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The marine cyanobacteria Prochlorococcus and Synechococcus are the most 

abundant phototrophs in the oceans. They cohabit the oligotrophic ocean and thus have 

coevolved together, yet they have distinctly different methods for harvesting light.  

Synechococcus, like other cyanobacteria, possess phycobilisomes with various 

combinations of phycobiliproteins to capture wavelengths of light not otherwise 

available to chlorophyll.  Prochlorococcus lack phycobilisomes and use divinyl 

chlorophyll b (Chl b2) as their primary accessory pigment to divinyl chlorophyll a (Chl a2) 

to capture light energy.  In addition to the divinyl chlorophylls, Prochlorococcus has 

genes associated with the phycobiliprotein phycoerythrin (PE), the role of which is still 

not fully understood, though it is unlikely to contribute significantly to photosynthesis.  

Past studies have focused on characterizing PE expression on a few isolates of 

Prochlorococcus, the Low Light adapted (LL) II/III ecotype SS120, High Light (HLI) ecotype 



 

 

MED4 and HLII ecotype AS9601. These studies found that the LLII/III SS120 ecotype 

expressed both PE chromophores, phycoerythrobilin (PEB) and phycourobilin (PUB), 

whereas the HL ecotypes only expressed PEB. However, the LL ecotypes have more 

extensive phylogenetic diversity, so I sought to characterize the diversity in PE 

physiology for Prochlorococcus isolates from three LL ecotypes using a combination of 

flow cytometry, spectrofluorometry, and pigment measurements.  I confirmed that the 

flow cytometric orange fluorescence (FL2) signal was due to PE in all LL Prochlorococcus 

strains examined and found differences in phycobilin composition among the LL 

Prochlorococcus strains.  For instance, some LLIV ecotype strains did not have 

measurable PEB and most strains increased their PE expression per cell when grown at 

low light irradiances, suggesting PE is photoacclimating in LL Prochlorococcus. The 

physiological differences observed for LL Prochlorococcus strains and ecotypes highlight 

the necessity of examining more than one strain from an ecotype to make inferences 

about ecotypic physiology.  
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CHAPTER ONE 

INTRODUCTION 

 Approximately half of the net primary production (fixation of CO2 into biomass) 

that occurs on earth is from phytoplankton in the oceans (Field et al. 1998).  Within the 

phytoplankton community there resides a small, ubiquitous cyanobacterium, 

Prochlorococcus that is the dominant photosynthesizing microorganism in the 

oligotrophic oceans, reaching abundances as high as 108 cells L-1.  This is one to two 

orders of magnitude greater than co-occurring Synechococcus, the next most abundant 

phototroph as well as the closest phylogenetic relative to Prochlorococcus within the 

cyanobacterial phylum (Partensky et al. 1999; Partensky and Garczarek 2010).     

 Prochlorococcus is closely related to the marine cluster A Synechococcus based 

upon their 16S-23S rDNA internal transcribed spacer sequences (>65%), and all 

Prochlorococcus ecotypes are 97% similar (Rocap et al. 2002).  Despite the similarity in 

ribosomal DNA sequences, these genera have evolved different pigment compositions 

due to selection pressures found in their microenvironments, such as position in the 

oligotrophic water column or spatial ecological differences (i.e. coastal versus 

oligotrophic).  Prochlorococcus occupies the oceans between the 40oS to 45oN  latitudes 

(Johnson et al. 2006), extends vertically down to ~200m, and demonstrates resiliency 

after seasonally influenced mixing events which alter the local chemical environment 

(Partensky et al. 1999).  Due to this wide distribution and adaptability, Prochlorococcus 

contributes a large portion of the net primary production in the tropical and subtropical 

oceans (Campbell et al. 1997; DuRand et al. 2001).  Estimates of total global 
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picophytoplankton biomass is 0.53–1.32 Pg C with 17–39% Prochlorococcus, 12–15% 

Synechococcus and 49–69% picoeukaryotes (Buitenhuis et al. 2012).    

Prochlorococcus is able to span vertically through four orders of magnitude in 

light intensity because of the existence of light adapted ecotypes that are able to thrive 

in a wide range of irradiances (Moore et al 1999).  High-light (HL) ecotypes with low 

chlorophyll b2/a2 ratios, grow at light intensities found in the surface waters where low-

light (LL) ecotypes are inhibited.  The LL ecotypes with high chlorophyll b2/a2 ratios, are 

limited to irradiances deep in the euphotic zone (near the 1% light level).  Culture 

independent quantitative polymerase chain reaction (qPCR) has revealed ecotypic 

distribution patterns for Prochlorococcus.  These patterns consist of HLI and HLII with 

maximal abundance at the surface lit waters (<50m), LLII/III  and LLIV  most abundant in 

the dimmer, deeper portion of the water column (>100m), and  LLI  demonstrating 

maximal abundance between the HL and LL ecotypes (~50-100m) ( Johnson et al. 2006; 

Zinser et al. 2006; Martiny et al. 2009; Malmstrom et al. 2010; Partensky and Garczarek 

2010).  While LLII and LLIII ecotypes have been separated, throughout this thesis these 

two ecotypes will be combined and referred to as LLII/III (sensu, Martiny et al. 2009).  

The HL and LL ecotypes are phylogenetically distinct (Rocap et al. 2002, 2003).  In 

contrast to Prochlorococcus, which is confined to the oligotrophic ocean, marine A 

Synechococcus has evolved greater genetic diversity such that it can occupy diverse 

horizontal gradients of nutrients and light quality (Scanlan et al. 2009).  

 Prochlorococcus and Synechococcus have overlapping niches in the ocean 

(Partensky et al. 1999) and share many physiological features; however, their light 
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harvesting apparatus is fundamentally different.  Like most cyanobacteria and red algae, 

Synechococcus use phycobilisomes to harvest light not otherwise available to 

chlorophyll, and funnel this energy from the outer antenna down toward the 

photosystem reaction centers converting excitation energy to chemical energy (Sidler 

1994; MacColl 1998; DeRuyter and Fromme 2008).  The phycobilisome is an organized 

macromolecular light harvesting complex that is located in the stromal space between 

the thylakoid membranes.  The phycobilisome is composed of an allophycocyanin core 

that is connected to the photosystems and is surrounded by six to eight rods composed 

of one or two types of phycobiliproteins.  The phycobiliproteins absorb light between 

450-660nm, with each protein having its own absorbance spectrum due to specific 

chromophore composition.  Phycobiliproteins are water-soluble proteins that covalently 

bind chromophores (phycobilins) by thioester bonds to specific cysteinyl residues.  

Phycobilins are open chain tetrapyrroles.  Different types of Synechococcus possess 

unique spectral properties that are responsible for the diversity of colors (blue-green to 

orange) (Six et al. 2007).  Phycoerythrins (PE) are phycobiliproteins found on the most 

peripheral part of the antenna.  Phycoerythrins bind two different chromophores, 

phycourobilin (PUB) and phycoerythrobilin (PEB).  PUB is the main phycobilin for marine 

oceanic Synechococcus and is specifically adapted to absorb light in the blue portion of 

the visible spectrum that penetrates deepest in the oligotrophic waters.   

 In contrast to Synechococcus, Prochlorococcus has a drastically reduced cellular 

and genome size, resulting in a more efficient organism that thrives in the oligotrophic 

ocean.  Prochlorococcus is able to take advantage of increased surface to volume ratio 



 

4 
 

for efficient uptake of nutrients and depleted resources available in the oligotrophic 

oceans (Partensky and Garczarek 2010).  The reduced cellular size has resulted in a 

streamlined genome with only essential functions and genes remaining (Kettler et al. 

2007; Scanlan et al. 2009).  Prochlorococcus has simpler pigmentation than 

Synechococcus, made up of thylakoid membrane proteins binding divinyl chlorophyll a2 

and b2 as their main antenna complex.  While Prochlorococcus has lost the structure of 

the phycobilisome, some PE genes are still present.  The genes related to PE 

biosynthesis and potential light harvesting function are remnants from ancestral 

Synechococcus (Scanlan et al. 2009).   

The expression of PE in Prochlorococcus has been observed through absorption 

and fluorescence properties on two HL and one LL cultured isolates (Hess et al. 1996; 

Steglich et al. 2003a, 2005).  In LLII/III SS120, the absorption and fluorescence emission 

corresponding to PE was observed with PUB being the main chromophore.  Additionally, 

low levels of orange fluorescence correlated with small amounts of flow cytometric 

excited PE has been reported from a natural population of Prochlorococcus found 

deeper in the water column  (Hess et al. 1996).  All LL Prochlorococcus strains have 

retained all the necessary genes for synthesizing one complete PE protein and the genes 

associated with the linker proteins that stabilize the phycobiliprotein structure and bind 

two chromophores (PUB and PEB) (Table 1).  In contrast, HL Prochlorococcus strains 

have kept only a few PE related genes, including the genes for the biosynthesis of PEB 

and phycocyanobilin (PCB), a degenerated PE- subunit (Ting et al. 2001), and a 

phycobilin lyase (cpeS) involved in the specific attachment of PEB to -PE  (Wiethaus et 
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al. 2010b).  This -PE has several mutations and has lost some of the cysteines needed 

for chromophore binding (Ting et al. 2001).  The cpeB gene may not act as a structural 

gene, but instead may act as a green light sensing molecule (Steglich et al. 2005).  It is 

thought that in HL Prochlorococcus the PE genes are in a process of being lost from the 

genome (Hess et al. 2001).   

Expression of low levels of phycobilisome genes occur in both Prochlorococcus 

LLII/III SS120 and HLI MED4 (Hess et al. 1996; Steglich et al. 2005).  All Prochlorococcus 

strains possess cpeB, the structural subunit for -phycoerythrin, and cpeB has been used 

as a marker to identify HL and LL Prochlorococcus in natural populations from the Red 

Sea (Steglich et al. 2003b).  Most LL Prochlorococcus have both - and-subunits for the 

heterodimer structure of phycoerythrin, the genes for the biosynthesis for 

phycocyanobilin and phycyerythronbilin, many lyase genes for chromophore 

attachment, and the gene ppeC for the attachment to the thylakoid membrane.  Since 

PE genes form a phylogenetically distinct clade among Prochlorococcus, it has been 

suggested that they are driving forces in their evolution to maintain the sequences in 

many LL Prochlorococcus (Penno et al. 2000).   

 All LL Prochlorococcus, with the exception of MIT9303 and MIT9313, can 

synthesize ppeC linker polypeptide, which is thought to be involved in the transfer of 

excitation energy directly from PE to the photosystems (Hess et al. 1999).  A disruption 

of this linkage can occur in the presence of glycerol (Wyman et al. 1985).  None of the 

HL Prochlorococcus have the ppeC linker gene.  LL Prochlorococcus possess a number of 

lyase genes (mpeU, cpeZ, cpeY, and cpeT) that are involved in chromophore attachment 
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(Wiethaus et al. 2010a).  The genes code for enzymes (ho1, pebA, pebB, and pcyA) 

responsible for the biosynthesis of PEB and PCB are present in all Prochlorococcus 

strains.  PEB and PCB originate from biliverdin IX, an open-chain tetrapyrrole and 

product of the heme oxygenase reaction, followed by either the enzyme encoding pcyA 

which leads to PCB, or the two enzymes encoding for pebA and pebB that catalyze the 

four electron reduction of biliverdin IX to PEB.  Certain Prochlorococcus cyanophages 

carry a single gene (pebS) that encodes the enzyme phycoerythrobilin synthase (PebS) 

that replaces two enzymes 15,16-dihydrobiliverdin:ferredoxin oxidoreductase with gene 

pebA and PEB:ferredoxin oxidoreductase with gene pebB, making this two step process 

into a single reaction (Dammeyer et al. 2008).  No PCB binding proteins have been 

identified in Prochlorococcus (Hess et al. 2001); however, absorption spectra have 

identified the presence of PEB in both HL and LL Prochlorococcus strains (Steglich et al. 

2003a, 2005).  Prochlorococcus also has the PUB chromophore, but no PUB biosynthesis 

enzyme has been identified, and it is thought that PUB is produced during the 

attachment process to the phycobiliprotein by an unidentified isomerase/lyase 

(Wiethaus et al. 2010a).  Shukla et al. (2012) found that the gene mpeZ is involved in 

converting PEB to PUB in marine Synechococcus, but this gene has not been identified in 

Prochlorococcus.   

 The PE retained in Prochlorococcus is unique because in most cyanobacteria it is 

a peripheral pigment of the phycobilisome.  Phycoerythrin is normally directly attached 

to phycocyanin, which is attached to an allophycocyanin core that is attached to the 

photosystem.  However, in Prochlorococcus, neither allophycocyanin nor phycocyanin 
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expression have been documented.  Therefore, the function of PE within the 

Prochlorococcus cell remains unsolved, with the exception of PE in HL Prochlorococcus 

possibly acting as a green light photoperceptor (Steglich et al. 2005).  PE function in LL 

Prochlorococcus remains enigmatic.   

In order to understand the potential role of PE and help characterize its 

physiological expression in other LL Prochlorococcus, this study measured in vivo 

excitation and emission spectra, PE content relative to chlorophyll content, and tracked 

changes in flow cytometric fluorescence under high and low growth irradiance in a 

variety of LL Prochlorococcus strains representing phylogenetically distinct ecotypes.  

Glycerol treatment was used to determine whether PE was attached to the thylakoid, 

indicating whether PE could serve a potential light harvesting function.  I hypothesized 

that the weak orange fluorescence (FL2), measurable above the instrument noise of the 

flow cytometer, was due to PE fluorescence, and that the presence of ppeC indicates 

that PE transfers light energy to the photosystem.  A broader goal of this study was to 

analyze whether PE may serve as a distinguishing characteristic for one or more LL 

ecotype sub-clades. 
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CHAPTER TWO 

METHODS 

Culture conditions 

 Several (LL) Prochlorococcus strains (LLI NATL1A, LLI NATL2A, LLII/III SS120, and 

LLIV MIT9313) that are representative of different LL ecotype subclades according to 

their 16-23S rDNA_ITS were tested.  HLI Prochlorococcus strain MED4 and 

Synechococcus WH8102 were used as a comparison.  HLI MED4 should show no PE 

expression when excited at PUB maxima wavelength, and Synechococcus WH8102 

should demonstrate enhanced PE expression compared to the LL Prochlorococcus 

isolates.  New isolates LLI MIT0801from Bermuda Atlantic Time-Series (BATS), and LLIV 

C3 from the South Atlantic (SA) were obtained by L. R. Moore using a high-throughput 

culturing technique (Connon and Giovannoni 2002).  LLIV MIT0601 and LLIV MIT0603 

from Hawaii-Ocean Time-series (HOT) were isolated with Pro99 media according to 

methods in (Moore et al. 2007) by L. Thompson, S. W. Chisholm and L. R. Moore. None 

of the strains tested were maintained as axenic; however, since photosynthetic 

pigments are being measured, any contaminating heterotrophic bacteria should not 

affect the results.  Three replicate batch cultures were grown in acid-washed 

polycarbonate or glass containers containing 0.2m filtered Woods Hole Oceanographic 

Institution-Environmental Systems Laboratory (WHOI-ESL) natural seawater based 

media Pro99 (Moore et al. 2007) at 24oC under L:D 14:10 using cool white fluorescent 

bulbs.  Cultures were progressively acclimated to low growth irradiance (Ig)(10 mol Q 

m-2 s-1) or high Ig (55-65 mol Q m-2 s-1) light growth irradiances obtained using window 
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screening to obtain the appropriate light intensity.  HL MED4 low Ig was grown at 20 E 

m-2 s-1 because of its inability to grow at a lower light irradiance, and high Ig LLIV C3 was 

grown at 36 mol E m-2 s-1 because it was photoinhibited at higher growth irradiances.  

The light levels chosen were from the initial portion of growth curves dependent on 

light irradiance prior to photoinhibition of cell growth.  Acclimation was confirmed by 

obtaining successive, similar growth rates and consistent red fluorescence per cell as 

measured flow cytometrically.  Irradiances were measured with a QSL-100 quantum 

scalar irradiance meter (Biospherical Instruments). 

Phylogenetic analysis 

 DNA extraction and PCR amplification were performed with exponential phase 

cultures harvested by centrifugation (14,000 x g for 10 min), lysed using three rounds of 

a freeze/thaw (freeze at -70oC for 10 min) and thaw on (heat block at 70oC for 10 min), 

and extracted using a Qiagen DNeasy Kit (Cat#69506).  The ITS/23S fragment was 

amplified using primers 16S-1247f and 23S-1608r (Rocap et al. 2002).  For Sanger 

sequencing, PCR amplifications were performed at the Center for Genome Research & 

Biocomputing at Oregon State University.  The ITS fragment was sequenced bi-

directionally using primers 16S-1247f and primers internal to the PCR fragment: ITS-Alaf, 

ITS-Alar, and 23S-241r (Rocap et al. 2002).  Sequences were edited and aligned manually 

with BioEdit (Hall 1999).  Distance trees were inferred using the Neighbor-Joining 

method.  The evolutionary distances were computed using the Maximum Composite 

Likelihood.  There were a total of 316 positions in the final dataset. Phylogenetic 

analyses were conducted in MEGA4 (Tamura et al. 2007).  
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Flow cytometric parameters 

 Small aliquots (200 l) of cultures grown under low and high light irradiances 

were taken daily for flow cytometric measurements.  Cell concentrations were 

determined using a BD FACS Calibur flow cytometer equipped with a 488nm laser and a 

high throughput sampler attachment. Flow cytometric detector parameters including 

red (>650 nm) and orange (564-606 nm) fluorescence were normalized with a standard 

0.52 m bead (Polysciences) and reported for intercomparison between strains and 

light levels.  Red fluorescence (FL3) corresponds to chlorophyll in the cell, orange 

fluorescence (FL2) corresponds to PE, and side-angle light scatter (SSC) is roughly 

correlated to cellular size.  FL3, FL2, and SSC are established methods for enumerating 

and distinguishing different Prochlorococcus, Synechococcus, and picoeukaryotes in 

natural populations (Marie et al. 1999).   

Pigment analysis 

 Cultures were harvested from late exponential growth phase by filtering a 

known volume of culture (typically 50 ml for chlorophyll and 100 ml for PE) onto 25-mm 

Whatman GF/F filters under low vacuum (~100 mm Hg), with approximately >99% cells 

retained (data not shown).  Filters were immediately immersed in liquid nitrogen and 

then stored at -70oC until extraction (1-6 months).  Cell concentration was determined 

flow cytometrically and used to calculate pigment content per cell. 

 Chlorophyll was measured on each Prochlorococcus culture (Knap et al. 1994).  

Filters were resuspended in extraction solvent (90% acetone) and sonicated with a small 

benchtop sonicator for 10 min under dim light.  Samples were left in acetone overnight 
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at -20oC in the dark.  The recovered extract was measured with a benchtop fluorometer 

(Turner Designs, TD700) equipped with a standard chlorophyll filter set.  A known 

concentration of pure chlorophyll was determined spectrophotmetrically (Shimadzu, 

BioSpec Mini) from Swiss chard that was extracted in 90% acetone and used for 

generating a standard curve within the range of the chlorophyll samples. 

 The PE content was determined for each Prochlorococcus culture on replicate 

filters to those used for chlorophyll measurements using a modified absorption method 

(Lawrenz et al. 2011).  Our method used a fluorometric method to capture the small PE 

signal associated with Prochlorococcus cells.  Filters were thawed, resuspended in 5 ml 

of 0.1M K-phosphate buffer (pH 7), and sonicated (Model #FB120, Fisherbrand) at 4oC, 

25% max power for 45 sec.  Samples underwent three rounds of sonication, freeze (-

70oC) and thaw procedure, after which they were left to extract at 4oC for 24-48hrs.  

Samples were then vortexed and centrifuged (Beckman Model TJ-6, 5 min at 2,000RPM) 

to remove residual filter material and the supernatant was measured on a 

spectrofluorometer (FluoroMax2) with excitation set to 495nm and emission recorded 

at 573nm.  PE was extracted from exponentially grown Synechococcus WH8102 and the 

concentration determined with a spectrophotometer (Cary-50Bio UV/VIS-

spectrophotometer) using an extinction coefficient at 492nm of 2.78x106 M-1 cm-1 (Ong 

et al. 1984).  A serially diluted standard curve was generated and emission fluorescence 

was measured at 573nm (excitation set to 495nm) to estimate the PE concentration 

from fluorescence emission data collected from the Prochlorococcus samples.      
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In vivo fluorescence excitation and emission spectra 

 In vivo fluorescence was measured on cells from the exponential phase using a 

Fluoromax-2 fluorescence spectrometer.  Excitation for the emission spectra was set at 

495nm (the maximum absorption band for PUB; Steglich et al. 2003a) and emission was 

measured from 515-700nm to detect both PE and chlorophyll.  The emission spectra 

were normalized to the chlorophyll maximum (677nm).  The excitation spectra were 

measured from 400-570nm while measuring emission at 590nm.  The excitation spectra 

were normalized to the PUB maximum (500nm).  The excitation and emission 

monochromator slits were set at 5-nm bandpass for both spectra.  Fluorescence from 

Pro99 media was used as the blank and subtracted from the culture spectra.   

 To determine whether PE is attached to the photosystem in the thylakoid 

membrane, sub-samples of live Prochlorococcus cells were treated with glycerol (50% 

final concentration) and compared to subsamples without added glycerol, but with the 

same volume of media added. Glycerol has been used to interrupt the energy transfer 

between PE and the phycobilisome in Synechococcus and Prochlorococcus (Wyman 

1992; Lokstein et al. 1999; Steglich et al. 2003a), resulting in an enhanced PE 

fluorescence signal when added to cells.  Samples were excited at 495nm and emission 

spectra measured from 515-700nm.  The fluorescence obtained from either (media or 

50% (vol/vol) glycerol/media seawater) were subtracted from the spectra, and the 

emission spectra were normalized to number of cells. 
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CHAPTER THREE 

RESULTS 

Phylogeny of new Prochlorococcus strains 

 The 16S and 23S ribosomal DNA internal transcribed spacer (ITS) sequence was 

used in this study to achieve finer resolution between closely related Prochlorococcus 

isolates (Rocap et al. 2002) to categorize the phylogeny of  the new Prochlorococcus 

isolates based upon neighbor-joining bootstrap consensus tree (Figure 1).  New strains 

BATS MIT0801 grouped with the LLI clade, HOT MIT0601 grouped with the LLII/III clade, 

and South Atlantic C3 grouped with the LLIV clade.  HOT MIT0603 also grouped with 

LLIV clade although had a weak relationship according to neighbor-joining and minimum 

evolution with the LLIV clade (23%/48%).  Analysis of the ITS region further separated 

the HL and LL ecotypes into subclades or ecotypes with possible physiological 

differences that represent oceanic niche differentiation, spatial, and temporal 

specialization (Rocap et al. 2003; Zinser et al. 2006; Martiny et al. 2009).   
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Figure 1.  Neighbor-joining bootstrap consensus tree of 16-23S rDNA_ITS sequences 
from Prochlorococcus.  New isolate sequences were generated from PCR amplification 
of cultured isolates preceded by a square and each name is preceded by the location 
isolated (SA=South Atlantic, BATS=Bermuda Atlantic Times-Series, and HOT=Hawaii 
Ocean Time-series).  All other sequences were obtained from BLAST NCBI.  The green 
boxes indicate new isolates that possibly utilize nitrate.  The bootstrap values at the 
nodes are based on neighbor-joining and minimum evolution algorithms by MEGA 4.0 
phylogenetic software.  Bootstrap values less than 50 are not shown.  The tree is rooted 
with Synechococcus sp. RCC307.   
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Genetic differences 

 While Prochlorococcus has completely lost the distinctive cyanobacterial 

phycobilisomes, many of the PE-related genes are still present.  A summary of PE-

related genes among the LL Prochlorococcus strains used in this study indicate the 

presence of genes for structure (cpeA and cpeB), lyases used for chromophore 

attachment (mpeU, cpeZ, cpeY, cpeT, and cpeS), biosynthesis of phycobilins (hol1, pebA, 

pebB, and pcyA), and linker protein for the attachment of PE to the photosystems (ppeC) 

are presented and compared with published Prochlorococcus sequenced strains (Table 

1) (Hess et al. 1996, 1999, 2001; Dammeyer et al. 2008; Wiethaus et al. 2010a; b).  The 

new strains (LLI MIT0801, LLII/III MIT0601, and LLIV MIT0603 and LLIV C3) were 

sequenced and kindly made available to me (unpublished sequences by S. Biller, P. 

Berube, and S.W. Chisholm, MIT).  Both newly sequenced strains LLI MIT0801 and LLII/III 

MIT0601 have all the necessary genes for a complete PE (including both - and -

subunits), biosynthesis of PEB, and the linker (ppeC), the possible linker protein that 

attaches PE to the photosystem. Interestingly, LLIV MIT0603 also possesses these genes, 

while LLIV C3 is missing the  linker gene, like LLIV MIT9313 and MIT9303.  The protein 

sequence that is identified as a possible linker to the thylakoid, corresponding to the 

gene ppeC, was searched for amino acid similarity using the NCBI blastp tool to 

understand the results from the glycerol experiments (see PE with added glycerol 

section).  Analysis of the ppeC corresponding amino acid sequence was compared to 

Prochlorococcus LLII/III SS120 and found to be less than 60% identical for all the other LL 
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ecotype strains (Table 1), indicating possible mutations at the sites that attach to the 

thylakoid membrane. 

Table 1.  Summary of phycoerythrin related genes.  Summary of genes (presence or 
absence) related to phycobiliproteins and amino acid % similarity of the ppeC gene in 
SS120 for Prochlorococcus strains that have had their genomes sequenced and new 
isolates.  Isolates in red are newly sequenced. 
 

Gene  cpeA 
(NP874732)  

cpeB 
(NP874731)  

xmpeU, 
cpeZ , 
cpeY,  
cpeT  

cpeS 
(NP874737) 

hol1, pebA, 
pebB, pcyA  

ppeC  % amino 
acid 
similarity 
of ppeC to 
SS120  

Strain -subunit 
structural 
protein  

-subunit 
structural 
protein  

PE linker 
(PUB or 
PEB)  

PE linker PEB 

-subunit 

Biosynthesis 
phycobilins  
PEB or PCB  

PBS linker 
PE to 
thylakoid  

 

Syn 
WH8102 

X x X X X X 43 

LLI 
MIT0801  

X X X X X X 43 

LLI 
(NATL1A, 
NATL2A)  

X X X X X X 42 

LLII/III 
(SS120, 
MIT9211)  

X X X X X X 100 

LLII/III 
MIT0601  

X X X X X X 52 

LLIV 
MIT0603  

X X X X X X 58 

LLIV 
(MIT9313, 
MIT9303)  

X X X X X  n/a 

LLIV C3  X X X X X  n/a 

HLIMED4   X  X X  n/a 

 
 

  



 

17 
 

Flow cytometric fluorescence 

 Along with detection of the typical chlorophyll (FL3) fluorescence emission, 

orange (FL2) fluorescence emission was observed for Synechococcus WH8102 (Figure 

2A,B).  A low but measurable amount was detected for Prochlorococcus LLII/III MIT0601 

(Figure 2D,E), and none was detected out of the FCM noise for Prochlorococcus HLI 

MED4 strain (Figure 2G, H).  All LL ecotypic strains examined showed measurable FL2, 

though the amount varied for different LL strains (Table 2).  The corresponding 

fluorescence emission spectra verified that the FL2 emission signal was consistent with 

PE emission in LLII/III MIT0601 and the absence of FL2 emission signal in HLI MED4 

(Figure 2F,I).  The difference in FL2 emission level between Synechococcus WH8102 and 

LLII/III MIT0601 also was consistent with the higher level of PE emission observed for 

WH8102 (Figure 2C).  
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Figure 2. Phycoerythrin flow cytometry and fluorescence emission spectra.  [A], [D], and 
[G] Red (FL3) and [B], [E] and [H] orange (FL2) flow cytometric analysis versus side-angle 
scatter of Synechococcus WH8102 (orange dots), Prochlorococcus LLII/III MIT0601 
(green dots), and Prochlorococcus HLI MED4 (green dots).  Black dots are instrument 
noise or dying cells.  Fluorescence intensity of chlorophyll (>650 nm) and phycoerythrin 
(564-606 nm) versus side-angle scatter after excitation with 488 nm laser.   The relative 

phycoerythrin normalized to a standard bead (0.52 m Polysciences) ratio is inset within 
the plots.  [C], [F], and [I] Relative fluorescence emission spectra of whole cells depicting 
the wavelengths where phycoerythrin emission is detected by the flow cytometer 
(orange block).  Emission spectra were excited at 488nm and emission was detected 
between 520-700 nm.  
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Table 2.  Phycoerythrin physiology in low light adapted Prochlorococcus. Flow cytometric parameters (red and orange fluorescence 

normalized to 0.52 m reference bead), fluorescence excitation maxima PUB (500 nm) and PEB (559 nm) normalized to cell 
concentration (emission set to 590nm), PUB:PEB ratios, fluorescence emission per cell (Ex set to 495 nm), and pigment content 

(phycoerythrin and chlorophyll) for various Prochlorococcus strains grown under high (55-65 mol Q m-2 s-1) and low (10 mol Q m-2 
s-1) growth irradiances (n=3; n/a = no value available). For each parameter differences among the two conditions (Low and High Ig 
grown cultures) were tested using a student’s t test, *p ≤ 0.05, **p < 0.001. 
 

  
Flow cytometric parameters  Fluorescence Properties  

  
Pigment analysis  

Strain 
Growth 

irradiance 
Relative Chl 
fluor cell

-1
 

Relative PE 
fluor cell

-1
 

PUB excitation 
Ex500/Em590 

(cell
-1

) 

PEB excitation 
Ex559/Em590 

(cell
-1

) 
Ratio of PUB 

to PEB 

PE emission 
Ex495/Em573 

(cell
-1

) PE (fg cell
-1

) Chl (fg cell
-1

) 

HLI 
MED4  

Low I 
5.1** 
(0.9) 

0.0204 ** 
(0.0003) n/a n/a n/a n/a 

0.0011 
(0.0004) 

4.1** 
(0.6) 

High I 
2.5** 
(0.2) 

0.0190** 
(0.0002) n/a n/a n/a n/a 

0.0018 
(0.0002) 

2.7** 
(0.1) 

Syn 
WH8102  Low I 

103 
(11) 

15 
(1) 

0.11 
(0.06) 

0.07 
(0.03) 

1.75 
(0.02) 

0.27 
(0.14) 

91 
(9) 

5.7 
(0.7) 

LLI ecotypes 
        

NATL1A  
Low I 

9.42** 
(0.3) 

0.0502** 
(0.0005) 

0.00163* 
(0.00001) 

0.00089** 
(0.00002) 

1.82* 
(0.04) 

0.00177 
(0.00005) 

0.17** 
(0.02) 

10.6** 
(0.4) 

High I 
3.5** 
(0.8) 

0.036** 
(0.003) 

0.0011* 
(0.0001) 

0.00061** 
(0.00006) 

1.75* 
(0.04) 

0.0013 
(0.0003) 

0.043** 
(0.004) 

3** 
(1) 

NATL2A  
Low I 

10* 
(1) 

0.047* 
(0.003) 

0.0007 
(0.0006) 

0.0004 
(0.0004) 

1.8 
(0.1) 

0.00095 
(0.00084) 

0.0130* 
(0.0001) 

5.1** 
(0.7) 

High I 
3.6* 
(0.2) 

0.035* 
(0.001) 

0.00032 
(0.00001) 

0.00019 
(0.00001) 

1.72 
(0.07) 

0.00042 
(0.00002) 

0.0096* 
(0.0002) 

1.78** 
(0.09) 

BATS 
MIT0801  

Low I 
30** 
(2) 

0.076** 
(0.003) 

0.00074** 
(0.00004) 

0.00047** 
(0.00003) 

1.57 
(0.01) 

0.00092** 
(0.00007) 

0.051 
(0.009) 

9.4** 
(0.5) 

High I 
6.59** 

(0.3) 
0.041** 
(0.001) 

0.00040** 
(0.00006) 

0.00027** 
(0.00004) 

1.5 
(0.1) 

0.0005** 
(0.0001) 

0.034 
(0.005) 

3** 
(1) 
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Table 2. Continued 

 
Flow cytometric parameters  Fluorescence Properties  

  
Pigment analysis  

Strains 
Growth 

irradiance 
Relative Chl 
fluor cell

-1
 

Relative PE 
fluor cell

-1
 

PUB excitation 
Ex500/Em590 

(cell
-1

) 

PEB excitation 
Ex559/Em590 

(cell
-1

) 
Ratio of PUB 

to PEB 

PE emission 
Ex495/Em573 

(cell
-1

) PE (fg cell
-1

) Chl (fg cell
-1

) 

LLII/III ecotypes 

        

SS120  
Low I 

6.0** 
(0.3) 

0.0305** 
(0.0005) 

0.00077** 
(0.00002) 

0.00048** 
(0.00002) 

1.6* 
(0.03) 

0.00098** 
(0.00004) 

0.011 
(0.008) 

3.2** 
(0.2) 

High I 
3.1** 
(0.5) 

0.0256** 
(0.0008) 

0.00039** 
(0.00002) 

0.00025** 
(0.00002) 

1.54* 
(0.04) 

0.00054** 
(0.00003) 

0.008 
(0.003) 

1.9 ** 
(0.1) 

MIT0601  
Low I 

10.4** 
(0.1) 

0.081** 
(0.001) 

0.00082* 
(0.00002) 

0.00045** 
(0.00001) 

1.81 
(0.01) 

0.00135* 
(0.00004) 

0.022 
(0.003) 

3.9** 
(0.1) 

High I 
3.6** 
(0.3) 

0.059** 
(0.004) 

0.00067* 
(0.00004) 

0.00036** 
(0.00002) 

1.85 
(0.03) 

0.00119 * 
(0.00006) 

0.021 
(0.003) 

2.5** 
(0.3) 

LLIV ecotypes 
        

MIT0603  
Low I 

10.15** 
(0.08) 

0.035** 
(0.001) 

0.00022* 
(0.00002) 

0.00014** 
(0.00001) 

1.61** 
(0.03) 

0.00032** 
(0.00002) 

0.004 
(0.002) 

2.2** 
(0.2) 

High I 
2.8** 
(0.2) 

0.0298** 
(0.0004) 

0.00018* 
(0.00001) 

0.000103** 
(0.000007) 

1.73** 
(0.03) 

0.00024** 
(0.00001) 

0.0051 
(0.0005) 

0.81** 
(0.08) 

MIT9313  
Low I 

28** 
(2) 

0.063* 
(0.002) 

0.00063 
(0.00005) n/a n/a 

0.00103 
(0.00002) 

0.05 
(0.01) 

7.0 ** 
(0.2) 

High I 
14** 
(1) 

0.055* 
(0.001) 

0.00054 
(0.00006) n/a n/a 

0.0021 
(0.0002) 

0.016 
(0.002) 

2.1** 
(0.8) 

SA C3  
Low I 

43.4** 
(0.5) 

0.103 
(0.003) 

0.00091 
(0.00003) n/a n/a 

0.00160 
(0.00009) 

0.034 
(0.004) 

4.3 
(0.5) 

High I 
25** 
(2) 

0.108 
(0.003) 

0.0011 
(0.0002) n/a n/a 

0.0020 
(0.0003) 

0.042 
(0.007) 

2.4 
(0.9) 
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In vivo fluorescence properties  

 To better characterize the flow cytometric FL2 measurements among the LL 

Prochlorococcus ecotypes, both in vivo fluorescence excitation spectra (Figure 3A-H) and 

emission spectra (Figure 4A-H) were measured for a variety of Prochlorococcus cultures 

from each LL ecotype: LLI ecotypes NATL1A, NATL2A, MIT0801, LLII/III ecotypes 

MIT0601, SS120, and LLIV ecotypes MIT0603, MIT9313, SA C3.  The in vivo fluorescence 

excitation spectra for Prochlorococcus revealed PE excitation maxima at 500 and 559 

nm, corresponding to the excitation wavelengths of the chromophores PUB and PEB, 

respectively, similar to that observed for LLII/III SS120 (Steglich 2003; Steglich et al. 

2003a) and for Synechococcus WH8102, a high PUB containing strain (Six et al. 2004).  

Two exceptions were SA C3 and MIT9313 (both members of the LLIV ecotype subclade) 

(Figure 4E, H), which only exhibited PUB excitation at 500 nm. The physiological 

expression of PEB is consistent with the presence of the genes for the biosynthesis of 

PEB, which all LL Prochlorococcus have (Table 1).  Under this study’s experimental 

conditions no PEB chromophore was detected for HLMED4 (data not shown).  Steglich 

et al. (2005) detected PEB in HLMED4 and AS9601 and found 100-fold less PE protein 

than SS120.  For the strains that have PUB and PEB, the PUB:PEB excitation peak 

maxima ratio was similar for all strains, ranging from 1.6-1.9, and close to that observed 

for Synechococcus WH8102 (Table 2; Six et al. 2004).   
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Figure 3.  Fluorescence excitation spectra of LL Prochlorococcus.  [A]-[H] Fluorescence 
excitation spectra with emission set to 590 nm and excitation detected between 450-
570 nm.  Excitation spectra are normalized to PUB absorption maxima at 495 nm.   
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Figure 4.  Fluorescence emission spectra of LL Prochlorococcus.  [A]-[H] Fluorescence 
emission spectra with excitation set to 495 nm and emission was detected between 
550-700 nm.  Emission spectra are normalized to chlorophyll maxima. 

 
 
 To relate the flow cytometric FL2 signal to PE content in whole cells, in vivo 

fluorescence emission spectra were also obtained.  The excitation wavelength was set at 

the PUB maxima of 495 nm and showed two main peaks for all LL Prochlorococcus 

strains, consistent with that observed previously for Prochlorococcus LLII/III strain SS120 

(Steglich et al. 2003; Lokstein et al. 1999). The first peak occurred at 573 nm 

corresponding to PE emission, and the other peak at 677 nm corresponded to 
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chlorophyll a emission, the terminal energy acceptor.  Interestingly, none of the 

Prochlorococcus strains tested exhibited a phycocyanin peak, as found at 650 nm in the 

emission spectra of Synechococcus WH8102 when excited at 495 nm (Six et al. 2004), 

despite the fact that all Prochlorococcus genomes have the necessary genes for 

phycocyanobilin biosynthesis.  A plot of FL2 emission versus PE emission at 573 nm 

(Figure 5A) showed a linear correlation (R2=0.42, p value<0.05), providing additional 

evidence that flow cytometric orange fluorescence is a direct measure of in vivo PE 

expression.  

Pigment content  

 The amount of PE measured per cell in all LL Prochlorococcus was small and 

significantly less (3-5 orders of magnitude) than in Synechococcus (Six et al. 2004) (Table 

2).   Surprisingly, a plot of flow cytometric FL2 versus PE content per cell (Figure 5C) did 

not show a correlation (R2=0.04, p value=0.46) as expected from the correlation 

observed with FL2 and PE peak emission.  The correlation improved (R2=0.4, p 

value<0.05) when one outlier, that may have had double the volume filtered, was 

removed.  Although this may be a true outlier due to sampling error, no documentation 

can verify this, so the outlier has been included in the dataset.  When the same variables 

(FL2 vs. PE Emission; Figure 5A) and (FL2 vs. PE content; Figure 5C) are plotted with each 

ecotype indicated by a different symbol, different slopes suggest ecotypic differences 

(Figure 5B; LLI slope=3.2, R2=0.01, p value=0.82; LLII/III slope=65.5, R2=0.79, p 

value=0.11; LLIV slope=30.3, R2=0.55, p value=0.09) and FL2 vs. PE content ( Figure 5D; 
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LLI slope=0.5, R2=0.3, p value=0.31; LLII/III slope=3.5, R2=0.9, p value<0.05; LLIV 

slope=1.3, R2=0.6, p value=0.09) despite the high p values.   

Figure 5.  Phycoerythrin physiological parameters compared to PE content.  [A] 
Comparison of flow cytometric orange fluorescence (FL2) versus in vivo relative 
fluorescence emission values corresponding to PE (573 nm, Excitation set to 495nm).  
[B] same as [A] with each ecotype depicted a different symbol.  [C] Comparison of FL2 
emission versus phycoerythrin concentration (fg cell-1).  [D] same as [C] with each 
ecotype depicted as a different symbol.
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Photoacclimation  

 In order to understand the possible function of PE in LL Prochlorococcus, the 

response of PE related measurements were observed under two different growth 

irradiances.  Prochlorococcus cultures grown under low and high light irradiances varied 

both their relative FL3 and FL2 (Table 2, Figure 6A).  As expected FL3 showed an increase 

as growth irradiance was decreased, consistent with photoacclimation of chlorophyll 

content observed previously (Moore and Chisholm 1999).  FL2 increased for most LL 

Prochlorococcus strains as light irradiance decreased, with the exception of LLIV C3, 

suggesting that most of the LL Prochlorococcus strains are photoacclimating to changes 

in growth irradiance.  As expected there was no significant difference in FL2 signal 

between low and high light grown HLI MED4.  Thus, flow cytometric FL2 signal is 

correlated to changes in growth irradiance in all LL Prochlorococcus, with the exception 

of the newly isolated LLIV C3 strain.  

 The photoacclimation observed for FL2 was reflected in the in vivo PE emission 

per cell at 573nm (Figure 6B) and the PE content per cell (Figure 6C) as growth 

irradiance increased, for some of the LL Prochlorococcus strains tested. This is in 

contrast to the findings of Hess et al. (1999) for LLII/III SS120, which did not change its 

PE protein (-PE and -PE) when grown between 8-38 E m-2 s-1.  It should be noted, 

however, that Hess et al (1999) examined changes in protein expression as measured 

with a western blot, and the difference in growth irradiance was not as great as used in 

this study.  For those strains that changed PE emission per cell, this could indicate that 

the numbers of PE proteins are decreasing as growth irradiance increased.  Two LLIV 
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strains, MIT9313 and C3, did not significantly alter the PE emission per cell (Figure 6B), 

possibly because PE functions differently considering that these two strains also do not 

have the gene ppeC, which encodes the  linker protein connecting PE to the thylakoid.   

 Phycoerythrin emits maximally between 566-572nm in Synechococcus WH8102 

as growth irradiance is increased from 15-650 E m-2 s-1 (Six et al. 2004), whereas in vivo 

PE emission did not vary its maximum wavelength with changes in growth irradiance 

(Figure 4A-H).  For PE content per cell, only two LLI strains (NATL1A and NATL2A) 

showed statistically significant increases with decreased growth irradiance (Figure 6C).  

The lack of statistical significance may be due to the high variation of the PE 

measurements.  Despite this, most LL Prochlorococcus strains showed increasing 

average PE content per cell with decreasing growth irradiance, consistent with what has 

been observed for Synechococcus WH8102 (Six et al. 2004).  When in vivo PE emission 

maxima (at 573 nm) was normalized to chlorophyll emission maxima (at 677 nm), the PE 

to chlorophyll (573nm:677nm) peak ratio decreased with decreased growth irradiance 

for all LL Prochlorococcus (Figure 6D), indicating that PE emission increased to a lesser 

extent (or not at all) relative to chlorophyll emission. This is in contrast to Synechococcus 

WH8102 that increased its PE emission greater than its chlorophyll emission with 

changes in growth irradiance (Six et al. 2004), though WH8102 showed a greater change 

in PE content than chlorophyll.    
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Figure 6.  Bar graphs of LL Prochlorococcus phycoerythrin physiological parameters. 
[A] Bar graph of relative FL2 cell-1.  [B] Bar graph of PE emission per cell.  [C] Bar graph of 
PE content (fg cell-1).  [D] Bar graph of fluorescence emission at chlorophyll to 
phycoerythrin (573:677).  Prochlorococcus strains grown under high irradiance (High Ig; 

55-65 mol Q m-2 s-1) and low irradiance (Low Ig; 10 mol Q m-2 s-1).  Error bars are 
standard deviation.  Two tail t test, *p value < 0.05, **p < 0.01.  
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Figure 6. Continued 
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 In Synechococcus WH8102 PEB and PUB absorbance indexes (related to quantity 

per cell) increased with decreased growth irradiance indicating a reduction of 

phycobilisomes per cell and changes within the PBS structure (Six et al. 2004).  Although 

PEB and PUB concentrations were not measured directly, it is likely that each of these 

chromophores are increasing with decreasing growth irradiance, as indicated by the 

change in PUB and PEB excitation spectra (Figure 7A&B).  For all LL Prochlorococcus, the 

PUB and PEB excitation peaks (with the exception of LLIV MIT9313 and LLIV C3 that do 

not have PEB) increased with decreased growth irradiance (Table 2, Figure 7A&B), 

perhaps indicating a slight change in PE structure as growth irradiance changed or a 

reduction in the number of PE molecules in the thylakoid.  Neither LLIV MIT9313 nor 

LLIV C3 showed changes in PUB per cell with changes in growth irradiance, whereas LLIV 

MIT0603 did alter its PUB per cell with growth irradiance.  The ratio of PUB:PEB 

excitation peak maxima for all LL Prochlorococcus was 1.69 +/- 0.13 and did not vary 

within a strain under different growth irradiances for most of the LL Prochlorococcus 

(Table 2).  The PUB:PEB ratio in Synechococcus WH8102 also did not change with growth 

irradiance (1.78 +/- 0.11) (Six et al. 2004).  Two exceptions were LLII/III SS120 that 

increased with decreased growth irradiance and LLIV MIT0603 that decreased its 

PUB:PEB ratio with decreased growth irradiance, indicating possible changes in the 

phycobilin makeup as growth irradiance changed.  Chromatic adaptation has been 

observed in Synechococcus, where the PUB:PEB ratio varies depending upon the light 

quality of the growth conditions (i.e. greater PUB in blue light grown cultures) (Palenik 

2001; Shukla et al. 2012).  This was beyond the scope of this study, but would be an 
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interesting trait to test with Prochlorococcus strains that appear to vary their PUB and 

PEB phycobilin ratios. 

Figure 7. Bar graphs of LL Prochlorococcus phycobilins.  [A] Bar graphs of fluorescence 
excitation of PUB cell-1.  [B] Bar graphs of fluorescence excitation of PUB cell-1.  

Prochlorococcus strains grown under high irradiance (High Ig; 55-65 mol Q m-2 s-1) and 

low irradiance (Low Ig; 10 mol Q m-2 s-1).  Error bars are standard deviation.  Two tail t 
test, *p value < 0.05, **p < 0.01.  
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PE emission with added glycerol   
 
 The small but measurable change in PE emission as a function of growth 

irradiance would imply that PE is contributing to photosynthesis.  In order to further test 

this, the in vivo fluorescence emission of PE with and without 50% glycerol was 

measured, as done previously with Synechococcus and Prochlorococcus LLII/III SS120 

(Wyman 1992; Lokstein et al. 1999; Steglich 2003).  The addition of glycerol uncouples 

PE from the thylakoid, thereby enhancing the PE emission signal with a concurrent 

decrease in chlorophyll emission.  Slightly enhanced PE emission relative to chlorophyll 

emission was observed in the presence of glycerol with only LLI MIT0801, LLII/III SS120, 

and LLIV MIT0603 (Figure 8A-I), indicating that glycerol decoupled PE from the 

photosystem in those strains.  This would also be consistent if the  linker protein 

connects PE to the thylakoid membrane. HLIMED4, LLIV SA C3 and MIT9313 do not have 

the ppeC gene and were not expected to exhibit enhanced PE emission in the presence 

of glycerol.  However, no enhancement due to glycerol was observed for LLI NATL1A, 

NATL2A, MIT0801, or LLII/III MIT0601 despite the presence of ppeC, implying that ppeC 

is not expressed or is regulated differently in these strains.  Thus, in these LL 

Prochlorococcus strains it appears that the PE autofluorescence observed is not 

contributing to photosynthesis. 
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Figure 8.  Glycerol treated LL Prochlorococcus fluorescence emission spectra.  [A]-[I] 
Fluorescence emission spectra of Prochlorococcus strains with excitation at 495 nm 
(PUB absorption maximum) with 50% glycerol (dashed line) and without glycerol (solid 
line).  Spectra were normalized to DV-Chl a maxima. 
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CHAPTER FOUR 

DISCUSSION 

This comparative physiological assessment of PE in Prochlorococcus strains from 

different LL ecotypes is consistent with the hypothesis that the flow cytometric FL2 is a 

measure of PE in the cell.  Thus, FL2 can now be used in combination with FL3 and SSC 

to better distinguish HL from LL Prochlorococcus in natural populations.  However, it 

must be kept in mind that the ability to distinguish between these two populations 

using FL2 also is dependent upon the type of flow cytometer and the particular emission 

filters used to detect FL2 emission.  In addition, in vivo PE emission and PE content were 

well correlated with the FL2 signal for LLII/III and LLIV strains, though with different 

linear relationships. This linear relationship may be useful for quantifying PE content in 

cultured cells, assuming their ecotypic designation is known phylogenetically. Oddly, 

there was no relationship of FL2 vs. PE content for LLI strains, though the error on some 

of the measurements of these parameters was quite high and there was a spurious PE 

content outlier, which points to the need to repeat some of the measurements and/or 

examine more LLI strains.  

The measurement of in vivo excitation spectra allowed the determination of 

relative phycobilin chromophore expression.  In contrast to HL Prochlorococcus that only 

exhibits the PEB chromophore, all LL Prochlorococcus strains examined, except for LLIV 

MIT9313 and LLIV C3, have both PUB and PEB chromophores, similar to that observed 

for marine Synechococcus WH8102.  As mentioned, two of the three LLIV strains only 

exhibited PUB expression, even though all Prochlorococcus have all the necessary genes 
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for PEB biosynthesis (Table 1).  However, these two strains lack the ppeC gene, whose 

protein product is thought to link PE to the thylakoids (Hess et al. 1999), which might 

have some connection to the absence of PEB emission.  Unlike the other LLIV strains 

tested, LLIV MIT0603 exhibited both PUB and PEB expression. This, along with the weak 

phylogenetic analysis relationship of the ITS region with the other LLIV ecotypes, 

indicates that MIT0603 may represent another new LL clade, or a subclade within the 

LLIV ecotype.  

It is tempting to hypothesize that the presence of PUB, a blue light absorbing 

pigment, would give LL Prochlorococcus an ecological edge in the deeper portions of the 

blue lit waters (Hess et al. 1996; Steglich et al. 2003a).  While the divinyl derivatives of 

chlorophylls present in Prochlorococcus absorb maximally at wavelengths that penetrate 

into the euphotic zone (Moore et al. 1995), PUB also absorbs in the blue (maximum 

absorbance at 495 nm).  Together, Chl b2 and PUB pigments could increase the overall 

absorbance of light energy in the deeper euphotic zone where LL Prochlorococcus 

predominate.  In fact, the specific PE chromophore content of the HL and LL ecotypes is 

consistent with the depth distributions of ecotypes and water quality.  At the surface of 

the oligotrophic oceans where the wavelengths of light cover a broader range of the 

visible spectrum (Morel et al. 2007), HL Prochlorococcus ecotypes that contain only the 

PEB chromophore dominate.  As one goes down in the water column towards the 

middle of the euphotic zone, the predominant Prochlorococcus ecotypes are the LLI and 

LLII/III ecotypes (Zinser et al. 2006; Malmstrom et al. 2010) that contain both PUB and 

PEB for absorbing the blues and greens that penetrate to these depths.  In the deepest 
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euphotic zone where blue wavelengths of light penetrate, the LLIV ecotype with only 

PUB, are most prevalent.  This scenario first hypothesized for HL MED4 as a green light 

sensing chromophore (Steglich et al. 2005) is similar to how marine bacteria with 

photorhodopsins adjust their absorption properties through the water column, shifting 

from green- to blue-light absorbing at surface down to deeper euphotic zone water 

layers (Beja et al. 2001). 

The actual functional role of PE in Prochlorococcus is still somewhat of a mystery, 

in large part because the concentrations of PE are so low compared to levels in marine 

Synechococcus.  As Steglich et al. (2005) hypothesized specifically for HL MED4, cpeB-PE 

may provide a green-light sensing role rather than a structural function, since no 

phycobilisome is present.  This also might be the case for most of the LL strains of 

Prochlorococcus because they adjust PE content in response to growth irradiance, but 

do not appear to participate in light harvesting.  Light sensing in cyanobacteria functions 

as photoreception and signal transduction (Montgomery 2007).  While photoacclimation 

might indicate that the PE chromophores serve a role in light harvesting, as was 

hypothesized for LLII/III SS120 (Lokstein et al. 1999; Steglich et al. 2003a), my results 

from the glycerol experiment indicate that most of the LL Prochlorococcus strains, with 

the exception of LLII/III SS120 and possibly LLI MIT0801, do not use PE for light 

harvesting.  The presence of ppeC did not indicate that PE would transfer energy to the 

photosystem, as predicted due to the putative linker function of ppeC.  The per cent 

amino acid sequence similarity of the ppeC gene in all of the LL Prochlorococcus showed 

very low similarity to SS120 (less than 60% for all strains that had ppeC), pointing to 
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possible mutations in the ppeC gene preventing its expression. A comparison of the 

ppeC nucleotide sequences is underway to verify this.  Both LLIV C3 and LLIV MIT9313, 

which lack ppeC, showed no change in PE emission or PUB per cell with changes in 

growth irradiance.  Thus, not only is the amount of PE found in Prochlorococcus so small 

that it is unlikely to play a role in light harvesting, as proposed by Steglich et al. (2003a), 

it also appears that the potential for light harvesting is present only in a select few 

strains.   

One of the broader goals for this study was the correlation between 

ecophysiological characteristics with ecotype phylogenetic groupings.  While shot-gun 

sequencing has become commonplace, gene presence does not necessarily indicate 

expression.  The need to characterize multiple representative cultured isolates from a 

phylogenetic clade persists.  PE is but one physiological trait that helps characterize a 

Prochlorococcus strain.  Lastly, sea-going flow cytometry can now be used to assess PE 

in situ to separate not only different types of Synechococcus (Olson et al. 1988), but also 

to discriminate between HL and LL Prochlorococcus populations, further enhancing our 

understanding of this ubiquitous picophytoplankton in the world’s oceans.   
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