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Samples from 12 East Antarctic firn and ice cores were analyzed using scanning 

electron micrcoscopy (SEM) in order to first develop a technique for the accurate 

characterization of physical properties and then to investigate the relationship between 

the physical microstructure and chemical properties. Both physical properties, such as 

grain size and porosity, and chemical properties, such as major ion and trace element 

concentration, provide information about atmospheric temperature changes, impurity 

content, accumulation rate and deformation history; therefore the characterization of both 

types of properties is necessary. Further, knowledge of the relationship between the 

physical and chemical properties may increase our ability to interpret paleoclimate 

proxies. 

Using samples for which grain size measurements based on traditional 

methodologies (Gow, 1969; Gay and Weiss, 1999) existed, new grain sizes were 

calculated using images from SEM. Unlike previous methodologies, SEM samples do 



not require the use of pore filler. Measurements from SEM were found to be smaller than 

those calculated using traditional methodologies. These differences were attributed to the 

increased accuracy of the new technique resultant from the visibility of clear etched grain 

boundaries and open pores. The newly calculated grain sizes were used to calculate an 

updated activation energy. These calculations revealed that although SEM measurements 

of grain size are smaller, especially for grain smaller than 0.4 mm2, the difference is not 

great enough to invalidate the previously established Arrhenius type temperature 

dependence of grain growth. 

The physical and chemical microstructures were characterized using SEM and X-

ray micro-computed tomography in four East Antarctica cores at three depths (30, 60, 90 

m) in order to assess the relationship between the chemical and physical properties. 

Physical properties characterization (grain size, porosity, density, internal surface 

volume, and crystallographic orientation) revealed expected differences between sites 06-

1 and 07-4, resultant from differences in the moisture content and accumulation rate at 

their respective locations, as well as some unexpected findings. Indications of shallow 

subgrain formation and trends in internal surface volume which have implications for the 

study of firn densification were found. Orientation patterns suggested the c-axis ({0001} 

plane) as the primary axis of rotation, resultant from the weight of overlying ice. 

Chemical characterization revealed that site specific differences in aerosol and particulate 

concentration and source between sites 06-1 and 07-4 could accurately be determined 

using EDS analysis. It was also found that the combination of elements predominant 

within the sample controls the morphology and microstructural location of the impurities. 
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Chapter 1 

INTRODUCTION 

1.1 ICE SHEET FORMATION 

Ice sheet formation occurs when, for an extended period of time, the amount of 

snow lost to melting and evaporation is less than the amount of snow deposited in the 

same area. Snow that remains on the ground after a summer season becomes more dense 

with the reduction of pore space as grains make contact and material is transferred from 

one grain to another (sintering). Grain growth is then driven by the minimization of grain 

boundary area which further reduces pore space. At this stage the material is referred to 

as firn. As firn becomes buried deeper and deeper in the ice sheet with continued 

accumulation, the increased pressure of overlying snow results in larger more aggregated 

grains that combined create a material of still higher density. Eventually, the pore space 

becomes so reduced and unconnected that the air space between particles is closed off 

and the material is considered ice around a density of- 0.84 g/cm3. 

1.2 ICE CORE CLIMATE RECONSTRUCTIONS 

Each layer of snow that is successively buried contains within it aerosol and 

particulate impurities that provide information about the atmospheric chemistry and 

circulation at the time of deposition. Some chemical species exhibit very strong seasonal 

cycles. For example, Na+, a sea salt tracer, has a strong winter maxima that is related to 

more frequent advection of marine air masses over the continent in winter. Increases in 

dust species can be related to warmer and windier conditions (Legrand and Mayewski, 

1997). In addition, the physical structure can indicate the temperature at which the ice 

was formed and records deformation resulting from stresses and strains within the ice 
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sheet, including ice flow. Therefore, firn and ice can be used to reconstruct long-term 

records of climate using cores extracted from the ice sheet using a drilling apparatus. 

Many ice cores have been collected by the International Trans-Antarctic Scientific 

Expedition (ITASE) in order to identify the spatial and temporal resolution of climate 

records in Antarctica over the last approximately 200 years. The ice cores used in this 

study were collected by the U. S. component of that program. 

Preparation of ice cores for analysis typically involves melting the core and 

collecting discrete samples. The newest procedure for continuous melting with discrete 

sampling is described in Osterberg and others (2006). Analysis of the meltwater samples 

involves the determination of the isotopic and chemical composition. Gas source mass 

spectrometry is used for stable isotope analyses (81 O and 8D). Ion exchange 

chromatography and inductively coupled plasma mass spectrometry are used to 

determine the concentration of major ions and trace metals, respectively. Both of these 

analytical techniques require melted samples and therefore physical measurements, such 

as grain size and porosity, cannot be made on the ice from which the discrete samples are 

collected. 

1.3 PHYSICAL AND CHEMICAL CHARACTERIZATION OF ICE CORES 

Scanning electron microscopy (SEM) and associated equipment provide 

characterization of both the physical and chemical structure of firn and ice samples. 

Calculations of physical parameters, such as grain size and percent areal porosity, can be 

made using images captured in SEM and chemical and crystallographic analysis can be 

conducted both during and after imaging. 
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In this study firn and ice samples were imaged using SEM with a secondary 

electron detector. In this technique, the primary electron beam is scanned across the 

surface of the sample causing electrons of a wide range of energies to be emitted from the 

surface in the region where the beam is incident. These electrons include backscattered 

primary electrons and Auger electrons, but the vast majority are secondary electrons. 

The secondary electron current reaching the detector is recorded and the microscope 

image consists of a "plot" of this current against probe position on the surface. The 

contrast in the micrograph arises from several mechanisms including composition and 

electrical conductivity, but primarily from variations in the surface topography (Goldstein 

and others, 1992). The resulting image illustrates the true surface structure. 

Several analytical instruments were used in conjunction with SEM. The 

elemental chemistry of the impurities present was determined using energy dispersive X-

ray spectroscopy (EDS) in association with SEM. EDS is a technique in which the 

interaction of the electron beam with the atoms of the impurity results in the emission of 

photons having a characteristic energy dependent upon the atoms from which they were 

produced (Goldstein and others, 1992). 

Electron backscatter diffraction patterns (EBSPs) were used to characterize the 

crystallographic orientation of the grains allowing for an assessment of the deformation 

history. The formation of EBSPs results from the inelastic scattering of a fraction of the 

electrons with a small loss of energy to form a divergent source of electrons close to the 

surface of the sample. Those electrons which are incident on atomic planes at angles 

which satisfy the Bragg equation (nA = 2 d sin 9, where n is an integer, A is the 

wavelength of the electrons, d is the spacing of the diffracting plane, and 8 is the angle of 
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incidence of the electrons on the diffracting plane) are diffracted to form a set of paired 

large angle cones corresponding to each diffracting plane. The regions of enhanced 

electron intensity between the cones produce the characteristic Kikuchi bands of the 

electron backscatter diffraction pattern {Oxford Instruments PLC, 2005). 

1.4 APPLICATION TO RESEARCH QUESTIONS 

In chapter two of this thesis the true surface topography images captured by the 

SEM are used to evaluate a new method of grain size measurement. In the third chapter 

of this thesis the ability to characterize both chemical and physical parameters within a 

single sample is utilized in a suite of cores with a wide spatial and temporal range in 

order to investigate the relationship between the physical and chemical properties within 

firn and ice cores. 
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Chapter 2 

A NEW TECHNIQUE FOR FIRN GRAIN SIZE MEASUREMENTS USING SEM 

IMAGE ANALYSIS 

2.1 INTRODUCTION 

Firn and ice cores, such as those collected by the International Trans Antarctic 

Scientific Expedition (ITASE) (Mayewski, 1996; Mayewski and others, 2006), contain 

information about the soluble, insoluble and gaseous components of the atmosphere, as 

well as indicators of temperature, precipitation, atmospheric circulation, sea ice extent 

and volcanic activity (Legrand and Mayewski, 1997). Microstructural parameters, 

including grain size and porosity, provide additional information about atmospheric 

temperature changes, impurity content, accumulation rate and deformation history. 

Therefore, accurate measurements of grain size and porosity allow for the identification 

of layers that do not exhibit normal grain growth with depth, and the detection of 

anomalous changes in any of the factors affecting the growth and sintering of firn and ice 

grains i.e. impurity concentration, grain boundary pinning, stress and strain conditions, 

recrystallization, annealing, deformation and recovery. Spatial variations in 

microstructure provide insights into micro-meteorological conditions such as snow 

accumulation and wind patterns (Rick and Albert, 2004) that potentially affect the 

preservation of paleoclimate records. In addition, the microstructure of near-surface firn 

influences the reflection of electromagnetic radiation thereby affecting remote sensing 

and radar studies (e.g., Zwally, 1977; Surdyk, 2002). 

Despite the importance of firn microstructure to paleoclimate reconstructions, 

little progress has been made in the measurement of firn grain size. The original method 

5 



of grain size measurement {Gow, 1969) used the average of the shortest and longest axes 

of the 50 largest grains as measured with a pocket comparator (a hand held magnification 

tool for making linear measurements). Alley (1980) modified this method slightly by 

excluding the five largest grains in the sample. Subsequent methods evolved to counting 

all grains within a known area {Duval and Lorius, 1980) or using the linear intercept 

method which expresses grain size as an average length by counting the number of grain 

boundary intersections along a known length {Thorsteinsson and others, 1995; Alley and 

Woods, 1996). A newer method uses digital images of thin-sections,and automated 

outlining and pixel counting software to derive grain size as a mean cross-sectional area 

{Gay and Weiss, 1999). These techniques which were developed to measure grains of all 

sizes, have seen only limited use in the study of firn as a result of the difficulty involved 

in processing firn samples. 

The differences between the above techniques represent attempts to resolve the 

two primary sources of uncertainty in the estimation of grain size: how to calculate and 

report "size", and how to account for the cut effect and the intersection probability effect 

{Higgins, 2000). Both uncertainties arise from measuring an irregular three-dimensional 

structure using a two-dimensional image. The first source is a matter of determining 

which parameter (length or area) is most closely related to grain volume. The latter 

source results from the act of sectioning. When a thin-section is created it is unknown at 

which point and in how many places each grain has been cut. The plane from which 

average grain size is calculated will include cross sections ranging from small grain tips 

to the maximum grain diameter. Thus a range of sizes will be found even for a 

homogeneously-sized population: the so-called cut effect. An additional source of 
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uncertainty arises because smaller crystals are less likely to be intersected by the plane: 

the intersection probability effect (Higgins, 2000). 

Each of the techniques discussed above has unique problems as well as common 

disadvantages. Traditional methods of grain size measurement in firn (e.g., Gow, 1969; 

Duval and Lorius, 1980; Alley and Woods, 1996; Gay and Weiss, 1999; and others) 

require the use of a pore filler (e.g., aniline or dodecane) because of the fragile nature of 

firn. The pore filler, despite its utility, obscures details of the microstructure, making 

accurate measurements difficult. This problem can be mitigated by using scanning 

electron microscopy (SEM). The SEM imaging technique of Baker and others (2007) 

provides high-resolution images of both grain and pore structure with minimal sample 

preparation. Because it requires no pore filler, SEM analysis allows visualization of both 

grain and pore geometry. This imaging technique is used in combination with a new 

measurement technique, described in this paper, to eliminate most of the uncertainties of 

past measurement techniques. A comparison between grain size measurements, growth 

rates and apparent activation energies calculated using this method and earlier methods 

reveals a number of differences, our analysis of these differences has implications for 

paleoclimate reconstructions using ice cores. 

2.2 METHODS 

There is considerable confusion surrounding the definitions of crystals and grains. 

Gow (1969) defines a grain as a unit having up to three crystals. The crystals within a 

grain are distinguished by changes in birefringence under crossed-polarizers. In materials 

science, polycrystalline materials are made up of individual grains each of which is a 

single crystal. These variations in terminology have resulted in confusion between fields. 
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The term grain, as used here, is in line with the materials science definition. We use this 

definition because visibly etched boundaries which typically align with a change in axis 

orientation (Baker and others, 2005; Obbard and others, 2006; Sieg, 2008) can be seen 

clearly in SEM images. 

Grain size measurements from three firn and ice cores (02-1, 02-4, and 02-SP) 

collected during the 2002 US ITASE traverse in East Antarctica (Fig. 2.1) were derived 

using the techniques of Gow (1969), Gay and Weiss (1999) and a new technique 

described below. Samples were taken at those depths from which high quality digital 

thin-section photographs existed and enough sample remained to prepare an SEM 

specimen. Several cores were used in order to span the range of depths desired. For the 

first two techniques thin-section samples were photographed under crossed-polarizers 

with both a film camera and a digital camera (Fig. 2.2). The photographs were used to 

calculate grain size (Gow and others, 2004) using the methods of Gow (1969). These 

data are referred to as "GOW". The digital images were analyzed using the Image Pro 

Plus 5.0© software package which automatically outlines grains (as differentiated by 

birefringence patterns-Fig. 2.2b) and counts the pixels within each grain (Gay and Weiss, 

1999). These samples are referred to as "G&W". 

Our new technique entails the examination of SEM specimens using a Field 

Emission Gun (FEI) XL30 SEM operated at 15 kV with a beam current of 0.15 nA. 

Samples were maintained at -110°C ± 5°C using a custom-designed liquid nitrogen 

chilled cold stage (Baker and others, 2007). For each sample, a series of slightly 

overlapping secondary electron images were collected and digitally stitched together to 

form a mosaic of the horizontal surface of the sample (Fig. 2.3a). Grain sizes were 
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FIGURE 2.1. Map of core sites. Ice cores 02-1, 02-4, and 02-SP were used in this 
study to calculate grain sizes and growth rates. Maudheim, Southice, Wilkes, and 
two locations not shown (Site 2, Greenland and South Pole) were used in Fig. 2.4. 

determined by manually tracing grain boundaries using Image Pro Plus 5.0© to create a 

skeleton outline of the boundaries (Fig. 2.3b). A pixel counting utility was applied to the 

skeleton outline to determine the grain area. These samples are referred to as "SPLD". 

We adopt the practice of reporting mean grain size as a cross-sectional area based 

on all grains in the section for several reasons. A computer simulation of normal grain 

growth by Anderson and others (1989) indicates that using the mean cross-sectional area 

of all grains in the section is the combination of parameters most likely to eliminate the 
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FIGURE 2.2. a) Thin section 02-1 16m under crossed-polarizers. Red arrow points 
to pore filler used in the preparation of thin-sections, which obscures the 
microstructure. b) Skeleton outline of grains. Gray portions indicate areas were 
pore filler has overlapped grains enough to obscure their shape. Outlines have been 
thickened for visibility at this scale. The two large grains to the left and 
immediately above the red arrow illustrate the "cut-effect". These grains appear 
larger than all the others and all the grains in Figure 2.3 because they were likely 
intersected at their widest point. 

FIGURE 2.3. a) SEM image of 02-1 16m. SEM images require no pore filler and 
therefore most aspects of the microstructure are clearly visible. Prominent features 
such as pores and clearly etched grain boundaries (GB) which aid in the 
identification of individual grains are labeled, b) The skeleton outline of grain 
boundaries. Pores that are fully bound by grains have been colored gray. 
Boundary thickness has been amplified for ease of visibility. 
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uncertainties of the cut effect and the intersection probability effect. In their model, 

grains greater in size than the average grain size (as derived using all grains in the 

section) grew, whereas those smaller than the average grain size shrank. These model 

results indicate that mean grain size obtained using all grains in the section has a 

particular physical significance, which is not the case for only the largest grains. 

Anderson and others (1989) also noted the similarity in grain growth kinetics derived 

from mean grain volume with those based on mean grain cross-sectional area when grain 

morphology was consistently compact and the surface area to volume ratio was minimal. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Grain Size 

Grain size is a function of both age/depth and temperature (Stephenson, 1967; 

Gow, 1969). The linear relationship between age and mean grain cross section is: 

A = A0 + Kt 

where A is the measured mean cross-sectional area (mm2) at time t, Ao is the extrapolated 

mean cross-sectional area at t = 0, and K is the rate of grain growth. The equation rests 

on the assumption that growth rate is controlled by interfacial tension at the grain 

boundaries (Cole and others, 1954). The temperature dependence of K is described by 

the Arrhenius type equation: 

K = K0exp(-Ea/RT) 

where T is temperature in Kelvin, Ko is an empirical constant and Ea and R are the 

activation energy of grain boundary self diffusion and the gas constant, respectively. Ea 

is determined by the slope of the temperature grain growth (T-K) curve. This type of 
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dependence is appropriate because the ratio of the activation energy of grain boundary 

self-diffusion to volume self diffusion (determined experimentally) for ice (-6:10) is 

similar to that for most metals (Gow and others, 2004). 

Grain sizes calculated using the three different techniques described above are 

plotted against depth for each core in Fig. 2.4. As expected, grain size increase with 

depth. Correlation coefficients were computed between grain size and depth for each 

method. The highest correlation between size and depth was for GOW samples (0.86), 

followed by SPLD (0.66) and G&W (0.48), indicating that site to site variations in grain 

size are masked by including only the 50 largest grains. There are additional reasons for 

the differences in correlation, as discussed below. 

Comparison of the three techniques applied to samples from the 02-1, 02-4, and 

02-SP cores revealed average grain sizes from SEM (G SPLD) to be significantly smaller 

than G GOW and G G&W- G GOW are 38-73 % larger (average difference (D) -57 %) 

using: 

* ~~ KGSPW I GG0W) 

compared to G SPLD; whereas G G&W were only 1 to 47 % larger ( D - 2 9 %) (Fig. 2.5, 

Table 2.1). There are several possible explanations for these differences. The most 

obvious explanation for the smaller G found using SPLD versus GOW is that Gow 

(1969) uses only the fifty largest grains. This also explains why the difference between 

G SPLD and G Gow as compared to G SPLD and G G&W is greater. There are also several 

less obvious reasons for the differences. First, traditional methods of grain size 

measurement rely on birefringence patterns to distinguish individual grains. Adjacent 
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Table 2.1. Sample depths, ages, and average grain sizes calculated using the imaging 
technique of Baker and others (2007) in combination with the measurement 
technique presented here (SPLD), and the methods of Gow (1969) (GOW), and Gay 
and Weiss (1999) (G&W). The former uses scanning electron microscope images of 
firn samples from the same depths (no pore filler required). The latter two methods 
utilize crossed-polarized photographs of thin-sections prepared using pore filler (e.g 
aniline or dodecane). 

Poss. 
Sample Depth (m) Age (yrs) N G (mm2) o (mm2) F 

02-1-16 16.335 47 60 0.507 0.206 10.85% 
02-1-32 32.339 98 88 0.569 0.278 13.47% 
02-4-12 12.918 37 80 0.166 0.084 11.26% 
02-4-18 17.938 58 45 0.272 0.125 14.07% 
02-4-42 42.878 152 66 0.3 0.182 14.82% 
02-4-46 46.853 168 51 0.367 0.191 14.61% 
02-4-60 60.16 230 59 0.619 0.306 12.88% 

02-SP-30 29.45 192 77 0.202 0.104 11.65% 
02-SP-95 94.18 853 63 0.667 0.327 12.34% 
02-SP-110 109.04 1025 55 0.571 0.328 15.53% 

02-1-16 16.335 47 50 0.815 0.472 6.40% 
02-1-32 32.339 98 50 1.3408 0.661 7.40% 
02-4-12 12.918 37 50 0.3413 0.167 6.62% 
02-4-18 17.938 58 50 0.4837 0.219 5.82% 
02-4-42 42.878 152 50 1.1204 0.387 5.86% 
02-4-46 46.853 168 50 1.13 0.149 7.49% 
02-4-60 60.16 230 50 1.2265 0.560 7.57% 

02-SP-30 29.45 192 50 0.6277 0.212 4.29% 
02-SP-95 94.18 853 50 1.3239 0.538 6.72% 
02-SP-UO 109.04 1025 50 2.09 0.603 9.68% 

02-1-16 16.335 47 516 0.637 0.225 7.74% 
02-1-32 32.339 98 410 0.865 0.342 6.99% 
02-4-12 12.918 37 250 0.313 0.069 5.72% 
02-4-18 17.938 58 255 0.462 0.093 5.42% 
02-4-42 42.878 152 598 0.53 0.193 4.88% 
02-4-46 46.853 168 598 0.61 0.576 3.71% 
02-4-60 60.16 230 511 0.641 0.223 5.02% 

02-SP-30 29.45 192 913 0.321 0.151 6.72% 
02-SP-95 94.18 853 540 0.676 0.289 6.33% 
02-SP-110 109.04 1025 489 0.71 0.838 8.19% 
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&
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W
 

SP
L

D
 

grains with the same c-axis orientations will appear as one, which partially explains the 

larger G found for the GOW and G&W samples. In addition, automated image analysis 

routines often fail to identify individual grains in firn. Thus grains need to be identified 
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manually, a process which is time consuming and prone to operator error. These 

limitations are particularly true for shallow samples where the number of grains in a 

single thin-section is very large. Additionally, the grain boundaries are often blurred and 

distorted due to the use of pore fillers. 

A potential correlation exists between G and/or depth and measurement 

technique. The reduction in grain size derived from SPLD is greatest in small grains. A 

cut-off grain size of 0.4 mm2 (approximately the mean of all samples) was used to 

illustrate this point. G GOW is 60.7% larger than G SPLD and G o&w is 41.7% larger than 

G SPLD when G SPLD is < 0.4 mm2. When G SPLD is > 0.4 mm2, the differences decrease 

to 53.4% (GOW) and 15.8% (G&W). Fig. 2.5 shows the percent difference between 

G SPLD and both G GOW and G o&w plotted as a function of depth. Samples with G SPLD 

< 0.4 mm2 have a median depth of 29.45 m; samples with G SPLD > 0.4 mm2 have a 

median depth of 60.16 m. While G SPLD of both the shallow and deeper samples are 

smaller than G GOW and G G&W, the difference is greatest in the shallower samples. The 

reduction in grain size obtained from the SPLD technique is greater in small grains and at 

shallow depths for the following reasons: 1) Previous methods over-estimated the size of 

small grains by including pore filler in the grain outline. The number and size of pores 

decrease with increasing depth therefore, this over-estimation decreases with depth. 2) 

Features identified as individual grains in shallow thin-sections were probably aggregates 

of several grains. As grains grow larger, the birefringence within an individual grain 

becomes more defined and thus individual grains are more easily identified. 3) The 

boundaries of small, shallow grains are better defined in SEM images and consequently 

identified with greater accuracy. 
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FIGURE 2.4. Grain size versus depth using three different measurement techniques. 
GOW average 57.1% larger than SPLD; G&W average 27.8% larger than SPLD. 
Data from Table 2.1. 

There is a 25.9% decrease in the difference between G SPLD and G G&W for grains 

smaller than 0.4 mm2 and those greater than this size. For G SPLD versus G GOW, the 

decrease is only 7.3% (Fig. 2.5). A paired t-test was performed to determine if the 

sample means above and below 0.4 mm2 were significantly different (i.e. if the difference 

between techniques is really biased towards small grains). £%c&w < 0.4 mm2 is not 

significantly different than Dd > 0.4 mm2 (one-tail p = 0.24). Conversely, £>cG&(f < 
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0.4 mm2 is significantly different than the D^ > 0.4 mm2 (one-tail p = 0.009). The 

significance and magnitude of the size bias is likely greater in G&W than in GOW 

because Gay and Weiss (1999) designed their automated outlining program for use on 

ice, not firn. As discussed above, the use of pore fillers is more problematic in firn than 

in less porous ice. Thus, as the samples used in this study approach the microstructure of 

ice, the results derived using the techniques of Gay and Weiss (1999) become more 

consistent with those obtained using the SPLD technique. In addition, the variation in 

small to medium sized grains is ignored because Gcow is calculated using only the 50 

largest grains. Because these grains are the most difficult to measure with earlier 

techniques and are identified with greater accuracy using the new technique, the 

difference in grain size with depth between G GOW and G SPLD is expected to be 

dampened. If all grains were included, the size bias with depth would likely be 

statistically significant, as it is for G G&W-

2.3.2 Sources of Measurement Error 

The calculation of grain size has several sources of potential error including the 

cut effect, the intersection probability effect and sample processing, as well as 

inconsistency in the analyst's technique (repeatability), chamber sublimation and 

population size. The repeatability of SEM grain size measurements was estimated using 

19 samples. One area was randomly selected from an original image where the area of a 

number of grains equal to approximately 10% of the entire sample total (n = 4-25 grains) 

was determined by creating a new skeleton outline. 
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FIGURE 2.5. A potential correlation exists between size/depth and the difference in 
average grain size between techniques. Mean grain sizes are 60.7% (GOW) and 
41.7% (G&W) larger than SPLD when G SPLD is < 0.4mm2 and 53.4% (GOW) and 
15.8% (G&W) larger when G SPLD is > 0.4mm2. 

The area of the newly outlined grains was compared to the area of the grains originally 

outlined to derive a repeatability standard deviation (or) (Currie, 1995). Variance is a 

biased estimator of o when the sample population (n) is small {Montgomery and Runger, 

2003), so or was multiplied by a correction factor (CN) to remove the underestimation. 

Since measurements were repeated twice, n=2 and CN is 1.2533 (Gurland and Tripathi, 

1971). This procedure was repeated for all depths in the cores with the highest and lowest 

quality samples. The repeatability standard deviations for all samples were averaged to 

produce the single value. The decision to conduct only two trials on a large number of 

samples, rather than many trials on a smaller number of samples, was based on the 

heterogeneous quality of the samples. If many trials were performed on a single high 

quality sample, or would be underestimated. Thus, many samples of varying quality were 

measured twice. The ar was found to be ± 0.038 mm2 for the lowest quality core and ± 

0.024 mm2 for the highest quality core. These values were averaged to obtain the or of ± 

A 02-1 GOW 

A 02-1 G&W 

• 02-4 GOW 
• o 

• 02-4 G&W 
A 

* o 02-SP GOW 

• 02-SP G&W 

*GOW MEAN 

* • j XG&W MEAN 

3 0 . 5 , 0.7 

n Size (mrrr) 

17 



0.031 mm2, with: G MAX = 1.036 mm2, G MIN - 0.173 mm2, and G MEAN = 0.435 mm2 

(Table 2.2). Thus the standard deviation is ~ 7% of the mean for the trials and the mean 

of all the samples in this study (G MEAN = 0.424 mm2). The measurements from the two 

repeatability trials had a correlation coefficient of 0.975. Manually tracing the grain 

Table 2.2. Calculation of repeatability standard deviation (Currie, 1995). The area 
of 10% of the grains in 19 samples, representing the highest and lowest quality 
cores, was outlined twice with more than a week in between to determine the 
repeatability of measurements. A correction factor (CN) to account for the 
underestimation of the population standard deviation resulting from a sample size 
of n=2 is applied (Gurland and Tripathi, 1971). 

Sample Trial 1 (mm2) Trial 2 (mm2) Or (mm2) Cr*CN (mm2) 
062-10 0.320 0.328 0.006 0.007 
062-20 0.421 0.401 0.014 0.018 
062-26 0.367 0.375 0.006 0.007 
062-36 0.600 0.555 0.032 0.040 
062-50 0.459 0.447 0.008 0.010 
062-62 0.510 0.531 0.015 0.019 
062-77 0.628 0.580 0.034 0.043 
062-83 0.616 0.615 0.001 0.001 
062-96 1.036 0.810 0.160 0.200 
074-10 0.204 0.173 0.021 0.027 
074-19 0.245 0.246 0.001 0.001 
074-29 0.231 0.220 0.008 0.010 
074-40 0.272 0.274 0.001 0.002 
074-50 0.562 0.575 0.010 0.012 
074-71 0.231 0.216 0.010 0.013 
074-82 0.283 0.262 0.014 0.018 
074-90 0.551 0.468 0.059 0.073 
074-103 0.657 0.571 0.061 0.076 
074-110 0.339 0.349 0.007 

AVERAGE 
0.009 
0.031 

boundaries produces the primary source of error in the repeatability calculation, thus it 

can be assumed that a similar amount of error will be introduced during manual 

corrections of outlines obtained using the Gay and Weiss (1999) technique. If the SPLD 

grains are 7% larger than calculated and the G&W grains are 7% smaller, there will still 

be a 30% difference in grain size between the two techniques for grain sizes smaller than 
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0.4mm2. For grains larger than 0.4mm2 measurements from SPLD and G&W may be 

identical, this is attributed to the increased accuracy of the SPLD technique as compared 

to previous techniques in the measurement of small grains. 

Sublimation is known to occur in the SEM chamber (Cullen and Baker, 2001) and 

is a potential source of uncertainty in grain size measurements using SEM. If 

sublimation is too rapid, measured grain areas will increase or decrease during the 

experiment depending on where they have been sectioned (i.e. the cut effect). In order to 

assess repeatability, images taken at the same coordinates were compared at the 

beginning and the end of a session. Approximately 3.5 to 4 hours elapsed between repeat 

imaging. During this time, the sample was maintained in the chamber at -110 ± 5 °C. 

The average change in grain size over the 4 hour period was ±0.022 mm2, corresponding 

to approximately 5% of the mean grain size for all samples in the repeatability test, as 

well as the mean grain size for all three cores in this study. The change in area during 3.5 

to 4 hours of sublimation is smaller than the repeatability standard deviation. Assuming a 

constant sublimation rate (Andreas, 2007), there would only be a ±0.006 mm2 or a 1.4 % 

change in G MEAN during the course of normal imaging (~1 to 1.5 hours). This value is 

significantly less than the measure of repeatability (7%). Our analysis shows that 

chamber sublimation does not cause a statistically significant change in grain size during 

the course of normal imaging. 

The effect of sample size on the reliability of SEM grain size measurements was 

also considered. The cold stage used to analyze firn and ice in the SEM restricts the size 

of the sample to a maximum dimension of 3 cm x 1 cm x 1 cm. As a result, a statistically 

significant population of certain grain sizes might be difficult to obtain when using only a 
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single sample. The possible error associated with the sample size was calculated for each 

type of measurement (Table 2.1) using: 

possible error = / x trNn 

where n is the number of grains analyzed, a is the standard deviation, and t is the one-

tailed t-statistic at 95% confidence. The average possible error for SPLD is 

approximately twice that of both GOW and G&W. The inclusion of a larger number of 

grains (which was not done here) would increase the accuracy. 

In a study of grain size measurements of metals and ceramics using image 

analysis, Diogenes and others (2005) report a difference of less than 2% between G 

calculated using approximately 1000 grains versus only 100 grains. While the averages 

were very similar, the standard deviations were quite different. Standard deviations 

associated with 100 grain size measurements were almost 2.5 times greater (40.3 % of 

G ) than those associated with 1000 grain size measurements (16.5 % of G ). Thus it 

can be assumed that average grain measurements derived from samples with few grains 

are indicative of the true mean, although the grain size distribution may be inaccurate. 

Our sample sizes were too small to obtain 100 grains per sample but this factor is not 

critical because our focus is quantifying G rather than grain size distribution. 

2.3.3 Growth Rate 

The transformation of snow to firn to ice results from increasing overburden 

pressure which causes a decrease in pore spacing. Angular snow grains are initially 

rounded through contact with one another which reduces pore space and increases density 

as the material becomes firn. Porosity is further reduced by sintering, the process through 

which material is transferred from one grain to another at initial points of contact. These 
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points of contact become grain boundaries. Grain boundaries are interfacial defects in the 

lattice of any material where there are atomic mismatches in the transition from the 

crystalline orientation of one grain to the next (Callister Jr., 2007). In the transformation 

between firn and ice, there is a steady increase in grain size with depth; this normal grain 

growth results from a minimization of grain boundary area. Grain boundary migration is 

driven by the curvature of high energy grain boundaries and the stored energy difference 

between grains (Burke, 1949). Small grains are typically found on the concave side of 

the boundary and the pressure is typically greatest at this location. Atomic diffusion is in 

the direction of the low pressure location and boundary motion is in the opposite 

direction. Thus the grain on the high pressure side becomes incorporated into the grain 

on the low pressure side (Callister Jr., 2007; Sieg, 2008) and large grains grow at the 

expense of smaller grains. The diffusion of molecules occurs over time and is a 

temperature dependent process, therefore growth rates are dependent upon depth (age) 

and temperature (Paterson, 1994). 

In core 02-4, G SPLD was found to increase from 0.166 mm2 at 12.9 m (37 years) 

to 0.619 mm2 at 60.2 m (230 years). Fig. 2.6 shows grain size plotted against age. A 

linear least-squares best fit of this data gives a rate of increase (growth rate, K) of 0.0023 

mm2 yr"1. The same samples yield G Gow of 0.341 mm2 at 12.9 m, 1.226 mm2 at 60.2 m 

and a K of 0.0054 mm2 yr"1 (Fig. 2.6), an increase of 0.0031 mm2 yr"1. The values for 

G&W are G G&w of 0.313 mm2 at 12.9 m, 0.641mm2 at 60.2 m and a K of 0.0017 mm2 

yr"1, a decrease of 0.0006 mm2 yr"1 compared to KSPLD-

In core 02-SP, G SPLD increased from 0.202 mm2 at 29.45 m (192 years) to 0.571 

mm2 at 109.04 m (1025 years), with a K of 0.0006 mm2 yr"1. The same samples yield 
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G GOW of 0.628 mm2 at 29.45 m, 2.090 mm2 at 109.04 m and a K of 0.0017 mm2 yr"1, an 

increase of 0.0011 mm2 yr"1. The values for G&W are G G&w of 0.321 mm2 at 29.45 m, 

0.710 mm2 at 109.04 m and a K of 0.0005 mm2 yr"1, a decrease of 0.0001 mm2 yr"1 

compared to KSPLD-

The ratio of KSPLD to Kcow is 0.426 for 02-4 and 0.353 and for 02-SP. The ratio 

of KSPLD to KQ&W is 1.353 for 02-4 and 1.2 for 02-SP. It is important to note that the K 

from 02-SP is based on 3 points, with no data between 25.5 m (192 years) and 94.1 m 

(853 years). The purpose of these calculations is to understand the effect of measurement 

technique on the slope of the T-K curve. Since the Arrhenius type dependence of this 

relationship was originally defined using the techniques of Gow (1969), only SPLD and 

GOW measurements are used in the calculation of activation energy; data from G&W are 

not considered. 

2.3.4 Activation Energy 

Activation energy (Ea) is calculated using the following equation: 

Ea =~R(d\nK/d(\/T)) 

where R is the gas constant and the remainder of the term is the slope of the T-K curve. 

Because grain size is dependent upon temperature, the size-biased reduction of G SPLD 

versus (J GOW will affect the magnitude of the calculated activation energy. The validity 

of the SPLD method can therefore be tested using the previously defined Arrhenius type 

temperature dependence of grain growth (Gow, 1969; Stephenson, 1967). To be 

considered valid, the SPLD method must yield an Ea value consistent with the requisite ~ 

6:10 ratio, as discussed above. 
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To calculate a new activation energy, growth rates based on grain size 

calculations using the SPLD method and encompassing a range of temperature regimes 

are required. The samples used in this study do not meet the temperature range 

requirements, thus new growth rates were calculated for sites previously evaluated (South 

Pole, Southice, Maudheim, Wilkes, and Site 2, Greenland(Figure 2.1)) in Gow (1969)1. 

The new growth rates were calculated using a correction factor based on the comparison 

of growth rates from the SPLD method to those of GOW. The value of the correction 

factor was determined by dividing the difference between the ratios of KSPLD: KGOW at 

site 02-SP and 02-4 (-0.073) by the difference in temperature between the two sites2 (-

14.0°C). The correction factor, 0.0052°C_1, expresses the increase in the ratio of 

K.SPLD:K.GOW with each 1.0°C increase in temperature from site 02-SP. Site 02-SP was 

chosen as the baseline temperature because the South Polar region has the lowest mean 

annual surface temperatures on the continent. 

The correction factor was applied to the sites from Gow (1969) using the 

following equation: 

KSPLDX = KGOWX ( ° - 3 5 3 - 0.0052(7W - Tx)) 

where X is location, 0.353 is the ratio KSPLD:KGOW at 02-SP and T is temperature (°C). 

The use of this correction factor required the singular assumption that the reduction in 

growth rate as a function of differences in grain size measurement technique is nearly 

identical at sites 02-SP and South Pole. This was considered a valid assumption because 

both sites have similar mean annual surface temperatures and growth rates. 

1 Gow's original growth rates include a single data point from Greenland. The inclusion 
of this point is justified because the only variable in question is temperature. 
2 Temperatures for 02-SP and 02-4 were estimated using a mean annual temperature map 
created by D. Dixon using compile 10 m firn temperature data 

23 



The new growth rates, which changed the slope of the T-K curve from Gow's 

(1969) value of-5.6446 K to -6.3268 K, are shown in Fig. 2.7. The apparent activation 

energy subsequently changed from 46.9 kJmol"1 to 52.6 kJmol"1 (Fig. 2.7). Barr and 

Milkovich (2008) and Nasello and others (2005) reported activation energies of grain 

boundary diffusion of 49 kJmol"1 and 51.1 kJmol*1, respectively, which are similar to the 

value from SEM analyses. This indicates that, despite the substantial decrease in SEM-

derived estimates of G and K versus those from techniques using photographs of thin 

sections, the resultant increase in activation energy obtained from the SPLD method still 

favors the assumption of an Arrhenius type dependence. However, the increase in 

calculated activation energy does suggest that the influence of temperature on grain 

growth is greater than previous indicated, as larger activation energy values indicate that 

more energy is required to initiate grain boundary migration. 

2.4 CONCLUSION 

Firn grain sizes obtained using SEM images are substantially smaller than 

those obtained from earlier techniques, on average 57.1% smaller than those calculated 

using the methods of Gow (1969) and 28.7% smaller than Gay and Weiss (1999). The 

SPLD technique uses clearly etched grain boundaries and the presence of open pores to 

identify and measure individual grains from SEM images. This approach allows for a 

more accurate determination of grain size, porosity, and other properties, such as those 

necessary to characterize firn densification (i.e. surface specific area and contact area 
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FIGURE 2.6. Determination of growth rate for 02-4 from grain sizes calculated 
using the technique of GOW (which along with Stephenson (1967) was originally 
used to define the Arrhenius type dependence) and SPLD. Data from Table 2.1. 
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FIGURE 2.7. Grain growth rate versus reciprocal temperature calculated for five 
sites published in Gow (1969). Open diamonds are original data from Gow (1969). 
Closed diamonds show the data corrected using the calculated decrease in the ratio 
of KGOW versus KSPLD per °C increase from -51.0°C of 0.0052°C"1. Activation 
energies of grain boundary diffusion of 49.6 k.I-mol' and 52.6 kJmol ' are 
calculated from the slope. 
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{Arnaud and others^ 1998)), without the need to disrupt the firn microstructure with toxic 

pore fillers and additional processing, as was the case with earlier methods. New grain 

growth rates were calculated for older core sites by applying a correction factor 

equivalent to the ratio of grain sizes obtained from the new technique to those from 

previous methods. Newly calculated grain growth rates yield an Ea of grain boundary 

diffusion of 52.6 kJmol"1, similar to those from previous studies. Thus, despite the 

decrease in grain size, the basic relationship between grain size, growth rate, and 

temperature remains nearly constant. This constancy serves as a validation of the 

measurement technique. 

The new technique presented here streamlines the collection and inter-comparison 

of firn and ice core microstructural data. By defining grains as single units in which 

visibly etched boundaries typically align with a change in axis orientation, a minimum 

acceptable misorientation between grains can be reported, leading to a more reliable 

comparison of data. This technique is especially useful for the measurement of very 

small grains, which are most difficult, if not impossible to measure using previous 

techniques. In addition, SEMs typically have associated equipment capable of 

determining the chemical composition of impurities within the firn and ice, therefore 

spatial and temporal variations in the microstructure and chemistry with depth can also be 

obtained. The capability to identify anomalous stratigraphic layers, study firn 

densification and metamorphisam, and co-register physical and chemical microstructural 

data will enhance the climatic interpretations of ice core proxies. 
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Chapter 3 

CHARACTERIZATION OF FOUR EAST ANTARCTIC FIRN/ICE CORES 

USING NEW IMAGING TECHNIQUES 

3.1 INTRODUCTION 

The microstructure of firn and ice cores, such as the size and morphology of 

grains, has been shown to be indicative of the physical, mechanical, and chemical 

characteristics of the ice sheet from which they were extracted (e.g. Alley and others, 

1986; Thorsteinsson and others, 1995; Alley and others, 1995a, Alley and Woods, 1996, 

Cuffey and others, 2000). Temperature, ice flow, and impurity content can all be inferred 

using these properties. Thus accurate physical properties measurements are important to 

our understanding of ice cores as proxies for climate. More recently much attention has 

been given to describing the microstructural location and composition of impurities 

(Cullen and Baker, 2001; Barnes and others, 2002a,b; Baker and Cullen, 2003; Barnes 

and others, 2003; Obbard and others, 2003; Barnes and Wolff, 2004; Baker and others, 

2005; Uiescu and Baker, 2008). Knowledge of these characteristics will increase our 

understanding of grain growth, deformation, diffusion and electrical conduction, as well 

as the likelihood of post-depositional interactions that may affect the reliability of climate 

proxies (Kreutz and others, 1998). 

While recent work has focused on refining the methodology (Cullen and Baker, 

2001; Barnes and others, 2002b; Baker and Cullen, 2003; Barnes and others, 2003; 

Baker and others, 2005; Baker and others, 2007) and defining and describing impurity 

types (Barnes and others, 2002a; Obbard and others, 2003; Barnes and Wolff, 2004) only 

limited work has been done to directly relate the morphology and microstructural location 
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of impurities to the physical properties they are believed to affect (Barnes and others, 

2002a; Iliescu and Baker, 2008). Here, scanning electron microscopy and X-ray micro-

computed tomography (micro-CT) are used to examine those relationships spatially and 

temporally in a suite of samples collected by the U.S. component of the International 

Trans-Antarctic Scientific Expedition (ITASE). 

3.2 METHODS 

3.2.1 Sample Collection and Preparation 

Firn and ice cores were collected during the 2006 and 2007 US ITASE traverses 

(Fig. 3.1) using the methodology described in Steig and others (2005). Samples for this 

study were produced by cutting a small section from one side of the 3-inch cores parallel 

to the vertical axis. Sub-samples were cut from these sections and the face to be analyzed 

was shaved with a razor blade at -20°C under a High Efficiency Particle Air (HEPA)-

filtered laminar flow hood following standard clean room practices. The final specimens 

were flat, smooth, free of scratches, and had a maximum dimension of 0.5 cm x 1 cm x 3 

cm (Cullen and Baker, 2001). Horizontal sections (surface analyzed is perpendicular to 

core axis) were taken every ten meters from all four cores (Table 3.1). Specimens were 

placed in a spring loaded copper sample holder, covered with a plastic cap to prevent 

contamination and the formation of frost on the surface and transported to the microscopy 

laboratory in a liquid nitrogen atmosphere. 
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3.2.2 Data Collection 

3.2.2.1 Scanning Electron Microscopy 

Samples were maintained at -110 ± 5°C in the vacuum chamber of an FEI XL30 

field emission gun SEM during data collection. The SEM was operated at 15 kV with a 

beam current of 0.15 nA and a spot size of 3 urn. During the collection of electron 

backscatter diffraction patterns (EBSPs) the spot size was increased to 5 um (Baker and 

others, 2007). 

Figure 3.1. Map of core locations. 06-1, 06-2, 06-3 and 07-4 were analyzed in this 
study. 02-5 and 03-1 were used for comparison of EDS and IC-PMS data. 
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For each sample a series of slightly overlapping SEM images were collected. These 

images were digitally stitched together to form a mosaic of the horizontal surface of each 

sample. 

The SEM is equipped to collect energy dispersive X-ray spectra (EDS) using an 

Edax light element Si(Li) detector. EDS were collected from several random locations to 

determine the background spectra, and additionally from triple junctions, filaments, grain 

boundary ridges, grain boundary grooves and crystal facets from at least 3 distinct 

locations per sample. 

EBSPs were obtained for each core at approximately 90 m depth using an HKL, 

Inc. Channel 5 Orientation Imaging System (examples in Figure 3.2). Ice can be difficult 

to index, so numerous patterns were collected from each sample. Due to the size 

restrictions of the sample holder and the grain size at these depths, more than one sample 

was required to obtain enough patterns. At least 60 patterns from each sample were of a 

high enough quality to index. Imaging was performed using a forward-scatter electron 

detector and EBSPs were obtained by stopping the beam at a point of interest. Patterns 

were produced by back-scattered electrons collected on a phosphor screen and recorded 

using a CCD camera. The sample was held by a copper sample holder pre-titled to 10° 

and the stage was tilted an additional 60° to maximize backscattering yield. 

3.2.2.2 Field Measurements 

Bulk density (p) and core quality were determined for each core section 

immediately after retrieval in the field. Stratigraphic analysis was conducted both in the 

field and in the laboratory. Each section of core was placed on a light table and the 
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Figure 3.2. Electron backscatter diffraction patterns. Examples of patterns 
composed of kikuchi bands and corresponding crystal orientations. 
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location of coarse layers, fine layers, ice layers, wind crusts and other pertinent data were 

recorded at the millimeter scale. 

3.2.3 Analytical Techniques 

Grain sizes were determined by tracing grain boundaries on SEM images using 

the drawing tool in Image Pro Plus 5.0 © and then utilizing a pixel counter to determine 

area. For more information on this method, including repeatability, see Spaulding and 

others (submitted). Porosity was calculated as percent areal porosity by dividing the area 

of pores by the area of the field of view. The repeatability of porosity measurements 

(±1.2%) was determined by repeating the porosity determination of 10 samples from 

different depths. 

EDS is a technique used in combination with SEM, allowing for the identification 

of the elements present in the observed impurities. The interaction between the electron 

beam and the atoms of the sample or impurity causes electrons to be ejected from the K-

shell. Electrons from higher shells (e.g. L, M) move to the lower energy K-shell and 

release energy in the form of an X-ray photon. The emitted X-rays have a characteristic 

energy dependent on the type of atom from which they are produced. The 

"concentration" is reported as the number of x-ray counts detected. The counts can not 

be directly converted into a "parts per billion" type concentration for a number of 

reasons. First, most of the impurities found in firn and ice are light elements which 

produce a small number of low energy photons that are readily absorbed by the 

surrounding ice. The decreased production and low energy of the photons result in a low 

signal to noise ratio, which reduces the accuracy of the EDS system. Additionally, the 

strength of the X-ray current is dependent upon both the size of the impurity analyzed 
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(larger impurities offer a larger interaction volume) and the concentration of chemicals in 

the impurity. For these reasons EDS analysis of impurities is considered qualitative, 

rather than quantitative (Goldstein and others, 1992). 

EBSPs were indexed to produce pole figures for the a-axes and c-axes using HKL 

(CHANNEL 5) pole figure and inverse pole figure software package Mambo©. Pole 

figures depict the orientation of each analyzed crystal as projected on the upper 

hemisphere of an equal area (Schmidt net) and are used to describe the fabric of the 

sample. The hexagonal crystal system is based on four crystallographic axes deemed aj, 

a2, a3, and c. The three a-axes are interchangeable equatorial axes lying in the same 

horizontal plane. The c-axis is a line perpendicular to this plane and passing through the 

intersection point of the three horizontal axes. All four axes are required to describe the 

position of the 6 prismatic faces and 2 basal planes of the hexagon. The c axis points are 

projected on the {0001} or basal plane and the three corresponding a-axes are plotted on 

the {11-20} plane, which represents the face of a secondary prism within the hexagon. 

The pole figures were contoured using a half width of 10° (controls the spread of the pole 

over the surface of the project sphere) and a cluster size of 3° (replaces multiple incidents 

of the same orientation (i.e. from the same grain) with a single orientation point with 

increased weighting) to produce more easily interpretable fabric diagrams. 

The misorientation angle between adjacent grains was determined using HKL 

(Channel 5) data management module Project Manager©. Misorientation angles describe 

the orientation difference between two grains in terms of the angle of rotation (about a 

common axis) necessary to move one crystal's coordinate system into coincidence with 

that of the second crystal. Hexagonal crystal systems contain twelve possible angle-axis 
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pairs (Day and others, 2004). By convention the smallest angle is referred to as the 

misorientation angle. 

Table 3.1. Physical properties data for the firn cores used in this study. Grain size 
and density increase with depth, while porosity and internal surface volume (Sv) 
decrease with depth.  

Density Grain Size % S„ 
Site Identifier Depth(m) (g/cm3) (mm2) Porosity (mm 1 ) 

2006-1 11 10.45 0.50 0.35 60 2.07 
2006-1 22 20.91 0.61 0.42 43 2.23 
2006-1 33 30.9 0.66 0.51 67 1.88 
2006-1 43 41.53 0.69 0.61 53 2.25 
2006-1 53 50.28 0.76 0.88 27 1.53 
2006-1 63 60.23 0.79 0.81 21 1.35 
2006-1 74 70.54 0.87 0.99 13 1.26 
2006-1 85 80.28 0.88 0.98 10 0.75 
2006-1 97 90.17 0.90 1.39 8 0.69 
2006-2 10 10.37 0.44 0.36 64 1.85 
2006-2 20 20.22 0.60 0.47 53 2.17 
2006-2 26 25.87 0.60 0.40 42 2.38 
2006-2 36 35.1 0.66 0.45 33 2.01 
2006-2 51 50.38 0.73 0.63 31 2.19 
2006-2 61 60.1 0.76 0.70 27 1.72 
2006-2 77 75.24 0.74 0.95 21 1.50 
2006-2 83 80.37 0.76 1.20 18 1.35 
2006-2 96 90.62 0.80 1.19 12 0.86 
2006-2 102 95.29 0.82 1.72 11 0.71 
2006-3 10 10.05 0.52 0.25 66 2.47 
2006-3 21 20.91 0.58 0.35 45 2.38 
2006-3 30 30 0.64 0.61 73 1.99 
2006-3 40 41.13 0.70 0.59 36 2.32 
2006-3 50 50.25 0.73 0.61 27 1.98 
2006-3 60 60.39 0.78 0.57 36 2.48 
2006-3 70 70.01 0.78 0.84 24 1.53 
2006-3 81 80.11 0.81 0.74 15 1.32 
2006-3 92 90.04 0.84 0.86 18 1.33 
2006-3 104 100.47 0.86 8 0.32 
2007-4 10 11.45 0.51 0.16 63 2.88 
2007-4 19 20.3 0.55 0.26 59 2.47 
2007-4 29 30.4 0.59 0.26 69 3.62 
2007-4 40 40.03 0.66 0.29 21 2.08 
2007-4 50 49.31 0.67 0.57 28 1.80 
2007-4 61 60.12 0.71 0.33 34 2.31 
2007-4 71 70.19 0.73 0.37 35 2.09 
2007-4 82 80.4 0.75 0.40 37 2.48 
2007-4 92 87.89 0.78 0.58 26 1.85 
2007-4 103 99.8 0.79 0.62 31 1.76 
2007-4 110 106.75 0.61 20 1.26 
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3.3 EXPERIMENTAL RESULTS 

3.3.1 Physical Properties 

Fig. 3.3 shows physical properties data for all four cores used in this study plotted 

versus depth. As anticipated, grain size and density increase with depth while porosity 

and internal surface volume decrease with increasing depth. Details of grain size, 

density, porosity and internal surface volume (Sv) with depth are given in Table 3.1. 

3.3.1.1 Grain Size 

The four cores in this study exhibit a decreasing trend in grain size with distance 

from the coast. Core 06-1 has the highest overall grain size and is located at Taylor 

Dome (near the coast) whereas core 07-4 has the lowest overall grain size and is located 

at Titan Dome (near South Pole). The change in grain size is likely attributable to the 

decrease in mean annual temperature moving inland (Bohlander and Scambos, 2001). As 

expected, grain size in all cores showed a linear increase with depth (Stephenson, 1967; 

Gow, 1969), driven by the reduction in free energy associated with a decrease in grain 

boundary area. 

3.3.1.2 Porosity 

Core 06-2 has the lowest average porosity, with cores 06-1 and 06-3 being 

approximately equivalent. However, 06-1 is less porous at all depths except 30 and 40 m. 

Visual stratigraphy indicates that these samples were taken from a coarse layer whereas 

those from equivalent depths in cores 06-2 and 06-3 were taken from a fine layer, 

indicating differences in seasonality. If the samples from core 06-1 had been taken from 

a fine layer, it would likely have the lowest average porosity, in accordance with having 
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the highest overall grain size. Core 07-4 has the highest overall porosity as determined 

using SEM images, although it may not be significantly different from cores 06-2 or 06-

3. In this core the porosity decreased from 10 to 30 m, increased from 40 to 80 m, and 

again decreases from 90 to 110 m. A correlation coefficient (r) between porosity and 

depth of 0.72 was found for 07-4 by forcing the intercept of the trendline to zero. In 

order to be significant at the 95% level, the r (with 9 degrees of freedom) must be at least 

0.735. All other cores had an r for porosity versus depth of greater than 0.88, which was 

significant in every case. Core 07-4 was the only core used in this study that may have 

been located in one of east Antarctica's prominent megadune areas. The megadunes are 

areas where bedrock topography and strong katabatic winds combine to create small long 

wave features at the surface of the ice sheet that disrupt wind flow. Accumulating snow 

on the upwind side becomes fine grained and wind packed. On the downwind side, very 

little accumulation occurs and snow grains are exposed at the surface for several years 

before being buried. While at the surface, seasonal thermal cycling occurs and vapor 

from the crystals is released into the air in the surrounding snowpack and is then 

readsorbed onto the crystal, resulting in very large crystals with ample pore space. As the 

dunes migrate, these accumulation regimes become stacked in the ice sheet (Courville, 

2007). The erratic porosity found in core 07-4 likely represents changes in accumulation 

regimes related to dune migration. 

3.3.1.3 Internal Surface Volume Per Area 

The internal surface volume per unit area was calculated as Sv = (4/7t)LA where LA 

is the length of the internal surface lines per unit area as determined by dividing the 

length of the projected surface around pores by the bounding area of those pores. Sv is a 
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measure of the complexity or tortuosity of the pores. Core 07-4 has the highest overall 

complexity while core 06-1 has the lowest. In each core Sv increases between 10 and 40-

60 m and decreases between 40-60 and 100 m. Baker and others (2007) used samples 

with a depth range of 10-40 m in U.S. ITASE cores 02-SP and 02-5 and also found that 

Sv increased with depth, which they considered unexpected. Possible explanations for 

their findings include 1) increased convolution of pores despite decreased volume 

resulting from increased anisotropy of pore space with flattening caused by overburden 

pressure or 2) a side-effect of sectioning. The findings presented here indicate that Sv is 

initially low when each grain is an island and then increases as the grains merge and their 

outlines become more complex to 40-60 m. Below this depth, outlines remain consistent, 

but decrease in size with continued compression resulting in the decrease of Sv to values 

at or below original values. This shows that firn densification is not an entirely linear 

process, as one might expect if only porosity was considered. 

3.3.1.4 Density 

In addition to having the lowest porosity value and the highest degree of 

anisotropy of pore space, core 06-1 had the highest rate of densification of the four cores 

(0.0056 kg m"4 (i.e. kg/m3 per meter of ice in each core section)). 07-4 had the lowest 

rate of densification, although the difference in the rates of densification between 06-2 

(0.0037 kg m"4), 06-3 (0.0039 kg m"4), and 07-4 (0.0036 kg m"4) were very small and may 

not have been statistically significant. 
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3.3.1.5 Crystallographic Orientation 

The {0001} and {11-20} pole figures produced for each core at approximately 

90 m are shown in Fig. 3.4. The random distribution of the points in the scatter plots 

suggests that the grains from all four cores have little preferred orientation. Contouring 

these images indicates that all the samples may have a weakly preferred c-axis 

orientation. The strength of the c-axis fabric was tested using the method of Kamb 

(1959), in which a coefficient/is calculated by dividing the number of c-axes in an area 

of the projection (A) by the standard deviation (a) of the number of axes expected from a 

random distribution. Both A and a are determined by a statistical relationship from the 

number of data points evaluated (N), such that when N increases, A decreases and a 

increases. A value of / < 3 is expected when there is no preferred orientation. 

Statistically significant preferred orientations are described by/> 6. None of the fabrics 

analyzed here were shown to be statistically random (Table 3.2). 

Table 3.2. Determination of the strength of the c-axis fabric using Kamb (1959). 
Variables are outlined in the text. Only 074-10 does not have a statistically 
significant preferred orientation. 

N I N f 

061-97 102 2.6 20 8 

061-97b 76 2.5 17 7 

062-96 108 2.7 25 9 

063-92 77 2.5 25 10 

074-90 100 2.6 19 7 
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061-97 
n = 102 

062-96 B 
n=108 I 

Figure 3.4. Crystallographic orientation patterns. Patterns are shown for the ~ 90 m samples. In each series the left hand 
circle is the c-axis {0001 {plane and the right hand series are the a-axes {11-20} plane. Statistically significant preferred 
orientations are found in all four samples. 



063-92 
n=77 

074-90 
n=100 

Figure 3.4. Continued... 
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3.3.2 Chemical Properties 

3.3.2.1 Elemental Chemistry 

In order to determine if the elemental chemistry or the distribution of impurities 

changed with depth, samples from approximately 30, 60, and 90 m in each core were 

analyzed using EDS. Although depth was used to identify each sample, it is important to 

keep in mind that the seasonality and age of the stratigraphic layer from which the sample 

was taken is more important to the comparison of chemistry than depth alone. Fig. 3.5 

shows the average intensity of the 8 most common elements at each depth, while Fig. 3.6 

shows the frequency with which each element occurred at each depth. It may be assumed 

that an element occurring with greater frequency contributes more greatly to the 

aerosol/dust loading at the time of deposition. Table 3.3 illustrates the number of points 

(of the total analyzed) containing elemental chemistry above background at each depth. 

Table 3.3. Number of analysis points at each depth in each core. See Fig. 3.5 and 
3.6 for elemental composition and frequency.  

Total # of % with 
30m 60m 90m spectra Chemistry 

06-1 3 8 13 3 9 6 1 5 

06-2 4 4 10 4 3 4 1 - 8 

06-3 13 8 4 3 7 6 7 - 6 

07-4 6 9 10 3 0 8 3 - 3 
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Figure 3.5. The average intensity in counts per second of the 8 most common 
elements at each depth. Although depth was used to identify each sample, the 
seasonality and age of the samples are more important for comparison of elemental 
chemistry. Note that in most cases the intensity [concentration] is greatest at 06-1 
and lowest at 07-4. 
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Figure 3.6. Frequency of occurrence of the 8 most common elements at each depth. 
Frequency is determined by dividing the number of times that element is seen by the 
number of spectra at that depth that contain chemistry beyond background levels. 
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3.4 ANALYTICAL RESULTS 

3.4.1 Elemental Factor Analysis 

Multivariate statistical analysis (Robert K. Fitch; version 2007.1) was used to 

examine the elemental associations in each of the four cores for which chemical data was 

collected. Extraction of eigenvalues was done using the principal component method. 

Factors with eigenvalues greater than 1 were considered to represent statistically 

significant groups of variables (Kaiser, 1960). The variables assigned to each factor are 

determined by the significance of their correlations. The significance is expressed as 

factor loading and is determined using Varimax orthogonal rotation (Davis, 2002). 

Factor loadings greater than 0.7 indicate that each of the variables in the factor are 

significantly correlated. Factor loadings less than 0.4 were not considered significant 

(Mil-Homens and others, 2009). Non-elemental characteristics, such as depth, grain size, 

porosity, and impurity structure or location were also included in the factor analysis. 

Impurity structures and locations are as follows: BWS: bright white spots, GB: grain 

boundaries, TJ: triple junctions (the intersection of three grains), ICE: background (parts 

of the sample which appear gray in SEM images), INC: large inclusions (insoluble 

impurities), TAN: filament tufts, and FIL: filaments. An example of each impurity 

structure or location is shown in Fig. 3.7. Representative EDS spectra for several 

impurity types are shown in Fig. 3.8. Factor analysis was meant to not only answer 

questions about the elemental associations, but also questions about the relationship 

between the elements and the non-elemental characteristics; for example, is the 

morphology or microstructural location of the impurities indicative of a particular 

chemical composition? Table 3.4 shows the results of all four factor analyses conducted. 
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3.5 DISCUSSION 

3.5.1 Glaciology 

The physical and chemical properties characterized above can be used to infer the 

flow history of the ice sheet in the immediate vicinity of each of the cores. The location 

of highest density clustering on the contoured images of samples from ~ 90 m depth in 

cores 06-3, 06-2, and 07-4 indicates a weakly preferred orientation of c-axes near the 

vertical (Fig. 3.4). The contoured images also suggest that the c-axis is the primary axis 

of rotation because clustering of points is more evident on the {0001} figure. This type 

of rotation and the subsequent texture is expected in areas where the primary source of 

strain is vertical uniaxial compression by the weight of overlying ice (Azuma and 

Higashi, 1985). With continued vertical compression and accumulated strain history 

these weakly preferred orientations would likely developed into broad single maximum 

fabrics concentrated about the vertical (Gow and Williamson, 1976; Gow and others, 

1997; Thorsteinsson and others, 1997; Hooke, 2005). As illustrated by the pole figures, 

with the exception of core 06-1, the samples from ~ 90 m appear to have similar 

deformation history. 

The clustering of poles seen in 06-1 suggests that some grains may have been 

analyzed in duplicate. To examine this possibility, the misorientation between adjacent 

grains was determined. The data from one grain was eliminated in each pair of adjacent 

grains having misorientations less than 3.0° (the analytical resolution of the instrument at 

the magnification used). A, a, and/were recalculated using the new N. For N = 76 a 

statistically significant preferred c-axis orientation still exists in 06-1, although the 

magnitude of / was less than that found previously (Table 3.2- 061-97b) and some 
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clustering was still evident. The inclusion of so many low angle grain boundaries in a 

sample with so little accumulated strain history is unexpected. If the sample were from 

<flf' 

1 • 

IMP 
EMI 

1 , 1 1 

Figure 3.7. The seven impurity structures and locations analyzed are shown. A 
description of each structure or location is provided in the text Magnifcation of 
black bounding boxes in the left images are shown in the image to the right. 
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Figure 3.8. EDS spectra for common impurity morphologies. A) Bright white spot 
(BWS). B) Inculsion (INC). C) Filament tuft/tangle (TAN). D) Filament (FIL). 
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Table 3.4. Results from the factor analysis in each core. A) Core 06-1. B) Core 06-2. 
C) Core 06-3 and D) Core 07-4.  

CORE 06-1 B CORE 06-2 

Fl F2 F3 Fl F2 F3 
Al 0.94 Al 0.62 -0.53 0.58 
Ca 0.98 Ca 0.98 
CI 0.66 CI 0.91 
Depth -0.97 Depth 0.94 
Grain Size -0.97 Grain Size 0.94 
BWS 0.48 -0.88 BWS 0.90 
GB -0.80 0.60 GB -0.50 -0.76 
TJ -0.93 TJ 0.86 
ICE 0.94 ICE 0.43 
INC 0.90 INC 
TAN 0.52 0.82 TAN 
FIL 0.96 FIL 0.95 
K 0.48 0.79 K 0.99 
Mg 0.87 Mg 0.97 

Na 0.79 Na 0.67 -0.71 

P P 

Porosity 0.81 - -0.51 Porosity -0.94 

S 1.00 S 0.90 

Si 0.96 Si 0.63 -0.77 

% of Variance 50.7 28.2 15.1 °/o of Variance 45.17 33.30 12.60 

CORE 06-3 CORE 07-4 

Fl F2 F3 Fl F2 F3 

Al Al -0.72 

Ca -0.58 0.65 Ca 0.71 -0.58 

CI 0.96 CI 0.72 0.49 -0.43 

Depth 0.97 Depth 0.93 

Grain Size 0.98 Grain Size 0.94 
BWS BWS 0.83 

GB -0.68 GB -0.50 -0.63 
TJ 0.97 TJ 

ICE ICE 

INC -0.61 INC 0.78 

TAN TAN -0.86 

FIL 0.99 FIL 0.87 

K 0.83 K 0.76 0.59 

Mg Mg 0.88 

Na 0.97 Na -0.77 

P P 0.54 

Porosity -0.95 Porosity -0.91 

S -0.72 0.67 S -0.56 

Si - 0.86 - Si -0.86 - -
°/o of Variance 33.65 29.67 14.67 % of Variance 45.57 16.72 16.58 
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a deeper section of the ice core, their presence could be explained by polygonization 

(heterogeneous deformation resulting in the organization of dislocations into 

subboundaries) and rotation recrystallization (boundaries become larger and the 

subgrains split into two distinction grains) (Alley, 1992; Alley and others, 1995b; Durand 

and others, 2008). Rotation recrystallization does not typically occur in the uppermost 

sections of ice sheets (Alley, 1992), however Durand and others (2008) found an over-

representation of low angle grain boundaries in textures analyzed from as shallow as 115 

m in the NGRIP core. Further, a study by Hamann and others (2004, 2005) found 

evidence that intra-crystalline deformation is highly inhomogenous, even close to the ice 

sheet surface, and showed subgrain boundaries in samples from only 104 m depth. In 

this study, evidence of subgrain boundaries, such as those described by Kipfstuhl and 

others (2006) was found in samples as shallow as 40 m (Fig. 3.9). Additionally, the 

discontinuous increase in grain size between 40 and 70 m in cores 06-1, 06-2 and 06-3 

may indicate an increase in the number of low angle grain boundaries below 40 m, as low 

angle grain boundaries have less energy and therefore sublimate less rapidly, making the 

boundaries difficult or impossible to see. Given these findings it is possible that the 

clustering seen in the ~ 90 m sample from core 06-1 is indicative of shallow subgrain 

formation. These findings also suggest that shallow ice sheet metamorphism does occur 

and should be given consideration in ice flow modeling. 

3.5.2 Chemistry 

The primary sources of impurities in Antarctic ice sheets are sea salt aerosols, 

dust particulates, and volcanic and biogenic emissions (Legrand and Mayewski, 1997). 

Thompson and Mosley Thompson (1982) found that annual particulate loading decreases 
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as a function of the mean distance from open water, as does the accumulation rate 

(Bromwich, 1988; Zwally and Giovinetto, 1997). A generally decreasing trend in the 

concentrations of all of the eight most common elements (Fig. 3.6) between core 06-1 at 

Taylor Dome (-150 km from the coast) and core 07-4 at South Pole (-1300 km from the 

coast) was found in this study (Bertler and others, 2005), with the exception of K at 90 m 

in sample 07-4 which was greater than that of sample 06-1 at approximately 90 m. The 

Figure 3.9. Subgrain boundaries in a sample from ~ 50 m at core site 07-1. Subgrain 
boundaries appear faint and kinked whereas grain boundaries are heavier and 
straighten 

increased concentration of K and CI may be a byproduct of the random sampling of 

impurities as only one impurity analyzed in sample 06-1 at - 90 m contained K. and with 
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the exception of one point of analysis all the K counts in 07-4 at ~ 90 m were lower than 

those in 06-1 at ~ 90 m. Differences in the seasonality of the samples analyzed at 90 m 

may also account for this difference. 

The general trend of decreasing concentration with distance from the coastline 

was captured by samples in core 06-1 and 07-4, but was not seen in core 06-2 and 06-3. 

It is likely that in order to capture these changes on a smaller gradient (i.e. between 

sample sites with a smaller change in distance from the coast), more points of EDS 

analysis are necessary. However, this study has shown that EDS analysis is capable of 

accurately characterizing differences in impurity loading on a gross scale and has the 

potential to do so on a more macroscopic scale if higher sampling density is employed. 

In addition to characterizing trends in concentration, the results of the elemental 

factor analysis showed that patterns of site-specific chemistry can be determined using 

EDS analysis as well. At Taylor Dome, the majority of Ca loading is attributed to 

continental dust sources and Na is attributed primarily to sea salt (De Angelis and others, 

1997; Legrand and Mayewski, 1997; Steig and others, 2000). At South Pole, the primary 

source of both Ca and Na is sea salt aerosols from the ocean (Tuncel and others, 1989; 

Legrand and Mayewski, 1997). In core 06-1 (Taylor Dome) factor analysis found Ca 

loaded on Fl at the same magnitude as other continental dust elements (Al, Si). Na 

loaded on the same factor, but did not appear to be directly related to any other element 

(Table 3.4A). When factor analysis contains only elemental variables, Ca and Na are 

separated onto distinct factors representing the dust and sea salt contributions, 

respectively. The primarily continental source of Ca results from the strong southerly 

cyclonic systems that are the primary source of snowfall events at South Pole (Morse and 
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others, 1998). In core 07-4 (South Pole) Ca was loaded primarily with CI indicating an 

oceanic source and Na was also found with CI (Table 3.4D). Marine aerosols at South 

Pole are derived directly from the surrounding ocean and therefore have a shorter transit 

time than crustal materials, which are transported from temperate latitudes in the middle 

to upper troposphere (Tuncel and others, 1989). As a result of the decreased transit time, 

marine aerosols are less extensively scavenged from the atmosphere and appear more 

predominantly in the ice sheet (Shaw, 1979). Although increases in continental/dust 

material are seen during the austral summer, owing to the weakened temperature 

inversion over the polar ice cap and weakened cyclonic wind system around Antarctica, 

the marine source still overshadows the continental/dust input (Legrand and Mayewski, 

1997). The findings from EDS analysis and from IC/IC-PMS analysis of other cores in 

the same regions record the similar trends. This shows that differences in air mass 

sources can be accurately determined using EDS. 

At site 06-2 Na was primarily associated with dust species and Ca with marine 

species (Table 3.4B). At site 06-3, Na was associated only with CI, indicating a sea salt 

source, while Ca was found on two separate factors associated with S on Fl and K on F3 

(Table 3.4C). The differences in factor loadings between 06-1, 06-2, and 06-3, which all 

have relatively coastal locations and are in close proximity, may reflect changes in the 

seasonality or storm trajectories of layers sampled. Additionally, they may give some 

indication of the importance of site scale effects (micro-meteorology, surface topography, 

etc..) on deposition and post-depositional alteration. 

Budner and Cole-Dai (2003) showed that South Pole ice cores record volcanic 

mass aerosol loading from all sources with greater fidelity than other ice cores from East 
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Antarctic sites with low accumulation and significant post-depositional alternation, 

indicating that the SO42" record at South Pole may contain a greater contribution from 

volcanic aerosols than other sites. It has also been shown that greater than 95% of the 

SO4 " in South Pole snow originates from sources other than sea salt {Cole-Dai and 

Mosley-Thompson, 1999; Cole-Dai and others, 1997), with the majority being biogenic 

sulfate and methanesulfonic acid (MSA). Additionally, SO42" is the dominant aerosol 

species in the summer at South Pole as a result of the strength of the Ross Sea/ice shelf 

low pressure system (Arimoto and others, 2004). At Taylor Dome, S04
2" is primarily 

related to marine biogenic sources and terrestrial biogenic and volcanic sources are less 

dominant (Steig and others, 2000). 

In Antarctic ice cores, the vast majority of S is in the form of SO4"2 (S.B. Sneed-

personal communication). This chemical configuration allows the patterns in IC S04
2" 

chemistry discussed above to be compared to the patterns in S chemistry as derived from 

EDS. In core 06-1, S loads at magnitude 1.0 on F3 accounting for only 15.1% of the 

variability with only K and CI, indicating a marine source (Table 3.4A). In core 07-4, S 

loads at -0.56 magnitude on Fl, accounting for 45.6% of the variability. Fl also includes 

negative factor loadings for Al and Si (Table 3.4D). S, Si, and Al load on the same factor 

in core 06-2 as well (Table 3.4C). However, in that case, all elements present on Fl have 

positive factor loadings indicating a shared source (possibly cyclonic systems crossing 

the Ross Ice Shelf [Steig and others, 2004)); whereas in core 07-4 the loadings for Al, Si, 

and S are opposite in sign as compared to other elements loading on that factor indicating 

a different source (likely crustal materials and volcanic emissions from the mid-latitudes). 

The results of the factor analysis indicate variations in the sulfate loading and source, as 
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suggested by other techniques (i.e. potentially increased volcanic S04
2" loading in core 

07-4 compared to core 06-1) can also be determined by EDS analysis of impurities. 

The results of the factor analysis described above indicate that EDS analysis of 

impurities can provide valuable data regarding the elemental chemistry of ice core 

samples, including differences in air mass trajectories More importantly these findings 

indicate that this type of analysis could be used to chemically fingerprint stratigraphic 

layers at a higher resolution than other methodologies while still allowing accurate source 

determination. In addition, it may be possible, using the techniques described here and a 

more in-depth characterization of soluble and particulate impurities, to co-register 

stratigraphic layers in cores from distal locations. These applications would contribute 

greatly to the understanding of the spatial and temporal changes in environmental 

conditions throughout Antarctica. 

In addition to the elements shown in Fig. 3.5 and Fig. 3.6, titanium (Ti) was found 

in association with Al and Ca at one point of analysis in 06-1-33. Laboratory 

contamination is an unlikely cause for the presence of Ti. Instead, the Ti probably 

originates from dust or the products of solid rocket propellants, ablating space craft debris 

and interplanetary dust particles which possibly contain presolar grains and remnant 

condensation products from the early solar system (Zolensky, 1987; Zolensky and others, 

1989). Phosphorous (P) was observed at one point of analysis in 06-3-92, in association 

with Si, S, and CI and also in samples from 07-4 at 60 and 90 m, although at levels barely 

above background. Phosphorous derives primarily from the mineral weathering of 

crustal components. Blecker and others (2006) note that although marine deposition 

(from sea salt aerosols and marine biogenic PO4 in sea ice) and eolian translocation are 
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possible sources of P in Antarctica (Lancaster, 2002; Lyons and others, 2003), direct 

atmospheric deposition is unlikely given the low levels of P in the surrounding ocean 

(Stumm and Morgan, 1981) and the limited gaseous component of the P cycle. The P 

seen in the samples mentioned above likely has an on continent dust source. Both Ti and 

P are found routinely in IC-PMS analysis of polar ice at very low concentrations. 

3.5.3 Morphology and Microstructural Location of Impurities 

The elements or combination of elements present determine, at least in part, the 

morphology and microstructural location of impurities in glacial firn/ice. The positive 

association found between filaments (FIL) and sea salt species indicates that filament 

formation requires the presence of salts (Table 3.4), which has been observed previously 

in filaments in snow, firn and ice (Cullen and Baker, 2001; Obbard and others, 2003; 

Barnes and Wolff, 2004; Rosenthal and others, 2007; Iliescu and Baker, 2008). The 

formation of filaments is believed to result from the concentration of impurities via 

localized surface diffusion with the sublimation of surrounding ice. Filaments are often 

found in grain boundaries as they are areas of high free energy and sublimate the most 

rapidly (Cullen and Baker, 2001; Baker and Cullen, 2003). Extended sublimation (5-8 

months) has been shown to result in the formation of filaments on the bulk of the ice as 

well (Rosenthal and others, 2007). Although the samples in this study did not sublimate 

for an extended period of time, an intragranular filament was found encircling impurities 

collected at the peak of a crystal facet (Fig. 3.10). Similar to grain boundaries, the 

surface energy at both a facet peak and around an impurity would be greater than the 

surrounding ice. The presence of this intragranular filament may indicate that filaments 

will form wherever the concentration of impurities (resultant from localized surface 
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diffusion) is above a threshold value. This supports the theory that filaments are formed 

during sublimation and are not frozen ice veins (Baker and Cullen, 2008). 

Figure 3.10. Filament around soluble impurity at facet peak from 07-4 at 11.3 m. 

While the formation of filaments requires the presence of salts, the formation of 

filament tufts or tangles (TAN) is positively associated with the presence of dust species 

(Al, Si). One possible explanation for this association is that the tuft or tangle-like 

morphology is only possible if there is a dust particulate nucleus for the filament (formed 

from salt) to tangle around. Cullen (2000) showed SEM images of a diamond shaped 

inclusion (consisting of Mg and S) both before and after a nearby filament (also 

consisting of Mg and S) became wrapped around it. Although no such progression was 

captured in the study described in this paper, it provides a likely analog. Cullen (2000) 

also reported that the grain boundary filaments in the Byrd core versus those in the 
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GISP2 core were compositionally different, containing primarily Mg and S versus Na and 

CI, respectively. Both cores had similar physical appearance, soluble lattice 

(intragranular) chemistry, and soluble impurity levels as determined by ion 

chromatography (IC), thus Cullen (2000) attributed the differences in filament chemistry 

to either the presence of non-ionic dust species (e.g. Al and Si) or to unknown 

environmental differences at the core sites. Filaments (FIL) observed in this study 

unilaterally contained CI, while filament tufts unilaterally contained Si, but also 

commonly contained CI. These chemical characterizations in conjunction with Cullen's 

(2000) photos indicate that filaments may be attracted to nearby particulates thereby 

forming filament tufts. 

Bright white spots (BWS) are the most prevalent impurity type and previous 

research has shown that the BWS in a sample allowed to sublimate for a greater length 

of time becomes both larger and more numerous in accordance with the theory of 

concentration via localized surface diffusion (Cullen and Baker, 2001). An association 

between BSW and any particular element or combination of elements was not observed 

in this study. This lack of association may be due to incorrect categorization as a result 

of the limited sublimation time in the SEM chamber. It is possible that some impurities 

placed in this category were insoluble particulates (INC) that had not been fully exposed 

by sublimation, thus only appeared as bright white spots (BWS). Both dust elements (Al, 

Si) and marine components (CI, S) have been reported in bright white spots (Cullen and 

Baker, 2001; Barnes and others, 2002a,b; Baker and Cullen, 2003; Obbard and others, 

2003; Baker and others, 2005). Rempel and others (2001) found that dust particles may 

be coated with a liquid film in association with interfacial premelting. If the dust 
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particles are associated with soluble impurities, this phenomenon could also explain the 

lack of association between BWS and any particular set of elements. 

Triple junctions (TJ) have a negative association with continental/dust species 

(Ca, Al, Si) in two cores and are negatively associated with Ca and S in a third. One 

possible explanation for this opposing relationship is that dust particles may not move 

into triple junctions. However, previous research has shown that soluble impurities 

within ice grains will be swept into grain boundaries as they migrate, particularly during 

recrystallization (Glen and others, 1977, Iliescu and Baker, 2008). A shear strain of 

-1.15 was imparted upon the samples used in Iliescu and Baker (2008), whereas the 

samples used in this study were collected from a shallow part of the ice sheet and have 

very little accumulated strain history. The strain induced grain boundary migration in 

Iliescu and Baker (2008) is therefore unlikely to be consistent with the strain experienced 

by the samples used in this study. The lack of accumulated strain history in this study's 

samples means less grain boundary migration and therefore fewer opportunities for 

continental/dust species to be swept into the boundaries. These differences in strain 

history may explain why the relationship seen here is in opposition with the relationship 

previously reported. 

Very few triple junctions (TJ) were analyzed in core 07-4 and therefore no 

association with dust species could be determined, however evidence of the influence of 

dust species on grain size was found by other means. Although the impurities analyzed 

in core 07-4 had the lowest concentrations of contintental/dust species (Fig. 3.5) the 

sampling frequency of continental/dust species (i.e., Si and Al,—Fig. 3.6) was higher 

than in any other core. Core 07-4 has the smallest overall grain size, given the high 
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continental/dust sampling frequency; it is possible that decreased grain size is a result of 

increased dust loading. Dust content and porosity are positively related while grain size 

and porosity are negatively related, indicating that in these cores, grain size is partially 

controlled by dust content. However, there are also several alternate explanations for the 

decreased grain size at site 07-4, including mean annual temperature, therefore, the 

relationship between grain size and dust content may be from a combination of factors or 

coincidental. 

There were no apparent associations between any elements or combination of 

elements and INC (large inclusions), ICE (background) and GB (grain boundaries). Very 

few impurities were identified as INC and some INC may have been identified as BWS 

as discussed above, possibly explaining the lack of association between the 

characteristics examined and this impurity type. Grain boundaries placed in the GB 

category did not contain filaments, but rather were characterized by grain boundary 

ridges or grooves. Most contained no detectable elemental chemistry, however, this does 

not indicate there were no impurities in the grain boundaries, but rather that 1) impurity 

levels were below the instrumental detection limit or 2) the depth of the grain boundary 

groove caused the emitted x-rays to be absorbed by the surrounding ice thereby 

preventing detection (Cullen and Baker, 2001; Barnes and others, 2002). 

3.5.4 Comparison with other Methodologies 

Chemical characterization of ice cores is typically done using IC or inductively 

couple plasma mass spectrometry (ICMPS). Because the microstructural characterization 

of impurities has implications for the interpretation of IC and ICPMS data, it is important 

to understand the relationships between the types of measurements. For example, most 
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recently both of these methods have been utilized in the analysis of discrete samples 

collected using continuous melter systems (see Osterberg and others, 2006). A fraction 

collector is used to separate samples, which can have as high as 1 cm resolution. IC is 

used to measure the dissolved chemistry of major ions (Na+, K+, Mg2+, Ca2+, CH3SO3", 

CI", NO3". and SO4 "). IC-PMS is used to measure the trace element chemistry (e.g. 27A1, 

44Ca, 3Te, "JCu, e tc . ) , which requires the acidification of meltwater samples in order to 

dissolve particulates. IC-PMS therefore measures total bulk chemistry. 

Previous research (Cullen, 2000) showed that despite having similar chemistry, as 

measured by IC, the Byrd and GISP2 cores had very different filament chemistry as 

determined using EDS. As discussed earlier, these differences may be attributable to the 

presence of non-ionic (insoluble) particulates. IC-PMS has not yet been completed on 

the cores used in this study, however data from two cores located to the east (03-1) and 

west (02-5) (unpublished, D. Dixon) of core 07-4 (Fig. 3.1) are compared. 

Factor analysis of the concentrations of elements found using both EDS and IC-

PMS in the three South Polar cores (Na, Ca, Mg, Al, CI, and S) revealed site specific 

differences in elemental aerosol and particulate loading (Table 3.5). Core 02-5 appears to 

be more closely related to core 07-4 than core 03-1. Numerical simulations of the 

wintertime surface wind-field over Antarctica indicate that low level winds at 02-5, 03-1, 

and 07-4 come from the same source area (Parish and Cassano, 2003), however, the 

winds at 02-5 and 07-4 follow a more similar trajectory explaining the increased 

similarity in elemental chemistry between 02-5 and 07-4. The differences in factor 

loading between the three cores may not be related to differences in the methodology as 

cores 06-1, 06-2, and 06-3 were as close together as 07-4, 02-5 and 03-1 and, despite all 
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three (06-1, 06-2, and 06-3) having been analyzed by EDS, still exhibited differences that 

could be attributed to either dissimilarities in aerosol/particulate deposition or 

incorporation into the ice sheet owing to micro-meteorological effects. 

Table 3.5. Factor Analysis of Elemental Variables in cores 07-4 (EDS) and 03-1 and 
02-5 (IC-PMS).  

A CORE 07-4 B CORE 02-5 C CORE 03-1 

Fl F2 Fl F2 Fl F2 
Al -0.44 -0.68 Al -0.72 Al 0.87 

Ca 0.82 Ca -0.74 Ca 
CI 0.72 CI 0.92 CI -0.46 -0.64 

Mg 0.89 Mg Mg 

Na Na 0.95 Na -0.77 

S 0.97 - S -0.59 0.82 S - 1.00 

% of % of %of 
Variance 32.60 28.08 Variance 46.98 22.90 Variance 28.74 26.32 

Selected ratios (NaS, CaS, CaAl, NaCa, CINa, SCI) of several common elements 

from both measurement types were compared. Ratios were used because it is not 

possible to directly compare counts to concentration. The combination of elements 

presented in ratios was chosen based on the correlation matrices for the three samples. 

Histograms of the frequency with which each of the elemental ratios occurred in the 

samples are presented in Fig. 3.11. Data from core 06-1 are included as well. 

As illustrated in the discussion of the first factor analysis (Table 3.4) cores 06-1 

and 07-4 are quite different. The relationships seen in Fig. 3.11 may indicate that the 
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Figure 3.11. Histogram of the frequency of occurrence of elemental ratios. Ratios 
from EDS are shown for cores 07-4 and 06-1. 03-1 and 02-5 were analyzed using 
IC-PMS. 
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differences between EDS analysis and IC-PMS analysis render the comparison of these 

data impossible. However, it should be taken into consideration that EDS sampling of 

impurities was very random. 

A more detailed centimeter by centimeter comparison of IC-PMS and EDS 

chemistry from core 07-4 is being completed in order to better assess the differences 

between EDS and IC-PMS analysis. In addition to answering these questions, those data 

will be used to look in more depth at the relationship between the physical and chemical 

characteristics within shallow firn. 

3.5 CONCLUSIONS 

The characterization of physical properties in four cores from the US ITASE 

traverses of 2006 and 2007 (06-1, 06-2, 06-3 and 07-4) revealed site-specific details that 

would have been missed if only chemical characterization had been completed. Erratic 

porosity values in core 07-4 indicate this site may be located in one of East Antarctica's 

vast megadunes areas. While this area has not yet been identified as such using satellite 

imagery, these data suggest that advanced physical properties measurements using SEM 

can assist in the identification of dune areas not classified as such using other methods. 

This capability increases the likelihood of accurately determining the quality of core 

sites. 

Characterization of internal surface volume (Sv) at site 07-4 and others showed 

that the progression from firn to ice is not entirely linear, as would be assumed if only 

grain size or porosity were considered. Further investigation of changes in Sv with depth 

may aid in the understanding of the processes of firn densification and metamorphism in 
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the ice sheet. Both of the findings described above indicate the importance of 

characterizing multiple parameters to the understanding of ice cores as climate proxies. 

A- and c-axis orientation data from 4 samples from approximately 90 m depth and 

indicated only limited preferential orientation. The c-axis is the primary axis of rotation 

in all four samples as a result of the overburden pressure. The high degree of clustering 

of poles in sample 06-1-97 and the inclusion of a great number of low angle 

misorientations indicate subgrain formation. Subgrains are not typically expected to form 

in the shallow parts of the ice sheet, however visual evidence of subgrain formation was 

found in samples as shallow as 50 m. These findings indicate that SEM and EBSD are 

valuable techniques for investigations of strain in the shallow parts of ice sheets. 

The inter-regional trends in aerosol/particulate loading determined by EDS 

analysis of impurities are in accord with those previously published from IC and IC-PMS 

data. The previously established patterns of Na and Ca deposition at Taylor Dome (Ca is 

continental, Na is marine) and South Pole (both are marine) were accurately determined 

using EDS. The differences in patterns of S04
2" between the sites also indicate dissimilar 

SO42" sources (i.e. volcanic versus oceanic). In addition to accurately characterizing 

differences in loading and incorporation into the ice sheet, EDS analysis also identified 

the general trend of decreasing concentration with movement inland. 

The morphology and microstructural location of impurities was found to be 

dependent upon the elements present. As was determined in previous studies the 

formation of filaments (FIL) was found to require the presence of sea-salt or marine 

species, bright white spots (BWS) were found to contain both marine and continental 
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species. Not reported elsewhere is the characterization of filament tufts (TAN), which 

require the presence of continental (dust) species for their formation. 

The analysis of both the soluble and insoluble chemistry and physical properties 

within a single firn or ice specimen suggests that both properties can provide valuable 

insights regarding environmental conditions at the time of deposition (temperature, 

atmospheric chemistry, atmospheric circulation patterns, etc.) and conditions affecting 

post-depositional alteration (micro-meteorological differences, shallow firn 

metamorphism, accumulation hiatuses). Many of these properties are intricately linked 

and investigations of their relationships using SEM, EDS, and EBSD will advance our 

understanding of the spatial and temporal changes in the climate of Antarctica in a way 

that no other instrumentation or technique could. 
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Chapter 4 

SUMMARY 

The physical and chemical characterization of firn and ice cores presented in this 

thesis illustrate the utility of scanning electron microscopy (SEM) and the necessity of 

complete characterization in the interpretation of paleoclimate proxies. 

In chapter 2, a new method of grain size measurement was presented. This 

method utilized digital SEM images of unprocessed firn and ice samples to create a 

skeleton outline of the grain network from which the area of grains and pores can be 

calculated using a pixel counting routine. The resulting average grain size was smaller 

than those previously reported due, in part, to the use of pore filler which obscures the 

true grain size in traditional methods. The decrease in grain size was most obvious in 

very small grains (less than 0.4mm2 in size). The ability to more accurately determine 

grain size will aid in the identification of stratigraphic anomalies secondary to a number 

of environmental factors including changes in particulate loading, accumulation rate, 

temperature, or strain. Additional parameters can be characterized with this technique 

including porosity, internal surface volume, crystallographic orientation and chemical 

composition of impurities. 

Future work in the study of grain size should involve the creation of an automated 

outlining program that will work with SEM images. Currently, each grain has to be 

manually outlined. The creation of an automated procedure will significantly decrease 

processing time and increase accuracy. The degree of detail captured by the SEM will 

make the automation of this process difficult. For example, sublimation textures can be 

on the same scale as grain boundaries making simple digital filtering difficult. 
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Automated raster to vector conversion programs created for GIS, mapping and computer 

automated design (Wu, 2000) could potentially be used in the development of new 

software. 

The ability to characterize multiple parameters of a single sample was 

demonstrated in chapter 3 using the physical and chemical microstructure of several 

samples from four East Antarctic cores. This analysis yielded several unexpected results 

showing the importance of characterizing both chemical and physical properties. 

Orientation data and visual inspection of SEM images indicate the formation of subgrains 

shallower in the ice sheet than expected. Variable porosity values indicated possible 

changes in accumulation regimes suggesting that core 07-4 may be located in one of East 

Antarctica's vast megadunes areas. This area has not been previously identified as a 

megadunes area based on satellite imagery. 

Site-specific differences in aerosol and particulate loading can be captured by 

EDS analysis. Factor analysis on the EDS spectra from site 06-1 indicated a marine Na 

source and a continental/dust Ca source, consistent with IC/IC-PMS analysis. Site 07-4 

was found to have a primarily marine source for both Ca and Na, as indicated elsewhere 

for the South Polar region. 

The morphology and microstructural location of impurities is determined by the 

elements present in the ice cores. For example, filaments, which form in rapidly 

sublimating areas, indicate the presence of salts; whereas filament tufts require dust 

elements (i.e., Al and Si) to form. This may have implications for post-depositional 

alteration. 
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This research has shown that accurate characterization of both chemical and 

physical properties can be achieved using scanning electron microscopy. Future research 

should involve a more focused and in depth comparison of the chemical and physical 

properties to better reveal their complex relationship. For example, mapping of 

impurities and misorientations may be particularly useful. In addition, a larger study 

including more continuous sampling and encompassing sites with more dissimilar strain 

history and environmental variability is suggested. Doing so will lead to a greater 

understanding of the relationship between the chemistry used to infer paleoenvironmental 

conditions and the resultant physical manifestation in ice cores. 

70 



REFERENCES 

Alley, RB. 1980. Densification and recrystallization of firn at Dome C, East Antarctica. 
In Institute of Polar Studies Report No. 77. Columbus, OH: Ohio State University 
Institute for Polar Studies, 19-20. 

Alley, RB, 1992. Flow-law hypotheses for ice-sheet modeling. Journal of Glaciology, 
38(129), 245-256. 

Alley, RB and GA Woods. 1996. Impurity influence on normal grain growth in the 
GISP2 ice core, Greenland. Journal of Glaciology, 42(141), 255-260. 

Alley, RB, JH Perepezko and CR Bentley. 1986. Grain growth in polar ice: I. Theory. 
Journal of Glaciology, 32(112), 415-424. 

Alley, RB, AJ Gow, SJ Johnsen, J Kipfstuhl, DA Meese and T Thorsteinsson. 1995a. 
Comparison of deep ice cores, Nature, 373, 393-394. 

Alley, RB, AJ Gow, and DA Meese. 1995b. Mapping c-axis fabrics to study physical 
processes in ice. Journal of Glaciology, 41(137), 197-203. 

Anderson, MP, GS Grest, and DJ Srolovitz. 1989. Computer simulation of normal grain 
growth in three dimensions. Philosophical Magazine B, 59(3), 293-329. 

Andreas, EL. 2007. New estimates for the sublimation rates for ice on the Moon. Icarus, 
186, 20-34. 

Arnaud, L, V Lipenkov, JM Barnola, M Gay and P Duval. 1998. Modelling of the 
densification of polar firn: characterization of the snow-firn transition. Annals of 
Glaciology, 28, 39-44. 

Arimoto, R, A Hogan, P Grube, D Davis, J Webb, C Schloesslin, S Sage and F Raccah. 
2004. Major ions and radionuclides in aerosol particles from the South Pole during 
ISCAT-2000. Atmospheric Environment, 38, 5473-5484. 

Azuma, N and A Higashi. 1985. Formation processes of ice fabric pattern in ice sheets. 
Annals of Glaciology, 6, 130-134. 

Baker, I and D Cullen. 2003. SEM/EDS observations of impurities in polar ice: artifacts 
or not? Journal of Glaciology, 49(165), 184-190 

Baker, I, D Illiescu, R Obbard, J Chang, B Bostick and C Daghlian. 2005. 
Microstructural characterization of ice cores. Annals of Glaciology, 42, 441-444. 

Baker, I, R Obbard, D Illiescu, and D Meese. 2007. Microstructural characterization of 
fim. Hydrological Processes, 21(12), 1624-1629. 

71 



Barnes, PRF and EW Wolff. 2004. Distribution of soluble impurities in cold glacial ice. 
Journal ofGlaciology, 50(170), 311-324. 

Barnes, PRF, R Mulvaney, K. Robinson, and EW Wolff. 2002a. Observations of polar ice 
from the Holocene and glacial period using the scanning electron microscope. Annals of 
Glaciology, 35, 559-566. 

Barnes, PRF, R Mulvaney, and K Robinson. 2002b. A technique for the examination of 
polar ice using the scanning electron microscope. Journal of Microscopy, 205, 118-124. 

Barnes, PRF, E Wolff, DC Mallard, HM Mader. 2003. SEM studies of the morphology 
and chemistry of polar ice. Microscopy Research and Technique, 62(1), 62-69. 

Barr, AC and SM Milkovich. 2008. Ice grain size and the rheology of Martian polar 
deposits. Icarus, 194, 513-518. 

Bertler, N. and 54 others. 2005. Snow chemistry across Antarctica. Annals ofGlaciology, 
41, 167-179. 

Blecker, SW, JA Ippolito, JE Barrett, DH Wall, RA Virginia, and KL Norvell. 2006. 
Phosphorus Fractions in Soils of Taylor Valley, Antarctica, Soil Science Society of 
America Journal, 70, 806-815 

Bohlander, J and T Scambos, compilers. 2001. THERMAP Antarctic Ice Sheet 
Temperature Data. Boulder, CO: National Snow and Ice Data Center. Digital media. 

Bromwich, DH. 1988. Snowfall in high southern latitudes. Reviews of Geophysics, 26, 
149-168. 

Budner, D and J Cole-Dai. 2003. The number and magnitude of explosive volcanic 
eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice 
core, in Volcanism and the Earth's Atmosphere, edited by A. Robock and C. 
Oppenheimer, American Geophysical Union, 165-176. 

Burke, JE. 1949. Some factors affecting the rate of grain growth in metals. Transactions 
of the American Institute of Mining and Metallurgical Engineers, 180, 73. 

Callister Jr, W. 2007. Dislocations and strengthening mechanisms: 7.13 Grain Growth. In 
Materials Science and Engineering An Introduction. New York, NY: John Wiley & Sons, 
Inc., 200. 

Cole, DG, P. Feltham, and E. Gillam. 1954. On the mechanism of grain growth in metals 
with special reference to steel. Proceedings of the Royal Society of London: Series B, 67, 
131-137. 

72 



Cole-Dai, J and E Mosley-Thompson. 1999. The Pinatubo eruption in South Polar snow 
and its potential value to ice core paleovolcanic records. Annals of Glaciology, 29: 99-
105. 

Cole-Dai, J, E Mosley-Thompson, and LG Thompson. 1997. Quantifying the Pinatubo 
signal in south polar snow. Geophysical Research Letters, 24, 2679-2682. 
Courville, Z. 2007. Gas diffusivity and air permeability of the firn from cold polar sites. 
Ph.D. dissertation, Thayer School of Engineering, Dartmouth College. 

Courville, ZR, MR Albert, MA Fahnestock, LM Cathles IV, and CA Shuman. 2007. 
Impacts of an accumulation hiatus on the physical properties of firn at a low 
accumulation polar site. Journal of Geophysical Research, 112(F2), F02030. 

Cuffey, KM, T Thorsteinsson, and ED Waddington. 2000. A renewed argument for 
cystral size control on ice sheet strain rates. Journal of Geophysical Research, 105(B12), 
26547-26557. 

Cullen, D. 2000. The structure and chemistry of polar glacier ice. Ph.D. Thesis, Thayer 
School of Engineering, Dartmouth College, Hanover, NH, 163-165. 

Cullen D and I Baker. 2001. Observation of impurities in ice. Microscopy Research and 
Technique, 55, 198-207. 

Currie, LA. 1995. Nomenclature in evaluation of analytical methods including detection 
and quantification capabilities. Pure and Applied Chemistry, 67(10), 1699-1723. 

Davis, JC. 2002. Statistics and data analysis in geology, Wiley: New York, p. 638. 

Day, A, P Trimby, K Mehnert and B Neumann. 2004. HKL Technology, Channel 5 [user 
manual]. Hobro, Denmark: 423. 

De Angelis, M, JP Stephenson, M Legrand, H Clausen and C Hammer. 1997. Primary 
aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: 
Comparison with east Antarctic records. Journal of Geophysical Research Letters, 102, 
26681-26698. 

Durand, G, A Persson, D Samyn and A Svensson. 2008. Relation between neighbouring 
grains in the upper part of the NorthGRIP ice core-Implications for rotation 
recrystallization. Earth and Planetary Science Letters, 265, 666-671. 

Duval, P and C Lorius. 1980. Crystal size and climatic record down to the last ice age 
from Antarctic ice. Earth and Planetary Science Letters, 48(1), 59-64. 

Fitch, RK. 2007. WinSTAT version 2007.1 [computer software]. 

73 



Gay, M and J Weiss. 1999. Automatic reconstruction of polycrystalline ice 
microstructure from image analysis: application to the EPICA ice core at Dome 
Concordia, Antarctica. Journal ofGlaciology, 45(151), 547-554. 

Glen, JW, DR Homer, JG Paren. 1977. Water at grain boundaries:its role in the 
purification of temperate glacier ice, International Association of Hydrological Sciences 
Publication, 118, 263-271. 

Goldstein, JI, DE Newbury, P Echlin, DC Joy, AD Romig, Jr., CE Lyman, C Fiori, E 
Lifshin. 1992. Scanning Electron Microscopy and X-ray Microanalysis: A Text for 
Biologists, Material Scientists, and Geologists, 2nd Edition, Plenum Press, New York, 
Chapter 3. 

Gow, AJ. 1969. On the rates of growth of grains and crystals in South Polar firn. Journal 
ofGlaciology, 8(53), 241-252. 

Gow AJ and T Williamson. 1976. Rheological implications of the internal structure and 
crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd 
Station. Geological Society of America Bulletin, 87(12), 1665-1677. 

Gow, AJ, DA Meese, RB Alley, JJ Fitzpatrick, S Anandakrishnan, GA Woods and BC 
Elder. 1997. Physical and structural properties of the Greenland Ice Sheet Project 2 ice 
core: A review. Journal of Geophysical Research, 102(26), 559-575. 

Gow, AJ, DA Meese, and RW Bialas. 2004. Accumulation variability, density profiles 
and crystal growth trends in ITASE firn and ice cores from West Antarctica. Annals of 
Glaciology,39, 101-109. 

Gurland, J and RC Tripathi. 1971. A simple approximation for unbiased estimation of 
standard deviation. The American Statistician, 25(4), 30-32. 

Hamann, I, S Kipfstuhl and N Azuma. 2005. Sub-grain boundary features in ice cores 
from EDML, Antarctica, 2005 Conference of Japanese Society of Snow and Ice, 
27.9.2005-30.9.2005, Asahikawa, Japan. 

Hamman, I, S Faria, S Kipfstuhl, D Grigoriev, A Lambrecht, and F Marino. 2004. Large 
grain boundary hierarchy in the EPICA-DML deep ice core, Antarctica. Geophysical 
Research Abstracts, 6, 06791. 

Higgins, MD. 2000. Measurement of crystal size distributions. American Mineralogist, 
85(9), 1105-1116. 

Hooke, RLeB. 2005. Principles of Glacier Mechanics, 2nd Edition, Cambridge 
University Press: Cambridge, p. 54-63. 

74 



Iliescu, D and I Baker. 2008. Effects of impurities and their redistribution during 
recrystallization of ice crystals. Journal o/Glaciology. 54(185), 362-370. 

Kaiser, H. 1960. The application of electronic computers to factor analysis. Educational 
and Psychological Measurement, 20, 141-151. 

Kamb, WB. 1959. Ice petrofabric observations from Blue Glacier, Washington, in 
relation to theory and experiment. Journal of Geophysical Research, 64(11), 1891-1909. 

Kipfstuhl, S, I Hamann, A Lambrecht, J Freitag, SH Faria, D Grigoriev and N Azuma. 
2006. Microstructure mapping: a new method for imaging deformation-induced 
microstructural features of ice on the grain scale. Journal of Glaciology, 52(178), 398-
406. 

Kreutz, KJ, PA Mayewski, SI Whitlow, MS Twickler. 1998. Limited migration of soluble 
ionic species in a Siple Dome, Antarctica, ice core. Annals of Glaciology, 27, 371-377. 

Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: A 
preliminary assessment. Arctic Antarctic and Alpine Research, 34, 318-323. 

Legrand, M and PA Mayewski. 1997. Glaciochemistry of polar ice cores: A review. 
Reviews of Geophysics, 35, 219-143. 

Lyons, WB, KA Welch, AG Fountain, GL Dana, BH Vaughn, and DM McKnight. 2003. 
Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its 
relationship to stream chemistry. Hydrological Processes, 17, 115-130. 

Mayewski, PA. 1996. Science and Implementation Plan for US ITASE "200 Years of 
Past Antarctic Climate and Environmental Change", A Contribution to: The International 
Trans-Antarctic Science Expedition (ITASE) and the West Antarctic Ice Sheet (WAIS) 
Initiative, Durham, NH. 

Mayewski, PA, M Frezzotti, N Bertler, T van Ommen, GH Hamilton, J Jacka, B Welch, 
M Frey, Q Dahe, J Ren, J Simoes, M Fily, H Oerter, F Nishio, E Iasaksson, R Mulvaney, 
P. Holmund, V. Lipenkov, and I. Goodwin, 2006, The International Trans-Antarctic 
Scientific Expedition (ITASE) - An Overview, Annals of Glaciology, 41, 180-185. 

Mil-Homens, M, V Branco, C Lopes, C Vale, F Abrantes, W Boer and M Vicente. 2009. 
Using factor analysis to characterize historical trends of trace metal contamination in a 
sediment core from the Tagus Prodelta, Portugal. Water Air and Soil Pollution, 197, 277-
287. 

Montgomery, DC and GC Runger. 2003. 7-2.2 Proof that S is a biased estimator of a. In 
Applied Statistics and Probability for Engineers 3rd Edition. New York, NY: John Wiley 
& Sons, Inc., 224. 

75 



Morse, DL, ED Waddington and EJ Steig. 1998. Ice age storm trajectories inferred from 
radar stratigraphy at Taylor Dome, Antarctica. Geophysical Research Letters, 25, 3383-
3386. 

Nasello, OB, CL Di Prinzio and PG Guzman. 2005. Temperature dependence of "pure" 
ice grain boundary mobility. Acta Materialia, 53, 4863-4869. 

Obbard R, D Iliescu, D Cullen and I Baker. 2003. SEM/EDS comparison of polar and 
seasonal temperate ice. Microscopy Research and Technique, 62(1), 49-61. 

Obbard, R., I. Baker and K. Seig. 2006. Using electron backscatter diffraction patterns to 
examine recrystallization in polar ice sheets. Journal ofGlaciology, 52(179), 546-557. 

Osterberg, EC, MJ Handley, SB Sneed, PA Mayewski, KJ Kreutz. 2006. A continuous 
ice core melter system with discrete sampling for major ion, trace element and stable 
isotope analyses, Environmental Science and Technology, 40(10), 3355-3361. 

Oxford Instruments PLC. 2005. Basics of EBSD. EBSD explained, web 7/23/2008. 
<www.ebsd.com> 

Parish, TR and JJ Cassano. 2003. Diagnosis of the katabatic wind influence on the 
wintertime Antarctic surface wind field from numerical simulations. Monthly Weather 
Review, 131, 1128-1139. 

Paterson, WSB. 1994. The transformation of snow to ice. In The Physics of Glaciers, 3rd 

Edition. New York, NY: Pergamon Press, 8-78. 

Rempel, AW, JS Wettlaufer, MG Worster. 2001. Interfacial premelting and the 
thermomolecular force: Thermodynamic buoyancy. Physical Review Letters, 87(8), 
088501. 

Rick, UK and MR Albert. 2004. Microstructure and permeability in the near-surface firn 
near a potential US deep-drilling site in West Antarctica. Annals of Glaciology, 39, 62-
66. 

Rosenthal, W, J Saleta and J Dozier. 2007. Scanning electron microscopy of impurity 
structures in snow. Cold Regions Science and Technology, 47, 80-89. 

Shaw, GE. 1979. Abundance of chemical elements in the continental crust: A new table. 
Geochimica Cosmochimica Acta, 28, 1983. 

Sieg, K. 2008. Examination of the fine-grained region of the Siple Dome ice core. 
Unpublished Master's thesis, Thayer School of Engineering, Dartmouth College. 

Skyscan N.V. 2005. Desktop x-ray microtomograph [instruction manual]. Aartselaar, 
Belguim: 12. 

76 

http://www.ebsd.com


Spaulding, NE, DA Meese, I Baker, PA Mayewski, and GH Hamilton. 2009. A new 
technique for firn grain size measurement. Journal ofGlaciology, submitted. 

Steig EJ, DL Morse, ED Waddington, M Stuiver, PM Grootes, PM Mayewski, SI 
Whitlow, and MS Twickler. 2000. Wisconsinan and Holocene climate history from an ice 
core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler, 82A: 
213-235. 

Steig EJ, PA Mayewski, DA Dixon, MM Frey, SD Kaspari, DP Schneider, SA Arcone, 
GS Hamilton, VB Spikes, M Albert, D Meese, AJ Gow, CA Shuman, JWC White, S 
Sneed, J Flaherty, M Wumkes. 2005. High-resolution ice cores from US ITASE (West 
Antarctica); development and validation of chronologies and estimate of precision and 
accuracy. Annals ofGlaciology, 41, 77-84. 

Stephenson, PJ. 1967. Some considerations of snow metamorphism in the Antarctic ice 
sheet in the light of crystal studies. In H. Oura, ed. Physics of Snow and Ice. Institute of 
Low Temperature Science, 725-740. 

Stumm, W, and JJ Morgan. 1981. Aquatic chemistry: An introduction emphasizing 
chemical equilibria in natural waters. 2nd ed. Wiley-Interscience. New York. 

Surdyk, S. 2002. Low microwave brightness temperatures in central Antarctica: observed 
features and implications. Annals ofGlaciology, 34, 134-140. 

Thompson, LG and E Mosley-Thompson. 1982. Spatial distribution of microparticles 
within Antarctic snow-fall. Annals ofGlaciology, 3, 300-306. 

Thorsteinsson, T, J Kipfstuhl, J Eicken, J Johnsen and K Fuhrer. 1995. Crystal size 
variations in Eemian-age ice from the GRIP ice core, central Greenland. Earth and 
Planetary Science Letters, 131(3/4), 391-394. 

Thorsteinsson, T, J Kipfsthul, H Miller. 1997. Textures and fabrics in the GRIP project. 
Journal of Geophysical Research, 102 (CI 2), 26583-26599. 

Tuncel, G, NK Aras and WH Zoller. 1989. Temporal variations and sources of elements 
in the south pole atmosphere 1. Nonenriched and moderately enriched elements. Journal 
of Geophysical Research, 94(D10), 13025-13038. 

Zolensky, ME, A Pun, and KL Thomas. 1989. Titanium carbide and titania phases in 
Antarctic ice particles of probable extraterrestrial origin. Proceedings of the 19th Lunar 
and Planetary Science Conference, Cambridge: Cambridge University Press, 505-511. 

Zolensky, ME. 1987. Refractory interplanetary dust particles. Science, 237(4821), 1466-
1468. 

77 



BIOGRAPHY OF THE AUTHOR 

Nicole Spaulding was born Nicole West in Lebanon, New Hampshire on June 8, 

1984. She was raised in Hartland, Vermont and graduated from Hartford High School in 

2002. She attended Colgate University and graduated magna cum laude with an Honors 

degree (B.A.) in Geology in May of 2006. She married Jeffry P. Spaulding on July 22, 

2006 and immediately moved to Orono, ME to attend the University of Maine. 

After receiving her degree, Nicole will pursue a Ph.D. in Earth Sciences at the 

University of Maine. Nicole is a candidate for the Master of Science degree in 

Quaternary and Climate Studies from the University of Maine in August, 2009. 

79 


	The University of Maine
	DigitalCommons@UMaine
	2009

	Characterization of Firn Microstructure Using Scanning Electron Microscopy: Implications for Physical Properties Measurements and Climate Reconstructions
	Nicole Spaulding
	Recommended Citation


	tmp.1337865953.pdf.3odJ9

