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 Although the associations among  diabetes mellitus, cognitive functioning  and 

arterial stiffness have been explored previously, the degree to which arterial stiffness is 

responsible for the association between diabetes and cognitive function has not been 

examined.  The primary aim of the current investigations is to examine the extent to 

which arterial stiffness mediates the association between diabetes and cognitive function, 

as well as the extent to which this indirect effect is modified by age and APOE genotype. 

The sample included 590 participants (age 23-94, 62% women, 12% African-

American) from the seventh wave of the Maine-Syracuse Longitudinal 

Study.  Individuals with history of stroke, probable dementia, and PWV error of estimate 

>0.20 were excluded.  Diabetes was defined as elevated glucose or treatment. Pulse wave 

velocity was used to as an indirect measure of arterial stiffness.  Multiple statistical 

methods were used to examine the association between diabetes and cognitive function, 

as well as between PWV and cognitive function.  Then, path analysis was used to 

examine the direct and indirect (through PWV) associations between diabetes and 

cognitive function.  With adjustment for demographic and CVD risk variables, 



 

associations between diabetes and multiple measures of cognitive ability  were observed 

for the APOE-ε4 carriers only.  PWV was related to multiple cognitive measures, and this 

association was modified by age such that the lowest performance was observed in older 

individuals with elevated PWV.  When diabetes, PWV and cognitive function were 

included together in the analysis of paths between variables, an indirect association 

between diabetes and cognitive function through PWV was observed, such that diabetes 

related to higher PWV, and lower cognitive function in older APOE-ε4 carriers. These 

findings may have important clinical implications with regard to attenuating the 

pronounced association between diabetes and cognitive function observed for persons 

who carry the APOE-ε4 allele.  Accelerated arterial stiffness may possibly be treated by 

the same methods that are used to treat hypertension. Clinical trials are necessary to 

determine if modification of levels of PWV by drugs and other treatments will lead to an 

improvement in cognitive performance.  Treatment specific to APOE genotype are also a 

possibility. 
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1. INTRODUCTION 

 
 
 Many studies, including studies with the Maine Syracuse Longitudinal Study 

(MSLS) have shown that cardiovascular risk factors have an inverse relationship with 

level of cognitive function (M. F. Elias et al., 2004; M. F. Elias, Robbins, P. K. Elias, & 

Streeten, 1998; M. F. Elias, Robbins, et al., 2009).  That is, higher risk for cardiovascular 

events is associated with lower levels of cognitive performance, accelerated decline in 

cognitive performance, and increased risk of developing dementia (M. F. Elias, P. K. 

Elias, Robbins, Wolf, & D’Agostino, 2001; Elias, Goodell, & Dore, 2012).  One such risk 

factor for cardiovascular events, diabetes mellitus (diabetes), has been shown to relate to 

cognitive function, cognitive decline, and dementia (Roriz-Filho et al., 2009).   

Diabetes is not only related to cognitive function, but also to other cardiovascular 

risk factors.  For example, individuals with diabetes have higher blood pressure (BP), 

higher levels of adiposity, and higher levels of inflammatory biomarkers (Grundy, 

Brewer, Cleeman, Smith, & Lenfant, 2004).  The associations between diabetes and 

cognitive function remain after statistical adjustment for these risk factors (M. F. Elias, P. 

K. Elias, Sullivan, Wolf, & D'Agostino, 2005; Dore, M. F. Elias, Robbins, P. K. Elias, & 

Nagy, 2009), suggesting that diabetes affects cognitive function independently of these 

variables.  However, the diabetic state may worsen the impact of other risk factors on 

cognitive function (Robbins, M. F. Elias, Budge, Brennan, & P. K. Elias, 2005). 

Another risk factor for cardiovascular mortality and morbidity, arterial stiffness, is 

also related to cognitive function (M. F. Elias, Robbins, Budge, Abhayaratna, Dore, & P. 

K. Elias, 2009), cognitive decline (Benetos, Watfa, Hanon, et al., 2012; Watson, Sutton, 
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Rosano, et al., 2011) and diabetes (see Stehouwer, Henry, & Ferreira, 2008 for review).  

Arteries stiffen with aging (Noon, Trischuk, Gaucher, Galante, & Scott, 2008), and this 

stiffening is accelerated in diabetic individuals (Benetos et al., 2002).  

Although the associations between diabetes and cognitive function, diabetes and 

arterial stiffness, and arterial stiffness and cognitive functioning have been explored in 

previous studies, the degree to which arterial stiffness mediates the association between 

diabetes and cognitive function is unclear.  Therefore, the primary aim of the current 

investigations is to examine the extent to which arterial stiffness mediates the association 

between diabetes and cognitive function.  

In Section 1.1, we review and describe the various types of diabetes (Section 

1.1.1), descriptive data related to the prevalence of type 2 diabetes (Section 1.1.2), and 

measures used to define type 2 diabetes in the context of an epidemiological study 

(Section 1.1.3) and discuss measures of type 2 diabetes available in the MSLS (Section 

1.1.4).  In Section 1.2, we explore the concept of arterial stiffness (Section 1.2.1) and 

describe the measures used to assess arterial stiffness (Section 1.2.2).   

Section 1.3 describes the associations among diabetes, arterial stiffness, and 

cognitive function.  First, the literature relating diabetes to lowered cognitive function is 

reviewed (Section 1.3.1), followed by a review of the literature relating increased arterial 

stiffness to lowered cognitive function (Section 1.3.2).  Finally, a theoretical mediational 

model is presented. In this model, the association between diabetes and lowered cognitive 

function is accounted for, at least in part, by pulse wave velocity, the gold standard index 

of arterial stiffness (Section 1.3.3). 
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Section 1.4 outlines hypotheses and objectives of the current study.  Section 2 

outlines the sample used (Section 2.1), procedures used for data collection (Section 2.2), 

cognitive variables used in the MSLS (Section 2.3), and concludes with a discussion of 

the data analysis methods used in the current study (Section 2.4). 

 

1.1. Type 2 Diabetes – Definition and Related Measures 

 

1.1.1. Subtypes of Diabetes 

 
 There are four distinct classes of diabetes mellitus: type 1 diabetes, type 2 

diabetes, gestational diabetes, and other types of diabetes caused by specific genetic 

defects, pancreatic disease, or drugs/chemicals (American Diabetes Association, 2012a).  

Type 1 diabetes was traditionally termed “insulin-dependent diabetes mellitus” or 

“juvenile-onset diabetes”, because of it usually occurs early in life, due to an autoimmune 

reaction resulting in β-cell destruction and a corresponding lack of insulin production.  

Treatment with insulin is thus required for survival.  In contrast, type 2 diabetes, in the 

past called “non-insulin-dependent diabetes mellitus” or “adult-onset diabetes” because it 

usually occurs later in life, is characterized not by lack of insulin production, but insulin 

resistance (decreased sensitivity of body tissues to insulin) and hyperglycemia (elevated 

levels of glucose in the blood).  The pathophysiology of gestational diabetes is similar to 

that of type 2 diabetes (glucose intolerance), but this form of diabetes improves or 

disappears following delivery.  Type 2 diabetes accounts for 90-95% of all diabetes 

cases, and risk factors for this class of diabetes include both modifiable (e.g. obesity, 

hypertension, physical inactivity) and non-modifiable (e.g. age, race/ethnicity, and family 
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history) factors (Deshpande, Harris-Hayes, & Schootman, 2008).  For these reasons this 

investigation focuses  on type 2 diabetes. 

 

1.1.2. Prevalence and Incidence of Type 2 Diabetes 

 In epidemiology, prevalence is defined as the number of cases at a specific point 

in time and incidence as the number of new cases. From 1980 to 2007, the prevalence of 

self-report of diagnosed diabetes in the U.S. increased from 2.5% to 5.9%.  From 1980 to 

1995, the prevalence of diabetes remained relatively stable at about 3%, then began to 

increase from 3.3% (8.6 million) in 1996 to 5.9% (17.4 million) in 2007. This increase 

does not seem to be completely due to the increasing age of the U.S. population in 

general (Centers for Disease Control, 2010) even though the prevalence of diabetes 

increases dramatically with advancing age (Centers for Disease Control and Prevention, 

2008). As previously noted, approximately 90-95% of these cases are type 2 diabetes.  

With respect to incidence, in 2007, 1.6 million individuals aged 20 years or older were 

newly diagnosed with diabetes (Centers for Disease Control and Prevention, 2008).   

 

1.1.3. Objective Measures Utilized in the Diagnosis of Type 2 Diabetes 

 
 Diabetes is typically diagnosed on the basis of plasma glucose levels.  

Specifically, subjects with fasting glucose levels greater than or equal to 126 mg/dl (7.0 

mmol/l) are considered to be diabetic (American Diabetes Association, 2012a).  This 

glycemic cut-point was established because retinopathy (microvascular pathology in the 

retina) was found to be relatively absent in individuals with glucose levels below these 
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cut-points.  Above these levels, prevalent retinopathy increases in a linear fashion 

(American Diabetes Association, 2012a). Previous research has shown that retinopathy is 

reflective of cerebrovascular abnormalities (Cooper et al., 2006). Although there are 

issues with self-report data, some studies of cognition have employed self-report of 

diabetes or history of diabetes from medical records (Gregg et al., 2000; Grodstein, Chen, 

Wilson, & Manson, 2001). The justification for these methods has been the fact that 

many patients accurately report their medical history of diagnosis.  However, it is 

estimated that 26% of diabetes cases go undiagnosed (Centers for Disease Control and 

Prevention, 2008). Therefore objective measures are preferable and will be used to define 

diabetes in the current study.  

Recently, a more long-term measure of glucose levels, glycated hemoglobin 

(hemoglobin A1C), has been used to assess glucose levels, and therefore risk of 

retinopathy associated with diabetes (American Diabetes Association, 2012b). This index 

is not directly applicable to the proposed work as the MSLS does not have data for 

hemoglobin A1C. However, well established measures widely used in clinical practice 

are used in the current study. 

  

1.1.4. Measures of Diabetes Available in the MSLS 

 
 The MSLS is a 35-year longitudinal study of hypertension and related 

cardiovascular risk factors as they relate to cognitive functioning (Elias, Goodell, 

Robbins, in press; Elias, Robbins, et al., 2004).  It consists of seven serial examinations 

(waves), with each examination separated by a mean difference of 4.5 years. However, 

until wave 6, the information obtained about diabetes comprised predominantly self-
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report measures of diagnosis, type, and medications from waves 1 to 5.  Beginning with 

wave 6 and continuing though wave 7, fasting blood samples were drawn at each wave of 

the study and a number of assays were performed, including plasma glucose levels.  

Therefore, for the current study, which involves wave 7 data, objective data (blood 

glucose level determinations) are used to ascertain diabetic versus non-diabetic status.  

 In the following section the concept of arterial stiffness (measured by pulse wave 

velocity) is introduced and methods of measurement are discussed. The importance of 

these definitions and this phenomenon in relation to the proposed work are then 

explained. 

 

1.2. Arterial Stiffness – Mechanisms and Measurement Methods. 

 

1.2.1. Arterial Stiffness – Mechanisms 

 
 During the course of “normal” aging, the human arterial system undergoes a 

process of arterial stiffening, that is, a decrease in distensibility of the large arteries (i.e. 

the aorta, carotid, iliac, femoral, and brachial arteries).  This process is driven by several 

factors, including the reduction of arterial elastin content, an increase in collagen content, 

and thickening of the arterial wall.  When the left ventricle contracts during systole, a 

pressure wave (or “pulse wave”) is created, and this pressure wave propagates along the 

aorta to distal arterial bifurcations.  The wave is then reflected back toward the heart.  In 

healthy younger individuals, this reflected wave is timed so that it augments diastolic 

blood pressure.  With the increased stiffness in older age, the pulse wave travels through 

the vasculature faster, and therefore is reflected back sooner, resulting in an augmentation 
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of systolic blood pressure.  This phenomenon manifests itself as an increase in pulse 

pressure (the difference between systolic and diastolic blood pressure) and a 

corresponding higher prevalence of isolated systolic hypertension in older individuals 

(Greenwald, 2007).  Figure 1.1 illustrates the differences in pulse waves between younger 

and older individuals. 

 

 

Figure 1.1.  Pulse pressure waveforms in younger (left) and older (right) individuals. 
 

 

 In addition to its relationship with aging, several pathological processes are 

related to increased arterial stiffness.  These include endothelial dysfunction, 

atherosclerosis, and smooth muscle cell function.  Age-related arterial stiffness is 

accelerated by disorders such as diabetes and hypertension and is predictive of 

cardiovascular morbidity and mortality (Wang, Keith, Struthers, Feuerstein, 2008). 
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1.2.2. Measures of Arterial Stiffness 

 
Due to the increase in pulse pressure observed with increased arterial stiffness, 

pulse pressure has been used as a measure of arterial stiffness in previous studies (P.K. 

Elias, M. F.. Elias, Robbins, & Budge, 2004).  However, as pulse pressure is derived 

from peripheral (i.e. brachial) blood pressure measures, it may not reflect stiffness of the 

central arteries (Laurent, Cockcroft, Van Bortel, et al., 2006).  Aortic pulse wave velocity 

(PWV), the speed of the pressure wave along the aorta, is considered the gold standard 

non-invasive measure of central arterial stiffness (Laurent et al., 2006), and is reliably 

assessed by applanation tonometry (see Section 2.2).  Additionally, the percentage 

increase of the systolic pressure attributable to the reflected wave can be determined (see 

Figure 1.1) through analysis of the pulse wave; this measure is referred to as the 

augmentation index (AIx).  Both of these measures have been used to measure arterial 

stiffness in previous studies (see review by O’Rourke & Hashimoto, 2008), and are 

available at wave 7 of the MSLS. 

 Due to the limitations of the augmentation index (Cheng, Tang, Cheng, Huang, 

Wang, 2007), this measure will only be used in secondary analyses in the current study.  

As PWV is the preferred measure of arterial stiffness (Laurent et al., 2006), this measure 

will be the primary predictor. The main limitation of PWV has been absence of 

normative data by age, but these data are now available from two major studies, 

(Reference Values for Arterial Stiffness Collaboration, 2010; M. F. Elias, Dore, et al., 

2011), including the Maine Syracuse Longitudinal Study.      
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 In the following section, previous research relating diabetes and arterial stiffness 

to cognitive function will be reviewed.  Additionally, the rationale for considering PWV 

as a possible mediator between diabetes and cognitive function will be discussed.  

 

1.3. Components of the Path from Diabetes to Cognitive Function 

1.3.1. Diabetes and Cognitive Function 

 
 The relationship between diabetes and cognitive function has been investigated 

extensively and a number of recent reviews are available (Biessels, Deary, & Ryan, 2008; 

Kodl & Seaquist, 2008; Roriz-Filho, Sa-Roriz, Rosset, et al., 2009; van den Berg, 

Reijmer, & Biessels, 2009; Wrighten, Piroli, Grillo, & Reagan, 2009).  Although some 

studies suggest that cognitive function is unrelated to diabetic status (e.g. 

Asimakopoulou, Hampson, & Morrish, 2002), a majority of studies indicate that diabetes 

is associated with lowered cognitive function (van den Berg, Kloppenborg, Kessels, 

Kappelle, & Biessels, 2009).  In the following section, the literature relating diabetes to 

cognitive function, including relevant MSLS investigations, will be reviewed.  Although 

diabetes has also been related to dementia (Cukierman, Gerstein, & Williamson, 2005), 

the proportion of persons with dementia in the MSLS study is very low (0.3%). 

Consequently, the current study and the remainder of the discussion on diabetes and 

cognitive function focus on cognitive performance in non-demented individuals. 

 In the following section, we describe cognitive abilities and domains associated 

with diabetes.  Here, the term “ability” refers to measures of performance indexed by a 

single test.  In contrast, the term “domain” is used to refer to performance indexed by 

multiple tests (i.e. composite scores derived from factor analysis). 
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1.3.1.1. Cognitive Abilities and Domains Associated with Diabetes. An 

association between diabetes and cognitive function was first described in 1922 (Miles & 

Root, 1922).  Diabetic individuals performed more poorly than non-diabetic comparison 

groups on tests of memory, arithmetic, and psychomotor speed.  Since then, there have 

been at least 278 studies on the topic and a wider variety of cognitive abilities have been 

measured.  Although the specific cognitive tests used vary across studies, some 

generalizations can be made concerning the cognitive abilities related to diabetes.  The 

most common finding is that diabetic subjects perform more poorly than nondiabetic 

subjects on tests of attention, verbal and non-verbal memory, and processing speed (Kodl 

& Seaquist, 2008; Roriz-Filho et al, 2009; van den Berg, Reijmer, & Biessels, 2009).  

There is less agreement on other cognitive abilities, but some investigators have reported 

that executive function (Kodl & Seaquist, 2008; Roriz-Filho et al, 2009), psychomotor 

speed, and complex motor function (Kodl & Seaquist, 2008) are lowered in diabetic 

individuals compared to non-diabetic individuals.  A pattern of cognitive domains 

consistent with the literature have been found in the MSLS. 

1.3.1.2. Findings from the MSLS. In the MSLS, cognitive function is indexed by 

several composite scores derived by principal components and factor analyses (M. F. 

Elias et al. 2006) and thus with the exception of one cognitive outcome variable (WAIS 

Similarities), assesses cognitive domains.  These include Working Memory, Verbal 

Memory, Visual-Spatial Memory/Organization, and Scanning and Tracking. The test 

battery also includes the Similarities subtest of the Wechsler Adult Intelligence Scale.  A 

Global composite was constructed from each of the tests making up the composites and 

the Similarities Test. Similarities is always used as a separate measure as it loaded at an 
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approximately equal level  on each of the other composite scores (factors) during the 

factor analytic process.  These composites have been used in multiple studies and are 

now incorporated into the literature and thus a new factor analysis was not done in this 

investigation (Elias, M. F., Robbins, et al., 2004).  The tests and the composite scores are 

summarized in Section 2.3. 

Figure 1.2 shows results in a recent study (Dore, Elias, Robbins, Elias, 2009) of 

diabetes and cognitive performance.  Diabetic study participants exhibited lower 

performance (compared with non-diabetic participants) on Similarities, and all of the 

Composite score measures, with the exception of the Verbal Memory composite (see 

Figure 1.2), although the trend was for diabetic subjects to also perform more poorly on 

this composite.  These data, along with many previous findings discussed in the previous 

section provide strong evidence that diabetes is associated with multiple domains of 

cognitive function. 

1.3.1.3. APOE Genotype as an Effect Modifier. Cardiovascular disease risk 

factors other than diabetes have also been shown to relate to cognitive function.  Of these 

risk factors, presence of at least one apolipoprotein E (APOE) ε4 allele, is of particular 

interest for the current study, as this factor has been shown to modify the association 

between diabetes and cognitive function. 

The presence of at least one apolipoprotein E (APOE) ε4 allele is associated with 

dementia and lowered levels of cognition (Farrer, Cupples, Haines, et al., 1997; Small, 

Rosnick, Fratiglioni, et al., 2004). Aside from serving as a CVD risk factor in its own 

right, presence of the APOE ε4 allele has been shown to modify the effects of other CVD 

risk factors (e.g., M. F. Elias et al., 2006), including diabetes, on cognitive function 
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Figure 1.2. Adjusted means and standard errors illustrating the relationship between 
diabetes and cognitive outcome variables in the MSLS.  Means are adjusted for diabetes, 
APOE group, age, education, sex, race/ethnicity, SBP, smoking, triacylglycerols, chronic 
kidney disease, BMI, alcohol consumption, depressed mood, CRP, prevalent CVD, and 
tHcy.  All p-values for comparisons between non-diabetic and diabetic subjects are p< 
.05, with the exception of Verbal Memory (p= .25). Adapted from Dore, M. F. Elias, 
Robbins, & P. K. Elias (2009). 
 
VM = Verbal Memory 
WM = Working Memory 
VSOM = Visual-Spatial Memory/Organization 
ST = Scanning & Tracking 
SIM = Similarities 
MMSE = Mini-Mental State Examination 
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(Haan, Shemanski, Jagust, et al., 1999; Dore, Elias, Robbins, Elias, & Nagy, 2009).  A 

recent study using data from the MSLS found that diabetic APOE ε4 carriers exhibited 

lower levels of cognitive performance, although non-diabetic APOE ε4 carriers and non-

carriers did not differ in terms of performance on cognitive measures.  That is, lowered 

cognitive performance was observed in diabetic subjects, and this effect was more 

pronounced in those with at least one APOE ε4 allele. 

 

1.3.2. Arterial Stiffness and Cognitive Functioning 

 
 As is true for other risk factors for CVD, higher levels of arterial stiffness have 

been shown to relate to lowered levels of cognitive function (M. F. Elias, Robbins, et al., 

2009), and more accelerated cognitive decline (Laurent, Cockroft, van Bortel,et al., 2006; 

Waldstein, Rice, Thayer, Najjar, Scuteri, & Zonderman, 2008; Benetos, Watfa, Hanon, et 

al., 2012; Watson, Sutton, Rosano, et al., 2011) in older, but not younger individuals.  A 

recent study using data from wave 7 of the MSLS (M. F. Elias, Robbins, et al., 2009) 

found that arterial stiffness, as indexed by PWV, interacted with age in relation to 

multiple cognitive domains.  The combination of older age and higher PWV was found to 

be associated with the lowest level of cognitive performance.  Similarly, in the Baltimore 

Longitudinal Study of Aging, Waldstein, Rice, Thayer, Najjar, Scuteri, & Zonderman 

(2008) found an interaction between PWV and cognitive change, such that individuals 

with the highest PWV exhibited the most pronounced rates of cognitive decline. 

Therefore, all statistical analyses involving arterial stiffness (described in later sections) 

involved examination of interactions with age.  
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1.3.3. Arterial Stiffness as a Mediator between Diabetes and Cognitive Performance 

 
 Diabetes is associated with increased cardiovascular disease, including peripheral 

arterial disease, coronary heart disease, and cerebrovascular disease (Kannel & McGee, 

1979).  The vascular nature of the chronic complications of diabetes is not surprising, 

given that the prevalence of retinal microvascular lesions forms the basis for defining 

diabetes based on circulating glucose levels (American Diabetes Association, 2012a).   

 The association between diabetes and increased arterial stiffness is well-

established (see Stehouwer et al., 2008 for review).  Increased atherosclerotic plaque 

deposition, exacerbated by the increased inflammatory (i.e. immune) response 

characteristic of the diabetic state is one mechanism which leads to increased arterial 

stiffness.  Chronic hyperglycemia results in the accelerated formation of advanced 

glycation endproducts (AGEs), promoting the formation of oxidized low density 

lipoproteins (LDL; Basta, Schmidt, & De Caterina, 2004), which is more atherogenic 

than normal LDL (Xu, He, & King, 2005).  In addition, increased oxidative stress 

(increased production of reactive oxygen species), possibly due to increased AGE 

formation (Stitt, Jenkins, & Cooper, 2002) or resulting directly from chronic 

hyperglycemia (Brownlee, 2001), may decrease bioavailability of nitric oxide (a 

vasodilator) and activate the protein kinase C pathway, resulting in maintenance of a 

chronic inflammatory state (Jenkins, Hill, & Rowley, 2008).  In addition to factors 

leading to increased atherosclerotic plaque deposition, diabetes is also associated with 

increased arterial calcification, further increasing arterial stiffness (Chen & Moe, 2003).  

  Increased systemic inflammation (Teunissen et al., 2003), arterial calcification 

(Rosano, Naydeck, Kuller, Longstreth, & Newman, 2005), oxidative stress (Berr, 
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Richard, Roussel, & Bonithon-Kopp, 1998), and increased atheroma deposition (Romero 

et al., 2009) have all been associated with decreased levels of cognitive performance, 

brain infarction, and higher severity of white matter lesions.  The extent to which arterial 

stiffness (perpetuated by the above mechanisms) mediates the association between 

diabetes and cognitive function is unclear; the primary objective of the proposed study is 

to address this question.  In the next section, we discuss these objectives in relation to 

specific hypotheses. 

                                                              b 

 
 
 
                                                              a 
 
                                                                                                                       c 
 
 
 
 
 
 
 
Figure 1.3. Simplified mediational model. 
 

1.4. Study Hypotheses in Relation to Objectives. 

 
To our knowledge, there are no studies that have investigated the extent to which 

arterial stiffness mediates the association between diabetes and cognitive function. As can 

be seen in Figure 1.3, this mediational model consists of two important paths: 1) the 

direct association between diabetes and cognitive function (represented by path a); and 2) 

the indirect association between diabetes and cognitive function through PWV 

(represented by paths b and c).  Given that cognitive function is the outcome of interest, 

Diabetes Arterial Stiffness 

Cognitive Function 
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before analyzing a full path model, the association between diabetes and cognitive 

function, and the association between PWV and cognitive function will be examined.  

The following section describes the above objectives and related hypotheses in more 

detail. 

 

Objectives of the proposed work together with associated hypotheses were 

 as follows: 

 

1. To examine the association between diabetes and cognitive function at wave 7 of 

the MSLS, as modified by APOE genotype.   

 

Hypothesis:  Previous associations observed at wave 6 of the MSLS (Dore et al., 

2009) will be replicated at wave 7.   

Rationale. This step is necessary to establish this association for the later path 

analysis aspect of the study (see hypothesis 3).  Additionally, this step will be used to 

establish covariates to be used in later path analyses. It is also important because 

previous work with the MSLS data have used Wave 6 data.  

 

2. To determine whether previously reported associations between arterial stiffness and 

cognitive function in cross-sectional studies will be observed at wave 7 of the MSLS. 

 

Hypothesis: Consistent with a previous MSLS study, arterial stiffness (as measured 

by pulse wave velocity) will interact with age such that the lowest cognitive 
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performance levels will be observed for older individuals.  Most importantly, using 

new methods for assessing moderated mediation (discussed in Section 2.4), we will 

determine the ages at which this negative association between pulse wave velocity 

and cognitive function is observed. 

 

3.  To determine, using path analysis, whether arterial stiffness mediates the association 

between diabetes and cognitive functioning using cross-sectional data at wave 7. 

Additionally, to examine whether age, a strong predictor of PWV, moderates the 

effect of arterial stiffness as an intervening variable between diabetes and cognitive 

function.   

 

 Hypothesis. Arterial stiffness (defined as PWV in primary analyses) will mediate the 

association between diabetes and cognition as indicated by path analysis; specifically, 

there will be an indirect effect observed for diabetes through PWV on cognitive 

function.  Additionally, this relationship will be modified by age and APOE genotype, 

such that the association between arterial stiffness and cognitive function (and 

therefore the indirect path from diabetes through PWV to cognitive function) will be 

of higher magnitude for older individuals with an APOE-ε4 allele. 
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2. METHODS 

 

2.1. Sample and Design 

 
 Cross-sectional data were taken from the seventh serial repetition (wave 7) of the 

Maine-Syracuse Longitudinal Study, a community-based study of CVD risk factors and 

cognition begun in Syracuse, New York in 1974.  Recruitment and data collection 

procedures have been described in detail previously (Elias et al., 2006).  The MSLS is an 

open-enrollment longitudinal study in which new individuals are recruited at each wave. 

Wave 7 was the first and only wave in which PWV was measured. 

 Of the 626 participants (24 to 93 years of age) with PWV at wave 7, participants 

were excluded in the following sequence: 1) history of acute stroke (n= 14); 2) probable 

dementia (n= 2); 3) PWV error of estimate >0.20 (n= 20); and missing APOE genotype 

data (n= 44). The PWV error of estimate is a measure of the quality of the PWV 

measurements, with lower values being a sign of higher-quality PWV assessments.  

Measurements with PWV error of estimate >0.20 are not considered suitable for analysis. 

The final sample consisted of 546 participants.  We did not exclude persons with 

diagnosed mild cognitive impairment because we wished to retain the full range of 

variation in continuously distributed test scores, while eliminating persons who showed 

major decrements in performance level and who were often able to complete only few, if 

any, of the tests in our battery (i.e. those with dementia). Acute stroke can have 

devastating effects on cognition and serves as a major confounder and thus is excluded in 

many studies of CVD risk factors in relation to cognitive performance (M. F. Elias et al., 

2012; M. F. Elias et al., in press).  
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 History of acute stroke, defined as occurrence of a focal neurological deficit of 

acute onset persisting more than 24 hours, was based on self-report and record review 

indicating a diagnosis of acute stroke.  The clinical diagnosis of dementia, as in the case 

in the Framingham Heart Study (M. F. Elias et al., 2000) was based on MSLS expert 

committee review (neuropsychologists, social psychologists, geriatric physician) of 

cognitive data including the MMSE and confirmatory medical records including 

significant other informant report. The National Institute of Neurological and 

Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders 

Association criteria were used for this diagnosis (McKhann, Drachman, Folstein, et al., 

1984). 

 

2.2. Procedures 

 Participants completed the Center for Epidemiological Studies Depression Scale 

(CES-D; Radloff, 1977) within 1 week prior to reporting to the MSLS laboratory 

(Syracuse, New York) for neuropsychological testing.  Following a fast from midnight, a 

blood sample was drawn in the morning and was followed by a light breakfast and 

interview (including medical history).  Subsequently, after supine rest for 15-minutes, 

five reclining, five standing, and five sitting automated blood pressure (BP) 

measurements (GE DINAMAP 100DPC-120XEN; GE Healthcare) were obtained 

sequentially with a 5-minute interval between each set of measurements.   

Neuropsychological testing followed the BP measurements.  Tests were presented 

in the same order for each individual because of the necessity of uniform sequencing and 

standard presentation of the Wechsler Adult Intelligence Scale subtests, the Wechsler 
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Memory Scale subtests, trails A and B and other measures. Brief rest periods were given 

whenever participants appeared to be in need of a rest before continuing. All assay 

methods used to derive data on independent variables and covariates have been described 

previously (Elias et al, 2006). 

Diabetes was defined by treatment with insulin, oral glucose-lowering agents, or 

by fasting glucose level of 126 mg/dl (7 mmol/l) or higher. Objective data on duration of 

diabetes were not available to the study, but persons with diabetes at wave 7 (objectively 

defined) were asked to estimate the duration of their diabetes and this was used as a 

descriptive variable, as is the case in most previous work.    

Pulse wave velocity was assessed noninvasively in a supine position, using the 

SphygmoCor system (AtCor Medical) with applanation tonometry (M. F. Elias, Robbins, 

et al., 2009; M. F. Elias, Dore, et al., 2011). Carotid-femoral path length was measured as 

the difference between the surface distances joining the suprasternal notch, the umbilicus, 

and the femoral pulse, as well as the suprasternal notch and the carotid pulse. Carotid-

femoral transit time was estimated in 8 to 10 sequential ECG-gated femoral and carotid 

waveforms as the average time difference between the onset of the femoral and carotid 

waveforms. The foot of the pulse wave was identified using the intersecting tangent 

method. PWV was calculated as the carotid-femoral path length divided by the carotid-

femoral transit time (O’Rourke, Pauca, & Jiang, 2001). This is a noninvasive and 

reproducible method to determine arterial stiffness (Laurent, Cockcroft, Van Bortel, et 

al., 2006). 

Age and education are measured in years. Ethnicity includes African American, 

Hispanic, Asian American, Caucasian, and American Indian.  Because of the small 
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number of minority participants (~15%), and the small number of non-African-American 

minorities in particular (~3%), this variable is coded as African American vs. other. 

 Standard APOE genotyping used polymerase chain reaction and restriction 

enzyme digest with HhaI (Hixson & Vernier, 1990). Serum creatinine was determined 

using a two-point rate test type on a Johnson and Johnson VITROS instrument (Ortho 

Clinical Diagnostics). Coefficients of variation for these procedures were less than 5.0%.  

Estimated glomerular filtration rate was derived from the four-variable (serum creatinine, 

age, sex and ethnicity) Modification of Diet in Renal Disease study equation (Levey AS, 

Bosch JP, Lewis JB et al., 1990; Rule, Gusak, Pond, et al., 2004). Chronic renal disease 

(yes/no) was defined as estimated glomerular filtration rate <60 ml min–1 (1.73 m2)–1. 

Determinations of high sensitivity C-reactive protein (CRP), plasma homocysteine 

(tHcy), triglycerides and glucose were performed as previously described (Elias et al., 

2006). Mean systolic BP (SBP) and diastolic BP (DBP) were determined by taking the 

average of 15 BP measurements (described previously). Additional covariates used in 

various analyses included: BMI (kg/m2), self-report of number of cigarettes smoked 

per week, alcohol consumption (g/week), and self-reported presence of CVD confirmed 

by medical records and/or treatment. As in the Framingham Heart Study (Elias et al., 

2004), CVD was defined as the presence of any one of the following: (1) myocardial 

infarction (3.7%); (2) coronary artery disease (7.5%); (3) heart failure (1.4%); (4) angina 

pectoris (3.6%); (5) transient ischemic attack (1.9%). 
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2.3. Cognitive Tests and Domains 

 We employed the Similarities subtest from the Wechsler Adult Intelligence Scale, 

and four composite test scores derived from a previous factor analysis of individual tests 

in the MSLS battery for this study population (Elias et al., 2006). The four composite 

scores were Visual–Spatial Memory and Organization (Visual Reproductions—

Immediate and Delayed, Matrix Reasoning, Block Design, Object Assembly, and the 

Hooper Visual Organization Test), Scanning and Tracking (Trail-Making A and B, Digit 

Symbol Substitution, and Symbol Search), Verbal Memory (Logical Memory—

Immediate and Delayed, and the Hopkins Verbal Learning Test) and Working Memory 

(Digit Span Forward and Backward, Letter–Number Sequencing, and Controlled Oral 

Word Associations). The Similarities subtest was used as a separate measure because it 

loaded in an approximately equal manner on multiple composite scores in the previous 

factor analysis. In addition to the factor analyses, reducing the number of outcome 

variables, we followed a protection rule in which none of the results for individual tests 

would be interpreted in the absence of a significant result for the Global composite score.  

More detailed descriptions of the individual tests are given in Table 2.1. 

Consistent with previous MSLS studies, scores (time in seconds) for Trails A and B were 

log transformed.  Then, to construct the composite scores, the individual tests related to 

each composite were expressed in z scores and added (Elias et al., 2006). The composite 

scores were again transformed to z scores. Composite scores were used to decrease error



 

 
 

Table 2.1. Descriptions of the cognitive tests contributing to each composite score indexing a cognitive domaina.  
Test Composite/ 

Tests Included in the Composite 
Cognitive Ability Measured 

Verbal Episodic Memory                                            

 Logical Memory-Immediate Recall b Immediate memory, verbal 

 Logical Memory-Delayed Recall b Delayed memory, verbal 

 Hopkins Verbal Learning Test Verbal learning and memory 

Visual-Spatial Organization/Memory                        

 
Visual Reproductions-Immediate 
Recall b 

Immediate recall, visual memory, and visual-spatial problem solving 

 Visual Reproductions-Delayed Recall b Delayed recall, visual memory and visual-spatial problem solving 

 Matrix Reasoning c Abstract reasoning and pattern recognition 

 Block Design d Visual-spatial perception, organization and construction 

 Object Assembly d Speed of visual-spatial organization 

 Hooper Visual Organization Visual-spatial organization; some demands on executive function 

Scanning and Tracking  

 Trail Making A e Visual scanning and tracking; concentration and attention 

 Trail Making B e Trails A plus demands on executive function abilities 

 Digit Symbol Substitution d Psychomotor performance 

 Symbol Search c Visual processing speed 

Working Memory  

 

23



 

 
 

Table 2.1. (cont.) 
Test Composite/ 

Tests Included in the Composite 
Cognitive Ability Measured 

Working Memory  

 Digit Span Forward d Attention and concentration 

 Digit Span Backward d Attention, concentration, and working memory 

 Letter-Number Sequence c Information processing while holding information in memory 

 Controlled Oral Word Associations Verbal fluency and executive functioning 

Executive Function  

 Trail Making B e Trails A plus demands on executive function abilities 

 Controlled Oral Word Associations Verbal fluency and executive functioning 

Similaritiesd Verbal intelligence and abstract reasoning 
aThe tests employed in each composite score/domain define the abilities measured by that domain. 

bOrigin Wechsler Memory Scale-Revised 

cOrigin Wechsler Adult Intelligence Scale III 

dOrigin Wechsler Adult Intelligence Scale 

eOrigin Halstead-Reitan Neuropsychological Test Battery 
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 associated with analyses involving multiple related cognitive outcomes and to permit us 

to examine theoretically relevant cognitive domains. These composite scores were 

derived from principal components analyses and factor analyses; this procedure is 

outlined in a previous study (M. F. Elias, et al., 2006). 

This linear transformation results in a mean of zero and an SD of 1.00 for each 

test and enables expression of regression coefficients for the cognitive measures in terms 

of SD units. The previously identified composites (factors) (Elias et al., 2006) were 

confirmed via replication of the factor analysis for the present sample. In addition to 

composite scores, a Global composite score was calculated by averaging the z scores for 

all individual tests (excluding the MMSE). The MMSE was considered to be a separate 

measure of mental status.  

The University of Maine Institutional Review Board approved the protocol for 

this investigation. Informed consent for data collection was obtained from all 

participants. 

2.4. Statistical Methods 

 The major statistical analyses consisted of 3 phases: 1) covariate selection from 

candidate covariates for use in extended models; 2) analysis of the bivariate relationships 

forming the component paths using basic and extended covariate models; and 3) analysis 

of the complete path model. 

2.4.1. Covariate Selection 

Previous empirical data, theory  and statistical methods were used in conjunction 

to select covariates.  Beginning with a list of candidate covariates theoretically and 
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empirically relevant to the associations among diabetes, arterial stiffness, and cognitive 

function, final models were obtained by following 2 steps: 1) potential covariates which 

did not show a relationship with diabetes, the primary predictor of interest, were dropped; 

and 2) a stepwise backward elimination was performed, with a basic set of covariates 

fixed in the model, and any covariates not meeting the inclusion criteria (p< .10) were 

excluded from the models. These steps were followed with the goal of obtaining the most 

parsimonious covariate set and to limit loss of statistical power and sensitivity in path 

analysis which is associated with the use of an excessive number of covariates.  

The basic covariate set, age, education, gender, race/ethnicity, height, weight, 

heart rate, and mean arterial pressure (MAP) was used in all analyses.  Additional 

candidate covariates included additional variables which were found to differ between 

diabetic and non-diabetic individuals. A candidate variable may be defined as one that is 

considered for a covariate set based on a bivariate relationship with diabetes but subject 

to elimination given the need to avoid multicollinearity.  Where more than one method of 

assessing a covariate was available, alternate measures of these covariates were included 

in sensitivity analyses, i.e. secondary and tertiary analysis done  to test robustness of the 

statistical effect with different definitions of parameters or different models.  Candidate 

covariates included components of the metabolic syndrome (elevated blood pressure, 

dyslipidemia, and adiposity), renal function, smoking, alcohol consumption, depressed 

mood, cardiovascular disease, plasma homocysteine, heart rate, and antihypertensive 

drug treatment. 
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2.4.2. Regression Analyses 

 Following preliminary analyses and covariate selection, multiple linear regression 

analyses (SAS PROC GLM) were employed to examine the cross-sectional associations 

between 1) diabetes (independent variable) and cognitive function (dependent variable) 

and 2) pulse wave velocity (independent variable) and cognitive function (dependent 

variable). These analyses involved first using a basic covariate set (age, education, 

gender, race/ethnicity, height, weight, heart rate, MAP) and then forming an extended 

covariate set, adding variables surviving the covariate selection procedures outlined 

above.  All covariates within a covariate set were entered simultaneously with the 

independent variable. 

 As previous research from the MSLS has shown that the relationship between 

diabetes and cognitive function is modified by APOE genotype, diabetes × APOE 

genotype interactions were assessed.  Similarly, previous MSLS studies have shown that 

age modifies the association between PWV and cognitive function, PWV × age 

interactions were also examined.  As the PWV × age interaction involves two continuous 

variables, the nature of this interaction was probed using both classic methods (i.e. 

splitting the distribution of age into tertiles), as well as a new method outline by Hayes 

(2012).  This method involves examining the path model outlined in Figure 2.1 and 

computing predicted slopes for PWV at each value of age, using the Johnson-Neyman 

technique.  This method has the advantage of keeping both components of the interaction 

term as continuous variables, rather than grouping them using arbitrary cutpoints.   



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. Path model used to assess the conditional (moderated by age and APOE) indirect effect of diabetes on cognitive function 
through PWV. Hayes (2012) model 22 
 
Conditional indirect effect of diabetes on cognition through PWV = (a1 + a3[APOE]) (b1 + b3[age] ) 
Conditional direct effect of diabetes on cognition = c'1 + c'3[APOE] 
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Further, this method also allows determination of the values of age for which there is a 

significant relationship between PWV and cognitive function, without the loss of power 

associated with other methods. 

2.4.3. Path Analyses 

 Following the assessment of diabetes × APOE and PWV × age interactions in 

relation to cognitive function, these interactions were combined into the more 

comprehensive path model shown in Figure 2.1.  It should be noted that in discussing this 

model, the term “effect” is used not with the implication of a causative relationship 

between predictors and outcomes, but rather to use terminology consistent with path 

analysis. In this model, there are two effects of interest: 1) the direct effect of diabetes in 

relation to cognitive function and 2) the indirect effect of diabetes through PWV on 

cognitive function.  This model also includes both the diabetes × APOE interaction and 

the PWV × age interaction. As can be seen in the footnote to Figure 2.1, the direct effect 

of diabetes on cognitive function is conditional on APOE genotype.  Similarly, the 

indirect effect of diabetes on cognitive function is conditional on both APOE and age.  

Specifically, the conditional direct effect of diabetes on cognitive function is the 

combination of the diabetes → cognitive function path (c′1) and the diabetes × APOE → 

cognitive function path (c′3).  Similarly, the conditional indirect effect is a combination of 

the diabetes → PWV path (a1), the diabetes × APOE → PWV path (a3), the PWV → 

cognitive function path (b1), and the PWV × age → cognitive function path (b3).   

Using this model, conditional direct effects for diabetes were computed for each 

APOE group, and conditional indirect effects for diabetes were computed for each APOE 
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group.  As conditional indirect effects involved continuous age, two methods were used 

to probe these effects: 1) examination of the indirect effects at the 5th, 25th, 50th, 75th, and 

95th percentiles of age, and 2) examination of indirect effects across the complete 

observed range of age.  All standard errors and confidence intervals were computed using 

bootstrapping (5000 samples), as recommended by the author of the macro (Hayes, 

2012). 
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3. RESULTS 

 

3.1. Demographic and health variables 

 
 Table 3.1 shows demographic and health variables for non-diabetic and diabetic 

individuals separately.  Non-diabetic and diabetic individuals differed on all variables 

with the exception of age, smoking habits, DBP, mild renal dysfunction, depressed mood, 

and APOE genotype.  Diabetic individuals tended to have higher SBP, higher BMI and 

waist circumference, higher triglycerides, lower HDL cholesterol, and were more likely 

to be hypertensive. Interestingly, diabetic individuals showed lower total and LDL 

cholesterol levels, most likely due to the higher proportion of diabetic participants treated 

for elevated cholesterol, possibly due to an emphasis on diabetes control.   

 

3.2. Covariate Selection 

 
  Table 3.1 shows all possible variables for consideration for backward 

elimination, i.e. possible confounders.  Of these, the following differed between non-

diabetic and diabetic individuals: alcohol consumption, triglycerides, plasma 

homocysteine, serum creatinine, CES-D score, history of CVD, treatment with 

antihypertensive medications, and treatment with lipid-lowering medications. We did not 

adjust for antidiabetic medications, because 91% of the diabetic individuals were treated 

for diabetes at Wave 7 of the MSLS.  Further, because the majority (89%) of 
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Table 3.1.  Demographic information and health characteristics 
 Non-diabetic Diabetic  
Variable (n = 462) (n = 84) p 
Age (years), M (SD) 63.9 (12.7) 65.3 (9.9) 0.2871

Education (years), M (SD) 14.9 (2.7) 13.6 (2.9) <0.001 
Alcohol (oz/wk), M (SD)2 1.4 (2.4) 0.8 (2.0) 0.0151

Cigarettes per week, M (SD)2 6.7 (33.5) 9.0 (37.6) 0.562 
Total cholesterol (mg/L), M (SD) 191.9 (37.9) 165.5 (38.9) <0.001 
LDL-cholesterol (mg/L), M (SD) 115.4 (32.1) 92.4 (28.6) <0.001 
HDL-cholesterol (mg/L), M (SD) 54.9 (15.7) 44.9 (12.0) <0.0011

Triglycerides (mg/L), M (SD)2 108.9 (63.4) 146.9 (130.1) 0.0101

Glucose (mg/L), M (SD) 92.3 (10.8) 131.5 (38.2) <0.0011

Plasma homocysteine (μmol/L), M (SD)2 9.9 (3.2) 11.2 (3.9) 0.0071

Serum creatinine (μmol/L), M (SD)2 1.0 (0.2) 1.2 (0.6) 0.0081

Systolic blood pressure (mmHg), M (SD) 128.3 (20.0) 135.3 (19.8) 0.003 
Diastolic blood pressure (mmHg), M (SD) 76.8 (9.7) 78.3 (11.2) 0.210 
Mean arterial pressure (mmHg), M (SD) 94.0 (11.9) 97.3 (12.8) 0.020 
Body mass index (kg/m2), M (SD) 29.1 (6.0) 32.6 (7.9) <0.0011

Waist circumference (cm), M (SD) 92.4 (15.1) 103.6 (14.6) <0.001 
CES-D score, M (SD)2 7.5 (7.2) 9.7 (8.9) 0.0371

Duration of diabetes (years), M (SD) - 10.6 (9.0) - 
    
Women, n (%) 302 (65.4) 37 (44.1) <0.001 
African-American, n (%) 46 (10.0) 17 (20.2) 0.014 
Depressed mood, n (%) 52 (11.4) 15 (17.9) 0.105 
Drinker, n (%) 239 (51.7) 25 (29.8) <0.001 
Smoker, n (%) 37 (8.0) 7 (8.3) 0.831 
History of CVD, n (%)2 51 (11.0) 18 (21.4) 0.012 
Mild renal dysfunction, n (%) 126 (27.3) 27 (32.1) 0.358 
Hypertensive, n (%) 265 (57.4) 73 (86.9) <0.001 
Antihypertensive medications, n (%) 230 (49.8) 72 (85.7) <0.001 
Cholesterol medications, n (%) 149 (32.3) 55 (65.5) <0.001 
APOE-ε4 allele, n (%) 137 (29.7) 26 (31.0) 0.797 

Note: t-tests were used for continuous variables; Fisher’s exact test was used for 
categorical variables 
 
1unequal variances; Satterthwaite approximation used. 
2candidate variables for backward elimination procedure 
 
M = mean; SD = standard deviation 
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 hypertensive individuals were treated for hypertension at Wave 7 we could not use 

treatment for hypertension as a covariate.  Moreover, many investigators argue that it is 

the observed blood pressure level, not the medicated blood pressure level, that is critical 

in the destructive effects of blood pressure on cognitive function (Elias et al., 2004).  

Controlled clinical trials have been mixed with regard to the improvement in cognitive 

function with treatment for hypertension.  Where treatment has affected cognitive 

function, effects have been modest, if not trivial (Elias, Goodell, & Dore, 2012). 

 The remaining variables listed above were defined as candidate variables and 

added to a model including the major predictors and covariates in the current study 

(diabetes, PWV, age, education, gender, ethnicity, height, weight, heart rate, and MAP). 

Stated differently, the basic model above was fixed in the regression model, and then a 

backward elimination (α = 0.10) was performed using the candidate variables as defined 

above. 

 Table 3.2 shows variables surviving the backward elimination (remaining 

significant at p< .10) for each of the cognitive outcome variables.  CES-D, alcohol 

consumption, triglycerides, and CVD were each related to at least one cognitive outcome.  

Therefore, these variables were added to the basic model to form the extended model.  

Thus, the following two models were used for the following analyses: (1) the basic model 

(age + education + gender + ethnicity + height + weight + heart rate + MAP), and (2)  the 

extended model (basic + CES-D + alcohol consumption + triglycerides + CVD). 
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Table 3.2. Variables surviving backward elimination (p = 0.10) for each of the cognitive 
outcome variables. 

Cognitive Outcome Predictor b SE p 
Global CES-D -0.017 0.004 <0.001 
Verbal Memory Alcohol consumption 0.030 0.016 0.070 
VSOM CES-D -0.017 0.005 <0.001 
Scanning & Tracking CES-D -0.021 0.004 <0.001 
Working Memory Triglycerides  -0.0010 0.0005 0.046 
Similarities CES-D -0.014 0.005 0.009 
Executive Function CES-D -0.011 0.005 0.027 
 CVD 0.207 0.113 0.068 

Full backward elimination model1:diabetes, PWV, age, education, gender, ethnicity, 
height, weight, heart rate, MAP, alcohol consumption, triglycerides, CES-D, CVD, tHcy 
 
1The following variables were fixed in the backward elimination model: diabetes, PWV, 
age, education, gender, ethnicity, height, weight, heart rate, and MAP were fixed in the 
model. 
 
 
Table 3.3. Regression coefficients (b) and standard errors (SE) for the diabetes × APOE 
interaction. 

 Basic Model Extended Model 
Cognitive Outcome b SE b SE 
Global -0.489** 0.180 -0.437* 0.178 
Verbal Memory -0.482* 0.216 -0.470* 0.217 
VSOM -0.213 0.194 -0.174 0.194 
Scanning & Tracking -0.474** 0.182 -0.403* 0.178 
Working Memory -0.498* 0.225 -0.447* 0.226 
Similarities -0.600** 0.216 -0.562** 0.217 
Executive Function -0.353 0.211 -0.278 0.210 

**p< 0.01; *p< 0.05 
 
Basic model = age, education, sex, ethnicity, heart rate, height, weight, MAP  
Extended model = age, education, sex, ethnicity, heart rate, height, weight, MAP, alcohol 

consumption, triglycerides, CES-D, CVD 
 

3.3. Diabetes × APOE Genotype Interaction 
 
 Table 3.3 shows regression coefficients for the diabetes × APOE genotype 

interaction in relation to cognitive outcome measures.  This interaction was significant 

for all cognitive outcomes, with the exception of the Visual-Spatial Organization and 
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 Memory (VSOM) and Executive Function composites.  This pattern of results was the 

same with adjustment for the basic and extended models. 

 The nature of the diabetes × APOE interaction, with adjustment for the basic 

model, is shown in Figure 3.1.  Diabetic APOE-ε4 carriers performed lower than all other 

groups on the Global (p< 0.01), Working Memory (p< 0.01), Verbal Memory (p< 0.05), 

Scanning and Tracking (p< 0.01) composites and Similarities (p< 0.05).  No other group 

differences were observed for any cognitive outcome variables (all p> 0.23).  The pattern 

of results was the same with adjustment for the extended model. 

 Additionally, we examined the association between the diabetes × APOE 

genotype interaction and the individual tests within the VSOM and EF composites.  This 

was done in order to determine if the diabetes × APOE interaction was associated with 

any of the individual tests.  For VSOM, the interaction effect was not related to any of the 

individual tests (p range = 0.08-0.76).  For EF, the interaction term was related to Trails 

B (p= 0.005), but not COWA (p= 0.44).  

3.4. PWV × Age Interaction 

  

 As can be seen in Table 3.4, the PWV × age interaction was significant for all 

cognitive outcome measures, with the exception of the Working Memory composite.  

This was true for the basic and extended models. 

 Table 3.5 illustrates the nature of the PWV × age interaction with results of 

separate regression analyses by age tertile (<59 years, 59 – 69 years, and >69 years).  

This approach represents the more classic method of probing interactions with continuous 

variables, i.e. the association between PWV and cognitive function was examined within 

age groups.  For younger individuals, a generally positive association between PWV and 
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Figure 3.1.  Adjusted (least squares) means for cognitive outcome measures by diabetic status and APOE group for: (a) the Global 
composite; (b) the Working Memory composite; (c) the Verbal Memory composite; (d) the Similarities subtest; and (e) the Scanning 
and Tracking composite.  Means are adjusted for age, education, gender, ethnicity, height, weight, heart rate, and MAP (basic model).  
Cross-hatched bars, no APOE-ε4; white bars, APOE-ε4.  Error bars represent standard error of the mean 
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Table 3.4. Regression coefficients (b) and standard errors (SE) for the PWV × age 
interaction. 
 Basic Model Extended Model 
Cognitive Outcome b SE b SE 
Global -0.0037*** 0.0010 -0.0035*** 0.0010 
Verbal Memory -0.0037** 0.0012 -0.0036** 0.0012 
VSOM -0.0039*** 0.0010 -0.0036*** 0.0010 
Scanning & Tracking -0.0027** 0.0010 -0.0023* 0.0010 
Working Memory -0.0018 0.0012 -0.0018 0.0012 
Similarities -0.0028* 0.0012 -0.0026* 0.0012 
Executive Function -0.0038** 0.0011 -0.0035** 0.0011 

 
Basic model = age, education, sex, ethnicity, heart rate, height, weight, MAP  
 
Extended model = age, education, sex, ethnicity, heart rate, height, weight, MAP, alcohol 

consumption, triglycerides, CES-D, CVD 

 

cognitive outcome measures was observed.  For the middle age tertile, PWV slopes were 

close to zero.  A negative association between PWV and cognitive outcomes was 

observed for the oldest age tertile.  Figures 3.2 – 3.4 show the relationship between PWV 

and the Global composite for the <59, 59-69, and >69 age groups, respectively. 

 Figure 3.5 shows the nature of the interaction using the Johnson-Neyman 

technique for the basic model. It will be recalled that this method, which estimates PWV 

slopes and 95% confidence intervals for the Global composite for all ages within the 

range of the data generated, provides PWV slopes for the full age range. It may be seen 

that PWV was significantly and positively related to the Global composite for individuals 

under 51 years of age, and was significantly and negatively related to the Global 

composite for individuals above 71 years of age.  These associations are also illustrated 

in Figure 3.6, which shows predicted Global Composite z-scores by age and PWV.  The 

pattern of results was similar for other cognitive outcomes, and with adjustment for the 
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Table 3.5.  Regression coefficients (b) and standard errors (SE) expressing the association 
between PWV and cognitive function by age tertiles (separate regression analyses done 
for each age group). 

  Age Group 
Cognitive Outcome  age< 591 Age 59 – 692 Age > 693 
Global b 0.046 -0.003 -0.043* 
 SE 0.038 0.027 0.019 
Verbal Memory b 0.089* -0.005 -0.045* 
 SE 0.043 0.033 0.023 
VSOM b 0.071† 0.011 -0.045* 
 SE 0.040 0.028 0.022 
Scanning & 
Tracking 

b -0.010 -0.011 -0.031 

 SE 0.039 0.027 0.020 
Working Memory b -0.014 -0.016 -0.023 
 SE 0.052 0.037 0.021 
Similarities b 0.073 0.007 -0.013 
 SE 0.048 0.031 0.024 
Executive Function b 0.007 -0.013 -0.032 
 SE 0.048 0.032 0.021 

 
†p< 0.10; *p< 0.05; **p< 0.01; ***p<0.001 
 
1n = 175 

2n = 176 

3n = 195 
 
model: PWV, age, education, sex, ethnicity, heart rate, height, weight, MAP 
 
NOTE: Similar [but non-significant] results are obtained for the younger individuals 
when age<50 is used (n = 69) 
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Figure 3.2.  Relationship between PWV and Global Composite residuals for individuals 
under 59 years of age.  Adjusted for age, education, sex, ethnicity, heart rate, height, 
weight, MAP
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Figure 3.3.  Relationship between PWV and Global Composite residuals for individuals 
59 – 69 years of age.  Adjusted for age, education, sex, ethnicity, heart rate, height, 
weight, MAP 
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Figure 3.4.  Relationship between PWV and Global Composite residuals for individuals 
over 69 years of age.  Adjusted for age, education, sex, ethnicity, heart rate, height, 
weight, MAP
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Figure 3.5. PWV slopes and 95% confidence intervals by age estimated using the Johnson-Neyman technique for the Global 
Composite (basic model).
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Figure 3.6. Association between PWV and the Global Composite, as modified by age. 
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extended model. Since positive relations between PWV and cognition were obtained 

under the age of 51, other indices of arterial stiffness were examined to see if this same 

pattern of results would be obtained. 

 In an additional analysis we examined the association between the PWV × age 

interaction and the individual tests within the Working Memory composite, in order to 

determine if the PWV × age interaction was associated with any of the individual tests 

within this composite.  The PWV × age interaction was related to Letter-Number 

Sequencing (p= 0.03) and COWA (p= 0.02), but not Digit Span Forward (p= 0.76) or 

Digit Span Backward (0.75). 

 

3.5. Other Indices of Arterial Stiffness 
 
 Table 3.6 shows statistical main effects of the various measures of arterial 

stiffness, including PWV, in relation to cognitive outcome measures.  Other than PWV, 

none of the other measures of arterial stiffness were related to the Global composite.  The 

only significant main effects observed were for AIx (Scanning and Tracking) and aPP 

(VSOM). 

 Table 3.7 shows results for the arterial stiffness × age interaction.  Similar to 

results for the main effects, other than PWV, none of the arterial stiffness measures 

interacted significantly with age.  The only significant results were for bPP × age 

(Working Memory and Executive Function), and aPP × age (Executive Function).  Given 

that none of the arterial stiffness measures satisfied the requirements for inclusion in 

analyses (i.e. none were significantly related to the Global Composite), the analyses 



 

 
 

Table 3.6. Main effects - Regression coefficients (b) and standard errors (se) expressing the association between measures of arterial 
stiffness and cognitive functioning 

  Arterial Stiffness Measure 
Test  PWV AIx AP bPP aPP 
Global b -0.029* 0.003 -0.003 -0.004 -0.005 
 se 0.014 0.004 0.006 0.003 0.003 
Verbal Memory b -0.022 -0.000 -0.003 0.001 -0.002 
 se 0.017 0.005 0.007 0.004 0.004 
Visual-Spatial Organization and Memory b -0.021 0.002 -0.007 -0.004 -0.008* 
 se 0.015 0.004 0.006 0.003 0.003 
Scanning and Tracking b -0.033* 0.008* 0.005 -0.006† -0.002 
 se 0.014 0.004 0.006 0.003 0.003 
Working Memory b -0.026 -0.002 -0.008 -0.004 -0.004 
 se 0.018 0.005 0.007 0.004 0.004 
Similarities b -0.007 0.002 0.007 0.005 0.003 
 se 0.017 0.005 0.007 0.004 0.004 
Executive Function b -0.033* 0.005 0.002 -0.003 -0.002 
 se 0.017 0.004 0.007 0.004 0.004 

 
†p< 0.10; *p< 0.05 
 
model = [arterial stiffness variable], age, education, sex, ethnicity, height, weight, heart rate, brachial MAP 
 
PWV: pulse wave velocity 
AIx: augmentation idex 
AP: augmentation pressure 
bPP: brachial pulse pressure 
aPP: aortic pulse pressure 
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Table 3.7. Arterial stiffness × age interactions - Regression coefficients (b) and standard errors (se) for the arterial stiffness × age 
interaction. 

  Arterial Stiffness Measure 
Test  PWV AIx AP bPP aPP 
Global b -0.0037*** 0.0001 -0.0003 -0.0003 -0.0003 
 se 0.0010 0.0002 0.0003 0.0002 0.0002 
Verbal Memory b -0.0037** 0.0000 -0.0001 0.0000 -0.0001 
 se 0.0012 0.0003 0.0004 0.0002 0.0002 
Visual-Spatial Organization and Memory b -0.0039*** 0.0002 -0.0000 -0.0002 -0.0001 
 se 0.0010 0.0003 0.0003 0.0002 0.0002 
Scanning and Tracking b 0.0027** 0.0000 -0.0005 -0.0003 -0.0003† 
nh se 0.0010 0.0002 0.0003 0.0002 0.0002 
Working Memory b -0.0018 0.0001 -0.0003 -0.0005* -0.0003 
 se 0.0012 0.0003 0.0004 0.0002 0.0002 
Similarities b -0.0028* -0.0001 -0.0002 -0.0002 -0.0002 
 se 0.0012 0.0003 0.0004 0.0002 0.0002 
Executive Function b -0.0038** -0.0001 -0.0006 -0.0005* 0.0005*
 se 0.0011 0.0003 0.0003 0.0002 0.0002

 
†p< 0.10; *p< 0.05; **p< 0.01; ***p<0.001 
 
model = [arterial stiffness variable], age, education, sex, ethnicity, height, weight, heart rate, brachial MAP 
 
 
PWV: pulse wave velocity 
AIx: augmentation index 
AP: augmentation pressure 
bPP: brachial pulse pressure 
aPP: aortic pulse pressure 
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involving the full path model (discussed in the following section) include only PWV as a 

measure of arterial stiffness. 

 

3.6. Mediational Analyses 

 
While path analysis does not establish causal associations between or among 

variables, the term “effect” is used here to be consistent with its statistical use and the 

vocabulary of path analysis.   

Figure 3.7 shows individual component paths for the basic model with the Global 

Composite as the outcome.  From these component paths, the total conditional direct and 

indirect effects may be calculated.  The direct effect conditional on APOE genotype is 

given by the following combination of the c1
'

 (diabetes → Global Composite) path and  

the c3
'

 path (Diabetes × APOE → Global Composite) paths: conditional direct effect = 

c1
'

 + c3
'

[APOE genotype].  That is, the direct effect of diabetes is conditional on APOE 

genotype.  For example, for the APOE-ε4 carriers, the direct effect of diabetes would be 

(within rounding error): -0.0558 + (-0.4975)(1) = -0.5533. 

The conditional indirect effect is calculated in a similar fashion.  However, the 

indirect effect is conditional on both APOE genotype and age, and is given by: [ a1  + 

a3 (APOE)][ b1  + b3 (age)].  As an example, the indirect effect of diabetes on the 

Global Composite (through PWV) for a 73-year-old APOE-ε4 carrier is (within rounding 

error): [1.3281 + 2.0285(1)][0.2798 + (-0.0041)(73)] = -0.0655. 

 The total effect would be the combination of the direct and indirect effects.  For 

the examples given above, the total effect would be: -0.5533 + (-0.0655) = -0.619.  



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. Simplified path model used to assess the conditional (moderated by age and APOE) indirect effect of diabetes on cognitive 
function through PWV. Hayes (2012) model 22 
 
Conditional indirect effect of diabetes on cognition through PWV = (a1 + a3[APOE]) (b1 + b3[age] ) 
Conditional direct effect of diabetes on cognition = c'1 + c'3[APOE] 
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Therefore, a 73-year-old diabetic APOE-ε4 carrier would be expected to perform 0.619 

SD below the mean on the Global Composite.   

Component paths relevant to the direct and indirect effects for other cognitive 

outcomes are given for the basic model in Table 3.8 and for the extended model in Table 

3.9.  This information is given for the reader’s information; the direct and indirect effects 

are calculated and provided in Tables 3.10-3.13 (discussed below). 

Conditional direct effects (moderated by APOE genotype) and conditional 

indirect effects (moderated by APOE genotype and age) for the basic model are given in 

Tables 3.10 and 3.11.  As can be seen in Table 3.10, none of the direct effects of diabetes 

on cognitive function were statistically significant for the no-APOE-ε4 group.  

Conversely, direct effects of diabetes on cognitive function for the APOE-ε4 group were 

statistically significant for all cognitive outcome variables (Table 3.11) 

 This same pattern of results was observed with adjustment for the extended 

covariate set (Tables 3.12 and 3.13).  However, the direct effect of diabetes on VSOM no 

longer remained statistically significant for the APOE-ε4 group. Effects remained for the 

Global, Verbal Memory, Visual-Spatial Organization/Memory, Working Memory, and 

Executive function composites, as well as for Similarities.  

Conditional indirect effects of diabetes through PWV (effects moderated by age 

as well as APOE) on cognitive function were positive for the younger individuals, and 

negative for older individuals.  This was true for both the basic (Tables 3.10 and 3.11) 

and extended (Tables 3.12 and 3.13) models.  

 Although positive indirect effects between diabetes and cognitive function were 

observed for the younger individuals, it is important to note that the net or total effect  



 

 
 

Table 3.8. Basic model component path coefficients (b) and standard errors (se) of the direct effects1 of diabetes on cognitive function 
and conditional indirect effects2 of diabetes on cognitive function through PWV. 
  Direct Effect Component Path3 Indirect Effect Component Path4 
Cognitive Outcome  c1

' c3
' a1 a3 b1 b3 

Global b -0.0558 -0.4975** 1.3281*** 2.0285** 0.2798*** -0.0041***
 se 0.1043 0.1789 0.3734 0.6431 0.0717 0.0010 
Verbal Memory b -0.0024 -0.4983* 1.3205*** 2.0346** 0.2797** -0.0041***
 se 0.1262 0.2165 0.3730 0.6427 0.0868 0.0012 
VSOM b -0.1145 -0.2290 1.3205*** 2.0346** 0.2881*** -0.0042***
 se 0.1132 0.1941 0.3730 0.6427 0.0778 0.0011 
Scanning & Tracking b 0.0501 -0.4568* 1.3205*** 2.0346** 0.1858* -0.0029** 
 se 0.1063 0.1823 0.3730 0.6427 0.0731 0.0010 
Working Memory b -0.0903 -0.4993* 1.3205*** 2.0346** 0.1516 -0.0023 
 se 0.1326 0.2275 0.3730 0.6427 0.0912 0.0012 
Similarities b 0.0034 -0.6408** 1.3281*** 2.0285** 0.2423** -0.0033** 
 se 0.1270 0.2177 0.3734 0.6431 0.0873 0.0012 
Executive Function b -0.1359 -0.3563 1.3205*** 2.0346** 0.2807*** -0.0042***
 se 0.1233 0.2115 0.3730 0.6427 0.0848 0.0011 

***p< 0.001; **p< 0.01; *p<0.05 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP 
 
Conditional indirect effect of diabetes on cognition through PWV = [a1 + a3(APOE)][b1 + b3(age)] 
Conditional direct effect of diabetes on cognition = c'1 + c'3(APOE) 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV 

3direct effect component path: c'1 = diabetes → cognitive variable; c'3 = diabetes × APOE → cognitive variable 

4indirect effect component path: a1 = diabetes → PWV; a3 = diabetes × APOE → PWV; b1 = PWV → cognitive variable;  
b1 = PWV × age → cognitive variable 
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Table 3.9. Extended model component path coefficients (b) and standard errors (se) of the direct effects1 of diabetes on cognitive 
function and conditional indirect effects2 of diabetes on cognitive function through PWV. 
  Direct Effect Component Path   Indirect Effect Component Path 
Cognitive Outcome  c1

' c3
' a1 a3 b1 b3 

Global b -0.0276 -0.4420* 1.1598** 2.1487*** 0.2552*** -0.0038***
 se 0.1040 0.1777 0.3633 0.6218 0.0714 0.0010 
Verbal Memory b 0.0188 -0.4812* 1.1487** 2.1542*** 0.2684** -0.0039***
 se 0.1274 0.2179 0.3630 0.6216 0.0875 0.0012 
VSOM b -0.0976 -0.1862 1.1487** 2.1542*** 0.2627*** -0.0038***
 se 0.1133 0.1938 0.3630 0.6216 0.0778 0.0011 
Scanning & Tracking b 0.0729 -0.3796* 1.1487** 2.1542*** 0.1504* -0.0025* 
 se 0.1046 0.1789 0.3630 0.6216 0.0718 0.0010 
Working Memory b -0.0552 -0.4509* 1.1487** 2.1542*** 0.1471 -0.0022 
 se 0.1334 0.2282 0.3630 0.6216 0.0916 0.0012 
Similarities b 0.0211 -0.6041** 1.1598** 2.1487*** 0.2240* -0.0030* 
 se 0.1278 0.2184 0.3633 0.6218 0.0877 0.0012 
Executive Function b -0.0985 -0.2822 1.1487** 2.1542*** 0.2600** -0.0039***
 se 0.1226 0.2094 0.3630 0.6216 0.0829 0.0011 

 
***p< 0.001; **p< 0.01; *p<0.05 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP, alcohol consumption, triglycerides, CES-D, CVD 
 
Conditional indirect effect of diabetes on cognition through PWV = [a1 + a3(APOE)][b1 + b3(age)] 
Conditional direct effect of diabetes on cognition = c'1 + c'3(APOE) 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV 
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Table 3.10. Results for the no APOE-ε4 group, basic model. Path coefficients (b) and standard errors (se) representing conditional 
direct effects1 of diabetes on cognitive function and conditional indirect effects2 of diabetes on cognitive function through PWV. 
  Conditional 

Direct Effect 
Conditional Indirect Effect at Age Values 

Cognitive Outcome   49 years 55 years 64 years 73 years 80 years 
Global b -0.056 0.104* 0.071* 0.022 -0.027 -0.066* 
 se 0.104 0.054 0.041 0.025 0.022 0.031 
Verbal Memory b -0.002 0.107* 0.075* 0.027 -0.021 -0.059* 
 se 0.126 0.056 0.043 0.027 0.026 0.036 
VSOM b -0.115 0.110* 0.077* 0.027 -0.023 -0.061* 
 se 0.113 0.060 0.046 0.029 0.024 0.032 
Scanning & Tracking b 0.050 0.056 0.033 -0.002 -0.037* -0.064* 
 se 0.106 0.042 0.033 0.024 0.021 0.027 
Working Memory b -0.090 0.054 0.037 0.010 -0.017 -0.038 
 se 0.133 0.054 0.043 0.030 0.025 0.029 
Similarities b 0.003 0.108* 0.082* 0.043 0.004 -0.027 
 se 0.127 0.062 0.049 0.032 0.025 0.031 
Executive Function b -0.136 0.101* 0.068* 0.018 -0.031 -0.070* 
 se 0.123 0.053 0.041 0.027 0.023 0.032 

 
***p< 0.001; **p< 0.01; *p<0.05; †p<0.06 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV 
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Table 3.11. Results for the APOE-ε4 group, basic model. Path coefficients (b) and standard errors (se) representing direct effects1 of 
diabetes on cognitive function and conditional indirect effects2 of diabetes on cognitive function through PWV 
  Conditional 

Direct Effect 
Conditional Indirect Effect at Age Values 

Cognitive Outcome   49 years 55 years 64 years 73 years 80 years 
Global b -0.553*** 0.262* 0.179* 0.055 -0.069 -0.166* 
 se 0.158 0.114 0.090 0.060 0.052 0.067 
Verbal Memory b -0.501** 0.272* 0.191* 0.068 -0.054 -0.149* 
 se 0.191 0.123 0.098 0.068 0.061 0.077 
VSOM b -0.343* 0.279* 0.195* 0.069 -0.057 -0.155* 
 se 0.172 0.129 0.102 0.069 0.059 0.075 
Scanning & Tracking b -0.407* 0.142 0.084 -0.005 -0.093* -0.162* 
 se 0.161 0.099 0.081 0.059 0.053 0.062 
Working Memory b -0.590** 0.138 0.092 0.025 -0.043 -0.096 
 se 0.201 0.128 0.105 0.074 0.061 0.068 
Similarities b -0.637*** 0.274* 0.208* 0.109 0.009 -0.068 
 se 0.192 0.131 0.106 0.074 0.061 0.071 
Executive Function b -0.492** 0.256* 0.172* 0.046 -0.080 -0.177* 
 se 0.187 0.115 0.092 0.064 0.056 0.068 

 
***p< 0.001; **p< 0.01; *p<0.05; †p<0.06 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV 
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(i.e.. the sum of the direct and indirect effect) of diabetes is either close to zero (as in the 

no APOE-ε4 group) or negative (as in the APOE-ε4 group), consistent with analyses 

discussed previously. 

 

3.7. Secondary Analyses 

 A recent study (Schillaci et al., 2007) showed that a higher venticular contractility 

rate is a main determinant of PWV in younger individuals.  In the current data, ejection 

duration, a measure of ventricular contractility rate, was modestly correlated with PWV 

in the youngest (age < 59) and middle (59-69) age tertiles (r= -0.22 and -0.28, 

respectively).  Therefore, in secondary analyses, we additionally adjusted PWV for 

ejection duration and the ejection duration × age interaction. The pattern of results with 

these additional variables in the model was the same as that outlined above. 

 Previous research has also suggested that although PWV may be a useful measure 

of arterial stiffness in older individuals, it may not be a reliable measure of arterial 

stiffness in younger individuals, with AIx being the preferred measure for individuals 

under 50 years of age (McEniery, Yasmin, Hall, et al., 2005).  Therefore, we combined 

PWV and AIx into a single arterial stiffness “composite” variable by standardizing each 

measure and using standardized AIx for individuals under 50 years of age, and using 

standardized PWV for individuals 50 and older.  The resulting observed relationship 

between the arterial stiffness composite, age, and the Global Composite is shown in 

Figure 3.8.  For older individuals, higher arterial stiffness was related to lower cognitive 

function (p< 0.05).  However, no association was observed for younger individuals (p> 

0.05).  When the arterial stiffness variable was used in the overall path model, indirect 



 

 
 

Table 3.12. Results for the no APOE-ε4 group, extended model. Path coefficients (b) and standard errors (se) representing direct 
effects1 of diabetes on cognitive function and conditional indirect effects2 of diabetes on cognitive function through PWV. 
  Conditional 

Direct Effect 
Conditional Indirect Effect at Age Values 

Cognitive Outcome   49 years 55 years 64 years 73 years 80 years 
Global b -0.028 0.081* 0.054* 0.015 -0.025 -0.056* 
 se 0.104 0.049 0.036 0.022 0.020 0.030 
Verbal Memory b 0.019 0.087* 0.060* 0.019 -0.022 -0.054* 
 se 0.127 0.052 0.040 0.025 0.025 0.035 
VSOM b -0.098 0.086* 0.059* 0.019 -0.020 -0.051* 
 se 0.113 0.054 0.041 0.026 0.021 0.029 
Scanning & Tracking b 0.073 0.035 0.018 -0.008 -0.033 -0.053* 
 se 0.105 0.035 0.028 0.021 0.020 0.025 
Working Memory b -0.055 0.047 0.032 0.009 -0.013 -0.031 
 se 0.133 0.049 0.040 0.028 0.023 0.027 
Similarities b 0.021 0.089* 0.068* 0.036 0.005 -0.020 
 se 0.128 0.056 0.044 0.029 0.022 0.028 
Executive Function b -0.099 0.079* 0.053* 0.013 -0.027 -0.057* 
 se 0.123 0.046 0.035 0.022 0.022 0.031 

 
***p< 0.001; **p< 0.01; *p<0.05; †p<0.06 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP, alcohol consumption, triglycerides, CES-D, CVD 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV  
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Table 3.13. Results for the APOE-ε4 group, extended model. Path coefficients (b) and standard errors (se) representing direct effects1 
of diabetes on cognitive function and conditional indirect effects2 of diabetes on cognitive function through PWV. 
  Conditional 

Direct Effect 
Conditional Indirect Effect at Age Values 

Cognitive Outcome   49 years 55 years 64 years 73 years 80 years 
Global b -0.470** 0.230* 0.155* 0.042 -0.071 -0.159* 
 se 0.158 0.109 0.087 0.060 0.052 0.064 
Verbal Memory b -0.462* 0.249* 0.171* 0.054 -0.063 -0.154* 
 se 0.194 0.117 0.094 0.067 0.062 0.077 
VSOM b -0.284 0.246* 0.170 0.056 -0.059 -0.148* 
 se 0.173 0.125 0.100 0.068 0.057 0.070 
Scanning & Tracking b -0.307* 0.099 0.051 -0.022 -0.095* -0.152* 
 se 0.159 0.096 0.079 0.058 0.052 0.060 
Working Memory b -0.506* 0.134 0.091 0.026 -0.039 -0.089 
 se 0.203 0.129 0.105 0.075 0.061 0.068 
Similarities b -0.583** 0.253* 0.193* 0.104 0.014 -0.056 
 se 0.194 0.128 0.103 0.073 0.061 0.072 
Executive Function b -0.381* 0.221* 0.147* 0.037 -0.074 -0.160* 
 se 0.185 0.106 0.085 0.060 0.053 0.065 

 
***p< 0.001; **p< 0.01; *p<0.05 
 
covariates = age, education, gender, ethnicity, heart rate, height, weight, MAP, alcohol consumption, triglycerides, CES-D, CVD 
 
1conditional on APOE; not mediated by PWV 

2conditional on APOE and age; mediated by PWV
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Figure 3.8. Association between the arterial stiffness composite and the Global Composite, as modified by age. 
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effects from diabetes through PWV to cognition were observed for older individuals 

only.  All significant indirect effects were in a negative direction.    

 

3.8. Summary of Results 

 Significant interactions were observed between diabetes and APOE such that the 

diabetic APOE-ε4 carriers exhibited the lowest performance, compared with all other 

groups.  PWV × age interactions were also observed such that the most negative PWV 

slopes in relation to cognitive performance were observed for the oldest individuals.  

However, contrary to expectation, this trend was in the opposite direction for younger 

individuals (under approximately 50 years of age). 

 For the overall path analysis, significant conditional direct associations between 

diabetes and cognitive outcomes were observed for the APOE-ε4 carriers only. 

Conditional indirect associations between diabetes and cognitive outcomes  were 

observed for younger (under ~50 years of age) and older (over ~70-80 years of age).  

However these effects were in opposite directions, with a positive indirect effect in 

younger individuals, and a negative indirect effect in younger individuals.  These effects 

were also larger in the APOE-ε4 carriers. Other indices of arterial stiffness, augmentation 

index, augmentation pressure, brachial pulse pressure, and central pulse pressure, were 

examined with respect to direct and indirect effects, but this examination did not clarify 

relations between arterial stiffness and cognitive function because there were many fewer 

significant indirect effects for these variables.  While the complex indirect effects of 

PWV are of theoretical interest, the magnitude of these effects was relatively small. 
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4. DISCUSSION 

 

4.1. Summary of Most Pertinent Findings 

Previous studies have examined the association between type 2 diabetes and 

cognitive function (Kodl & Seaquist, 2008); diabetes and PWV (Cameron & Cruikshank, 

2007); and PWV and cognitive function (Elias et al., 2009; Waldstein et al., 2008). The 

current study builds on this research and examines the associations between diabetes, 

PWV, and cognitive function simultaneously.  The major finding in the current study is 

that PWV (a gold standard index of arterial stiffness) partially mediates the association 

between diabetes and cognitive function.  Although, as expected, direct associations 

between diabetes and cognitive function were observed with indirect effects included in 

the model.  With respect to relative effect sizes, where these direct associations were 

observed (i.e. in the APOE-ε4 group), they were approximately three times the magnitude 

of the indirect effects.  Additionally, this diabetes → PWV → cognitive function 

association is modified by age and APOE genotype.  In the following sections, we 

elaborate on the specifics of these findings and discuss each of them.  First, we will 

discuss findings related to APOE genotype as an effect modifier of the relationship 

between diabetes and cognitive function.  Then, we turn to age as an effect modifier of 

the relationship between PWV and cognitive function.  Finally, we discuss how these 

findings are inter-related in the context of a path model. 
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4.2. Diabetes, APOE Genotype, and Cognitive Function 

APOE was found to be an effect modifier of the association between diabetes and 

cognitive function.  In fact, deficits in cognitive performance were observed only for 

those with diabetes and at least one APOE- ε4 allele.  This finding is consistent with a 

previous study using data from Wave 6 of the MSLS (Dore et al., 2009).  Previous 

investigations have also found APOE genotype to modify the associations of other 

cardiovascular risk factors on cognitive function.  APOE-ε4 has been shown to modify 

the association of homocysteine with cognitive function (Elias et al., 2008); peripheral 

vascular disease, carotid atherosclerosis, and diabetes with cognitive decline (Haan, 

Shemanski, Jagust, et al., 1999); and diabetes with dementia (Irie, Fitzpatrick, Lopez, et 

al., 2008; Peila, Rodriguez, & Launer, 2002).   

There are several mechanisms that may explain this association.  Hyperglycemia 

in the cerebral vasculature is related to endothelial dysfunction (Messier & Gagnon, 

2009).  The APOE gene codes for the apoE protein, which is a cholesterol transport 

protein produced mainly in the liver and brain (Mahley, 1988).  ApoE plays an important 

role not only in cholesterol transport, but also in amyloid-β (Aβ) clearance, neuronal 

repair, and mediation of Aβ-related neurotoxicity (Bu, 2009).  The apoE-ε4 isoform in 

deficient in all of these areas, compared with apoE-ε2 and apoE-ε3 (Bu, 2009).   

Additionally, the APOE-ε4 allele has been associated with increased cerebral amyloid 

angiopathy (CAA; Thal et al., 2010), as well as increased white matter hyperintensities 

and smaller brain volume in those with cerebrovascular disease (Decarli, Reed, Miller et 

al., 1999).  This enhanced Aβ deposition in the cerebral vasculature observed in APOE-ε4 

carriers may interact synergystically with the increased vascular pathology (Puri, 
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Kataoka, Uno, & Nicholls, 2012) and increased white matter hyperintensities (Novak et 

al., 2006) observed in diabetic individuals, ultimately resulting in lower cognitive 

function .  Thus, diabetes is related to increased vascular pathology, and possession of 

one or more APOE-ε4 alleles may either increase the degree of this pathology, or 

exacerbate any effects of this pathology on cognitive performance. 

Clinically, it may be important to treat diabetic APOE-ε4 carriers differently than 

diabetic APOE-ε4 non-carriers.  That is, diabetic APOE-ε4 carriers may need more 

aggressive treatment with glucose lowering medications.  CVD risk factors related to 

diabetes, including PWV, may be important treatment targets to minimize cognitive 

decrement in these individuals.  Previous research has determined that treatment with 

antidiabetic agents improves both cognitive function (Ryan et al., 2006) and endothelial 

function (Mather, Verma, & Anderson, 2001).  More recently, Lim et al. (2011) found 

that treatment with a low-calorie liquid diet reversed pancreatic pathology in diabetic 

individuals, resulting in normalized glucose values after one week.  Although this 

research needs to be replicated in larger samples, it would be interesting to see whether 

this same protocol would improve arterial stiffness and cognitive performance. These 

considerations may be especially important for older APOE-ε4 carriers.   

We now turn to the next major association in the current study: the association 

between PWV and cognitive function as modified by age.  

 

4.3. PWV, Age, and Cognitive Function 

 An inverse association between PWV and cognitive function was observed in 

older individuals.  That is, the poorest performance was observed in the oldest individuals 
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with the highest PWV.  This is consistent with previous studies of PWV and cognitive 

function (Elias et al., 2009) and longitudinal cognitive decline (Waldstein et al., 2008).  

However, a positive association was observed between PWV and cognitive function for 

younger individuals. This is an unexpected and novel finding and has not been addressed 

in the literature. 

 There could be several reasons why this observation is unique to the current 

study.  First, studies of CVD risk factors, including PWV, have focused on older 

individuals (e.g. Fujiwara et al., 2005; Benetos et al., 2012), most likely due to the fact 

that arterial stiffness develops over time (Greenwald, 2007), and therefore is much more 

common in older adults (Reference Values for Arterial Stiffness’ Collaboration, 2010; 

Elias et al. 2011) and with increasing age beyond middle age.  This emphasis on aging 

arteries is very possibly why the association between PWV and cognitive function has 

rarely been studied in younger individuals. 

There are several possible explanations as to why PWV is positively related to 

cognitive function in younger individuals.  One possibility is that the positive association 

between PWV and cognitive function for younger individuals may, like left ventricular 

hypertrophy (Gaasch & Zile, 2011), represent an initially adaptive result of vascular 

remodeling, which ultimately, but not initially, has adverse physiological consequences. 

It is possible, however, that PWV is a reliable measure of arterial stiffness in 

older, but not younger, individuals.  Consistent with this explanation, Schillaci et al. 

(2007) found PWV to be related to arterial stiffness in older individuals. However, in 

younger individuals, PWV was related to the speed of ventricular contraction, rather than 

arterial stiffness per se.  The best index of ventricular contraction, although indirect, 
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available in the current data is ejection duration.  Using this measure, we examined 

whether: 1) ejection duration is correlated with PWV in younger individuals, and 2) if 

positive associations between PWV and cognitive function in younger individuals are 

attenuated with adjustment for ejection duration. We found ejection duration to be 

modestly correlated with PWV in younger individuals; however, with adjustment for 

ejection duration, the pattern of results remained the same, i.e., PWV was related 

positively to cognitive function in younger individuals.  Consequently, the ventricular 

contraction hypothesis as an explanation for the unexpected finding in younger subjects 

was rejected.  

Some previous research has also suggested AIx to be a better measure of arterial 

stiffness in younger individuals, as compared with PWV (McEniery et al., 2005).  When 

we substituted AIx for PWV as the arterial stiffness measure in younger individuals only, 

no association between arterial stiffness and cognitive function was observed. This is not 

an unexpected finding because of the low prevalence of arterial stiffness below the age of 

(Reference Values for Arterial Stiffness’ Collaboration, 2010; Elias et al. 2011). 

However, it will be noted that AIx was also a poorer predictor of cognitive performance, 

compared with PWV, in the older subjects in this study.  

These analyses do not fully address reasons for the positive association between 

PWV and cognitive function in younger individuals. Further study is needed examining 

structural vascular correlates of PWV in younger individuals.  
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4.4. From Diabetes to PWV to Cognitive Deficit 

 When the diabetes × APOE genotype and PWV × Age effects were combined in a 

meditational path model, similar results to those outlined above were obtained.  Direct 

(non-mediated) associations between diabetes and cognitive function were observed for 

APOE-ε4 carriers only.  Diabetic APOE-ε4 carriers performed approximately half a 

standard deviation below the mean on all cognitive measures.  In addition to direct 

effects, indirect effects (through PWV) were observed for all cognitive outcomes, with 

the exception of the Working Memory composite.  

 In addition to being moderated by APOE genotype, these indirect effects were 

also moderated by age.  For younger individuals, positive indirect associations were 

observed.  As diabetes was consistently related positively to PWV, the sign of these 

indirect associations was determined by the PWV × age interaction.  Therefore, for 

reasons discussed above, these positive associations should be interpreted with caution.  

When AIx was used as the measure of arterial stiffness in these individuals, indirect 

effects were observed for older individuals only.  It should also be noted that even if 

these positive indirect effects in younger individuals are valid, the overall associations 

between diabetes and cognitive function variables were observed to be near zero (for the 

no-APOE-ε4 group) or negative (for the APOE-ε4 group).   

  Conversely, negative indirect effects were observed for older individuals.  In 

these individuals, the associations between diabetes and cognitive function were partially 

mediated by PWV.  This was true for all cognitive measures, with the exception of 

Working Memory and Similarities.  This suggests that associations between diabetes and 

cognitive function are in part mediated by arterial stiffness.   All of these indirect 
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associations were moderated by APOE genotype in addition to age.  That is, all 

associations were magnified in those with at least one APOE-ε4 allele. 

 The association between diabetes and increased arterial stiffness is well-

established (see Stehouwer et al., 2008 for review).  Increased atherosclerotic plaque 

deposition, exacerbated by the increased inflammatory (i.e. immune) response 

characteristic of the diabetic state is one mechanism which leads to increased arterial 

stiffness.  Chronic hyperglycemia results in the accelerated formation of advanced 

glycation endproducts (AGEs), promoting the formation of oxidized low density 

lipoproteins (LDL; Basta, Schmidt, & De Caterina, 2004), which is more atherogenic 

than normal LDL (Xu, He, & King, 2005).  In addition, increased oxidative stress 

(increased production of reactive oxygen species), possibly due to increased AGE 

formation (Stitt, Jenkins, & Cooper, 2002) or resulting directly from chronic 

hyperglycemia (Brownlee, 2001), may decrease bioavailability of nitric oxide (a 

vasodilator) and activate the protein kinase C pathway, resulting in maintenance of a 

chronic inflammatory state (Jenkins, Hill, & Rowley, 2008).  In addition to factors 

leading to increased atherosclerotic plaque deposition, diabetes is also associated with 

increased arterial calcification, further increasing arterial stiffness (Chen & Moe, 2003). 

 Higher levels of arterial stiffness, in turn, have been shown to relate to lowered 

levels of cognitive function (M. F. Elias, Robbins, et al., 2009), and more accelerated 

cognitive decline (Laurent, Cockroft, van Bortel,et al., 2006; Waldstein, Rice, Thayer, 

Najjar, Scuteri, & Zonderman, 2008; Benetos, Watfa, Hanon, et al., 2012; Watson, 

Sutton, Rosano, et al., 2011) in older, but not younger individuals.  A recent study using 

data from wave 7 of the MSLS (M. F. Elias, Robbins, et al., 2009) found that arterial 



 

66 
 

stiffness, as indexed by PWV, interacted with age in relation to multiple cognitive 

domains.  The combination of older age and higher PWV was found to be associated with 

the lowest level of cognitive performance, whereas lower age and PWV were associated 

with better performance.  Similarly, in the Baltimore Longitudinal Study of Aging, 

Waldstein, Rice, Thayer, Najjar, Scuteri, & Zonderman (2008) found an interaction 

between PWV and cognitive change, such that individuals with the highest PWV 

exhibited the most pronounced rates of cognitive decline. 

 

4.5. Cognitive Domains Associated with Diabetes 

 Although the specific cognitive tests used vary across studies, some 

generalizations can be made concerning the cognitive abilities related to diabetes.  The 

most common finding is that diabetic subjects perform more poorly than nondiabetic 

subjects on tests of attention, verbal and non-verbal memory, and processing speed (Kodl 

& Seaquist, 2008; Roriz-Filho et al, 2009; van den Berg, Reijmer, & Biessels, 2009).  

There is less agreement on other cognitive abilities, but some investigators have reported 

that executive function (Kodl & Seaquist, 2008; Roriz-Filho et al, 2009), psychomotor 

speed, and complex motor function (Kodl & Seaquist, 2008) are lowered in diabetic 

individuals compared to non-diabetic individuals. 

 Consistent with these previous results, the current study suggests that diabetes is 

related to decrements in performance on a broad, rather than specific, range of cognitive 

abilities.  Performance decrements in diabetic individuals were observed for all cognitive 

measures, with the exception of the VSOM and EF composites.  Similarly, indirect 

associations (from diabetes to cognitive function through PWV) were observed for all 
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variables, with the exception of Working Memory and Similarities.  Given that arterial 

stiffness involves arteries throughout the entire brain (Bornstein & Brown, 1991; Reitan 

& Wolfson, 1993), this finding, commonly found in studies of hypertension and 

cognition (Elias, Goodell, & Dore, 2012) is not unexpected. 

 The failure to see a relationship between the diabetes × APOE interaction term 

and executive function may be due to the fact that Trails B, but not COWA was related to 

the interaction term.  Both Trails B and COWA are established indices of executive 

function.  It is not clear why we obtained negative findings for COWA, Possibly this is 

related to the fact that our subjects are relatively highly educated and thus do well on 

measures of verbal fluency.  Trails B is significantly less dependent on verbal skills  

(Rabbitt, 1998).  It is possible that we would have found relationships between the 

diabetes × APOE  interaction and EF had we used even more sensitive measures of 

executive function, which were not included in the MSLS test battery (e.g. the Stroop 

Color-Word test). These are speculative explanations subject to further research.  

 The present study also points to APOE genotype as an important consideration in 

studies of diabetes and cognitive functioning.   In this study, decrements in cognitive 

performance were observed only for those diabetic individuals with an APOE-ε4 allele. 

Failure to consider this genetic variable may lead to under-estimation of the magnitude of 

association between diabetes and cognitive abilities.  APOE genotype plays a role in 

repair of damaged neuronal structures; it has been argued that repair is slowed in persons 

carrying the APOE-ε4 allele (Horsburgh, McCarron, White, & Nicoll, 2005). The 

proportion of individuals with APOE-e4 genotype may differ among studies, particularly 

where sample size is small. 
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 This may account for inconsistent findings in previous studies of diabetes and 

cognitive function where data on APOE genotype are not available. While there is a 

literature on other risk factors for cardiovascular disease and cognitive function, recent 

literature searches indicate that there have been no studies in other laboratories that have 

examined APOE in relation to diabetes. 

 

4.6. Cognitive Domains Associated with PWV 

 We find that, like diabetes, PWV is associated with multiple cognitive domains.  

The PWV × age interaction was significant for all cognitive composites, with the 

exception of Working Memory.  Data on the cognitive domains associated with PWV are 

limited.  One major reason for this is that many of the studies of PWV and cognitive 

function use the MMSE or Modified MMSE as the sole measure of cognitive 

performance (Zhong, 2011).  Of the studies using multiple tests of cognitive function, 

associations have been found between PWV and tests of: psychomotor and perceptual 

speed (Watson et al., 2011) and executive function (Poels et al., 2007; Muller et al., 

2008).  However, the results of these studies are made unclear by the fact that these 

studies did not examine interactions between PWV and age. Of the previous studies from 

other research groups, only one (Waldstein et al., 2008) included the PWV × age 

interaction, in relation to cognitive decline.  PWV was found to be related to decline in 

verbal and nonverbal memory.  Although far from being clear, the current literature 

suggests that, like diabetes, PWV is related to multiple cognitive domains.  Further study 

using a variety of tests is necessary to determine specific cognitive domains related to 

PWV. 
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 Although the APOE × age interaction term was not related to the Working 

Memory composite, it seems clear that this interaction term was related to critical and 

important indices of  working memory.  We speculate that that Digit Span Forward and 

Digit Span Back were not related to the interaction term, as they are not difficult tasks for 

highly performing individuals. 

 

4.7. Limitations of the Current Study 

The limitations of the current study should be noted.  1) The cross-sectional 

nature of this study does not allow us to measure decline in cognitive function over time.  

2) Given the cross-sectional design, duration of diabetes could not be measured 

objectively, other than by self-report. Self-report of duration of diabetes is not a reliable 

measure because it only provides information on the time of diagnosis of diabetes, not 

when these disease processes first began.  That is, an individual may be diabetic for a 

period of time before this condition is diagnosed.  3) The sample size was too small to 

allow examination of associations between diabetes and cognitive function in individuals 

with one vs. two APOE-ε4 alleles. This limitation is generally true of most studies of 

cardiovascular disease risk factors to date.  4) A1C, a recently emphasized index of 

diabetes, was  not available to confirm the diagnosis of diabetes.  However, while an A1C 

level greater than or equal to 6.5 has been adopted both nationally (American Diabetes 

Association, 2012b) and internationally (World Health Organization, 2011) into 

diagnostic criteria for diabetes, some debate still exists regarding the clinical utility of 

this measure (Hare, Shaw, & Zimmet, 2012).  5) It was not possible to adjust for 

antidiabetic medications in analyses with diabetes, as the majority of diabetic participants 
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were taking antidiabetic (90.5%) medications.  This high percentage of treatment is 

related to the fact that once diabetes and hypertension are diagnosed in a longitudinal 

study, it is not ethically permissible to deny diabetic or hypertensive patients treatment.. 

The MSLS study protocol requires all participants to be referred for treatment following a 

wave of the study in which the likelihood of a disease process has been established.   Due 

to the increased awareness and aggressive treatment of diabetes, this is true of most 

population-based longitudinal  samples (Elias et al., 2004).  

 

4.8. Strengths of the Current Study 

 The current study  has several major strengths.  First, it is the first to examine the 

meditational role of PWV in the association between diabetes and cognitive function.  

Second, it is one of the few studies to examine a wide range of ages thus leading to the 

finding that PWV does not relate to cognition in the same way in younger and older 

individuals. Third, many previous studies use patients with diagnosed diabetes and or 

persons being treated for diabetes in clinics. The current sample used comprises 

community-dwelling as compared to patients attending clinics and hospitals with a 

diagnosis of diabetes. Therefore, the results may better generalize to the general 

population. Fourth, the battery of cognitive tests is very likely the largest battery in use in 

NIH-sponsored studies of cardiovascular disease and cognition. Further, the cognitive 

measures were subject to factor analysis so that we were examining domains of 

functioning as compared to individual specific abilities measured by individual clinical 

tests. Sixth, the current study utilizes newer statistical methods (Hayes, 2012) to assess 

interactions between continuous variables and mediation moderated by continuous 
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variables.  These methods have the advantage of not using arbitrary cutpoints to examine 

the nature of such interactions, producing a clearer picture of the interaction across the 

full range of both variables.  

 

4.9. Summary 

This study is the first to test a mediational model to test the hypothesis that  PWV 

is a mediator of  the relationship between diabetes and cognitive performance.  The 

results indicated that PWV mediated the association between diabetes and cognitive 

performance.  This mediational relationship was modified such that the indirect effect of 

diabetes through PWV was positive for younger individuals, and negative for older 

individuals.  Additionally, associations were magnified in APOE-ε4 carriers. It is 

important to note that PWV did not fully mediate the diabetes-cognitive performance 

relationship and that the indirect relationship between diabetes and cognitive function 

was small compared with the direct relationship between diabetes and cognitive function.  

Further study of other mediators is important. 

 

4.10. Implications for Clinical Practice 

 The data have important implications with regard to populations of individuals 

because of the prevalence of diabetes at all ages and the increasing prevalence of adult 

onset diabetes with advancing age. Clinical trials will be necessary to determine the 

reduction in cognitive decrement or impairment in relation to treatment for diabetes. 

However, our data indicate that PWV plays a role in the relation between diabetes and 
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cognition and that information on APOE genotype may be very important in the 

neuropsychological diagnostic context.   

 Although no treatments for APOE genotype are available at present, several 

treatment targets have been suggested for consideration in future studies.  These include 

pharmacological methods of converting apoE-ε4 to a molecule resembling apoE-ε3, 

increasing apoE levels, and increasing apoE receptor expression (Bu, 2009).  It will be 

interesting to see in future clinical trials if these therapies will alleviate the cognitive 

impairment seen in diabetic APOE-ε4 carriers.   

 At this time there are ethical considerations with respect to routinely assessing 

APOE genotype as part of routine diagnostic examination and with respect to use of these 

data once obtained (Roses, 1997).  Whether APOE-ε4 genotype should be routinely 

obtained on patients, even diabetic patients, is controversial given the social and 

employment implications of revealing this information.  Data on the importance of 

APOE-ε4 to the diagnosis and treatment of dementia may play an important role in the 

final resolution of this issue. 

 While the reporting of and APOE × diabetes interactions are important in terms of 

population risk for lowered cognitive performance, the major finding of this study was 

that PWV partially mediates between diabetes and cognitive performance. Higher levels 

of PWV can be lowered by the same sets of drugs that lower hypertension and prevented 

by the same set of lifestyle alterations that prevent hypertension.  
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