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 Recent advances in microbiology, computational capabilities, and 

microelectromechanical-system fabrication techniques permit modeling, design, and 

fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-

on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and 

bulky laboratory-based testing equipment. Potential applications for devices include: 

fluid characterization for material science and industry; chemical analysis in medicine 

and pharmacology; study of biological processes; food analysis; chemical kinetics 

analysis; and environmental monitoring. When combined with liquid-phase packaging, 

sensors based on surface-acoustic-wave (SAW) technology are considered strong 

candidates. For this reason such devices are focused on in this work; emphasis placed on 

device modeling and packaging for liquid-phase operation. Regarding modeling, topics 

considered include mode excitation efficiency of transducers; mode sensitivity based on 



 

 

guiding structure materials/geometries; and use of new piezoelectric materials. On 

packaging, topics considered include package interfacing with SAW devices, and 

minimization of packaging effects on device performance.  

In this work novel numerical models are theoretically developed and implemented 

to study propagation and transduction characteristics of sensor designs using 

wave/constitutive equations, Green’s functions, and boundary/finite element methods. 

Using developed simulation tools that consider finite-thickness of all device electrodes, 

transduction efficiency for SAW transducers with neighboring uniform or periodic 

guiding electrodes is reported for the first time. Results indicate finite electrode thickness 

strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% 

and 100% for uniform and periodic electrode guiding, respectively; yielding improved 

sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity 

using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, 

langasite, and quartz substrates. Optimum configurations are determined yielding 

maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are 

correlated by a factor independent of substrate material. The analysis is useful for 

designing devices meeting sensitivity and signal level requirements. A novel, rapid and 

precise microfluidic chamber alignment/bonding method was developed for SAW 

platforms. The package is shown to have little effect on device performance and permits 

simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested 

for viscosity and biosensor applications; results show ability to detect as low as 1% 

glycerol in water and surface-bound DNA crosslinking. 
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CHAPTER 1 

INTRODUCTION, MOTIVATION AND BACKGROUND 

1.1. Introduction and Motivation  

 Liquid-phase sensors are currently being researched and developed for 

applications in the areas of: (i) fluid characterization, in terms of viscoelastic, density, 

dielectric, and conductivity properties for material science and industry in process- and 

quality-control; (ii) chemical analysis in the area of medicine and pharmacology, 

biological processes, food analysis, and chemical kinetics; and (iii) environmental 

monitoring applications such as detection of pathogens or toxic chemicals. Bench-top 

devices and instruments are typically employed to address many of the aforementioned 

needs. In particular, fluidic physical properties are typically measured using devices such 

as: hydrometers, pycnometers, and analytical balances; Zahn cups and Stormer 

viscometers (Newtonian-fluids), rheometers for characterization non-Newtonian 

behavior; and parallel-plate impedance analysis devices, e.g. a Schering Bridge, for 

electrical property characterization [1]. In terms of liquid-phase chemical and biological 

sensing, techniques and equipment such as fluorescence microscopy, chemiluminescence, 

surface plasmon resonance, liquid chromatography, and electrochemical analysis are 

commonly applied [2]. 
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 With the recent technological advances in microelectronics and 

microelectromechanical systems (MEMS) fabrication techniques, microbiology, and 

computational capabilities it has become possible to model, design, and fabricate 

low-cost, miniature, sensitive and selective candidate liquid phase sensing platforms and 

lab-on-a-chip systems [3]. Such devices are expected to eventually replace expensive, 

time-consuming, and bulky laboratory based testing equipment. Additional potential 

advantages over use of standard instruments also include reduced required reagent 

volumes, lower power consumption, faster analysis, portability, and batch fabrication 

compatibility. In spite of these advantages, significant design challenges emerge as 

devices move towards the micro- and nano-scale dimensions. Packaging devices for 

liquid-phase operation becomes challenging, and in particular microfluidic to 

macrofluidic interfacing, fluidic chamber design, and integration with a sensor device. 

Compared to the macro-scale, fluids at the micro-scale may behave drastically different 

as effects such as surface tension and viscosity begin to dominate. In particular, fluids at 

micro- and nano-scale regimes typically exhibit a low Reynolds number, which is a 

measure of the ratio of inertial forces to viscous forces [4]. Therefore the design of 

microfluidic flow cells becomes non-trivial as problems such as bubble entrapment, 

nucleation, and chamber filling prevent reproducible sample exposure and analysis by the 

sensor transducers. Other concerns regarding the use of micro- and nano-scale devices 

may include device fabrication reproducibility and overall sensor robustness. 
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 Since the 1980’s acoustic wave devices began to be explored as candidate 

liquid-phase sensor platforms. Devices based on this technology consist of 

electromechanical transducers affixed to a piezoelectric material. Due to the piezoelectric 

effect the electric field within the material is linked to mechanical fields i.e. stress and 

displacement. Via application of an electrical signal to a transducer, electromechanical 

modes are excited in the substrate. In terms of sensing, a measurand interacts with the 

piezoelectric material and modifies properties of the device’s characteristic mode(s). 

Another transducer, or the same, can be used to detect the modes and measure 

propagation properties such as phase velocity and attenuation, or characteristic resonance 

frequencies. The variation in the mode properties may then be related to a measurand, 

upon the usage of a device calibration curve. Acoustic wave devices are typically 

fabricated using batch photolithographic techniques, and are typically as small as a few 

mm
2
, portable, and are considered highly sensitive sensing platforms [5].  

 In this dissertation, liquid-phase sensors based on one type of acoustic wave is 

studied extensively. More specifically, the candidate sensor platform considered in this 

work is based on a pure shear-horizontal surface acoustic wave (SHSAW) device; a 

technology which is reviewed in Section 1.2. In brief, such a device (see Figure 1.1) is 

typically configured as a delay-line for liquid-phase sensor applications and consists of 

two transducers spaced some distance apart and positioned along a specific orientation on 

the surface of a piezoelectric substrate. Through application of an electrical signal to one 

of the transducers, a SHSAW mode is launched and propagates along the substrate 

surface across the delay/sensing region and is then detected by another transducer. 
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Applying a fluid analyte to the device delay/sensing region causes properties of the mode 

supported in that region to be altered, such as phase velocity and attenuation, which is 

detected by the output transducer. Devices based on the SHSAW mode are applicable to 

liquid-phase sensor applications due to the reduced mode dampening from fluid surface 

loading as compared to devices based on other surface wave modes, such as a Rayleigh 

type. A more thorough discussion on modes relevant to liquid-phase sensing is given in 

Section 1.2.  

 

Figure 1.1. Diagram of a typical SHSAW device. 
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 SHSAW devices have transducers positioned on the same side of the substrate as 

the fluid/substrate interface and therefore require packaging to isolate transducers in 

order to prevent dielectric or electric shorting by high-permittivity or conducting fluid 

analytes, respectively. The packaging at the same time must permit fluid contact with 

device delay/sensing region. Because of this requirement, packaging devices becomes 

challenging as the chamber sealing area between the delay path and transducer regions is 

typically relatively small (few wavelengths). Furthermore, the attachment of a chamber 

may also negatively affect the device response via introducing effects such as mode 

scattering, dampening, and reflection at this interface.  

 The motivation for this work was to improve SHSAW device design through the 

development of new modeling tools and analyses aiming at increasing sensor 

performance. In addition, this work sought to further study and implement improved 

SHSAW liquid-phase device packaging techniques in order to enhance the overall sensor 

performance, reproducibility, and fabrication simplicity.      
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1.2. Acoustic Wave Liquid-Phase Sensor Technology Background 

 Acoustic wave devices based on the piezoelectric effect are typically fabricated 

by depositing thin-film electrodes, acting as transducers, on the surface(s) of a 

piezoelectric substrate. The transducers are used excite and/or detect electromechanical 

modes supported in the material via the piezoelectric effect (discussed in greater detail 

below). When configured as sensors, perturbations in the surrounding environment (i.e. 

modification of the physical boundary conditions) cause the characteristics of modes 

supported in the material to be altered, such as phase velocity and/or level of attenuation. 

The sensed signal, represented as a change in the time/phase, frequency, or amplitude 

properties of the device, is directly measured using external electrical equipment 

connected to the transducer(s). The mode perturbations can be mechanical in nature, e.g. 

surface mass, stiffness, and viscous loading; or electrical in nature, e.g. resulting from 

modification of the surrounding dielectric or conductivity properties. As mentioned 

briefly above, electrical mode excitation and detection by transducers occurs as a result of 

the piezoelectric properties of the substrate. In particular, a material is said to be 

piezoelectric if upon application of a mechanical force the body becomes electrically 

polarized (direct effect), and conversely upon application of an electric field the body 

becomes mechanically deformed (inverse effect) [6]. The direct effect was discovered by 

the brothers Pierre and Jacques Curie in 1880, however the inverse effect was predicted 

shortly afterwards by Gabriel Lippmann in 1881 and was later confirmed in 1882 by the 

Curie brothers [7]. Over the period of 1914-1918, Paul Langevin demonstrated one of the 

first real-world uses of the technology through application of piezoelectric transducers 

towards submarine detection [8]. A few years later in 1921 Walter Cady demonstrated for 
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the first time the use of quartz resonators for stabilization of oscillators and narrow band 

filter applications [7]. Later with the invention of the interdigital transducer by White and 

Voltmer (discussed in greater detail later) acoustic wave technology was applied to 

various signal processing applications, including: matched filters, compressors, 

convolvers, and delay lines [9,10]. Today acoustic wave filters find widespread use in 

high-volume low-cost consumer applications such as television, global positioning 

systems, wireless local area networks, and mobile phones [11].   

 In addition to the large number of signal processing applications, over the past 

thirty years acoustic wave technology has also been considered for liquid-phase sensing 

applications. Earlier sensing devices were initially considered for solid-phase sensing or 

gravimetric applications (reported in late 1950's) and were based on use of the quartz 

crystal microbalance (QCM) [12]. The QCM device consists of a polished parallel plate 

resonator, configured much like a parallel plate capacitor, consisting of piezoelectric 

substrate and thin (100’s nm) electrodes positioned atop each face. As a result of the 

piezoelectric effect, bulk acoustic wave(s) (BAW) mode(s) are generated within the body 

via applying an electrical signal to the transducer electrodes. As the BAW is generated, 

the acoustic energy becomes contained between the two surfaces and the device resonates 

at frequencies where the fields satisfy the boundary conditions (under fundamental mode 

operation substrate is ½ BAW wavelengths thick). Typical fundamental operating 

frequencies for QCM devices range from hundreds of kHz up to tens of MHz; the upper 

limit is governed by the crystals thicknesses, in terms of robustness, and surface finish 

quality. Early QCM devices were shown to display resonance frequency with high 
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sensitivity to surface mass loading. For instance in [12] an accuracy of 10
-10

 g is reported. 

Today commercial sensing systems based on QCM devices are employed all over the 

world for measurement of deposited thin-film thickness in vacuum deposition systems. 

The degree the device resonant frequency shifts due to mass surface loading was first 

successfully approximated by the Sauerbrey Equation [12]: 
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where: 

 Δf is the change in resonant frequency, 

 Δmd is the surface mass change per unit area, 

 f0 is the operating frequency, 

 ρ is the density of the piezoelectric material, 

 v is the velocity of the acoustic wave in the material. 

One very important property of (1.1) of is that the device sensitivity, given as Δf/f0, is 

proportional to the device operating frequency. This indicates that devices made on 

reduced thickness substrates will tend to have higher sensitivity compared to their thicker 

counterparts. It was not until the 1980's that such devices were considered for 

liquid-phase sensing applications. In particular, it was shown that QCM devices could 

achieve stable oscillation under a liquid-loaded surface condition using a temperature 

compensated AT-cut QCM [13]. This ability is attributed to the QCM's excitation of a 

thickness-shear mode (TSM). Such a mode has particle displacement components only 

along the plane of the crystal surface which results in minimal coupling to the adjacent 

fluid and avoids severe mode dampening through compression wave excitation into the 

fluid [14,15]. The Sauerbrey Equation did not accurately predict resonance frequency 
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changes under liquid-loaded conditions, which were mainly ascribed to viscous coupling 

to the liquid. Such a problem was first addressed by the work of Kanazawa and Gordon 

in 1985, which proposed a relationship for the change in resonance frequency due to the 

viscosity-density product of a Newtonian fluid [5]:  
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(1.2) 

where: 

 Δf is the change in resonant frequency, 

 f0 is the operating frequency, 

 ηl and ρl are the viscosity and density of the fluid respectively, 

 ηq and ρq are the viscosity and density of the piezoelectric respectively. 

Equation (1.2) indicates that the device response in terms of sensing is mainly governed 

by the fluid analyte square-root viscosity-density product. In addition the device 

sensitivity is proportional to the square-root of device operating frequency. The work of 

[5] was later expanded for similar quartz resonator devices in [16] to include resonance 

frequency shift due to dielectric and conductivity properties of fluids.  

 Similar to a QCM device, the lateral field excited (LFE) device has recently been 

considered for liquid-phase sensing applications [17,18]. In the case of AT-cut quartz, 

both QCM and LFE device configurations can excite the TSM mode, but unlike the QCM 

configuration, the LFE has both electrodes positioned on the same side of the 

piezoelectric crystal (separated by a parallel gap). The other side of crystal is typically 

left electrically unshielded to allow probing of electrical properties of the fluid in addition 

to viscosity and density properties [17].  
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 Another more recent member of the bulk acoustic wave liquid-phase sensor 

family is the thin-film bulk acoustic resonator (FBAR) [19]. Recently, the ability to 

deposit thin piezoelectric films on the order of hundreds of nanometers, which support 

excitation of the TSM, have opened up the possibility of using such devices for 

liquid-phase sensor applications [20,21]. Such devices can be thought of as scaled down 

versions of the QCM device, and are based on the formation of a resonating structure via 

the deposition of thin-film piezoelectric materials on non-piezoelectric substrates such as 

silicon. Typical deposited piezoelectric materials used in the fabrication of these devices 

include zinc-oxide (ZnO) and aluminum-nitride (AlN). There are two main methods used 

to fabricate the resonant cavities of FBAR devices: (i) a periodic super-lattice consisting 

of materials with large differences in acoustic impedances is first deposited on a silicon 

substrate, followed by deposition of the bottom electrode, a piezoelectric film, and a top 

electrode respectively; or (ii) the bottom electrode is deposited on silicon followed by a 

deposition of the piezoelectric and top electrode respectively, next the bulk silicon is 

removed from the underside of the structure forming a membrane cavity.  An advantage 

of FBAR based devices over QCMs is the fact that the fabrication techniques can be 

compatible with complementary metal-oxide semiconductor (CMOS) processing, which 

may lead to fully integrated sensors.  Another advantage is the capability of operating at 

much higher frequency; from hundreds of MHz to a few GHz. Increased operation 

frequency is anticipated to yield devices with greater sensitivity according to (1.1) and 

(1.2). A current disadvantage is the relatively low obtainable quality factor (Q) of such 

devices compared to QCM, which have been reported as 156 and 2000 [21] under liquid-

loaded conditions for the TSM FBAR and QCM devices, respectively. Although the 
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10 MHz QCM Q reported is about 13 times larger than that that for the 790 MHz TSM 

FBAR under liquid loading conditions, the devices was still able to detect mass changes 

down to 2.3 ng/cm
2
, which is about two times lower than that reported for the QCM [21]. 

  The other family of acoustic wave devices considered for liquid-phase sensing 

applications is based on guided acoustic modes, which are typically generated and 

detected by transducers located at the surface of a piezoelectric material. Such devices are 

expected to yield higher sensitivity compared to QCM and LFE devices because of 

increased operating frequency, in accordance with (1.1) and (1.2), which range from 

hundreds MHz to a few GHz. The theoretical basis for such devices began over a century 

ago. In particular, Lord Rayleigh discovered the existence of a surface acoustic wave 

(SAW) mode which is guided by the surface of an elastic solid that exhibits an energy 

profile exponentially decaying into the bulk [22]. Later studies by Lamb, Stoneley, and 

Love expanded the knowledge in the field with the discovery of modes propagating in 

finite-thickness elastic plates, at the interface of two elastics solids, and at the interface of 

finite-thickness elastic layer and solid, respectively [23,24,25]. Such works were focused 

on the area of geodynamics. In 1965 with the invention of the interdigital transducer 

(IDT) by White and Voltmer, an efficient means for excitation and detection of the 

aforementioned modes was demonstrated on piezoelectric materials [26]. The IDT 

consists of a periodic arrangement of electrodes having alternating polarity in a comb-like 

structure. Such structures are typically fabricated using standard microelectronic 

photolithography and thin-film deposition techniques. For liquid-phase sensors based on 

SAW devices, sustained propagation of the acoustic mode is required at the liquid/solid 
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interface in order to accurately measure mode perturbations associated with the fluid 

measurand. Such a scenario was first considered by Campbell and Jones in 1970, where 

the authors studied the propagation loss of SAW modes at the boundary between a 

piezoelectric crystal and fluid medium (air and water loading reported) [15]. In their work 

it was shown that strong propagation loss of the SAW mode occurs through the launching 

of a compression wave into the fluid due resulting from the mode displaying a particle 

displacement component normal to the surface. Around the same time, the existence of 

piezoelectrically coupled SAW modes with particle displacements only within the plane 

of the crystal surface and transverse to the propagation direction were shown to exist 

along particular crystallographic orientations of piezoelectric materials that exhibited no 

counterpart in isotropic homogeneous solids [27]. The discovery of such a mode has been 

credited to three or more different groups around the globe working independently [28] 

and is commonly referred to as the Bleustein-Gulyaev-Shimizu (BGS) wave [27,29,30]. 

General methods were developed in the early 1970's to classify substrate orientations in 

terms of crystallographic symmetries for generic substrates [31]. In particular, 

orientations of elastic solids were separated into 5 symmetry types. Each type displayed 

unique behavior regarding field polarization and piezoelectric coupling within the 

substrate along particular propagation directions. The individual types specify which 

mechanical and electrical field components are coupled to each other within the substrate, 

and are determined given the substrate constants, orientation, and propagation direction. 

The symmetry types consist of: (i) Symmetry Type 1, which is the most general symmetry 

and presents coupling in all three dimensions between electrical and mechanical fields in 

the piezoelectric substrate; (ii) Symmetry Type 2 is similar to Symmetry Type 1 with the 
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exception that mechanical and electrical fields are decoupled (e.g. generic orientations of 

non-piezoelectric crystals); (iii) Symmetry Type 3 presents decoupling of two sets of 

fields in which one set exhibits piezoelectrically-active pure Rayleigh polarization 

(elliptical particle motion in the sagittal plane) and the other set is purely mechanical with 

pure transverse shear polarization (direction transverse to the sagittal plane); (iv) 

Symmetry Type 4 also presents the decoupling of two sets of fields in which one set 

exhibits piezoelectrically-active pure transverse shear polarization and the other set is 

purely mechanical with pure Rayleigh polarization; lastly (v) Symmetry Type 5 also 

presents decoupling of fields and presents both piezoelectrically-inactive pure Rayleigh 

and transverse shear polarizations (e.g. isotropic substrates). Based on the rotated 

material elastic, dielectric, and piezoelectric constants, criteria were given to determine 

the corresponding symmetry type in [31]. It should be mentioned that the properties of 

the symmetry type classifications do not require a half-space consideration. Under half-

space conditions not all solutions are guaranteed to support a guided wave. For example, 

in an isotropic half-space (Symmetry Type 5) a pure SHSAW mode solution does not 

exist for the purely transverse shear solution, although a purely mechanical SHBAW 

mode is supported. In the work by Lardat et al. in 1971, pure orientations falling under 

Symmetry Types 3 and 4 could be predicted based on crystallographic point groups [32]. 

In particular, the authors stated that pure Rayleigh coupling occurs when the sagittal 

plane is a plane of symmetry, and pure shear coupling occurs when the perpendicular to 

the sagittal plane is a binary axis.  



14 

 

 The first attempts to build liquid-phase sensors on piezoelectric substrates using 

devices incorporating IDTs began in the late 1980's and early 1990’s [33,34,35,36,37]. 

One early reported sensor was applied to fluidic density characterization and pressure 

monitoring using a Lamb mode device [34]. The sensor was built on a silicon substrate 

through deposition of a silicon nitride film, ground plane, piezoelectric zinc oxide layer, 

and IDT electrodes respectively, followed by removal of bulk silicon from the device 

underside. Although the Lamb wave mode considered displayed particle displacement 

components normal to the substrate surface, the device was still able to operate under 

liquid loading conditions in an oscillator configuration. The authors attributed this to the 

fact that the phase velocity of the Lamb wave mode is below the compression wave phase 

velocity supported by the fluid, and is hence cut-off. Another device reported around this 

time was based on the acoustic plate modes (APM) on lithium niobate, and was proposed 

for monitoring antigen/antibody reactions [35]. The APM is a mode excited and detected 

with IDTs and is guided by the entire thickness of the crystal. Devices based on plate 

modes are interesting because the fluid interface does not come into contact with IDTs 

since they are on opposite sides, and hence avoids possible direct dielectric and 

conductive electrical shorting of IDTs from fluids and also permits simple packaging 

methods. Another liquid-phase sensor platform based on a Love mode was also reported 

around this time and utilized a Symmetry Type 4 orientation of quartz that was combined 

with a polymer guiding layer [36]. The use of polymer over-layer was shown to convert 

shallow propagating BAW energy to a guided Love mode, which displayed increased 

sensitivity to fluid viscosity. The degree of sensitivity was also studied as a function of 

guiding layer thickness and tended to increase with layer thickness. Devices based on the 
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pseudo SAW (PSAW) mode in lithium tantalate were also investigated for liquid-phase 

sensing applications at this time because the particle displacement associated with the 

mode is predominantly shear, which results in the mode not being heavily damped by the 

fluid [33]. A few proposed devices were used to monitor fluid conductivity and pH 

[33,37]. In the case of PSAWs, there is intrinsic propagation loss associated with the 

mode because of energy leakage to BAW. Much work has been devoted to the search of 

orientations which support these modes and display low propagation loss because such 

modes typically display higher phase velocity then SAWs [38] resulting in increased 

device operating frequency for a given fabrication requirement. More recently devices 

based on the BGS mode have also begun to be considered as possible liquid-phase 

sensors because of displaying minimal dampening by the fluid analyte and ease of device 

fabrication. Two particular works investigated the BGS mode on new piezoelectric 

materials, e.g. potassium niobate and the LGX family of crystals which include lagasite, 

laganite, and langatate, that exhibit very high electromechanical coupling and existence 

of temperature compensated orientations, respectively [39,40]. 

 This work focuses on the modeling, design, fabrication, and testing of acoustic 

liquid-phase sensor platforms fabricated on Symmetry Type 4 piezoelectric orientations. 

Examples of general Symmetry Type 4 piezoelectric orientations include quartz, Euler 

Angles (0, , 90); langasite, Euler Angles (0, , 90); and potassium niobate, Euler 

Angles (, 90, 0). Specific orientations explored in this work include quartz, Euler 

Angles (0, 132.75, 90); langasite, Euler Angles (0, 22, 90); and potassium niobate, 

Euler Angles (0, 90, 0). From here on, the use of shear horizontal SAW (SHSAW) will 



16 

 

be used to encompass Love and BGS modes, since they have particle displacements 

which are shear with respect to the propagation direction and horizontal with respect to 

the surface normal. In general, SHSAW modes can exist on Symmetry Type 4 orientations 

of piezoelectric materials when combined with isotropic materials, which may be used to 

form electrodes and guiding structures. Some of the particular challenges in the use of 

SHSAW technology for liquid-phase sensing are evaluation of mode excitation and 

propagation properties, and development of appropriate packaging techniques which 

permit liquid-phase operation. The next few sections of this chapter discuss these issues 

individually with regard to SHSAW platforms, but it should be noted that many of the 

techniques used in this work to addresses these challenges are not limited to Symmetry 

Type 4 orientations. 

1.3. Acoustic Wave Device Modeling Background 

 For SHSAW liquid-phase sensors both propagation and transduction must be 

carefully considered in the device design process. The SHSAW propagation analysis of 

candidate structures must be performed with and without consideration of the fluidic 

interaction. It is desirable to characterize mode properties for structures under 

liquid-loaded surface conditions in order to determine the potential mode sensitivity, 

quantify the degree of acoustic energy loss to viscoelastic fluid loading, and to determine 

the penetration depth of acoustic energy into the sensing platform and fluid.  

 The SHSAW may be ideal for liquid-phase sensing, but if not efficiently excitable 

the device is not of practical use, as the signal-to-noise-ratio becomes very poor. Spurious 
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acoustic signals also excited/detected by the IDTs that are insensitive to the fluid analyte, 

such as shear horizontal bulk wave (SHBAW), may begin to dominate the overall device 

response, masking all information regarding the fluid interaction with the SHSAW. 

Therefore in addition to studying SHSAW propagation, it becomes equally important to 

study mode transduction/detection as well. 

1.3.1. SHSAW Propagation Modeling      

 Modern computational capabilities allow the use of numerical techniques to 

handle the characterization and modeling of SHSAW propagation properties. In 

particular, a number of models have been developed over the years to address 

propagation properties in structures relevant to SHSAW liquid-phase sensor devices 

[15,41,14,16,42,43]. In particular, the method proposed in [15] permits the calculation of 

modes propagating at the interface of semi-infinite piezoelectric materials and ideal 

fluids, and in particular uses an exact analysis method based on wave equations, but also 

considered a perturbation approach. Because of the ideal fluid assumption made, no 

viscosity effects were considered, and only fluid compression was taken into account. A 

later work [41] extended the methods used in [15] to include fluid dynamic viscosity 

effects and studied propagation in similar structures as [15]. The authors in [14] studied 

viscous loading for the BGS modes on a cadmium sulfide (CdS) substrate when a free 

surface is brought into contact with a fluid. Approximate analytical expressions were 

derived for the fractional change of mode phase velocity and propagation-loss given fluid 

density, viscosity, piezoelectric substrate constants, and operating frequency. The work 

presented in [16] considered both viscous and electrical properties of fluids on an AT-cut 
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crystal with one electrical free surface in contact with the fluid. In [42] the authors 

proposed the use of experimental techniques and theoretical transmission line models to 

evaluate mass sensitivity for a Love mode on ST-90 quartz. Recently [43] reported on 

propagation and excitation characteristics of a semi-infinite piezoelectric / zero-thickness 

electrode periodic grating / viscous fluid structure, which neglecting fluid conductivity 

and dielectric properties. The authors in [43] provided a slightly modified formalism 

compared to [41] regarding the treatment of viscosity, in which they also include a 

compressive viscosity factor. 

 In this dissertation, a wave-equation model is implemented that permits study of 

SHSAW mode properties (relevant to liquid-phase sensing) for structures consisting of a 

semi-infinite piezoelectric, n uniform finite thickness layers, and a semi-infinite viscous 

fluid, respectively. To the best knowledge of the author, for the first time a numerical 

sensitivity analysis is presented based on use of the full-wave model while considering 

finite-thickness effects of layers at the substrate / liquid interface. The motivation for this 

effort was to quantitatively determine achievable sensitivity parameters as a function of 

crystal substrate material and orientation, and layer materials and thickness. More 

information regarding this topic can be found in Section 3.3 

1.3.2. SHSAW Excitation Modeling 

 It is very important to consider the IDT excitation/detection properties in addition 

to propagation properties since practical devices usually excite spurious modes, such as 

the SHBAW, that reduces the overall device signal-to-noise ratio. The SHSAW delay line 
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sensor configuration targeted in this work consists of input and output IDTs separated by 

a sensing region. Such devices are susceptible to the excitation and detection of spurious 

SHBAW, mode diffraction, and electromagnetic feed-through [44].  

 Significant contributions to SAW device modeling can be found in the literature 

since the conception of the IDT. Review material are given in [9,44]. In terms of 

liquid-phase sensors targeted in this work, it is shown that it is important to consider the 

fraction of IDT input power converted to the mode of interest as compared to other 

modes. The most rigorous reported models to date, and discussed below, are able to 

include finite-thickness electrode mass/stiffness effects, bulk acoustic wave, electrostatic 

effects, and SAW modes in the overall device analysis. A number of numerical 

techniques have been implemented to address boundary-value problems based upon the 

underlying linear partial differentials equations that describe electromechanical wave 

excitation and propagation in materials. For instance, SAW device models has been 

proposed based on methods such as the boundary element method (BEM) [45], combined 

finite element method (FEM) and BEM methods [46], direct FEM [47], and finite 

difference time-domain (FDTD) [48] techniques. The first reported BEM model applied 

to surface acoustic wave problem was presented in [45]. The model was based upon 

forming integral equations through computation of spectral-domain Green's functions and 

application of the Fourier transform. Some of the assumptions made in [45] included no 

field variations along the IDT aperture dimension, quasi-static treatment of the 

electromagnetic wave, and that electrodes are considered to have zero-thickness and are 

perfect electrical conductors. The formalism was well suited for finite IDT structures 
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with surrounding electrode-free regions that extended infinitely in both directions, as well 

as for structures consisting of finite IDT structures with surrounding uniform electrode 

ground planes extending infinitely in both directions. After solving the boundary 

problem, analysis of the results allow extraction of far-field SAW and BAW behavior 

including input power partitioning, SAW amplitude, BAW radiation pattern into the 

substrate bulk, and overall IDT input impedance. The work in [45] also performed an 

analysis on a Symmetry Type 4 orientation of lead zirconate titanate (PZT), and showed 

that use of a guiding electrode placed in the device delay path region can dramatically 

increase the excitation efficiency for the respective BGS mode. Almost twenty years after 

the work in [45], the method was expanded in [46] and [49] to include finite-thickness 

effects of IDT electrodes via coupling a FEM and normal mode analysis to the BEM 

models, respectively. These works ignored the thickness of surrounding semi-infinite 

guiding electrodes. The problem of dealing with finite thickness of the guiding electrodes 

arises because in the FEM/BEM formalism, surface normal components of stress and the 

electric charge density are considered sources of waves and extend infinitely. In order to 

solve for the distribution of sources at the surface, basis function expansions are used for 

finite width electrodes, but no such convergent basis has been reported for semi-infinite 

extending electrodes. Even with this limitation, valuable insight regarding IDT SHSAW 

excitation could be gained for the study of Symmetry Type 4 orientations.  In publications 

by the author of this dissertation [50,51] SHSAW orientations of potassium niobate and 

langasite were studied considering infinitesimally thin guiding electrodes, and also apply 

to liquid-phase sensing applications as reported in this dissertation. In a more recent work 

published by the author of this dissertation [52] it was identified that the finite thickness 
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of long guiding electrodes must be included in the analysis in order to accurately extract 

from simulation the transduction and propagation properties applicable to sensor 

platforms.  

 An alternative to FEM/BEM techniques is direct FEM analysis of the electrodes 

and piezoelectric substrate. Such methods have been developed and applied for the 

simulation of SAW devices [47,53,54,55], and are well poised for structures with limited 

dimensions, since the entire domain must be discretized, thus not permitting far-field 

behavior of modes to be analyzed directly. Recently absorbing boundary conditions, 

enforced at the discretized domain edges that make the model appear more as if it is 

infinite in extent (reduce domain edge reflections), have begun to be implemented in 

FEM models [55]. This boundary condition method may allow extraction of far-field 

SHSAW mode behavior, but no work has been reported regarding this application. Other 

device simulation models reported that are based on FDTD techniques can be found in 

[48,56]. This method is similar to FEM in that the domain must be discretized, but rather 

than assuming sinusoidal time variation, temporal partial derivatives are approximated by 

finite differences of fields as a result of small stepping in time. It may be possible to use 

this technique to determine far-field SHSAW behaviors by running simulations in time 

up to a point before computational domain edge effects cause interference with mode 

amplitude extraction, e.g. reflections due to the computational domain boundaries may 

interact with the launching IDT and prevent accurate estimation of the IDT input power 

that would be observed had the model extended infinitely. 
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 An alternative to modeling finite length IDT structures is analysis of infinite 

periodic array of grating electrodes positioned upon a piezoelectric material. Such 

analysis methods allow the characterization of SAW grating modes, and also permit the 

study of excitation properties of infinite IDT structures. An advantage of periodic 

analysis compared to simulation of finite structures is that computation time is 

dramatically reduced because only one period of the array needs to be studied with 

FEM/BEM, according to Floquet theory [44]. The method of Floquet analysis is 

applicable to the FEM/BEM and FEM methods discussed and are used to study an 

individual period or array. One such early work [57] discusses a method to determine 

grating mode characteristics while also considering bulk acoustic wave interactions; 

however this work neglected the loading effects from finite thickness electrodes. A later 

work expanded these concepts to include loading effects of finite-thickness electrodes 

[58]. This particular analysis allowed calculation of the harmonic admittance for the 

grating structure, which is the ratio of current entering an electrode over one period to 

voltage (the entire structure is driven sinusoidally in space and time, i.e. adjacent 

electrodes in the array have a constant increasing applied voltage phase shift and are also 

driven sinusoidally in time). In [59], which also neglected electrode loading effects, the 

harmonic admittance was used to compute mutual admittance of a periodic structure 

using the inverse Fourier series. The mutual admittance technique allows the calculation 

of the current entering any electrode in the array when a voltage is applied to one 

electrode in the array;  all other electrodes are assumed grounded. Based on the mutual 

admittance and superposition principle, the technique allows the analysis of an arbitrary 

arrangement of driven electrodes within an infinitely periodic electrode structure. The 
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method also permits the separation of the SAW mode from bulk wave and electrostatic 

contributions. The methods in [58] and [59] were combined in this dissertation for the 

analysis of SHSAW transduction efficiency by IDTs considering finite-thickness 

electrodes on a Symmetry Class 4 orientation of potassium niobate, langasite, and quartz 

[50,60,52]. The main results of the this work showed that through the use of thick 

gratings consisting of dense materials such as gold, almost 100% of the IDT input power 

can be transduced into the grating mode. This important result showed that efficient 

transduction of SHSAW modes can be achieved using heavy electrodes and is applicable 

to the design of efficient liquid-phase sensor platforms, that display improved signal-to-

noise ratio via reduction of spurious signal excitation and detection. 

1.4. Liquid-Phase Packaging Background 

 For SHSAW liquid-phase sensors, the employed device packaging that permits 

liquid-phase operation must minimally interfere with the sensing platform, prevent IDT 

shorting, provide some level of device protection, and facilitate easy micro- to macro-

fluidic connections. In addition, it is highly beneficial if the sensor packaging process is 

compatible with batch fabrication techniques. A number of solutions have been reported 

for acoustic wave devices, which have typically borrowed fabrication techniques initially 

developed for MEMS devices. One such proposed technique [61] makes use of the ultra-

thick high aspect-ratio photoresist SU-8 to form fluid containment walls around IDTs on 

prefabricated Love mode device. A quartz cap was manually placed on top of the 

structures and glued in place, leaving the sensing region open for fluid introduction via 

pipette. A similar reported method used SU-8 to cover the entire surface of a SHSAW 
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device forming a Love mode guiding layer, followed by SU-8 patterning of containment 

walls and attachment of a glass cap [62]. The use of the first SU-8 layer was two-fold; 

first to provide Love mode guiding, and second to improve adhesion of SU-8 walls to the 

device since in general SU-8 poorly adheres to quartz and silicon [63]. In another 

technique involving use of SU-8 [64], microfluidic chambers were fabricated using SU-8 

on a poly(methyl methacrylate) (PMMA) substrate due to the superior adhesion that 

PMMA has with SU-8 when compared to glass and silicon. Next an optical adhesive 

NOA-73 was applied to the patterned SU-8 sealing-channels and then brought into 

contact with the SAW device and cured — bonding the two structures. In another SAW 

packaging work [65], a liquid-phase lithium tantalate platform was packaged with a 

polymeric chamber fabricated using a 3D photopolymerisation process of a copolymer 

based on acrylate. The packaging method required the chamber to be pressed to the 

sensor platform in order to produce a seal. The inventors of a commercially available 

Love wave liquid-phase sensor platform, S-sens
®
 K5 biosensor system (Nanofilm 

Surface Analysis - Goettingen, Germany), reported a packaging method based on 

hot-embossing of thermoplastic-elastomeric polymers [66]. In this case the fluidic 

chamber walls are located outside of the IDT regions, such that fluid is exposed to the top 

of the entire Love mode device including IDTs, and the silicon dioxide guiding layer is 

used to prevent IDT shorting from conductive fluids.  

 The use of poly(dimethylsiloxane) (PDMS) or silicone rubber has been 

considered for microfluidic systems and MEMS in biological sensing applications since 

the late 1990's. Microfluidic devices are fabricated from this material through molding 



25 

 

techniques, and are typically used in rapid prototyping applications. The use of PDMS is 

attractive in liquid-phase sensor applications because it is inexpensive, easy to mold, 

flexible, optically transparent, compatible with bio-reagents, impermeable to water, and 

able to covalently bond to various surfaces [67]. A study on the solvent compatibility of 

PDMS can be found in [68]. Fabrication of molds used to form microfluidic structures 

are typically made through bulk micromachining of silicon, patterning of SU-8 on silicon 

or glass, and more recently by processing SU-8 on PMMA substrates due to increased 

adhesion and mold robustness [69]. Two instances of PDMS packaged SHSAW devices 

were reported in the literature [70,71]. In [70] PDMS microfluidic chips were molded 

using an SU-8 process and designed to have containment walls protecting the IDT of 

quartz Love mode device. Upon oxygen plasma exposure the devices where manually 

brought into contact and bonded covalently. Fluidic tubes were connected to the device 

by insertion into pre-bored holes. No mention of an alignment technique was reported. In 

[71] a similar packaging technique is used for a polymer coated quartz Love mode 

device. Here the microfluidic chip was not permanently attached to the device, but was 

sealed through applying slight pressure. Again no mention of alignment is given. In this 

work, a packaging technique is proposed which is similar to the two previous techniques, 

but also provides a rapid alignment technique that allows the microfluidic chip to be 

properly aligned to the SHSAW device before permanent attachment takes place. The 

proposed technique is compatible with wafer-scale batch fabrication techniques and 

allows rapid attachment placement and accuracy within ±10 μm. 
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1.5. Rationale 

 The literature review discussed so far in this chapter revealed that additional 

investigation of SHSAW based liquid-phase sensors was required regarding mode 

excitation and propagation analysis, sensor modeling under fluid loading conditions, and 

liquid-phase packaging development.  

 In terms of SHSAW propagation analysis, further study was required to quantify 

achievable sensor performance under fluid loading conditions. A thorough comparison of 

performance metrics was necessary, such as mode sensitivity, based on various guiding 

layer configurations and substrate materials. In addition to propagation analysis, 

additional work was required to quantify achievable SHSAW mode excitation efficiency 

of transducers while considering various substrates, guiding configurations, and 

transducer design parameters. In terms of sensor packaging, it was identified that there 

was a strong need to improve methods for SHSAW device encapsulation permitting 

liquid-phase operation. In particular, additional methods for simpler, more robust and 

repeatable packaging of SHSAW devices was desired.  

1.6. Objectives and Approach 

 The main objectives of this dissertation included: (i) the identification of key 

SHSAW sensor design parameters and the quantification of their impact on sensor 

performance; (ii) extraction of key parameters for candidate SHSAW sensor designs; (iii) 

the improvement of liquid-phase packaging techniques for SHSAW devices; and (iv) the 
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verification of models used in this work and the liquid-phase sensing performance of the 

prototype SHSAW sensors designed.  

 The approach taken to achieve objective (i) included developing an analytical 

SHSAW sensor response model and deriving the expected sensor response in terms of 

key sensor design parameters (e.g. IDT center-to-center length, sensing region length, 

SHSAW temperature and analyte sensitivities, SHSAW complex slowness, and ratio of 

spurious signal detected to desired signal) and properties of the analyte (this work 

focused on the analysis of viscosity). In regards to accomplishing objective (ii), the 

approach chosen included theoretically developing and numerically implementing 

SHSAW propagation and excitation modeling tools, along with post-processing routines, 

for the extraction of some of the aforementioned key design parameters. The method 

taken to accomplish objective (iii) included combining and enhancing promising reported 

SHSAW and MEMS liquid-phase packaging methods. Lastly, to achieve objective (iv), 

the approach selected involved designing, fabricating, and testing prototype SHSAW 

designs in liquid-phase sensing applications, and comparing the measured data with 

calculations based on the proposed models.      

1.7. Organization 

 The remaining chapters of this dissertation are outlined as follows. Chapter 2 

discusses the theoretical background of the modeling tools developed and implemented in 

this work, which were used for the determination of SHSAW propagation and excitation 

properties. Chapter 3 presents at the beginning a simplified model of the expected 
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response of the liquid-phase sensor design topology considered. Based on the model, key 

sensor design parameters (e.g. IDT center-to-center length, sensing region length, 

SHSAW temperature and analyte sensitivities, SHSAW complex slowness, and ratio of 

spurious signal detected to desired signal) are identified and expressions are developed 

that permit sensor performance quantification based on said parameters. Afterwards, key 

parameters are calculated for a variety of device designs (consideration of various 

orientations, IDT pairs, film thickness, guiding layer configurations, etc.) using the 

numerical models discussed in Chapter 2. Chapter 4 reports on the SHSAW packaging 

methods implemented in this work and also on the design of sensor prototypes. In 

Chapter 5 experimental liquid-phase sensor measurements are reported demonstrating 

two potential applications for the developed devices; i.e. fluid viscosity sensing and 

biosensing. Chapter 6 is dedicated to summary, conclusions, and suggestions for future 

work. 

 

 

  



29 

 

CHAPTER 2 

THEORETICAL DEVELOPMENT OF ACOUSTIC WAVE MODELING TOOLS 

AND NUMERICAL CONSIDERATIONS 

2.1. Introduction 

 This chapter presents the theoretical formalism of the modeling tools used 

extensively in this work towards the design and evaluation of candidate liquid-phase 

SAW sensor platforms. The implemented tools allow the study of design considerations 

relevant to SAW-based liquid-phase sensing platform devices, including: evaluation of 

acoustic wave (AW) mode properties based on various considered boundary conditions 

(application of guiding structures, effect of liquid-loading, etc.); and analysis of mode(s) 

excitation via interdigital transducer (IDT) simulation as a function of IDT surrounding 

boundary conditions. Propagation studies are carried out through evaluation of 

numerically computed Green’s functions for the geometric structures considered 

(procedure described in this chapter). Mode properties such as phase velocity, penetration 

depth, coupling, propagation loss may be evaluated using the techniques presented in this 

chapter. IDT simulation and evaluation is carried out using numerical tools based on an 

implemented combined finite element and boundary element method (FEM/BEM) model 

(described in this chapter), which relies heavily on the computation of Green’s functions. 

 Computation of spectral-domain Green’s functions is considered first, as such 

functions are useful to identify and characterize AW modes, and in addition are required 

by the BEM model. Before describing the characteristics of such functions, an overview 
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of the matrix method proposed by Adler [38] for determining such functions is given. 

Adler’s method is used to solve the linear quasi-static partial differential equations that 

describe the electromechanical fields in a piezoelectric material under time-harmonic and 

plane-wave propagation assumptions. The solution of the most general case shows that 

the fields within a piezoelectric continuum are represented as a superposition of eight 

partial modes, with a specified equal sinusoidal x- and y-spatial variation. Each 

eigenvalue of a derived matrix, A from Alder’s method, gives the z-variation of a partial 

mode, while the associated eigenvector defines the corresponding field structure. Under 

the additional assumption of a semi-infinite body (i.e., a half-space extending to infinity 

in one of the + or - z directions), four of the partial modes are shown to have zero 

amplitude, as there is no reflecting surface or source of energy deep within the body, 

prompting an investigation into how to select valid partial modes with non-zero 

amplitude.  

 Presented next is a theoretical analysis of spectral-domain Green’s function 

numerical computation for a semi-infinite piezoelectric / stress-free dielectric 

(i.e. vacuum) media problem. It is shown that evaluation of spectral-domain Green’s 

functions permits identification of propagating modes by locating simple poles in the 

complex slowness plane. A novel application of a numerical computation method for the 

half-space problem is presented, and application of the method yields proper partial mode 

selection when sinusoidal x-directed spatial variation is considered a complex quantity. 

The method performs proper analytic continuation of partial modes into the complex 

slowness plane [72] using a numerical technique based on evaluation of 
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eigenvalue/eigenvector partial derivatives, with respect to x-directed slowness. The 

proposed numerical technique can be used to ensure proper identification of 

lossy/attenuating modes such as pseudo and high-velocity-pseudo acoustic waves 

(PSAW/HVPSAW). Analytic continuation of Green’s functions into the complex 

slowness plane is also advantageous for BEM analysis, as will be shown. 

 After discussion of proper partial mode selection for the half-space problem, 

numerical calculation of Green’s functions is considered for the cases of a semi-infinite 

vacuum atop a piezoelectric half-space, and for an n-layer problem, which permits 

identification of characteristic modes and the ability to analyze electrical responses of 

devices incorporating finite-thickness homogeneous layers. Lastly, the theory behind the 

FEM/BEM modeling tools implemented in this work is presented. These tools permit 

time-harmonic full-wave analysis (consideration of SAW/BAW/evanescent modes) of 

IDT structures atop piezoelectric half-space media (vacuum on other side) for both finite 

and infinitely periodic structures. The FEM/BEM tools were used in this work for the 

design of SHSAW liquid-phase sensor platform prototypes. 

2.2. Matrix Method Analysis 

 Analyzing the intrinsic coupling between electrical and mechanical quantities of 

piezoelectric materials involves combining Newton’s equation of motion and Maxwell’s 

electromagnetic equations. Following [73], the piezoelectric constitutive equations are 

given as (2.1) using a matrix notation for tensor fields. (Note: In this dissertation, 
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boldface variables denote vectors or matrices; italicized variables, scalars; and the 

superscript T, a matrix/vector transpose operation.)  

  EeScT
T E

 

 eSEεD  s
 

(2.1) 

where: 

  T 

654321 TTTTTTT  is the stress vector, 

  T 

654321 SSSSSSS  is the strain vector,  

  T 

321 EEEE  is the electric field vector, 

  T 

321 DDDD is the electric displacement vector, 

 E
c  is the 6x6 elastic constant matrix under constant electric field, 

 s
ε  is the 3x3 dielectric permittivity matrix under constant strain, and 

 e  is the 3x6 piezoelectric constant matrix. 

The strain vector may be written in terms of displacement components: 

uS 36x , (2.2) 

where: 

  T 

321 uuuu  is the displacement vector, and 

 

T 
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x  is the 6x3 gradient operator. 
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Newton’s equation of motion will be considered here only in the symmetric case where 

the limit of volume goes to zero:  

uT 2

63  x , (2.3) 

where: 

   is the mass density of the material, and 

 


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000

000

000

63

xyz

xzy

yzx

x  is the 3x6 divergence operator. 

Of particular interest for this work are quasi-acoustic modes, which typically propagate 

10
5
 times slower than quasi-electromagnetic waves in a piezoelectric material, as is well 

known. Thus Maxwell’s equations may be treated under quasi-static conditions [73] (i.e. 

E = 0). Under this assumption, the electric field in the body is given as 

13xE , (2.4) 

where: 

   is the electric potential, and 

 
T 

13 














zyxx  is 3x1 gradient operator. 

Finally, recall that Gauss’s Law for a source free medium is 

031  Dx , (2.5) 

where: 

 c is the 1x3 divergence operator. 

Note that if the material has finite conductivity then an equivalent complex dielectric 

permittivity matrix is used, where: 
s
  

s
 – j/ , and  is the 3x3 conductivity matrix. 
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 Using a method similar to [38], sinusoidal time variation is given as 
t  j e 
 and 

x-directed (resp. y-directed) sinusoidal spatial variation as 
x s  j- xe


 (resp. 

y s  j- ye


), 

where  is radian frequency and sx (resp. sy) is the x-directed (resp. y-directed) inverse 

velocity or slowness. As a result, the partial derivatives /t, /x, and /y involve 

multiplication by j, -j sx, and -j sy, respectively. Using these expressions for the partial 

derivatives given in (2.1) - (2.5) and combining equations permits construction of a 

first-order matrix ordinary differential equation (ODE): 

 
 zj

z

z
Aτ

τ





, (2.6) 

where: 

  T 

3313345  jujujujDTTTτ , 

 










2221

1211

AA

AA
A , 

 XΓXΓA
231311

yx ss  , 

      32232222131233213123113112

4

12
XΓΓΓΓXΓΓXΓΓΓXΓΓΓIA  yxyx ssss , 

 XA 21 , 

 323122
XΓXΓA yx ss  , 

   133 
 ΓX , 
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cccc

eccc

eccc

321

3332313

2322212

1312111

Γ , 

(Voigt notation: 111, 222, 333, 126, 216, 135, 315, 234, 324). 
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This ODE system describes the field variation in a body with respect to z, given the fields 

at any point in the material and specified sinusoidal x and y field variations. A full 

derivation of this solution is given in Appendix A.  

 It should be mentioned that the analysis presented here generalizes the method in 

[38]. In [38] the ratio of x- to y-slowness is fixed and dependent on the 

pre-material-coordinate-system-rotation angle about the surface normal. The method used 

here permits independent specification of sinusoidal x and y variation. Analysis using 

independently specifiable complex x and y spatial variation allows independent complex 

slowness to be specified, which cannot be obtained from [38] as the ratio of x- to y-

slowness is fixed. 

 A well-known solution to ODEs of the form (2.6) is given by 

   0 zez zj
ττ

A
. (2.7) 

It is often convenient to rewrite (2.7) in normal mode form using the Jordan matrix 

decomposition A = PJP
-1

, where P is an invertible matrix and J is a matrix in Jordan 

canonical form [74]. Substituting the Jordan decomposition of A into (2.7) yields  

  cPτ
Jzjez  , (2.8) 

where: 

  01
τPc

  is an 8x1 vector of normal mode weights. 
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It can furthermore be shown that the matrix exponential term in (2.8) can be expressed as 

a direct sum of exponential matrices for individual Jordan blocks [74]; i.e. 

          
zjzjzjzj neeee

JJJJ   21

 

                      
zjzjzjzjzjzj nn eeeeee

NNN 
 2211

 

(2.9) 

where 

 The direct sum of arbitrary matrices Mi (i = 1 to n) is defined as 
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 Ji is the i
th

 Jordan block of A, 

 i is the eigenvalue of A corresponding to the i
th

 Jordan block, 

 Ni = Ji - i I, and 
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, where Ni is nn. 

Usually all Jordan blocks are 11 and the eigenvalues of A are distinct, in which case 

numerical Jordan decomposition is performed using standard eigen-decomposition. 

Diagonal entries of J assume the eigenvalues and columns of P assume the corresponding 

eigenvectors. Thus (2.8) simplifies to 

    T 

821821
821 ccc eeez
zjzjzj  

vvvτ  , (2.10) 

where: 

 vi is the i
th

 eigenvector of A, and i is the i
th

 eigenvalue of A. 
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Given (2.10), fields within the piezoelectric continuum are represented as a weighted 

superposition of eight partial modes having time and space variation

 zysxstj iyxe
 

. The z-directed slowness component for the i
th

 partial mode is thus 

given by i

i

zs  .  

 As an illustration, Figure 2.1 shows the computed real and imaginary parts of 
i

zs

obtained for the ST-X orientation of quartz, Euler Angles (0, 132.75, 0), as function of 

sx; sy = 0. Note that bold points correspond to valid partial modes for a -z-directed 

half-space (to be discussed further in Section 2.3). It can be seen from the figure that the 

slowness surfaces for the three bulk acoustic wave modes can also be constructed from 

the presented analysis. In particular, the bulk wave slowness surface is obtained by 

plotting {
i

zs } when {
i

zs } = 0 as a function of sx. 
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Figure 2.1. z-directed slowness for the 8 partial modes as a function sx for ST-X 

quartz, Euler Angles (0, 132.75, 0); sy = 0. Bold points indicate the valid partial 

modes for a –z-directed half-space. 



39 

 

 In cases where matrix A has repeated eigenvalues, Jordan blocks of order greater 

than 1 may be required. Such a situation occurs when sx and sy are both taken to be zero 

(e.g. a BAW device with electrodes positioned on top and bottom surfaces of a crystal 

extending infinitely in x- and y-directions) and field variation is limited to the z-direction. 

The sub-blocks of matrix A are: A
11

 = zero-matrix, A
12

 = I4, A
21

 = X, and 

A
22

 = zero-matrix. It can be shown that the overall A matrix is “defective” [74] and has a 

repeat eigenvalue of zero, with a single corresponding eigenvector. The situation requires 

use of 









00

10  as the Jordan block for the zero eigenvalue case and use of a generalized 

eigenvector for P to be full rank and invertible. It can be shown that a valid generalized 

eigenvector is   T 

4140 x nullspace 0XIg  . The nullspace vector may be found 

numerically using a singular value decomposition algorithm after enforcing that the 

smallest singular value is zero. It follows that the non-generalized eigenvector must be 

   T 

0710000 cx0AggIAv   , where   041444342410 g0 xxxxxc  . As the 

matrix exponential of the zero-eigenvalue Jordan block can be shown to be









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








10

100

10
zj

e
zj 

, the resulting fields in the body are given by  

      T 

832183000
83 cccceezjz
zjzj  

 vvgvvτ , (2.11) 

where: 

 vi is the i
th

 eigenvector of A, where vectors 3 through 8 correspond to non-zero           

eigenvalues (and, in this case, to the three bulk wave partial modes), 

 i is the i
th

 eigenvalue of A, where values 3 through 8 are non-zero eigenvalues, 

 v0 is the non-generalized eigenvector for the zero eigenvalue, and 

 g0 is the generalized eigenvector for the zero eigenvalue. 
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It can further be shown that elements of non-generalized eigenvectors relating to the 

electric displacement field D3 are zero since the partial derivative of D3 with respect to z 

is zero, by the A matrix and structure of v0. Therefore D3 is uniform in the material and 

depends only on g0 and the partial mode weight c2.  

 From (2.11) the fields within the body are determined to consist of six partial 

modes related to BAW modes having sinusoidal z-dependence and are uniform along x 

and y. The remaining two partial modes are pseudo-static: one is uniform along x, y and z; 

the other is uniform along x and y and varies linearly with respect to z. Pseudo-static 

partial modes physically represent the constant stress and z-directed electric displacement 

fields generated by one or more uniform charge source sheets located in an x-y plane in 

the continuum. The resulting electric potential (- integral of electric field) for 

pseudo-static partial modes thus varies linearly with respect to z. 

 Use of Jordan blocks with order larger than 1 are also required in instances where 

eigenvalues transition from a complex quantity to purely real or vice-versa with respect 

to x and y slowness (assuming lossless materials). These conditions occur at points where 

the slowness surface normal vector is directed along  T 
ˆ0ˆˆ

zyyxx ss sss  in three-

dimensional slowness space (the variables with hats represent unit-normal vectors 

pointing along the sx, sy and sz axes, respectively). The situation indicates the transition of 

a partial mode from a growth/decay mode with respect to z to one that does not does not 

grow/decay, or vice-versa. An example will now be given in the case of acoustic wave 

propagation in an isotropic media.  
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 It is well known that the slowness surfaces of the longitudinal and two orthogonal 

transverse modes are spherical with radii equal to 
11c

  and 
44c

 , respectively. Thus, for 

an isotropic solid, the eigenvalues of the A matrix associated with purely acoustic fields 

are 








 22

44

22

44

22

44

22

44

22

11

22

11

yxyxyxyxyxyx ss
c

ss
c

ss
c

ss
c

ss
c

ss
c

 . 

Note that the transverse modes (terms involving c44) have repeated eigenvalues but will 

not require use of generalized eigenvectors as a full set of eigenvectors can be obtained 

given mode orthogonality. It may however be difficult to obtain the two orthogonal 

eigenvectors using a numerical eigen-decomposition algorithm directly. Instead, the 

orthogonal vectors can be found using a singular value decomposition algorithm.  

 In the cases 
11

22

c
ss yx


  or 

44

22

c
ss yx


 , where repeated eigenvalues are 

associated with the longitudinal, shear horizontal, and shear vertical modes, i.e. at a point 

where the normal to slowness curve is directed along direction  T 
ˆ0ˆˆ

zyyxx ss sss , use of 

a generalized eigenvector will be required. For example, consider the shear-horizontal 

bulk acoustic wave evaluated at sy = 0 and 
44c

sx


 , which yields a repeated eigenvalue 

of 0. A solution to (2.8) for the fields T4 and ju2 can be shown to be 

   
x

c
j

ez jccccujT 44T 

21442

T 

24







 . Observe the linear z-dependence of the 

ju2 field observed under uniform T4, with respect to the z-direction. Also note the 

possible existence of zero T4 throughout the continuum under uniform ju2 with respect 
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to z in the body. For non-isotropic and/or piezoelectric media, where analytical analysis is 

not possible or practical, conditions for when generalized eigenvectors are required may 

be determined by computing eigenvalue partial derivative singularities with respect to sx 

or sx, (discussed in Section 2.3).  

2.3. Semi-Infinite Media: Proper Partial Mode Selection 

 Section 2.2 presented normal mode analysis in unbounded piezoelectric media. In 

the study of surface acoustic wave (SAW) devices, where excitation takes place at the 

interface between two materials (typically at the interface of air or vacuum and a 

piezoelectric), it is common to treat both materials as semi-infinite half-spaces since, in 

practice, the majority of mode energy in SAW applications is typically contained to 

within a few wavelengths of the interface. In addition, the backside of the crystal 

substrate is often left unpolished or intentionally roughened to scatter energy associated 

with deep penetrating modes in turn associated with bulk acoustic waves (BAWs). As a 

result, the crystal appears semi-infinite from the interface point of view.  

 Under the unbounded media assumption, the fields in the continuum are a linear 

superposition of eight partial-modes. In the case of semi-infinite media, the number of 

allowable partial-modes is cut in half as wave sources exist only at the interface (i.e. 

z = 0) and the body contains no internal reflecting interface. Like electromagnetic wave 

propagation on a semi-infinite transmission line with a single source at one end, power is 

carried in only one direction—away from the source. If the transmission line is truncated 

and terminated with non-matched impedance, forward and reverse propagating waves 
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will establish fields within the transmission line, as a reflective interface (impedance 

discontinuity) is now present. The analogous piezoelectric half-space situation raises the 

question as to which of the eight partial modes should be selected for inclusion in the 

analysis. The answer to this question requires qualitative reasoning to determine under 

what conditions a particular partial mode makes physical sense in a semi-infinite 

material.  

 Partial mode selection criterion will first be considered for purely real values of sx 

and sy, i.e. when there is no propagation loss/growth of partial modes along the x or y 

direction. In the case of a transmission line, one would select the partial mode that carries 

power away from the source. In the situation of propagation in semi-infinite media it 

follows that one should choose to keep bulk-type propagating partial modes, i.e. partial 

modes with purely real eigenvalues that carry power away from the interface towards the 

bulk. The sign of the z-directed Poynting vector associated with a particular bulk-type 

partial mode will determine whether the partial mode carries energy away from the 

surface towards the bulk.  

 Under the quasi-static approximation the time average spatial-domain Poynting 

vector in a piezoelectric material [73] is given by (2.12). Note that the order of 

conjugation for the product of electrical terms was chosen to be opposite in this work for 

simplicity; it can easily be shown using conjugation properties that the overall result is 

unaffected by this modification.  
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   H 

3211561

2

1
     jujujuj DTTT S    x  , 

    H 

3212426

2

1
     jujujuj DTTT S    y  , 

   H 

3213345

2

1
     jujujuj DTTT S    z  , 

(2.12) 

where: 

 superscript H denotes conjugate transpose, and 

 Sx, Sy, and Sz are the x-, y-, and z-directed Poynting vectors, respectively. 

Therefore, for the i
th

 partial mode, the z-directed Poynting vector is given from (2.12), 

(2.8), and (2.10) as    H

87654321

2

2

1
iiiiiiiii

i

z PPPP PPPP cS  , where Pji is 

j
th

 element of the i
th

 partial mode eigenvector. As only the sign of the real part of 

z-directed Poynting vector is sought, no knowledge of the partial mode weights, ci, is 

required. The partial mode will be considered valid and will be included in the analysis of 

the semi-infinite body if the sign of (2.12) corresponding to the z-direction is negative, 

given a half-space occupying z <= 0.  

 In the case of non-bulk type partial modes, which occurs when the eigenvalue is 

not purely real, the partial modes are denoted as growing or decaying type partial modes 

and exhibit field amplitude z-variation exponentially increasing or decreasing. Only the 

partial modes that decay with depth {} < 0 are considered valid for the semi-infinite 

body, since increasing Poynting vector magnitude is not physically possible as z  -, 

given that the Poynting vector in the x and y directions are constant with respect to x and 

y and all wave sources are considered to be at the interface or above. 
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 Analysis of a semi-infinite body assuming a specified x or y partial mode decay or 

growth rate, i.e. complex x- and or y-slowness, is required when trying to verify existence 

of PSAW and HVPSAW modes. In particular, these modes display fields that decay 

along the propagation direction along the interface, since one or two downward 

propagating BAW modes are coupled to the solution, respectively [75]. Proper partial 

mode selection rules under complex x- and or y-slowness are difficult to define insofar as 

the modes do not resemble familiar plane-wave BAWs or evanescent waves that decay or 

grow only in z. Standard techniques for determining proper selection of partial modes 

[44] involve first calculating partial mode eigenvalues by considering only the real part of 

the slowness, then determining the number of bulk-type, NBAW, and decaying-type, 

NDECAY, partial modes required using the selection criteria given in the previous 

paragraph. The eigenvalues are then computed at the desired complex slowness point. 

Based on the set of partial modes that grow with depth, the NBAW with the slowest growth 

rates are selected. Of the remaining number of required partial modes to include, NDECAY 

are chosen from the decaying partial mode set having the fastest decay rates. Such a 

selection criterion cannot guarantee proper partial mode selection, unlike the case 

considering purely real slowness. In particular, the standard technique was on occasion 

seen to fail in this work as propagation loss (relative shift into the complex plane) 

becomes larger, as indicated by observing the boundary condition function solution used 

for PSAW/HVSPSAW identification becoming discontinuous at points along a line 

extending into the imaginary slowness axis that is perpendicular to the real slowness axis.  
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 A more robust selection process is needed to guarantee proper selection of partial 

modes. According to [72], proper partial mode selection should result from analytically 

continuing the valid partial modes from the real slowness axis into the complex plane 

since all required information regarding the solutions to the boundary problem can be 

derived from evaluation on just the real slowness axis. In particular, given the proper set 

of partial modes and their corresponding eigen-solutions (eigenvalues and eigenvectors of 

A) determined for a purely real slowness, the proper partial mode and corresponding 

eigen-solution sets for the half-space upon shifting into the complex plane should be 

chosen such that eigen-solutions are analytically continued from the real slowness axis 

into the complex plane. The strategy is based on the theory of analytic functions. Using a 

Taylor series expansion, a partial mode’s eigenvalue can be determined in the complex 

plane given the eigenvalue on the real slowness axis and value of all partial derivatives at 

that point. Using a slowness stepping algorithm into the complex slowness plane, the 

continuation of eigenvalues associated with a given partial mode is performed by starting 

on the real slowness axis, choosing valid partial modes, then taking a number of small 

steps into the complex plane (relative to the variation of the eigenvalue in the complex 

plane) such that a small error in predicted (via Taylor series) and actual (computed) 

eigen-values and -vectors occurs. Once arriving at the desired complex slowness point, 

the stepping algorithm ends and the proper set of partial modes is determined. 

 The authors of [72] appear to neglect partial derivatives in the Taylor series 

expansion/comparison stepping approach, and it has been observed in this work that 

eigenvalues can cross in the complex plane, making knowledge of slopes needful for 
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determining proper continuation. By contrast, the stepping method used in this 

dissertation includes higher order partial derivatives as well. The method requires 

numerical evaluation of eigenvalue partial derivatives with respect to x and y slowness. 

While the theory of computing eigenvalue n
th

-order partial derivatives has been reported 

in the literature [76] to determine eigenmode sensitivities, to the best of the author’s 

knowledge, the technique has not before been applied to partial mode selection in 

piezoelectric half-space problems. 

 The following analysis is concerned with computing n
th

 order eigenvalue and 

eigenvector partial derivatives. The formalism will be developed with respect to x-

directed slowness; sy is assumed to be 0. Computation of partial derivatives with respect 

to y-directed slowness proceeds analogously. It is further assumed that Jordan 

decomposition results in a complete eigenvector basis, i.e. P is full rank and contains no 

generalized eigenvectors, which is the case except for finitely many sx values. From the 

definition of the Jordan decomposition of A, it can be shown that AP - PJ = zero-vector. 

Taking the n
th
 partial derivative of this equation with respect to some variable in A, in 

this case sx, and applying Leibniz rule [77] yields 
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Solving for the n
th

 partial derivative of J with respect to sx, and making appropriate 

substitutions result in 

nnn

n

x

n

s
HJCJC

J





, (2.14) 

where 

 n
C  is an 8x8 matrix to be determined, 

 
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s
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P





. 

The n
th

 partial derivatives of A are determined from the constitutive equations of (2.6). 

Thus the n
th

 partial derivatives of J and P can be determined recursively once C
k
 is 

known for k = 1 to n.  

 To determine C
n
, note first it can be shown that  n

n

x

n

diag
s

diag H
J













 when 

Jordan blocks all have rank 1 and all off-diagonal entries of J are zero. Then from (2.14) 

one finds 
iijj

n

n

JJ

H
C

ij

ij


  (i ≠ j). For diagonal entries of C

n
, the equation 

n

n

x

n

s
PC

P





 will 

prove useful following a discussion of P, the matrix of eigenvectors. In general 

eigenvectors are not uniquely determined since any non-zero scaling yields another valid 

solution. If instead eigenvectors are scaled such that one of the fields associated with an 

eigenvector is held constant with respect to sx, then eight equations may be formed using 
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the definition of the n
th

 partial derivative of P with respect to sx given above, which 

allows determination of a unique solution for C
n
. From these equations, diagonal entries 

of C
n
 are given by 

 

 iirows

n

jirowsn

P

CP
C

ji

ii  , where j is summed from 1 to 8 (i ≠ j), and rows(i) 

is the row index of the i
th

 eigenvector which is held constant with respect to sx. As 

mentioned at the end of Section 2.2, a search for eigenvalue partial derivatives 

singularities with respect to sx can be performed using this method to determine sx points 

where a generalized eigenvector is required. 

 Finally, the special case when generalized eigenvectors are encountered in the A 

matrix decomposition is treated, so to determine the proper selection of partial modes for 

a half-space under these circumstances.  

 For the sub-case of zero x- and y-directed slowness, i.e. no field variation along 

the x and y directions, one can choose three valid bulk-type partial modes based on the 

Poynting vector analysis presented previously.  

 For the sub-case of pseudo-static partial modes associated with repeated zero-

eigenvalues, it is convenient to consider a finite-thickness piezoelectric layer, sandwiched 

by two zero-thickness perfect conductors with opposite polarity atop a semi-infinite 

piezoelectric body embedded in free space (Figure 2.2). 
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Figure 2.2. Finite-thickness piezoelectric sandwiched by two zero-thickness perfect 

conductors with opposite polarity atop a semi-infinite piezoelectric. 

The following boundary conditions apply: surface normal components of stress (i.e. T5, 

T4, and T3), displacement components, and electrical potential are continuous across 

boundaries; s

  DD  1

3

1

3 , where s  is the source charge density at the top interface. 

Charge conservation requires that the charge at the free-space/finite-piezo interface be 

equal and opposite in sign to the charge at the finite-piezo/semi-infinite-piezo interface. 

From the discussion leading to expression (2.11) describing the fields in the body of 

Figure 2.2, the D3 field in each material will be constant with respect to z. It can also be 

shown from charge conservation and Gauss’s Law that D3 above the finite layer is equal 

to D3 below the finite layer. Additionally, since the net charge above the semi-infinite 

piezoelectric is zero it follows that 1

3

 D  equals zero, which can be shown using 

Coulomb's law and charge superposition. (In detail: only one partial mode yields finite D3 

in each body and at the same time has zero associated strain since /x = /y = /z = 0, 

therefore 3333 ED   in each material and it follows that the situation can be treated like a 

simple dielectric stack regarding D3, E3, and s.) Since 1

3

 D  is equal to zero, according to 

(2.11) the partial mode weight c2 in the semi-infinite piezoelectric must be zero. As a 
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result, the pseudo-static partial mode based on the non-generalized eigenvector is 

considered valid for any configuration above the interface when the total source charge 

above the semi-infinite body is zero (charge conservation), and the partial mode based on 

the generalized eigenvector is considered invalid. 

 Proceeding to the sub-case when generalized eigenvector(s) are required for 

non-zero sx and sy, recall that such situations occur at points where the tangent of a bulk-

type partial mode slowness surface is directed along  T 
ˆ0ˆˆ

zyyxx ss sss . Furthermore, it 

can be shown that the direction of power flow for the bulk-type partial mode is along the 

surface, since the power flow direction coincides with the slowness surface normal [73]. 

Therefore, as this bulk-type partial mode does not carry energy toward the surface from 

the bulk, it can be deemed valid for the semi-infinite body, and thus the partial mode 

based on the generalized eigenvector is considered invalid for the semi-infinite 

half-space. Practically speaking, it is the field behavior in a semi-infinite body near, not 

at, exact slowness points (where generalized eigenvectors are encountered) that need to 

be evaluated; hence this partial mode selection criterion is generally not encountered 

numerically, but was included for the sake of completeness. 

2.4. Calculation of Spectral-Domain Green’s Functions 

 The Green’s function calculation procedure to be presented herein is used to 

characterize SAW device excitation and propagation for the semi-infinite media problem. 

The functions derived are used in conjunction with BEM models for numerical evaluation 

of SAW device electrical responses. Calculation of Green’s functions is also shown to 
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permit identification of acoustic modes. The geometry considered in this section is shown 

in Figure 2.3.  

 
Figure 2.3. Geometry of the problem considered in this section. 

In the figure, the semi-infinite piezoelectric media occupies the space z < 0. Arbitrarily 

sized electrodes are positioned at the interface of the piezoelectric and vacuum, and are 

considered to extend infinitely along the y-direction (no field variation along y is 

assumed). In the electrical sense, electrodes are considered to have zero thickness and be 

perfect conductors such that charge sources are considered to exist only at z = 0; 

however, in the acoustical sense, electrodes are treated as having finite thickness. Also, 

wave fronts generated by the structure are assumed to travel only in the x-z plane.  

 The Green’s functions described in this section relate the resulting fields 

[u1 u2 u3 ]
T
 at a semi-infinite media interface, subject to interface source distributions of 

[T5 T4 T3 σ]
T
, where σ is the source surface charge density at the interface, i.e.   0

3

0

3 DD  

at the interface. Interfacial boundary conditions must be imposed in the spatial-domain 

using the FEM/BEM model, i.e. enforcement of electric potential, and continuity of 
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surface normal stress and displacement; however, the analyses given in previous sections 

of this chapter consider propagation in finite and semi-infinite media in the 

spectral-domain, i.e. assumed sinusoidal field variation given by sx. Thus transformation 

of the Green’s functions using Fourier analysis is performed to convert the problem into 

the spatial-domain, where boundary conditions can be imposed and a solution obtained. 

The Fourier transform pair adopted in this work is given by 

   





 x

xjk

x dkekfxf x  

   




 dxexfkf
xjk

x
x

2

1
 

 

(2.15) 

where: 

 kx =  sx is the x-directed wave number, and 

 f is any particular field at the interface. 

The bar above a variable denotes spatial-domain representation. Using (2.15), a particular 

field at an interface is expressed as the infinite superposition of weighted sinusoidal 

varying fields. Thus, if displacement and potential fields can be related to stress and 

charge fields in the spectral-domain, then by (2.15) the fields in the spatial-domain can be 

related as well. Individual spectral components of [u1 u2 u3 ]
T
 and [T5 T4 T3 σ]

T
 at the 

interface are related by the spectral-domain Green’s functions, G, which have the form 

                 T 

555

T 

321 xxxx
x

xxxx kkTkTkT
k

kjkujkujkuj 


 







 G , 

(2.16) 

and can be shown to be functions of kx/ = sx only (non-dispersive) for the lossless 

semi-infinite media problem considered. Applying (2.15) to (2.16) and simplifying 

generates the spatial-domain Green’s functions: 
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   

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 x
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x dses
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x x
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 GG
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 (2.17) 

where 

                    




 ''''''
T 

555

T 

321 dxxxTxTxTx x xxuxuxu  G . 

The spatial-domain Green’s functions thus describe the impulse response on the structure, 

in terms of the displacement and electrical potential fields along the interface, that results 

from a single impulse line-distribution extending along y of either one component of 

surface normal stress or charge density located at (x = 0, z = 0). The rest of this section 

will discuss numerical computation of the spectral-domain Green’s functions and their 

properties. 

 Recall that the surface charge density at the interface is given by the difference in 

surface normal electrical displacement: σ(x, z = 0) = D3(x, z = 0
+
) - D3(x, z = 0

-
). With this 

relationship and use of the linearity property of the Fourier transform, the coupling of two 

independent semi-infinite media spectral-domain analyses (based on the Matrix Method 

described in the previous sections) is achieved and subsequently used to yield the 

spectral-domain Green’s functions. For spectral analysis of the semi-infinite vacuum, the 

Matrix Method can be applied as well, assuming a non-piezoelectric material with 

dielectric permittivity o and arbitrary stiffness and density. Since the vacuum is 

non-piezoelectric, the arbitrarily chosen stiffness and density do not influence the 

relationship between electric potential and D3 in the vacuum and are only included so that 

the analysis can make use of existing software written for arbitrary materials. The results 

of the Matrix Method in the spectral-domain for the vacuum can be summarized as 
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  electrical

zj

electrical cejD electrical  v
T 

3 , which are the eigenvector (velectrical), eigenvalue 

(electrical), and partial mode weight (celectrical) obtained from Jordan decomposition of the 

A matrix associated with the electrical fields in the vacuum. Equation (2.17) states that 

the electrical fields consist of only one partial mode. Thus, at the interface, 

D3(kx, z = 0
+
)  = velectrical(1)/ velectrical (2)j(kx, z = 0), where (1) and (2) indicate first and 

second vector elements. It can be shown analytically that    xxelectrical ssjSign Re  by 

using Laplace’s equation and guaranteeing that the eigenvalue is correctly continued into 

the complex plane. Furthermore, using (2.4) and (2.5) it can be shown that 

velectrical(1)/velectrical (2) =    xxo ssSignj Re . Therefore the electric displacement in an 

infinitesimal neighborhood about the vacuum/piezoelectric interface is given by 

      0,Re0,3  zkjssSignjzkD xxxox   

(for a vacuum half-space occupying z > 0).  
(2.18) 

 Next, the resulting Matrix Method analysis for semi-infinite piezoelectric media is 

considered. In previous sections it was shown that the fields in the body are represented 

as the superposition of four partial modes in the spectral-domain, and at the interface 

z = 0 are given by 

   T 
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T

0331345 3
ccccjujujujDTTT x

 

z





P . (2.19) 
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Substitution of (2.18) into (2.19) and applying the definition of charge density yields 

   T 

432148

T

0331345 ccccjujujujTTT x

 

z



M , (2.20) 

where: 

 M is initially set equal to P, then 

 M(4,:) is set to    xxo ssrealsignj M(8,:) - M(4,:) (Matlab index notation). 

The spectral-domain Green’s functions defined by (2.16) may then be directly computed 

using 

1







 uplowx

x s
k

MMG
 , 

(2.21) 

where: 

  :,8:5MM low  (Matlab index notation), and 

  :,4:1MM up  (Matlab index notation). 

 In general the number of electrically coupled Green’s functions is 16, which 

occurs for piezoelectric orientations classified as Symmetry Type 1 [31]. For some 

orientations and materials classified by higher Symmetry Types, the number of 

electrically coupled Green’s functions is reduced to 1 for Symmetry Type 2 (only j and 

σ coupled), 9 for Symmetry Type 3 (pure Rayleigh polarization, only ju1, ju3, j, and 

T5, T4, σ coupled), 4 for Symmetry Type 4 (pure shear-horizontal polarization;  ju2, j, 

and T4, σ coupled), and 1 for Symmetry Type 5 (only j and σ coupled). As an example, 

two of the spectral-domain Green’s functions for the popular ST-X Symmetry Type 1 

orientation of quartz, Euler Angles (0, 132.75, 0), are shown in Figure 2.4 as a 

function of sx. The Green’s functions for other Symmetry Types and those that relate 

other fields follow the same general behavior but are not all considered here strictly to 
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save space. It should be noted that the nomenclature regarding naming specific Green’s 

functions within the matrix follows Gab, which represents the Green’s function that 

relates field b to field a at the interface. 
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Figure 2.4. Real and imaginary components for 2 of the 16 spectral-domain Green’s 

functions for ST-X quartz, Euler Angles (0, 132.75, 0). Top two plots give the 

relation between the T5 and ju3 fields whereas the bottom two plots give the relation 

between the  and j fields. 
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 The plots in Figure 2.4 show the real and imaginary components for 2 of the 16 

spectral-domain Green’s functions obtained for the considered ST-X orientation of 

quartz. In particular, the two figures on top give the relation between the T5 and ju3 

fields whereas the bottom two plots give the relation between the  and j fields. 

Immediately one notes the 
2

1

xs
  behavior near 0xs  seen only for the purely 

electrical Green’s function. This behavior is always observed for the purely electrical 

Green’s function but does not manifest in other Green’s functions, such as those relating 

mixed mechanical and electrical fields. This behavior appears for any Symmetry Type. 

The origin of this singularity is attributed to the use of the quasi-static approximation in 

the formalism; physically speaking this singularity captures the electrostatic behavior of 

charges located on the semi-infinite surface [45] and is responsible for the static 

capacitance of structures. Another interesting observation is the existence in both plots of 

simple poles located at sx =  0.31655510 s/km. Poles do not always appear in Green’s 

functions for arbitrary materials and orientations, but if a pole is observed in any one 

particular Green’s function, it can also exist in all the Green’s functions (note the pole 

residue or weight can be zero for some Green’s functions if those particular fields that the 

Green’s function describes are not coupled to the mode). In particular, the simple pole 

behavior represents the existence of a SAW mode that propagates in x directions. This 

mode satisfies the stress- and charge-free boundary conditions of the semi-infinite media 

problem. As to why the mode manifests as a simple pole, if one assumes the spatial-

domain Green’s function portion associated with the ±x-traveling SAW is  xHe
xjko 

  

(where ko is the complex wavenumber of the SAW and H is the Heaviside step function), 
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then it can be shown, upon transformation into the spectral domain using (2.15) and 

taking the limit as SAW propagation loss goes to zero, that the spectral contribution of 

the ±x-traveling SAW is 
okk 


1

. The assumptions made here are valid and appropriate 

since the far-field SAW behavior is captured and all materials in reality exhibit a finite 

degree of loss. Thus, if one identifies simple poles in a Green’s function, a free surface 

SAW mode exists and will have phase velocity equal to the inverse of the slowness 

location for which the pole is encountered. (In this work SAW modes are identified 

numerically using a Green’s function pole search algorithm.)  

 Yet another interesting observation from the Green’s functions in Figure 2.4, 

though difficult to discern directly, involves derivative discontinuities at a finite number 

of slowness points; specifically, at sx =  0.1739, 0.1954, and 0.3031 s/km. Recalling 

Figure 2.1 these slowness points indicate where the normal to the slowness curve points 

along the sx-axis. In other words, as one sweeps sx these points occur when one or more 

of the semi-infinite media partial modes included in the analysis transition from 

decaying-type to bulk-type or vice-versa. Such points are called bulk-wave cut-off 

slowness points and are useful for setting lower slowness search bounds for a SAW 

mode, since, to prevent propagation loss, no true SAW solution can contain bulk-type 

partial modes.  

 For Green’s functions calculations used to determine the existence of PSAW and 

HVPSAW modes, simple poles also appear as in a true SAW mode, though shifted into 

the complex sx-plane to account for propagation-loss resulting from bulk-wave(s) 



61 

 

coupling. When the propagation-loss of PSAW and HVPSAW is very low, the pole is 

shifted only slightly off the real sx-axis; as a result, the poles become more easily 

identifiable from the real sx-axis. Bulk-wave cut-off slowness points prove useful for 

setting search bounds for PSAW and HVPSAW modes, which may lie between 

consecutive bulk-wave cut-off slowness points. In the Green’s functions shown in Figure 

2.4, a strong blip is observed near sx = 0.19620, suggesting that a pole may be located 

nearby in the complex slowness plane. Also note that the blip lies between bulk-wave 

cut-off points, another clue that a complex pole may exist nearby. To verify whether the 

blip is indeed caused by a complex pole, a search in the complex-slowness plane is 

performed. If a simple pole is found in the complex plane then a PSAW or HVPSAW 

mode is identified satisfying the stress- and charge-free boundary conditions of the 

semi-infinite media problem; the phase velocity and propagation-loss of the mode are 

determined from the pole’s location in the complex slowness plane. For example, Figure 

2.5 shows the Green’s function relating the T5 and ju3 fields for the same quartz 

substrate and orientation considered above, evaluated in the complex slowness plane near 

the region of the observed blip. The same Green’s function evaluated on the real sx-axis is 

given for comparison. For the case involving complex slowness, the imaginary part of sx 

is constant with respect to the real part and equal to -0.0002896739 s/km. Figure 2.5 

shows that the blip observed on the purely real sx-axis is indeed due to a complex simple 

pole located at sx = 0.1962022608 - 0.0002896739j s/km. This indicates the existence of a 

PSAW mode that exhibits propagation loss equal to -0.0805 dB/. The observed simple 

pole behavior associated with the PSAW can be seen in the other 15 Green’s functions as 

well, but is not shown here to save space. 
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Figure 2.5. Real (a-b) and imaginary (c-d) components of spectral-domain Green’s 

function for ST-X quartz, Euler Angles (0, 132.75, 0) relating T5 and ju3 fields; 

along real sx-axis (solid), in the complex plane (dashed) with imaginary part of 

sx = -0.0002896739 s/km. True SAW and PSAW simple poles are evident. 

 In addition, though difficult to see in Figure 2.5 (observed best in (c) for the 

dashed curve), the Green’s functions display a discontinuity for the case of complex 

slowness located at real part of sx = 0.1954 s/km, which corresponds to a bulk-wave 

cut-off slowness point. The bulk-wave cut-off slowness points define the starting points 

of branch cut-lines extending into the complex slowness plane of the Green’s functions 

(lines where the Green’s functions are multivalued and become discontinuous [78]). The 

(a) (b) 

(c) (d) 
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bulk-wave cut-off slowness points, or starting points of the branch cut-lines, may or may 

not be branch point singularities [78]. For instance, in the presented example none of the 

bulk-wave cut-off slowness points are branch point singularities, as the Green’s functions 

are finite at these points. But such singularities may be encountered, for example in the 

case of the purely mechanical shear-horizontal Green’s function relating T4 and ju2 for 

the isotropic half-space problem. Such singular points satisfy the stress- and charge-free 

boundary conditions for a free surface and in literature are typically denoted as 

exceptional waves [79,80]. Although the singularity points satisfy the stress- and charge-

free boundary condition, the mode structure associated with these singularities in the 

spatial-domain is fundamentally different than that of a purely propagating mode 

associated with a simple pole. In particular, this mode will have far-field amplitude 

px
1 , where p > 0. For example, again considering the purely mechanical shear-

horizontal fields for an isotropic half-space, the spectral domain Green’s function relating 

T4 to ju2 can be shown to be 
22

44

1

xc ssc 
  for 22

cx ss  and 
22

44

1

xc ssc 
  for 22

cx ss  , 

where 
44

2

c
sc


  (-z half-space). Notice the branch point singularities at 

cx ss   

indicating the existence of an exceptional wave. Using (2.17) it can be shown the 

resulting spatial-domain Green’s function relating T4 and u2 fields is 

    x sjYx sJ
c

j
cc  00

442



, where J0 and Y0 are the zero-order Bessel functions of the 

first and second kind respectively, which combine to form the conjugate of a Hankel 

function of the first kind. Using asymptotic approximations of Bessel functions, the 



64 

 

far-field u2 field generated by a T4 line-impulse located at x = 0 is given by 

x jsj

c

cee
x sc

j 





4

44 2
. Now notice that what is defined as an exceptional wave does not 

propagate directly, but has amplitude that falls off as 
x

1
 in the far-field. In fact the 

Green’s function relating the pure shear fields in the isotropic half-space can be shown to 

represent excitation of a pure shear cylindrical bulk wave in the semi-infinite isotropic 

half-space. To the best of the author’s knowledge, the analysis presented here for 

explaining properties of exceptional waves based on pure shear horizontal wave 

excitation in an isotropic half-space has not been previously reported in the literature.   

 Regarding other properties of Green’s functions, for semi-infinite piezoelectric 

media all Green’s functions are 
xs

1
  as |sx| becomes large. As a recap of the behavior 

observed for Green’s functions, Figure 2.6 shows some situations encountered regarding 

behavior in the complex slowness plane. 
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Figure 2.6. Possible structure of Green’s functions in the complex slowness plane. 

Using methods such as contour integration and residue theory [78], spatial-domain 

Green’s functions can be determined from the spectral-domain Green’s function structure 

given in Figure 2.6, by applying (2.17). To numerically compute such a transform, one 

must subtract out contributions due to singularities along integration paths and then add 

their respective analytical transforms to the numerically computed transform of the 

residual bound portion [45]. Lastly, it should be noted that simple poles in the inverse 

purely electric Green’s function, ( Gjσ(sx) )
-1

, indicates the existence of a SAW mode 

that satisfies a stress-free and short-circuited electric potential boundary condition, which 

can be shown using a modified Green’s function formalism that relates alterative field 

sets at the interface, e.g. functions that relate         T 

1345 xExTxTxT  to 

       

T 

321















 dxxxuxuxu   [45,46].  

 

Possible Simple Poles 

Possible Branch Point    Singularities 

Possible Branch Cut-Line 

+ sx
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+ j sx
’’ 

True SAW 
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2.5. Addition of Finite-Thickness Layers 

 In Section 2.4 the theoretical analysis of spectral-domain Green’s function 

numerical computation was presented for a semi-infinite piezoelectric / stress-free 

dielectric (i.e. vacuum) media problem. It was shown that through evaluation of the 

spectral-domain Green’s functions, propagating modes can be identified by locating poles 

in the complex slowness plane. In this subsection a similar analysis is presented that 

considers n homogeneous finite-thickness layers forming a sandwich structure between 

two semi-infinite media. Incorporating finite-thickness layers in acoustic wave (AW) 

devices finds many practical applications [81], including mode temperature 

compensation, mode trapping or guiding, improved IDT SAW mode 

transduction/detection, device passivation, and electromechanical coupling to 

non-piezoelectric media. Figure 2.7 shows the generalized body studied in this section. 

 
Figure 2.7. n-layer structure considered. 



67 

 

The structure in Figure 2.7 consists of n finite thickness layers sandwiched between two 

semi-infinite bodies, forming n+1 interfaces.  Field vectors at the m
th

 interface, denoted 

as 
m

receive and 
m

source, are defined as  

        T 

345 mmmm

m

source zztztzt τ ,      

                          T 

3345

T 

3345

  mmmmmmmm zDzTzTzTzDzTzTzT , 

and  

        T 

321 mmmm

m

recieve zjzujzujzuj τ . 

The source vector represents interfacial stress and charge sources and provides structure 

excitation. The receive vector represents the continuous fields at the interface for any 

given source distribution. The results of the analysis presented in this section will yield 

the spectral-domain Green’s functions of this system, denoted as G(kx,) and defined by 

 











































 1

2

1

1

2

1

,

n

source

source

source

x

n

receive

receive

receive

k

τ

τ

τ

G

τ

τ

τ


 . (2.22) 

Note the dispersive nature of the problem due to finite thickness media. Using (2.15), the 

spatial-domain fields may be written in terms of the spatial-domain representation of the 

Green’s functions, given by 
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 , (2.23) 

where: 

    





 x

xjk

x dkekx x


 ,
2

1
, GG . 
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Based on (2.23), AW device analysis can be performed using BEM and FEM techniques 

for the n-layer structure considered. In other words, analysis may be performed for 

arbitrarily positioned infinitesimally thin perfect conducting electrodes and stress sources 

located at any interface subject to electric potential and displacement boundary 

conditions.  

 Now that the problem has been defined, attention will be turned to numerical 

analysis of the spectral-domain Green’s function for the n-layer system. Considering the 

first material, m = 1 (i.e. semi-infinite substrate extending to -), based on results 

derived in Sections 2.3 and 2.4, the field relationships at the first interface are given by 

         11T 

13131415 receivenegzDzTzTzT τG
  , (2.24) 

where: 

 Pn is the eigenvector matrix for the n
th

 material, 

      1

11

1 ,8:5,4:1
  indsKeptindsKeptneg PPG  (Matlab index notation), 

 and indsKept is the vector indices of the valid partial-modes included. 
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Next, the field relationships at opposite sides of finite-thickness layers are computed, 

given as Hm in (2.25), for the layers m = 1 to n: 

 
 

 
 
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(2.25) 

where: 
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It is important to mention that numerical evaluation of (2.25) can become unstable due to 

the matrix exponential terms and that fact that J will contain eigenvalues corresponding 

to growing and decaying partial modes. In this work (2.25) was computed numerically by 

factoring the exponential matrix into two diagonal-matrix factors, namely decaying and 

non-decaying factors with respect to layer thickness, given as R and T, respectively, such 

that RT
J

 mm hj
e 1

.  
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Equation (2.25) can be rewritten as   
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(2.26) 

which is numerically more stable as T
-1

 can be computed using simple analytical 

expressions and given that the matrix inverse term is better conditioned for acoustically 

thick layers. Next, the semi-infinite substrate extending to + is considered, yielding the 

field relationships for the n+1 interface, given as  

         11T 

13131415















  n

receiveposnnnn zDzTzTzT τG , (2.27) 

where: 

      1

22

1 ,8:5,4:1




  indsKeptindsKept nnpos PPG  (Matlab index notation), 

 and indsKept is the indices of the valid partial-modes included. 

Note that if either of the two semi-infinite materials is stress-free media, e.g. vacuum, the 

media is first treated as an isotropic material with arbitrarily chosen c11, c44, and  to 

make use of developed software routines for arbitrary media. Furthermore, all elements 

of G
-1

neg or G
-1

pos are set to zero except the element relating the electrical quantities, i.e. 

G
-1

neg(4,4) and G
-1

pos(4,4).  
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The interface source vectors are given by 

    If n > 0 

        T T 2T 112

1

111

1

1

receivereceivenegsource  ττHGHτ
  

 for m = 2 to n 

             T T 1T T 11222

1

1121

1



  m

receive

m

receive

m

receivemmmm

m

source  τττHHHHτ  

         T T 1T 221211   n

receive

n

receivenposn

n

source  ττHGHτ  

    If n = 0 

   1111

receivenegpossource  τGGτ
   

(2.28) 
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Using (2.28), the n-layer system inverse Green’s function, given by  
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may be constructed. The system Green’s function may be computed by a matrix inversion 

if desired. 

 For standard applications, stress source terms are zero (normal components of 

stress are continuous) at interfaces between any two solid media, but are not assumed as 

such herein to account for possible finite stresses located at interfaces between a solid and 

vacuum produced by placing finite electrodes at the interface. This situation is required 
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for BEM coupling to finite electrode FEM analysis, as discussed in Section 2.6. Other 

interface boundary conditions may be applied to the n-layer system as well, such as the 

addition of perfect conducting infinitesimally thin ground planes (shorted interfaces) or 

the absence in one or more layers of infinitesimally thin charges (open interfaces), which 

results in setting interface electric potential or charge sources to zero, respectively. As 

with the treatment of the vacuum / semi-infinite piezoelectric problem in Section 2.4, 

allowable modes for the structure are identified through simple-pole searching of the 

modified Green’s functions that have taken into account the imposed boundary 

conditions (e.g. shorted or open interfaces). 

2.6. Finite FEM/BEM Model Theory 

 The FEM/BEM model implemented in this work and used for the simulation of 

finite length electrical structures atop a semi-infinite piezoelectric body is based on 

original works as reported in [45,46 ,82]. In [45] a BEM model was reported for the 

simulation of finite-length electrical structures atop a semi-infinite piezoelectric, which 

factored in SAW, BAW, and evanescent mode excitation and detection (a full-wave 

simulation tool), but the mechanical loading of the electrodes was neglected, which is 

usually a good first-order approximation when electrodes are very thin relative to 

wavelength, the substrate has relatively high piezoelectric coupling, and electrode 

materials have similar acoustic properties as the substrate (i.e. similar stiffness and 

density). In later reports [46,82] models were extended to include the mass/stiffness of 

the loading effects of electrodes in order to improve model accuracy, based on FEM 

modeling of electrodes coupled to the BEM substrate model. Interest in including the 
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FEM extension to BEM models increased as the benefits of using thicker and more exotic 

substrate and/or electrode materials were discovered (e.g. increased mode trapping and 

electrode reflectivity, improved device temperature compensation). The primary 

difference between [46] and [82] was in the method whereby the electrode/substrate 

interfacial charge density and stress were represented. In [82] the to-be-determined 

interfacial charge and stress at interfaces are represented by weighted rectangular pulses, 

whereas, in [46], the to-be-determined interfacial charge and stress at particular 

substrate/electrode interfaces are represented by weighted orthogonal Chebyshev 

polynomials of the first kind. The latter technique proved more efficient than the first due 

to the reduced number of global unknowns required for achieving solution convergence. 

For this reason the particular basis function for charge and stress representation reported 

in [46] was implemented in this work, although herein a novel FEM/BEM theoretical 

model is presented that is independent of basis function choice. Thus, implementation of 

other basis functions, which may be found more efficiently numerically for a particular 

problem, can easily be implemented without re-deriving the entire model. Also new to 

this work, as discussed in this section, is inclusion of possible incident free-surface mode 

analysis on finite structures that incorporate effects of mass/stiffness electrode loading. 

This extension allows directed scattering parameter extraction for arbitrary structures, 

which may be used in conjunction with simpler and more rapid simulation models such 

as equivalent-circuit, coupling of modes (COM), and P-matrix models [83,44]. While this 

capability was added, it was not deployed for this project. It has however found uses in 

projects, e.g. for the design of resonators in UMaine’s current high-temperature harsh-

environment sensor research project. 
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 The following arbitrary-basis-function FEM/BEM theoretical analysis assumes 

that all fields follow sinusoidal time variation, given as t  j e  ; that field variation is 

limited only along the x- and z- directions; and that all basis functions have existent 

Fourier transforms (i.e. a spatial- to spectral- domain representation). In Section 2.4 it 

was shown that spectral-domain Green’s functions relate spectral components of 

interfacial stress and charge to interfacial time derivative displacement and electric 

potential (cf. (2.16)). Using the definition of Fourier transform pair in (2.15), the 

spatial-domain representation of displacement and electric potential may be given as 
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. 
(2.30) 

Equation (2.30) represents the driven response of the system, but does not include 

possible incident free-surface SAW, PSAW, and HVPSAW mode contributions, which 

have no associated surface normal stress or charge, but do have associated surface 

displacement and electric potential. To include incident mode analysis into the model, the 

left-hand-side of (2.30) must also include the terms: 
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(2.31) 

where: 

 

mA is the complex valued electric potential at x = 0 for the m
th

 free-surface mode 

traveling in the +x direction, 

 
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the interface associated with the m
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 free-surface mode traveling in the -x direction,  

 and 
m

o
k is the complex wavenumber for the m

th
 free-surface mode. 

Given these equations, the first step in the BEM analysis for the semi-infinite body is to 

discretize the problem so as to solve the system of integral equations given by (2.30) with 

the inclusion of the terms in (2.31) on the left-hand-side. The spatial-domain 

representation of interfacial stress and charge density are represented by finite sums of 

arbitrary basis functions; note that any particular basis function is assumed non-zero over 

one electrode/substrate interface. The total spatial-domain interface stress and charge is 

now given by: 
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(2.32) 

where: 

 Np is the total number of basis functions for the p
th

 source field, 

 s

pw  is the s
th

 basis function’s unknown weight for the p
th

 source field, 

 and s

pf is the s
th

 basis function spatial-domain representation for the p
th

 source field. 

Using the linearity property of the Fourier transform, the spectral-domain representation 

of (2.32) is given by 
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(2.33) 

The number of total unknowns for the problem now equals the total number of basis 

function weights, given by 
4321 NNNNN  . To form a solvable square matrix 
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system, N equations are formed using (2.30). In particular, a Galerkin variational method 

[84] is used to form the N equations by multiplying (2.30), including (2.31), by the same 

N basis functions used for stress and charge representation, followed by integrating the 

result over the entire interface. Substituting (2.33) into (2.30), including (2.31) and 

applying the Galerkin variational method yields the square matrix system of equations: 
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where: 
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Generally the most time consuming and numerically challenging aspect of BEM analysis 

is evaluating the Ymn matrix elements. The computation requires numerical evaluation of 

many integrals having infinite limits and integrands that may contain poles, display rapid 

oscillatory behavior, and converge slowly with increasing integration limits. Also, as 

devices to be simulated become larger, the number of basis functions increases; so the 
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number of integrations required (and so the simulation time) tends to be proportional to 

the square of the total number of basis functions. Rapidly converging basis functions sets 

are desirable in order to reduce the problem size while achieving adequate convergence. 

Semi-periodic structures tend to be faster to evaluate as many of the integrations are 

repeated and thus only need to be performed once. Also, slowness symmetry in the 

Green’s function matrix and Green’s functions themselves can be recognized quite often, 

further reducing the number of integrations required. In this work the model implemented 

minimizes the number of required integration evaluations by identifying repeated 

integrals. The integration method adopted in this work is discussed in Appendix B and 

assumes the same basis function set used for charge and stress as in [46].  

 Once the Ymn elements have been computed, attention is turned to the evaluation 

of cn. The evaluation of entries of c4 is considered first, which involves computing 

integrals over an electrode’s domain with integrands being each charge basis function 

multiplied by the corresponding basis function electrode’s electric potential. In general, 

the absolute electric potential is never specified in a circuit; instead, reference potentials 

are applied by setting some electrode(s) to ground and others to be either floating or 

driven with defined potential difference between themselves and a ground. In order to 

apply this rule to the BEM model, the electric potential is rewritten as    xvx o  , 

where 
o  is unknown reference potential with respect to a grounded electrode reference 

and v(x) is the voltage potential difference with respect to the grounded electrodes. 

Substituting this form for electric potential into (2.34) introduces another unknown to the 

system, i.e. 
o . To maintain a square matrix system, an additional equation is needed. 
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The selected equation ensures that the total sourcing charge at the interface is zero, which 

is another way of saying that the current entering the circuit equals the current exiting, 

since current density is equal to j under time harmonic excitation. As a result, it can be 

shown that 0)0()0(
4

1

44  


x

N

s

ss

x kfwk  by evaluating (2.15) at kx = 0 and applying 

(2.33). This relationship, which included in the system of equations (2.34), is used in a 

novel way for evaluating the electrostatic singularity contribution to the Y44 elements by 

canceling the non-simple pole (1/|sx|) behavior in the integrand near sx = 0, thereby 

permitting evaluation by numerical integration. (Details of this analysis are presented in 

Appendix B.) If floating electrodes are included in the structure, more unknowns are 

introduced—namely the electrodes’ respective voltages. As in the previous case, 

equations are added to maintain a square system. These equations can be constructed by 

stipulating that the total charge on each floating electrode is equal to zero, so that no net 

current enters or leaves a floating electrode.  

 Evaluation of c1, c2, and c3, is now considered. Evaluating these elements involve 

integrals of basis functions and electrode/interface displacement components, which 

cannot be found directly. For this situation a FEM analysis of the mechanical electrode 

effects is performed, relating the interface stress basis functions to c1, c2, and c3, given by 
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The FEM analysis theory yielding (2.35) is discussed in Appendix D. Combining (2.35) 

and the additional equations regarding charge conservation and unknown potentials with 

(2.34) yields the final system of equations to be solved: 
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where: 

  T 21
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   and 
i

floatingZ is the same form as Ztotal, but with terms set to zero if the column’s 

corresponding basis function’s domain does not correspond to the i
th

 floating 

electrode’s domain, 

 and φ  is the vector containing the reference electric potential and floating 

electrode voltages relative to ground, given by 

    T 
1 fN

floatingfloatingo vv φ , 

(Note that if no floating electrode are present the Zfloating and vfloating terms are not 

including in the overall matrix system). 
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It may be appropriate to scale Z to improve the condition of the overall matrix, and doing 

so only inversely scales the unknown potential vector. Once system (2.36) is constructed, 

the basis function weights and unknown potential terms can be determined using 

techniques of linear algebraic analysis, subject to the structure boundary conditions 

and/or exciting incident mode(s). Knowing the basis function weights and potential terms 

allows the stress and charge distribution at an electrode/substrate interface to be 

determined, and from which total currents entering electrodes can be determined and 

therefore electrical impedance. In addition the basis functions weights also allow 

calculation of far-field parameters, such as exited SAW magnitude, phase and power, and 

excited BAW power and radiation pattern (see Appendix C). Such analyses are useful for 

evaluating expected performance of liquid-phase sensor platforms and will be discussed 

in greater detail in Chapter 3. 

2.7. Periodic FEM/BEM Model Theory 

 In this section the FEM/BEM model used in this work for simulation of periodic 

electrode structures atop a piezoelectric half-space is discussed. The assumptions of 

Section 2.6 apply here, except that for the current case the electrode structures at the 

interface are required to be spaced periodically and extend infinitely in each direction 

(though the applied electrical signals in the structure are not necessarily periodic). This 

requirement permits evaluation of designs consisting of finite IDTs surrounded by 

synchronous grating electrodes extending infinitely in both directions. Attempting to 

model such a structure using the finite model presented in Section 2.6 would generate an 

infinite problem statement, since charge and stress at all interfaces must be considered. 
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The modeling theory presented here is based on methods presented in [57,59,58]. The 

method used in [57] involves a periodic grating mode dispersion analysis carried out 

using a periodic model permitting evaluation of stopband characteristics for short- and 

open- circuit gratings. The charge density of electrodes is expressed using a Chebyshev 

basis to accurately capture the singularity behavior of charges near electrode edges. 

However, the model neglects the mass loading of electrodes. In [59] the characteristics of 

harmonic and mutual admittances are studied. The method allows grating mode 

contributions to harmonic and mutual admittances to be separated from other effects such 

as BAW. But again, the effect of mass loading by electrodes is neglected. In [58] a model 

for harmonic and mutual admittances is presented which includes mass/stiffness loading 

effects of electrodes and also considers charge and stress basis functions of Chebyshev 

polynomials. In this case, however, the excitation efficiency of finite length transducers is 

not investigated.  

 The work of this dissertation combines and extends these models into a novel 

suite of useful tools suitable for studying transducer excitation efficiency of finite length 

transducers for SHSAW grating modes as a function of electrode thickness, using a 

periodic model for grating mode dispersion that expresses electrode charge density on a 

Chebyshev basis, incorporates charge and stress basis functions of Chebyshev 

polynomials, distinguishes mode contributions to harmonic and mutual admittances from 

BAW and other effects, and includes mass/stiffness loading effects of electrodes. The 

resulting model is designed for analyzing SHSAW liquid phase sensor platforms and is 

independent of basis function choice, a functionality that does not yet appear in the 
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literature. The significance of the novelty of the presented model can be seen by noting 

that, whenever better-suited basis functions are determined, the functions can be rapidly 

applied to the model without re-deriving the model theory. Another benefit of the 

presented model is that it allows the study of multiple, arbitrary-shaped electrodes per 

period, whereby single-phase unidirectional transducer (SPUDT) structures can be 

analyzed. SPUDT structures often have two or more electrodes with unequal dimensions 

per period.  

 Consider an infinite periodic structure with arbitrary electrode geometries per 

period driven harmonically such that, for any position in the structure, in the distance of 

one period, p, the applied voltage and current (V and I) are phase shifted by an amount -

2  (see Figure 2.8).  

 
Figure 2.8. Infinite periodic structure considered driven harmonically. 

According to Floquet theory [44], all fields in the structure follow an x spatial 

dependence of 
x  je 
, where 

p




2
 . As a result, multiplying any field in the material 

by 
x  je 
 will be periodic with period p with respect to x. This important result implies 
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that only one period of the array needs to be studied to characterize the entire system. 

Any field at the interface can now be expressed as a Fourier series: 
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where: 
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2
. 

Using (2.37) and (2.16) and noticing that the overall fields are composed of infinite sums 

of spectral-domain fields having wavenumbers given by k, it can be shown that interface 

displacements and electric potential are given by 
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Using a similar basis function expansion for stress and charge to that found in Section 2.6 

and comparing (2.37) and (2.15), it can be shown that the Fourier coefficients for stress 

and charge terms are given by: 
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(2.39) 

Using the Galerkin approach to form additional equations from (2.38), again as in Section 

2.6, and including (2.39) results in: 
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where: 
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The FEM formalism used in Section 2.6 applies to this system. Charge conservation and 

reference potential only apply when 
p

k static


2
 , where 

statick  is an integer, since the 

statickk   term in the summation of (2.37) corresponds to a stationary term (no variation 

in x). Regarding the electrical potential field, this term is the reference potential, which 

must be constant with respect to x (all other terms in the sum display x variation).   

 A numerical difficulty occurs in the formulation given thus far. According to 

(2.40) the  srY44
 term is a summation with one term evaluated at 0k , which occurs 

when 
statickk  . This term presents a problem due to the singularity in 











 k

G44  at 

0


 k

. To deal with this situation numerically, the 
statickk  terms in Y41, Y42, Y43, and 

Y44 are omitted from the summation, represented as an additional unknown (an integrated 

reference potential term), and transferred to the other side of the equation. To maintain a 

square matrix system, an additional equation expressing charge conservation over a 

period is added to the system (which must be true if every period is identical in terms of 

its fields). Alternatively, if 
p

k k 


2
  for all k, the charge conservation equation is not 

required since, at some distance away (in terms of periods), equal and opposite 

charge/current on an electrode can be found, which automatically ensures charge 

conservation. In addition, the reference potential is zero since there are no constant terms 

with respect to x in the summations representing fields.  
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 The analysis when floating electrodes are included in the structure is the same as 

that carried out in Section 2.6 and in general the system to be solved is  
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(2.41) 

where: 

  T 21

4
4N

nnn ccc  c , where 

      

p

rr dxxvxfc
0

44 , 

 Z  has the same form as given in (2.36), 

  (Note total charge over a period is not to be conserved explicitly if kk  ,0 ), 

 φ  has the same form as given in (2.36), 

  (Note reference voltage term is not be included if kk  ,0 ). 

From the resulting basis function coefficients, all currents entering electrodes can be 

computed by multiplying the total electrode charge by jW, where W is the electrode 

aperture. As is apparent from Figure 2.8, the ratio of current to voltage on an electrode is 

the same as that any integer number of periods away. This ratio is called the harmonic 

admittance of the structure and is generally computed as a function of frequency with 

fixed phase-shift, , or vice versa. For the structure depicted in Figure 2.8, the harmonic 

admittance is represented as a 2x2 matrix Y(f, ), since there are two possibly driven 

electrodes per period. It is easy to show that Y(f, ) is periodic with respect to , with 

period equal to 1. The elements of the matrix are determined using the same technique 

one would use to measure Y-parameters of a circuit; namely, by one-at-a-time setting an 
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electrode to 1 volt while setting the others to 0 volts and determining the resulting current 

on each electrode. When the structure in Figure 2.8 is further subject to a finite region of 

arbitrarily applied voltages, then, with reference to Figure 2.8, the voltage and current 

entering electrodes n periods to the right of the first are given by    

    nj

n e  2

0 ,,  II
, 

 
    nj

n e  2

0 ,,  VV
, 

(2.42) 

where: 

 
nI  is the vector of currents on the electrodes for the n

th
 period, 

 
nV  is the vector of voltages on the electrodes for the n

th
 period. 

The electrode currents on a single period are related to the voltages applied to the 

electrodes on the same period through the harmonic admittance matrix when driven 

harmonically such that       ,,, VYI   for any period. Now suppose instead of 

driving the structure harmonically the structure is driven by an arbitrary voltage 

distribution,  nV . Before proceeding, a Fourier and inverse Fourier series is defined for 

converting between the n and  domains: 

   





n

n γ πj

n eff 2, 
, 

       




2/1

2/1

2, deff n γ πj

n . 

(2.43) 
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Using (2.43) the mutual admittance,  nY , is defined by 

     




2/1

2/1

2, de n γ πj

n YY . (2.44) 

From       ,,, VYI   and use of (2.43) it can be shown that the current entering 

the m
th

 period’s electrode is given by 

      n

n

nmm  VYI 




 . (2.45) 

Thus given a finite-length driven voltage distribution along the interface (all other 

electrodes grounded), (2.45) determines the currents entering all electrodes. Note that the 

mutual admittance represents the current distribution on electrodes subject to driving the 

n = 0 electrode with unit potential; all other electrodes are considered at zero potential. 

For a considered structure, if the grounded electrodes of a finite-length IDT are not 

electrically connected to the surrounding electrodes, which are at zero potential, then the 

voltage distribution over the IDT electrodes is unknown as only the potential difference is 

specified. Therefore, in (2.45)       refnn VV  over the n IDT electrode indices. 

Including at extra equation, i.e. charge conservation on the IDT electrodes, enables the 

overall system to be solved, which results in determination of the IDT currents and 

reference potential,  ref , given the known potential difference applied to the IDT. 

Properties of the mutual admittance function relevant to SHSAW sensor platforms are 

discussed in Section 3.4.3. 
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CHAPTER 3 

SHSAW MODELING FOR LIQUID-PHASE SENSING APPLICATIONS 

3.1. Introduction 

 The overall purpose of chapter 3 is to: (i) identify key SHSAW sensor platform 

design parameters relevant to liquid-phase sensor applications; (ii) report on the use of 

the implemented modeling tools towards extraction of these parameters; and (iii) identify 

design trends that lead to high-performance SHSAW sensor platforms.    

 Section 3.2 begins with a discussion regarding why delay-line-based SAW 

devices where considered in this work over resonant-based sensors for the liquid-phase 

applications. Afterwards, a simplified model of a liquid-phase delay-line sensor is 

presented, and the overall expected measured sensor signal is estimated. Based on model, 

liquid-phase sensing platform specifications are established for sensitivity, 

signal-to-noise ratio, resolution, and dynamic range.  

 In Section 3.3, characteristics of SHSAW propagation, such as phase velocity, 

attenuation, and penetration depth are evaluated with and without liquid surface loading 

for both electrically open and shorted interface boundary conditions. Next, using 

implemented software a numerical viscosity sensitivity analysis is presented and results 

are discussed.  

 In Section 3.4, excitation/detection characteristics are evaluated for three IDT 

surrounding boundary conditions: (i) mechanically and electrically free surface, (ii) 

semi-infinite along the propagation direction, finite-thickness uniform guiding electrodes, 
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and (iii) semi-infinite along the propagation direction, periodic guiding grating 

electrodes. The latter two structures have not been previously reported in the literature in 

terms of achievable IDT power efficiency, defined as SHSAW (the ratio of total IDT 

SHSAW power excited to IDT input power). It is shown that guiding structures can 

significantly improve achievable SHSAW reducing spurious signal detection at the output 

IDT, and thus improving the signal-to-noise ratio for liquid-phase delay-line based 

SHSAW sensor platforms. 

3.2. SHSAW Liquid-Phase Sensing Platforms 

 As the purpose of this investigations is ultimately to advance development of a 

reliable liquid-phase sensor design, SHSAW liquid-phase sensors based on delay-line 

devices and not platforms based on resonant structures are considered. A major factor 

that motivated this decision is that a given liquid analyte may contain conducting ions or 

have a dielectric constant greater than that of the substrate; therefore it is important to 

shield IDTs from the liquid to prevent electric or dielectric shorting of the device. Given 

the fact that in resonant-based devices IDTs are typically placed on the order of 

sub-wavelengths from reflective grating structures and other IDTs, the degree of accuracy 

consequently required for positioning and attachment of a fluidic chamber poses a 

significant challenge to reliable device packaging for liquid-phase operation. By contrast, 

in a delay-line device, the gaps between IDTs and delay regions, where chambers are 

sealed to the substrate, can be relatively large acoustically. In this work it is shown that 

devices based on delay-lines yield responses with small dependence on chamber 
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positioning. Less stringent packaging attachment positioning can considerably simplify 

packaging considerations and permits higher device reproducibility. 

3.2.1. Delay-Line Response Model 

 To identify key issues regarding design of SHSAW delay-line liquid-phase 

sensors, an appropriate model of the situation is required. Figure 3.1 shows the general 

topology of the delay-line structure under consideration (top) and an equivalent 

scattering-matrix representation (bottom).  

 
Figure 3.1. Topology and equivalent scattering-matrix representation for delay line 

liquid-phase sensing platform under consideration. 

The delay-line structure consists of two IDTs separated by a delay region. A fluidic 

chamber is attached to the top of the device and has containment walls separating IDT 

Center To Center Distance, D 
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and delay regions. Configured as a liquid-phase sensor, it is assumed that only the delay 

region is exposed to the fluid analyte. The IDTs are considered 4-port black-box 

elements, where one port is the electrical port to be probed and the other ports are 

electromechanical. The outer electromechanical ports are terminated with loads. These 

loads represent energy storage effects and power lost to SHSAW and SHBAW 

propagating in the direction opposite to that of other IDT. The other two 

electromechanical ports permit coupling between input and output IDTs. Three types of 

coupling are considered: (i) electrostatic coupling between transducers; (ii) coupling due 

to SHBAW based on shallow propagation or reflection from bottom of substrate; and (iii) 

coupling via due to SHSAW propagating along the delay region interface.  

 In this analysis, cases (i) and (ii) are grouped together and are considered to be 

spurious signals. For case (iii), the SHSAW channel is modeled as a transmission line of 

length L with characteristic impedance ZSHSAW and inverse propagation velocity or 

slowness given by sx, which depends on properties of the fluid analyte, and is considered 

the sensing channel. In addition, complex multi-transit signals can also be detected; for 

instance detected SHSAW/BAW by the output IDT can regenerate SHSAW/BAW and 

then be detected again after reflection from the input IDT. Such multi-transit signals are 

also considered spurious.  

 The electrical response to be measured is given by the transmission coefficient 

S21 = b2/a1, which is determined when IDT 2 is terminated with system characteristic 

impedance and IDT 1 is driven with a source having system characteristic impedance. 

The overall transmission coefficient S21 is given by: 
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SpuriousSHSAW SSS 212121   (3.1) 

where contributions due to the sensing and spurious channels are separated as 

 
SHSAWS21 , the contribution due one-way propagation along the sensing channel, 

 
SpuriousS21 , the contributions due to the superposition of all spurious signals. 

(Note that approximations for each term may be obtained experimentally via time-gating 

analysis if signals do not overlap in time.) For delay-line sensing applications, the phase 

of S21 is usually measured, tracked, and correlated to properties of the analyte. Therefore 

it becomes useful to define the maximum possible detection phase error, 
maxerror , where 

error  is defined as the difference between the desired 
SHSAWS21  phase value, SHSAW , and 

overall detected S21 phase, 21 . Figure 3.2 provides a geometric representation of the 

resulting phase error, where Spurious  is the phase of 
SpuriousS21 . 

 
Figure 3.2. Maximum phase error due to the detection of spurious signal. 
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Applying the Law of Sines [85] to obtain an expression for error and then determining 

either a maximum or minimum value by evaluating the expression at the point where its 

derivative with respect to Spurious is zero, results in: 
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For the upcoming analysis in Section 3.2.2, it useful to express SHSAWS21  as a function of 

the IDT center to center distance, D, and the delay-path length, L, which is the region that 

is sensitive to the analyte. Given that SHSAWS21  consists of a contribution due to one-way 

SHSAW coupling, it can be expressed as:  

    LsjLsLDsjLDsjSHSAWSHSAW eeeeeSS
SHSAW

22110

021





, (3.3) 

where: 

 SHSAWS0  is the extrapolated magnitude of 
SHSAWS21  as D goes to zero, 

 SHSAW

0  is the extrapolated phase of the 
SHSAWS21  as D goes to zero, 

 1s  is the complex SHSAW slowness in the IDT region, where  11 ss   and

 11 ss  , 

 2s  is the complex SHSAW slowness in the delay region, where  22 ss   and

 22 ss  .  
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The overall transmission phase is now given as: 

max021 error

SHSAWSHSAW   , (3.4) 

where: 

   LsLDsSHSAW

21
  , 

 11   , and 
maxerror  represents the possible values of error . 

This relationship is used in Section 3.2.2 to study the theoretical sensitivity response, 

signal-to-noise ratio, resolution, and dynamic range of the proposed sensing system. 

3.2.2. Sensitivity, Signal-To-Noise Ratio, Resolution, and Dynamic Range 

 Given a fixed operating frequency, two main phenomena are expected to cause a 

change in the value of 21 , specifically changes in SHSAW slowness values, s1 and s2, 

and the propagation distances (D-L) and L. It should be noted that in the following 

analysis fluid viscosity is considered the measurand, but similar analyses can be 

performed for other parameters as well such as fluid density, conductivity, and dielectric 

parameters. With that said, the value s2 is assumed to be dependent upon properties of the 

fluid viscosity and the device temperature, whereas s1 is only considered dependent on 

temperature. Looking at the differential phase change of 
SHSAW  subject to differential 

changes in temperature and fluid viscosity permits a sensitivity analysis to be performed.  
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In particular, assuming the fluid viscosity and device temperature have infinitesimal 

changes given by d and dT respectively, given (3.3) the relative change in 
SHSAW  at a 

single frequency, is given by: 

 
 

 
dT

T

L

LT

s

s

L
d

s

s

L
dT

T

LD

LDT

s

s

LDd SHSAW





























































11111

2

2

22

2

22

1

11 




 , 
(3.5) 

where: 

 
1

1

2

s




 , and 

2

2

2

s




 . 

Assuming that the normalized partial derivative terms w.r.t. temperature are equal for 

each region are equal, and   21 , then: 
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Equation (3.6) indicates that the normalized change of phase w.r.t.   is proportional to 

the normalized delay path distance L/. This suggest that L should be as large as possible 

to obtain higher change in detected signal, but given 
LsjLsSHSAW xx eeS





21 , the level of 

signal at IDT 2 associated with SHSAWS21  in dB is proportional to L/ assuming SHSAW 

propagation loss, e.g. viscous loading. This is one important factor when determining an 

upper limit for L, as if the delay region becomes too long, the detected signal may fall 

into the noise level or into a region where spurious signals dominate, resulting in a larger 

phase error given by (3.2). The terms 

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
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 represent sensitivities 

towards viscosity and temperature, respectively. The sensitivity to temperature arises 

from finite temperature dependence of material stiffness, piezoelectric, dielectric, and 



100 

 

density constants, and the overall device physical length, i.e. thermal expansion. 

Assuming viscosity is the desired measurand, the signal-to-noise ratio of phase signal 

associated the SHSAW mode is therefore defined by: 
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, 

 TCV is temperature coefficient of velocity, 

 TCE is temperature coefficient of expansion, 

 TCD is temperature coefficient of delay. 

Given (3.7), (3.6) is approximated by:  

TTCD
D

S
LSHSAW












2
, (3.8) 

Again considering viscosity as the measurand, the sensor resolution, ||min, is defined as 

the minimum detectable change in viscosity. An approximation for this term is now 

derived. Assume at time, t1, a first measurement of 21  is collected, and then at another 

time, t2, an additional measurement of 21  is conducted after the fluid viscosity changes. 

Further assume that the temperature of the devices fluctuates over time with amplitude 

given by 
max

T , and that the value of   in (3.4) varies over time, as the detected 

spurious signal phase may depend on temperature as well. Let min  be the phase 

resolution of the measurement system. Given (3.4) and (3.8), it makes sense to neglect 
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   10200 tt SHSAWSHSAWSHSAW    as it is much smaller in magnitude than the contribution 

the TCD term in (3.8). This assumption is valid given that 


D
 is typically on the order of 

100 or more and that the phase change due to temperature associated with the delay 

region is TTCD
D




2 , whereas the phase change due to temperature associated with 

SHSAW

0  is on the order of TTCD2 , which does not have a similar 


D
 factor. Equations 

(3.9), (3.10), (3.11) give expressions for the maximum absolute phase changes associated 

the following mechanisms; viscosity, temperature and phase error, respectively. Notice 

the factor of 2 and the less-than or equal-to sign for (3.10) and (3.11) as the temperature 

is assumed to be a random signal between 
max

TT   and 
max

TT  , and   is assumed 

random and between -1 and 1.  
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 2
2

22

max121221 error

error

tt
 . (3.11) 

In a worst case situation, where the phase response of viscosity is canceled by the 

temperature and phase error responses, (3.9) must be greater than the sum of (3.10) and 

(3.11) to guarantee a change viscosity is detected.  
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Therefore value of ||min is given by: 
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(3.12) 

Equation (3.12) assumes that the measurement equipment has perfect phase resolution, 

but in practice this is a finite value and is given by min . Consequently the achievable 

value of ||min in practice is given as:  
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It should be mentioned that the value of ||min can also be thought of as the detection 

limit using the value of S  in the limit of zero viscosity. Regarding the dynamic range of 

the sensor, this may be determined by finding regions of analyte parameters which yield 

sensor resolution guaranteed to be better than a given specification. 

 As a result of the analysis presented in this section it is apparent that optimal 

designs should present minimal TCD, acceptable sensitivity, and minimal 

excitation/detection of spurious signals.  

3.3. SHSAW Propagation Characterization Towards Liquid-Phase Sensing  

 In this section propagation characteristics of the SHSAW mode relevant to 

liquid-phase sensing are discussed. SHSAW propagation characteristics are studied for 

platform devices having guiding structures located in delay regions. It is shown that 

guiding structures can dramatically improve the concentration of SHSAW energy near 

the interface and thus improve mode sensitivity to surface and interface perturbations. A 
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numerical SHSAW sensitivity analysis for viscosity is presented for uniform layered 

guiding situations to verify sensitivity improvement via guiding. In particular, Love mode 

structures are evaluated, which include a semi-infinite piezoelectric body, two guiding 

layers consisting of amorphous SiO2 and Au, and a semi-infinite viscous fluid. The 

extracted sensitivity is determined as a function of each finite layer thickness for three 

piezoelectric materials and selected SHSAW orientations: potassium niobate 

(0, 90, 0), quartz (0, 132.75, 90) and langasite (0, 22, 90). 

3.3.1. Importance of SHSAW Guiding Structures 

 Using implemented software based on the theoretical development presented in 

Chapter 2, SHSAW mode properties are characterized for candidate substrate/layer 

configurations. Implemented software allows identification of modes for arbitrary 

materials, orientations, and uniform layered configurations and returns the complex 

valued slowness parameter of the mode. Additional routines were developed for 

computing the Poynting vector associated with a mode at any position in the body. 

Effective penetration depth of the mode was calculated using routines based on 

integration of x-directed (propagation direction) Poynting vector as a function of depth 

(see Appendix C). 

 Evaluation of three substrate materials and orientations are presented: potassium 

niobate (KNbO3) Euler angles (0, 90, 0), langasite (LGS) Euler angles (0, 22, 90), 

and quartz Euler angles (0, 132.75, 90). To demonstrate how altering the surface 

boundary condition influences properties of the SHSAW, four scenarios are considered: 
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(i) an electrically and mechanically free surface condition; (ii) an infinitesimally thin 

short-circuited and mechanically free surface condition; (iii) case (i) with addition of 

de-ionized (DI) water; and (iv) case (ii) with addition of DI water. Figure 3.3 shows the 

four scenarios considered. Propagation is assumed along the +x-direction, the z-axis is 

directed along the piezoelectric substrate normal with the origin at the interface, and all 

fields are assumed uniform along the y-direction. Characteristics of the SHSAW obtained 

using the implemented software routines for each of the four cases and three 

materials/orientations are given in Table 3.1, where v is the mode phase-velocity; , the 

mode attenuation in units of dB/; d  the penetration depth above the interface; d , the 

penetration depth into the substrate; and quantity, P
+
/P

-
, given as the ratio of total 

x-directed power above the interface to that below the interface, respectively. The 

penetration depth is defined as the range of z from the interface to a point above or below 

the interface which accounts for 99% of the total power associated with the SHSAW 

mode above or below the interface, respectively.  

 
Figure 3.3. Four scenarios used to characterize SHSAW guiding. 
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In the cases including DI water loading, the overall mode becomes dispersive as the 

effective c44 stiffness coefficient of the fluid is given by j, where  is radian frequency 

and  is the dynamic viscosity of DI water. For demonstration purposes, the simulations 

presented here were chosen to be evaluated at  = 210010
6
 Hz, which is on the order 

of the operational frequency range of devices fabricated in this work. As a note, 

Appendix E presents the un-rotated material constants of each material considered in this 

dissertation. Figure 3.4 and Figure 3.5 plot the normalized x-directed Poynting vector as a 

function of distance in wavelengths from the interface for each case and 

material/orientation considered. 
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Case Parameter 
KNbO3 

(0, 90, 0)   

LGS 

(0, 22, 90) 

Quartz 

(0,132.75, 90) 

(i) 

v [m/s] 3801.06 2947.34 NA 

 [dB/] 0 0 NA 

d 
+ 

[] 0.37 0.37 NA 

d 
- 
[] 227 520 NA 

P
+
/P

-
 [%] -1.04 10

-3 
-7.76 10

-5
 NA 

(ii) 

v [m/s] 2863.67 2945.37 5008.80 

 [dB/] 0 0 0 

d 
+ 

[] 0 0 0 

d 
- 
[] 0.90 9.01 24.32 

P
+
/P

-
 [%] 0 0 0 

(iii) 

v [m/s] 3711.27 2946.21 5008.78 

 [dB/] 9.46 10
-3 

1.53 10
-3 

1.12 10
-3

 

d 
+ 

[] 0.37 0.37 0.37 

d 
- 
[] 3.13 11.97 22.22 

P
+
/P

-
 [%] -3.53 -2.01 10

-2 
-8.66 10

-4 

(iv) 

v [m/s] 2862.62 2945.26 5008.73 

 [dB/] 2.00 10
-2 

2.02 10
-3 

1.19 10
-3 

d 
+ 

[] 4.29 10
-3 

4.17 10
-3 

2.45 10
-3 

d 
- 
[] 0.85 8.79 20.70 

P
+
/P

-
 [%] 1.8310

-9 
1.78 10

-11 
2.14 10

-12 

Table 3.1. SHSAW mode properties for 4 cases in Figure 3.3, for three substrate 

materials/orientations.   
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Figure 3.4. Normalized x-directed Poynting vector for cases (i) and (ii) 

demonstrating effect of addition of electrical guiding structure: (a) case (i) KNbO3; 

(b) case (ii) KNbO3; (c) case (i) LGS; (d) case (ii) LGS; (e) case (i) quartz; (f) case 

(ii) quartz. 
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Figure 3.5. Normalized x-directed Poynting vector for cases (iii) and (iv) 

demonstrating effect of addition of electrical guiding structure: (a) case (iii) KNbO3; 

(b) case (iv) KNbO3; (c) case (iii) LGS; (d) case (iv) LGS; (e) case (iii) quartz; (f) 

case (iv) quartz. 
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Comparing cases (i) and (ii) shows the effect of short-circuiting the electric potential at 

the interface. For each material, the shorting effect results in energy concentration 

towards the interface. In the case of quartz no mechanically and electrically free 

boundary condition SHSAW solution exists, whereas a mode may be identified when 

short-circuiting the electric potential. Results of case (iii) indicate that fluid mechanical 

and dielectric loading has a similar guiding effect, though not as strong. Case (iv) 

presents the largest guiding effect, including mechanical loading and electric shorting 

effects. Slowing down the SHSAW mode generally results in a concentration of energy 

near the interface, consistent with the fact that the partial modes in each body tend to 

decay faster, with respect to z, for increased x-directed slowness. It is interesting to note 

negative P
+
/P

-
 ratios for non-shorted interferences, although very small in magnitude. 

The reason why the sign of P
+
 is negative is discussed in Appendix C, but it has to do 

with use of the quasi-static approximation. Alternatively in the case of interface shorting; 

no electrical fields are present above the interface, and only purely acoustic Poynting 

vector exists above the interface, in which the total integrated value is a positive quantity. 

Observed effects indicate that increased mode sensitivity will be achieved by using 

guiding structures, as energy becomes more concentrated near the analyte. The 

penetration depth into the fluid when electrical fields are shorted at the interface is also of 

note. In Chapter 2 it was shown that the eigenvalues associated with the two pure shear 

horizontal partial modes in an isotropic continuum are given by 
2

44

xs
c




; which if 

considering a viscous Newtonian fluid results in 2

xs
j





, as jc 44 . If 
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|sx| << 



 then the eigenvalues associated with the partial modes are approximately 

given by  j
j

 1
2

2








. For the considered semi-infinite fluid, the fields 

associated with the valid partial mode must decay away from the interface. Therefore as 

the fields in the fluid are proportional to e raised to the power of the eigenvalue 

multiplied by j  z, only the negative square-root branch solution is considered valid. 

Given that x-directed time average Poynting vector is -½ the real part of the product of T4 

and (j  u2)
*
 (see (2.12) ), the z-dependence of the acoustic Poynting vector in the fluid is 

given by 


2
z

e


. Integrating the x-directed Poynting vector w.r.t z allows penetration 

depth to be estimated (d is the value of integration upper limit that yields 99% of total 

integral, i.e. the value obtained as d  ); which can be shown to result in 

 




2
01.0ln d . It should be noted that this value is exact for a BAW device 

situation as sx in that case is equal to zero. Given that relatively very little energy is 

present in the fluid above d from the interface, whatever change occurs in the fluid above 

the level d has very little effect on the overall wave velocity. Therefore we can define d 

also as the effective sensor probing depth into the fluid. Figure 3.6 plots the effective 

sensor probing depth into DI water versus device operating frequency. In this work, 

device operating frequency of candidate designs are in on the order of 100-200 MHz, and 

therefore the sensor platform devices are expected to be sensitive to interface 

perturbations on the order of 125 to 90 nm, respectively; assuming the analyte fluidic 

properties are similar to DI water. 
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Figure 3.6. Effective sensor probing distance into DI water vs. operating frequency. 
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3.3.2. SHSAW Sensitivity Analysis For Viscosity Detection  

 In this section a numerical sensitivity evaluation is presented, which quantifies the 

effect of incorporating guiding layers on the SHSAW sensitivity to fluid viscosity. The 

analysis is based on use of the same software routines written for Section 3.3.1, but in 

this case the results of the analysis are applied to the outcomes in Section 3.2.2; i.e. 

definition of mode sensitivity. The structure topology studied is depicted in Figure 3.7.  

 
Figure 3.7. Structure considered for numerical sensitivity analysis. 

The structure in Figure 3.7 consists of a semi-infinite piezoelectric, finite thickness layer 

of amorphous SiO2 having thickness hSiO2, finite thickness layer of amorphous Au having 

thickness hAu, and semi-infinite viscous DI water. The use of SiO2 layers is included here 

in addition to Au to compare achievable sensitivity to reported Love mode liquid-phase 

sensor platforms using this topology. It should be of note that the results obtained when 

including no SiO2 layer is the same of those obtained in the limit as hSiO2 goes to zero. 

Based on the partial mode and Green’s function analysis for n-layer systems given in 

Chapter 2, it can be shown that the propagation characteristics of the structure in Figure 

3.7 depend upon the following quantities:  where  is the dynamic viscosity of fluid 

half-space;  , the density of the fluid half-space; hAu; hSiO2; and the stiffness, density, 

x 

z 

y x 
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dielectric, and piezoelectric constants of the half-space piezoelectric and finite layers, a 

set denoted as X. If a SHSAW mode exists for this structure, the mode slowness, sx, will 

depend as well on these parameters. The mode sensitivity with respect to , defined as 

S , is given by: 

 
 

 
 













Xhhs

Xhhs
XhhS AuSiOx

AuSiOx

AuSiO

,,,,

,,,,

1
,,,, 2

2

2
, 

(3.14) 

where: 

 xxx sjss  . 
 

For a given operating frequency, f0, the sensitivity to viscosity, S  is given by: 

   XhhSfXhhS AuSiOAuSiO ,,,,2,,,,, 02000002    . (3.15) 

To keep the presented results regarding sensitivity to viscosity independent of operating 

frequency, S  will be reported in this work. With (3.15) analysis of expected sensor 

parameters is achieved as described in Section 3.22; e.g. signal-to-noise ratio, resolution, 

and dynamic range. To evaluate (3.14) in this work, sensitivity was approximated by 

finding sx for a given set of independent variable parameters, followed by applying a 1% 

increase in  and determining a new value of sx. The partial derivative term in (3.14) 

was then approximated by computing sx/(). The value of  for the fluid was 

chosen to be that of DI water, for consistency with Section 3.3.1. The sensitivity around 

two baseline values of  is evaluated, in particular 0.0005592 and 0.005592 GPa, 

which correspond to viscosity of DI water and a device operating frequency of 100 and 

1000 MHz, respectively. To evaluate how guiding layers and piezoelectric substrate 

choice influences sensitivity and overall properties of the SHSAW mode, three SHSAW 



114 

 

materials/orientations are considered for a variety of hAu and hSiO2 combinations: 

quartz (QTZ) Euler angles (0, 132.75, 90), langasite (LGS) Euler angles (0, 22, 90) 

and potassium niobate (KNB) Euler angles (0, 90, 0). Figure 3.8, Figure 3.9, and 

Figure 3.10 show the determined S  and corresponding SHSAW propagation loss due 

to viscous loading in dB/ for the quartz, LGS, and KNB orientations considered, 

respectively, at  = 0.0005592 GPa. In addition, Figure 3.11, Figure 3.12, and Figure 

3.13 show the results of the same analysis, but with  = 0.005592 GPa. It should noted 

that this analysis considered substrate materials/orientations with relatively low, medium, 

and high electromechanical coupling; i.e. QTZ, LGS, and KNB, respectively, to 

determine if coupling has any significant affect on achievable sensitivity.   
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Figure 3.8. QTZ, Euler Angles (0, 132.75, 90), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.0005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Figure 3.9. LGS, Euler Angles (0, 22, 90), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.0005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Figure 3.10. KNB, Euler Angles (0, 90, 0), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.0005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Figure 3.11. QTZ, Euler Angles (0, 132.75, 90), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Figure 3.12. LGS, Euler Angles (0, 22, 90), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Figure 3.13. KNB, Euler Angles (0, 90, 0), (a) sensitivity to  , and (b) 

propagation loss, . Parameters are plotted as functions of normalized SiO2 and Au 

thicknesses; baseline   = 0.005592 GPa. Crosshatched areas indicate regions 

where no solution was obtained. 

(a) 

(b) 
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Crosshatched regions of figures indicate where no SHSAW mode is identified for 

corresponding values of hSiO2 and hAu, as either the mode does not exist or is too weakly 

coupled piezoelectrically to be identified by the implemented Green’s function pole 

searching algorithm. In all situations presented, optimal thicknesses of guiding SiO2 and 

Au layers producing maximal SHSAW sensitivity to fluid viscosity are identified. In 

particular, for the QTZ case evaluated at  = 0.0005592 GPa, a maximum sensitivity of 

1.23 GPa
-1

 is achieved when hSiO2 and hAu are approximately 2500 and 312.5 m/s, 

respectively. As for the SHSAW attenuation due to viscous loading, a maximal value of 

0.0756 dB/ is given for the same hSiO2 and hAu. For LGS evaluated at 

 = 0.0005592 GPa, a maximum sensitivity of 0.87 GPa
-1

 is achieved when hSiO2 and 

hAu are approximately 8000 and 437.5 m/s respectively; a maximum attenuation of 

0.0532 dB/ occurs for the same hSiO2 and hAu. For KNB evaluated at 

 = 0.0005592 GPa, a maximum sensitivity of 1.08 GPa
-1

 is achieved when hSiO2 and 

hAu are approximately 3500 and 375 m/s respectively; a maximum attenuation of 0.066 

dB/ occurs for the same hSiO2 and hAu. As for the effect of increasing  by a factor 

of 10 to 0.005592 GPa, in the QTZ case, a maximal sensitivity of 0.3885 GPa
-1

 occurs for 

the same hSiO2 and hAu combination that maximized sensitivity when 

 = 0.0005592 GPa. Attenuation maxima trend similarly and are observed at 0.239 

dB/. For LGS, a maximal sensitivity of 0.274 GPa
-1

 is observed at the same hSiO2 and 

hAu that maximized sensitivity when  = 0.0005592 GPa. Maximal attenuation is 

0.168 dB/. For KNB, a maximal sensitivity of 0.340 GPa
-1

 is observed at the same 

hSiO2 and hAu that maximized sensitivity when  = 0.0005592 GPa. Maximal 
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attenuation is 0.209 dB/. These results indicate that mode attenuation and sensitivity are 

highly correlated. In particular, Figure 3.14 shows the correlation between SHSAW 

attenuation and sensitivity to DI water viscosity after de-normalizing the reported S to 

S  via multiplication by radian operating frequency.  

 
Figure 3.14. SHSAW sensitivity to DI water viscosity, S, as function of mode 

attenuation for QTZ Euler angles (0, 132.75, 90), LGS Euler angles (0, 22, 

90), and KNB Euler angles (0, 90, 0); data gathered using the same S data 

presented after de-normalized to operating frequencies of 100 and 1000 MHz. 

Figure 3.14 suggests the tradeoffs involved in choosing materials for SHSAW 

liquid-phase viscosity sensing: materials providing higher viscosity sensitivity (in this 

case, quartz) involve increased mode attenuation per wavelength, a correlation that 
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appears to be independent of piezoelectric substrate material. A linear fit of Figure 3.14 

data reveals the correlation relationship to be approximately 1000 ppm/(mP)/(dB/). 

When this relationship is used with the sensor resolution relationship given by (3.13), and 

assuming TCD to be small relative to viscosity sensitivity, or T to be zero, then the 

sensor resolution is approximated by: 

 

 
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
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(3.16) 

where: 

 r is length of delay region in units of wavelengths, 

  is the SHSAW attenuation in units of dB/, 

  
SHSAW

spurious

S

S
rQ

21

21  is the magnitude of spurious signal to SHSAW signal 

detected by output IDT without viscous fluid loading, 

 
min  is the phase resolution of the measurement system in radians. 

 

Figure 3.15 shows the expected viscosity resolution obtainable as a function of total 

attenuation due to viscous loss, r, and the magnitude of spurious signal to SHSAW 

detected without viscous loading, Q(r), for |min| values of 0.1 and 1.  From Figure 

3.15, optimal values of r can be determined for a given Q(r) in both cases. 

Crosshatched regions indicate where the detected spurious signal exceeds the detected 

SHSAW signal after considering signal attenuation due to viscous loading.  
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Figure 3.15. Expected sensor minimum detectable change in viscosity as function of 

SHSAW attenuation due to viscous loading and ratio of detected of spurious signal 

to SHSAW. In (a) |min| = 0.1; (b) |min| = 1. 

(a) 

(b) 
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Figure 3.15 indicates that viscosity sensor resolution based on delay-line SHSAW sensors 

can be at best around 0.1-1 mP with a realistic design (about ½ an order of magnitude 

improvement in resolution is attained if  |min| = 0.1 compared to |min| = 1). This 

corresponds to approximately 1-10% of the nominal room temperature value of DI water 

viscosity (0.89 cP). It should be noted that this result neglects the effect of TCD and 

temperature variation, which will further decrease achievable resolution. In addition, this 

result indicates that achievable resolution is proportional to Q(r) for a particular range 

and thereafter limited by |min|. To relax the requirements of |min| and so reduce sensor 

interrogation cost, Q(r) should be minimal. Note that Q(r) in practical circumstances is 

not easily determined numerically as a function of IDT separation distance, but is used 

here to determine the maximum sensor resolution of a design, guaranteed to an have 

upper limit of Q(r). Methods to improve Q(r) for SHSAW delay-line devices by placing 

guiding structures alongside IDTs will be presented in the next section. 

 It should be mentioned that other reported viscosity sensitivity analysis techniques 

[86] apply perturbation theory, a less rigorous approach than the numerical method 

adopted in this work. A comparison of the methods may be given by means of a relevant 

example, establishing the approximate normalized phase and attenuation shifts due to 

viscous loading. These are proportional to the square-root of the radian 

frequency-viscosity-density product and a sensitivity parameter, given by S. In particular, 

the relationship developed in [86] is given by: 
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2/ S
 (3.17) 

where: 

 The complex propagation constant is given as  j , 

   is the unperturbed real propagation constant, and 

 S  is the device sensitivity parameter. 

 

This result shows that mode attenuation and sensitivity are linearly related as observed 

using the numerical technique presented and the data shown in Figure 3.14. To verify the 

observed correlation using the model implemented in this dissertation, S must be related 

to the sensitivity-to-viscosity parameter, S (defined in (3.7) ). Using (3.17) and the 

definition of S , it can be shown that relationship between sensitivity parameters is given 

by:   






2
2SS  . (3.18) 

Substituting (3.18) into (3.17) and simplifying yields  

 S2 . (3.19) 

With (3.19) it can be shown that the expected S is proportional to the mode attenuation 

in units of dB/ by the factor 1/(80log10 e) after using the relationships 





2
  and 

attenuation (in units of dB/ ) is given as  e10log20 . Given the value of viscosity 

chosen for water and used for the presented numerical results, 8.9 mP, this factor is equal 

to 1029 ppm/mP/(dB/), which is relatively close to the approximate value of 1000 

ppm/mP/(dB/) extracted from Figure 3.14. The two sensitivity techniques seem to agree 

well at least for fluids with properties close to DI water. It should be noted here in 
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passing that the authors in [86] also give a relationship, Sm =  S, between the device 

sensitivity parameter, S, and a mass sensitivity parameter, Sm, which will be applied in 

Chapter 5 to compare the performance of a device developed in this work to values 

reported in the literature. 

3.4. SHSAW Excitation/Detection Characterization  

 In Sections 3.2 and 3.3 it was shown that the achievable performance of SHSAW 

delay-line based liquid-phase sensor platforms can be improved by increasing the level of 

detected SHSAW signal to spurious signal. In this section, IDT designs are studied in 

terms of better exciting the SHSAW mode of interest, reducing spurious signal excitation 

and detection, and consequently improving the performance of liquid-phase sensor 

platforms. In particular, designs are evaluated in terms the parameter, SHSAW, which is 

defined as input power transduced to the SHSAW mode relative to the total IDT input 

power. By reducing the SHBAW excited by an IDT a greater proportion of SHSAW 

signal should be detected by the output IDT, improving overall sensor performance. It is 

shown that the IDT surrounding boundary condition strongly affects achievable SHSAW. 

In particular, it is demonstrated that SHSAW can approach 100% by using guiding 

structures placed alongside the IDT. The analysis also shows finite thickness electrodes 

made of relatively dense materials play a strong role in improving SHSAW. Many of the 

results and modeling techniques presented in the section have been published by the 

author in [52]. Additional related publications authored or co-authored by the author of 

this document, of which some directly lead up to [52], include [87], [88], [89], [60], [90], 

[51], [91]. 
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 The analysis presented makes use of an implemented FEM/BEM simulation tool 

that is based on the finite and periodic model theory discussed in Chapter 2. Four IDT 

surrounding boundary conditions are considered (refer to Figure 3.16): (i) single IDT 

with finite thickness electrodes surrounded by an electrically and mechanically free 

surface; (ii) single IDT with finite thickness electrodes surrounded by one semi-infinitely 

long guiding electrodes having finite-thickness and placed on either side of IDT; (iii) 

single IDT with finite thickness electrodes surrounded by two semi-infinitely long 

guiding electrodes having finite-thickness and placed both sides of the IDT; and (iv) 

single IDT with finite-thickness electrodes surrounded two semi-infinitely long periodic 

guiding grating electrode structures having finite thickness and placed on both sides of 

the IDT.  

     
 

Figure 3.16. IDT surrounding boundary conditions considered for SHSAW 

evaluation. 
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Structures (i) and (iii) have been studied in previously reported work and explored in 

terms of SHSAW [45], but the authors neglected the effect of finite-thickness electrodes, 

which may be satisfactory given that the author studied pure shear excitation on a highly 

piezoelectric material, i.e. lead zirconate titanate (PZT), and the fact that at that time 

aluminum electrodes were typically employed, which are relatively much less dense than 

those considered in this work, e.g. Au. In this work a similar model was implemented, but 

also includes the effect of finite thickness of all electrodes, which is shown to be 

necessary for accurate estimation of SHSAW for the important cases of quartz and LGS 

substrates. Including finite-thickness electrode effects for case (i) involves a relatively 

straightforward combination of methods presented in [45] and [46]. For cases (ii) and 

(iii), incorporating the finite thickness of guiding electrodes proves challenging as the 

interfacial stress sources along the guiding electrode substrate interface extend infinitely 

and thus are not compatible with reported FEM/BEM models. In this work, for the first 

time, SHSAW for the case (ii) and (iii) structures, inducing finite thickness of guiding 

electrodes, is rigorously extracted using the implemented FEM/BEM model in 

conjunction with a novel acoustic matching technique. Details of the method are 

presented in Section 3.4.2. For the case (iv) structure, using an implemented periodic 

FEM/BEM model based on the theory developed in Chapter 2, SHSAW is reported for the 

first time, after extending the theory reported in [59]. In all three cases, SHSAW is studied 

as a function of substrate material/orientation, electrode material and thickness, and 

number of IDT transducer pairs. The results reported here were used to design IDT 

configurations of prototype liquid-phase sensing platforms targeting improved 
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performance by increasing SHSAW transduction and thus reducing spurious signal 

detection by an output IDT. 

3.4.1. Surrounding Free Surface IDT Analysis 

 Using an implemented finite full-wave FEM/BEM model based on the formalism 

presented in Chapter 2, IDT structures with surrounding mechanically and electrically 

free surfaces were simulated in the frequency domain. The value of SHSAW was extracted 

from the numerical results based on methods presented in Appendix C. In particular, 

Appendix C presents the method used to calculate the excited SAW power present in the 

far-field far away from either side of the IDT. Given the total IDT input power, which is 

computed using the determined IDT conductance for a specified applied voltage, and the 

determined excited SAW power thus permits extraction of SHSAW. The extraction 

process is valid for general symmetry orientations, and is thus also valid for orientations 

that present pure shear horizontal coupling where some fields decouple electrically, i.e. 

T5, T3, ju1, and ju3. The method used to determine the IDT input impedance or 

admittance is described next.  

 Based on simulation results of an IDT, the charge and stress distributions at 

electrode/substrate interfaces are determined for a given electric potential applied to the 

IDT. Using the determined charge distribution, the admittance of the transducer is 

determined by calculating the total current entering the driven electrodes, which, using 

(2.33), is given by: 
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  )0(2 44  
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x
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ss

driven kfwWjdxxWjI  , (3.20) 

where: 

 W is the device aperture, 

 driven is charge density on the driven electrodes, 

 drivenInds are charge density basis function indices for the driven electrodes.  

Given a specified value of the peak voltage applied across the IDT, V,  which is used to 

solve the model, the IDT input conductance and time average power entering the IDT are 

given, respectively, by: 

V

I
Yin  , 

(3.21) 

and  

  2

2

1
VYP inin  . (3.22) 

This concludes the SHSAW extraction presentation for the case (i) considered topology. 

 As an example, extracted SHSAW is presented for the pure shear horizontal 

orientation of langasite Euler angles (0, 22, 90). (A similar analysis is not possible for 

the shear horizontal orientation of quartz Euler angles (0, 132.75, 90) as no 

mechanically and electrically free SHSAW mode exists.) A similar analysis for KNbO3 

Euler angles (0, 90, 0) published by the author [90] showed that under case (i) SHSAW 

varies between 1 and 2% for IDTs containing 1.5 to 5.5 wavelengths of active electrodes, 

while under case (iii) SHSAW is above 98% for the same considered IDTs. It should 

mentioned that in [90] the effect of electrode finite thickness on the guiding electrodes 
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was not included in the analysis as it was published relatively early in this dissertation 

work and the appropriate theory had yet to be developed.    

 The value of SHSAW is in general a function of IDT excitation frequency, but in 

this dissertation SHSAW is extracted only at the approximate frequency of maximum IDT 

conductance, where the IDT is typically operated and is generally most efficient 

regarding excitation of the SHSAW mode. To determine the approximate peak 

conductance frequency, the IDT impedance was calculated using the periodic FEM/BEM 

model described in Chapter 2, where semi-infinite synchronous periodic guiding grating 

electrode structures are alongside each side of the IDT. This technique was chosen 

because computation time is greatly reduced compared to finite device analysis. The 

frequency of maximum IDT conductance assuming surrounding guiding gratings is in 

general a very good approximation and typically was observed to fall within a few 

percent of the finite device IDT maximum conductance frequency. For the simulation 

results presented, IDT electrodes are assumed 4 m in width, mark-to-space ratio of 1:1, 

and be of split-type, or + + - -, to reduce spurious triple transit detection in an actual 

2-port device. The number of split-finger pairs, Leff, under consideration was 4.5, 9.5, 

19.5, 39.5, and 79.5, where as an example 2.5 pairs would have spatial voltage 

distribution on electrodes given as - - + + - - + + - -. Field dependence along the aperture 

dimension is assumed uniform, and therefore the SHSAW results are assumed independent 

of IDT aperture W. In terms of electrode metal material and thickness, for the simulations 

electrodes were assumed composed of isotropic Au with thicknesses equal to 750, 1500, 

3000, or 6000 Å. Figure 3.17 plots the SHSAW extracted. 
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Figure 3.17. SHSAW for LGS Euler angles (0, 22, 90) for IDTs with surrounding 

mechanically and electrically free surfaces vs. IDT length and Au thickness. 

It is observed that in all cases less then 3% of IDT input power is transduced to the mode 

of interest, with the remaining energy being transduced to the spurious SHBAW. This 

result indicates incorporation of guiding structures is required for efficient delay-line 

platforms, as shown in the upcoming sections. Although the majority of input power is 

transduced to the SHBAW spurious mode, a few trends can be observed regarding 

SHSAW in Figure 3.17. In particular it is observed that increasing Leff seems to increase 

efficiency for all cases of electrode metal thickness as the IDT becomes longer. In 

addition, it appears that using thicker IDT electrodes results in reduced SHSAW as the 

IDT becomes long and when the value of SHSAW begins to level out w.r.t. Leff. The 

following discussion attempts to explain these results. 
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 At the frequency f = 1 / (4psg), where p is the periodicity of the electrodes in the 

IDT and sg is the short-circuit grating mode slowness, the IDT conductance takes on a 

maximum value as the transducer becomes longer as excitation of the mode supported 

under the IDT region becomes constructive. The values of sg (a function of f ) and f which 

satisfy constructive interference depends on the electrode thickness as the mode is 

dispersive due to incorporation of electrodes with finite thickness. For the Au/LGS case 

studied here, sg is always greater than the free surface SHSAW slowness (so) and 

increases with increasing electrode thickness as the total mass fixed to the surface 

increases. As the IDT becomes longer the wave sources  and T4 at the 

substrate/electrode interfaces become somewhat spatially periodic with period equal to 4p 

(by “somewhat” it is meant that the overall distribution is also multiplied by a finite-

length window function). Therefore the IDT the spectral distribution of the sources takes 

on that of a windowed (due to finite Leff ) sum of harmonics, i.e. a sum of functions 

similar to sinc functions which are centered at 
p f

n
ss g

n

x   (see Chapter 2 Section 

2.7 regarding the periodic model for more information on this). Therefore as the IDT 

becomes longer, the spectral distribution of the wave sources approach a series of Dirac 

delta functions located at .n

xs  Given that so is closer to sg compared to the SHBAW 

slowness region, it makes sense that as the IDT length begins to increase from a single 

electrode pair that SHSAW increases as the energy becomes more concentrated around sg 

and so. At some point as Leff  becomes even larger, and the spectral energy becomes even 

further concentrated, SHSAW will level off as there is a finite difference between sg and 

so. Given that this difference is greater for thicker films, it makes sense that the point at 
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which SHSAW begins to level off occurs faster w.r.t. Leff. The author believes this is the 

reason why use of thicker electrodes results in reduced maximum achievable SHSAW as 

Leff becomes very large. With this reasoning in mind, it would suggest that to achieve 

maximum SHSAW the supported mode along the delay regions should have the slowness 

value as the mode supported in the IDT region. In addition, if this condition is satisfied, 

SHSAW will improve faster, w.r.t increasing Leff, if the two modes are further slowed 

away from the SHBAW slowness region. The results presented in the upcoming sections 

indicate that these theories are correct. 

3.4.2. Surrounding Uniform Plate IDT Analysis 

 The extraction of SHSAW for IDTs with surrounding uniform guiding electrodes 

while considering the finite metal thickness of all electrodes in the structure was reported 

first by the author of this dissertation in [52]. Such an analysis had not been previously 

developed due to the added computational complexities encountered by including finite 

metal thickness of guiding electrodes as the unknown interfacial stress and charge 

sources extend infinitely along the substrate/electrode interface, which must be solved 

for. Reported theories used to solve for the interfacial source fields had only been applied 

to finite length electrodes. In this work it is shown that for liquid phase sensor 

applications it proves very important to take into account the thickness of all electrodes 

for accurate extraction SHSAW, as this value directly relates to the achievable sensor 

performance. 
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 Simulating such a structure using a traditional finite FEM/BEM model requires 

solving for the stress and charge density sources located at the semi-infinite length 

electrode/substrate interface. However, convergent basis functions for representing these 

fields over a semi-infinite domain have not been reported in the literature. As a first 

attempt to solve this problem, new basis functions for the semi-infinite electrodes were 

explored in this work; in particular, basis functions consisting of associated orthogonal 

Laguerre polynomials [92] and a single sinusoidal basis were used to represent the 

combination of electrostatic effects, and evanescent and SHSBAW modes; and SHSAW 

field contributions, respectively. After many attempts using such basis function sets, 

including trying various Laguerre polynomial parameters, with implemented finite 

FEM/BEM models, it was determined such basis function sets does not provide adequate 

solution convergence.  

 As an alternative, truncating the length of the guiding electrode was considered, 

as it allows extraction of a rough estimate for SHSAW. Results however become 

inaccurate as electrode thickness increases due to stronger SHSAW reflection from the 

truncated electrode edge. Edge discontinuities cause reflected signals to be redetected at 

the IDT electrical port, prohibiting accurate extraction of the IDT input power that would 

be obtained if the truncated electrode were extended infinitely. Use of Fourier 

frequency-time analysis to obtain the time response of fields might overcome the error 

introduced by edge discontinuity, but such a method requires simulation at many 

frequencies, which is impractical from a computational perspective, as it may take hours 

to simulate a single frequency point for some of the longer devices considered in this 
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work. Another possibility involves simulation using models based on finite-difference 

time-domain analysis (FDTD) [56], which allows direct simulation in the time domain, or 

FEM with application of absorbing boundary conditions [54,55]. As an alternative, a 

frequency domain FEM/BEM model developed by the author, as described in this 

section, proved sufficient for excitation of SHSAW, and use of these two other potential 

methods were not further investigated.  

 To apply existing software models, particularly the already implemented 

finite-length FEM/BEM model used to simulate finite SAW devices without semi-infinite 

guiding electrodes, it was hypothesized that simulation of a modified finite structure that 

behaves as if the electrode extends infinitely is possible. Using transmission line 

matching concepts, a wave ‘matching’ scenario for the truncated electrode was 

envisioned. The ‘matching’ would effectively cancel the reflected SHSAW resulting 

from the structure discontinuity, so the device would behave as though the guiding 

electrode extends infinitely, in terms of the impedance ‘seen’ by the IDT. The simulation 

generates accurate information about the IDT input power and amplitude of the excited 

SHSAW along the guiding electrode region. Using a traditional transmission line 

quarter-wave transformer matching technique, this work shows that by adding an 

additional “matching electrode” placed directly after a long truncated guiding electrode, 

the reflected SHSAW at the discontinuity is canceled.    
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 The modified structure considered for the analysis of cases (ii) in Figure 3.16 is 

depicted in Figure 3.18 (a). 

 
Figure 3.18. (a) Truncated structure simulated including a matching electrode and 

the analogous transmission line representation (where λIDT is the IDT periodicity). 

Represented in the figure, Leff = 2.5; (b) equivalent structure and transmission line 

representation when quarter-wave transformer matching requirement is met. 

Instead of studying a semi-infinite electrode, a long truncated electrode is used and 

followed by an additional “matching” electrode placed directly after the guiding 

structure. The uniform long guiding electrode cannot be simply truncated without the 

incorporation of the “matching” electrode because acoustic reflections from the electrode 

edge discontinuity normally interact strongly with the launching IDT making it difficult 

to estimate the IDT input power of the referred structure. Through the adjustment of the 

‘matching’ electrode dimensions, namely the film thickness and length, the reflected 

SHSAW at the truncated electrode can be effectively canceled. As a result, the IDT input 
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admittance and the magnitude of the guided SHSAW mode along the truncated electrode 

region can be estimated as if the electrode extended infinitely. In addition to the structure 

simulated, Figure 3.18 (a) also shows an analogous transmission line representation. If 

the truncated electrode of length L2 and thickness H1 is long relative to wavelength, only 

the guided SHSAW is present at the surface far away from the IDT. Such a situation can 

be modeled as an electromagnetic wave propagating on a transmission line having 

characteristic impedance ZSAW1 and propagation constant SAW1 =   sSAW1, where  is 

radian frequency and sSAW1 is the inverse velocity or slowness of the SHSAW for the 

analogous uniform-layer over a semi-infinite substrate propagation condition. The 

matching electrode of length L4 and thickness H2 is modeled in the same way, and has 

characteristic impedance ZSAW2 and propagation constant SAW2 =   sSAW2. The load 

impedance Zfree is analogous to the impedance looking towards the free surface. The 

matching technique employed in this work is analogous to transmission line quarter-wave 

transformer theory. It is shown that by altering H2 that the effective ZSAW2 is modified, 

and by varying L4 the effective electrical length is modified. Thus, by adjusting each 

parameter the quarter-wave transformer matching criterion:  

freeSAW1SAW2 ZZZ  , and  nL 


 21
2 SAW2

4



, 

(3.23) 

can be satisfied, where n is a non-negative integer. Under this condition, the SHSAW 

reflected power at the truncated electrode edge is cancelled at a particular frequency, and 

the structure behaves as if the electrode extends infinitely, as indicated in Figure 3.18 (b).  
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 A case study is now presented to demonstrate the SHSAW calculation technique 

based on the structure defined in Figure 3.18. The split-finger IDT considered consists of 

4 m electrodes, Leff = 4.5, IDT periodicity, λIDT = 32 m, 1:1 mark-to-space ratio, 

L1 = 4 m, L2 = 800 m, L3 = 2 m, L4 = variable (varying from 33.5 to 36.5 m), 

H1 = 300 nm, and H2 = variable (varying from 190 to 260 nm). The IDT has acoustic 

aperture W=1600 m and is oriented along quartz, Euler angles (0, 132.75, 90). Using 

the implemented FEM/BEM tool and dimensions of the design considered in this case 

study, Chebyshev basis function in of orders up to 12, 100 and 20, for the 4 m IDT 

electrodes, 800 m uniform guiding electrode, and 35 m matching electrode, 

respectively, were used. The analysis showed that polynomials of these orders were 

adequate to guarantee convergence within the IDT bandwidth. As the length of the 

guiding electrode increases, the dominant functional dependence of the stress and charge 

fields far away from the IDT and along the uniform guiding electrode resemble that of a 

SHSAW propagating wave. By expanding this field variation as a weighted series of the 

basis functions used for charge and stress representation, the respective coefficients can 

be determined using the orthogonality properties of the Chebyshev polynomials. Given 

the coefficients functional dependence with the polynomial order, an expression can be 

determined for the estimation of the required polynomial order to describe the SHSAW 

field behavior. This analysis showed that the required number of basis functions to 

describe the fields can be estimated by ceiling{1.25···L2/λg}, where λg is the SHSAW 

acoustic wavelength along the guiding electrode region.  
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The next step in the SHSAW calculation is the determination of the excitation 

frequency for the analysis. In this work, the frequency of maximum IDT conductance 

was selected as the excitation frequency. The structure given as case (iv) in Figure 3.16 

was used for the determination of the approximate frequency of maximum IDT 

conductance, and yielded in this work, for the dimensions mentioned at the beginning of 

this section, a device center frequency of 150.8 MHz. 

In order to proceed with the SHSAW calculation, the fields along the guiding 

electrode interface associated with SHSAW are extracted from the FEM/BEM results. In 

particular, P
+

SHSAW and P
-
SHSAW, which stand respectively for the power of the forward 

and backward SHSAW in the truncated electrode region, are extracted.  

The FEM/BEM calculated fields along the truncated electrode interface include 

contributions from electrostatic effects, SHBAW, evanescent modes, and the SHSAW. 

The SHSAW surface normal component of stress, T4, or the charge density, , can be 

extracted from the total contribution via Fourier transform spectral-domain fitting. For 

the SHSAW field fitting, T4 was preferred over , as the electrostatic part of  may have 

a significant contribution which makes it more difficult to extract the SHSAW 

contribution. Such an effect is not present in T4, and the SHSAW contribution dominates 

the overall field behavior over the entire structure represented in Fig. 2.  

 The fitting procedure is performed as follows. Considering only the SHSAW, and 

neglecting any other field contribution due to electrostatics or other modes, the fitting 

technique assumes that T4 along the truncated electrode/substrate interface is given as a 
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weighted sum of +x and –x propagating waves having velocity equal to that for the 

guided SHSAW, i.e., 

      acxHacxHeTeTxT
acxjacxj SAWSAW 
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
, (3.24) 

where c is the center position of the truncated electrode, a is the half-length of the 

truncated electrode and H is the Heaviside step function. T4
+

 and T4
-
 are the unknown 

weights associated with the +x and –x propagating SHSAW, respectively. Using (2.15), 

the spectral-domain representation of (3.24) is given by: 
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An estimation of T4
+

 and T4
-
 is obtained by fitting (3.25) at kx =  SAW1 to the computed 

)(4 xkT  contribution considering only the )(4 xT  field along the long guiding electrode, 

which is determined using (B.23) and (2.33) and the basis function weights resulting of 

the FEM/BEM analysis. Finally, the power associated with the forward and backward 

propagating SHSAW, P
+

SHSAW and P
-
SHSAW, are determined through integration of the 

x-directed Poynting vector along the entire z-axis, from -∞ to the top surface of the 

electrode. The reflection coefficient looking into the matching electrode region, 

|SHSAW| = |P
-
SHSAW/P

+
SHSAW|

1/2
, can also be estimated and is used and used to quantify the 

degree of matching achieved.  

At the selected frequency and using the technique described above, simulations 

were performed for a combined range of L4 and H2. The thickness and length of the 

matching electrode were respectively varied over a range of 15% and 5% from their 

initial values. The thickness H2 was varied first, as that requires only the FEM analysis 
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for the matching electrode to be recomputed, which typically runs much faster than the 

BEM analysis. When L4 is modified only the affected Ymn matrix elements of (2.34) are 

recomputed in order speed up the calculation.  

For the example considered in this section, Figure 3.19 shows the computed 

|SHSAW| for a variety of matching electrode lengths and thicknesses. As can be inferred 

from Figure 3.19, a matching condition is achieved when L4 = 34 m and H2 = 244.2 nm. 

Using these dimensions of the matching electrode, the far-field SHSAW power is 

estimated using the calculated value of P
+

SHSAW as previously detailed in this section. In 

addition, the IDT input power is computed given the calculated IDT input conductance 

and the applied voltage. From P
+

SHSAW and Pin one calculates SHSAW. 

 
Figure 3.19. Magnitude of SHSAW reflection coefficient |SHSAW| as a function of 

matching electrode length and thickness for the case study considered. 
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For the example discussed in this section, P
+

SHSAW = 2.549W (1V applied) and 

the IDT input admittance when matched equals 1.186e-5+j5.155e-4 S. The SHSAW for the 

structure in Figure 3.18 (b). is thus estimated to be 43%, with the entire SHSAW energy 

propagating under the long guiding electrode, since no SHSAW propagates to the other 

free surface side of the IDT for quartz Euler angles (0, 132.75, 90) as the mode does 

not exist. 

The effect of the matching electrode can be further appreciated in Figure 3.20, 

where T4 along the electrode/substrate interface at the IDT and at the long uniform 

guiding electrode is plotted when the matching electrode is omitted and present, Figure 

3.20 (a) and (b), respectively (1V applied). Figure 3.20 (c) plots T4 near the matching 

electrode when the matching structure is present. As can be seen from Figure 3.20 (a), the 

omission of the matching electrode results in a standing wave along the long guiding 

electrode region. Alternatively, when the matching electrode with proper dimensions is 

included, no standing wave pattern is evident, which indicates a SHSAW matched 

condition. For the matched case, the field behavior along the long guiding electrode 

region resembles that of a SHSAW propagating wave under uniform media as one looks 

further away from the IDT. This indicates the SHSAW is dominant along the truncated 

electrode region and thus the field amplitudes can be considered as far-field values, thus 

appropriate to calculate SHSAW. In addition, it is interesting to note from Figure 3.20 (c), 

that the effective electrical length of the matching electrode is approximate 1 and ¼ 

wavelengths according to the stress variation, which is in accordance with the 

quarter-wave transformer requirement (3.23). 
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(a)

 

(b)

 

(c) 

 

Figure 3.20. Resulting interfacial T4 around the long guiding electrode region when 

(a) matching electrode is omitted, (close to IDT); (b) matching electrode included in 

the analysis, (close to IDT); (c) matching electrode included  (close to the matching 

electrode). (1V applied). 
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It should be noted that if the guiding structure is considered on both sides of the IDT, 

case (iii) in Figure 3.16, the aforementioned analysis is performed twice to determine the 

required matching electrode dimensions for each side. Once both matching electrodes are 

determined, simulation is performed including both matching structures and SHSAW for 

each side is extracted using the technique previously described. 

Based on the extraction technique just presented, SHSAW for finite-length 

split-finger IDTs with semi-infinite uniform guiding electrodes on one and both sides of 

the IDT were determined for various metallization thicknesses and number of IDT 

split-finger pairs. The analysis was carried out for quartz Euler angles (0, 132.75, 90), 

Au metallization, split-finger IDT with 4 m electrodes, λIDT = 32 m, and mark-to-space 

ratio = 1:1; and with all guiding electrodes connected to the IDT ground. The structures 

studied consisted of IDTs with Leff  =  4.5, 9.5, 19.5, 39.5, and 79.5, and H1 = 75, 150, 

300, and 600 nm. L1 and L3 were chosen to be 4 m and 2 m, respectively. L2 was 

selected as 800m and 1200m, and verified that the difference between extracted 

SHSAW was less than 1% for increased guided electrode length. Thus 800m was adopted 

as a long enough guiding structure for this analysis such that if increased the extracted 

value of SHSAW would be affected by less than a percent. The percent variation is then 

considered the uncertainty for the SHSAW results presented in this section.  
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(a)

 

(b)

 

(c)

 
Figure 3.21. SHSAW excitation efficiency SHSAW [%] for split-finger IDTs of 

different lengths and metallization thicknesses under the matched condition: (a) 

single uniform guiding electrodes on the left and right side of IDT, (b) uniform 

guiding electrodes both sides of IDT and total left and right propagated SHSAW, 

and (c) uniform guiding electrodes both sides of IDT with separated left and right 

propagating SHSAW contributions. 
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 Figure 3.21 shows the results of the computed SHSAW as a function of 

Leff considering diverse electrode metallization thicknesses. In particular, Figure 3.21 (a) 

showsSHSAW for the structure represented case (ii) in Figure 3.16 where a single 

semi-infinite uniform electrode is on one side of the IDT, as well as the reverse situation. 

Figure 3.21 (b) gives SHSAW for the structure represented as case (ii) in Figure 3.16, 

where the guiding electrodes are on both sides of the IDT. Finally, Figure 3.21 (c) plots 

SHSAW split into both +x- and –x-propagating SHSAW contributions, again for the 

structure represented as case (ii) in Figure 3.16. The results shown in Figure 3.21 (b) 

indicate that the overall SHSAW considering excitation to both sides increases with IDT 

length towards an asymptotic value, and also increases with metallization thicknesses. 

Within assumed 1% uncertainty, Figure 3.21 (a) shows that SHSAW increases with 

thickness up to a 300 nm thick Au film, and then the efficiency decreases for the thicker 

600 nm film. This behavior might be credited to the higher structural mismatch between 

the IDT region with thicker electrodes and the free region, which then leads to more 

power transduced into the SHBAW. Figure 3.21 (a) also reveals an interesting directivity 

effect which takes place for thicker films. For thinner films the placement of the long 

electrode on the left or the right of the IDT generates comparable SHSAW performance. 

For the thicker electrodes, in particular for 600 nm thick electrodes, about 9% difference 

in excitation between forward and backward propagation is identified when the 

electrodes are positioned on one side or the other of the IDT. Similar directivity effect for 

thicker electrode is observed on Figure 3.21 (c), where long electrodes are present on 

both sides of the IDT and split into contributions to each side. Comparing Figure 3.21 (a)  
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and Figure 3.21 (c), one can see that for a selected thickness the presence of long 

electrodes on both sides of the IDT increases the overall SHSAW excitation for both the 

forward and backward propagation directions when compared to having the electrodes on 

one side only. The effect is more pronounced for the thicker 600 nm electrode case. The 

higher overall SHSAW for the quartz Euler angles (0, 132.75, 90) case where electrodes 

are present on both sides is justifiable by less SHBAW excitation and SHSAW excitation 

on both directions, as opposed to a single direction in the case of electrode on only one 

side. 

In order to experimentally verify the proposed modeling technique, and in 

particular the directivity effect reported in the previous paragraph, a quartz Euler angles 

(0, 132.75, 90) delay-line structure consisting of a regular two-electrodes per 

wavelength IDT, two identical split-finger IDTs, and long guiding uniform electrodes 

were fabricated as shown in Figure 3.22. The structure was simulated and the results were 

compared to measurements. The structure shown in Figure 3.22 allows the determination 

of PSHSAW going to the left with respect to PSHSAW going to the right excited by the Port 2 

IDT; defined as directivity Dsolid. 

 
Figure 3.22. Layout of the SHSAW device fabricated. 
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The fabricated device consists of a two-electrode per wavelength input IDT 

having Leff = 79.5, λIDT = 32 m, 8 m electrodes, and mark-to-space ratio = 1:1. Long 

uniform guiding electrodes, with 6 m gaps between themselves and the extreme 

solid-finger IDT electrodes, extend 9596 m in each direction. The split-finger IDTs 

have Leff = 39.5, λIDT = 32 m, 4 m electrodes, mark-to-space ratio = 1:1, and 4 m gaps 

between themselves and the guiding electrodes. On the other side of the split-finger IDTs, 

long uniform guiding electrodes approximately 6500 m in length are placed 4 m from 

the outer edge of each IDT. The guiding electrodes are terminated with a diagonal edge to 

scatter reflections. The acoustic aperture of the device is 1600 m. The Au metallization 

layer is 287.5 nm thick atop a 10 nm Cr adhesion layer. Devices were fabricated at the 

Laboratory for Surface Science & Technology (LASST) cleanroom facility and tested at 

the Microwave Acoustics Laboratory, the University of Maine.  

The input transducer, Port 2, was numerically analyzed using the technique 

described in this section considering uniform guiding electrodes on both side of the two-

electrodes per wavelength IDT and inclusion of matching electrodes. Figure 3.23 shows 

the calculated |T4| at the interface after the matching (1V applied). The analysis and 

Figure 3.23 clearly reveals a directional behavior of the Port 2 IDT since P
+

SHSAW and 

P
-
SHSAW are both proportional to |T4|

2
 associated with the forward and backward 

propagating SHSAW. Based on the calculated P
+

SHSAW and P
-
SHSAW along the uniform 

guiding electrode/substrate interface, the directivity for the structure is determined to be 

9.0 dB. 
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Figure 3.23. Calculated |T4| along electrode/substrate interface for the solid finger 

IDT including guiding and matching electrodes. 

 Figure 3.24 plots the measured |S12| and |S32| obtained for both the forward and 

backward delay-line propagation directions on quartz Euler angles (0, 132.75, 90) with 

Au electrodes, H1/λIDT= 0.9%. As expected based on the previous analysis using the 

proposed model, the Natural Single Phase Unidirectional Transducer (NSPUDT) 

directivity effect is experimentally observed.  
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Figure 3.24. Experimentally measured |S12| (∙-) and |S32| (solid) for the NSPUDT 

device fabricated demonstrating quartz Euler angles (0, 132.75, 90) directionality. 

Port 2 is connected to the solid-finger IDT and Ports 1 and 3 are connected to the 

split-finger IDTs as shown in Figure 3.22. 

To compare the experimental results shown in Figure 3.24 with predicted Dsolid 

results, the finite directivity of the split finger detection IDTs, Dsplit, are considered and 

estimated from Figure 3.21 (c) to be 0.4 dB for a 300nm thick film. Minor differences in 

the |S11| and |S33| frequency responses for the two split-finger IDTs have been measured 

and are considered in the analysis. After time gating spurious reflections out, the 

minimum measured value of |S11| was about -0.71dB at 150MHz compared -0.63dB at 

150.8MHz for |S33|. These observed small variations in frequency response between the 

two IDTs (about 1 MHz in 150MHz) was credited to variations in the fabrication process, 
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namely the thin-film thickness and the patterned mark-to-space ratio for the structure 

fabricated. To account for the observed fabrication variation towards the extraction of 

Dsolid, a relative port efficiency factor defined as  = (1-|S11|
2
)/(1-|S33|

2
) was computed, 

which relates the efficiency of acoustic excitation/detection between Port 1 and Port 3 

IDTs. Finally Dsolid is calculated by Dsolid = Dsplit(|S12|
2
/|S32|

2
)/  and at 150 MHz resulted 

in 9.8 dB. 

 Therefore, the proposed model successfully predicts the experimentally observed 

directivity effect for the pure SHSAW on quartz angles (0, 132.75, 90) with Au 

electrodes. The calculated and measured directivity agree to within 0.8dB of the 9dB 

experimentally measured value, which is reasonable given the uncertainties and 

variations in the fabricated structure parameters and choices for the extrapolated Dsplit 

used in the calculations. 

3.4.3. Surrounding Periodic Electrode IDT Analysis  

 Sections 3.4.1 and 3.4.2 showed that the addition of guiding electrodes placed 

next to IDTs can dramatically improve excitation efficiency of the SHSAW mode. In 

particular, it was seen that for the LGS orientation considered, for IDTs with surrounding 

free surfaces, less than 3% of input IDT power is transduced to the SHSAW. For the 

quartz orientation considered, 0% of IDT input power is transduced to a SHSAW mode 

since a free surface SHSAW does not exist. However, it was shown for quartz that, with 

use of uniform guiding electrodes composed of Au, SHSAW can approach 93% for the 

number of IDT pairs and metal thicknesses considered. In this section the use of periodic 
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synchronous guiding electrode gratings placed next to finite IDTs is studied and the 

resulting SHSAW is investigated. It is shown that this guiding method is the most efficient 

in terms of SHSAW of the three IDT surrounding boundary conditions investigated, since 

the resulting SHSAW can approach 100% for various numbers of IDT pairs and electrode 

thicknesses. The improved SHSAW is attributed to the following: (i) absence of 

mechanical aperiodicity, thus reducing mode reflection and scattering, (ii) the fact that 

the mode supported in the IDT region is the same mode supported in the delay region (i.e. 

same slowness value), and (iii) the ability to further slow down the guided SHSAW mode 

by use of dense electrodes, thus separating the SHSAW grating slowness from the 

SHSBAW slowness region. The SHSAW extraction method and presented results in this 

section were reported first by the author of this dissertation in [60] while considering 

LGS Euler angles (0, 22, 90),  in [90] considering KNB Euler angles (0, 90, 0), and 

in [52] considering quartz Euler angles (0, 132.75, 90). 

 Using the periodic FEM/BEM model theory developed in Chapter 2 Section 2.7, a 

numerical simulation tool for a finite IDT structure surrounded by semi-infinite 

synchronous guiding gratings was implemented. The simulation tool uses (2.44) to 

compute the n
th

-period grating mutual admittance,  nY , from which the IDT electrical 

properties are evaluated via discrete convolution, given the finite-length voltage 

distribution of IDT electrodes, using (2.45). Novel to this dissertation work is the 

extraction of SHSAW for the structure from the simulation results.  
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 A discussion of the SHSAW extraction procedure follows. The authors in [59] first 

reported that the harmonic admittance function used in evaluation of the mutual 

admittance, (2.44), may be separated into two main contributions; in particular a portion 

due to SAW coupling, and a second portion representing all other contributions, i.e. 

electrostatic, evanescent, BAW, and PSAW. It appears the author’s main motivation for 

separating the harmonic admittance function into two contributions was to permit 

numerical evaluation of (2.44). In particular the integrand of (2.44) will have simple 

poles on the axis of integration if a true guided SAW mode exists on a short-circuit 

grating and is electrically coupled. As the integral cannot be computed numerically due to 

the presence of poles on the axis of integration, the SAW contribution containing the 

simples poles is first subtracted out of the integrand, then integrated analytically, and 

finally added to the residual integral, which is obtained by numerical integration of the of 

the remaining portion. Thus the overall mutual admittance has two contributions, a SAW 

portion and a residual portion: 

      residual

n

SHSAW

nn YYY  , (3.26) 

where: 

      






2/1

2/1

2, de njSHSAWSHSAW

n YY , 

         






2/1

2/1

2,, de njSHSAWresidual

n YYY , 

 and the mutual admittance, Yn(), is the current entering the n
th

 electrode 

when a unit voltage is applied to the n = 0 electrode and all other 

electrodes  are placed at zero voltage. 
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The authors of [59] showed that SAW portion of the harmonic admittance can be chosen 

as:  

 
 
  

 
    








2cos2cos

2cos1

tan
,






scsc

scSHSAW jY
Y , (3.27) 

where: 

 sc() is the value of  at which the SAW pole occurs (corresponding to 

+x propagation, another pole shows up at -sc() and corresponds to –x 

propagation), 

 and 
 

j

Ysc





2
 is the pole residue at  = sc. 

 

Given that in reality all materials display finite loss, the location of the poles can be 

thought of being located infinitesimally off the real  axis. Therefore integration of 

(3.27), as required for (3.26), can be evaluated using residue theory [78], resulting in: 

 
 

 
   
































0
tan

1

0
2

n
j

Y

neY

sc

sc

ny j

sc

SHSAW

n

sc










Y . (3.28) 

Given an applied voltage distribution on IDT electrodes, the IDT input admittance, yin(), 

is determined by substituting (3.26) into (2.45), and then summing IDT input currents 

(unit voltage applied to IDT); resulting in: 

      residual

in

SHSAW

inin yyy 
, (3.29) 

where: 

    
 


Dm Dn

SHSAW

nm

SHSAW

iny  Y  

    
 


Dm Dn

residual

nm

residual

iny  Y  

 D are the driven IDT electrode indices   
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Thus, for an applied voltage on the IDT, SHSAW is given by: 

 
  

    




residual

in

SHSAW

in

SHSAW

in

SHSAW
yy

y




 , (3.30) 

Due to reciprocity it can be shown that nn  YY  [59], which results in non-directional 

excitation for the structure considered, thus equal SHSAW power is excited for both 

forward and reverse propagation directions 

 Using (3.30) and the implemented periodic FEM/BEM model, SHSAW values 

were computed for split-finger type transducers with surrounding synchronous 

short-circuited periodic guiding gratings. In particular, SHSAW values were determined 

using the same number of IDT split-finger pairs and Au electrode metallization 

thicknesses considered in the two previous sections for the SHSAW orientations of 

quartz, Euler angles (0, 132.75, 90), and LGS, Euler angles (0, 22, 90). The IDTs 

considered have electrode finger width of 4 m, 1:1 mark-to-space ratio, and rectangular 

electrodes composed of isotropic Au. The SHSAW value was determined at the frequency 

of maximum IDT conductance. Figure 3.25 shows results obtained for quartz, Euler 

angles (0, 132.75, 90) and Figure 3.26 shows results obtained for LGS, Euler angles 

(0, 22, 90). From the figures it is apparent that SHSAW increases with metallization 

thickness for a given IDT length. It also appears that, for increased IDT length, the use of 

guiding gratings results in SHSAW values approaching 100% for all metallization 

thicknesses considered. By contrast, when guiding uniform electrodes are considered, 

SHSAW appears to approach values less than 100% (cf. Figure 3.21 (b)). Thus the higher 

efficiency obtained with the guiding gratings is due to the uninterrupted structure 
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periodicity and matching slowness values of modes supported in both regions, resulting 

in less SHBAW scattering / acoustic reflections from otherwise structure discontinuities. 

 

Figure 3.25. IDT SHSAW excitation efficiency, SHSAW, with surrounding 

synchronous periodic guiding electrodes for quartz, Euler angles (0, 132.75, 90), 

as a function of IDT split finger pairs and Au electrode thicknesses. 

 

  

Figure 3.26. IDT SHSAW excitation efficiency, SHSAW, with surrounding 

synchronous periodic guiding electrodes for LGS, Euler angles (0, 22, 90), as a 

function of IDT split finger pairs and Au electrode thicknesses. 
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CHAPTER 4 

MONOLITHIC SHSAW/MICROFLUIDIC SENSOR PLATFORM DESIGN AND 

FABRICATION 

4.1. Introduction 

 This chapter discusses the development of SHSAW sensor packaging for 

liquid-phase sensing applications. Recall that the goal of sensor packaging is to only 

expose the delay path region of the device to the fluid analyte such that dielectric- or 

electric-shorting of IDTs is avoided. This goal is accomplished in this work via 

attachment of microfluidic chambers to SHSAW device surfaces. The chambers are 

designed with fluidic containment walls placed between IDT and delay-path regions, thus 

allowing only fluid exposure to the delay-path region while protecting IDT electrodes. 

Two main packaging techniques were investigated: (i) a method based on formation of 

microfluidic chambers directly on the SHSAW die using photolithographic techniques; 

and (ii) a method based on molding of polydimethylsiloxane (PDMS) microfluidic 

chambers, followed by dicing, aligning, and permanent bonding to SHSAW device 

surfaces. The latter proved to provide a more robust packaging technique and received 

most attention in this work. This chapter is outlined as follows. In Section 4.2 the initially 

employed packaging technique based on photolithographically patterning microfluidic 

structures direction on the SHSAW device using SU-8 is discussed. Next, Section 4.3 

reports on the packaging techniques based on use of PDMS. Section 4.3 is broken down 

into subsections disussing: (i) the patterning of microfluidic features in PDMS via 

molding process; (ii) permanent bonding of PDMS to substrates; and (iii) chamber 
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alignment and bonding to SHSAW devices. Section 4.4 presents a series of hybrid 

SHSAW PDMS microfluidic device designs fabricated in this work. And lastly, Section 

4.5 describes the performance of the related package, and compares the device response 

before and after attachment of the fluidic chamber. As a result of this work a novel 

packaging technique for SHSAW liquid-phase sensors has been developed. The 

packaging approach permits robust sealing of devices. In addition, it is shown that 

applying device packaging has minor negative affect on the overall SHSAW sensor 

platform response.   

4.2. SU-8 Liquid Phase Packaging 

 Initial efforts regarding packaging of SHSAW sensor platforms for liquid-phase 

operation involved photolithographic patterning fluid containment structures directly on 

pre-fabricated SHSAW devices, followed by attachment of a chamber glass cap. The 

permanent photoresist incorporated in the formation of containment structures is the 

SU-8 2000 series available from MicroChem Corporation Newton, MA, USA (see 

Section 1.4 for a review of reported SU-8/SAW packaging approaches). A photograph of 

a packaged SHSAW device fabricated in this work taken after patterning SU-8 fluid 

containment structures and attachment of a glass cap is shown in Figure 4.1.  
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Figure 4.1. SHSAW/SU-8 liquid phase packaging configuration. 

The device in Figure 4.1 consists of a SHSAW delay-line device fabricated along LGS 

Euler angles (0º 22º 90º) with a uniform Au guiding electrode located in the delay region 

to improve SHSAW transduction efficiency and allow selective attachment of 

bio-molecules for subsequent biological sensor proof-of-concept testing. The 

containment wall width separating the IDTs and delay region is 200 m. A glass cap is 

attached to the SU-8 layer to form a fluid containment region in the device delay path. 

Additional details regarding the LGS SHSAW device include:  Au metallization of 400 

nm atop a 12.5 nm Cr adhesion layer; IDTs consist of 80 split-finger pairs with electrodes 

4 m in width and periodicity of 8 m; IDT aperture is 1.600 mm; and the device IDT 
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center-to-center distance is 6.400 mm. All devices reported in this work were fabricated 

in the class 1000 cleanroom facility located at the Laboratory for Surface Science and 

Technology (LASST) University of Maine, Orono, ME USA.  

 The fabrication sequence of the SU-8 microfluidic chamber is shown step-by-step 

in Figure 4.2. After SHSAW device fabrication, samples are cleaned via acetone, 

methanol, isopropyl, and DI water rinses, followed by a nitrogen blow dry and 

dehydration bake on a 150C hotplate for 10 minutes. Next, a layer of SU-8 2050 is 

applied to the device via direct pouring from a working bottle to avoid the generation of 

bubbles, which is typically observed if a syringe is used alternatively. Next the resist is 

spun at 1000 rpm for 30 seconds to achieve a layer approximately 170 m thick. 

 

Figure 4.2. SHSAW/SU-8 liquid phase fabrication protocol steps. 
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The device is then soft-baked (solvent level reduction step) on a hotplate at 65C for 4 

hours, followed by a 1 hour bake at 95C (Figure 4.2 a). This relatively long two step 

bake process resulted in improved film uniformity compared to the datasheet 

recommended bake process suggesting 65C for 7 minutes, followed by 30 minutes at 

95C. After the layer is soft-baked, the SU-8 layer is exposed to UV light through a 

photomask (clear features become permanent SU-8) having the desired SU-8 pattern 

(~500 mJ/cm
2
 dose), see Figure 4.2 b. Wavelengths below 350 nm were filtered out using 

an optical filter (not shown in Figure 4.2, but is placed in the path between UV source 

and the mask) to avoid resist ‘T-topping’. The ‘T-topping’ effect results in over exposure 

of SU-8 at the top surface, as compared to that in the bulk SU-8, as the lower wavelength 

UV light (~250 nm) is highly absorbed near the SU-8 surface, which generates a local 

region of higher crosslinking acid concentration compared to that in the bulk. This 

concentration difference result in cross-linked features that display a ‘T’ shaped profile, 

as looking from a side, and reduces fine control of feature aspect ratio. Use of a filter is 

recommended by the manufacture for this reason. Following exposure, the device is 

post-exposure-baked at 65C for 1 hour to promote polymer crosslinking. The 

temperature used for this process is lower and longer than the recommended bake profile 

of 65C for 5 minutes, and 95C for 12 minutes to reduce thermal induced interfacial 

stress at the SU-8 and LGS interface, which stems from the thermal coefficient of 

expansion mismatch between the SU-8 layer and the LGS substrate. The device is then 

allowed to cool to room temperature over a period of about 30 minutes to avoid thermal 

shock and SU-8 adhesion failure. Next the unexposed resist is developed away in SU-8 

developer solution: first in used and then in a new bath for 5 minutes intervals under mild 



164 

 

ultrasonic agitation. Following the development step, the devices is rinsed with isopropyl 

alcohol and DI water and blown dry with nitrogen (Figure 4.2 c). Next a pre-diced glass 

microscope slide is cleaned with acetone, methanol, isopropyl, and DI water, followed by 

nitrogen blow dry and dehydration bake on a 150C hotplate for 10 minutes. A layer of 

SU-8 2015 is then applied to the glass cap and spun at 3000 rpm for 30 seconds to form a 

layer ~15 m thick (Figure 4.2 d).  The glass cap is then soft-baked at 65C for 5 

minutes, followed by 5 minutes at 95C. The cap is then flipped over and placed on top 

of the SHSAW/SU-8 structure in a period short enough that the cap film is still above the 

SU-8 glass transition temperature during the merging process to allow some slight SU-8 

reflow around the containment wall interface. Next the sample is allowed to cool to room 

temperature (Figure 4.2 e). The entire device is then blanket exposed to filtered UV light 

to cure the unexposed resist (~200 mJ/cm
2
 dose) causing the cap to attach to the 

pre-patterned SU-8 containment areas. Finally, cap sealing resist crosslinking is initiated 

by heating the device to 65C for 1 hour and then allowed to cool to room temperature 

(Figure 4.2 f).  An alternative step to Figure 4.2 f, is depicted in Figure 4.2 f-opt where 

the combined structure is again baked and exposed to UV, but now includes use of a 

photomask to cure SU-8 regions only in contact with the pre-patterned SU-8 walls. Next 

the device is post-exposure-baked, followed by SU-8 development. This modified step 

resulted in improved chamber liquid filling due to the increased hydrophilicity of the 

glass cap surface as compared to a glass surface covered with SU-8. 

 To demonstrate how SU-8 packaging affects the SHSAW platform device 

performance, the transmission coefficient, S21, of the device in Figure 4.1 was measured 
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before attachment of the SU-8 chamber, and after attachment of the SU-8 chamber. 

Figure 4.3 plots the magnitude and phase results obtained. Comparing the magnitude of 

the responses around the frequencies in the device passband indicates that addition of 

SU-8 chamber walls placed along the delay path reduces the level of signal detected by 

the output IDT by about 7dB. This is attributed to SHSAW reflection from the SU-8 wall 

/ substrate interface, as well as mode conversion loss to SHSBAW, which is scattered 

into the substrate bulk. Before application of the chamber the magnitude response is flat 

(less than 1 dB ripple) and the phase response is linear. After chamber attachment the 

magnitude begins to exhibit ~3 dB ripple in the passband, indicating increased detected 

spurious signal (a slight ripple in the phase response is also now present). 

  



166 

 

 

 

Figure 4.3. LGS liquid phase sensor platform transmission coefficient magnitude 

and phase without chamber (dotted), and with chamber, (a) magnitude, (b) phase. 

  

  

(a) 

(b) 
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 The performance of the SU-8 packaging technique for liquid phase sensing 

applications was limited due to fluid containment problems. In particular, this device 

packaging technique was not very robust, as in some instances just picking up the devcies 

with tweezers caused the chamber to detach. In addition, attachment was also sensitive to 

temperature variation or shock. In response to these stimuli, chambers would begin to 

leak. This issue was attributed to the fact that SU-8 has poor adhesion to LGS due to 

being very brittle, and the large difference in thermal expansion coefficients between 

both materials (SU-8 expansion approximately 10-50X LGS expansion) [69, 93,94]. 

After many attempts to reduce these issues via improvement of substrate cleanliness 

during processing and reduction of processing temperature shock, this packaging 

technique was abandoned. Efforts were directed towards novel MEMs liquid-phase 

packaging techniques based on molding of silicone elastomers, namely 

polydimethylsiloxane (PDMS), and chamber bonding to substrate protocols reported in 

literature (see Section 1.4 for literature review regarding PDMS microfluidics). The new 

methods and techniques seemed very promising towards packaging of SHSAW devices 

and led to a change of course for this work, in terms of SHSAW liquid-phase sensor 

packaging. The next section describes the methods, techniques, and protocols 

investigated and developed based on PDMS and SU-8 technology that resulted in 

successful fabrication of a robust and easily interfaced packaged SHSAW liquid-phase 

sensor platform. To the best of the author’s knowledge, the packaging method developed 

in this work and applied to SHSAW sensor platforms is first reported in this dissertation 

work. 
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4.3. PDMS Liquid Phase Packaging 

 An alternative to packaging the SHSAW platform devices by forming chambers 

on the device surface via photolithographically patterning SU-8 is packaging that is based 

on molding PDMS, followed by dicing individual chambers, and aligning and bonding to 

SHSAW devices.  This latter technology was considered a better alternative and was 

further explored in this work.  

 A general discussion on the properties of PDMS and its application towards 

packaging of SHSAW devices for liquid phase applications follows. PDMS is a 

silicon-based polymer having many commercial uses including contact lenses, medical 

devices, shampoos, caulking, and lubrication. The chemical composition of PDMS is 

given as CH3[Si(CH3)2O]nSi(CH3)3 where n is the number of monomers in the polymer 

chain [1]; the structure of PDMS is shown in Figure 4.4. 
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Figure 4.4. Chemical structure of polydimethylsiloxane. 

Under long flow times or high temperature, PDMS behaves like a viscous liquid, e.g. 

honey, while for short flow times or low temperatures behaves like an elastic solid, e.g. 

rubber. Through a vulcanization process crosslinking of PDMS may be initiated, which 

attaches multiple polymer chains into a 3 dimension structure rendering the material to 

have properties of an elastic solid near room temperature. This process has been recently 

used in the formation of microfluidic structures for lab-on-a-chip applications [67]. Such 

a process can be initiated through addition of crosslinking agent mixed into the PDMS 

base which is activated, for example, via radiation, and/or temperature, depending on the 

curing agent chemistry. A commonly reported formulation used in the fabrication of 

microfluidic structures is the Slygard 184 Elastomer Kit available from Dow Corning. 

This kit consists of two parts, the base PDMS, and a curing agent which contains 

dimethyl, methylhydrogen siloxane and additional proprietary constituents. The two parts 

are generally mixed in mass ratio of 10:1 (base to curing agent, respectively), poured into 

a mold defining the desired final shape, and then allowed to cure via exposure to 
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temperatures (25C–150C) over a time period that depends on cure temperature; e.g. 48 

hours at 25C and 10 minutes at 150C. Such a technique has been called softlithography 

by the MEMs community and allows replication of features down to the sub-micron 

scale. (Additional details on molding PDMS are discussed in Section 4.3.1.) 

 Another property of PDMS relevant to microfluidic devices is the ability to 

irreversibly bond to a variety of materials, e.g. glass, quartz, and Si, via low temperature 

surface oxidation treatment of mating surfaces. After treatment the surfaces are brought 

into contact and a covalent bond forms at the interface producing a strong hermetic seal 

which is sufficient for many lab-on-a-chip applications. (Details of this bonding 

mechanism are given in Section 4.3.2.) One disadvantage, in some instances, of this 

material in terms of microfluidic devices is that the surface properties of PDMS are 

hydrophobic by nature and therefore for experiments involving polar fluids, e.g. water, 

chamber filling problems may be encountered, such as formation of voids and entrapment 

of bubbles. These issues become problematic in cases such as biosensing where the fluids 

used consist mainly of water. Through proper design of fluidic channels and use of 

techniques such in situ grafting of hydrophilic groups onto PDMS surfaces [95], such 

problematic effects can be reduced. The following sub-sections of Section 4.3 describe 

the employed packaging techniques based on attaching PDMS micromolded chambers to 

SHSAW devices. 
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4.3.1. PDMS Micro-Molding 

 In the formation of microfluidic structures based on softlithography, traditional 

micro-featured PDMS molds are fabricated via patterning features on Si or glass 

substrates using MEMs techniques such as deep reactive ion etching (DRIE) or 

photolithographic patterning of SU-8. In terms of processing time and cost the latter 

method is probably more advantageous, while in terms of mold fidelity and robustness 

the former technique is probably a better choice. In this work many chamber designs 

needed to be evaluated quickly and inexpensively, therefore PDMS mold fabrication 

based on patterning SU-8 was utilized to quickly test new microfluidic chamber designs.  

 Initial efforts to generate microfluidic PDMS molds involved patterning structures 

on Si or glass substrates using SU-8 2050 (same resist used in Section 4.2 for on-chip 

chamber fabrication approach). A typical process flow used to generate PDMS molds and 

chambers is shown in Figure 4.5 (process details specific to this work are given in 

Appendix F). In step (a) a glass or Si substrate is cleaned, followed by application of 

SU-8, spinning, and soft-baking. Next, in step (b) the wafer is exposed to UV light with a 

photomask having the desired negative of the mold patterns. In step (c) the unexposed 

SU-8 is removed via submersion in a SU-8 developer solution bath under mild ultrasonic 

agitation. At this point the mold fabrication is complete and is ready for PDMS casting. 

After the mold is fabricated it is placed in a container and premixed PDMS and curing 

agent, after degassing in a desiccator to remove air bubbles, is poured over the mold. 

Next, the sample is placed in an oven to cure the PDMS, step (e). After the bake, the 

PDMS sample is carefully peeled up from the mold, step (f), and is ready be attached to 
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the SHSAW device. (Additional steps prior to bonding included boring small holes in the 

PDMS to allow attachment of microfluidic tubes used to fill the chamber during 

experiments). 

 

Figure 4.5. Process flow for SU-8 mold and PDMS chamber fabrication. 

 For the dimensions of the SU-8 structures considered, namely features having 

heights ~100 m, adhesion of SU-8 to glass or Si substrates became problematic in terms 

of mold robustness and in many instances resulted in delimitation of mold features from 

the substrate. The literature mentions problems with mold robustness based on SU-8 

features on Si or glass [69,63]. The adhesion problems stem from the fact that SU-8 and 
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glass or Si have large differences between coefficients of thermal expansion. This 

mismatch results in the generation of thermal interfacial stress upon heating and cooling, 

leading to delimitation from the surface and potential SU-8 cracking. This problem was 

encountered many times during mold fabrication and PDMS curing processes. In this 

work it was decided not to allocate additional time to adjust the SU-8/Si process 

protocols and mitigate the SU-8 delamination problems due to the large number of 

chamber designs required and the need to evaluate them quickly. For this reason, 

alternative substrate materials were sought out with coefficient of thermal expansion 

more similar to that of SU-8 in order to improve mold robustness. A search in the 

literature uncovered [69] and [64], which suggest poly(methyl methacrylate) (PMMA), 

also named Plexiglass, Perspex, or Acrylic, can be used as an alternative substrate for 

formation of SU-8 features. This was attractive since PMMA has chemistry that is more 

similar to SU-8 compared to Si or glass, and in particular has a thermal coefficient of 

expansion between 50-100 ppm/K [96] which is approximately the same range given for 

SU-8 in [69,93]. This property suggests the potential for improved overall adhesion of 

SU-8 to PMMA and therefore increased robustness of PDMS molds.  

 To implement the patterning of SU-8 on PMMA substrates, a PMMA rectangular 

sheet was purchased from a local hardware store and 4” diameter wafers were cut. After 

cutting wafers the edges were ground down to give a bevel along the outer wafer edge to 

reduce resist edge-bead effects resulting from the spinning process, and thus improve the 

resist film uniformity. Initial SU-8 patterning on PMMA followed the same protocol as 

done using Si or glass substrates. Two main problems were identified with the switch to 
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PMMA. First, the SU-8 softbake process resulted in wafer bowing during cure and poor 

SU-8 layer uniformity. To circumvent this problem a soft-bake process with increased 

time and lower temperature was devised that removed all visible wafer bowing. (All 

fabrication details are given in Appendix F.) In addition to the wafer bowing issue, the 

second issue encountered with the switch to PMMA substrate was that during SU-8 

development the solvent used to remove unexposed SU-8 also attacked the PMMA, 

resulting in PMMA surface pitting. To avoid this problem an initial blanket layer of SU-8 

was cured atop the PMMA prior to applying another layer used to form mold features. 

The blanket layer protected the PMMA from being attacked by the SU-8 developer, thus 

avoiding surface pitting. As expected the SU-8 molds based on PMMA substrate 

displayed superior adhesion and mold robustness compared to molds based on use of Si 

or glass substrates. These processing results were very encouraging and resulted in a 

method allowing rapid prototyping and testing of various microfluidic chamber designs, 

and the ability to reuse molds at least up to 10 times. The process flow for the finalized 

SU-8 / PMMA mold and PDMS fabrication process is shown in Figure 4.6.  Lastly, it is 

important to mention that during the PDMS curing process, which typically takes place at 

60-80C, the PMMA mold expands due to thermal expansion. As the PDMS cures at this 

temperature and is brought back to room temperature the PDMS shrinks faster than the 

PMMA mold because its thermal expansion coefficient is larger than PMMA/SU-8. Upon 

removal from the mold the PDMS features are now smaller at room temperature than the 

mold. Similar problems have been reported using Si/SU-8 molds in [97], were the authors 

recommended scaling the mold by 1.07% when curing PDMS at 65C in order to for 

achieve accurate-sized features on cured PDMS samples. In this work all PMMA/SU-8 
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mold masks were scaled by 1.017% to account for the shrinkage, which was estimated 

from measurement of a cured PDMS sample. As the cure temperature affects feature 

scaling, fine tuning of feature size was performed to achieve proper scaling of features by 

running various curing temperature experiments. Based on these tests it was determined 

that 75 C resulted in correct feature size when using a 1.017% scaled mold mask. 

 

Figure 4.6. Process flow for SU-8 mold and PDMS chamber fabrication on PMMA. 
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4.3.2. PDMS/SHSAW Device Bonding 

 During the same period the PDMS mold process was being developed, 

experiments also began to take place regarding the attachment of PDMS chambers to 

SHSAW devices. It had been previously reported [67] that PDMS has the ability to 

irreversibly bond to a number of substrates e.g. PDMS, Si, glass, quartz, and silicon 

nitride via surface oxygen plasma treatment of mating surfaces before being contacted 

(no reference to bonding PDMS to LGS was not found in the literature). Initial 

experiments sought to reproduce such reported results prior to application of the 

technique to actual packaging SHSAW platforms. It had been reported [67] that the 

chemistry involved in irreversibly bonding PDMS via oxygen plasma treatment is based 

on removal of Si-methyl (Si-CH3) groups from the PDMS surface, which become silanols 

(Si-OH) upon exposure humidity in air. The plasma treatment of, for instance, a glass 

substrate also results in a large concentration of silanols on the surface. When the two 

surfaces are then brought into contact, a reaction occurs giving off water as silicon atoms 

along each surface mate with individual oxygen atoms forming a covalent bond 

(Si-O-Si), linking the two bulk materials. The strength of this interfacial bond was 

observed in this work to be as strong as or stronger than the bulk PDMS; typical attempts 

to remove chambers from a substrate after bonding resulted in tearing of bulk PDMS.  

 Since this bonding techniques had been successfully reported using glass 

substrates, it was decided that initial SHSAW sensor platforms should be fabricated on 

quartz which has similar chemistry. No reports on successful bonding of PDMS to LGS 

substrates had been reported and initial attempts to bond PDMS to LGS were 
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unsuccessful. It is believed by that author that part of the problem regarding PDMS 

bonding to LGS is that the concentration of Si atoms at the surface of LGS that can be 

oxidized by plasma treatment is lower as compared to quartz; thus density of Si-O-Si 

bonds between the LGS is and PDMS is reduced. In Chapter 6 it is suggested that PDMS 

bonding to LGS should be further explored in future work. One potential solution 

discussed is the possibility of depositing a flash-layer (10’s-100’s nm) of SiO2 on the 

LGS surface prior to electrode patterning via atomic layer deposition (ALD), 

electron-beam deposition, magnetron sputter deposition, or plasma-enhanced chemical 

vapor deposition (PECVD). Based on this approach, the concentration of surface bound 

Si should increase, thus the probability in achieving a sufficient PDMS bond should 

improve. Furthermore, the addition of a relatively thin (compared to the SHSAW 

wavelength) layer of SiO2 on the LGS surface should still permit adequate piezoelectric 

coupling. 

 After deciding to use quartz as the substrate much time was then spent tuning the 

reactive ion etching (RIE) oxygen plasma settings for PDMS and quartz treatments in 

order achieve optimal bond strength. The parameters varied included oxygen plasma 

pressure, power, and exposure time. Many reports have stated that bonding of PDMS 

generally improves with higher plasma pressure, lower power, and shorter treatment 

times [98]. In this dissertation it was also confirmed that as the length of plasma 

treatment time increases further from the optimal, surface damage of the PDMS worsens 

as the concentration of glassy/brittle material at the surface increases, which is not firmly 

connected to the bulk PDMS. As for treatment of quartz surfaces, the amount of plasma 
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pressure, power, and time had little affect on bonding quality compared to the PDMS 

treatment. In order to determine the optimal RIE parameters, a number of bulk PDMS 

samples were cut into approximately 1 cm x 1 cm pieces and bonded to glass microscope 

slides under various plasma treatment conditions. After treating the glass and PDMS 

samples the two pieces were quickly and gently placed into contact by hand and allowed 

to sit overnight. The next day attempts to remove the PDMS glass slides were conducted 

and the degree of bond strength was qualitatively evaluated. Pressure ranges of RIE 

plasma varied from 250-1000 mTorr, power was varied from 15-200 Watts, and exposure 

time was varied from 10-120 s. Increased plasma pressure results in reducing the etch 

directionality due to increased ion bombardment and scattering as the ion mean-free-path 

reduces. Therefore, in terms of this effect on PDMS bonding, it is suspected that use of a 

more isotropic plasma due to increase plasma pressure reduces the PDMS bulk damage 

via shearing predominately surface rather than bulk methyl groups and thus improves the 

bonding surface quality. In terms of power, increasing it past an optimal it is thought that 

the PDMS polymer backbone can begin to be damaged resulting in poor bonding surface 

quality, while alternatively if the power is well below the optimal bonding may not even 

occur as not enough oxygen ion energy is present to shear surface methyl groups. It is 

thought that the effect of exposure time is also is important, such that if it is increased 

beyond an optimal, the PDMS bulk and surface backbone will become increasingly 

damaged, but if it is below the optimal, not enough few methyl groups along the surface 

will be sheared resulting in reduced covalent bond density. A matrix of PDMS bonding 

tests were performed and the best bonding protocol determined consisted of RIE pressure 

of 1000 mTorr, power of 50 Watts, and exposure time of 45 s. As for the glass substrate 
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treatment, the settings used were 1000 mTorr, 150 Watts, and exposure time of 60 s. It 

was observed that baking the samples at 65 C for 4 hours, after allowing the samples to 

sit overnight at room temperature, also increased the bond strength. It should be noted 

that if the temperature was increased for example to 80 C that occasional delimitation of 

certain micro-features occurred, which is thought to be caused by thermal interfacial 

stress due to expansion coefficient mismatch between PDMS and glass. Letting the 

sample sit overnight at room temperature prior to heating seemed to reduce this problem 

as more time was allowed for initial bond formation.   

4.3.3. PDSM/SHSAW Alignment and Attachment 

 The PDMS containment walls separating IDT and delay-path regions of candidate 

SHSAW liquid phase sensor prototypes ideally should be as narrow as possible in order 

to minimally interact with the SHSAW mode and influence the overall sensor platform 

response. In particular, the containment walls may cause SHSAW attenuation, reflection, 

and scattering to bulk waves, which degrade the overall sensor platform performance. 

Two main issues arise as a consequence of reducing the wall thickness. One involves the 

strength of the bond, which obviously reduces with minimization of wall thickness and 

can result in fluid leakages. Another issue resulting from wall thickness reduction is the 

ability to accurately align the chamber to the SHSAW substrate. As the wall thicknesses 

and corresponding bonding surface gap thicknesses between IDTs and delay-path 

electrodes are reduced, the alignment placement accuracy requirement becomes stricter. 

In this work wall thicknesses which provided sufficient bond strength and acceptable 

modification of platform device response were determined to be on the order of 64-160 
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m. In this work this distance corresponds to 2-5 SHSAW wavelengths for candidate 

SHSAW platforms having split-type IDT designs with wavelength of 32 m (4 m 

electrodes, and 4 per wavelength), which were able to be fabricated at the LASST facility 

cleanroom consistently. This design required chamber placement with respect to the 

SHSAW device to be within about 10 m to make sure bonding PDMS wall surfaces 

landed on gaps between IDTs and the guiding electrode such that a covalent bond to can 

form between PDMS and quartz. Such a placement requirement does not allow alignment 

by eye. In order to address this challenge the literature available on alignment of PDMS 

and sequent bonding to substrates were reviewed. It was reported [99] that the use of a 

surfactant such as methanol or ethanol used to wet mating surfaces prior to bonding 

allows positioning of two pieces relative to each other prior to permanent attachment. The 

interfacial methanol layer prevents the silanol groups of the modified PDMS surface from 

migrating into the bulk layer,  prevents instant bond formation and allows a few seconds 

to minutes of movement before evaporating such that features can be aligned. As the 

methanol evaporates the bond begins to form at the interface and any movement of 

chamber relative to substrate at this point will cause bonding not to occur in areas where 

dried interfaces had touched prior to movement. Use of methanol allowed chamber 

positioning to take place relative to the SHSAW platform succesfully, but a method to 

align the two devices was still required. Based on the previously developed experience in 

this work with patterning SU-8 on numerous substrates, an idea to align the PDMS 

chambers to SHSAW devices based on patterning SU-8 chamber locking features on the 

SHSAW device was investigated. A diagram of the entire alignment and bonding process 

is shown in Figure 4.7. 
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Figure 4.7. Fabrication of packaged hybrid PDMS SHSAW liquid phase sensor 

platform. 
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In Figure 4.7 a rectangular SU-8 framing structure, used for proper PDMS alignment of 

rectangular PDMS samples, is photographically patterned on the SHSAW wafer prior to 

dicing. Using a mask aligner the SU-8 features were able to be accurately positioned on 

the substrate relative to the SHSAW devices and within 10 m for the SU-8 thickness 

considered (~50 m). The patterned SU-8 frame dimensions were designed slightly 

larger, 5 m on each side, than the footprint of the PDMS chamber such that when the 

chamber is aligned the PDMS chip “snaps into place” within seconds through placement 

by hand. This alignment technique proved to be very quick and has batch fabrication 

compatibility, and provided very accurate alignment to SHSAW devices. The method 

proved to be much more advantageous than alignment by either microscope and 

micrometer. 

 An overview of the packaging process of the hybrid PDMS / SHSAW liquid 

phase sensor platform, shown in Figure 4.7, is further detailed next. The first step in the 

process involves patterning a quartz wafer with the desired SHSAW devices. After 

complete, SU-8 PDMS alignment guides are patterned on the SHSAW wafer and 

accurately aligned to the SHSAW wafer using a mask aligner. The SU-8 features extend 

approximately 50 m above the quartz surface. The wafer is subsequently diced in to 

individual dies and is cleaned with solvents to prepare for chamber bonding. PMDS 

chambers are then prepared via the molding process described in Section 4.3.1 (SU-8 

mold features are ~100 m tall, therefore PDMS locking features are ~50 m greater then 

than the top of the SU-8 alignment guides). After curing, holes are bored in the PMDS 

using a precision hole punch (Technical Innovations, Inc. Angleton, TX) to allow later 
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insertion of microfluidic tubes having connectors on opposites ends which are attachable 

to fluid systems such as syringes and valves (Upchurch Scientific, Oak Harbor, WA). 

After boring holes, individual PDMS chambers are diced using a razor blade which is 

first dragged flush against molded chamber framing features and then used to cut. Next, 

the merging and attachment process is initiated. If chambers had been diced a few days 

prior to bonding then the surface of PDMS was first cleaned in a room temperature bath 

of HCl:DI 1:5 for 5 minutes. Next the SHSAW wafer surface was activated via O2 RIE 

treatment at 1000 mTorr, 150 Watts, for 1 minute. Afterwards, the PDMS and SHSAW 

were both treated at 1000 mTorr, 50 Watts, for 45 seconds. The SHSAW sample was 

then removed first and placed on a cleanroom wipe facing up. The PDMS wafer was then 

dipped in bath of prepared high purity 100% ethanol and allowed to dip dry for ~1 s 

(Care should be taken not to touch activated surfaces to be bonded with tweezers). Next 

the PDMS was gently laid down on the surface of the SHSAW device and positioned 

with tweezers to lock the chamber into place. Next a small piece of wipe was cut and 

placed on top of the chamber, followed by placement of a weight which applied uniform 

pressure to the device equal to ~0.25 psi. The use of the wipe allowed ethanol to 

evaporate out of the bored holes when covered by the weight. The packaged devices were 

left at room temperature overnight to allow ethanol evaporation and to initiate the 

bonding process. If the bond did not appear to be sufficient the next day, which is 

apparent by observing small bubbles at bonding surfaces, the chamber could still be 

peeled up allowing another bonding attempt to be performed (re-cleaning, O2 RIE 

treatment, ethanol dip, alignment, drying) without sacrificing the SHSAW device. If the 

bond looked good, the sample was baked in an oven for 4 hours at 65 C with the weight 
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on top rendering the bond irreversible. After the heat treatment the device packaging 

process is complete. 

4.4. Improved Device Designs and Design Considerations 

 Over the course of 3 years about 10 different packaged device designs were 

evaluated based on the presented PDMS/SHSAW packaging technique. The design 

iterations sought to address issues such as best method to form fluidic connections to the 

device, optimal flow channel geometry and IDT / delay-path PDMS containment wall 

thickness, most advantageous number of devices on packaged chip, and removal of 

spurious responses. In terms of making fluidic connections to the devices, two main 

strategies were employed. In the first technique considered, microfluidic tubes were 

inserted into molded PDMS microfluidic channels and permanently sealed using glue or 

PDMS sealant. The outer diameter of the Teflon tubes was 360 m (Upchruch Scientific, 

Part # 1932) and required SU-8/PMMA mold features to be about 280 m tall to allow 

insertion of tubes into the packaged device; the ports were slightly smaller than the tubing 

outer diameter resulting in improved tube sealing. The use of this connection technique 

had the advantage of using tubes with very small fluidic volumes (less then 10 L/m) 

which reduces the overall required analyte per experiment. One negative aspect was that 

very slow flow rates and high pressures are encountered as the flow resistance goes up as 

tube diameter is reduced. In addition this technique did not allow easy removal of 

inserted tubes, and if removed typically the device became damaged. A photograph of a 

device using this connection scheme is given in Figure 4.8.  
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Figure 4.8. Packaged 1
st
 generation SHSAW/PDMS device with fluidic chamber 

filled with dye-containing water. 

The design of Figure 4.8 consists of two SHSAW device patterned on the Euler angle 

(0, 132.75, 90) orientation of quartz on a single die, two independent fluidic channels, 

and tubing inserted and glued permanently. Dye-containing water was introduced into the 

device to demonstrate the chamber shape and to show that sealing is occurring. The 

chamber containment wall thickness in this instance was 200 m or about 6.25 SHSAW 

wavelengths. Small pinholes were formed in the PDMS above IDT regions using a 

syringe needle to allow the alignment surfactant, in this case methanol, to evaporate out 

of the IDT regions during the bonding process. A diagram of the different device features 

is given in Figure 4.9. 
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Figure 4.9. Diagram of fluidic, SHSAW, and alignment guide features of 1
st
 

generation design. 

 As an alternative fluidic connection method, the next approach involved punching 

holes in the bulk PDMS using precision machined hole punches, slightly smaller than 

1/8” or 1/16” diameters, such that insertion of 1/8” and 1/16” outer diameter Teflon 

tubing could be firmly held in place without the need of a sealant or glue. This allowed 

tubes to be inserted from the top of the PDMS and removed repeatedly without causing 

damage to the device. Figure 4.10 shows a photograph of second generation packaged 

device having fluidic connections based on insertion of tubes through bored out holes in 

PDMS. The device in Figure 4.10 consists of 2 sets of 2 SHSAW delay-lines patterned on 

the (0, 132.75, 90) orientation of quartz with a redesigned PDMS microfluidic 

chamber. The fluidic interface consists of two 1/8” diameter inlet holes and a single 1/16” 

diameter outlet hole. A diagram of the design is shown in Figure 4.11.   
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Figure 4.10. 2
nd

 generation packaged SHSAW/PDMS device. 
 

 

Figure 4.11. 2
nd

 generation SHSAW/PDMS device design. 

 



188 

 

The design includes 4 overall SHSAW devices, the top two of which can be exposed to 

one analyte, while the bottom two can be exposed to a different analyte. Fluid is pulled 

into the chamber by applying suction to the common outlet port (central channel with 

smaller OD tube connection) (see arrows in Figure 4.11 indicating flow directions). 

Using valves on the tubing running into the inlet ports (larger OD tube connections) 

allows fluid to flow thru only one channel path or the other by closing a single valve. To 

prevent mixing between each channel, fluid is continuously drawn through the device by 

applying continuous section to the outlet port. During the design process it was thought 

that having a common output port may reduce the potential of sensing fluid pressure 

differences, which may result if using two independent suction sources; one for each 

channel. The design could be easily modified to include independent fluidic channels if 

desired. In this design, the fluidic containment walls separating the IDT and delay-path 

regions were reduced from 200 m to 60 m (1.875 acoustic wavelengths) due to 

improvement in mold processing capability resulting from practice, which was 

anticipated to reduce SHSAW reflection and attenuation and still provided adequate 

chamber sealing. The microfluidic channel geometry was completely redesigned to have 

rounded corners and more uniform channel width throughout. This reduced bubble 

nucleation, entrapment, and occurrence of fluid voids during experiments as compared to 

the 1
st
 generation design, which is advantageous given that the presence of voids/bubbles 

along the delay path can affect the sensor response. 

 A 3
rd

 and final generation device was designed and fabricated and is shown in 

Figure 4.12. The features of the device design are shown in a diagram in Figure 4.13. 
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Figure 4.12. 3
rd

 generation packaged SHSAW/PDMS device. 
 

 

Figure 4.13. 3
rd

 generation SHSAW/PDMS device design. 
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Major changes with respect to the 2
nd

 generation design include: (i) the ability to dice 

individual die at an angle with respect to the SHSAW propagation direction which 

reduced the SHSAW spurious edge reflection; and (ii) the modified microfluidic chamber 

design. Rather than using a combination of 1/8” and 1/16” diameter tubing connections, 

the 3
rd

 generation used strictly 1/16” connections. This reduced the total required analyte 

volume per experiment via reducing tubing dead volume. In addition, the fluidic channels 

are the same width as the tubing inner diameter and are constant throughout the flow 

path. The smaller width channels further improved chamber liquid filling and flow 

characteristics, such as reducing instances of bubble nucleation and entrapment, 

compared to 1
st
 and 2

nd
 generation designs. As a consequence of using narrower flow 

channels the channels themselves had to be looped back and forth to expose the entire 

delay path region to a fluid analyte, which did not seem to affect device response 

significantly, as discussed in the next section. The chamber fluidic containment walls 

between IDT and delay regions were slightly increased from 60 m to 100 m to 

improve bond strength without causing any significant effect on the device response 

because with the previous generation design leaks occasionally occurred due to reduced 

overall bond strength. In addition, channel walls in the middle of the delay path were 

designed to be 32 m to minimally interfere with the propagating SHSAW; this 

dimension was chosen to be smaller than the other containment walls since a robust seal 

here is not required but is only used to guide the fluid along a proper path. In addition it 

should be noted that PDMS does not covalently bond to a gold surface using the bonding 

protocol employed. Lastly, the delay-path length of the 3
rd

 generation device was shrunk 
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to 100 acoustic wavelengths from 225 to improve the dynamic range of the sensor via 

reduction of overall insertion loss under viscous fluid loading.  

4.5. Packaged SHSAW Platform Performance   

 This section presents the performance comparison of the 3 packaged device 

designs previously discussed in this chapter. In particular, for each generational device 

the transmission coefficient, S21, is presented and measured before and after attachment 

of the PDMS microfluidic chamber. A comparison is given in terms of device passband 

ripple and phase linearity. Improved S21 phase linearity and reduced passband ripple 

indicate that the direct SHSAW response from port 1 to port 2 dominates the measured 

response and that the liquid-phase theoretical sensing evaluation developed in Chapter 3 

is applicable. Non-linear phase distortion and passband ripple indicate significant 

spurious signal being detected by the output transducer, which may stem from signals 

such as spurious SHSAW reflections, electromagnetic feed-through, and SHSBAW 

scattering and reflection. It is shown that the 3
rd

 generation device design exhibits best 

phase linearity and reduced passband ripple, and verifies that the packaged devices are 

applicable to liquid-phase testing. 

 Figure 4.14 shows the measured S21 magnitude and phase responses of the 1
st
 

generation design before attachment of the PDMS chamber, and after attachment of the 

PDMS chamber. It is observed that before attachment of the chamber, both the passband 

ripple and phase linearity are very good indicating little effect of spurious responses.  
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Figure 4.14. 1
st
 generation design transmission coefficient without PDMS ‘.’, and 

with PDMS ‘solid’, magnitude (a), phase (b). 

(a) 

(b) 
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After attachment of the chamber it is observed that the average magnitude drops about 3 

dB and some phase non-linearity effects become present in the response. This indicates 

that the 200 m PDMS walls causes some SHSAW reflection and potential SHBAW 

scattering or finite propagation loss. To overcome the issues related to spurious signal 

detection, the 2
nd

 generation device sought to reduce the chamber wall thickness between 

IDT and delay-path regions. It was anticipated that reducing the wall thickness would 

reduce the effects introduced after chamber attachment. 

 Figure 4.15 shows the measured S21 magnitude (a) and phase response (b) of the 

2
nd

 generation design before attachment of the PDMS chamber, and after attachment of 

the PDMS chamber. Compared to the 1
st
 generation device this design had a chamber 

wall thickness of 60 m rather than 200 m. In addition, the 2
nd

 generational device also 

replaced the ground plane electrode on the outsides of each IDT, sides opposite to the 

delay-path, with a short-circuit guiding grating to reduce mechanical discontinuities, i.e. 

reduce SHSAW reflection from the outer IDT edge. From Figure 4.15 (a) and (b) is 

apparent that attachment of the PDMS has little effect on the magnitude response, but 

strong ripple of about 5 dB is present in the passband. Using Fourier transform 

time-domain techniques this ripple was shown to originate from SHSAW reflection from 

the perpendicularly diced edge of the crystal. The phase does show some ripple as well 

and was removed by time-gating analysis verifying interference from the edge reflection. 

To overcome this problem the 3
rd

 generation design included the ability to dice individual 

sensor die at a slightly inclined angle with respect to SHSAW propagation direction 
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perpendicular, as shown in Figure 4.12. Due to this dicing angle reflected SHSAW is 

scattered away from the detection IDT, thus reducing the overall level of spurious signal. 

 

 

 

Figure 4.15. 2
nd

 generation design transmission coefficient without PDMS ‘.’, and 

with PDMS ‘solid’, magnitude (a), phase (b). 

(a) 

(b) 
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Figure 4.16 shows the measured S21 magnitude (a) and phase responses (b) of the 3
rd

 

generation design before attachment of the PDMS chamber, and after attachment of the 

PDMS chamber. Major differences between this design and the 2
nd

 generation are the 

incorporation of a wafer dicing angle and a compromise in PDMS wall thickness that 

balances bond strength and level of spurious signal, which in this case is 100 m. As 

apparent from Figure 4.16 (a) the passband ripple is greatly reduced as a result of dicing 

the wafer at an angle of about 10 with respect to the SHSAW propagation direction 

normal. In addition, the design displayed best phase linearity out of all generational 

designs. This design was chosen to be the final in this work and was used for subsequent 

liquid-phase sensing proof-of-concept demonstrations. 
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Figure 4.16. 3
rd

 generation design transmission coefficient without PDMS ‘.’, and 

with PDMS ‘solid’, magnitude (a), phase (b). 

 

  

(a) 

(b) 
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CHAPTER 5 

PACKAGED SHSAW LIQUID-PHASE SENSOR EXPERIMENTAL RESULTS 

5.1. Introduction 

 This chapter presents experimental results and analysis of fabricated SHSAW 

liquid-phase sensors based on the designs presented in Chapter 4. In Section 5.2 the 

experimental setup used is presented. The setup consists of various sub-systems such as 

SHSAW device temperature controlling hardware; radio frequency (RF) switches used 

interrogate individual delay lines; an interface to external fluid handling components; 

computer software routines; and data acquisition instruments. In Section 5.3 the 

performance of the 3
rd

 generation SHSAW design is experimentally evaluated by 

measuring device responses upon exposure to various concentrations of glycerol-water 

mixtures that display a range of viscosities. The device transmission coefficient phase 

and attenuation shifts resulting from fluid loading of the device surface are shown and 

compared to theoretical shifts determined using the numerical propagation 

characterization model presented in Chapter 3. From the data the mode sensitivity 

parameter to viscosity is extracted and compared to the theoretical values given in 

Chapter 3. In addition, the viscosity detection resolution is extracted and presented. The 

values for extracted sensitivity and detection limit are compared with reported results of 

other liquid-phase acoustic wave devices. Next, in Section 5.4 multi-analyte sensing 

using the 3
rd

 generation SHSAW design is experimentally evaluated. In particular, two of 

the four sensors on the device are exposed to varying glycerol/DI water concentrations, 

while the other two devices are exposed to only DI water.  Lastly,in Section 5.5 an 
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experiment is presented in cooperation with a UMaine Ph.D. candidate to demonstrate the 

applicability of the devices designed and fabricated towards biosensor applications.  

5.2. Experimental Setup 

 The fundamental component of the experimental liquid-phase SHSAW sensor 

measurement system is a packaged 3
rd

 generation SHSAW/PDMS platform. Recall that 

this design consists of a single die with 4 SHSAW devices; 2 of which are contained in 

one fluidic flow path, and the other 2 are contained in another flow path. Therefore two 

separate analytes can be measured on the same die, and for each analyte, two independent 

SHSAW measurements can be made. This is achieved using a microfluidic chamber 

design with two fluidic inlets and common single outlet as detailed in Chapter 4. Upon 

placing the outlet port under suction, fluid flows through the channels and prevents 

intermixing. Under no suction, channels may begin to mix as a result of diffusion. In 

order to measure all four of the SHSAW devices using a single two-port network 

analyzer, switching electronics were required to be incorporated into the experimental 

apparatus. Figure 5.1 shows a block diagram of the electronic switching system 

constructed. The system consists of two radio frequency (RF) 4:1 multiplexing switches 

which are controlled via external electronics, in this case a computer running a LabView 

virtual instrument (VI). Port 1 and Port 2 nodes are connected to the ports of a network 

analyzer for individual SHSAW device measurement.  
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Figure 5.1. Switching electronics block diagram used to measure 4 SHSAW devices. 

In addition to controlling which SHSAW devices are to be measured at a particular time, 

it was also desirable to control the temperature of the SHSAW devices precisely to 

minimize the response of sensors to environmental temperature variations. A similar 

temperature control setup to that used by [100] was constructed and consists of a 

resistance temperature device (RTD) probe to monitor temperature and a Peltier device to 

heat or cool the SHSAW devices. The two components were connected to an Omega 

temperature controller which was interfaced to a computer running LabView. 

 Figure 5.2 shows a diagram of the SHSAW device mounting and testing fixture. 

The fixture provides a method for sensor mounting, temperature control, and electrical 

connection to RF switches and a network analyzer. In particular, a Peltier device is 

sandwiched between a heat sink and a machined aluminum block that contains a small 

pre-drilled hole to allow insertion of a cylindrical shaped RTD. The SHSAW device is 

glued to a small printed circuit board (PCB) and wire-bonded to pads, of which are also 
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connected to header pins mounted on the PCB. The top of the Al block is in direct contact 

with the backside of the SHSAW PCB. The header pins of the SHSAW PCB are inserted 

into header sockets mounted on another PCB containing the RF switches and SMA 

connections. The header sockets have three main functions: (i) provide electrical contact 

to the sensor; (ii) provide mechanical support for the RF switch PCB; and (iii) allow easy 

removal or replacement of SHSAW PCBs. The switch PCB is not in direct thermal 

contact with temperature controlled Al block. Due to the relatively large thermal mass of 

the SHSAW PCB and Al block, as compared to the SHSAW device, the actual 

temperature of the SHSAW should be very close to that of the PCB and Al block, 

especially around room temperature. Photographs of the device fixture are shown in 

Figure 5.3. Appendix G contains documentation for the RF switch and sensor bonding 

PCBs.  

 

 

 

Figure 5.2. Temperature control hardware and RF switch setup. 
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Figure 5.3. Photographs of the setup depicted in Figure 5.2. 

 A diagram of the fluid system is shown in Figure 5.4. The setup consist of two 

syringes with plungers removed, which are mounted on a ring stand (not shown in figure) 

that are used as fluid analyte reservoirs. The ends of the syringes are connected to 

microfluidic valves (also mounted on the ring stand) with tubing, and permit on/off 
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control of each flow path. The other sides of the valves are connected to the PDMS inlet 

port with tubing. The PDMS outlet port is connected to another microfluidic valve with 

tubing, and allows suction on/off control. The other end of this valve is connected to a 

Erlenmeyer flask with tubing that is inserted into a one of two holes in the a rubber 

stopper. The flask is used for fluid waste collection. To generate suction, the flask is 

brought under partial vacuum using an air pump. A needle valve is used to control overall 

flow rate of pumped air and fluid. A pressure gauge is also installed to indicate indirectly 

the flow-rate (actual flow rate is analyte dependent as it depends on fluid viscosity and 

pressure and must be calibrated if accurate flow-rate information is desired).     

 

 

 

Figure 5.4. Fluids setup (note the SHSAW device numbering convection). 

(1) (2) 
(3) (4) 

SHSAW Device Numbers: 
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 A LabView program was written and used to control the device temperature, set 

the state of RF switches, and initiate and retrieve measurement data from an Agilent 

4396B two-port network analyzer. The RF switches are digitally controlled by an Ontrak 

Control Systems Inc. ADR2100 Analog/Digital/RS232/RS485 interface board 

(http://www.ontrak.net/adr2100.htm) having 32 digital I/O lines which are setup and 

controlled using LabView program over RS232. A block diagram of the LabView code 

routine is shown in Figure 5.5. 
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Figure 5.5. Block diagram of the LabView code routine. 
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5.3. Viscosity Sensing: Measurements of Glycerol Water Dilutions 

 To demonstrate the use of the SHSAW platform towards liquid-phase sensor 

applications and verify the sensor sensitivity analysis in Chapter 3, initial experiments 

were designed to characterize the device performance in terms of viscosity sensing. 

Seven liquid sample analytes used to characterize the 3
rd

 generation SHSAW platform 

were obtained [101]. The samples consisted of dilutions of glycerol in DI water with 

concentrations, measured densities, and viscosities given in Table 5.1. The densities were 

measured using 1 mL samples and a precision scale, while the viscosities were 

determined using a Cannon-Fenske Routine Viscometer. 

Table 5.1. Properties of samples used for the SHSAW device viscosity experiments. 

Over the range of increasing glycerol concentrations the viscosity increases by 236% 

while the density only increases 11%. Therefore use of such a fluid analyte is very good 

for viscosity characterization as the viscosity change dominates the variation in fluid 

physical properties. For pure shear bulk-wave liquid-phase sensing devices the theoretical 

response of the fluid interaction with the device only depends on the viscosity-density 

% weight Glycerol in DI Density (g/mL) Dynamic Viscosity (cP) 

0 0.9860 0.9542 

1 1.0005 0.9959 

3 1.0116 1.0629 

10 1.0190 1.1431 

15 1.033 1.4240 

25 1.07 2.3119 

30 1.097 3.2065 



206 

 

product for a short-circuit condition, which can be shown using the equation for the 

isotropic half-space Green’s Function (given on page 63 in Chapter 2) evaluated when 

there is no-field variation along the surface, i.e. sx = 0, and c44 = j  for the fluid. In the 

case of a SAW devices sx  0. As a result, the half-space Green’s functions for the 

isotropic fluid, assuming a single shear displacement u2, depends on 
22

4444 xscc  , and not 

just 44c   as in the case of a bulk-wave device; sx is the slowness of the x-directed spatial 

variation of fields along the interface and c44 = j for a Newtonian fluid. Therefore two 

fluids having the same viscosity-density products but unequal densities would 

theoretically have equal sensor responses using the same bulk-wave device. Alternatively 

if using a SHSAW devices, the responses would theoretically be unequal, although 

potentially very similar, due to the additional effect resulting from finite field variation of 

xs j x  along the interface. 

 The design and fabrication characteristics of the 3
rd

 generation SHSAW devices 

used in the experiment included: two 80.5 split-finger pair IDTs having 4.5 m electrode 

width and 3.5 m gaps (32 m IDT periodicity) and aperture equal to 1150 m; 110 m 

gaps between last IDT electrodes and guiding electrodes; delay-path length of 3120 m 

(97.5 IDT periodicities); metallization consisting of 165 nm Au atop a 15 nm Cr adhesion 

layer, where h = 159 m/s at device center frequency of 153.43 MHz. The length of the 

delay path exposed to the fluid after packaging is 3066 m. Using the measured guiding 

electrode thickness, the SHSAW velocity for a uniform guiding electrode was 

numerically computed at the operating frequency and determined to be 4760 m/s, which 
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was used to determine the approximate wavelength of the SHSAW on the delay path 

electrode, equal to 31 m. Therefore the fluid-exposed delay path length normalized to 

wavelength was approximately 99.       

 The first experiment involved loading the PDMS chamber with increasing 

concentrations of glycerol over time. For each concentration tested the fluid was allowed 

to sit under zero flow-rate for 10 minutes while measurements of individual device S21 

phase and magnitude responses at a constant frequency located in the device passband 

were taken, here 153.43 MHz. Figure 5.6 (a) and (b) show the phase and magnitude shifts 

respectively of the 4 devices over the extent of the experiment; the last step involved 

testing DI water again to see effect of any potential drift. The magnitude and phase 

responses are shifted to reference values obtained at the start of the experiment where DI 

water was loaded into the chamber. The initial magnitude and phase response at 

153.43 MHz is given in Table 5.2 before addition of fluid, and after loading DI water. 

Table 5.2. Magnitude and phase response for empty chamber and DI water filled 

chamber. 

  

Device # 
Init. Mag. 

[dB] 

Init. 

Phase 

[degrees] 

DI Mag. 

[dB] 

DI Phase 

[degrees] 

Delta 

Mag. 

[dB] 

Delta 

Phase 

[degrees] 

1 -22.395 -0.27 -26.828 -25.26 -4.433 -25.53 

2 -23.256 20.60 -27.723 -5.60 -4.467 -26.20 

3 -23.472 37.59 -27.927 11.10 -4.455 -26.49 

4 -23.136 34.86 -27.342 9.85 -4.206 -25.01 

Mean -23.065 23.20 -27.455 -2.48 -4.390 -25.81 

Std. Dev. 0.468 17.33 0.483 16.98 0.124 0.67 
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Figure 5.6. 3
rd

 generation design response to various concentrations of glycerol 

(% weight) solutions in DI water; (a) S21 phase response, (b) S21 magnitude response. 
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 The sensor is clearly able to distinguish the varying solutions. It was observed that 

the signal-to-noise ratio (defined as the shift in response, phase or magnitude, resulting 

from changing from DI water to 30% glycerol, divided by the amplitude of response 

variation, phase or magnitude, observed during exposure to 30% glycerol) is about 110 

for the phase response, and 310 for the magnitude response. The noise signals are 

expected to be due to the fact that devices were fabricated on the Euler angle 

(0, 132.75, 90) orientation of quartz which exhibits finite temperature coefficient of 

delay (TCD). It was measured that the temperature variation of the SHSAW devices is 

about 0.1 C over the course of the experiment. In a previous experiment the TCD of the 

device was measured using a temperature controllable chuck and Cascade Microtech 

probe station with the chamber empty. The data extracted showed a phase response with 

temperature equal to 2.2/C. Using (3.8) the TCD was determined to be 

about -30 ppm/C. Using this value of TCD the expected phase variation for the 

measured temperature variation of 0.1C is about 0.22, which explains the signal 

variation in Figure 5.6 (a) of 0.19. Given that the chamber was empty during the 

extraction of TCD, the addition of 30% glycerol into the chamber may explain this slight 

discrepancy as viscosity of fluids are sensitive to temperature as well.    

 In terms of the sensor insertion loss, given that the extracted signal-to-noise ratio 

of the measurement data is about 3 times larger for the magnitude signal as compared to 

the phase signal, magnitude tracking rather than phase tracking may be more 

advantageous, if devices are fabricated on the non-temperature compensated quartz Euler 

angle (0, 132.75, 90) orientation. Towards trying to explain this result, using the same 
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set of data collected in the device TCD extraction, the temperature coefficient of 

magnitude (TCM) was also extracted. Over the device passband frequency the TCM 

value extracted was -0.09 dB/C. Given the 0.1 C temperature variation observed 

during the glycerol experiments, variation of the magnitude response was expected to be 

of 0.009 dB. The actual measured variation of the magnitude response during the 

glycerol experiments Figure 5.6 (b) was about 0.014 dB, which is only about 1.5 times 

larger than expected. Again, given that the chamber was empty during the extraction of 

TCM, the addition of 30% glycerol into the chamber may explain this slight discrepancy 

as viscosity of fluids are sensitive to temperature as well.   

 Taking the average phase and attenuation shifts resulting from exposure to the 

various solution concentrations, the normalized changes in complex propagation 

constants were determined as a function of the square-root of 

radian frequency-viscosity-density product and are shown in Figure 5.7. Such a plot is 

shown for acoustic wave liquid-phase sensors in [86, 102] and is used to characterize the 

device sensitivity parameter, S, in (3.17). In addition, the expected responses assuming 

both Newtonian and Maxwell models are shown which were computed using the rigorous 

numerical software tool discussed in Chapter 3 and the parameters given in Table 5.1. 

The Maxwell model is evaluated in the same way as the Newtonian model with the 

exception that the fluid shear modulus, 
fluidc44 , is replaced by a complex quantity given by 

(5.1), which is based on a Maxwell viscoelastic model [86].  
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Figure 5.7. Experimental and theoretical normalized changes in complex 

propagation constant in percent for the six glycerol-water solutions considered. 
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   is the low frequency fluid viscosity determined by the viscometer, 
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 The parameter 


  is defined as the characteristic relaxation time of the fluid. In 

this work a constant value of  = 0.07 GPa was assumed as in [102]. Given (3.17) from 

[86] which is based on a perturbation theory, it is expected that both the normalized 

change in attenuation and wavenumber should be equal to each other. Based on the data 

obtained with the rigorous model used in this Section 3.3.2, shown in Figure 5.7, this is 

confirmed to be quite an accurate assumption over the range of 

radian frequency-viscosity-density product values considered. It is observed that the 

normalized change in attenuation and wavenumber values begin to diverge as the 

radian frequency-viscosity-density product increases, with the Maxwell model diverging 

faster as compared to the Newtonian model. The experimental wavenumber data fits well 

to the Newtonian model over the range of radian frequency-viscosity-density, with only a 

slight slope deviation from the numerically predicted. Regarding the attenuation data, the 

measured values compared to the numerically predicted do not agree as well, as there 

seems to be an offset and a slope deviation. Looking at the Maxwell model data it is 

apparent that use of this model better accounts for the wavenumber and attenuation slope 

discrepancy, but it still does not account for the observed attenuation offset. This 

additional attenuation offset has been observed in [86] and the authors tested to see if the 

offset could be a result of any of the following second order effects: surface roughness, 

non-Newtonian behavior, interfacial slip, or interfacial double layer. None of the methods 

could explain the observed offset. In this work two potential reasons for the observed 

offset are hypothesized. One potential reason for the additional observed attenuation is 

that the equivalent acoustic impedance seen by the IDT looking into the propagation path 
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region may be changing slightly upon fluid loading, which can be expected given that the 

SHSAW phase velocity reduces further compared to the IDT region velocity with 

increased loading. This may cause an additional mismatch between IDT and delay path 

impedances resulting in less power being delivered to the mode along the delay path 

region, thus reducing the detected power by the other IDT which appears as additional 

insertion loss. Another potential reason for the additional observed attenuation follows. 

Given that physical IDTs do not generate a pure plane wave, as the theory assumes, due 

to diffraction, the actual displacement components along the surface may not be entirely 

shear. As a result additional energy loss will occur via excitation of a compression wave 

into the fluid or potentially via leakage of energy outside the effective device aperture. In 

any case the observed offset only equates to and extra 0.81 dB and 1.6 dB of insertion 

loss in the device response for the 0% and 30% solutions respectively, which corresponds 

to 9% and 17% of additional power being lost. The power lost can potentially be 

accounted for by reasons indicated above. Since the wavenumber response of Figure 5.7 

fits the expected data much better then the attenuation parameter, it was chosen to be 

used for fitting the measured data to (3.17) for extraction of the device sensitivity 

parameter. The result of the referred fit resulted in S = 3.310
-8

 m
2
s/kg for this particular 

design. Given the discussion on page 127 regarding mass sensitivity, this value of S 

corresponds to a mass sensitivity of Sm = 318 cm
2
/g.  Using (3.18) and (3.15) the 

sensitivity parameters towards viscosity and radian frequency-viscosity product were 

determined to be S = 37 ppm/mP and S  = 0.38 1/GPa, respectively and agree very well 

with predicted value of 0.395 1/GPa extracted (at 154.3 MHz) using software written for 

the numerical sensitivity analysis described in 3.3.2. Using (3.13) and assuming only the 
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temperature dependent term is non-zero the resolution of the sensor towards a viscosity 

perturbation of DI water is at least 0.3 mP. When also including the second term of (3.13) 

and assuming a phase resolution of 0.1 and that the level of spurious detected signal is at 

least 50 dB below the main signal, which was verified via time gating analysis, the 

resolution of the sensor towards a viscosity perturbation of DI water is better than 0.72 

mP. The data in Figure 5.6 (a) shows that the 1% glycerol solution can just barely be 

detected, which has a 0.42 mP increase in viscosity with respect to the 0% solution, thus 

verifying the predicted viscosity resolution. In terms of a sensitivity comparison with 

other reported surface acoustic wave devices, [103] gives their own, and cited values, of 

S equal to 8.210
-9

 m
2
s/kg, and 4.810

-8 
m

2
s/kg and 2.610

-8
 m

2
s/kg, respectively for 

their developed SHSAW device based on an AlN-on-sapphire substrate, and two reported 

Love mode devices consisting of devices fabricated using an SiO2 layer atop Euler angle 

(0, 132.75, 90) quartz. In addition the authors report a mass sensitivity for their 

AlN/sapphire device given as Sm = 131 cm
2
/g. For quartz crystal microbalance (QCM) 

devices the mass sensitivity is proportional to the operating frequency by a factor of 

about 2.2610
-6

 scm
2
/g for AT-cut quartz according to the well known Sauerbrey 

Equation [12]. For typical QCM devices operating at the fundamental harmonic, the 

device operating frequency is between 1-30 MHz. Therefore the achievable mass 

sensitivity of QCM based devices is typically between 2 and 68 cm
2
/g; a factor of about 5 

less than the device reported here for the best QCM mass sensitivity at 30 MHz.  
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5.4. Multi-Analyte Sensing  

 To demonstrate the ability of the developed device to simultaneously analyze two 

separate fluid analytes, another experiment was conducted which consisted of exposing 

two of the four devices to the same viscous solutions used in the previous experiment, 

while exposing the other two devices to DI water. As opposed to the previous 

experiment, where fluids were allowed to sit under no flow rate during measurement, this 

experiment required a continuous flow rate to mitigate solution mixing during the 

experiment. This was achieved by connecting the fluidic chamber’s common outlet to a 

flow control valve and pump providing constant vacuum and fluid suction as detailed in 

Figure 5.4 (note the SHSAW device numbering convention). Through experimentation 

the needle valve and vacuum level were altered to achieve a flow rate at the output port 

of about 20 L/min (calibrated with DI water in both reservoirs). During the course of the 

experiment varying glycerol concentration solutions were exposed to two of the four 

devices for about 10 minutes at a time. Upon changing the solution, the majority of 

residual fluid in the syringe reservoir was removed leaving behind just enough to prevent 

air from entering the system. Within a minute after fluid removal the next sample was 

added to the reservoir. Figure 5.8 (a) and (b) show the devices phase and magnitude 

responses, respectively of all 4 devices. The response curves are shifted to zero at time 

zero as was done in the experiment described in the previous section (see Table 5.2 for 

un-shifted initial response properties of each device).  
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Figure 5.8. 3
rd

 generation design response. Devices 1 and 2 exposed continuously to 

DI water while devices 3 and 4 are exposed to varying glycerol/DI concentrations; 

(a) S21 phase response, (b) S21 magnitude response. 

For both the magnitude and phase responses in Figure 5.8 it is observed that the 

responses for devices 1 and 2 (DI water) are relatively unchanged as compared to devices 

3 and 4 (glycerol solutions) over the course of the experiment. Closer examination of the 

response of devices 1 and 2 as seen in the zoomed-in inset plot of the phase response, (a), 

reveals an increasing phase response trend with increasing glycerol concentration for 

devices 1 and 2; with device 2 on average shifted less from the baseline than device 1. 

(b) 

(a) 
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Upon introduction of DI water into both flow paths, at the end of the experiment, it is 

observed that the phase response of each device returns near the baseline response at time 

zero; devices 3 and 4 appear to still be exposed to some residual glycerol in DI water as 

the response has not fully recovered. The full scale phase shift of device 1 and 2 at time 

70 minutes (local average), relative to the shift of the devices 3 and 4 that are exposed to 

30% glycerol is approximately only -3.3% and -2.6%, respectively. In regards to the inset 

plot for the magnitude response, (b), device 1 has an increasing trend with increasing 

glycerol concentration, while device 2 has a decreasing trend with increasing glycerol 

concentration. The full-scale magnitude shift of device 1 and 2 at time 70 minutes (local 

average), relative to the shift of the devices 3 and 4 that are exposed to 30% glycerol is 

approximately only -0.47% and +0.93%, respectively, which are also less in magnitude 

that the relative shift of the phase response signals of device 1 and 2 by a factor of at least 

3. Upon introduction of DI water into both flow paths at the end of the experiment it is 

observed that the magnitude response of device 1 and 2 returns near the baseline response 

at time zero; device 4 appears to still be exposed to some residual glycerol in DI water as 

the response has not fully recovered, and device 3 overshoots the baseline. One possible 

reason why this device overshoots the baseline may be that a bubble(s) became trapped 

along the device delay path, which may also explain the rapid increase in the magnitude 

of device 4 at time 15 minutes, as observed in the inset plot of (b), given that air displays 

less loss than the glycerol solution. In any case it is very interesting to see that devices 1 

and 2 in the inset plot of the phase response (a) show an increasing trend, while in the 

magnitude plot inset (b) of device 1 shows an increasing trend and device 2 shows a 

decreasing trend. The author has a theory that two competing effects are simultaneously 
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occurring, which can explain theses observed results as the glycerol concentration of 

devices 3 and 4 increases: (i) there is an increase in pressure applied to the PDMS walls 

sealing devices 1 and 2; and (ii) a degree solution mixing takes place in the region of the 

device 2 delay path near the fluid common outlet port. Considering (i), as the viscosity of 

the solution in the flow path of devices 3 and 4 increases, the flow rate in the flow path of 

devices 1 and 2 must increase given that the same suction pressure is applied to the 

fluidic system. This effect results in increased pressure being applied to the sealing 

PDMS walls located in between IDTs and the delay path of devices 1 and 2. The author 

believes that the stiffness at the PDMS/substrate interface as a result increases, thus 

accelerating the wave, and results in an upward trend in the phase response of device 1 

and 2 as the pressure increases. Considering (ii), given that the flow path along the delay 

path of device 2 is closer to the common outlet port than device 1, it is believed that a 

degree of the glycerol is present in the solution near the outlet region of the device 2 

delay-path. Such a scenario will cause the phase and magnitude response of device 2 to 

have a decreasing trend. Given that the magnitude response shift of devices 1 and 2, 

relative to full-scale shift of devices 3 and 4 at 30% glycerol, is less than the phase 

response shifts of devices 1 and 2, it is thought that the pressure effect more strongly 

affects the phase response as compared to the magnitude response. Regarding the 

magnitude response it is believed that the solution mixing effect dominates the response 

of device 2, while the pressure effect dominates the response of device 1. Regarding the 

phase response, it is believed the pressure effect dominates the response of devices 1 and 

2, while the solution mixing effect only slightly affects device 2. Given the response 

levels of devices 3 and 4 shown in the inset plots of (a) and (b) at 1% glycerol, it is 
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believed that the degree of solution mixing results in a local glycerol concentration for 

device 2 near the outlet port of <3% when device 3 and 4 are exposed to 30% glycerol. 

This was calculated using that fact that this region makes up only 1/3 of the total device 

delay and that the equivalent shift in the magnitude response of device 2 corresponds 

almost to that of a device exposed to 1% glycerol solution, as seen with device 3 and 4 

under exposure to the 1% solution. The author is only presenting this reasoning as an 

initial theory. It should be understood that the observed signals for devices 1 and 2 are 

relatively very small and are only slightly above the magnitude and phase response noise 

levels, although on average local trends do seem to be present. The question regarding 

whether these signals are a result of systematic errors or are an actual phenomena, can be 

addressed in future work if desired. It should be mentioned that at this time if it is 

required that absolutely no chance of solution mixing can be tolerated then another 

chamber design should be implemented, which includes two independent flow paths and 

outlet ports.       
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5.5. Biological Sensing: Measurements of a Bio-Assay 

 A current Electrical Engineering Ph.D. student at UMaine, Dana Tucker, has been 

working on Improving the Sensitivity of a DNA-Probe Based Surface Acoustic Wave 

Biosensor, and has been using the 2
nd

 generation SHSAW sensing platform devices 

developed in this dissertation to perform some of her experimental measurements. She 

has been kind enough to let me present some of her data here to demonstrate the 

applicability of the devices developed in this work towards biological sensing 

applications. 

   The experiment she performed was designed to study the sensitivity of SHSAW 

devices towards DNA crosslinking of surface bound molecules. It has been well known 

for many years that SAW devices are very sensitive platforms for detection of surface 

mass loading. Alternatively, little work has been done in distinguishing responses caused 

by mass loading and responses resulting by interfacial stiffness variations. To test the 

effects of changing just the relative surface stiffness, experiments were devised which 

sought to keep the surface attached mass constant while only changing the equivalent 

stiffness. In particular one of the experiments she performed, which is presented here, 

involved attachment of NeutrAvidin (NA) to the SHSAW surface, which is known to 

non-specifically bind to a Au surface. Next, two complementary single stranded DNA 

(ssDNA), each with a single biotin molecule attached to their 5’ end, are hybridized in 

solution. Afterwards the complex is loaded into the device and the biotin molecules, 

which have a very strong affinity to NA, attach to the NA crosslinking the surface bound 

NA via the double stranded DNA (dsDNA) complex. The experiment consisted of 5 main 
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steps. In the first step the device was exposed to DI water to establish a baseline response, 

set the fluid flow rate, and remove air bubbles from the device. In the second step, the 

device was exposed to a NA buffer solution (50mM TRIS, 10mM MgCl2, 10mM KCl, 

pH 7.5), again to form a baseline response used to study NA attachment. In the third step 

a solution of NA with a concentration of 100g/ml in NA buffer was then inserted into 

the device. As a fourth step a blocking buffer (BB) solution consisting of 0.5% bovine 

serum albumin (BSA) in saline-sodium citrate (SSC) buffer (150mM NaCl, 15mM 

sodium citrate, pH 7.5) was loaded into the device and used to block non-specific 

attachment of DNA and to form a baseline for the crosslinking event. Finally the 

pre-prepared dsDNA complex (dsTri) at a concentration of 80nM in SSC buffer was 

inserted into the device to initiate the crosslinking event. The biotinylated ssDNA 

sequences used to form the dsTri complex is given in Table 5.3.   

Table 5.3. Biotinylated complementary ssDNA used to form dsTri complex. 

  

  

96 base pair biotinylated ssDNA molecules 

5’- biotin – 

TCTTGCTGGGGTTATCGATGGGAAAAAACACGAAAAAAAGCAAAAAAA 

GAATTCAGCCAAAAAACACAAAAAAAATCGATGTAGGCCATGCTGTCC 

– 3’ 

5’ – biotin –

GGACAGCATGGCCTACATCGATTTTTTTTGTGTTTTTTGGCTGAATTCTT 

TTTTTGCTTTTTTTCGTGTTTTTTCCCATCGATAACCCCAGCAAGA  

– 3’  
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 The results of the experiment, which involved testing two of the four available 

devices, are shown in Figure 5.9 (a) and (b). In particular, Figure 5.9 (a) and (b) show the 

phase and magnitude shifts observed, respectively for each step over the course of the 

experiment. It should be noted the main difference between the 3
rd

 and 2
nd

 generation 

devices designs, in terms the SHSAW device layout, is that the delay path length of the 

2
nd

 generation is about 2.25X longer than the 3
rd

 generation design. Thus it is expected 

that both the phase and magnitude shifts observed for a similar experiment using the 3
rd

 

generation design alternatively would be about 2.25X less. The data clearly shows that 

the device is able to detect the attachment of bio-molecules on the device surface. A more 

thorough explanation of the experimental details and the data will be given in Dana 

Tucker’s dissertation under preparation. In addition, she intends to show additional 

experimental biological sensing data obtained from other experiments which were 

performed using devices developed in this work. 
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Figure 5.9. 2
nd

 generation response to crosslinking NA with biotinylated dsTri; (a) 

S21 phase response, (b) S21 magnitude response. 

(b) 

(a) 
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CHAPTER 6 

CONCLUSION 

6.1. Summary 

 Successful modeling, design, packaging, and experimental evaluation of  pure 

shear horizontal surface acoustic wave (SHSAW) liquid-phase sensor platforms has been 

performed in this work and has been presented in this dissertation. In particular, this work 

introduced novel methods to: (i) model SHSAW liquid-phase sensors; (ii) quantify sensor 

performance in terms of key design parameters (e.g. IDT center-to-center length, sensing 

region length, SHSAW mode temperature and analyte sensitivities, SHSAW complex 

slowness, and ratio of spurious signal detected to desired signal); (iii) numerically extract 

the key parameters for candidate designs; and (iv) form robust and reproducible 

packaging of devices for liquid-phase operation. Experimental liquid-phase measurement 

data presented obtained via testing the candidate liquid-phase sensor platforms designed 

and fabricated in this work verify the modeling analysis, design, and packaging methods 

proposed in the this work. 

 In Chapter 1 an overview of liquid-phase sensors was presented. The discussion 

addressed current methods used to measure properties of liquid-phase materials and 

alternative acoustic wave sensor platforms based on use of bulk-wave, Lamb, Love, 

acoustic plate, and pseudo surface acoustic wave modes. Next, the state-of-the-art in 

surface acoustic wave device modeling with emphasis on the analysis on interdigital 

transducers (IDTs) and interaction of the device substrate with a fluid analyte were 



225 

 

discussed. Lastly a discussion was presented on reported techniques used for packaging 

acoustic wave devices for liquid-phase operation. 

 Chapter 2 presented the theoretical approach used to model candidate device 

designs. This included a theoretical development of a full-wave simulation tool used to 

model finite and infinite electrode structures atop a piezoelectric substrate and subsequent 

methods for extraction of parameters relevant to sensor performance. Based on use of the 

implemented model, and presented for the first time in this dissertation work, was the 

extraction of IDT SHSAW mode excitation efficiency for various surrounding IDT 

boundary condition situations, while including the mass/stiffness loading effect of all 

electrodes in the structure. It was shown that the excitation efficiency can depend 

strongly on the mass/stiffness effect of surrounding electrodes. Therefore to achieve 

accurate efficiency extraction the considerations of such effects are required and are 

considered for the first time using the methods presented in this dissertation. In addition 

to the device simulation model, a theoretical model was presented which was used to 

characterize modes propagating in a semi-infinite piezoelectric substrate with n 

finite-thickness uniform layers, followed by a semi-infinite fluid. 

 In Chapter 3 an analytical sensor response model was presented, which was 

derived in terms of key sensor design parameters (IDT center-to-center length, sensing 

region length, SHSAW mode temperature and analyte sensitivities, SHSAW complex 

slowness, and ratio of spurious signal detected to desired signal). Quantifiable 

expressions were shown which indicate that the expected sensor signal-to-noise level and 

resolution for a particular analyte can be improved by reducing the ratio of SHSAW 
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temperature coefficient of delay (TCD) to SHSAW sensitivity to the fluid measurand, 

and through reduction of detected spurious signals via improvement of the IDT SHSAW 

excitation efficiency, SHSAW. Theoretical methods and modeling tools were developed 

and presented for the first time which allowed extraction of the aforementioned important 

performance parameters of SHSAW device designs. Using the developed modeling tools 

it was numerically verified that sensitivity of the SHSAW mode to changes in fluid 

physical properties, such as viscosity, can be improved via use of a uniform electrode 

finite-thickness guiding layer placed between device IDTs. In particular, through use of 

electrode materials with relatively high density, such as Au, and of appropriate thickness, 

the sensitivity of the SHSAW was shown be able to approach or in some cases exceed 

that of more complex Love mode configurations that incorporate dielectric, and possibly 

also metallic over-layers in addition to IDT electrodes. In addition, it was shown using a 

model simulation, which considers the fluid interaction, that mode sensitivity to fluid 

viscosity and attenuation in dB per wavelength are highly correlated. It was quantitatively 

shown that if the sensitivity is too high the overall sensor performance may degrade as 

the level of detected spurious signal increases. Lastly, for the first time the SHSAW 

parameter of a particular device design has been quantified for finite length IDTs 

surrounded by finite-thickness uniform and periodic guiding electrodes. These results 

have been achieved through use of an implemented full-wave model accounting for 

spurious mode excitation (e.g. BAW), which is based on implementation of boundary 

element and finite element methods. For the uniform electrode guiding condition, the 

technique implemented introduced the concept of an acoustic matching electrode. The 

use of the matching electrode allowed far-field parameters to be extracted, such as 
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SHSAW, by removing IDT spurious responses due to SHSAW reflection from a truncated 

structure edge, which can be redetected by the IDT and interfere with the extraction 

process. It was quantitatively verified that the use of a uniform guiding electrode of 

proper material and thickness not only improves SHSAW sensitivity, but also improves 

SHSAW. For example, it was verified that by using Au electrodes w for a device on 

ST-90 quartz (79.5 split finger pairs, and 32 m IDT periodicity) with uniform guiding 

electrodes on both sides of the IDT, SHSAW is improved by about 11% and S by about 

216% when using electrodes 600 nm thick instead of 75 nm . It was also shown that use 

of finite-thickness periodic guiding electrodes placed synchronously alongside the IDT 

can further improve SHSAW, which was shown to approach 100% when employing denser 

and thicker electrodes. 

  Chapter 4 presented the packaging technique developed in this work to allow the 

operation of liquid-phase SHSAW sensors, and also discussed different generations of 

device designs. The reported packaging technique prevents fluids from coming in contact 

with the device IDTs, thus avoiding potential dielectric and/or conductive 

electrical-shorting of signals, while only affecting the overall device response slightly. 

The packaging method consists of molding poly(dimethyl siloxane) (PDMS) microfluidic 

chambers via softlithography techniques, dicing and alignment of individual chambers to 

a SHSAW device, and permanent bonding to the device surface. A process for fabrication 

of micro-featured PDMS molds on a poly(methyl methacrylate) (PMMA) substrate using 

SU-8 resist has been developed and presented in this work, which exhibits greatly 

improved mold robustness compared to traditionally used mold substrates such as glass 
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and silicon. In addition, a novel technique was developed and presented which was used 

to align PDMS chamber to SHSAW device rapidly and precisely, within 10 m, prior to 

permanent attachment to the surface. This process was made possible via use of 

lock-and-key features patterned on a SHSAW device with SU-8 resist and use of a 

surfactant, such as ethanol, allowing slight positioning before evaporation and subsequent 

bonding occurs. Lastly, three generations of complete packaged devices designs are 

reported. 

 Chapter 5 presented experimental results of candidate liquid-phase surface 

acoustic wave devices for two potential sensor applications. The fist set of experiments 

involved testing various concentrations of glycerol-water mixtures with the reported 

devices. Characteristic properties of the sensor are extracted, such as sensitivity and 

detection resolution, and are compared to other reported devices. The comparison showed 

that the device reported here has sensitivity within 31% of one reported device and 27% 

higher than another, which used a SiO2 layer on quartz. In addition, it was shown that the 

device reported here has sensitivity 300% higher than a reported high-velocity 

AlN/Sapphire SHSAW devices. It is shown that the sensitivity of the device reported in 

this work could be increased by about 75% by increasing the guiding electrode thickness 

by a factor of about 3 (without addition of SiO2 under the electrode), which then transfers 

more energy into the liquid and causes a 75% increase in signal propagation loss (an 

effect which is shown independent of material in this work, i.e. devices with equal 

viscosity sensitivities will have equal propagation loss due to viscous loading). In 

addition to viscosity sensing, the developed device was used in a bioassay test to 
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demonstrate the applicability as a biosensor to detect DNA crosslinking of surface bound 

molecules. 

6.2. Contributions 

 The following is a bulleted list of contributions resulting from this work. 

• Developed new SHSAW sensor response model; key design parameters identified 

and their effect on devices performance quantified.  

• Expanded Green’s function theories and improved their computation. 

– GF expanded to n-layers for layered excitation and propagation problems. 

– Provided additional insight into proper partial mode selection for 

half-spaces. 

– Improved partial mode analytical continuation into complex slowness 

plane using a numerical eigen-value/-vector partial derivative computation 

method. 

– Improved numerical stability for acoustically thick layers. 

• Applied new Green’s function model to the following SHSAW propagation 

problems. 

– Presented novel layered sensitivity analysis with fluid loading – optimum 

configurations identified. 
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– Performed analysis of new materials/orientations. 

– Verified, without any perturbation theory constraint, that the SHSAW 

mode sensitivity is strongly correlated to the viscous attenuation under 

acoustically thick layered configurations.  

• New finite FEM/BEM model computational models developed. 

– Incident mode analysis implemented for FEM/BEM S- or P-matrix 

extraction that considers electrode thickness. 

– Allows for the choice of different basis functions without loss of 

generality for the finite FEM/BEM model.  

– Alternate numerical integration method developed – electrostatic pole 

cancelation, new contours defined. 

– Post processing model developed for calculation of BAW radiation w.r.t. 

PFA in addition to the existing k-vector angle theory in the literature. 

• Additional periodic FEM/BEM model computational models developed. 

– Allows for the choice of different basis functions without loss of 

generality for the periodic FEM/BEM model. 

– Arbitrary period electrode configurations covered – multiple electrodes, 

floating electrodes. 
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• SHSAW excitation efficiency quantified for first time for various surrounding 

IDT guiding configuration considering electrode thickness. 

– Uniform electrode guiding, and periodic electrode guiding covered.  

• SHSAW ‘matching’ electrode shown possible; potential other applications in 

filtering (periodic tuned electrodes analogous to coupled line filter). 

• Enhanced SHSAW liquid-phase packaging developed. 

– New PDMS combination alignment/bonding method for SHSAW – 

10 m alignment. 

– Enhanced PDMS mold robustness with low temperature PMMA/SU-8 

process. 

6.3. Suggestions for Future Work  

 As a result of this dissertation, future work relevant to further improving SHSAW 

liquid-phase sensor device design and understanding has been identified.  

 It would be interesting to see the results of a numerical study of how the value 

SHSAW for an IDT changes with respect to the length of the free-surface gap between 

IDT and the uniform guiding electrode. In particular, in the actual fabricated device the 

gap between the IDT and the uniform guiding electrode was required to be on the order a 

few wavelengths to permit enough room for PDMS sealing to the quartz surface. 

Alternatively in the presented simulation data the gap was assumed only 1/8 of a 
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wavelength. It would be interesting to see how the increased gap spacing affects the 

achievable IDT SHSAW. In addition, it would be interesting to include in the model the 

influence of the presence of a PDMS containment wall via including a FEM model of the 

PDMS (maybe treat it acoustically only and neglect the electrical influence for 

simplicity). This would require the material constants of cured PDMS to be obtained 

(viscosity constants would also be desired), which the author has yet to find. Lastly, in 

order to verify that observed attenuation offset in Chapter 5 experimental results 

concerning the glycerol-water measurements, it would be interesting to see if the 

numerical model could explain the observed results, which were suggested to be caused 

by a reduction in SHSAW as a result of fluid loading. 

 The next generation device should be fabricated on a material and orientation that 

is less sensitive to temperature variation, such as the LGS orientation initially considered. 

Initial experiments attempting to bond PDMS chambers to LGS were unsuccessful and 

prompted the use of quartz for development. It had been reported that PDMS is able to 

permanently attach to silicon-nitride through the same mechanism as attachment to 

quartz. Therefore it may be feasible to deposit a very thin (in terms of device wavelength) 

layer of silicon-nitride or silicon-oxide on the LGS surface via PECVD, ALD, e-beam, or 

sputter process prior to electrode patterning. This may permit PDMS bonding to the 

surface and still present low device TCD. In an initial experiment in this work to prove 

feasibility, a layer silicon-nitride (~13 nm) was deposited on the surface of a scrap piece 

of LGS crystal via PECVD process at UMaine. Next bonding of scrap pieces of clean 

PDMS to the LGS sample was attempted using the same bonding protocol developed in 
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this work for quartz/PDMS. It was observed that PDMS appeared to bond sufficiently to 

the coated LGS sample after attempting to pull samples apart. Future work should include 

fabricating a LGS SHSAW device with an initial pre-layer of silicon-nitride or 

silicon-oxide and then PDMS sample attachment should be tested. If successful, the 

device should be tested and characterized with and without fluid analytes and compared 

to the performance of the reported quartz device in this dissertation. 

 Given the knowledge obtained resulting from this dissertation work, alternative 

designs to the PDMS fluid containment structure and SHSAW delay line structure 

implemented, which incorporates a uniform guiding electrode, should be considered. In 

particular, it would be interesting to study a delay-line or resonator device consisting of 

periodic electrodes and a dielectric over-layer and shielding film over the entire device. It 

was shown that periodic electrode guiding permits the highest achievable SHSAW due to 

the structure being absent of mechanical discontinuities or aperiodicities. Thus such a 

design may demonstrate reduced spurious signal detection and improved overall sensor 

performance. In addition via use of dielectric over-layer and shielding film, packaging for 

liquid-phase operation may be simpler since no containment wall between IDT and 

guiding structure would be required; therefore less alignment precision would also be 

required. In addition, the electrode, dielectric layer, and shielding electrode layer 

thicknesses could be tailored to improve devices sensitivity.  For instance, in Section 

3.3.2 it was shown that a Love wave configuration with a SiO2 layer and top surface 

shorting electrode can achieve higher sensitivity than the configuration employed in this 

work, which consists of only a uniform electrode at the substrate surface. Although a 
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device configuration based on the layered situation sounds promising, it is anticipated 

that much work will be required towards its realization. For instance models must be 

expanded to include the ability to simulate structures with finite thickness dielectric and 

top electrode layers positioned over finite thickness grating electrodes. This would 

require the FEM treatment of the non-homogeneous structure regions (including the 

electrical effects) and coupling to the BEM model of the semi-infinite homogeneous 

regions; i.e. substrate and air/vacuum/fluid regions. The current model employed in this 

work is not able to model such a situation. In addition, fabrication of such a configuration 

is may be challenging due to the increased number of process steps required.  
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T. B. Pollard, J. F. Vetelino, and M. Pereira da Cunha, “Pure SH SAW on single crystal 

KNbO3 for liquid sensing applications,” in Proc. IEEE Ultrason. Symp., 2003, pp. 

1125-8. 

T. D. Kenny, T. B. Pollard, E. J. Berkenpass, and M. P. da Cunha, “FEM/BEM 

impedance and power analysis for measured LGS SH-SAW devices,” in Proc. IEEE 

Ultrason. Symp., 2004, pp. 1371-4. 

T. B. Pollard, T. D. Kenny, and M. P. da Cunha, “SH-SAW transducer analysis on single 

crystal KNbO3 for liquid sensors,” in Proc. IEEE Ultrason. Symp., 2004, pp. 390-5. 

T. B. Pollard, and M. Pereira da Cunha, “Improved pure SH SAW transduction efficiency 

on LGS using finite thickness gratings,” in Proc. IEEE Ultrason. Symp., 2005, 

pp. 1048-1051.  

T. B. Pollard, T. D. Kenny, J. F. Vetelino, and M. Pereira da Cunha, “Pure SH-SAW 

propagation, transduction and measurements on KNbO3,” IEEE Trans. Ultrason. 

Ferroelect. Freq. Contr., vol. 53, no. 1, pp. 199-208, Jan. 2006.  



235 

 

T. D. Kenny, T. B. Pollard, E. Berkenpas, and M. Pereira da Cunha, “FEM/BEM 

impedance and power analysis of measured LGS SH-SAW devices,” IEEE Trans. 

Ultrason., Ferroelect., Freq. Contr., vol. 53, pp. 402-411, Feb. 2006.  

T. B. Pollard, and M. P. da Cunha, “Pure shear horizontal SAW network model for 

periodic structures including bulk scattering,” in Proc. IEEE Ultrason. Symp., 2006, pp. 

88-91. 

T. B. Pollard, and M. P. da Cunha, “Improved SHSAW transduction efficiency using 

gratings and uniform electrode guiding,” in Proc. IEEE Ultrason. Symp., 2009, pp. 835-8. 

T. B. Pollard, M. P. da Cunha, “Improved SHSAW transduction efficiency using grating 

and uniform electrode guiding,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 58, 

no. 5, pp. 1087-1096, May 2011. 

 

          

 



236 

 

REFERENCES 

 

[1]  J. R. Fried, Polymer Science and Technology.  Upper Saddle River, NJ: Prentice 

Hall, 2003. 

[2] J. Cazes, Ewing’s Analytical Instrumentation Handbook, Third Edition, New 

York, NY: Marcel Dekker, 2005.   

[3] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, “Capillary 

electrophoresis and sample injection systems integrated on a planar glass chip,” 

Anal. Chem., vol. 64, no. 17, p. 1926-1932, Sept. 1992. 

[4] E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys., vol. 45, no. 1, pp. 3-

11, Jan. 1977.  

[5] K. K. Kanazawa, and J. G. Gordan, “Frequency of a quartz microbalance in 

contact with a liquid,” Anal. Chem., vol. 57, no. 8, pp. 1770-1771, Jul. 1985.  

[6] D. Royer, and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided 

Propagation. New York, NY: Springer-Verlag, 2000.  

[7] M. Trainer, “Kelvin and piezoelectricity,” Eur. J. Phys., vol. 24, no. 5, pp. 535-

542, Sept. 2003.  

[8] A. Ballato, “Piezoelectricity: history and new thrusts,” in Proc. IEEE Ultrason. 

Symp., 1996, pp. 575-583.  

[9] D. P. Morgan, Surface Wave Devices for Signal Processing. Amsterdam, The 

Netherlands: Elsevier, 1985.  

[10] C. Campbell, Surface acoustic wave devices and their signal processing 

applications. CA, USA: Academic Press, 1989.  

[11] C. Ruppel, “SAW devices for consumer communication applications,” IEEE 

Trans. Ultrason. Ferroelec. Freq. Contr., vol. 40, no. 5, pp. 438-452, Sep. 1993. 

[12] G. Sauerbrey, "Verwendung von Schwingquarzen zur Wägung dünner Schichten 

und zur Mikrowägung," Z. Phys. vol. 155, no. 2, pp. 206-222, Apr. 1959.  

[13] P. L. Konash, and G. J. Bastiaans, “Piezoelectric crystals as detectors in liquid 

chromatography,” Anal. Chem., vol. 52, no. 12, pp. 1929-1931, 1980.  

[14] F. Josse, and Z. Shana, “Analysis of shear horizontal surface waves at the 

boundary between a piezoelectric crystal and a viscous fluid medium,” J. Acoust. 

Soc. Amer., vol. 84, no. 3, pp. 978-984, Sept. 1988.  



237 

 

 

[15] J. J. Campbell, and W. R. Jones, “Propagation of surface waves at the boundary 

between a piezoelectric crystal and a fluid medium,” IEEE Trans. Sonics 

Ultrason., vol. SU-17, no. 2, pp. 71-76, Apr. 1970.  

[16] Z. A. Shana, D. E. Radtke, U. R. Kelkar, D. T. Hanworth, and F. Josse, “Theory 

and applications of quartz resonators as sensors for viscous conductive liquids,” in 

Proc. IEEE Ultrason. Symp., 1989, pp. 567-571.  

[17] Y. Hu, L. A. French, K. Radecsky, M. P. da Cunha, P. Millard, and J. F. Vetelino, 

“A lateral field excited liquid acoustic wave sensor,” IEEE Trans. Ultrason., 

Ferroelect., Freq. Contr., vol. 51, no. 11, pp. 1373-1380, Nov. 2004.  

[18] D. F. McCann, L. A. French, M. S. Wark, and J. F. Vetelino, “Recent advances in 

lateral field excited and monolithic spiral coil acoustic transduction bulk acoustic 

wave sensor platforms,” Meas. Sci., Technol., vol. 20, no. 12, pp. 124001, 2009. 

[19] S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R. A. Moore, “Film 

bulk acoustic wave resonator technology,” in Proc. IEEE Ultrason. Symp., 1990, 

pp. 529-536.  

[20] G. Wingqvist, J. Bjurstrrom, L. Liljehom, I. Katardjiev, and A. L. Spetz, “Shear 

mode AlN thin film electroacoustic resonator for biosensing applications,” in 

Proc. IEEE Sens., 2005, pp. 492-495.  

[21] J. Weber, W. M. Albers, J. Tuppurainen, M. Link, R. Gabl, W. Wersing, and M. 

Schreiter, “Shear mode FBARs as highly sensitive liquid biosensors,” Sens. 

Actuators, A, vol. 128, no. 1, pp. 84-88, Mar. 2006.  

[22] Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid,” 

Proc. London Math. Soc., vol. 17, pp. 4–11, 1885.  

[23] H. Lamb, “On waves in an elastic plate,” Proc. Roy. Soc., vol. A93, pp. 114-128, 

1917.  

[24] R. Stoneley, “Elastic waves at the surface of separation of two solids,” Proc. Roy. 

Soc., vol. A106, pp. 416–428, 1924.  

[25] A. E. H. Love, Some Problems of Geodynamics. London: Cambridge University 

Press, 1911, Dover, 1967.  

[26] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic 

waves,” Appl. Phys. Lett., vol. 7, pp. 314–316, 1965.  

[27] J. L. Bleustein, “A new surface wave in piezoelectric materials,”Appl. Phys. Lett., 

vol. 13, no. 12, pp. 412-413, Dec. 1968.  



238 

 

 

[28] F. S. Hickernell, “Shear horizontal BG surface acoustic waves on piezoelectrics: a 

historical note,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 52, no. 5, 

pp. 809-811, May 2005.  

[29] Y. V. Gulyaev, “Electroacoustic surface waves in solids,” Zh. Eksper. i Teor. Fiz. 

Piz. v Red., vol. 9, pp. 63–65, Jan. 1969, (Sov. Phys. JETP Lett., vol. 9, pp. 37–

38, Jan. 1969). (in Russian)  

[30] Y. Ohta, K. Nakamura, and H. Shimizu, “Piezoelectric surface shear waves,” in 

Proc. Ultrason. Committee Inst. Electron. Commun. Eng. Japan, Apr. 1969. (in 

Japanese)  

[31] G. W. Farnell, E. L. Adler, “Elastic wave propagation in thin layers,” in Phys. 

Acout., vol. 9. W. P. Mason and R. N. Thurston, Ed. New York: Academic Press, 

1972, pp. 35-127.  

[32] C. Lardat, C. Maerfeld, and P. Tournois, “Theory and performance of acoustical 

dispersive surface wave delay lines,” Proc. IEEE, vol. 59, no. 3, pp. 355-368, 

Mar. 1971.  

[33] T. Moriizumi, Y. Unno, and S. Shiokawa, “New sensor in liquid using leaky 

saw,” in Proc. IEEE Ultrason. Symp., 1987, pp. 579-582.  

[34] R. M. White, “Fluid loading of a Lamb-wave sensor,” Appl. Phys. Lett., vol. 52, 

no. 20, pp. 1653-1655, 1988.  

[35] J. C. Andle, J. F. Vetelino, R. Lec, and D. J. McAllister, “An acoustic plate mode 

immunosensor,” in Proc. IEEE Ultrason. Symp., 1989, pp. 579-584.  

[36] E. Gizeli, A. C. Stevenson, N. J. Goddard, and C. R. Lowe, “A novel Love-plate 

acoustic sensor utilizing polymer overlayers,” IEEE Trans. Ultrason., Ferroelect., 

Freq. Contr., vol. 39, no. 5, pp. 657-659, Sept. 1992.  

[37] J. Kondoh, and S. Shiokawa, “Measurements of conductivity and pH of liquid 

using surface acoustic wave devices,” Jpn. J. Appl. Phys., Suppl., suppl. 31-1 vol. 

31, pp. 82-84, 1992.  

[38] E. L. Adler, “SAW and pseudo-SAW properties using matrix methods,” IEEE 

Trans. Ultrason. Ferroelec. Freq. Contr., vol. 41, no. 6, pp. 876-882, Nov. 1994.  

[39] C. Zhang, J. J. Caron, and J. F. Vetelino, “The Bleustein-Gulyaev wave for liquid 

sensing applications,” Sens. Actuators, B, vol. 76, no. 1-3, pp.64-68, Jun. 2001.  



239 

 

 

[40] M. Pereira da Cunha, D. C. Malocha, D. W. Puccio, J. Thiele, and T. B. Pollard, 

“LGX pure shear horizontal SAW for liquid sensor applications,” IEEE Sens. J., 

vol. 3, no. 5, Oct. 2003.  

[41] T. Kikuchi, and T. Moriizumi, “Effects of liquid viscosity on ultrasonic 

propagation in liquid/solid structre,” Jpn. J. Appl. Phys., Supplement, vol. 25, 

suppl 25-1, 1985, pp. 43-45.  

[42] L. A. Francis, J. -M. Friedt, R. De Palma, C. Zhou, C. Bartic, A. Campitelli, and 

P. Bertrand, “Techniques to evaluate the mass sensitivity of love mode surface 

acoustic wave biosensors,” in Proc. IEEE Freq. Contr. Symp., 2005, pp. 241-249.  

[43] S. Ballandras, A. Reinhardt, A. Khelif, M. Wilm, V. Laude, W. Daniau, and V. 

Blondeau-Patissier, “Theoretical analysis of damping effects of guided elastic 

waves at solid/fluid interfaces,” J. Appl. Phys., vol. 99, no. 5, p. 054907-1-9, Mar. 

2006.  

[44] K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: modeling 

and simulation. New York, NY: Springer-Verlag, 2000.  

[45]  R. F. Milsom, N. H. C. Reilly and M. Redwood, “Analysis of generation and 

detection of surface and bulk acoustic wave by interdigital transducers,” IEEE 

Trans. Sonics Ultrason., vol. SU-24, no. 3, pp. 147-166, May 1977. 

[46] P. Ventura, J. M. Hodé, B. Lopes, “Rigorous analaysis of finite SAW devices 

with arbitrary electorde goemetries,” in Proc. IEEE Ultrason. Symp., 1995, pp. 

257-262.  

[47] R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional 

finite elements,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 37, no. 3, 

pp. 233-247, May 1990.  

[48] P. M. Smith, and W. Ren, “Finite-difference time-domain techniques for SAW 

device analysis,” in Proc. IEEE Ultrason. Symp., 2002, pp. 325-328.  

[49] R. C. Peach, “A general green function analysis for SAW devices,” in Proc. IEEE 

Ultrason. Symp., 1995, pp. 221-225.  

[50] T. B. Pollard, T. D. Kenny, J. F. Vetelino, and M. Pereira da Cunha, “Pure SH-

SAW propagation, transduction and measurements on KNbO3,” IEEE Trans. 

Ultrason. Ferroelect. Freq. Contr., vol. 53, no. 1, pp. 199-208, Jan. 2006.  

[51] T. D. Kenny, T. B. Pollard, E. Berkenpas, and M. Pereira da Cunha, “FEM/BEM 

impedance and power analysis of measured LGS SH-SAW devices,” IEEE Trans. 

Ultrason., Ferroelect., Freq. Contr., vol. 53, pp. 402-411, Feb. 2006.  



240 

 

 

[52] T. B. Pollard, M. P. da Cunha, “Improved SHSAW transduction efficiency using 

grating and uniform electrode guiding,” IEEE Trans. Ultrason. Ferroelect. Freq. 

Contr., vol. 58, no. 5, pp. 1087-1096, May 2011. 

[53] G. Xu, “Direct finite-element analysis of the frequency response of a Y-Z lithium 

niobate SAW filter,” Smart Mater. Struct., vol. 9, no. 6, pp. 973-980, Dec. 2000.  

[54] G. Xu, and Q. Jaian, “A finite element analysis of second order effects on the 

frequency response of a SAW device,” J. Intell. Mater. Syst. Struct., vol. 12, no. 

2, pp. 69-77, Feb. 2001.  

[55] S. Ballandras, D. Gachon, J. Masson, and W. Daniau, “Development of absorbing 

conditions for the analysis of finite demension elastic wave-guids,” in Proc. IEEE 

Freq. Contr. Symp., 2007, pp. 729-732.  

[56] K. Y. Wong, and W. Y. Tam, “Analysis of the frequency response of SAW filters 

using finite-difference time-domain method,” IEEE Trans. Microwave Theory 

Tech., vol. 53, no. 11, pp. 3364-2270, Nov. 2005.  

[57] V. P. Plessky, T. Thorvaldsson, “Periodic green’s funciton analysis of SAW and 

leaky SAW propagation in a periodic system of electrodes on a piezoelectric 

crystal,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 42, no. 2, pp. 280-

293, Mar. 1995.  

[58] P. Ventura, J. M. Hodé, J. Desbois, and M. Solal, “Combined FEM and green’s 

function analysis of periodic SAW structure, application to the calculation of 

reflection and scatting parameters,” IEEE Trans. Ultrason. Ferroelect. Freq. 

Contr., vol. 48, no. 5, pp. 1259-1274, Sep. 2001.  

[59] Y. Zhang, J. Desbois, L. Boyer, “Characteristic parameters of surface acoustic 

waves in a periodic metal grating on a piezoelectric substrate,” IEEE Trans. 

Ultrason. Ferroelect. Freq. Contr., vol. 40, pp. 183-192, May 1993.  

[60] T. B. Pollard, and M. Pereira da Cunha, “Improved pure SH SAW transduction 

efficiency on LGS using finite thickness gratings,” in Proc. IEEE Ultrason. 

Symp., 2005, pp. 1048-1051.  

[61] L. A. Francis, J. –M. Friedt, C. Bartic, and A. Campitelli, “A SU-8 liquid cell for 

surface acoustic wave biosensors,” Proc. SPIE, vol. 5455, pp. 353-363, Aug. 

2004.  

[62] J. –M. Friedt, L. el Fissi, F. Cherioux, B. Guichardaz, V. Blondeau-Patissier, and 

S. Ballandras, “Design and use of a wafer level fluidic packaging for surface 

acoustic wave sensors,” in Proc. IEEE Freq. Contr. Symp., 2007, pp. 369-373.  



241 

 

 

[63] B. Li, M. Liu, and Q. Chen, “Low-stress ultra-thick SU-8 UV photolithography 

process for MEMS,” J. Microlith., Microfab., Microsyst., vol. 4, no. 4, p 43008-1-

6, Dec. 2005.  

[64] D. A. Karla, A. S. Holland, G. Rosengarten, K. K. Zadeh, “Fabrication of an 

integrated microfluidic and surface acoustic wave device for fluid analysis,” Proc. 

SPIE, vol. 5650, no. 1, pp. 189-199, Feb. 2005.  

[65]  K. Länge, G. Blaess, A. Voigt, R. Götzen, and M. Rapp, “Integration of surface 

acoustic wave biosensor in a microfluidic polymer chip,” Biosens. Bioelectron., 

vol. 22, no. 2, pp. 227-232, Aug. 2006. 

[66] I. Stoyanov, M. Tewes, S. Glasss, M. Koch, and M. Leöhndorf, “Low-cost and 

chemical resistant microfluidic devices based on thermoplastic elastomers for a 

novel biosensor system,” Mat. Res. Soc. Spring Meeting Proc., vol. 872, pp. 169-

174, 2005.  

[67] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. 

Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in 

poly(dimethylesiloxane),” Electrophoresis, vol. 21, no. 1, pp 27-40, Jan. 2003.  

[68] J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of 

poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem., vol. 75, no. 23, 

pp 6544-6554, Dec. 2003.  

[69] T. Q. Truong, N. T. Nguyen, “SU-8 on PMMA – a new technology for 

microfluidics,” Int. J. Comput. Eng. Sci., vol. 4, no. 3, pp 667-670, Sep. 2003.  

[70] V. Raimbault, D. Rebiere, C. Dejous, M. Guirardel, and V. Conedera, “Acoustic 

love wave platform with PDMS microfluidic chip,” Sens. Actuators, A, vol. 142, 

no. 1, pp.160-165, Mar. 2008.  

[71] K. Mitsakakis, A. Tserepi, and E. Gizeli, “Integration of microfluidics with love 

wave sensor for the fabrication of multisample analytical microdevice,” J. 

Microelectromech. Syst., vol. 17, no. 4, pp 1010-1019, Aug. 2008.  

[72] S. V. Biryukov, and M. Weihnacht, “Real-space field of sources and the problem 

of fast leaky wave generation in the piezoelectric half-space,” J. Appl. Phys., vol. 

83, no. 6, p. 3276-87, Mar. 1998. 

[73] B. A. Auld, Acoustic Fields and Waves in Solids: volume I. New York, NY: John 

Wiley & Sons, Inc., 1973. 

[74] C. Moler, and C. V. Loan, “Nineteen dubious ways to compute the exponential of 

a matrix, twenty-five years later,” SIAM Rev., vol. 45, no. 1, pp 3-49, Mar. 2003. 



242 

 

 

[75] M. Pereira da Cunha, “Extended investigation on high velocity psuedo surface 

waves,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 3, pp. 604-

613, May 1998.  

[76] N. P. Van Der AA, H. G. Morsche, and R. R. M. Mattheij, “Computation of 

eigenvalue and eigenvector derivatives for a general complex-valued 

eigensystem,” Electronic. J. Linear Algebra, vol. 16, pp. 300-314, Oct. 2007.  

[77] M. Fogiel, Handbook of Mathematical, Scientific, and Engineering: Formulas, 

Tables, Functions, Graphs, Transforms. Piscataway, New Jersey: Research & 

Education Association, 2001, pg. 313.  

[78] G. B. Arfken, and H. J. Weber, Mathematical Methods for Physicists, Sixth 

Edition. New York, NY: Elsevier Academic Press, 2005.  

[79] R. V. Goldstein, and G. A. Maugin, Surface Waves in Anisotropic and Laminated 

Bodies and Defect Detection: NATO Science Series, II. Mathematics, Physics, 

and Chemistry - Vol. 163. New York, NY: Springer 2008.  

[80] V. V. Aleksandrov, and A. V. Gladkevitch, “Evidence for exceptional bulk waves 

on (110) and (111) surfaces of GaAs from Brillouin spectroscopy,” J. Phys. 

Condens. Matter, vol. 6, no. 18, pp. 3359-68, Mar. 1994.  

[81]  F. S. Hickernell, “The application of dielectric thin films to enhance the properties 

of SAW devices,” in 2001 IEEE MTT-S Int. Microwave Symp. Digest, 2001, 

pp. 363-366. 

[82] K. J. Gamble, and D. C. Malocha, “Simulation of short LSAW transducers 

including electrode mass loading and finite finger resistance,” IEEE Trans. 

Ultrason. Ferroelect. Freq. Contr., vol. 49, no. 1, pp. 47-56, Jan. 2002.  

[83] M. Pereira da Cunha, and E. L. Adler, “A network model for arbitrarily oriented 

IDT structures,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 40, no. 6, 

pp. 622-629, Nov. 1993.  

[84] S. A. Sauter, and C. Schwab, Boundary Element Methods. New York, NY: 

Springer-Verlag, 2011.  

[85] E. W. Weisstein, "Law of Sines." From MathWorld--A Wolfram Web Resource. 

http://mathworld.wolfram.com/LawofSines.html. 

[86] G. Kovacs, M. J. Vellekoop, R. Haueis, G. W. Lubking, and A. Venema, “A Love 

wave sensor for (bio)chemical sensing in liquids,” Sens. Actuators, A, vol. 43, no. 

1-3, pp. 38-43, May. 1994.   

http://140.177.205.23/
http://mathworld.wolfram.com/LawofSines.html


243 

 

 

[87] T. B. Pollard, J. F. Vetelino, and M. Pereira da Cunha, “Pure SH SAW on single 

crystal KNbO3 for liquid sensing applications,” in Proc. IEEE Ultrason. Symp., 

2003, pp. 1125-8. 

[88]  T. D. Kenny, T. B. Pollard, E. J. Berkenpass, and M. P. da Cunha, “FEM/BEM 

impedance and power analysis for measured LGS SH-SAW devices,” in Proc. 

IEEE Ultrason. Symp., 2004, pp. 1371-4. 

[89] T. B. Pollard, T. D. Kenny, and M. P. da Cunha, “SH-SAW transducer analysis 

on single crystal KNbO3 for liquid sensors,” in Proc. IEEE Ultrason. Symp., 

2004, pp. 390-5. 

[90] T. B. Pollard, T. D. Kenny, J. F. Vetelino, and M. P. da Cunha, “Pure SH-SAW 

propagation, transduction, and measurements on KNbO3,” IEEE Trans. Ultrason. 

Ferroelect. Freq. Contr., vol. 53, no. 1, pp. 199-208, Jan. 2006.  

[91]  T. B. Pollard, and M. P. da Cunha, “Improved SHSAW transduction efficiency 

using gratings and uniform electrode guiding,” in Proc. IEEE Ultrason. Symp., 

2009, pp. 835-8. 

[92] E. W. Weisstein, "Associated Laguerre Polynomial." From MathWorld--A 

Wolfram Web Resource. 

http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html. 

[93] R. Feng, and J. Farris, “Influence of processing conditions on the thermal and 

mechanical properties of SU8 negative photoresist,” J. Micromech. Microeng., 

vol. 13, no. 1, pp. 37629-6, Jan. 2003.   

[94] O. M. Kugaenko, S. S. Uvarova, S. A. Krylov, B. R. Senatulin, V. S. Patrakov, O. 

A. Buzanov, V. N. Egorov, and S. A. Sakharov, “Basic thermophysical 

parameters of langasite (La3Ga5SiO14), langatate (La3Ta0.5Ga5.5O14), and 

catangasite (Ca3TaGa3Si2O14) single crystals in a temperature range of 25 to 

1000C,” Bull. Russ. Acad. Sci. Phys., vol. 76, no. 11, pp. 1258-1263, Nov. 2012.  

[95] B. Wang, L. Chen, z. Abdulali-Kanji, J. H. Horton, and R. D. Oleschuk, “Aging 

effects on oxidized and amine-modified poly(dimethylsiloxane) surfaces studied 

with chemical force titirations: effects on electroosmotic flow rate in microfluidic 

channels,” Langmuir, vol. 19, no. 23, pp. 9792-8, Oct. 2003.  

[96] Tangram Technology Ltd., “Polymer data file: polymethyl methacrylate – PMMA 

(acrylic),” http://www.tangram.co.uk/TI-Polymer-PMMA.html.  

[97] S. W. Lee, and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for 

the wafer level process,” Microsyst. Technol., vol. 14, no. 2, pp. 205-208, Feb. 

2008.  

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html


244 

 

 

 

[98] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface 

wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma 

treatment and correlation with bond strength,” J. Microelectromech. Syst., vol. 14, 

no. 3, pp. 590-597, Jun. 2005.  

[99] B. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-

dimensional mirco-channel fabrication in polydimethylsiloxane (PDMS) 

elastomer,” J. Microelectromech. Syst., vol. 9, no. 1, pp. 76-81, Mar. 2000.  

[100] E. Berkenpas, P. Millard, and M. Pereira da Cunha, “Detection of Escherichia coli 

0157:H7 with langasite pure shear horizontal surface acoustic wave sensor,” 

Biosens. Bioelectron., vol. 21, no. 12, pp. 2255-2262, Jun. 2006.  

[101] D. McCann, “A monolithic spiral coil acoustic transduction sensor for chemical 

and biological analytes.” Ph.D. dissertation, University of Maine, U.S.A, 2010.  

[102] B. Jakoby, M. J. Vellekoop, “Viscosity sensing using a Love-wave device,” Sens. 

Actuators, A, vol. 68, no. 1-3, pp. 275-281, Jun. 1998.  

[103] G. Hu, J. Xu, G. W. Auner, J. Smolinski, and H. Ying, “Viscosity response of 

shear horizontal surface acoustic wave on AlN/sapphire structure,” Electron. 

Lett., vol. 43, no. 18, pp. 1006-1007, Aug. 2007.  

[104]   E. W. Weisstein, "Legendre-Gauss Quadrature." From MathWorld--A Wolfram 

Web Resource. http://mathworld.wolfram.com/Legendre-GaussQuadrature.html.  

[105] D. Burnett, Finite Element Analysis.  Reading, MA: Addison-Wesley Publishing 

Co., 1987. 

[106] B. James, “A new measurement of the basic elastic and dielectric constants of 

quartz,” in Proceedings of the IEEE Frequency Control Symposium, 1988, pp. 

146–154.  

[107] B. P. Sorokin, P. P. Turchin, S. I. Burkov, D. A. Glushkov and K. S. Aleksandrov, 

“Influence of static electric field, mechanical pressure and temperature on the 

propagation of acoustic waves in La3Ga5SiO14 piezoelectric single crystals,” in 

Proceedings of the IEEE Frequency Control Symposium, 1996, pp. 161-169. 

[108] M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, P. Günter, “Material 

constants of KNbO3 relevant for electro- and acousto-optics,” J. Appl. Phys., 

vol. 74, pp. 1287-1297, Jul. 1993. 

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Legendre-GaussQuadrature.html


245 

 

 

[109] CRC Handbook of Chemistry and Physics, 86th ed. Lide, D.R., Ed.; CRC Press: 

Boca Raton, FL, 2005; Chapter 12, p 33-34. 

[110] O. L. Anderson, “Determination and some uses of isotropic elastic constants of 

polycrystalline aggregates using single-crystal data,” in Physical Acoustics. vol. 3, 

Part B, New York: Academic, 1965, pp. 77–83. 

[111] G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films 

deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid 

Films, vol. 296, pp. 102-105, Mar. 1997. 

[112] G. C. Schwartz, Y. S. Huang, and W. J. Patrick, “The effective dielectric Constant 

of silicon dioxides deposited in the spaces between adjacent conductors,” J. 

Electrochem. Soc. vol. 139, no. 12, pp. L118-L122, Dec. 1992. 

[113]  D. P. Fernández, Y. Umlev, A. R. H. Goodwin, and J. M. H. Levelt Sengers, “A 

database for the static dielectric constant of water and steam,” J. Phys. Chem. Ref. 

Data. vol. 24, no. 1, pp. 33-69, Jan.-Feb. 1995. 



246 

 

APPENDIX A 

DERIVATION OF THE 2D “A”-MATRIX 

 The purpose of Appendix A is to detail the derivation of the 2D (in terms of 

slowness-space) A matrix represented in Equation (2.6). The work presented here 

expanded that presented by [38] (1D analysis) to include, to the best of the author’s 

knowledge for the first time, a 2D slowness-space derivation. In the case of purely real 

values of slowness for sx and sy, the same results using [38] may be obtained by 

pre-rotating the material constants around the +z-axis by an amount  = tan
-1

(sy/sx) (four 

quadrant inverse tangent of ratio). Under the case where sx and sy are complex and 

independent quantities, only the method here can be used, since sx = sr cos() and sy = sr 

sin() (hence  sy /sx = tan() ), where sr is the sx complex slowness value evaluated in the 

method presented in [38] after material constant rotation about the +z-axis by . This 

method may prove useful in implementation of future more accurate full-3D FEM/BEM 

models as computation power improves, which will require 2D Fourier analysis in the sx 

and sy complex slowness-space. This method combined with the eigen-partial-derivative 

analysis presented in Section 2.3 may prove to be very useful towards the numerical 

implementation of such future tools. The derivation of the 2D A matrix follows.   
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Step 1:  Substituting (2.2) and (2.4) into (2.1) and factoring partial derivative terms 

yields: 
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and  
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(A.2) 

Step 2:  Define the vector u as: 



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


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u

uτ . (A.3) 

Step 3:  Factoring out (A.3) from (A.1) and (A.2), and grouping particular stress and 

electric displacement components yields: 
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and  
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and  
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and  
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(A.7) 

Step 4:  Define the vectors Px, Py, and N as: 
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and  
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and  
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Step 5:  Substituting appropriate rows from Equations (A.4) through (A.7) into Equations 

(A.8) through (A.10) yields: 

z
 js  js u

uyuxPx





τ
ΓτΓτΓτ

131211  , (A.11) 

and  

z
 js j js u

uyuxPy



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τ
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and  

z
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
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since                   ux
u s j

x
τ

τ





 and 

uy
u s j

y
τ

τ





,  

where  
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Step 6:  Combining (2.3) and (2.5) and factoring terms defined in (A.8) through (A.10) 

yields: 

u
N

PyyPxx  
z

s js j τI
τ

ττ 4

2 



 , (A.15) 

where  
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Step 7:  Solving (A.13) for j times the z-partial-derivative term yields: 

  uyxN
u  jssj

z

 j 
τXΓXΓXτ

τ


 3231 



, (A.16) 

where  

  133 
 ΓX .  

Step 8:  Solving (A.15) for the z-partial-derivative term yields: 

 uPyyPxx
N j ssj
z

τIττ
τ

 4



. (A.17) 

Step 9:  Dividing both side of (A.16) by j and substituting into (A.11) through (A.12) 

yields:  

     uyxNPx  jss τΓXΓΓΓXΓΓXτΓτ 12321311311313  , (A.18) 

and  

     uyxNPy  jss τΓXΓΓΓXΓΓXτΓτ 22322321312323 
. 

(A.19) 

Step 9:  Substitution of (A.18) and (A.19) into (A.17) yields: 

  



Nyx

N ssj
z

τXΓXΓ
τ 2313

 
(A.20) 

       uyyxx  jssss j τXΓΓΓΓXΓΓXΓΓΓXΓΓΓI  32232222231233213123113112

4  . 

Step 10:  Combining (A.20) and (A.16), (2.6) follows. 
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APPENDIX B 

EVALUATION OF YMN INTERGRALS 

 The purpose of Appendix B is to present the methods used in this work for the 

evaluation of the Ymn matrix elements defined in (2.34); shown here as (B.1): 

          xx

s

nx

r

mxmnxx

s

nx

r

m
x

mn

 sr

n m dssfsfsGjdkkfkf
k

G
j

Y 












 









2
2

. (B.1) 

 In Chapter 2 Section 2.4 it was shown that the Green’s functions for a 

semi-infinite piezoelectric/vacuum half-space display the following properties: (i) 

possible simple poles at 
SAWs , which represent contributions for x -directed SAW 

excitation, respectively; (ii) possible additional simple poles at complex 
PSAW

ns , which 

represent contributions for the nth x -directed PSAW/HVPSAW mode excitation, 

respectively; (iii) branch cut-lines extending from the bulk-wave cut-off slowness points, 

BAW

ns , to   jsBAW

n  ; and (iv) a branch cut-line extending to from  j  to  j  due 

to use of the quasi-static approximation. In addition, branch-cut singularities may appear 

at 
BAW

ns ; a branch-cut singularity always appears at the origin of  xsG44
 where 

 
2

44

1

x

x

s
sG  ; and all Green’s functions follow   

x

xmn
s

sG
1

  as |sx| goes to infinity. 

 Before proceeding on the description of methods in this work to evaluate (B.1), a 

novel modification to the integrand in (B.1) is presented which allows the singularity at 

the origin of  xsG44
 to be effectively cancelled-out, thus making the numerical 

integration more practical. The following analysis demonstrates this method. 
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Recall rc4
 from (2.34) and define the portion due to charge sources as: 

      xx
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
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
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2

. 
(B.2) 

It was shown in Chapter 2 that charge conservation requires: 

 00 4

1

4

4




x

s
N

s

s s fw  . (B.3) 

Adding a constant-scaled (w.r.t s) instance of (B.3) (say multiplying by b) to the 

summation term in (B.2) therefore does not modify the l.h.s of the equation. Performing 

this operation, combining summation terms, and interchanging the order of integration 

and summation results in: 

        
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By choosing an appropriate value for b we can effectively cancel the singularity at sx = 0, 

and in addition preserve good integral convergence when evaluating numerically. A good 

choice for b that satisfies the desired aforementioned properties is  
v

px

pr

ss

s
fb














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22

2

4 0

, where 
 

2

1 j
ss pp


 , and v is some integer greater than 1. Applying this method to 

(B.4) results in:  
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s
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Therefore the m = 4, n = 4 portion of (B.1) is equivalent to:  

          x

v

px

psr

x

s

x

r

x

rs ds 
ss

s
ffs fs fsG jY






























 





22

2

44444444 002  . (B.6) 

Note that under this modification, additional complex simple poles are introduced in the 

integrand of (B.6) in the complex slowness plane at ± sp. In this work |sp| is chosen to be 

less then the maximum of the set of bulk-wave cut-off slowness points. 

 Given the aforementioned characteristics of the Green’s functions, appropriate 

integrations contours in the complex slowness plane will now be defined, which allow 

evaluation of (B.1)  and (B.6) via the complex analysis residue theorem [78].  

 In theory of complex analysis, the residue theorem, (B.7), states that the close 

contour integral over a region in the complex plane where the arbitrary complex 

integrand g(sx) is analytic with possibly a finite number of enclosed isolated singularities, 

is equal to 2 multiplied by the sum of singularity residues enclosed by the contour (in 

counter-clockwise path sense, for a clockwise path sense the contour integral is equal 

to -2 multiplied by the sum of residues enclosed by the contour). 
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(B.7) 

Before explicitly showing the integration contours used in this work, it proves usefully to 

define the properties of the integrals along the radial contour in the complex slowness 

plane as the radius, R, tends toward infinity over a range of angles given by  = Arg[sx].  
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Inserting the integrands of (B.1) and (B.6) into a complex integral of sx, I, and making the 

following substitutions 
j

x Res   and 
j

x Rejds    results in, respectively:   
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    or  
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(B.9) 

Recalling that all Green’s functions in the limit of large slowness magnitude (large R) are 

proportional to 1/sx allows further simplification of (B.8) and (B.9) in the limit R goes to 

infinity, and results in, respectively:  
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    or  
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    where Cmn are constants.  

Clearly the magnitude of the second term in the integrand of (B.11) vanishes in the limit 

as R goes to infinity; hence only (B.10) needs to be considered from here on as the form 

of each integral become identical. Using (2.15), (B.10) maybe expressed as: 
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, (B.12) 

where  

(m,n)(r,s) represents the non-zero domain of the corresponding basis      

functions. 
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Using an integral triangle inequality on the magnitude of (B.12) results in:  

       
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



ddxdxexfxf 
4

C
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r m s n



 

  
sin

. (B.13) 

We will now examine (B.13) under various conditions on mr, ns, and  : case 1 is 

defined to be when mr > ns and  [-/2,0]; case 2 is defined to be when mr > ns and 

 [-, -/2]; case 3 is defined to be when mr < ns and  [0, /2]; and case 4 is 

defined to be when mr < ns and  [/2, ]. Under case 1 and case 2 the (xr - xs) term in 

exponent of the integrand is always positive over the integration domains, while under 

case 3 and case 4 the (xr - xs) term in exponent of the integrand is always negative over 

the integration domains. Furthermore: for case 1, sin( )  2/; for case 2, 

sin( )  -2/-2; for case 3, sin( )  2/; and for case 4, sin( )  -2/+2. By using the 

aforementioned characteristics of the each specific case, (B.13), and setting |dmin| as the 

minimum absolute value of the term (xr - xs) over the domains of integrands in each case, 

the following inequalities result: 
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where:  
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(B.18) 

and   

u  and 
l  are the upper and lower limits of integration for the contour 

of interest, respectively, which must fall within each corresponding 

case’s defined  range. 

 

Therefore, as long as the integrals of (B.18) are finite it is seen in (B.14)-(B.17) that the 

magnitude of the contour integral under each case goes to zero as R tends towards 

infinity.  

 Appropriate complex contours for numerical evaluation of (B.1) and (B.6) are 

now defined given (B.7) and the outcomes for the previous derivation regarding integrals 

of (B.1) and (B.6) along radial contours in the complex slowness plane in the limit as R 

goes to infinity. In particular, Figure B.1 shows the evaluated contour integral paths 

chosen for the three possible situations: (i) mr < ns; (ii) mr > ns; and (iii) mr = ns. 
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Figure B.1. Complex sx plane integration contours (bold) used for evaluation of (B.1) 

and (B.6) for three potential basis function domain situations. 

Situation 1 

mr < ns 

   
  

   
  

   
  

Situation 2 

mr > ns 

Situation 3 

mr = ns 
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Figure B.1 also shows the corresponding regions in the complex slowness plane where 

the integrands in (B.1) and (B.6) display branch-cut lines, possible branch-cut 

singularities, and possible simple poles. Note that the representation of these features is 

not exact as presented here, but is characteristic of the behavior seen for various 

orientations and piezoelectric materials, where if the true SAW solution occurs it is at 

greater slowness magnitude than bulk-wave transition points, and if PSAW/HVPSAW 

modes exist they fall in between bulk-wave cut-off slowness points. It is also assumed 

that the spectrum of the basis functions is analytic everywhere except for possibly at 

complex infinity. The number of branch-cut lines, branch-cut singularities, and simple 

poles depends on the specific crystal orientation and material. In addition, since all 

materials exhibit some finite losses, the locations of bulk-wave transition points, and 

simple poles can in reality be shifted infinitesimally off the real slowness access (towards 

,,

xjs  for 
,

xjs  points, and towards 
,,

xjs  for 
,

xs  points) as additional propagation loss 

must be accounted for. Using this technique allows defining what the value of the 

enclosed residues is when integrand singularities appear on the integration contour 

(before applying shifting).        

 Numerical estimation of (B.1) and (B.6) is performed via integrating the 

integrands of (B.1) and (B.6) along the contours show in Figure B.1, for a “large” finite 

value of R. It should be noted that integrating along the first two contours in Figure B.1 

(situations 1 and 2) converges much faster with increasing R compared to integration 

along the last contour in Figure B.1 (situation 3). In most cases (where the pole 

cancelation is not required at the origin) this is true since the integrands will contain an 
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inherent factor of rsxsj
e

 
, where rs  is the difference of midpoints for mr and ns 

respectively, which results in rapid decay of the integrand along the vertical running 

contours in Figure B.1 (under situations 1 and 2) as evaluation moves away from the real 

slowness axis. The contours for situation 3 shown in Figure B.1 where chosen because it 

was not possible to show convergence for radial contour integrals as R goes to infinity, 

since |dmin| = 0 under this situation.  It should be noted that the situation 3 contour can be 

used in situations 1 and 2, but it is not as efficient in terms of convergence. To achieve 

better convergence for situation 3, it can be helpfully to subtract out asymptotic 

approximations for the integrand on each side of the contour after some large R, then 

evaluate their contribution analytically if possible, and finally add the result to the 

numerically integrated residual contribution.    

 In this work the basis functions used for representation of stress fields and charge 

density at the electrode/substrate interface are given as: 
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(B.19) 

where:  

snT  is the Chebyshev polynomial of the first kind of order ns,  

c

sx  is the center postilion of the electrode that the basis function is 

applied to, 
 

sa  is the ½ the width of the electrode the basis function is applied to,  

and p  is 1,2,3, or 4 (same basis functions used for charge and stress).  
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Applying (2.15) to (B.19) and making the following substitutions, 
s

c

s

a

xx
x


'  and 
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dx
dx ' , results in:  
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Making the following substations into (B.20),   x cos'  and    ddx sin'  , using the 

identity      sn nT
s

coscos  , and then simplifying results in: 
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Given the following identity for an n
th

 order Bessel function of the first kind:  
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(B.21) is now given as: 
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c
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Given that even order Bessel functions of the first kind are even, and odd orders are odd:  

     
c
rx

r

rr xjk

xrn
rnn

x

r

p ekaJ
a

jkf



2

1 . (B.24) 

With (B.23) and (B.24) defined, (B.1) and (B.6) are now given as: 
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and   
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where:      1

2
1


 srr nn

sr

n

rs jaa c


,  

                 is the Kronecker delta function,  

and 
c

s

c

rrs xx  .  

When rs  < 0, numerical integration of the situation 1 contour shown in Figure B.1 is 

used for evaluation of (B.25) and (B.26). When rs  > 0, numerical integration of the 

situation 2 contour shown in Figure B.1 is used for evaluation of (B.25) and (B.26). For 

these situations, and when the pole cancelation term is not required (m  4 or n  4 or 

ns  0 or nr  0), the magnitude of the integrand falls off at approximately  
 

2R

e srrs aaR 

 

as R goes to infinity, given the known asymptotic behavior of Bessel functions and the 

Green’s functions. For these situations, and when the pole cancelation term is required 

(m = 4 and n = 4 and ns = 0 and nr = 0) the magnitude of the integrand falls off slower, 

but sufficiently, at 
12

1
vR

. In this work v = 2 was chosen to be sufficient (too large of a 

value may cause integral in the neighborhood of sp to become numerically unstable). 

Under the case when rs  = 0 numerical integration of the situation 3 contour shown in 

Figure B.1 is used for evaluation of (B.25) and (B.26). Under this situation the magnitude 

of the integrand falls at approximately 1/R
2
, which is at a much slower rate compared to 
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the previous two situations. In order to improve the convergence rate, approximations of 

the integrand at large R are subtracted out of the integrand, integrated analytically, and 

finally added to the result of numerically integrated residual integrand. The following are 

used to approximate the integrand of (B.25) and (B.26) under the rs  = 0 situations: 
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and  
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where:         xmnx
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  .  

Note that under rs  = 0 situations, sr aa  . Using the Wolfram Mathematica software 

package, the contributions of (B.25) and (B.26)  resulting from subtracting off (B.27) and 

(B.28)  from the integrands, were determined to be:   
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where   is the Euler-Mascheroni constant.  

This concludes the presentation regarding computation of Ymn integrals.   
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APPENDIX C 

FAR-FIELD AND POWER PARTITIONING ANALYSIS 

 The purpose of Appendix C is to present the methods used in this work for the 

evaluation of the scattered or directly transduced fields far away from a finite length 

electrode structure located at the interface of a piezoelectric and vacuum (see Figure 2.3). 

In the first part of this appendix it is shown that integration of the Poynting vector along 

far away contours allows the total radiated SAW and BAW contributions to be 

determined individually. In the second part of this appendix the theory used in this work 

for computing far-field BAW radiation patterns is presented.    

 The first step of the analysis is to draw and imaginary square box of dimensions 

2R X 2R centered at z = 0 and x = (center position of the structure under consideration). 

Sides with outward normal facing  x represent contours for integration of x-directed 

Poynting vector, while sides of the box with outward normal facing  z represent 

contours for integration of z-directed Poynting vector. In the limit as R goes to infinity 

only Poynting vector associated with the  x-traveling SAW mode is finite on the  x-

directed outward normal sides, respectively, while Poynting vector associated with only 

the BAW modes is finite on the side with outward normal facing the –z-direction 

(Poynting vector magnitude is zero for the side with outward normal facing the +z-

direction). Therefore, normal-directed Poynting vector integrations along the sides of the 

box allow the determination and separation of power transduced or scattered to  x-

traveling SAW and the BAWs dissipating energy to the crystal bulk. 
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 The next step in the analysis to determine the fields associated with the  x-

traveling SAW mode in the far-field, given the solution of the charge and stress at the 

electrode/substrate interface. Extraction begins given the relationship for the 

time-derivative of electric potential at the interface in terms of the spectral domain 

Greens functions, and the determined spectral domain surface normal stress components 

and surface charge density resulting from the FEM/BEM analysis (determined by 

applying (2.33) to the determined basis function weights):         
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which can be shown by applying (2.15) to the forth equation of (2.16). Using (B.7) to 

evaluate (C.1) in the limit |x| gets large indicates that only the simple pole behavior of the 

Green’s functions contribute to the integral, which in turn are only associated with the 

SAW contribution. This makes sense as the SAW mode in a lossless media situation 

displays no propagation loss, whereas the magnitude of fields associated with BAW at 

the surface decay at some factor of 1/x
p
 (p > 0) as energy is spread into the bulk, and as 

the magnitudes of PSAW and HVPSAW modes decay with distance along the surface. 

The result of applying (B.7) to (C.1) in the limit |x| gets large results in: 
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  xsj

 x

oejxj
 


lim , 

(C.2) 

where: 

        o

s

o

s

o

s

o

s
sRsTRsTRsTRjj oooo  



443434425412
, 

 

and  

  xs j

 x

oejxj
 


lim , (C.3) 

where: 

         o

s

o

s

o

s

o

s
sRsTRsTRsTRjj oooo    443434425412 , 

 

and the residues are defined as:  

   oxxmn
ss

s

mn sssGR
ox

o 



 lim .  

Note that in the cases where incident SAW modes are used as excitation sources, and 

therefore used to generate the values of the basis function weights, the total far-fields are 

the sum of the incident fields and the SAW far-fields generated by the basis weights 

((C.2) and (C.3)). It should be noted that this far-field analysis method presented here 

also permits extraction of P-matrix-type model parameters for the structure, which rely 

on the magnitude and phase parameters of scattered / transmitted / and excited SAW in 

the far-field.    

 Given 
j  and 

j  at the surface in the far-field, the x-directed Poynting 

vectors as a function of depth into the substrate will now be determined and integrated 

analytically to obtain the total power crossing the boundary. The first step is to determine 

the normal mode weights for the valid partial modes, c, from (2.19), which results in:    
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    jcccc Cc
T 

4321 , (C.4) 

where:                

      T 1T 

4321 1000:],[
  8 3, 2, 1,CCCC PC ,  

and  

48xPP   evaluated at os .  

Note that the “ ” notation is used to represent whether considering the  x far-fields, 

respectively. Using (C.4) with (2.10) results in:  

    xjkoejzz


 CPτ 0 , (C.5) 

where:     

   T 

4321
4321 


 CeCeCeCez
zjzjzjzj     

C .  

and 


n   is the n
th

 valid partial mode eigenvalue corresponding to the n
th

 

partial mode weight obtained at ox ss  . 
 

Given (A.18), fields Px(z) or (T1(z), T6(z), T5(z), and D1(z), respectively) are given as: 

    xjk

PxPx
oejzz



 CPTτ 0 , (C.6) 

where:  

      0,22322321312323 

yoxyxPxPx ss sat  ss  ΓXΓΓΓXΓΓXΓTT .  

Given (C.5), (C.6) and (2.12) the  x-directed time average Poynting vector is given as: 

        zz jzS x


  CKC
H2

2

1
0  , (C.7) 

where:                                   

    PTPK Pxlow

H

, 
 

and 


lowP  = 
P ([5,6,7,8],:)   (Matlab index notation).  
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Using an alternative summation notation, (C.7) is may be given as: 

      
 


 

4 4
*2

2

1
0

mi nj

n m nmx KzCzCjzS  , (C.8) 

Integrating (C.8) from z = –h, to the surface, z = 0, results in:   

 
 




















































 



 









 *

*
4

1

4

1

2
0

*

1
1

2

1

m n 

hj

j m nm

m nh

x

m n 

e

KCCjdzzS








. (C.9) 

Give that all valid partial modes must decay with depth in the case of a true SAW mode, 

the total integrated time average Poynting vector in the substrate is given as: 

 
  


















 





  *

*
4

1

4

1

2
0

1

2

1

m n 

n m nm

m n

x

KCC
jdzzS





 . (C.10) 

Note that the summation terms are independent of frequency. As the fields are assumed 

to be uniform and along the device aperture, W, the total structure input power converted 

SAW power crossing the  x-directed sides of the box in the substrate is:  

  

















 

  *

*
4

1

4

1

2

2

1

m n 

n m nm

m n

Substrate

SAW

KCC
j

W
P





 . (C.11) 

 We now turn our attention to the fields along the  x-directed sides of the box 

above the substrate, or in the vacuum. Given the analysis of Chapter 2 Section 2.4 

regarding the valid partial mode for the vacuum, it can be shown that the time-derivative 

of the electric potential above the interface can be given as: 
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  xjkzs
oo eejzj







 0 . (C.12) 

Using (2.4) and (C.12) D1 may be expressed as: 

  xjkzs

oo
oo eejszD







 01 . (C.13) 

Therefore from (2.12) the  x-directed time average Poynting vector in the vacuum is:  

  zs

oox
oejszS




22

2

1
0


   . (C.14) 

A very interesting observation from (C.14) is that the positive Poynting vector direction 

is opposite to that for which one might expect (i.e. it is opposite to the propagation 

direction). The author was unable to find an error in the derivation after much iteration. It 

is now believed that this non-intuitive result may have developed from use of the 

quasi-static approximation. Assuming this result is correct, the total structure input power 

converted SAW power crossing the  x-directed sides of the box in the vacuum is:    

 
2

0
22

1 




   




j

W
dzzSWP o

x
Vacuum

SAW  . (C.15) 

Combining (C.14) and (C.15) the total structure input power converted SAW power 

crossing the  x-directed sides of the box is:  

  
































 

  *

*
4

1

4

1

2

22

1

m n 

n m nm

m n

o
SAW

KCC
j

W
P







 . (C.16) 

 Attention is now focused on the analysis of the far-field BAW generated by the 

structure via direct electrical excitation or incident modes. The analysis begins by 
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defining the total BAW power as the integral of the –z-directed Poynting vector on the 

side of box with outward normal facing in the –z-direction, and by (2.12) is given as:  

   




 dxzSWzP zBAW , (C.17) 

where:  

                    H

3213345

2

1
zjzujzujzuj zDzTzTzT zS    z     .  

Applying (2.15) to each term in the integrand of (C.17), interchanging the order of 

integrations, and then simplifying allows the total BAW power to be express as: 

   




 xzBAW dkzSWzP , (C.18) 

where spectral domain Poynting vector is given as  

                    H

3213345 zjzujzujzuj zDzTzTzT  zS        z   . (C.19) 

Given (2.10) and (2.19) permits (C.19) to be written as: 

      


 x
x

k
s  z z z zS  CKC

H
, (C.20) 

where:  

   T 

4321
4321 cecececez
zjzjzjzj     






C ,  

uplowPPK
H

,  

and  

48xup PP  ([1,2,3,4],:) and 48xlow PP  ([5,6,7,8],:)  (Matlab index notation).  

The normal mode weights, ci, are determined at each value of kx by applying (2.33) to the 

determined basis function weights and using of (2.20) and (2.21); resulting in: 

   
 

k
s  zup

x
x

TTTcccc


 
 ,0

T 

345

1T 

4321 M . (C.21) 
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Using an alternative summation notation, (C.20) is also given by: 

    
 




4

1

4

1

*

m m

zj

n

*

mmnz
mnecc K zS

 . (C.22) 

For any term in the sum with n or m corresponding to a decaying partial mode, the 

corresponding term in the summation goes to zero as R goes to infinity. Alternatively, 

when n and m correspond to BAW type partial modes, where the  are purely real, the 

fields are finite. When n  m and n and m correspond to BAW type partial modes with 

different values of , the overall value of (C.22) will oscillate w.r.t. z, as the BAW-type 

partial modes beat. In order to deal with this situation, the time average power crossing 

the plane is defined in a different way. In particular, given the fact that (C.17) approaches 

a constant, or a constant plus an oscillating beating term as z goes to -infinity, we can 

redefine the total time average power as:   

 








  









dzdxzS
R

 WP

R

R

z
R

BAW

2

1
lim , (C.23) 

which simply averages the total Power crossing planes as a function of distance (note that 

the distance averaged also approaches infinity as R goes to infinity). Using this new 

definition of total time average power, (C.18) becomes: 

  x

R

R

z
R

BAW dkdzzS
R

 WP  


















2

1
lim . (C.24) 

Substituting (C.22) into (C.24) and interchanging the order of the limiting integral with 

the summations terms and  operator results in:   
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 dkSWP xzBAW 




 '
, (C.25) 

where:  

 
 
 







 




















4

1

4

1 2

'
*1

lim
m m

R

R

zj

R
n

*

mmnz dze
R

cc KS mn  . (C.26) 

Performing the integration and taking the limit results in: 

 


















R

R

zj

R
dze

R
mn

2

*1
lim



  
(C.27) 

= 0; if n or m correspond to a decaying partial modes, 

= 0; if n and m correspond to BAW-type partial modes with unequal , 

= 1; if n and m correspond to BAW-type partial modes with equal . 

 

Furthermore, in potential cases where n and m correspond to separate BAW-type partial 

modes (n  m), but have equal purely real , then the two partial modes must be 

uncoupled (e.g. transverse shear modes), and therefore Kmn must equal zero. Therefore 

(C.26) is alternatively given by: 

    0
4

1

2'  


n

n

nnnz KcS  .   

(note the use of a Boolean term in the summation; ‘true’1 and ‘false’ 0) 

(C.28) 

Given that all partial modes will decay with depth for all cx k k  , where  p

cc s k max  

and 
p

cs  (p =1 to Nc) is the set of sorted values of sx where partial mode transitions from a 

decaying type partial mode to BAW-type partial mode, or vice versa, (C.25) becomes 

equivalent to:  
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    dkkSWP x

k

k

xzBAW

c

c




 '

. (C.29) 

This integral is approximated numerically in this work for the computation of total BAW 

power.  

 The calculation of far-field BAW radiation pattern is now presented. Examination 

of (C.28) and (C.29) indicate that the product of W and 
'

zS  represents a sum of partial 

mode power spectral density distributions w.r.t. kx; given as: 

      KcW
k

P
nnnn

x

n

BAW 0
2





 , (C.30) 

where:  

 
 






4

1n

x

k

k x

n

BAW
BAW dk

k

P
P

c

c

.  

Using the chain-rule the power spectral density distributions w.r.t. the partial mode power 

flow angle, 







 

n

x

n

zn

S

S1tan , where 
n

zS  and 
n

xS  are the z- and x-directed Poynting vectors 

associated with the n
th

 partial mode, respectively, are given as:       

 
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
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
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n
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n
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P
, (C.31) 

where:  

 
 






4

1

0

n

xn

n
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BAW d

P
P 




.  
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The power flow angle derivative term in (C.31) associated with each partial mode can be 

is computed using the following formulas, where the  symbol denotes differentiation 

w.r.t. sx:  

     
   

22
n

z

n

x

n

x

n

z

n

z

n

xn

SS

SSSS










 , (C.32) 

where:  

  n
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n
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n

x cS PTP
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H
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2

1
, 

  n

up

n

lown

n

z cS PP
H2

2

1
 , 

       



















 




 n
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n
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n
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n

lown

n

z cS PPPP

H
H2

2

1
, 

  21312323
ΓXΓΓXΓT  xPx s , 

    213123

440 ΓXΓΓT 


xPx  , 

n
P  is the eigen-vector of A(sx) associated with nth partial mode, 

 n
P  is computed based on Chapter 2 Section 2.3, 

n

lowP  = 
n

P ([5,6,7,8],1)  (Matlab index notation), 

n

upP  = 
n

P ([1,2,3,4],1)  (Matlab index notation), 

(note that 
2

2

1
nc  factors need not be included as they cancel in the (C.32)). 

 

The term 
n

n

BAWP




 may be directly computed as a function of kx, given (C.31), but 

computation of radiation patterns requires evaluation of this term as a function of . 
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Therefore, the mapping,     n

x

n

x s k  , needs to be established, which returns the n
th
 

partial mode x-directed wavenumber as a function of power flow angle. In general,  n

xs  

can be a multivalued-function, as a partial mode may have the same   at multiple values 

of sx. Additionally, in practice, the numerically returned eigen-value/-vectors of A(sx) are 

not guaranteed to follow any particular order w.r.t. sx. Therefore, 
n

n

BAWP




 at any two 

consecutive kx points are not guaranteed to both be associated with n
th

 partial mode. It 

therefore becomes apparent that for the calculation of far-field radiation patterns, partial 

mode numerical tracking as a function of 


x
x

k
s   is required. The word ‘tracking’ is 

meant to imply that the numerically computed eigen-values/–vectors of A(sx) are sorted 

such that the partial modes corresponding to a particular index are analytically continued 

w.r.t. sx over at least regions between consecutive BAW cutoff slowness points, 
p

cs , 

where p = 1 to Nc, and Nc is the total number of unique BAW cutoff slowness points. In 

this work the continuation process is performed via stepping sx in small increments and 

comparing the set of eigen-values/–vectors to a predicted set, which is based on 

information at the previously evaluated point. In particular, at each evaluation point the 

eigen-values/–vectors at the next point are approximated using a truncated Taylor series, 

with coefficients determined using the method presented in Chapter 2 Section 2.3 

regarding computation of eigen-value/–vector derivatives. All permutations at the next 

evaluation point, in terms of the eigen-value/-vector order, are compared to the predicted 

set. The permutation that gives the least error (sum of absolute normalized difference of 
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each eigen-values/–vectors) is considered to be the properly constructed analytically 

continued eigen-value/-vector set.  

 Given the ability to track partial modes, extraction of the functional behavior of 

 n

xs  will now be discussed. Recall that in general  n

xs  can be a multivalued function 

over the range 
1 p

cx

p

c s ss , therefore in this work consecutive regions of the sx axis are 

further discretized such  n

xs  is single valued over any particular sx region. This is 

accomplished via identification of unique points 
m

dx ss   where 
 

0




x

x

n

s

s
 (n = 1 to 4), 

m = 1 to Nd, and Nd is the total number of unique points identified. The consecutive 

(Nq - 1) regions of sx are given as 
1 q

xx

q

x sss , q = 1 to (Nq – 1), where 
q

xs  is the q
th
 

element of the sorted unique set of containing the points 
p

cs  and 
m

ds , whose length is 

equal to Nq. Therefore over any of the defined regions of sx, the function  n

xs  is 

continuous and single valued. In this work, for each sx range,  n

xs  is interpolated at 

discrete  by spline fitting to the inverse set of discrete point pairs obtained via evaluation 

of  x

n s . Given (C.31), (C.32), and the extraction of  n

xs , the BAW power spectral 

density w.r.t.  for the n
th

 partial mode over the q
th

  region, 
1 q

xx

q

x s ks  , is 

computed using: 
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evaluated at   nq

xx  sk  , 

(C.33) 

where:  

 nq

xs  is the interpolated function,  n

xs , over the range 
1 q

xx

q

x sss .  

Therefore the total BAW power spectral density w.r.t.  is given by: 

   




 






 4

1

1

1n

N

q
n

nq

BAWBAW
q PP







, (C.34) 

where:  

  




d 
P

P BAW
BAW 







0

.  

This concludes Appendix C. 
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APPENDIX D 

FEM ANALYSIS OF FINITE-THICKNESS ELECTRODES AND FEM/BEM 

MODEL COUPLING 

 The purpose of Appendix D is to describe the finite element method model 

implemented in this work, which was used to account for the mass/stiffness effects of 

finite thickness electrodes in the overall simulation model. Initially, the finite element 

method model of the electrode is presented, which allows node displacement to be 

computed as a function of node forces. Afterwards, a discussion is presented regarding 

merging the FEM analysis of the electrode with the BEM analysis of the substrate.  

 The analysis begins by defining the surface-normal stress component vectors for 

the infinitesimal elastic cube; see Figure D.1.  

 
Figure D.1. Surface-normal stress component vectors for the infinitesimal elastic 

cube. 
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Based on the definitions of stress components in Figure D.1, the familiar acoustic wave 

equation, given as (D.1), can be derived by balancing forces and taking the limit as the 

dimensions become infinitely small. 

2

2
~

t

ui
i




 T   (i = 1, 2, or 3), (D.1) 

where:  

zTyTxT  i i ii
ˆˆˆ

~
321 T .  

and the stress components follow Voigt notation:   

11 1, 22 2, 33 3, 12 6, 21 6, 13 5, 31 5, 23 4, 32 4. 

If one discretizes the body of interest, here a single electrode, into small elements, then 

over the volume of each element (D.1) is also valid. Multiplying both sides of (D.1) by a 

test function,  zyxwn ,, , and then integrating over the element volume result in: 

 




V

i
n

V

in dV 
t

u
wdV w

2

2
~

T . (D.2) 

Substituting the vector calculus identity,   ininin ww w TTT
~~~
 , into the integrand 

of the l.h.s of (D.2) gives: 

   




V

i
n

V

in

V

in dV 
t

u
wdV wdV w

2

2
~~

TT . (D.3) 

Applying the Divergence theorem to first term of the l.h.s. of (D.3) and rearranging terms 

results in: 
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  STT  dwdV 
t

u
wdV w

S

in

V

i
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V

in 



 

~~
2

2

 , (D.4) 

where:  

S  is the outward normal vector along the surface of the element.  

Assuming a non-piezoelectric body, combining (D.4) for i = 1 to 3, assuming 
t  j e 
 time 

variation, and including (2.1) and (2.2) results in: 






































































































































V

eE

nnn

nnn

nnn

dV  

xy

xz

yz

z

y

x

  

x

w

y

w

z

w

x

w

z

w

y

w

y

w

z

w

x

w

uc

0

0

0

00

00

00

000

000

000

 

S

T

T

T

u  dwdV w
S

n

V

e

n 

















 
3

2

1

2

~

~

~



. 

(D.5) 

where:  

      T 
,,,,,, zyxuzyxuzyxu 321

e u
. 

(over the domain of the element) 

 

Within the element the displacement components are approximated using the 

displacement components at a finite number of M points within the element by M shape 

functions such that: 
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,,,, , (D.6) 

where:   

p = 1, 2, or 3, 

Nm are the shape functions, 

and m

pu  is the p
th

 displacement at the m
th

 point.  

 

Expressing (D.6) in matrix notation gives: 

ee  uNu ~ , (D.7) 

where:  
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Inserting (D.7) into (D.5) results in: 
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 where:  
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and 










































































0

0

0

00

00

00

x

N

y

N
x

N

z

N

y

N

z

N
z

N

y

N
x

N

mm

mm

mm

m

m

m

mB . 

 

Using the M shape functions as the test functions in (D.8) (Galerkin method) results in a 

square matrix system, given as:  
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Evaluation of the integrals in (D.9) is now presented, which begins by defining the shape 

functions. The shape and nodes of an arbitrary element in the (x, y, z) coordinate system 

is shown in the l.h.s of Figure D.2.  

 

Figure D.2. Element in (x, y, z) space mapped to isoparametric element in (r, s, t) 

space. 

The right-hand side of Figure D.2 shows the equivalent isoparametric element in another 

coordinate system, (r, s, t). The mapping of one point in the (r, s, t) coordinate system to 

the (x, y, z) coordinate system is given by (D.10), (D.11), and (D.12). 
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The (x, y, z) coordinate system shape functions are now defined in terms of the (r, s, t) 

coordinate system shape functions, such that: 

        zyxtzyxszyxrNzyxN mm ,,,,,,,,,,  . (D.13) 
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Clearly, evaluation of the integrals in (D.9) is easier in (r, s, t) coordinate system as 

compared to the (x, y, z) coordinate system, because the element shape is much simpler, 

and the fact the shape functions are typically defined in the (r, s, t) coordinate system. In 

order to switch the integration domains however, mapping of the dV term to the 

equivalent term, drdsdt, term must be determined. The mapping is accomplished using 

the concept of the Jacobian, J, defined as: 
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Given that an infinitesimal cube in (r, s, t) maps to parallelepiped in (x, y, z), the well 

know expression relating differential volumes may be derived, and given as:  

  dt ds drdV Jdet . (D.15) 
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Given (D.10), (D.11), and (D.12) the elements of the Jacobian are: 
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Regarding the terms in B using the chain rule, the shape function derivatives are given as:  
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Given the definition of the inverse Jacobian from (D.14) and grouping equations results 

in: 
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Transforming the integration domain for the k
e
 and m

e
 terms of (D.9) results in: 
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where:  

J is computed using (D.16) thru (D.24), 

and  tsr ,,B  is computed using by substituting (D.28) into its definition 

given in (D.8). 

 

The integrals of (D.29) and (D.30) are computed using Gauss-Legendre quadrature [104], 

and are given as: 
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The Ng evaluations points ri = si = ti = xi satisfy: 
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where:  

 xPn  is the nth order Legendre polynomial, and 
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and the respective weights are given as: 
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
 . (D.34) 

It should be noted that this integration result is exact if integrands are polynomials of 

order equal to 2Ng-1 or less, which in this work is true given that the shape function 

employed are polynomials, as will be discussed. 

 Up to this point in the analysis, we have considered the problem to be in 3 

dimensions. For this dissertation work, an equivalent 2 dimensional FEM analysis was 

performed since in the BEM model it was assumed /y for all fields. The 3D analysis 

was only presented here for completeness. Assuming a 2D problem at the start and 

performing the same steps results in the equivalent system of equations: 
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e eeee   fumuk  ~~ 2 , (D.35) 

where:  

                
  


g gN

a

N

c

caca

Et 

caca

Ete tr tr trwwdt ds tr tr  tr
1 1

1

1

1

1

,det,,,det,, JBcBJBcBk , 

                
  



1

1 1 1

1

1

,det,,,det,,
g gN

a

N

c

caca

t 

caca

te  tr trtrwwdt ds tr trtr JNNJNNm  , 

Γ

T

T

T

Nf  dte 

















 


3

2

1

~

~

~

, 











3331

1311

JJ

JJ
J . 

For the 2D case, the main difference from the 3D analysis is that the volume integrals 

become surface integrals, the surface integrals become contour integrals, where Γ  is the 

outward normal vector along the contour of the element, and the Jacobian is instead 2 x 2. 

 The specific element shape function employed in this work will now be described. 

In this work 2D 8 node bi-quadratic isoparametric shape functions were used. Figure D.3 

shows the representation of the element in (x, y, z) and (r, s, t) coordinate system, along 

with node numbering scheme.      
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Figure D.3. Element in (x, z) space and corresponding isoparametric element in (r, t) 

space. 

The mathematical definition of the isoparametric shape function and the respective partial 

derivatives are presented in Table D.1 [105]. 
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Table D.1. Isoparametric element shape functions and corresponding partial 

derivatives.  
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 Before proceeding to the section regarding FEM/BEM coupling, construction of 

the global electrode FEM equations will now be described. Recall that (D.35) only 

represents one element in the overall discretized electrode. Given that (D.5) could be 

written as a sum of integrations of smaller volumes, each of which can represent a single 

element, it suffices to say that summing together (D.35) terms for each element in the 

electrode represents the total electrode system of equations; keeping in mind that multiple 

elements can share nodes, in a global sense. In addition, regarding the closed contour 

integrals of (D.35), the regions along paths of the contour touching other adjacent 

elements will cancel as the surface normal for the adjacent element points in an opposite 

direction and the fact that stress is continuous in the electrode. Therefore only normal 

stress components along outer surface of the electrode contribute to the contour integrals. 

Furthermore, because the outer contour of the electrode which is not in contact with the 

piezoelectric surface is stress free, then only the stress at the interface of the piezoelectric 

material and electrode contribute to the contour integrals. The rest of this appendix 

describes determining the contour integrals for elements with surfaces located at the 

interface of the piezoelectric and electrode, which allows FEM/BEM model coupling. 

 The analysis begins by assigning the surface elements at the interface of the k
th
 

electrode an index value, n, of 1 to 
k

eN , which are sorted in order along x in terms of 

center positions of the elements within the electrode. For simplicity, in this work the 5
th

 

node of each element is forced to be at equal distance from the 1
st
 and 2

nd
 nodes, and each 

element at the interface is forced to equal x dimensional width given as k . Recall from 

the BEM analysis that the surface normal stress components at the interface of the 
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piezoelectric and the electrode are given as a weighted sum of basis functions. Therefore 

over the domain of a single surface element the contour integral of (D.35) may be set to:                   







1

0

chN

s

mnsksk

i

mnk

i fwf  (D.36) 

where:   

 i is the index of the field component: i = 1  T5;  i = 2  T4; i = 3  T4,   

 m is the shape function index in the N term, 

 n is the element index along the interface of the electrode, 

 k is the index of the current electrode under consideration, 

 s is the basis function index for the i
th

 field component, 

 
ks

iw  is the corresponding basis function weight, 

 chN  is the number of Chebyshev polynomial basis functions per 

electrode, 

and 
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(D.37) 

where:  

 
2

k

ek
k

N
a


  is the ½ the width of the k

th
 electrode, 

 
k

cx  is the center x-position of the k
th

 electrode 

   kk

k

c

n naxx  11  (x-position of first node), 

 kk

k

c

n naxx 2  (x-position of second node) 

 and  xTs  is the s
th

 order Chebyshev polynomial of the first kind. 
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Notice that the shape function in (D.37) is now only a function of r(x), since along the 

interface side of the element t = -1. Furthermore, from (D.10) and Table D.1 it can be 

seen that along the interface (z = 0, t = -1) that:  

      nnn xtrNxtrNxtrNx 552211 1,1,1,  . (D.38) 

Simplifying (D.38) results in:  
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and solving for r, gives:   
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(D.40) 

Turning our attention back to evaluation of the integral in (D.37), making the substitution

k
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Making another substitution,  cosx , results in:   
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where:  
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Using (D.40) it can be shown that:  
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and therefore using Table D.1 for m = 1, 2, or 5 at t = -1,  
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Substitution of (D.44) into (D.42) results in: 
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With (D.45) and (D.36) the global element displacement components can be calculated, 

given the stress basis function weights. In order to combine the FEM and BEM models, 

the integrals of the displacement components multiplied by the same stress basis function 

need to be evaluated at the electrode/substrate interface, as was performed in the BEM 

analysis. Recall that from (D.7) that the i
th

 component of displacement at the k
th

 

electrode/substrate interface for the n
th

 surface element is given by     
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where:  

hnk

iu  is the i
th

 component of displacement at the h
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 node of surface 

element n for the k
th

 electrode. 
 

Considering (D.46) the c terms corresponding to the displacement components of (2.34) 

are given as: 
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which upon comparison to (D.37) indicates that:   

mnskmnsk fc  . (D.48) 
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Given that global system of equations for the k
th

 electrode is given by:  
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where:  
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By mapping the matrix of (D.51) for each electrode into (2.35), the FEM/BEM models 

are coupled, and the overall system can be solved. This concludes Appendix D. 
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APPENDIX E 

MATERIALS CONSTANTS USED IN THIS WORK 

 The purpose of Appendix E is to list the values and sources of all material 

constants used in this dissertation work regarding simulations.  The lists include values 

for un-rotated material elastic, density, piezoelectric, dielectric, and where applicable 

viscosity constants.  In addition, the structure of material constant matrices for crystalline 

and isotropic materials is listed. 

E.1. Structure of Material Constant Matrices  

 In this section, the structure of material constant matrices for crystalline and 

isotropic materials is listed, which are taken from [73].   

 Three main crystalline classes of materials were studied in this work: Trigonal 

Class 32, of which langasite and quartz are members; Orthorhombic Class mm2, which 

includes potassium niobate; and Isotropic, which was assumed for all electrode materials, 

and fluids. The overall structure of the stiffness, piezoelectric, and dielectric matrices are 

now presented for these three classes.  
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E.1.1. Structure of Elastic Constant Matrix c
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E.1.2. Structure of Piezoelectric Constant Matrix e  
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E.1.3. Structure of Dielectric Constant Matrix 
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E.2. Material Constants  

Quartz, Trigonal 32, [106] 

cmn [GPa] emn [C/m
2
] mn [nF/m]  [k-kg/m

3
] 

79.8611 c  

7901.612 c  

009.1213 c  

116.1814 c  

79.10533 c  

212.5844 c  

1711.011 e  

0406.014 e  

03916.011   

04104.033   

64838.2  

Table E.1. Material constants for quartz. 

 

Langasite, Trigonal 32, [107] 

cmn [GPa] emn [C/m
2
] mn [nF/m]  [k-kg/m

3
] 

75.18811 c  

75.10412 c  

89.9513 c  

12.1414 c  

40.26133 c  

50.5344 c  

44.011 e  

08.014 e  

16752.011   

44891.033   

743.5  

Table E.2. Material constants for langasite. 
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Potassium Niobate, Orthorhombic mm2, [108] 

cmn [GPa] emn [C/m
2
] mn [nF/m]  [k-kg/m

3
] 

22611 c  

9612 c  

6813 c  

27022 c  

10123 c  

18633 c  

3.7444 c  

2555 c  

5.9566 c  

16.515 e  

7.1124 e  

46.231 e  

1.132 e  

4.433 e  

 

37.011   

8.722   

24.033   

63.4  

Table E.3. Material constants for potassium niobate. 

 

Gold, Isotropic, (from [109] and transformed to isotropic using [110]) 

cmn [GPa] emn [C/m
2
] mn [nF/m]  [k-kg/m

3
] 

62.20911 c  

61.2744 c  

N/A 

 

N/A 283.19  

Table E.4. Material constants for gold. 
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SiO2, Isotropic, (c and  [111]), ( [112]) 

cmn [GPa] emn [C/m
2
] mn [nF/m]  [k-kg/m

3
] 

7611 c  

5.2544 c  

N/A 

 

03621.011   2.2  

Table E.5. Material constants for SiO2. 

 

DI Water 25 C, Isotropic 

cmn [GPa] 
emn 

[C/m
2
] 

mn [nF/m]  [k-kg/m
3
] 









 

 3

41
11 jc   

[43]
 

jc 44   
[43]

 

 8.2  
[43] 

121089.0   [TcP] 
[41]

 

  = radian frequency [1/s] 

24.2
1



 [GPa] 

[41]
 

N/A 

 

4.7811   
[113]

 99704.0  
[41]

 

Table E.6. Material constants for DI water. 

This concludes Appendix E. 
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APPENDIX F 

SU-8 MOLD FABRICATION ON PMMA SUBSTRATES 

 The following procedure details the fabrication of PDMS molds used in this 

dissertation, which is based on patterning SU-8 photoresist on a PMMA substrate. For the 

process given here, the final thickness of mold features is ~280 m. If a reduced thickens 

is desired, SU-8 should be spun faster as described in the product data sheet. I would 

suggest that the exposure dose be reduced in proportion with the layer thickness 

reduction factor as a starting point. In addition, I would recommend the same soft-bake 

time of ~17 hours as a starting point. The protocol used in this work is given below. 

1. Rinse wafer with methanol then isopropyl soaked cleanroom cloths 

2. Rinse wafer with isopropyl from squirt bottle 

3. Dehydrate @ 95C on hotplate 5 min, remove hot (not allowed to fully cool before 

spin) 

4. Pour SU-8 2050 from bottle or vial, do not use syringe to avoid bubbles (best 

approach is to pour in center of wafer and let it spread by spinning slowly by hand 

or very low RPM) 

5. Spin 10s @ 500 RPM, then pop any visible bubbles with tweezers 

6. Spin 35s @ 3k RPM (~50 um layer) 

7. Hotplate bake 65C for 5 min. (pop any visible bubbles) 

8. Ramp to 95C and hold for 15 min. 

9. Cool to 65C on hotplate 

10. Cool under cover by placing wafer metal table for 5 min. 
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11. Blanket expose through UV filter (>350 nm passed) for a 350 mJ/cm^2 dose 

(assuming average 365 nm and 405 nm intensity after filter in time calculation) 

12. Ramp to 95C and hold for 7 min. 

13. Remove and spin 2050 on hot wafer ~10s @ 300 RPM 

14. Pop any visible bubbles 

15. Spin 35s @ 690 RPM (~280 um layer) 

16. 65C hotplate bake for ~17 hours 

17. Remove and cool under cover at least 15 min. on metal table prior to exposure 

18. Expose through UV filter (>350 nm passed) and mask for a 700 mJ/cm^2 dose 

(assuming average 365 nm and 405 nm intensity after filter in time calculation) 

19. Do not move mask w.r.t. wafer one initial contact made, resist is still slightly soft 

and can result in ripples if moved 

20. Remove wafer after exposure by manually separating wafer from mask (pull 

slightly down on chuck if sticks) 

21. Hotplate bake wafer at 65C for 5 min. 

22. Ramp to 90C and hold for 10 min. 

23. Remove wafer after cooling to 65C 

24. Develop in two cycles of SU-8 developer for 5 min. with mildest ultrasonic 

agitation. First bath in ‘used’ SU-8 developer, followed by bath in new developer 

25. Rinse with isopropyl while still wet to avoid having powder form on surface (SU-

8 developer attacks unprotected back side of PMMA and can leave a residue) 
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APPENDIX G 

PCB DETAILS 

This appendix documents the RF switch and sensor bonding PCBs used in the 

experimental setup discussed in Section 5.2. The circuit schematic, top copper geometry, 

top silkscreen, bottom copper geometry, and bottom silkscreen, are presented. In 

addition, the circuit components values are listed. The PCB was fabricated by 

ExpressPCB (http://www.expresspcb.com/) and designed using their free software tools. 

All components were populated by hand soldering. 

 

Figure G.1. Schematic of the RF switch PCB. 

Table G.1. RF switch PCB component values. 

 

Component R1 R2 R3 R4 R5 R6 C1 C2 C3 

Value 1k 1k 1k 1k 1k 1k 10nF 10nF 0.1uF 

http://www.expresspcb.com/
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Figure G.2. RF switch PCB top copper layer (large rectangular central region is a 

hole). 
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Figure G.3. RF switch PCB top silkscreen layer. 
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Figure G.4. RF switch PCB bottom copper layer (large rectangular central region is 

a hole). 
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Figure G.5. RF switch PCB bottom silkscreen layer. 
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Figure G.6. Sensor bonding PCB, top layer (left), bottom layer (right). 
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