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Abstract 

The anemone species Aiptasia is a nuisance pest that can quickly out-compete 

many species in a coral reef aquarium. The aeolid nudibranch Berghia 

verrucicornis, now officially known as Aeolidiella stephanieae, consumes only 

anemones of the Aiptasia species, a feature that has increased its popularity 

among aquarium overseers everywhere. Not much information exists on the 

digestive process of these aeolids, but what exists notes that A. stephaniae seem to 

house parts of the anemone it consumes in the cerata on its back, a practice 

commonly seen in other aeolids that feed on cnidarian species. By observing the 

location of nematocysts in A. stephaniae at different intervals, we may be able to 

determine the path that nematocysts take on their route to the cerata. To observe 

this trend, we tested three different live stains to determine its potential as a viable 

stain.  The anemones were bathed in the selected stain and fed to the nudibranchs. 

We found that using a 6.8x10-5 M solution of Aniline Blue was the best for 

viewing. The A. stephaniae were collected at different times after feeding and 

fixed so that they might be viewed by light microscopy. Data based on the 

orientation and location of nematocysts was collected and analyzed. 
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Introduction 

 

The anemone Aiptasia pallida is a species that grows well in tank conditions 

under heavy lighting. Normal tank conditions cause the anemone to flourish, and 

it forces other species out of their environment during its growth if it is not 

regulated. Originally, manual control of the anemone was the only form of 

regulation. It was later found that some nudibranch organisms, particularly the 

Aeolidiella stephaniae (formerly known as Berghia verrucicornis) could be used 

as a natural control of Aiptasia. (Reefs.org, 2012).  

 

Aiptasia is a sea anemone that is a scourge of modern saltwater tank systems. 

Aiptasia can be autotrophic organisms, which means they are able to use the 

energy from light nutrients to fuel their biological processes. The bright 

fluorescent lighting in tanks provides overly sufficient light, which allows the 

Aiptasia to grow at exponential rates (Kempf and Brittsan, 1996).  The rapid 

growth can be extremely detrimental to the ecosystem in which the Aiptasia 

exists. The anemone can latch onto stationary organisms and prevent organisms in 

the ecosystem from proper feeding and reduce the intake of nutrients by those 

organisms, negatively affecting their growth. The asexual reproduction of 

Aiptasia is another characteristic in its favor.  Aiptasia easily reproduce through 

pedal reproduction, a form of asexual reproduction in which the organism loses 

small regenerative portions of itself as it moves  (Kempf and Brittsan, 1996).  
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Cnidarians are characterized by multi-use stinging cells called cnidocytes. There 

are varying types of cnidocytes, differing in style and firing mechanism. 

Nematocysts are found in all of these stinging structures. These cells can be used 

offensively to hunt and capture prey, as well as defensively to defend the 

cnidarian against potential predators. (Greenwood, 2009). Nematocysts are made 

up of a barb connected to a thread-like filament contained within the cell, as seen 

in figure 1. Once triggered, a flap called the operculum opens, allowing the barb 

and filament to exit the cell. 

 

 

 

 

 

 

 

 

 

 

In Aiptasia, as well as in other organisms that use nematocysts for defensive 

purposes, the nematocyst containing cells are imbedded in the epidermis between 

other epidermal cells (figure 2).  

 

 

Figure 1. Diagram of unfired nematocyst. Note the trigger, or cilium, that 
can cause the firing mechanism. The barb can be seen surrounded by the coil of 
filament. When fired, the barb will exit the nematocyst and inject the filament into 
the predator. (From Moffett, 1996) 
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A cilium, called a cnidocil, that can be a trigger for the firing mechanism is 

located on the outside of the cell, so the cells position in such a way that the barb, 

if triggered, will fire out of the cell towards the potential threat, rather than into 

the cnidarian. When an organism brushes against the cilium, it triggers the firing 

of the barb located inside the nematocyst. The firing mechanism is most likely 

influenced by a sudden change in the osmotic pressure of the cnidocyte caused an 

influx of calcium. The pressure within the cell rises, eventually leading to the 

expulsion of the barb from the nematocyst. The barb punctures the offending 

organism, and the thread is released through the barb. This process can be seen in 

figure 1. A toxin is then pumped through multiple spines on the thread into the 

affected organism. This toxin causes paralysis, as well the stinging sensation that 

is associated with the creatures that possess them. (Ruppert and Barnes, 1996).  

 

Figure 2. Placement of cnidocytes in epidermis layer. The orientation of 
the cnidocyte allows the nematocyst to be fired out from the epidermis of the 
cnidarian. (From Phylum Cnidaria, n.d.) 



 4 

Aiptasia is naturally consumed by some nudibranchs, which can help control the 

growth of the anemone. Nudibranchs feed mainly on a specific genus of 

cnidarians (Kempf and Brittsan, 1996). The Spurilla neapolitana, a nudibranch 

found in the Mediterranean, West Atlantic, and East Pacific, feeds on as many as 

37 species of sea anemones as a part of the organism’s diet (Schlesinger, 

Goldshmid, Hadfield, Kramarsky-Winter, and Loya, 2009). Doekpe, Herrmann, 

and Schuett (2011) noted that nudibranchs possess the ability to incorporate 

unfired nematocysts in the cerata, which are dorsal structures that protrude from 

the backs of nudibranchs. Kempf (1991) demonstrated that ingested pieces of 

Aiptasia pass through the digestive system and into the cerata. Once there, the 

Aiptasia are engulfed by nutrient processing cells. Kempf did not find any signs 

of digestion in the cerata, which could suggest that the cnidosacs in the cerata 

only act as storage, not digestive entities.   

 

It is possible that mucus and other structures in the organism behave as protective 

barriers against nematocysts. Studies on the movement of nematocysts throughout 

various nudibranch species observed that nematocysts are stored in cells of the 

ingestor organism, called cnidosacs, through foreign organellar retention 

(Schlesinger et al., 2009). Another study tracked the movement of the 

nematocysts throughout the digestive structures of Cratena peregrina, a 

nudibranch related to A. stephaniae, finding the nematocysts to be stored in the 

cerata of the nudibranch before being excreted (Martin, 2003).  



 5 

Like many nudibranchs, A. stephaniae has cerata along its dorsal side that change 

color after the organism has fed (Carroll and Kempf, 1990). 

 

It is hypothesized is that the nematocysts would pass through a portion of the 

digestive system and align in the epidermis of the cerata similarly to nematocyst 

alignment in Aiptasia. The null hypothesis is that the nematocysts will be evenly 

distributed among the tissue of the cerata, as well as oriented so that the firing 

mechanism will expel the barb towards the outside of the cerata. The purpose of 

this experiment is to determine if the nematocysts pass through the digestive 

system unaffected, and if so, whether they orient themselves in the epidermis in 

the same manner they are known to be oriented in the original host. 

 

 

 

Materials and Methods 

Aiptasia Care 

The Aiptasia anemones were removed from a tank containing a sump of a larger 

aquarium system. Clumps of green algae were placed into a large, plastic 

container filled with water from the sump tank, where the algae was separated 

into smaller sections. The anemones were removed from the algae with the aid of 

forceps and a dissecting microscope and placed into a tank, with the dimensions 

20”x11”x12”, equipped with a filter, heater, and two sections of plastic egg crate 

grids. The Aiptasia anemones were kept in a tank separate from the other 
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organisms. Salinity, pH, temperature, ammonia, nitrite and nitrate levels were 

measured everyday. Salinity was kept at approximately 34% ± 2%. Temperature 

was kept at about 23°C ± 3°C. Ammonia levels were kept at <0.1 ppm, nitrite at 

<0.2 ppm, and nitrate at <0.2 ppm (Holmes-Farley, 2008). A water change of a 

fourth was performed if any of the listed water parameters were found to be 

outside the acceptable range. Anemones were fed small, frozen mysis shrimp 

dropped directly into the arms of the anemones every other day. Visible waste on 

the floor of the tank was siphoned out on days when the Aiptasia were not fed. 

 

Three vital dyes (Aniline blue, Tryphan blue, Bismarck brown) were tested on the 

anemones.  One gram (g) of the diluted or powered dye mixed with 20 milliliters 

(mL) of filtered seawater formed each dye. Three anemones were removed from 

the tank and placed into a small container with enough water to cover the top of 

the anemones. Anemones were bathed in the stain for 30 seconds, one dye per 

anemone. The effect of the dye within the anemones was observed. Dyes were 

also injected into the anemones. The dyes were compared based on the ability of 

the dye to be retained in the Aiptasia.  

 

A. stephaniae Care 

Fifteen adult A. stephaniae were bought from aquaculture stock supplier and 

placed into a tank. The nudibranchs were placed into containers that separated the 

organisms into groups (Figure 3). Salinity, pH, temperature, ammonia, nitrite and 

nitrate levels of the system were measured everyday. Salinity was kept at 
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approximately 33% ± 2%. Temperature was kept at about 18°C ± 2°C. Ammonia 

levels were kept at <0.1 ppm, nitrite at <0.2 ppm, and nitrate at <0.2 ppm 

(Holmes-Farley, 2008). A water change of half was performed if any of the listed 

water parameters were found to be outside the acceptable range. Berghia were fed 

Aiptasia every two days. 

 

Experimental Design 

The A. stephaniae were starved for one day prior to the experiment day.  Stained 

Aiptasia placed in each container allowed for observation to select a reasonable 

set of times to assign to the A. stephaniae containers. The A. stephaniae were 

removed at 1 hour (h), 1.5 h, 2 h, and 2.5 h.  The samples were placed into a 

fixative of 10% formalin in filtered salt water and sent away for sectioning 

(Kempf, 1984). The sectioned samples were stained with a hematoxylin and eosin 

stain and mounted on slides, which were observed using a light microscope. 

Nematocysts were located, and notes were made of the distance and orientation of 

each in relation to the epidermis of the cerata. Five orientations in relation to the 

Figure 3. Set up of containers used to house A. stephaniae 
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epidermis were determined, and nematocysts were assigned a value between 0 

and 4. These values are summarized in figure 4. A value of 4 features the barb 

assembly of the nematocyst facing outwards and perpendicular to the epidermis. 

A value of 3 features the barb assembly facing approximately 45 degrees from the 

position of value 4. A value of 2 features the barb assembly of the nematocyst 

facing parallel to the epidermis. A value of 1 features the barb assembly facing 

approximately 45 degrees from the position of value 2. A value of 0 features the 

barb assembly facing inwards and perpendicular to the epidermis. A Fisher’s 

Exact Test and a chi-squared test were performed on the data to calculate for 

significance through the use of online programs (citations).   

 

 

Figure 4. Orientation values in relation to nematocyst cerata epidermis. Note that the 
orientation for 3 and 1 can be to the right or the left. Figure obtained in part from Moffett,  
1996.  
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Results 

Staining Determination 

The live stains that stained the Aiptasia anemones were Aniline blue, Tryphan 

blue, and Bismarck brown. All three of the stains that remained in the Aiptasia 

caused a noticeable change in the color of the cerata of A. stephaniae, although 

the intensity of each varied (Table 1). The visibility of each stain can be seen in 

figure 5. Aniline blue was found to be the most favorable choice for staining, 

while Bismarck brown was the least favorable choice for staining. 

 

 

 

Table 1 

Summary of live stain results; concentration and visibility 
Live 
Stain 
Name 

Molecular weight Concentration Visibility in 
Aiptasia 

Visibility in 
A. 
stephaniae 
cerata 

Tryphan 
Blue 

0.4% m/v solution 5.2x10-5 High Medium 

Bismarck 
Brown 

419.32 g/mol 1.2x10-4 Medium Medium 

Aniline 
Blue 

737.76 g/mol 6.8x10-5  High High 
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A. stephaniae Observation 

An initial observation of feeding of the A. stephaniae suggested a rate of passage 

of approximately 3.5 hours or less from consumption to retention in the cerata. 

Figure 6 represents the difference in color of A. stephaniae fed stained and 

unstained Aiptasia.  

 

Figure 5. Comparison of staining effect on A. stephaniae. a. Aiptasia 
anemone stained with Tryphan blue. b. Aiptasia anemone stained with Aniline 
blue. c. Unstained Aiptasia anemone. d. Aiptasia anemone stained with 
Bismarck brown.  
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A. stephaniae staining 

The following pictures are of intact nematocysts located in the cerata of an A. 

stephaniae organism. The intact nematocysts appear as a bright pink and 

approximately 20 micrometers long. The ridges along the outer border of the 

nematocyst are the coiling of the barb. Nematocysts were observed within 25 µm 

of the epidermis, as well as at distances farther than 125 µm. Figures 7 and 9 

depict nematocysts at 10x magnification. Figures 8 and 10 show the previous 

mentioned nematocysts at 40x magnification, so that the position of the 

nematocysts can be seen in context to their position within the lumen of the 

cerata. 

 

Figure 6. Physical difference of appearance stained and unstained 
A. stephaniae. (a) A. stephaniae that ingested Aniline blue stained Aiptasia. 
(b) A. stephaniae that did not ingest stained Aiptasia 

a. b. 
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Figure 7. Intact nematocyst in relation to the portion of cerata. The ‘E’ labels 
the epidermis. The arrow indicates the location of the nematocyst.   

  

Figure 8. Intact nematocysts with visible coiling. The ‘E’ labels the epidermis.  
The arrow indicates the location of the nematocyst. Note the classic coiled appearance  
resulting from the contracted barb assembly.  
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Figure 9. Distribution of nematocysts. The ‘E’ labels the epidermis. The  
arrows indicate the location of the nematocysts.   

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Distribution of nematocysts. Two nematocysts are within 25 of the  
epidermis. Two nematocysts are with 100 of the epidermis. One nematocyst is located  
with 125 of the epidermis. The ‘E’ labels the epidermis. The arrows indicate the  
location of the nematocysts.   
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The following graphs represent the orientation and distance in relation to the 

epidermis of all observed nematocysts within the four sample A. stephaniae. The 

graph in Figure 11 groups the data in five clusters, with each cluster representing 

an orientation value (0-4). Within each cluster are three separate entries for the 

distances from the epidermis. The graph in Figure 12 groups the data in 3 clusters. 

Each cluster represents a range from the epidermis. Within each cluster are five 

separate entries representing the orientation of the nematocysts. The distances 

were split into smaller segments, such that the nematocysts were counted for 

every 25 µm from the epidermis. This data represents the frequency distribution 

of the nematocysts (figures 13 and 14). The chosen statistical test for significance, 

the Fisher’s Exact Test displayed a p value of 5.9x10-5 (figure 15).
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Distribution of Nematocysts Grouped by Orientation Value 

 

 
Number of 
Nematocysts 
 
 
 
 
 
 
 
 
 
 
    Orientation Values 
 
Figure 11. Distribution of Nematocysts grouped by orientation value. Each orientation 
value has three separate entries for the three distance ranges from the epidermis. 
 

 

Distribution of Nematocysts Grouped by Distance from Epidermis 

 

 

           
Number of                    
Nematocysts 

 

 

 

 
        Distance from Epidermis (µm) 
 
 
Figure 12. Distribution of nematocysts, grouped by distance from epidermis. Each distance 
has five separate entries for the assigned orientation values. 
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Frequency Distribution of Nematocysts 

 

 
 
 
Number of 
Nematocysts 
 
 
 
 
 
 
 
 
 
    Distance from Epidermis (µm) 
 

 
Figure 13. Frequency of nematocysts, grouped by distance observed from epidermis. 

 

 

 Frequency Distribution of Nematocysts 

 

Figure 14. Frequency distribution of nematocysts, grouped by distance from epidermis. 
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Figure 15. Results of a Fisher’s Exact Test. (From Kirkman, 1996).  

 

 

Figure 16. Results of a Chi Squared Test. The result of the chi-squared test was a p-value of 
approximately 0.02 (From Preacher, 2001). 
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Discussion 

Staining Determination 

Two tests considering the effectiveness of a list of live stains were designed.  The 

stains were selected for testing based on what parts of the cell were stained. The 

first test was a determinant of whether the stain would be taken up in the Aiptasia. 

The stain was given by two methods: bathing and injection. The stains that 

remained within the Aiptasia were moved to the next test. The dyed Aiptasia were 

fed to the A. stephaniae, which were observed a day later. Since it is known that 

the cerata of A. stephaniae will turn a dark color after feeding, the theory was that 

the stain from the consumed Aiptasia would be visible once it had reached the 

cerata. The stain that was most visible was selected as the dye to be used.  

 

Originally, there was a list of six complied live stains (Aniline blue, Tryphan blue, 

Janice Green, Bismarck brown, Carmine, and Neutral red) that would be tested. 

Of the original list, three of these were ruled out before testing on Aiptasia. Janice 

green was dropped from the list because it was not available from the source the 

stains were acquired from. Carmine was ruled out for two reasons, the first of 

which was the lack of a molecular weight for the actual compound I had. The 

MSDA sheet that accompanied the dye did not have a listed molecular weight, 

and multiple sources listed different molecular weight for the dye, so I decided to 

discount it as a possibility.  
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Aniline Blue was determined to be the most appropriate dye to use due to the 

strength of its color in the Aiptasia and A. stephaniae. Though all three live stains 

were visible in Aiptasia and anemones, the color that Tryphan blue was highly 

visible in the Aiptasia, but provided a weaker visible color in the cerata. Bismarck 

brown produced a highly visible color, but the color was too similar to the natural 

color of the Aiptasia, so it was given a rating of medium visibility in the Aiptasia. 

When the stained anemone was given to A. stephaniae, the color did affect the 

dorsal section of the nudibranch. However, the color of a nudibranch having fed 

on Bismarck brown stained Aiptasia was not significantly different from the color 

of A. stephaniae having fed on unstained Aiptasia. This lack of difference in color 

indicated that the nematocysts might not have stood out much from the normal 

interior structures of A. stephaniae. For this reason, Bismarck brown was rejected 

as an optimal choice. Aniline blue produced a highly visible color in the Aiptasia 

and the cerata. 

 

A. stephaniae Observation 

The dyed Aiptasia was fed to the A. stephaniae, and the A. stephaniae were 

observed at one-hour time intervals over the course of a day to ensure that the 

time frame used to take samples taken from the A. stephaniae could be tailored to 

fit the rate of passage through the A. stephaniae. It would not have made sense to 

carry out the experiments over time intervals of six hours if the nematocysts take 

only two hours to reach the cerata.  
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A. stephaniae Staining 

The nematocysts were only observed in the lumen of the cerata, mostly with 25-

100 micrometers of the epidermis of the cerata. The nematocysts were expected to 

be found evenly throughout the cerata, and yet the data actually displayed a 

pattern similar to a bell curve. Many of the nematocysts were found at between 25 

and 100 µm from the epidermis. This could indicate a preference for this range of 

distances from the epidermis. The p-value from the fisher’s exact test, selected 

because of the small sample size, was extremely low at 0.000059. This low value 

indicates that the data input into the fisher’s exact test was not significantly 

different, which allows the null hypothesis that the nematocysts would be evenly 

distributed through the cerata to be rejected.  

 

It was expected that the nematocysts would orient themselves with in the 

epidermis so that the nematocysts could be fired outwards. As the data reflects, 

this was not the case, as observed in the four sample A. stephaniae. Had the 

nematocysts in the A. stephaniae oriented as in cnidarians, it would be expected 

that all of the nematocysts would have been observed with orientation values of 4. 

This was not what was observed. The nematocysts were found in multiple 

orientation values with most of the nematocysts laying in the orientation of values 

1, 2, and 3. This could indicate that the orientation of the nematocysts is random, 

which is supported by the result of the chi-squared test. The result of the p-value 

was approximately 0.02, and since the threshold for significance for this 
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experiment was 0.05, it can be concluded that the data is not significantly 

different, as the p-value was lower than 0.05. 

 

The sample size was fairly small, so that could be a contributing factor to our 

results, but using the two conclusions from the results of the fisher’s exact test 

and the chi-squared test, the null hypothesis that the nematocysts are evenly 

distributed and oriented in one direction can be rejected. It can be inferred that the 

nematocysts may not act in A. stephaniae as in Aiptasia and other cnidarians. 

Most likely the nematocysts act as a deterrent to potential predators in a slightly 

different way. The nematocyst may function by positioning so that the predator 

receives a mouth full of nematocysts if the cerata are bitten off rather than firing 

when the predator brushes against the outside of the cerata of the A. stephaniae. 
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