with PCT stands. Such a trend was also 

seen in the current study, with the QMD of control plots being among the lowest across 

all study sites. Saunders et al. (2008) also showed that the NPV of control plots is lower 

and culminates later. In our study, however, the control plots have the highest NPV, but 

do culminate later than thinned plots.  

There are several reasons that might explain this difference. Saunders et al. 

used a growth and yield model that was not developed for the Acadian forest region, 

however, they used regional long-term data to calibrate their model. Further, the 

merchandizing algorithm used by them did not use regional stem and taper equations, 

and the merchantability dimensions were likely larger than they are today. The 

merchandizer used in our study used regional stem taper equations (Li et al. 2012) and 

the latest merchantability dimension. The merchandizer used in our study, however, did 

not account for a minimum log length and therefore might have overestimated the 

merchantable pulpwood and sawlog volume.  

 Another factor that might have led to a difference in NPV is the fact that 

harvesting costs today are almost twice as high as they were in Saunders et al. (2008) 

study. In 2000, machine rates for harvester and forwarder were approximately $75 

USD·PMH-1 (Productive Machine Hour) and $52 USD·PMH-1, respectively (Randolph et 

al. 2001). In 2011, machines rates more than doubled to $160 USD·PMH-1 and 

$110·PMH-1, for harvester and forwarder, respectively (Benjamin et al. 2013). In addition 

to that, product values can vary greatly over time as well. While mill delivered spruce-fir 
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pulpwood was worth approximately $147 USD·m-3 in 2000 (Saunders et al. 2008) this 

value decreased to between $40 and $50 USD·m-3 in 2013 (Hiesl et al. 2015).  

For our simulation, we assumed that the machine rate and product values stayed 

constant over a period of 35 years, however, as we have just showed there might be 

significant changes in these values over time. It is therefore crucial to acknowledge that 

the numbers at the actual final harvest might be different from the presented results. 

This difference in harvest costs can easily negate the benefit of CT in terms of NPV. Our 

sensitivity analysis has shown that a 10% decrease in sawlog value will decrease the 

NPV by 14%. Other changes of input variables such as trucking distance, skidding 

distance, trucking costs, and pulpwood value affected NPV by a maximum of 4% when 

considering a 20% change in these input variables. It is important to note, however, that 

for all treatment plots a financial return was provided during the CT, whereas the control 

plots did not yield any financial return until the final harvest. This is important for land 

managers that require some intermediate financial return on their investment.  

The assumptions made in this simulation are important factors that can influence 

the results. We used average skidding distances and bunch sizes for softwood stands in 

Maine, based on published and unpublished information from research by Hiesl (2013) 

and Hiesl et al. (2015). Stand and site conditions, harvesting equipment, and extracting 

distances are just a few factors that influence machine productivity and vary greatly 

between states and countries (Hiesl and Benjamin 2013b). This means that the 

assumptions used for the simulation might not be appropriate in some of the neighboring 

states. For example, the maximum skidding distance in Maine is approximately 800 m, 

while a common skidding distance in the state of New York can easily exceed 1,600 m 
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(personal communication with Dr. Steve Bick, principal consultant, Northeast Forests, 

LLC., Thendara, NY).  

Depending on the distance to a mill, average tree diameter, and other factors, the 

stumpage rate for a given parcel of land can fluctuate immensely. For example, the 

stumpage rate for spruce/fir pulpwood used by Bataineh et al. (2013) was 11 $·ton-1, 

which was the average stumpage rate reported by the Maine Forest Service in 2010 

(Maine Forest Service 2011). The actual range of stumpage rates in this report, 

however, was from 2 $·ton-1 up to 22 $·ton-1. These stumpage rates, however, are 

annually self-reported by loggers, landowners, and foresters, and represent a wide 

range of stand and site conditions. Therefore, using the average stumpage rate for any 

parcel might not be representative at all. Instead of using average stumpage values to 

calculate NPVs (e.g. Bataineh et al. 2013), we estimated harvest costs based on 

regional cycle time equations (e.g. Hiesl and Benjamin 2013b), using the actual number 

and size of trees grown in each plot. Results clearly showed that using a CTL harvesting 

system returns the highest NPV across all treatments. This is a surprising result, as 

approximately 80% of Maine’s timber volume is processed by WT harvesting systems 

(Leon and Benjamin 2013). With a significant difference of several hundred dollars per 

ha one would think that more CTL systems would be used to process timber. One of the 

reasons for the high percentage of timber processed by WT systems might be the 

initially higher costs for CTL equipment, and the higher complexity to operate such 

equipment. Harvesters and forwarders can be several hundred thousand dollars more 

expensive than other machines (Rankin 2015).  

Our results also showed that a hybrid system consisting of a feller-buncher, 

processor, and forwarder returned a lower NPV than a CTL system. This came as a 
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surprise as we expected the hybrid system to be less expensive than a CTL system, 

mainly due to the high productivity of the feller-buncher and the concentrated processing 

of trees. One of the major reasons for this result might be the fact that the forwarder 

cycle time equation used accounted for a larger spacing between logs than what actually 

would be present on site. Log centration at a harvest site has been shown to influence 

forwarder productivity (Manner et al. 2013) and therefore the actual forwarder 

productivity for a hybrid system might be higher. Currently, however, there are no 

forwarder equations available for this state that would include log spacing as a 

determining factor.  

One of the limitations of this simulation is that we did not include any costs 

associated with moving harvesting equipment to the harvest site, or any administrative 

or road building/maintenance costs. Including such numbers is difficult as these costs 

are highly variable and depend on factors such a distance from a logging contractor and 

road conditions, but also affect NPV differently with increasing harvest tract size. It is 

therefore important to highlight that the presented NPVs are very optimistic and will likely 

be smaller due to additional costs that were not included in this simulation. In addition, 

we did not include future forest values in our simulation and limited our study to one 

rotation only. By including future forest values into these calculations the max NPV 

would typically be reached earlier. 
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CONCLUSION 

With the implications of our assumptions in mind, our conclusions are that there 

is a margin for the optimal time of thinning of approximately 10 years in which there will 

be no reduction in max NPV. Clearly, a light thinning will return a higher NPV, but it will 

also take longer to reach this NPV. For a forest manager with a goal of maximizing his 

NPV this might be a good choice, however, a forest manager with the goal of returning 

some revenue in a short period of time, the heavy removal might be a better choice. 

Such a heavy removal can lead to economically mature stands within 10 to 12 years 

post CT, whereas a light thinning extends the rotation length for another 4 to 6 years. 

Using a CTL harvest system in softwood stands resulted in the highest NPV 

across all treatments. Even though WT systems are the most commonly used harvesting 

systems in Maine they returned the lowest NPVs across all sites and treatments. It is 

therefore important to further increase research in the use of CTL systems in Maine, as 

these systems might be more profitable than the traditional WT systems. In addition, it is 

possible that the hybrid system was the most economic system when accounting for the 

log distribution across a harvest site. It is therefore necessary to conduct further 

research on the productivity of such harvesting systems in similar stands. 
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EPILOGUE 

The goal of this dissertation is to show various ways that computer simulations 

can be used in forest operations decision making. Chapters 1 and 2 use a new 

simulation technique called agent based modeling. The novel aspect here is the 

modeling of individual agents with their own set of rules and behaviors. For these two 

chapters I investigated the effect of new technology and the introduction of best 

processing practices on the idle time, productivity, and unit costs of a system consisting 

of a stroke delimber and a grapple skidder. I further evaluated the benefits of using one 

additional grapple skidder. Simulation results clearly showed that due to the dependent 

nature of the two machines a high percent idle time is unavoidable for at least one of the 

machines. This idle time increased with longer skidding distances but decreased with 

increasing bunch size. With the use of this computer simulation I was able to show that 

an investment in a Geographic Information System (GIS) and a Global Position System 

(GPS) resulted in a reduced unit cost; however the profit margin was low and the return 

period high. 

The most surprising result from these two chapters was the increase in 

productivity and decrease in unit cost across the majority of simulated harvests when 

using one additional grapple skidder. Currently such practices are used on a small scale 

in Maine; however, with the benefits shown in this simulation it is surprising that such a 

system is not more widespread. One reason for this might be the high investment cost 

for a second grapple skidder, and a limited understanding of the benefit of such an 

investment. Logging contractors are generally occupied running their business by 

making arrangements for new harvests, staying on top of repair and maintenance, and 

ensuring that all parties get compensate for their services. Often there are also personal 
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events that occupy a contractors mind. Among all this, it might not even be very high on 

a contractors list to fully utilize his equipment. With my research there is now an 

opportunity to transfer knowledge of such a system to the logging industry to highlight 

the productivity and profitability of such an investment.  

In chapter 3 I simulated the thinning costs and profits of three different treatments 

in the first thinning of research plots that were previously unthinned and precommercially 

thinned. The use of a computer simulation, based on productivity measures on site, 

enabled me to compare profits in first thinnings with two different harvesting systems for 

thinned and unthinned plots, respectively. Results clearly showed that the costs of 

precommercial thinning can be recovered after the first thinning, however, the profit is no 

different from the profit of thinning previously unmanaged plots. 

Chapter 4 was based on a growth and yield simulation of six study sites with 

seven treatment plots each. Individual treatments included a 33% and 50% removal of 

relative stand density and a timing of thinning at optimal time, or 5 or 10 years delayed. 

The objective was to investigate whether or not there was a treatment effect on net 

present value (NPV) or optimal time of final harvest based on the timing of thinning or 

the removal intensity. A secondary focus was to evaluate whether or not there is an 

economic difference between the uses of three different harvesting systems. Results 

clearly showed that delaying the first thinning does not impact NPV. However, the 

removal intensity at the first thinning has a significant impact on NPV. Based on the 

same harvesting conditions using a cut-to-length harvesting system returns the highest 

NPV compared to a hybrid system and a whole-tree system. 
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STRENGTH AND LIMITATIONS 

For all simulations of harvest costs and profit I was able to use regional cycle 

time equations for harvesting equipment (Hiesl and Benjamin 2013c) as well as data 

collected during a previous study (Hiesl 2013). The use of such a large amount of 

empirical data lends more credibility to the computer simulations; however, there are 

also limitations to this study. Chapters 1 and 2 focused on two machines only and are 

based on one single main trail and one landing. The results shown are further based on 

a hardwood content of 50%. Many areas in Maine are dominated by softwoods, which 

might impact the productivity and idle time of the machines.  

Further, the data used to verify that the model is an appropriate representation of 

the real world, was collected at the same harvest sites that were used to develop the 

cycle time equations that are used in this model. Thus, this was only a model verification 

and not a model validation as there was no independent data used. A model validation 

would require independent data with exactly the same conditions as outline in our model. 

This is difficult, if not even impossible, to achieve, as there are more factors influencing 

the individual site and stand conditions that are represented in this model. These factors 

might be known or unknown at this point and can possibly vary greatly within individual 

stands. I therefore have to outline this lack of model validation as a limitation of this 

model. 

The results of chapter 3 are based on a low number of repetitions and were 

measured at one site only. Due to the low number of repetitions within this one site it is 

possible that I did not catch all of the variation in harvesting productivity and cost, and 

that future studies may show different results. Further, with the use of only one site this 

study is a case study and might not apply to large areas of forest land in Maine. Chapter 
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4 investigates the differences in maximum NPV across several treatments at the time of 

the final harvest. The used growth and yield model might be overestimating the diameter 

and height of trees, especially in unthinned control plots. This in return, impacts the 

merchantable volume in these plots. The merchandizer used in this simulation did not 

account for a minimum length of logs and thus might over predict the merchantable 

volume as well. 

 

RECOMMENDATIONS 

Results from Chapters 1 and 2 indicate that the use of two grapple skidders at 

harvest sites with small bunch sizes (< 3 tons) lowered the unit cost of production the 

most. Such conditions can often be found when operating in stands where a light 

thinning is to be applied. Small bunches, however, can also be encountered when the 

feller-buncher operator does not pay attention to the bunch size. This leads to the 

recommendation to inform feller-buncher operators on the effect of small bunch sizes on 

the overall productivity at a harvest site. 

When operating at harvest sites with large bunch sizes (> 3 tons) the results 

showed that an increased communication using GPS and GIS lowered the unit cost the 

most. The results, however, also showed that on an average harvest the savings are not 

big enough to warrant an investment in GPS and GIS for grapple skidders. This is not a 

big problem, as the same effect can be achieved through an increase in communication 

between grapple skidder and stroke delimber operators. It is therefore counterproductive 

to have operators work with each other that do not want to communicate to each other. 

Reasons for such a behavior could be various and may include personal differences 
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between the operators, a lack of understanding of the benefits of communication, or a 

lack of motivation to put any effort into the job.  

A successful business owner should pay attention to the communication among 

his or her employees and take appropriate measures to strengthen the collaboration 

among them. A good way to educate equipment operators is to conduct an operator 

training workshop with a variety of guest speakers that can highlight the importance of 

communication or best management practices. Several business owners already 

conduct such workshops and often included equipment dealers and university 

researchers to give short presentations on important topics. Mud season is a good time 

to conduct these workshops, as the time spent during the workshop could not be used to 

cut wood. 

Results from Chapter 3 clearly showed that it is economically feasible to thin high 

density stands. In our experiment all trees were chipped as the total pulpwood and 

sawlog volume did not warrant the high costs of a stroke delimber. To avoid chipping 

pulpwood and sawlog quality trees in these high density stands, it might be appropriate 

to use a pull-through delimber in combination with a slasher to merchandize logs of 

higher quality. Pulpwood and sawlogs are more valuable than biomass chips, and the 

increased revenue might be used to compensate for a longer trucking distance of wood 

chips. Our results are based on a round-trip trucking distance of 100 miles, however, 

when operating in the North Maine Woods it is likely to exceed these distances to reach 

a market. In such cases, the additional revenue from pulpwood and sawlog might still 

make a harvesting operation profitable. Although results from our experiment of the 

response of small diameter plots to a commercial thinning are not yet available, the 
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remaining stand should improve in diameter and grow sawlogs in a shorter period of 

time than control plots would.  

Also important to consider in these small diameter stands is to use experienced 

and proficient operators. In our experiment we used an operator with over 30 years of 

feller-buncher experience and more than two years of experience operating in small 

diameter stands. Due to the operators proficiency in such stands we were able to reach 

high productivities and subsequently finish the thinning with a profit. A comparison of 

productivities and unit cost with a less experienced operator in a similar stand showed  

that the productivity was 75% less and that it was not possible to achieve a profit in small 

diameter stands (Hiesl and Benjamin 2015b). This further highlights the importance of 

experienced and proficient operations in these challenging stand conditions. 

 In Chapter 4 results showed that there is no benefit in delaying a commercial 

thinning by 5 or 10 years in terms of NPV or rotation length. Further, a heavy (50% 

relative density removal) thinning resulted in a lower NPV than a light (33% relative 

density removal) thinning. This means that stands should be thinned as early as possible 

using a light thinning, if the goal is to maximize the NPV in the shortest possible rotation 

time. If the goal is to shorten the rotation time while accepting some reduced NPV, than 

an early heavy thinning would be recommended. But even when the most optimal timing 

of thinning is already past, the results indicated that up to 10 years after this time the 

NPV will still be the same. To reach this NPV, however, the rotation time will be up to 10 

years longer. 

At the final harvest, an early light thinning resulted in a less than 5% lower 

sawlog volume than an early heavy thinning. The same is true for any of the delayed 
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thinning regimes. This information shows that the same proportion of sawlog volume can 

be achieved regardless of the thinning regime chosen. The only difference is, that with a 

heavy thinning regime the total merchantable volume at final harvest is lower than with a 

light thinning. This might affect the overall sawlog supply chain of a company if not 

accounted for. 

Using a cut-to-length (CTL) harvesting system for the final harvest of previously 

precommercially thinned stands was shown as the most profitable option when operating 

in softwood stands. Results further showed that using a whole-tree (WT) harvesting 

system was the least profitable option. Based on annual volume harvested, CTL 

systems in Maine represent only 13% of such volume (Leon and Benjamin 2013). The 

numbers of these systems, however, are increasing. For a forest manager operating in 

softwood stands, it is important to choose the harvest system wisely, as this can have a 

huge impact on the bottom line. Based on our results, using a CTL system in softwood 

stands at the final harvest will clearly return the highest possible profit. 

  

FUTURE DIRECTIONS 

Agent based modeling is a powerful tool and the research conducted in Chapters 

1 and 2 needs to be expanded to include additional pieces of equipment but also to 

represent the use of more than one main trail. Additional questions that could be 

answered with a future model could include the selection of the most economical 

harvesting system based on a given stand condition. The current model as well as the 

future model should also be used in class room teaching for students, and in workshops 

and presentation to logging contractors and forest managers. The model represents a 
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valuable tool that can answer important questions of the impact of changes to stand 

conditions to the overall profitability and productivity of a harvest.  

Since Chapter 3 is a case study it is important to expand this research to include 

more sites with the goal of providing more information about the profitability of PCT to 

foresters and land managers. Further, this study only compared the commercial thinning 

costs of previously unthinned and precommercially thinned plots. What is missing, 

however, is a comparison of predicted harvest costs at the final harvest of these different 

plots. In addition, the current comparison is based on two different harvesting systems. 

Future research needs to compare the thinning and final harvest costs of the same 

harvesting system in both stand conditions to fully evaluate the benefit or PCT. 

The study in chapter 4 needs to be expanded to also include stands that were 

not precommercially thinned. Data from such stands is available through the CTRN and 

a projection into the future, including harvest costs and profit, should be conducted. The 

data analysis and simulation modeling have shown that there are problems with over 

predicting merchantable volume based on the used merchandizer function, but also due 

to an over prediction of diameter and height growth, especially in control plots. Future 

simulations need to include an updated growth and yield model, but should also use a 

product merchandizer that accounts for a minimum log length.  
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APPENDIX: 

ADDITIONAL SITE AND STAND INFORMATION FOR CTRN PLOTS  

USED IN CHAPTER 4 

 

The next few pages show detailed information for each treatment plot at each 

study site. In contrast to the tables and figures shown in Chapter 4, which show 

aggregated treatment data, the tables and figures in this appendix show the individual 

plot level data for each study site. 
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Table A.1: Site and treatment information for six CTRN sites as measured in 2012. 

 
Treatment 

      Site Name Removal Delay Age PCT 

 

TPH QMD BA Height 
 (%) (yrs) (yrs)   (cm) (m2·ha-1) (m) 

Alder Stream 
       

 
33 0 45 1984 905 21.3 32.3 15.5 

 
33 5 45 1984 744 21.8 27.8 16.5 

 
33 10 45 1984 756 21.5 27.4 16.6 

 
50 0 45 1984 583 21.5 21.2 13.2 

 
50 5 45 1984 446 22.2 17.4 15.1 

 
50 10 45 1984 484 20.8 16.4 15.1 

 
control - 45 1984 1612 18.5 43.2 14.8 

Lake Macwahoc 
       

 
33 0 54 1983 694 23.0 28.9 16.6 

 
33 5 54 1983 670 18.4 17.9 15.0 

 
33 10 54 1983 918 18.4 24.4 16.0 

 
50 0 54 1983 546 23.3 23.2 16.5 

 
50 5 54 1983 446 18.6 12.2 14.9 

 
50 10 54 1983 384 21.7 14.2 16.4 

 
control - 54 1983 1686 18.7 46.5 16.5 

Lazy Tom 
       

 
33 0 43 1984 843 20.6 28.1 12.1 

 
33 5 43 1984 930 18.9 26.1 14.0 

 
33 10 43 1984 1017 17.4 24.1 12.8 

 
50 0 43 1984 583 23.0 24.2 13.2 

 
50 5 43 1984 533 20.4 17.5 14.3 

 
50 10 43 1984 657 18.1 16.9 13.1 

 
control - 43 1984 1674 17.4 39.6 13.1 

PEF Comp. 23 A 
       

 
33 0 52 1983 818 20.8 27.9 14.1 

 
33 5 52 1983 880 19.5 26.2 14.8 

 
33 10 52 1983 856 17.8 21.4 14.4 

 
50 0 52 1983 670 20.8 22.7 13.8 

 
50 5 52 1983 645 18.8 17.9 13.1 

 
50 10 52 1983 657 16.5 14.1 12.9 

 
control - 52 1983 2046 15.4 37.9 14.0 

Ronco Cove 
       

 
33 0 35 1985 1004 20.3 32.5 14.8 

 
33 5 35 1985 992 19.7 30.2 14.9 

 
33 10 35 1985 1290 17.2 29.9 14.8 

 
50 0 35 1985 769 23.0 32.0 14.7 

 
50 5 35 1985 521 22.5 20.8 14.8 

 
50 10 35 1985 620 19.5 18.5 15.9 

 
control - 35 1985 1947 17.4 46.3 14.8 

Weeks Brook 
       

 
33 0 42 1985 1141 19.1 32.6 14.8 

 
33 5 42 1985 1141 18.4 30.2 14.8 

 
33 10 42 1985 1066 17.4 25.3 15.1 

 
50 0 42 1985 682 21.8 25.4 14.8 

 
50 5 42 1985 670 21.1 23.4 14.7 

 
50 10 42 1985 744 18.4 19.7 15.1 

 
control - 42 1985 2046 16.6 44.0 14.3 

Notes: PCT = precommercial thinning; TPH = trees per hectare; QMD = quadratic mean diameter;  

BA = basal area 
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Figure A.1: Net present value for all study sites and treatments.  
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